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Approximate Maximum Parsimony

and Ancestral Maximum Likelihood
Noga Alon, Benny Chor, Fabio Pardi, Anat Rapoport

Abstract— We explore the maximum parsimony (MP) and
ancestral maximum likelihood (AML) criteria in phyloge-
netic tree reconstruction. Both problems are NP hard, so we
seek approximate solutions. We formulate the two problems
as Steiner tree problems under appropriate distances. The
gist of our approach is the succinct characterization of
Steiner trees for a small number of leaves for the two
distances. This enables the use of known Steiner tree
approximation algorithms. The approach leads to 16/9

approximation ratio for AML, and asymptotically to 1.55

approximation ratio for MP.

Index Terms— Phylogenetic reconstruction, Ancestral
maximum likelihood, Maximum parsimony, Steiner trees,
Approximation algorithms.

I. I NTRODUCTION

The ancestral maximum likelihood (AML) problem, also

calledmost parsimonious likelihood[2], [16], is a maximum

likelihood variant of phylogenetic tree reconstruction. Given

a set ofm sequences, the goal in AML is to find a tree topol-

ogy T with them sequences at the leaves, an assignment of

sequences to internal (ancestral) nodes, and an assignment of

substitution parameters for every edge, such that the overall

likelihood (the probability of the resulting configuration)

is maximized. AML “lies between” maximum parsimony
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(MP) [6] and maximum likelihood (ML) [5], in that it is a

likelihood method (like ML), but sequences for internal tree

vertices are also reconstructed (like MP). Barry and Hartigan

note that the most parsimonious likelihood method may

indeed lead to inconsistent estimates of transition matrices

and trees. They present it as a variant of the parsimony

method of Fitch, which is inconsistent, but often works pretty

well in discovering trees [2].

When the tree topology and its edge lengths are given, it

is known how to efficiently find an optimal assignment of

internal sequences [14]. When the tree topology is given, but

edge lengths are not, it is still unknown if there is an efficient

solution. Neither is much known about approximations and

heuristics to the general AML problem (where the tree

topology is not given), which is NP-hard [1]. MP can be

seen as a special case of AML, which constrains the tree to

be fully resolved, all edge lengths to be equal, and where a

symmetric substitution model is assumed [8], [16]. Under

these constraints, any tree that maximizes the ancestral

likelihood is an MP tree.

In this paper we present an approximation algorithm for

MP and for AML under the Neyman 2-state substitution

model [13]. We remark that this simpler model is biolog-

ically significant, for example when DNA sequences are

expressed in terms of Purines (Adenine and Guanine) and

Pyrimidines (Thymine and Cytosine). In Neyman’s model,

for each edgee of a tree T there is a corresponding

probability pe that the character states at the two endpoint

vertices of e differ. Given leaves’ labels, any assignment

of substitution probabilities to edge lengths, and of labels

to internal nodes, determine the probability of generating

this configuration. This probability is termed the ancestral

likelihood, and yields the following version of the AML

optimization problem:

ANCESTRAL MAXIMUM L IKELIHOOD (VERSION
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Input: A set S of m binary sequences, each of

lengthn.

Goal: Find a treeT with m leaves, an assignment

e 7−→ pe ∈ [0, 1] of edge probabilities, and a

labelling λ : V (T ) → {0, 1}n of the vertices such

that

1) The m labels of the leaves are exactly the

sequences fromS, and

2)
∏

e∈E(T ) pde
e (1 − pe)

n−de (wherede is the

Hamming distance of the two labels across

the edgee) is maximized.

We remark that in most phylogenetic contexts, evolution is

viewed as a “conservative” process. Subsequently, in realistic

instances, the edge substitution probabilities are in the range

0 ≤ pe ≤ 1/2. The AML problem may, at first glance,

seem like a continuous optimization problem due to the edge

probabilities. The following observation, due to [1], shows

that this is not the case. Givende, the value ofpe that

maximizes the individual contribution ofe to the likelihood,

pde
e (1−pe)

n−de , is pe = de/n. This implies that the optimal

pe is one ofn + 1 possible values. Upon substituting this

value and taking then-th root, the contribution of the edge

to the “normalized likelihood” is(
de

n

)de/n (
1− de

n

)1−de/n

.

Taking logarithms, the overall normalized log likelihood

becomes∑
e∈E(T )

(
de

n
log

(
de

n

)
+

(
1− de

n

)
log

(
1− de

n

))

=
∑

e∈E(T )

−H2

(
de

n

)
,

where H2 is the binary entropy function,H2(p) =

−p log2(p)−(1−p) log2(1−p) [4]. This leads to our second

AML formulation (we drop the subscript 2 from logarithms

and entropies):

ANCESTRAL MAXIMUM L IKELIHOOD (VERSION

II)

Input: A set S of m binary sequences, each of

lengthn.

Goal: Find a treeT with m leaves and a labelling

λ : V (T ) → {0, 1}n of the vertices such that

1) The m labels of the leaves are exactly the

sequences fromS, and

2)
∑

e∈E(T ) H (de/n) is minimized.

The last formulation is fairly close to the following formu-

lation of the maximum parsimony problem:

MAXIMUM PARSIMONY

Input: A set S of m binary sequences, each of

lengthn.

Goal: Find a treeT with m leaves and a labelling

λ : V (T ) → {0, 1}n of the vertices such that

1) The m labels of the leaves are exactly the

sequences fromS, and

2)
∑

e∈E(T ) (de/n) is minimized.

Finally, we recall the definition of theSteiner treeproblem,

which plays a central role in our algorithm. The input is a

connected graphG = (V, E) with positive edge weights, and

a subsetS ⊆ V of vertices, called terminals. A Steiner tree is

a minimum weight connected subgraph ofG, containing all

vertices ofS. It is known that the Steiner tree problem is NP-

hard [11]. This motivates the search for efficient algorithms

that produceapproximatesolutions.

If the graphG is complete, and the weights satisfy the

triangle inequality, then a minimum spanning tree onS

achieves an approximation ratio at most2 [17]. Conse-

quently, in a series of papers, a number of authors found

improved approximation algorithms for the Steiner tree prob-

lem, with approximation ratiosmaller than2 [18], [3], [9],

[15]. The first such improvement, due to Zelikovski, achieves

a 11/6 approximation ratio [18]. Further improvements were

applied to the running time of the algorithms, to the achieved

approximation ratios, or to both. The best scheme to date

approaches the approximation ratio1+ ln 3
2 ≈ 1.55, meaning

that the tree produced by the algorithm has weight that is

no more than1.55 the weight of the Steiner tree [15].

II. RESULTS

Both the AML and the MP problems can be thought of

as Steiner tree problems, where the underlying graphG is

the complete graph over{0, 1}n. For any pair of vertices

u, v ∈ {0, 1}n with Hamming distanced between them, the

distance isH(d/n) for the AML, andd/n (or, equivalently,

d) for MP. (We change notation fromweight to distanceas

we will now deal with questions like the triangle inequality.)
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In the appendix, we show that the entropy measureH(d/n)

is indeed a distance, by showing that it satisfies the triangle

inequality (which is needed for applying the Steiner approx-

imation algorithms). We note that the view of parsimony as

a Steiner tree problem dates back to the NP-completeness

proof of Foulds and Graham [7]. The ML problemcannot

be formulated as a Steiner tree problem, at least not directly.

A central idea, due to [18] and then [3], is shared by these

(and other) works. Given the graphG, the set of terminals

(“leaves”) S, and an integerk ≥ 3, find the Steiner trees

(in G) for all subsetsA ⊂ S of up to k terminals. Then,

cleverly combine some of these
(|S|

k

)
(1 + o(1)) “k trees” to

produce an approximate solution to the Steiner tree problem.

In terms of running time, this approach is polynomial in

|V |+
(|S|

k

)
, which is polynomial in|V |+ |S| for any fixedk.

However, in our AML/MP application,G is not given as part

of the input. Furthermore, since the number ofG’s vertices,

|V | = 2n, is exponential inn, we cannot exhaustively go

over all possible sets of internal nodes fromV . This rules

out a direct application of the approximation algorithms

mentioned above. However, going over all ofV may not

be necessary, provided we can generate, in time polynomial

in |S|+n, a Steiner tree ofk (or fewer) given points. We may

be able to take advantage ofspecific propertiesof AML/MP

in order to identify a Steiner tree for eachA ⊆ S of size at

mostk without exhaustively trying all internal nodes ofG.

For MP, this is straightforward, as for each subsetA ⊆ S

of k input sequences, a most parsimonious tree can be found

in time polynomial inn (and super exponential ink), e.g.by

trying exhaustively all tree topologies with thek sequences

at their leaves.

To deal with AML, we first establish the triangle inequal-

ity with respect to the entropy measure.

Claim 2.1: For every v1, v2, v3 ∈ {0, 1}n, h(v1, v2) ≤
h(v1, v3) + h(v2, v3), whereh(u, v) = H(d(u, v)/n).

Proof: Consider a process where we start atv, and

switch each of itsn bits independently, each with probability

p. The probability of reachingu as a result of this process

is pd(v,u) · (1 − p)n−d(v,u). This probability is maximized

for p = d(v, u)/n, and then the logarithm of this maximum

probability is−nh(v, u).

For all 1 ≤ i < j ≤ 3, let pij = d(vi, vj)/n. Consider

the following two phase process: We start with the sequence

v1, and switch each of its bits, randomly and independently,

with probabilityp13. Then, in the second phase, switch each

bit of the resulting sequence, randomly and independently,

with probability p23. The probability that in this process

v1 is converted in the first phase tov3, and then in the

second phase tov2, is precisely2−nh(v1,v3)−nh(v2,v3). On

the other hand, the two phases combined are equivalent to

flipping each bit ofv1, randomly and independently, with

probability p = p13(1 − p23) + (1 − p13)p23. Let P denote

the probability that starting withv1, we end with v2 in

this combined process (not necessarily going throughv3).

Clearly, P is at least as large as the probability that this

happens while passing throughv3 in the end of the first

phase. On the other hand,P is at most2−nh(v1,v2), as this

is the probability of starting withv1 and ending withv2

while flipping every bit with the optimal probabilityp12.

This can only give larger (or equal) probability than the one

we get usingp, and therefore

2−nh(v1,v3)−nh(v2,v3) ≤ P ≤ 2−nh(v1,v2) ,

and the desired result follows.

As pointed out in the previous section, there is no known

polynomial solution (polynomial inn · m) to the “small

AML” problem (that is, when the tree is given but edge

lengths are not). Therefore we cannot simply proceed as with

MP, and solving the problem for any subset ofk sequences,

for any k, is not straightforward. We instead characterize

optimal assignments of the internal node for the special case

of k = 3 leaves. We show that this internal assignment can

always be taken as one of the three given sequences or as

their point-wise majority (their MP solution). We begin with

a simpler case, where edge lengths are given (see Figure 1).

We remark that it is possible to find an optimal assignment

using brute force: For each of the three edges, try each edge

probability in the range{0, 1/n, 2/n, . . . , (n− 1)/n, 1}. For

each such substitution of edge probabilities, we can apply the

algorithm for finding an optimal internal assignment. This

brute force approach requires examiningO(n3) candidate

assignments. The characterization we provide next states that

it suffices to examine4 = O(1) points.

Problem 1: We are given three sequencesv1, v2, v3 ∈
{0, 1}n, and the three “edge lengths”p1, p2, p3 (0 ≤ pi ≤
1/2). We wish to find a sequencew ∈ {0, 1}n that maximizes

the ancestral likelihood of the sequences, given the tree and

its internal node,w, namely the expression
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p
d(v1,w)
1 (1 − p1)

(n−d(v1,w)) · pd(v2,w)
2 (1 − p2)

(n−d(v2,w)) ·
p
d(v3,w)
3 (1− p3)

(n−d(v3,w)) .

p3
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p1

v1

v2

w v3

Fig. 1. The triplet tree,T

Taking logarithms, the expression becomes

log (p1/(1− p1)) d(v1, w) +

log (p2/(1− p2)) d(v2, w) + log (p3/(1− p3)) d(v3, w) +

n log ((1− p1)(1− p2)(1− p3)) (1)

Let Ci = log(pi/(1−pi)) (i = 1, 2, 3). As thepi’s are smaller

or equal to1/2, pi ≤ 1− pi, so all theCi are non-positive.

The last term in (1) does not depend onw, so it suffices to

maximizeC1d(v1, w)+C2d(v2, w)+C3d(v3, w). Expressing

the distances coordinate-wise, this equals
n∑

i=1

C1δ(v1,i, wi) +

n∑
i=1

C2δ(v2,i, wi)

+

n∑
i=1

C3δ(v3,i, wi)

=

n∑
i=1

(C1δ(v1,i, wi) + C2δ(v2,i, wi)

+ C3δ(v3,i, wi)) ,

whereδ(ui, vi) = 0 if ui = vi, and1 if ui 6= vi.

For any coordinate,i, where v1,i = v2,i = v3,i, we

should takewi to equal this shared value. This makes

δ(v1,i, wi) = δ(v2,i, wi) = δ(v2,i, wi) = 0, and maximizes

the contribution of suchi-th term in the sum.

For any coordinates,i, where the three entries are not

equal, the optimal value ofwi depends on the coefficients

C1, C2, C3. Assume, without loss of generality, thatC1 ≤
C2 ≤ C3. We claim that, ifC2 + C3 − C1 > 0, then for all

coordinates, the optimal setting forwi is wi = v1,i. If C2 +

C3−C1 < 0, then the optimal setting forwi is themajority

value out ofv1,i, v2,i, v3,i. (In the case whereC2+C3−C1 =

0, any of these two options is optimal.) Now suppose that

C2 + C3−C1 > 0. If we takewi 6= v1,i, the contribution of

the termC1δ(v1,i, wi) to the overall sum isC1. If, instead,

we takewi = v1,i, the worst contribution (minimum) of

C2δ(v2,i, wi) + C3δ(v3,i, wi) to the sum isC2 + C3. Since

C1 < C2+C3, we maximize our objective function by taking

wi = v1,i. On the other hand, ifC2 + C3 − C1 < 0, then

sinceC1 ≤ C2 ≤ C3, the sum of any two of the coefficients

is smaller than the third. Therefore setting the entrywi to

equal the majority of the three bitsv1,i, v2,i, v3,i contributes

a single coefficient to the sum, which is a larger contribution

than the other two. Finally, it is clear that ifC2+C3−C1 = 0

then both options are optimal. We have just shown:

Lemma 2.1:Let v1, v2, v3 ∈ {0, 1}n be three sequences

that are the leaves in a tree with corresponding edge lengths

p1, p2, p3 (0 ≤ pi ≤ 1/2). Then an internal node that

maximizes the ancestral likelihood is amongv1, v2, v3 or

the maximum parsimony point (coordinate wise majority)

of the three.

The lemma can easily be generalized to the less realistic

cases where some (or all) edge lengthspi are greater than

1/2, with corresponding changes like replacing a sequence

by its complement. We can also extend the characterization

of AML assignment from the tree with three leaves to a

star tree withk leaves (k ≥ 3). Let Cj = log
(

pj

1−pj

)
. At

every coordinatei we look at the sequencesvj whosei-th

coordinate is0, and those where it is1. We compute the

sum ofCjs for both sets. The optimal setting ofwi is to the

value whose corresponding sum ofCjs is smaller.

Finally, we come back to our motivating problem: Char-

acterize AML solutions for the optimum tree withk = 3

leaves, when the edge lengths are not specified in advance.

Problem 2: Given three sequencesv1, v2, v3 ∈ {0, 1}n, find

a sequencew that minimizes the sum

H(w, v1) + H(w, v2) + H(w, v3) .

The same characterization proved for Problem 1 holds here

as well, despite the fact that edge lengths are not specified.

To see this, take an optimal assignment for the internal node

and its induced edge lengths. For these lengths, Lemma 2.1

implies the optimality of one of the four assignments.

Using the terminology of Zelikovsky, what we showed is

that for each triple of terminals (input sequences, or vertices
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in S), we can efficiently find the center. Then by the Steiner

tree approximation algorithm of [18], which was discussed

earlier, we get:

Claim 2.2: There is an AML approximation algorithm,

using subsets of sizek = 3, that runs in timeO(|S|4 · n),

and achieves an approximation ratio11/6.

Can we extend this approach and get a better approxima-

tion algorithm by using subsets of sizek = 4 rather than

k = 4? To do that, two ingredients should be modified.

First, the approximation algorithm of Zelikovsky, which

is a greedy algorithm, there is no provable improvement

when k = 4 is used. However, the algorithm of Berman

and Ramaiyer, which is not greedy, processes thek-subsets

differently, and does achieve an improved approximation.

For the casek = 4, the achievable approximation ratio is

16/9 and the run time isO(|S|5 ·n). Second, like before, in

order to apply this algorithm in the AML context, where the

underlying graph has2n vertices, we should show how to

efficiently find the Steiner tree on any four terminals under

the AML/entropy distance. We now demonstrate that for any

four terminals, we can characterizeO(1) candidate trees

that are guaranteed to contain an AML tree on these four

terminals.

We first assume that topology and edge lengths are given,

and characterize the two internal points in the tree. This

enables us to provide a short list of possible Steiner trees

for the entropy measure.

p5
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@
@

@
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p1

�
�

�
��

p3

@
@

@
@@

p4

a

b

x y

c

d

Fig. 2. The4-tuple treeT , its edges’ lengths, and the sequences at its
vertices.

Consider the treeT in Figure 2, where the given sequences

at its leaves area, b, c, d, and the five substitution proba-

bilities are p1, p2, p3, p4, p5. Applying Lemma 2.1 to the

sequences at the vertices of the two triplet subtrees ofT ,

we conclude that there is an assignment that maximises the

ancestral likelihood and satisfies one of

x = a, x = b, x = y, x = MP (a, b, y)

as well as one of

y = c, y = d, y = x, y = MP (c, d, x) .

The case of equalityx = a or x = b, or y = c or y =

d brings us back to the triplet case. The case of equality

x = y brings us back to the star case, whose solution will

be explicitly demonstrated shortly. The only remaining case

is x = MP (a, b, y) and y = MP (c, d, x), and furthermore

x 6= y. We first argue that such “local maximum parsimony”

(on the two subtrees) implies global maximum parsimony

(on the whole tree).

p5

�
�p2

@
@p1 �

�p3

@
@
p4

0

0

xi yi

0

0

p5

�
�p2

@
@p1 �

�p3

@
@
p4

0

0

xi yi

0

1

p5

�
�p2

@
@p1 �

�p3

@
@
p4

0

0

xi yi

1

1

p5

�
�p2

@
@p1 �

�p3

@
@
p4

0

1
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0
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Fig. 3. Case analysis, local parsimony.

Since parsimonious settings are bit-wise independent, it

suffices to consider each of then bits separately. It is not

hard to see that by symmetry, it suffices to consider only

four patterns, appearing in Figure 3: in the first two cases

(the upper ones),xi must be0, forcing yi = 0 as well. In

the third (bottom left) case,xi must be0 andyi must be1,

agreeing with the global parsimony. In the remaining (bottom

right) case,xi must equalyi, or otherwise this will not be

a locally parsimonious assignment. Either two0s or two1s

are an acceptable solution, and both yield a global maximum

parsimony assignment. This concludes our proof that an

assignment ofx and y such that these sequences are each

most parsimonious with respect to their three neighboring

sequences is also an MP assignment.

As we just saw, the configuration at the bottom right

of Figure 3 (and the symmetric ones) lead totwo MP

assignments,xi = yi = 0 and xi = yi = 1. Extending

from just sitei to all sites with such configurations, there
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could be up to2n different MP assignments. However, it is

not necessary to go over all these MP assignments in order

to determine an optimal ancestral likelihood assignment. We

can find an optimal assignment by considering each site,i,

with two MP options separately. Depending on the specific

values ofp1, p2, p3, p4, typically one of them (either two0s

or two 1s) will induce higher likelihood. In the border line

case where the two likelihoods are identical, we can take

either assignment, and maximize the likelihood. (Since in

these casesxi = yi, we can apply the results of the next

paragraph to find out the exact details.) Therefore, overall,

it suffices to consider two internaln-bit assignments for this

last case.

Finally, we give an explicit solution for the casex = y.

Let Ci = log(pi/(1 − pi)) (i = 1, 2, 3, 4). Under the usual

“conservativeness” assumption, allpi’s are smaller or equal

to 1/2, pi ≤ 1− pi, so all theCi are non-positive. Assume,

without loss of generality, that0 ≤ −C1 ≤ −C2 ≤ −C3 ≤
−C4. We view this as a “weighted voting” case, whereby, for

each position, the “weights”−Ci of all sequences agreeing

at that position are summed together and then the AML

reconstruction at that position must be set to the state that

has received the largest total weight. There are essentially

three instances (which overlap only for boundary cases):

1) One of the “weights”,−C4, is greater or equal than the

sum of all the others. Then we have a “dictatorship”

and assigning the internal sequencex = d is optimal.

2) −(C2 + C3) ≥ −(C1 + C4). In this case, examination

of all 8 possible patterns shows that the majority

vote amongb, c and d is optimal. In other words,

x = MP (b, c, d).

3) −(C2 + C3) ≤ −(C1 + C4) (and −C4 ≤ −(C1 +

C2 + C3), to avoid case 1). In this case, the optimal

assignment to the internal sequence is a majority vote

among all sequences, with ties decided byd. We

denote this byx = MP ∗(a, b, c; d).

So overall, when topology and edge lengths are given, we

get a fixed, small number of candidate solutions (independent

of n). When the topology — but not the edge lengths — is

given, an AML assignment can still be found among these

candidates, simply because this assignment must be optimal

with respect tosomeedge lengths.

In order to identify the solution for the general problem

where neither the topology nor the edge lengths are given,

one can just consider all three possible topologies and,

for each of them, the respective set of candidate solutions.

Among these, any solution with maximum ancestral likeli-

hood constitutes a Steiner tree for the 4 given sequences. We

note it overall, we still got a constant number of points to

consider.

Combining this characterization with the the Steiner tree

approximation algorithm of [3], which was discussed earlier,

we get:

Claim 2.3: There is an AML approximation algorithm,

using subsets of sizek = 4, that runs in timeO(|S|5 · n),

and achieves an approximation ratio16/9.

III. C ONCLUDING REMARKS

By finding solutions to maximum parsimony and to an-

cestral maximum likelihood onk sequences of lengthn, in

time that is a fast growing function ofk but polynomial

in n (for any fixed k), we can employ known Steiner

trees approximation algorithms in order to get approximate

solutions to MP and AML. For MP, we can do this for every

fixed k, leading asymptotically to an approximation ratio of

1.55. For AML on m input sequences, our characterization

applies tok = 3, leading to an11/6 approximation ratio in

time O(m4 · n). It is also applicable tok = 4, yielding an

16/9 approximation ratio in timeO(m5 · n). It seems that

the same approach can be extended to small values beyond

k = 4, even though this becomes substantially more tedious

for larger values ofk.

Practitioners in the field tend to use various heuristics for

searching the huge tree space in order to optimize MP or

AML, rather than approximation algorithms. Still, improved

approximations can be used either as an alternative starting

point for the search, or as benchmarks for comparing the

outcomes of the heuristics.

It will also be of interest to extend the AML approxima-

tions to “real DNA” (4 states characters) under symmetric

substitutions models such as Jukes-Cantor [10] and Kimura

2 and 3 parameter models [12]. Further extension to non-

symmetric models of substitution, and to larger alphabets

(e.g.proteins) are also worthwhile. Bounds oninapproxima-

bility of MP or AML are of (mostly theoretical) interest.

Finally, we note that currently no efficient approximations

to ML, or to the logarithm thereof, are known. While

the methods used here arenot directly applicable to ML,
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they may still provide some starting point in this important

direction.
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