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Clustering and sampling are key methods
for the study of relational data. Learning
efficient representations of such data relies
on the identification of major geometric
and topological features and therefore a
characterization of its coarse geometry.

Here, we introduce an efficient sampling
method for identifying crucial structural
features using a discrete notion of Ricci
curvature. The introduced approach gives
rise to a complexity reduction tool that
allows for reducing large relational structu-
res (e.g., networks) to a concise core struc-
ture on which to focus further, computatio-
nally expensive analysis and hypothesis
testing.

Methods

Curvature-based sampling chooses points whose metric
density is inversely proportional to curvature. Existing appro-
aches are based on extrinsic curvature, thus requiring the --
potentially expensive -- construction of isometric embed-
dings. We take an intrinsic approach, asking whether we can
construct a coarse embedding of a weighted graph viewed
as metric measure space.

The operator Ricg is symmetric in the nodes V1, V2

of an edge e(v1,v2), i.e. defines a kernel kz, which can be re-

lated to a positive notion by setting kz = e kr, By a direct

application of classic results, this gives a map from the ambi-

ent space to a real Hilbert space: The existence of a coarse

embedding of a graph into a Hilbert space follows from

(i) being a positive kernel;

(ii) the edges with curvature bounded above generating the
coarse structure of the network.

Informally, coarse geometry denotes the study of the
geometric (or sometimes topological) properties, wi-
thout considering fine-grained, small-scale features.

(1) Network Backbone

Captures essential structural properties, such as clus-
ters or communities and the "long-range" connections
between distinct network regions.

(2) Sampling

A "good" sample is representative of the crucial
features of the full data set, i.e. it resembles its core
structure and coarse geometric features.

Experiments

Network backbone

We call a subnetwork G' = {V',E'} (V' CV,E' C E)

that captures structurally important nodes (hubs) and edges
(bridges), a backbone of G = {V, E}. Itis structure-preserving,
.e., its structural features (e.g., node degree distribution, com-
munity structure) are representative of G.

hub: node with high degree and a high betweenness centrality

bridges: edges that govern the mesoscale structure of G (e.qg.,
long-range connections between communities)

hubs and .
communities bridges

Identify major structural features

Sampling on weighted network of character co-occurrences in Victor
Hugo's Les Miserables (backbone threshold t=5%, marked in red) identi-
fies clusters of major characters and relationships between them.
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Preserve community structure
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Discrete Ricci Curvature
Simple, scalable network characteristic that evaluates
local information. It is defined as a function on the edges,
allowing us to introduce the concept of edge-based
sampling: We understand relational
data as determined not by its
members, but by the relations
between them, suggesting an
edge-based approach to

structural analysis.

Local network
information

Forman-Ricci Curvature
Networks G = {V, E'} form regular, 1-dim. cell complexes
in which case the following curvature function can be de-

fined: ' _
Ricp(e) = w(vi) +w(ve) — Y | w(vl)\/ w(e) +w(’02)\/ w(e)

w(ey, ) w(evz)_

~Ee

61)1

~e

It is defined for edges e(vy,v2) connecting vertices V1,2 ;
w denotes the weights of edges and vertices.

Algorithm

High curvature can be linked to high structural importan-
ce: Sample nodes or edges with high curvature to identify
the coarse geometry of the network.

Algorithm 1 Curvature-based sampling
1: Input: G = {V, E, w,,w.}; (1) k, (A1) r
c foru,v eV, u~wvdo
. kr(u,v) < Ricp(e = (u,v))
. end for

: (1) S+ {e = (u,v) | k(e) < k < 0}
. (i) k% < e *F, k% « reconstruct(kernel PCA(k%), )

S« {e=(u,v) | k}(e) # 0}
. Output: G' ={V|, E S;wv‘sawE‘S}

Larger-scale Experiments

ldentification of backbones in two larger data
sets demonstrating potential application as
complexity reduction tool.




