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Abstract Results

Future Work

Classic network analysis has focused on the elements of the system 
and their connectivity (node-based approach) rather than the   
relations (edges) between them.

We propose an edge-based approach:
      evaluate not only binary, but also 
      weighted networks; 
      natural notion for directed networks;
      dynamic models for network evolution;
      generalization from pairwise to higher 
      order interactions.

Brain networks inferred from collective patterns of neuronal activity 
are cornerstones of experimental neuroscience. Modern fMRI scan-
ners allow for high-resolution data that measures the neuronal activi-
ty underlying cognitive processes in unprecedented detail. Due to 
the immense size and complexity of such data sets, efficient evalua-
tion and visualization remain data analysys challenges.

In this study, we combine recent advances in experimental neurosci-
ence and applied mathematics to perform a mathematical character-
ization of complex networks constructed from fMRI data. We use 
task-related edge densities (G. Lohmann et al., PlosOne 2016) for con-
structing networks whose nodes represent voxels in the fMRI data 
and edges the task-related changes in synchronization between 
them. This construction captures the dynamic formation of patterns 
of neuronal activity and therefore represents effectively the connec-
tivity structure between brain regions.

Using geometric methods that utilize Forman-Ricci curvature as an 
edge-based network characteristic (M. Weber et al., J Complex Net-
works 2017), we perform a mathematical analysis of the resulting 
complex networks. We motivate the use of edge-based characteris-
tics to evaluate the network structure with geometric methods. Our 
results identify unique features in the network structure including 
long-range connections of high curvature acting as bridges between 
major network components.

Curvature-based Analysis
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Forman-Ricci Curvature
For a network     with edge weights      and node 
weights       we define

G = {V,E} ω(e)
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1:   Comparison of correlation-based approaches (C: TED method).

2:   Computation of task-related edge densities (TED).

3:   Curvature-colored brain networks: Nodes are voxels and edges correspond 
       to densities above a given threshold. Edge colors are chosen according to their 
       Forman curvature value.

1.  Geometric  Analysis

       Globally negative curvature indicating
       community structure (A).

       Distribution deviates from observations in
       other real-world networks (A): 
       Broad-scale distribution instead of 
       power-law distribution.

 Distribution shows a secondary peak as we     
       observed in different types of correlation-
 based networks (A).

       Major network communities are connected
       by high curvature edges (B).

       Major network components (communities) are connected by bundles of edges with high   
 curvature. They are displayed in red here; low curvature edges are shown in yellow (A-C).

       The geometry of the network is characterized by these (curvature-wise) dominating    
 edges (backbone effect). 

 Acting as bridges between major communities they determine the higher order 
 structural organization of the network.

  To reduce complexity and make very large networks accessible to computational      
  analysis: Can we reduce the network to these high curvature edges?

Backbone Effect  (ongoing work)

Ricci curvature induces a corresponding geometric flow on 
the edges, the Ricci flow. Together they characterize the ge-
ometry of the network: Edges with high curvature evolve fast 
under the Ricci flow and determine the higher order network 
organization (backbone effect).

We apply a discrete Ricci flow by iteratively scaling edge 
weights according to curvature: A reverse Ricci flow acts on 
the edges and assigns high weights to edges with high curva-
ture and low weights to low curvature edges.

The iterative procedure identifies the backbone of the net-
work and therefore lends itself as a tool for complexity reduc-
tion. The much smaller backbone is - in constrast to to the full 
network - accessble to computational network analysis tools. 

Backbone effect: Adaptive weights with reverse Ricci flow
Reverse Ricci flow on edges, induced by Forman-Ricci curvature

Discretize

Normalize

∂ω(e, t)

∂t
= RicF (ω(e, t))ω(e, t)

ω(e, t+ 1) = ω(e, t) +∆·RicF (ω(e, t))·ω(e, t)

ω̂(e, t+ 1) =
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3.  Neuro-Anatomical Analysis

Test data showing the 
reduction of the network to 
high-curvature edges acting 
as bridges between major 
network communities.

Curvature-colored TED network for 
motor task (source: Human Connectome project).

Curvature-colored TED network for motor task (source: Human Connectome project).
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 TED networks with vertices aligned 
 according to the anatomical position of the
 corresponding voxels. 

A: The plot shows two subnetworks consisting of the 
edges contributing to the two peaks in the distribu-
tion (magenta: main peak, blue: secondary peak). 

B: Subnetworks consisting of edges with high (blue) 
and low (red) curvature.

!

Hubness map for TED subnetworks underlying peak 1 and 
peak 2. Red areas mark a dominance of peak 1 edges, blue areas 
a dominance of peak 2 edges.
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G. Lohmann et al.
Plos One 2016

Our approach builds on a discrete version of the well-known con-
cept of curvature in differential geometry. The edge-based Forman 
curvature and its associated geometric flow can be utilized to
      identify higher order connectivity structure in complex networks;
      characterize local assortativity;
      detect structural anomalies.

M. Weber et al.
J. Complex Net. ‘17

Conclusions

 We motivate the use of edge-based methods, namely the discrete Forman-Ricci 
 curvature and its associated geometric flow for the analysis of complex brain 
       networks.

 Edges with high Forman curvature span the network acting as bridges between  
 major network communities. This core connectivity structure forms the backbone  
 of the network and determins its higher order structural organization. Ongoing   
 work concerns the computation of this backbone through an iterative procedure  
 based on the reverse Ricci flow.

 The neuro-anatomical analysis of the edges
 underlying peaks in the curvature distri-
 bution reveals activities in distinct brain 
 regions. This suggests a correspondance 
 between peaks and different functional sub-
 networks that we further investigate in on-
 going work. 
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TED method achieves 
inter-trail consistancy
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High curvature edges acting 
as bridges between network 

components

geometric motivation
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Data was provided by the Human Connectome Project, WU-Minn Consortium 
(Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) 
funded by the 16 NIH  Institutes and Centers that support the NIH Blueprint for 
Neuroscience Research; and by the McDonnell Center for Systems 
Neuroscience at Washington University.

  We analyze task-based fMRI data pro-   
  vided by the Human Connectome 
  Project with a focus on the motor task   
  using minimally preprocessed data 
  (sample size: 50) of the left-right 
  phase-encoding runs. 

  The curvature-based analysis of the 
  resulting TED networks reveals subnet- 
  works with activities in distinct regions.  
  Our results suggest that the peaks in 
  the curvature distribution may indicate 
  different functional subnetworks.

  Ongoing work includes a more detailed 
  analysis of these functional subnet-
  works 

2.  Higher Order Network Organization


