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Abstract
We study projection-free methods for cons-
trained geodesically convex optimization 
on Riemannian manifolds:

In particular, we propose a Riemannian 
version of the Frank-Wolfe (RFW) method.

Contributions:

(1)  In the geodesically constraint setting,  
  we show global, non-asymptotic subli-
  near convergence. We also present a 
  setting under which RFW can attain a 
  linear rate. 

(2)  We further introduce a stochastic RFW  
  for nonconvex optimization. In additi-  
  on we consider two variance-reduced   
  approaches for finite-sum settings.

(3)  We then specialize RFW to the PSD ma-
  nifold and show, that in this case, the   
  log-linear oracle can be solved in     
  closed form. In particular, we apply    
  RFW to the computation of the Kacher 
  mean and Wasserstein barycenters.
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Experiments

Extension to stochastic and non-convex settings

Algorithm

AlgorithmsStochastic Optimization on Manifolds

Alg. 1 defines a Riemannian Frank-Wolfe method, where the 
update direction is computed by a log-linear oracle

                   ;
a geodesic map implements the update. We show the follo-
wing sublinear convergence guarantee:

Theorem (Convergence RFW)
Let          . Then            . 

                  

We introduce three stochastic RFW methods:

(a)  a purely stochastic RFW (SRFW) for solving (1);

(b)  a variance-reduced approach (SVRFW) for solving (2);

(c)  an improved variance-reduced approach using   
  SPIDER (SPIDER-RFW).

The performance of all four RFW methods is comparable 
to their Euclidean counterparts. 

Consider the following constraint stochastic and fini-
te-sum problems:

Here,     are smooth, but may be non-convex. 

Advantages

(1)  Compute stochastic gradients instead of full 
  gradients: Improved oracle complexity. 

(2)  Not restricted to g-convex objectives.

For     -strong g-convex objectives,  we can establish 
linear convergence rates:

Theorem (Linear convergence RFW)
Let            (    : curvature 
constant and                ), then:   
                

                .

 

 

On the manifold of positive definite matrices with interval 
constraints, i.e.,

the log-linear oracle is solvable in closed form.  

Theorem (Linear convergence RFW)
Let          . Then for arbitrary
there exists a closed form solution to the oracle
                   .

Application to the PSD manifold

Applications
(1) Karcher mean: Center of mass w.r.t. the Rie-
mannian distance
                  .

(2) Wasserstein barycenters: Solution to multi-
marginal transport problem 
                    

                   .  
 

  Experiments (Karcher mean)

A:  Performance of RFW in comparison to 
  state-of-the-art methods for well-conditioned (left)  
  and ill-conditioned (right) inputs.

B:  Performance of stochastic RFW (SRFW and SVRFW)   
  against RFW and state-of-the-art stochastic 
  methods for well-conditioned (left) and ill-
  conditi oned (right) inputs.


