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2 POINT SELECTIONS AND WEAK «-NETS FOR CONVEX HULLS

1. INTRODUCTION

This paper is about weak e-nets, point selections, convex hulls, and related topics. To

explain what they mean, we start with the assumption that d > 2 and
(1) X C R% is a set of n points in general position.

We assume general position only to simplify the presentation, all of our results can be
extended to any finite set X using an appropriate limit procedure (and suitable extensions
of the definitions). Write ( dfl) for the set of all (d + 1)-tuples of X. Since the points of
X live in R?, these (d 4 1)-tuples can and will be called simplices when we consider their

convex hull. This should not cause any confusion.

We deal with the following three problems. Given a (large) set of simplices H C ( d)—f:l)
find a point that is contained in the maximum possible number of simplices. We call
this the point selection problem (Section 2, proof in Section 6). In the hitting set problem
(Sections 5 and 7) we shall look for a small set £ meeting “almost all” simplices in ( difl).
Finally, in the weak e-net problem (Sections 4 and 8-10), given a set X and 0 < e < 1, we
look for a small set F' such that any convex region C' with | X NC| > ¢|X| contains a point
of F. We shall find several upper bounds for min |F'|, together with polynomial algorithms

for finding a small set F'.

2. PIERCING MANY SIMPLICES BY ONE POINT

A family H is called pierceable if there exists a point common to int conv .S for every
S € 'H. We have the following Point Selection Theorem.

Theorem 1. Given d > 2, there exists a constant s = sq such that any family H C ( X )

d+1
with [H] = p( 7

d +1) contains a pierceable subfamily H' such that

! S n
| Sap (dH).

Here and in what follows we are using Vinogradov’s notation. For two functions f

and g, f > g means that there are two absolute constants ¢; > 0 and ¢y € R such that
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f > c19 + co for all values of the parameters. Similarly, f >; g means that there are

constants ¢1(d) > 0 and cz(d) such that f > ¢1(d)g+ c2(d) for all values of the parameters.

The first point selection theorem is due to Boros and Fiiredi [BF]. They show that, for

d = 2, the family ()3() contains a pierceable subfamily of size (2/9)(). This is extended for

X

any dimension in Bérdny [B], where it is proved that ( "

) contains a pierceable subfamily

of size at least

@) (M) 0o ()

The term “point selection” comes from Aronov et al. [ACEGSW!]. They prove, again

when d = 2, that any family ‘H C ()3( ) of size n3~% contains a pierceable subfamily of size

n373a

3 279
) log5 n
Thus, s = so = 3+ 6 will do (for any positive §) in the point selection theorem in the range

p=n_

* «a > 0. Here we prove that, in general, one can take

(4) sq = (4d + 1)*H1L,

3. THE MULTICOLOURED TVERBERG THEOREM

Our point selection theorem will follow from a nice recent result of Zivaljevié and Vreéica
[ZV] which was conjectured in [BFL|. The result is a “multicoloured” version of Tverberg’s
theorem [T]. The latter says, in one form, that any set of (d + 1)t points in R? can be
partitioned into ¢ sets, Si,...,S;, each of cardinality d + 1, so that

ﬂ conv(S;) # 0.
i=1

In the multicoloured version the (d+41)¢ points come in d+1 classes C1, . .., Cq11, or colours,

each of cardinality ¢, and one wants to find “many” pairwise disjoint sets Sq,...,.S,, each
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of cardinality d 4 1, such that every S; is multicoloured (i.e., |S; N C;| =1 for every i and
j) and

ﬂ conv(S;) # 0.
i=1

The question is how large ¢ = T'(r,d) must be in order to ensure the existence of such
sets S1,...,S,. In the planar case one can take T'(r,2) = r (see [BL] or [JS]) and th is is
clearly best possible. Using tools of algebraic topology, Zivaljevi¢ and Vreéica [ZV] show
that

(5) T(r,d) <2p(r)—1

where p(r) is the smallest prime which is not smaller than r. It is well known that
p(r) < 2r — 1 whence T'(r,d) < 4r — 3. We will see later that this is where the value

in (4) comes from.

4. PIERCING ALL LARGE CONVEX SETS

A set F C R? is called a weak e-net for X if for every Y C X with |Y| > en the
intersection F'Nconv Y is nonempty. At a DIMACS workshop in 1990, E. Welzl [W] asked
whether there exists a weak e-net for X whose size depends only on € and d. This had
been proved true in the planar case in [BFL| before Welzl posed his question; however the
bound O(e71926) given in[BFL] is enormous compared to the bound in the following weak

e-net theorem.

Theorem 2. For any X C R? there exists a weak c-net F with
|F| <q e @D/,
Here s is the constant s4 of the point selection theorem. In the planar case (3) gives

sy = 3+ 4, i.e., a weak e-net of size O<€—(2+5’)) for any positive §’. We present here a

separate argument for the planar case.
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Theorem 3. For any X C R? there exists a weak e-net of size Te~2.

The proof works in any dimension but gives 0(5_2%1) for the size of the weak e-net;
for d > 2 this bound is worse than the bound in Theorem 2. Also in Section 10 we give

an algorithm of running time O(nlog(1/¢)) which, for a planar set, yields an e-net of size
O(e—4818-),

Define

fa(e) = maxmin{|F| : F' is a weak e-net for X}

where the maximum is taken over all X satisfying (1). It is clear that f;(¢) > 1/e so that
Lo hie) g em@HD=1/50),
e

It is not known whether ¢ f4(e) is bounded when ¢ tends to 0.

WEAK £-NETS AND THE DISCREPANCY OF TRIANGLES. Consider the case when X is a
set of n points chosen randomly, independently, and uniformly from the unit square. When
¢ is fixed and n is large, every triangle of area e (and contained in the unit square) will
contain about en points of X. Using this one can show that there is a weak e-net F' for
X of size O((1/¢)log(1/¢)). On the other hand, finding a lower bound for |F| leads to the
following old problem of Danzer (see [BC| page 285) about irregularities of distributions.

How many points are needed to hit every triangle of area ¢ contained in the unit square?

When X is the vertex set of a regular n-gon in the plane, there is a weak e-net of size
O((1/e)log™(1/¢)), where log™ m denotes the function defined by the recursion log*(2*) =
1 +log™ x and log™ 1 = 0. This is a result of Capoyleas [C].

We do not know how large the smallest weak e-net is for a set of n distinct points on

the moment’s curve {(¢,2,... ,t9) : —o0o < t < oo} in RY,

A GENERALIZATION OF HELLY’S THEOREM. In [AK] theorem 2 is combined with some
additional tools to prove the following Helly-type result, solving an old problem of Hadwiger

and Debrunner.

Theorem [AK]. For every p > q > d+ 1, there is a (finite) ¢ = ¢(p,q,d + 1) such that
the following holds: For every family K of compact convex sets in R% with the property
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that among any p members of the family some q are pierceable, there is a set F' of at most

c points in R¢ so that every member of K contains at least one point of F.

An easy consequence of Theorem 2 is the following result.

PROPOSITION. For every n > 0 and for every integer d, there is a ¢ = ¢(n, d) such that for
every probability measure 1 on R? there is a set F of at most ¢ points in R? so that every

compact, convex set C' of measure u(C') > 7 contains at least one point of F.

Let us sketch a proof of this result. By a usual compactness argument it is enough
to prove the proposition for any finite family {C,...,Cn} of compact convex sets, with
w(C;) > n for every i. Choose points z1,...,z, randomly, independently, and according
to the distribution p. Set X = {z1,...,2,}. A straightforward application of the large
deviation theorem of Chernoff shows that, with positive probability, for large enough n we

have

X NCi| > g|X| for every i =1,...,N.

Fix such an X and let F' be a weak e-net for X where ¢ = n/2. Then, clearly, F’

intersects every C; and is of size O(n(@TD(=1/5)) completing the proof.

Another way of proving the proposition is to use the theorem establishing the Hadwiger-
Debrunner conjecture. Namely, one can show easily that the family of all convex, compact
sets whose measure is at least 7 satisfies the conditions of that theorem, with p = [d/n]+1
and ¢ = d + 1. This gives that ¢(n,d) < ¢(p,q,d + 1). In fact, the first argument given

above gives a better bound on ¢(n, d).

5. PIERCING MOST OF THE SIMPLICES BY MANY POINTS

It turns out that the point selection theorem is closely related to some other results that

we now describe. We say that a set E misses S € (difl) if ENint conv(S) = 0. (Here,

again, X is assumed to satisfy condition (1).) The following hitting set theorem asserts the

existence of a “small” set E that misses only “few” members of ( dfl).
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Theorem 4. For everyn >0 and X C R? there exists a set E C RY that misses at most

n(dil) simplices of X and has size
’E| <4 771_87

where s 1s the constant sq in the point selection theorem.

In fact we shall show that the hitting set and the point selection theorems are equivalent.

Observe that 7 may depend on n = |X|; for instance, one may take n = n~1/s_ which
gives a set E of size O(n'~1/%)) missing at most O(n4*+1~1/%) simplices of X. This special
case of Theorem 4 was proved in [BFL] for d = 2 with s = 343.

We emphasize again that the point selection, the hitting set, and the multicoloured
Tverberg theorems are equivalent. In fact, the multicoloured Tverberg theorem with r =
d + 1 implies the point selection theorem with s = s4 = (T'(d + 1,d))?*!, and the latter
implies the multicoloured Tverberg theorem with T'(r,d) <4 r. The equivalence of the
point selection and the hitting set theorem is stronger since it carries over to the exponent

s = s4. It would be interesting to know the smallest possible exponent s,.

REMARK ON HALVING PLANES. As observed in [ACEGSW] and [BFL], the point se-
lection or the hitting set theorem imply the following upper bound on the number, H;(X),
of halving hyperplanes a set X C R can have:

Hy(X) <gnd=1/sa-1,

The simplest way of proving this bound is to use the fact that no line meets more than

( dfl) halving simplices. (This was proved in [L] for the planar case but the argument goes

through in R? without difficulty.) Then the projection of X, and of the halving simplices
of X, to R4~1 gives rise to a family H in R?~! (on n points) so that no point is contained

in more than ( " ) simplices of H. By the point selection theorem, H has a pierceable

d—1
subfamily of size >4 p*¢-1 (") where |H| = p(}). So we get p <q n~1/%-1, as required.
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6. PROOF OF THE POINT SELECTION THEOREM

Here we prove Theorem 1. The method is similar to that of [BFL]. First, we define
V = V(X), the set of crossings determined by d distinct hyperplanes through the points
of X. To this end, let Q1,..., Q4 be pairwise disjoint d-tuples from X. Their crossing is
defined as the point of intersection of the hyperplanes aff @+, ..., aff Q4. Here we assume
that X is in a general position so that any crossing is a well defined, unique point. To
this end, condition (1) can be understood as saying that the coordinates of X are in

algebraically independent position. Clearly,

rvr:%(Z)(”;d)...(n—dgld—n)

so that n” <4 |V| <4 n® .

Second, we need a theorem of Erdds and Simonovits [ES] which is implicit in Erdés [E]

as well.

Theorem [ES]. For all positive integers d and t there exists a positive constant b = b(d, t)
such that the following holds. If H is an arbitrary (d + 1)-graph on n vertices and p(dil)

edges where n=t "’ Lgp <1, then H contains at least

bptd+1n(d+1)t
copies of K(t,...,t), the complete (d + 1)-partite (d + 1)-graph with t vertices in each of

its d + 1 vertex classes.

Proof of Theorem 1. Consider the family H C ( difl). Then the Erdds-Simonovits theorem

implies that H contains at least
bptd+1n(d+1)t

copies of K(t,...,t) provided n=t" <4 p < 1. Choose now
(6) t=T(d+1,d) <2p(d+1)—1<4d+1

from the multicoloured Tverberg theorem of Zivaljevi¢ and Vreéica, and consider a copy

of K(t,...,t) in H. This consists of d + 1 pairwise disjoint sets C1,...,Cqr1 C X, ea
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ch of size t, such that for any z1 € Cy,..., 2441 € Cyqq1 the (d + 1)-tuple {z1,..., 2441}
belongs to ‘H. By the multicoloured Tverberg theorem there are d + 1 pairwise disjoint
(d + 1)-tuples S1,...,Sq41 such that ﬂfill conv(.S;) is nonempty. The general position of
X implies that ﬂj;rll conv(S;) is a polytope P with nonempty interior.

The following simple geometric argument shows that there is an S; and there are subsets
Q:CS; i=1,...,d+1,i # j) with |Q;| = d such that the crossing of the @;’s lies in
int conv(S;). Consider a facet F' of the polytope P. It lies in a (uniquely determined)
facet of a (uniquely determined) simplex conv(S;), say, conv(S;). Thus F' lies in aff @4
for a (uniquely determined) @7 C S; where |@Q1| = d. Then the (d — 1)-dimensional
polytope P, = aff(Q1) N ﬂfizl conv(S;) has nonvoid (d — 1)-dimensional interior. So it
has a facet F; which lies in a facet of one of the simplices conv(S;) (i > 2), say conv(Ss).
Thus F} lies in a hyperplane aff(Q3) for a (uniquely determined) d-tuple Q)2 C S3. Then
the (d — 2)-dimensional polytope P, = aff(Q1) N aff(Q2) N ﬂji; conv(.S;) has nonvoid
(d — 2)-dimensional interior, and so on. We end up with a zero-dimensional polytope, i.e.,

a singleton
{v} =aff(Q1)N---Naff(Qq) N conv(Syy1)

Then v is a crossing in the interior of conv(Sg41).

Now we give a lower bound for the number of pairs (S,v) with S € H, v € V, and
v € int conv(S). Such a pair can be identified with the (d+1)-tuple of sets (S, Q1,...,Qq)-
As we have seen, every K(t,...,t) contains such a (d + 1)-tuple with

d

ﬂ aff(Q;) C int conv(S).

i=1
A given (d + 1)-tuple (S,Q1,...,Qq) can appear in at most

Bnt(d+1)—(d2+d+1)

copies of K(t,...,t). Consequently

number of copies of K(t,...,t) W 2
n :

1{(S,v) € H x V : v € int conv(S)}| > B ) — (@ T ) >qp

This shows that there is a crossing v in at least

ptd+1nd2+d+1 i n
_ >
V] P (d+ 1)
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simplices of H. Let H’ be the set of those (d 4 1)-tuples of H whose convex hull contains

v. Then, indeed, H’ is pierceable and

/ td+1 n
(7) H| S p (dﬂ).

Here ¢ comes from (6). In the hypergraph theorem we needed p >4 n=t"" but (7) holds

trivially if this condition is violated since then
pd+1 n
<q L. O
P (d + 1) ¢

Remark 1. We deduced the point selection theorem from the multicoloured Tverberg the-
orem of Zivaljevi¢ and Vreéica. Now we show, in turn, that the latter follows from the
point selection theorem. To see this, take d+ 1 sets C1, ..., Cqy1 in R%, each of cardinality
t, and set X = Uilﬂ C;. Define H to be the complete (d + 1)-partite (d + 1)-graph with
(d + 1)-partition Cy,...,Cyqr1. Then n =t(d+1) and [H| = t¢+! >4 (dil). By the point
selection theorem, H has a pierceable subfamily H’ of size

n
H| > >4t
H'| >q (d+1) d

Consider the largest integer r for which there exist pairwise disjoint (d+1)-tuples S1, ..., S,
in H'. Then any other S € H' intersects [ J] S; and the number of such (d + 1)-tuples is at

most (d + 1)rt?. Since we counted here Si,...,S, as well we get

which shows that, indeed, T'(r,d) <t <4 7.

Remark 2. We mention further that the proof method of the point selection theorem cannot
give a selection exponent sg smaller than (d 4 1)(4+1). Thi s is so since T(r,d) > r implies

that ¢ > d + 1 in (6).
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7. PROOF OF THE HITTING SET THEOREM

Here we prove Theorem 4. We are going to use a greedy algorithm to produce the

hitting set FE.

Start with H = ( difl) and F = (). The algorithm proceeds by choosing a maximal

cardinality pierceable subfamily H' C H together with a point v € N{int conv(S) : S €
H'}. Then set H = H\'H and E = E U {v}. We stop as soon as |H| < n(,",). We claim

that when the algorithm stops

n
d+1
|E| <4 771_8.

Assume the algorithm produced the sequence of families ( d)+(1) =HoDHi DD Hm.

Denote by k; the index where

; n : n
>27" d . 27" .

It may happen that k; = k; 1 but that will not matter. We know that

Hr,

—i n
Ao\ ol < Pl <27( ).

We also know from the point selection theorem that for j > k;11 we have

— (1 s n
[H; \ Hjgr| >a (270D (d+1>

since the deleted subfamily H; \ H;4+1 was of maximum cardinality. This shows that

27" (a}4) _ gi(s—1)+s

kiy1 — ki <4 W

Since we stop as soon as 27 < 5, i.e., i > [log1/n], we get that the basic step of the

algorithm is carried out

[log1/n] [log1/n] ‘
m < Z (kit1 — ki) <a Z i Fs g
i=0 i=0

times. This proves the claim. [
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Remark. The hitting set theorem implies the point selection theorem. Indeed, let 'H C
(dfl) with |H| = p(dil). Set n = p/2 and let E be a set of cardinality O(n~(*~1)) missing

at most 77( ) simplices of X. Define

a1
Hy={S €H:EnNint convS # (}.

Clearly, |H1| > B( " ) Since E meets every simplex in H;, there is a point v € E which

2 \d+1
is contained in at least
M > 3( n )
Bl 4P \a+1

simplices of H;.

8. WEAK £-NETS FOR CONVEX SETS IN R¢%

Here we prove Theorem 2. First we give a simple algorithm producing a weak e-net F'

of size <4 =@+,

Start with F' = (). Check whether there is a set Y C X, |Y| > en such that F' misses

Y
d+1

there is a Y like that, choose a point v common to at least

all simplices of ( ) If there is no such Y, stop. In this case F' is a weak e-net for X. If

ﬂ—%ﬁDXd+1Y”(JiH)

simplices from Y. Such a point exists by (2). Set F' = F U {v}.

In each step of the algorithm the number of missed simplices decreases by at lea st

(1_ou»u+4y%<;iu>z(y_dnxd+1rdQ;fJ:>d(dil)&+¥

Therefore the algorithm terminates after at most

(ar1)

gdtl (d—?—l)

<y E—(d+1)

steps, showing that |F| <4 e~ (@1,
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To get the sharper estimate in the theorem we apply the previous algorithm, but instead

of starting with F' = (), we start with F' = FE where FE comes from Theorem 4, i.e., E misses

1—s

at most 7 dil) simplices of X and |E| <41

This time the algorithm terminates after

n(dil)

—(d+1)
— e <<d NE
(d+1)~(;3)

(14 0(1))

steps, producing a weak e-net F' of size < g |E| +ne~ (1) <4 n'=° + ne=(@+1)_ The right

choice for 7 is ¢t/ which gives

|F| <y 5_(d+1)+(d+1)/s. 0

9. WEAK &-NETS IN THE PLANE

Here we prove Theorem 3 by an inductive procedure. Let us start with some remarks

and definitions.

Given k > 3 and a finite set X C R?, let f(X,k) denote the minimal size of a weak
e-net for X where € = k/|X|, i.e.,

f(X,k) =min{|F|: F C R? int conv(Y) N F # ) for every Y C X with |Y|egk}.

Note that this definition is stronger than the original, as here we require that F' intersect
the interior of conv(C'). Consequently, our Theorem 3’ below is a little stronger than
Theorem 3. Let f(n, k) be the maximum of f(X, k), where X satisfies (1) with d = 2, i.e.,
no three points from X lie on a line. Obviously, we have f(k, k) = 1, and, more generally
f(n,k) =1if n < k. In order to bound f(n, k) for small values of k, we shall need a result
of Katchalski and Meir [KM] claiming that

(8) f(n,3) =2n—5.
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Theorem 3'. f(n,k) < 7(n/k)? for alln >k > 3.

Proof. The function f(n, k) is monotonic in the sense that

flnk) = f(n', k)

holds for n > n’ and k < k’. Since 7Tn?/25 > 2n — 5 for all n > k, relation (8) implies that
Theorem 3’ holds for k = 3, 4, and 5. From now on we suppose that n > k > 6.

Now let X be an n-set. First, find a line L that bisects X into two parts X; and
X of almost equal size, i.e., | X;| = m; with |m; — mo| < 1. Next we construct a set
V such that V intersects int convY for every Y C X, |Y| > k that has more than /¢
points on both sides of L. (We shall choose ¢ = |k/6] later. For the time being we need
only that 0 < ¢ < (k/2) — 1.) To this end consider the intersections of L with the line
segments connecting r1 € X; to zo € X5. There are mims such intersection points,
u(1),...,u(myms), indexed consecutively on L. (We may suppose that L is in general
position with respect to the lines z; 2o, i.e., all of these intersections are distinct.) Clearly,
for any set Y C X, |Y| > k that has at least £ + 1 point s on both sides of L, convY
contains at least

h=(+1)(k—(—-1)

of the u(i)s. For V choose a point from L between u(h — 1) and u(h), u(2h — 2) and
u(2h — 1), u(3h — 3) and u(3h — 2), etc. Then

mims

V] =72 -1,

What are those sets Y C X, |Y| > k, whose convex hull contains no po int from V?
They are the Y that have at most ¢ points either in X5 or in X;. But such a Y must have
at least (k — ¢) points in X; (or in X, respectively). So it will be enough to find a weak
ei-net for Xy where 1 = (k — {)/m; (and a weak ey-net for Xy with eo = (k — £)/ms).
These two sets together with V' form a weak e-net for X. Next we apply the induction
hypothesis twice, and obtain that

m%%—m%)_i_ mime
(k —0)2 +1)(k—C—-1)—1

(9) Fln,k) < f(mu,k— ) + F(ma,k—£) + V] <
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Using the facts that (m2 +m3) < (n? +1)/2, mims < n?/4 and for k > 6, £ = |k/6|
one has (k — £)? > (25/36)k* and (¢ + 1)(k — ¢ —1) — 1 > (5/36)k?, we obtain that the
right hand side of (9) is at most (252/50)(n? + 1)/k? + (36/20)(n?/k?). This is at most
6.98(n/k)? forn >k >6. O

Remark. Without finding the fine structure (the clusters) of the set X one cannot ob-
tain a smaller e-net than Q(1/¢2). This can be seen from the following example. Let
C1,Cy, ..., Cy). be disjoint, small circular discs in the plane such that there is no point P
lying in three of the regions conv(C; U C;) except if all the three contain the same disk C;.
Put en/2 points around the centre of each C;. Then, every e-net avoiding UC; must have
at least Q(1/e?) points.

10. AN EFFICIENT ALGORITHM TO FIND WEAK &-NETS

By applying the results of [M] and [Y], one can give an alternative proof of Theorems
2 and 3 for d < 3. This proof gives a slightly worse estimate but has the advantage that
it provides an efficient algorithm for constructing the corresponding weak e-nets. Here is

the assertion for the planar case.

Proposition. For every set X of n points in the plane and for every e > 0 there is a weak

e-net of size O(e~1°84/3%). Such a net can be found in time O(nlog (1/¢)).

Proof. Without loss of generality we may assume that n is a power of 4. By the main
result of [M] one can find in time O(n) two intersecting lines [; and I3 so that the number
of points in each of the 4 closed regions to which they partition the plane is at least n/4.
Let y be the point of intersection of these two lines, and partition X into 4 pairwise disjoint
subsets X1,..., X, of cardinality n/4 each, where each X; is completely contained in one
of the above closed regions. Observe that if a convex set contains at least one point from

each X;, then it contains y, i.e., Y = {y} is a weak 3/4-net for X.

It follows that any convex set that does not contain y misses completely at least one

of the sets X;, and hence if it contains at least en points of X then it contains at least a
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fraction (4/3)e of one of the sets X;. Therefore, by recursively constructing (4/3)e-nets
in each X; we conclude that the size f(¢) of our net satisfies f(c) < 1+ 4f(3¢) (and
f(9) =1 for all 6 > 3/4). This easily gives the bound stated above. The time t(n,¢) for
finding the net in our construction satisfies t(n,e) < O(n)+4t(n/4, 3¢), which implies that
t(n,e) < O(nlog(1/¢)), completing the proof. [
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