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Abstract

Consider a uniform expanders family Gn with a uniform bound on the degrees. It is
shown that for any p and c > 0, a random subgraph of Gn obtained by retaining each
edge, randomly and independently, with probability p, will have at most one cluster of
size at least c|Gn|, with probability going to one, uniformly in p and the size of the
expander. The method from Ajtai, Komlós and Szemerédi [1] is applied to obtain some
new results about the critical probability for the emergence of a giant component in
random subgraphs of finite regular expanding graphs of high girth, as well as a simple
proof of a result of Kesten [16] about the critical probability for bond percolation in high
dimensions. Several problems and conjectures regarding percolation on finite transitive
graphs are presented.

1 Introduction

In this paper we primarily consider percolation on finite graphs, and in particular the existence

and uniqueness of large components, typically meaning components whose size is proportional

to the number of vertices in the graph. Our main results in this context apply to expanders,

which are graphs satisfying a particular isoperimetric inequality, although we conjecture that

these results hold somewhat more generally. The techniques we use can also be used to give a
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significantly shorter proof than those previously known for the fact that the critical probability

for percolation on Zd is asymptotically 1/(2d) as d→∞.

Given a graph G, we shall use G(p) to denote the spanning subgraph of G obtained by

retaining each edge of G independently with probability p. This has been very extensively

studied in the case when G is a complete graph, and this is known as the standard random

graph model, or the mean field model; see, for example, the books [7] and [15]. Percolation on

general infinite graphs has been studied (see [5] or [19] for background) and there, as in this

paper, isoperimetric inequalities play a key rôle. Most other studies of percolation on finite

graphs concern specific graphs, such as the torus, which are closely related to percolation

on corresponding infinite graphs such as Zd. Another example of this phenomenon is the

study of the contact process on finite trees [22]; the contact process on a graph G is loosely

analogous to percolation on the Cartesian product G×Z; and both the contact process on T

and percolation on T× Z, where T is a homogeneous tree, have been widely studied.

In light of the above it is perhaps surprising that there has been little work regarding

percolation on general classes of finite graphs. In this paper, we hope to demonstrate that

there are interesting questions in this area. The questions asked and methods used draw on

the theories of both random (finite) graphs and percolation on infinite graphs.

In two widely studied cases, where G is either the complete graph or resembles a finite

subset of Zd (either a large d-dimensional n× ...× n torus or box) uniqueness results for the

giant component are known. Very precise results are known for the complete graph (see [15]

for a recent account). For the torus or box, results can be deduced from information about the

corresponding infinite graph; see, for example, Lemma 2 of [9]. It seems natural to conjecture

that this uniqueness is a much more general phenomenon.

Conjecture 1.1. Let Gn = (Vn, En) be a sequence of connected finite transitive graphs with

|Vn| ↗ ∞. Then for any a > 0 and ε > 0,

sup
p<1−ε

Pp

(
there is more than one connected component of size at least a|Gn|

)
→ 0

as n→∞, where Pp denotes the probability with respect to the measure G(p).

Note that the conjecture fails if we allow ε = 0 by considering cycles, or similar graphs

such as the product of a large cycle with a small transitive graph.

Our first result, in Section 2, establishes uniqueness of the giant component for expanders.

This holds even without vertex transitivity since the expansion property gives sufficient uni-

form control over the geometry of the graph. In fact slightly more can be shown: the unique-
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ness holds in this case even for clusters of sublinear size; see Theorem 2.8 for a detailed

statement.

In [1], Ajtai, Komlós and Szemerédi proved that the critical probability for the emergence

of the giant component in bond percolation on the hypercube {0, 1}d is 1/d. The strategy of

the proof is twofold. First one uses the very local geometry of the hypercube in a neighborhood

of a vertex to obtain (based on a basic branching process argument) that percolation with

p > 1/d will have many clusters of polylogarithmic size. These clusters cover a constant

fraction of the hypercube. In the second step one uses the isoperimetric inequality for the

hypercube to prove that by adding additional independent ε/d percolation most of these

polylogarithmic clusters join to form a giant component. In Section 3 we remark on how this

approach can be naturally used to determine the critical probability for percolation on some

other graphs including regular expanders with large girth. This technique also enables us to

present, in Section 4, a rather simple proof for the fact [16] that the critical probability for

bond percolation in Zd is 1+o(1)
2d

, as d→∞.

It is clear that strong expansion properties are useful in understanding percolation on a

graph. Let us note, however, that there is scope for further work in understanding the rela-

tion between properties of percolation processes and the isoperimetric profile of the underlying

graph, (in the spirit in which the behaviour of the simple random walk is directly linked to

isoperimetric inequalities, see, e.g., [11]). For a few natural conjectures relating isoperimet-

ric inequalities to percolation formulated in the context of infinite graphs see [5] (especially

Conjecture 1, Question 2).

1.1 Definitions

We now recall a few definitions concerning graphs.

The girth g(G) of a graph G = (V,E) is the minimum length of a cycle in G. For any two

sets of vertices in G, A,B ⊆ V , the set E(A,B) consists of all those edges with one endpoint

in A and the other in B. For a finite graph G its edge-isoperimetric number, c(G), (also called

its Cheeger constant) is given by

min
A⊂V

0<|A|≤|V |/2

|E(A, V \A)|
|A|

.

We will also make use of the vertex isoperimetric constant, ι(G), which we now define similarly.

Given a set of vertices A ⊆ V , define the external boundary of A, ∂A, to consist of those
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vertices outside A which have a neighbour in A. Then define

ι(G) = min
A⊂V

|A|≤|V |/2

|∂A|
|A|

.

We shall be interested in families of graphs whose isoperimetric constants are bounded

away from 0. Given b > 0 we say that a graph, G, is an edge b-expander if c(G) ≥ b, and a

vertex b-expander if ι(G) ≥ b. We shall also refer, with a slight abuse of notation, to a set of

graphs, or a sequence of graphs (Gn), as an edge (resp. vertex ) b-expander if each graph in the

set is an edge (resp. vertex) b-expander. A sequence of graphs is called simply an edge (resp.

vertex ) expander if it is an edge (resp. vertex) b-expander for some b > 0. Most sequences we

consider will have a uniform bound, ∆, say, on the degrees of the vertices, and in that case it

is clear that the sequence is a vertex expander if and only if it is an edge expander; we refer

to such sequences simply as expanders.

Expanders received a considerable amount of attention in the literature in recent years,

mostly because these graphs have numerous applications in Theoretical Computer Science;

see, e.g., [3], [18]. It is well known that for any fixed d > 2, random d-regular graphs of

size n are asymptotically almost surely expanders, as n grows. The problem of constructing

infinite families of bounded degree expanders is more difficult, and there are several known

constructions of this type. Most of these constructions are Cayley graphs, and are therefore

vertex transitive.

The distance between two vertices of a graph is the length of the shortest path between

them. Given a vertex v, the set of vertices within distance r from v (or the subgraph they

induce) will be denoted by B(v, r). Also, for a set of vertices A, B(A, r) will denote the set

of all vertices which are within distance r of some vertex in A.

2 Uniqueness of the giant component

The aim of this section is to establish Conjecture 1.1 with the condition of vertex transitivity

replaced by the condition of expansion.

Theorem 2.1. Let b > 0 and let ∆ ∈ N. Let Gn = (Vn, En) be a sequence of graphs with

maximum degree at most ∆ which are vertex b-expanders, with |Vn| → ∞. Let 0 ≤ pn ≤ 1

and let c > 0. Then

P

(
Gn(pn) contains more than one component of order at least c|Vn|

)
→ 0 (1)

as n→∞.
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We will refer to components of order at least c|Vn| as large. Note that if pn ≤ a for some

a < 1/∆, then standard branching process arguments (see, e.g., [13]) show that the probability

of the existence of any large component tends to zero as n→∞. We use the following lemma

to deal with the case when p is close to 1.

Lemma 2.2. Let b > 0 and let Gn = (Vn, En) be a sequence of graphs with maximum degree

at most ∆ which are edge b-expanders, with |Vn| → ∞. Let A > 0 be such that (∆e)Ab < 1

and let 1− A ≤ pn ≤ 1 for each n. Then

P

(
Gn(pn) contains a component of size between c|Vn| and (1/2)|Vn|

)
→ 0 (2)

as n→∞.

Proof. There are various ways to see this, but simple counting turns out to be the most useful

in what follows. We shall say that a subset of the vertices of a graph G is connected (in G) if

the subgraph of G it induces is connected. We shall make use of the fact (see, e.g., [2]) that

in a graph G = (V,E) of maximum degree ∆, the number of connected subsets of V of size

r, containing some given vertex, is at most (∆e)r. Summing over all the vertices counts each

such subset r times, so the total number of connected (in Gn) subsets of Vn of order r is at

most
|Vn|
r

(∆e)r.

Now for any subset, U , of Vn of size r, where r ≤ |Vn|/2, the expansion property gives that

|E(U,U c)| ≥ br, so the probability that all the edges of E(U,U c) are absent from Gn(pn)

is at most (1 − pn)br; this is an upper bound on the probability that U is the vertex set of

some connected component of Gn(pn). Therefore the probability there is a component of size

between c|Vn| and |Vn|/2 is at most

b|Vn|/2c∑
r=dc|Vn|e

|Vn|
r

(∆e)r(1− pn)br ≤ 1

c

(
(∆e)Ab

)c|Vn|
1− (∆e)Ab

; (3)

using the fact that (∆e)Ab < 1. The upper bound in (3) clearly tends to 0 as |Vn| → ∞,

establishing the lemma.

Turning back to Theorem 2.1, the vertex b-expanders in the statement of the theorem must

also be edge b-expanders (with the same value of b). Taking A as in Lemma 2.2, and using the

fact that if there are two components of size at least c|Vn| one of them must contain no more

than half the vertices, we see that if pn ≥ 1− A then the probability there is more than one

5



large component is small when n is large. Combining this with the observation about small

pn made after the statement of Theorem 2.1, we may assume that pn ∈ [x, 1 − x] for all n,

where x = min(1/(2∆), 1− A).

In the following very useful lemma (which we do not claim is new), recall that a subset,

X , of P(E) is an up-set if, whenever A ∈ X and A ⊂ B ⊆ E, then B ∈ X .

Lemma 2.3. Let x > 0. Then there exists α > 0 so that the following holds. Let E be a finite

set and let A ⊆ P(E) be an up-set. Given A ⊆ E and e ∈ E say that e ∈ E is A-pivotal (for

A) if Ae = A ∪ {e} ∈ A and Ae = A \ {e} /∈ A. Let A ⊆ E be obtained by selecting each

element of E independently with probability p, where p ∈ [x, 1 − x], and let e ∈ E be chosen

uniformly at random and independently of the choice of A. Then

P(e is A-pivotal for A) ≤ α√
|E|

. (4)

Proof. Given E and p ∈ [x, 1 − x], we construct a pair (A, e) as follows. Order the elements

of E randomly, e1 < e2 < · · · < ek, with each of the k! possible orderings equally likely (with

k = |E|). Let X ∼ B(k, p) be a binomial random variable, independent of this ordering, and

let A be the first X elements in the ordering, A = {e1, . . . , eX}. Now, with probability X/k

let e = eX and with probability (k −X)/k let e = eX+1. We now see why this construction

yields a pair (A, e) with the distribution given in the statement of the lemma. The fact that

the marginal distribution of A is correct is immediate. Now, for any A that arises in this

way, it is equally likely to have arisen from any of the |A|!(k − |A|)! orderings which place

the elements of A in the first |A| places; the proportion of these orderings in which any given

element of A is in the |A|th place is exactly 1/|A|, so the chance that any given element of

A turns out to be the random element e is exactly (1/|A|)(|A|/k) or 1/k. Similarly, again

conditional on the choice of A, any element outside A also has chance 1/k to be equal to e.

This apparently peculiar way of constructing (A, e) is useful in estimating the probability

that e is A-pivotal. Having chosen the ordering, let Al = {e1, . . . , el} (for 0 ≤ l ≤ k). Since

A is an up-set there will be precisely one l with the property that Al /∈ A and Al+1 ∈ A.

We see that e is A-pivotal precisely if e = el+1 and X = l or X = l + 1. This happens with

probability (conditional on the ordering)

k − l
k
Pp(X = l) +

l + 1

k
Pp(X = l + 1) ≤ k + 1

k
max
p,m

Pp(X = m),

where the maximum is taken over all p ∈ [x, 1−x] and all m. Since this bound is independent of

the ordering, it is also a bound on the unconditional probability than e is A-pivotal. However,
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it is well-known (it follows fairly easily, for example, from bounds on binomial coefficients

given by (1.5) in [7]) that this maximum is bounded above by a constant over
√
k, the precise

constant depending on the value of x.

Given a subgraph, H, of Gn, we say that a edge e ∈ E(Gn) is an L-bridge if He contains

two large components which are connected by e. Recall that the definition of large depends

on the choice of some constant c > 0.

Corollary 2.4. Let x > 0, b > 0, c > 0 and ∆ ∈ N be given. Then there exists β > 0 so

that the following holds. Let Gn be a graph satisfying the conditions of Theorem 2.1, and let

pn ∈ [x, 1 − x]. For e ∈ En let S(e, c, n) be the event that e is an L-bridge in Gn(pn). Let

S(c, n) be the event that S(en, c, n) occurs for an edge en chosen uniformly at random. Then

P(S(c, n)) ≤ β/
√
|Vn|. (5)

Proof. We could proceed by adapting the proof of Lemma 2.3, noting that given any ordering

on the edges as in that proof, at most b1/cc edges, el, can be L-bridges for the corresponding

configuration Al or Al+1. However, since Lemma 2.3 is an attractive general result we prefer

to proceed by applying this lemma directly. We do this by constructing up-sets in such a way

that any L-bridge is pivotal for one of these up-sets.

Given any configuration of edges, F ⊆ En, let Y (F ) count the number of vertices which

belong to large components, and let C(F ) count the number of large components. Now set

Z(F ) =
Y (F )

c|Vn|
− C(F ).

It is not hard to see that Z is an increasing function of F : all we have to note is that if the

addition of an edge increases C(F ) by 1, then at the same time Y (F ) must increase by at

least c|Vn|. Therefore, for any t, the set of configurations, F , satisfying Z(F ) ≥ t is an up-set.

Now let Ai = {F : Z(F ) ≥ i} for i = 1, 2, . . . , b1/cc − 1 (noting that the maximum value

of Z(F ) is 1/c− 1). Then any L− bridge is pivotal for some Ai. Hence, applying Lemma 2.3

and summing over i,

P(S(c, n)) ≤ (b1/cc − 1)
α√
|En|

; (6)

but since any expander is connected, |En| ≥ |Vn| − 1, giving (5).

Corollary 2.5. Let x > 0, b > 0, c > 0, r > 0 and ∆ ∈ N be given. Then there exists γ > 0

so that the following holds. Let Gn be a graph satisfying the conditions of Theorem 2.1, and

let pn ∈ [x, 1−x]. Let wn be a vertex chosen uniformly at random from Vn and let S ′(c, n, r) be
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the event that there is an edge e, contained in the ball B(wn, r), for which the event S(e, c, n)

occurs. Then

P(S ′(c, n, r)) ≤ γ/
√
|Vn|. (7)

Proof.

P

(
S ′(c, n, r)

)
≤
∑
e

P

(
e ∈ B(wn, r)

)
P

(
S(e, c, n)

)
≤ max

e
P

(
e ∈ B(wn, r)

)∑
e

P

(
S(e, c, n)

)
= max

e
P

(
e ∈ B(wn, r)

)
|En|P

(
S(c, n)

)
≤ ∆r

|Vn|
|En|P

(
S(c, n)

)
.

However |En| ≤ |Vn|∆/2, so applying Corollary 2.4 we see that (7) holds with γ = ∆r+1β/2.

We now work towards establishing a lower bound for the probability in (7) in terms of the

probability of the existence of two or more large components.

Lemma 2.6. Given b > 0, c > 0 and k < 1, there exists r ∈ N with the following property.

Let G = (V,E) be a vertex b-expander with |V | = n. Suppose that A ⊆ V with |A| ≥ cn. Then

|B(A, r)| ≥ kn.

Proof. For a given r, let C = V \B(A, r), and suppose that |B(A, r)| < kn so |C| > (1− k)n.

Without loss of generality suppose that c < 1/2 and k > 1/2. By the expansion property,

|B(C, dlog1+b(1/2(1− k))e)| > 1/2 and |B(A, dlog1+b(1/2c)e)| ≥ 1/2 so these two balls have a

vertex in common. Therefore A and C are within distance d− log1+b(2(1−k))e+d− log1+b(2c)e,
giving a contradiction if r is greater than this value.

Lemma 2.7. Let x > 0, b > 0, c > 0 and ∆ ∈ N, and take r as in Lemma 2.6 corresponding

to the case k = 3/4. Let Gn be as in the statement of Theorem 2.1 and let x ≤ pn ≤ 1 − x.

Let

δn = P
(
Gn(pn) contains more than one large component

)
.

Let S ′(c, n, r) be as in the statement of Corollary 2.5. Then

P

(
S ′(c, n, r)

)
≥ 1

2
x2r∆−2r2

δn. (8)
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Proof. Let Gn = (Vn, En), so bond percolation on Gn simply assigns probabilities to subsets

of En, which we refer to as configurations. For each w ∈ Vn let D(w, r) be the event that

the ball B(w, r) contains two vertices belonging to different large components; we shall regard

D(w, r) as a subset of the configurations. We shall let D(r) be the event that D(w, r) occurs

for a vertex w chosen uniformly at random, so

P(D(r)) =
1

|Vn|
∑
w∈Vn

P(D(w, r)). (9)

Let S ′(w, c, n, r) be the event that B(w, r) contains an L-bridge for the graph Gn(p). So

S ′(c, n, r) is the event that S ′(w, c, n, r) occurs for a vertex w chosen at random. For each w,

a configuration in D(w, r) can be transformed into a configuration lying in S ′(w, c, n, r) by

the addition of some edges lying within B(w, r): indeed, if D(w, r) occurs then pick two large

components which have vertices lying in B(w, r) and choose a shortest path between them;

add edges from this path to the configuration until there is a path of edges in the configuration

between the two components; the last edge added is then an L-bridge. This procedure gives us

a function, f say, from D(w, r) (regarded as a set of configurations) to S ′(w, c, n, r). Since the

function adds at most 2r edges, all taken from B(w, r) which contains at most ∆r edges, the

inverse image of any set in S ′(w, c, n, r) contains at most
(

∆r

2r

)
+
(

∆r

2r−1

)
+ · · ·+

(
∆r

1

)
≤ (∆r)2r

elements of D(w, r). For any element A of D(w, r), the probability of f(A) differs from that

of A by a factor of at most x2r. Hence we have

P

(
S ′(w, c, n, r)

)
≥ x2r∆−2r2

P

(
D(w, r)

)
. (10)

Summing over w and dividing by |Vn| yields

P(
(
S ′(c, n, r)

)
≥ x2r∆−2r

2

P

(
D(r)

)
. (11)

However, the choice of r (via Lemma 2.6) implies that if there are two large components then

at least 3/4 of the vertices lie within distance r of each one, so at least 1/2 the vertices lie

within distance r of both. Hence P(D(r)) ≥ (1/2)δn. Combining this with (11) yields (8).

Proof of Theorem 2.1. By earlier remarks we may assume there is some x > 0 so that x ≤
pn ≤ 1 − x for all n. Now by Corollary 2.5, P(S ′(c, n, r)) → 0 since |Vn| → ∞. However, by

Lemma 2.7, δn ≤ 2x−2r∆2r
2

P

(
S ′(c, n, r)

)
. Since x, ∆ and r are independent of n it follows

that δn → 0, precisely as we require.
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2.1 Remarks

• For bond percolation on the complete graph with n vertices, G(n, p), it is known (see

[6] or [15]) that for a suitable choice of p (close to 1/n) there are (roughly speaking)

typically several components of order n2/3; but whatever the choice of p there is at most

one component larger than this. It may be reasonable to strengthen Conjecture 1.1 in

accordance with this.

• It turns out that we can strengthen Theorem 2.1 to give uniqueness of components of

order |Vn|ω for some ω < 1. We need to allow the value of r in the proof to vary with n,

and we need to be considerably more careful in specifying how a configuration in D(w, r),

i.e. one in which two large components intersect the ball B(w, r), is transformed into a

configuration containing an L-bridge. The details are given as Theorem 2.8 in the next

subsection.

• The value of ω implied by the proof the Theorem 2.8 can almost certainly be improved

with more care; more difficult would be to establish the best possible value. Further-

more, one might expect rather more to be true, much as in the case of G(n, p): roughly

speaking, once the components become significantly larger than logarithmic in the num-

ber of vertices, they quickly agglomerate to form a single giant component. Therefore,

except in a small window of values of pn, one would expect at most one component

of bigger than logarithmic size. In the case of d-regular expanders of high girth (see

Section 3) we expect this window to be around pn = 1/(d − 1). Note that we do know

that for p sufficiently close to 1 (independent of n) there is at most one component of

greater than logarithmic size: see the remark after equation (13).

• The condition of expansion is a very strong one and it seems reasonable to conjecture

that Theorem 2.1 holds under rather weaker conditions, such as some sublinear lower

bound on the edge-boundary of subsets of the vertices. In fact, our proof does enable us

to slightly weaken the expansion assumption, since the distance r in the proof is allowed

to grow (slowly) with n. In the context of vertex-transitive graphs, such a variant is

Conjecture 1.1.

• See [20] for a proof using somewhat related ideas, in a different context.

2.2 A stronger uniqueness result

In this subsection we show how to adapt our methods to establish the following stronger result.
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Theorem 2.8. Given b > 0 and ∆ ∈ N, there exists ω < 1 such that the following holds

for a sequence of vertex b-expanders Gn = (Vn, En) with maximum degree at most ∆, with

|Vn| → ∞. Let 0 ≤ pn ≤ 1. Then

P

(
Gn(pn) contains more than one component of order at least |Vn|ω

)
→ 0 (12)

as n→∞.

Proof. We say that a component of Gn(pn) is large if it contains at least |Vn|ω vertices; let

un = d|Vn|ωe. We now imitate the arguments leading to Theorem 2.1 and see for what ω the

proof still holds.

Lemma 2.2 is essentially unchanged: the probability that there is a component of size

between un and |Vn|/2 is bounded above by

b|Vn|/2c∑
r=un

|Vn|
r

(∆e)r(1− pn)br ≤ |Vn|
|Vn|ω

(
(∆e)Ab

)|Vn|ω
1− (∆e)Ab

; (13)

for 1 − A ≤ pn ≤ 1 much as in (3). This tends to 0 for any ω > 0 (indeed, this even holds

provided un grows at least as fast as some particular multiple of log |Vn|). Much as before

there are no large components for small p, so we can restrict to p ∈ [x, 1− x].

The equivalent of Lemma 2.6 requires choosing rn so that if |A| ≥ un then |B(A, rn)| ≥
(3/4)n. Much the same argument as before shows that it is sufficient to choose

rn =
⌈
log1+b(|Vn|/un)

⌉
=
⌈
(1− ω) log1+b |Vn|

⌉
. (14)

Now the definition of an L-bridge depends on the definition of a large component, which now

depends on the choice of ω. Much as in Corollary 2.4, we let S(e, ω, n) be the event that e

is an L-bridge in Gn(pn), and let S(ω, n) be the event that S(en, ω, n) occurs for an edge en

chosen uniformly at random. Then equation (6) becomes

P(S(ω, n)) ≤ |Vn|
|Vn|ω

α√
|En|

; (15)

The proof of Corollary 2.5 is much unchanged, but since rn is no longer a constant the

conclusion becomes

P(S ′(ω, n, rn)) ≤ ∆rn+1

2
P

(
S(ω, n)

)
which, using (15) becomes

≤ γ∆rn|Vn|
1
2
−ω, (16)
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for some γ independent of n.

Greater care is needed in adapting Lemma 2.7. We need to reduce the r2 appearing as an

exponent in (8) to some multiple of rn. In order to do this, we must be more precise about

how we transform a configuration lying in D(w, rn) to one lying in S ′(w, ω, n, rn). Recall

that a configuration is a subset, F say, of the edge set En; we identify configurations with the

corresponding spanning subgraph (Vn, F ), and a percolation process on Gn is just a probability

measure on the set of configurations. Recall also that the ball B(w, rn) is defined in terms of

the original graph (Vn, En).

Now, for each w ∈ Vn, and each unordered pair of vertices x, y ∈ B(w, rn), we fix one

arbitrarily chosen path from x to y, of length at most 2rn, lying entirely inside D(w, rn). Call

this the canonical path P (w, {x, y}). Then, given a configuration, F , lying in D(w, rn) (i.e., a

configuration such that at least two large components of (Vn, F ) intersect the ball B(w, rn)) we

obtain a configuration lying in S ′(w, ω, n, rn) as follows. Take two vertices, x and y say, that

lie in B(w, rn) but which lie in different large components of (Vn, F ). Consider the process

of adding, successively, the edges of the canonical path P (w, {x, y}) to the configuration F .

(Note that some of these edges may already belong to F , and these are ignored in this process).

At some point the addition of one of these edges must join two large components. Stopping at

this point (it doesn’t matter whether before or after) makes this edge an L-bridge: this gives

us our configuration lying in S ′(w, ω, n, rn).

As in the proof of Lemma 2.7, we have obtained a function, f say, from D(w, rn) to

S ′(w, ω, n, rn), but we have been more careful about the number of preimages each point can

have. Since B(w, rn) contains at most ∆(∆− 1)rn/(∆− 2) vertices, it is not hard to see that

it contains at most 5(∆ − 1)2rn unordered pairs of vertices. Each such pair of vertices has

a canonical path containing at most 2rn edges and if A ∈ D(w, rn) then A can be obtained

from f(A) by the deletion of some subset of the edges of some canonical path. Since a set of

size no more than 2rn has at most 22rn subsets, we see that each configuration has at most

5(∆ − 1)2rn22rn preimages. Just as in the proof of Lemma 2.7, the probability of A differs

from the probability of f(A) by a factor of at most x2rn so (10) becomes

P

(
S ′(w, ω, n, rn)

)
≥ 1

5
x2rn(∆− 1)−2rn2−2rn

P

(
D(w, r)

)
,

and hence (8) becomes

P

(
S ′(ω, n, rn)

)
≥ x2rn(∆− 1)−2rn2−2rnδn/10. (17)

Combining (16) and (17) and simplifying a little gives

δn ≤ 10γ∆3rnx−2rn22rn|Vn|
1
2
−ω. (18)

12



Recalling the choice of rn, (14), we obtain

δn ≤ 10γ
(
4∆3x−2

)(1−ω) log1+b |Vn|+1 |Vn|
1
2
−ω

= 10γ
(
4∆3x−2

)
|Vn|(1−ω) log1+b(4∆3x−2)|Vn|

1
2
−ω.

So we see that δn → 0 as n→∞ provided

(1− ω) log1+b(4∆3x−2) +

(
1

2
− ω

)
< 0. (19)

Since (19) clearly holds for ω sufficiently close to 1, this establishes that δn — the probability

of two or more large components — tends to 0 as n→∞ for such values of ω, exactly as we

require.

3 High girth expanders

In this section we show that when we consider d-regular expanders of girth tending to infinity,

we can identify the critical value of p above which a (unique) giant component appears, namely

1/(d− 1).

Proposition 3.1. For every ε > 0 there is an a = a(ε) > 0 and a δ = δ(ε) > 0 such that

the following holds. Let G = (V,E) be a finite, d-regular graph on a set V of n vertices, let

g = g(G) denote its girth, and let c = c(G) denote its isoperimetric number. If

C =
c

2

( ε

2d

)d/ca
− 3 ln 2

(1 + ε/3)g/2
> 0

then, for p = 1+ε
d−1

, the random graph G(p) has, with probability that exceeds 1− e−Can − e−δn,

a connected component with at least an vertices.

Proof. It is convenient to consider the random subgraph G(p) as a union of two independently

chosen random subgraphs G(p1) and G(p2) where p1 = 1+ε/2
d−1

and p2 (≥ ε
2d

) is chosen such

that (1− p1)(1− p2) = 1− p. Seen from any vertex, the graph G out to a distance g/2 looks

just like a d-regular tree. By standard results from the theory of branching processes (see for

instance [13]), with probability at least 1− e−δ(ε)n, at least a′ = a′(ε)n vertices of G(p1) lie in

components of size at least m, where m = (1 + ε/3)g/2. Conditional on this, define a = a′/3

and fix a set of at most a′n
m

such components that contain together at least a′n vertices. We

claim that with probability at least 1− e−Can, in the random graph G(p2) there is no way to

split these components into two parts A and B, each containing at least a′n/3 vertices, with

13



no path of G(p2) connecting the two parts. This will imply that with the required probability,

the union of the two graphs G(p1) and G(p2) contains a connected component consisting of

at least a′n/3 = an vertices, as needed.

To prove the claim notice, first, that there are at most 2a
′n/m possible ways to split the

components into two sets A and B as required. For each such fixed choice, the fact that

c = c(G) and Menger’s Theorem imply that there are at least ca′n/3 pairwise edge-disjoint

paths in G from A to B. As G has dn/2 edges, at least half of these paths are of length at

most 3d/ca′ each. The probability that none of those paths belongs to G(p2) is at most(
1− p

3d
ca′
2

)ca′n/6
≤
[
1−

( ε

2d

) 3d
ca′
]ca′n/6

≤ exp

(
−ca

′n

6

( ε

2d

) 3d
ca′
)
.

It follows that the probability that there is some partition into sets A and B as above with

no paths of G(p2) between them is at most

2a
′n/m exp

(
−ca

′n

6

( ε

2d

) 3d
ca′
)

= e−Can,

completing the proof.

Simple branching process comparisons show that on any d-regular graph, G, if p < 1/(d−1)

then the probability that G(p) has a large component is small. Combining this fact with the

above proposition easily gives the following theorem, which can be loosely described as saying

that the critical probability for the emergence of a giant component, in a sequence of d-regular

expanders with girth tending to infinity, is 1/(d− 1).

Theorem 3.2. Let d ≥ 2 and let (Gn) be a sequence of d-regular expanders with girth(Gn)→
∞.

If p > 1/(d− 1) then there exists c > 0 such that

P(Gn(p) contains a component of order at least c|V (Gn)|)→ 1 as n→∞.

If p < 1/(d− 1) then for any c > 0,

P(Gn(p) contains a component of order at least c|V (Gn)|)→ 0 as n→∞.

Remarks:
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• The arguments above imply that for every fixed d the critical probability for the emer-

gence of a linear size connected component in a random d-regular graph on n vertices is

almost surely 1/(d− 1) + o(1). Indeed, these graphs do have some constant size cycles,

but their number is, almost surely, small enough that they can be ignored. including

near critical behaviour.

• It might be possible to apply the techniques above and show that vertex transitive

graphs of degree d in which the girth is proportional to the diameter also have the same

critical probability, since it is known (see, e.g., [4]) that such graphs are good expanders.

A rigorous proof may require some care, as the proposition itself does not suffice here.

On the other hand, there are simple examples showing that without the assumption of

vertex transitivity, the conclusion fails. A counterexample can be constructed by taking

some log n 3-regular expanders, each on n vertices and each of logarithmic girth, by

omitting an edge from each of them, and then by joining them all along a cycle keeping

the resulting graph 3-regular.

• One can use the approach above to prove that the giant component in the Erdős- Réyni

random graph G(n, p) emerges at p = 1/n.

As we remarked in Section 2, the condition of expansion is rather strong, and one would

expect similar results to hold under weaker conditions. In the context of transitive graphs, we

suggest the following conjecture.

Conjecture 3.3. Let {Gn}n∈N be a sequence of d-regular connected finite transitive graphs,

|Vn| ↗ ∞, and suppose that diameter(Gn) = o (|Vn|/ log |Vn|). Then the threshold for the

existence of a connected component of size |Vn|/10, with probability 1/2, is uniformly bounded

away from 1.

By [10] the threshold is sharp. Note that the conjecture is true for tori, see, e.g., the section

on percolation in a wedge in [12]. Recently the conjecture has been shown to hold for certain

Cayley Graphs [21]. However, for general graphs, even if we make a stronger assumption that

diameter(Gn) < |Vn|ε,

for some ε < 1, we do not know how to show that the threshold for a giant component is

bounded away from 1.
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4 Percolation in Zd

In 1990 Kesten [16] proved that the critical probability for bond percolation in Zd is 1+o(1)
2d

,

where the o(1) error term tends to zero as d tends to infinity. Hara and Slade [14] obtained a

better estimate for the error term, and Bollobás and Kohayakawa [8] gave a somewhat simpler

proof. Here we sketch a simpler argument giving the result of Kesten, following the method

of [1].

The fact that 1/(2d− 1) is a lower bound for the critical probability is obvious, hence we

only sketch the proof of the upper bound. It will be convenient to prove the upper bound

for the subgraph G of Zd induced on Z2 × [d]d−2, where [d] = {1, 2, . . . d}. We assume, from

now on, that d is sufficiently large. Let ε > 0 be small, and put p = 1+ε
2d

. It is convenient to

first consider, in phase one, the random subgraph G(p) of G obtained by taking each edge,

randomly and independently, with probability p, and take, in phases two and three, its union

with two additional randomly chosen subgraphs G(pi) with, say, pi = 1
d2 for each of them.

Split the vertex set of G into d-dimensional boxes, each isomorphic to [d]d. Each two

neighboring boxes have dd−1 edges connecting them. The basic approach is to show that in

each fixed box, after the first two phases our random subgraph will have, with high probability,

a linear size component with lots of neighbors in the boundary. The result can then be

obtained by taking the additional fresh random edges of phase three and by using some very

rough estimates on percolation in Z2.

We first need some (known) expansion properties of [d]d. Since what we need is extremely

simple, we include a proof.

Lemma 4.1. The edge-isoperimetric number of the graph [d]d is at least 1/(2d). That is, for

every set A of at most half the vertices of [d]d, there are at least |A|
2d

edges connecting A to its

complement.

Proof. For every pair of vertices a ∈ A and b 6∈ A, take a canonical path from a to b obtained

by changing the coordinates in which a and b differ one by one, from left to right, where each

coordinate is being changed monotonically. Each such path must contain an edge connecting

a vertex of A with one in its complement, and every edge appears in at most dd+1 paths.

Therefore, there are at least |A|(dd − |A|)/dd+1 edges connecting A to its complement.

Consider, now, a random subgraph H(p) with p as above, where H is the subgraph of

G induced by [d]d. Let δ > 0 be a fixed small real (smaller than ε/2, say). Call a vertex

of H good if it has at most δd/10 coordinates which are either 1 or d. Note that each

such vertex has at least (2 − 2δ/10)d neighbors inside H. Put n = dd. Call a connected
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component of H(p) an atom if it has at least, say, d100 vertices. We first claim that with high

probability, by the end of phase one, every vertex of H(p) besides at most some n/2c1d has

at least one neighbor which lies in H(p) in an atom, where here c1 = c1(δ) > 0. Indeed, all

vertices but some n/2c2d are good. Each such vertex has at least (1 − δ
10

)d coordinates that

are neither 1 nor d. Without loss of generality assume these are the first coordinates. Let

v = (v1, . . . , vd) be the vertex. For each i ≤ δd/5 (say), consider the connected component

of the neighbor (v1, v2, . . . , vi−1, vi + 1, vi+1, . . . , vd) of v obtained by considering the (forward)

branching process only on vertices of the form (v1, v2, . . . , vi + 1, ui+1, ui+2, ...) with each uj

for j > i being in the set {vi, vi − 1, vi + 1}. In this process we always move from a vertex

to ones with bigger Hamming distance from v, and if a vertex is obtained more than once as

a child we omit it. This is done some c(δ) log d generations. An easy calculation shows that

with probability tending to 1 (as d→∞) there are no vertices obtained more than once as a

child (and thereby omitted); then, standard results on branching processes imply that for each

fixed neighbor we manage to grow an atom with probability bounded away from zero. As the

events for distinct neighbors we are considering are independent, the desired claim follows.

Consider, now, the set of all atoms obtained. These cover together a constant fraction, say

c3n, of the n vertices of H (with c3 = c3(δ)). Now add, in phase two, edges of H randomly,

with probability 1
d2 . We claim that in the resulting graph, with high probability, no union of

atoms A covering at least, say, n/d5 vertices can be separated from the union B of all other

atoms, when this union also covers at least n/d5 vertices. To prove this claim, denote, for any

set X of vertices of H, by N(X) the set of all its neighbors in H. Consider two possible cases.

Case 1: |N(A) ∩N(B)| ≥ n
d10 .

In this case there are at least n
d10 pairwise edge disjoint paths of length 2 connecting A and

B, and the probability none of them is chosen is at most(
1− 1

d4

) n
d10

.

Even when multiplied by the number of possibilities for choosing A and B, which is smaller

than 2n/d
100

, this is negligible.

Case 2: |N(A) ∩ N(B)| < n
d10 . Assume, without loss of generality, that |B| ≥ |A|. Since

A ∪ N(A) misses most of B, it is not very large, and by Lemma 4.1 we get that there are

at least some c4n/d
7 distinct vertices of H of distance 2 (in H) from A (because there are

at least c4n/d
6 edges connecting A ∪ N(A) to its complement). Most of these vertices have

neighbors that are atoms, and hence lie in B. This gives many paths of length 3 between A

and B, and it is easily seen this construction gives Ω(n/d8) pairwise edge disjoint paths from
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A to B. As before, with high probability all the edges of at least one of those will be chosen

in phase two.

The preceding argument establishes the claim. Moreover, it implies that with high prob-

ability, by the end of the second phase there is a connected component of the resulting graph

that contains all the vertices that were in atoms by the end of the first phase, besides at most

n/d5 of them. Let us call this component the distinguished component. Note also that with

high probability, all vertices of H besides at most some O(n/d4) have at least one neighbor in

this component.

We can now consider each copy of H among the ones that split the vertices of G as a site

which, with probability very close to 1, is present; we make it present if it has, say, at least 3/4

of its vertices on each face of its boundary that have neigbors in the distinguished component.

By the above discussion this happens with high probability. Taking now, in phase three,

fresh edges with probability 1
d2 , we get that with extremely high probability every two such

neighboring sites become connected, as there are at least dd−1/4 potential pairiwse disjoint

paths of length 3 that connect the two corresponding distinguished components, and with

(very) high probability at least one of those will be chosen in the third phase. To complete

the proof recall that 1-dependent bond percolation on Z2 with a sufficiently high marginal

percolates (for much stronger results see [17]).

5 Concluding remarks

• It seems plausible that if G = (V,E) is an expander with n vertices, and p is above the

critical probability for the emergence of a giant component, then the giant component

of G(p) will have itself reasonably strong expansion properties. The proof of Lemma 2.2

can be easily modified to prove that this is indeed the case at least when p is close to 1.

Proposition 5.1. Let b > 0 and let Gn = (Vn, En) be a sequence of graphs with maxi-

mum degree at most ∆ which are edge b-expanders, with |Vn| → ∞. Let A > 0 be such

that (∆e)2bAb/2 < 1/2 and let 1− A ≤ pn ≤ 1 for each n. Then

P

(
Gn(pn) is not a

1

log2 n
edge expander

)
→ 0 (20)

as n→∞.

Sketch of Proof. A simple modification of the proof of Lemma 2.2 shows that the prob-

ability that there is a connected induced subgraph of Gn(pn), whose size r is at least
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log2 n and at most n/2, which has at most br/2 edges emanating from it to the rest of

the graph is at most

n/2∑
r=log2 n

n

r
(∆e)r

(
br

br/2

)
(1− pn)br/2 ≤ n

log2 n

∑
r≥log2 n

(∆e2bAb/2)r <
2

2 log2 n
.

The desired result follows.

• Consider an infinite transitive graph G. It is believed that uniqueness of the infinite

cluster holds at all p iff G is amenable, see [5]. For the product of an infinite regular tree

and Z, and certain other nonamenable graphs, non-uniqueness of the infinite cluster at

some values of p is known to hold. We suspect that on finite transitive graphs this is

not the case in the following sense.

Conjecture 5.2. Let {Gn}n∈N be a sequence of d-regular connected finite transitive

graphs, |Vn| ↗ ∞. Given δ > 0 there is C > 0 so that if for any n and v ∈ Gn

Pp(v is in a component of diameter ≥ diam(Gn)/2) > δ,

then

lim
n
Pp(there is a connected component of size ≥ C|Vn|) = 1.

I.e. once a fixed vertex is with positive probability in a large cluster in the sense of

diameter, it will be in a cluster which is large in the sense of volume. Note that the

conjecture is true for Euclidean lattice tori, and by the discussion above for expanders

with growing girth. A useful fact that supports the conjecture is that finite transitive

graphs do not admit bottle necks. The Cheeger constant of a finite transitive graph is

at least the reciprocal of the diameter (see [4]).
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