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Abstract

We consider the problem of learning representations of relational data in spaces of
constant sectional curvature, i.e., Euclidean, Hyperbolic, and Spherical space. In
this context, we explore how to identify a suitable embedding curvature for a given
relational dataset. For this task, we investigate the use of a scalable heuristic based
on local graph neighborhoods and evaluate it on classic benchmark graphs.

1 Introduction

Representation learning has become an invaluable approach for learning from relational data. By
modeling relationships via distances (or similarities) in an embedding space these methods enable
high-quality models of relational data on a large-scale. Recently, new attention has been given to
an important aspect of such methods, i.e., the geometry of the representation space. Methods such
as hyperbolic embeddings [9, 10, 6] and Riemannian generative models [7, 5] showed that non-
Euclidean geometries can provide significant advantages for modeling relational data. For instance,
hyperbolic space is especially suited for modeling relational data with latent hierarchies. This leads
to large gains in terms of representational efficiency such that tree-like graphs and complex networks
can be embedded in much smaller dimensions.

However, at the same time, none of these embedding spaces are universally optimal for all relational
structures and graphs (no free lunch). For instance, embeddings of quasi-cyclic graphs such as n× n
square lattices and n-node cycles incur at least a multiplicative distortion of Ω(n/ log n) in hyperbolic
space [14]. In spherical space, however, n-node cycles can trivially be embedded without distortion
(under an appropriate constant rescaling of the distances). In the case of trees, on the other hand,
this is reversed: any finite tree can be embedded arbitrarily well in hyperbolic space (up to machine
precision), while they can incur large distortions in Euclidean and Spherical space [12, 6].

In this short paper, we focus therefore on identifying a suitable embedding space for a given relational
dataset. We restrict our analysis to canonical Riemannian manifolds with constant sectional curvature
κ, i.e., Euclidean (κ = 0), Spherical (κ = 1), and Hyperbolic space (κ = −1).

2 Methods

Let (X , d) be a metric space, where X is the underlying space and where d : X × X → R is the
distance function on the space. An embedding of (X , dx) into (Y, dy) is then a map f : X → Y .
Here, we are interested in embedding a graph metric (V, dG) into a suitable metric space where
dG is the canonical shortest-path metric on graphs and where V denotes the vertices in a graph
G = (V,E). We will focus our attention on spaces (X , d) of constant sectional curvature κ and
constant dimension n. There exist three complete, simply connected Riemannian manifolds with
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Table 1: Properties of model spaces with constant sectional curvature κ.

Euclidean Rd Spherical Sd Hyperboloid Hd

Space Rn {x ∈ Rn+1 : 〈x, x〉 = 1} {x ∈ Rn+1 : 〈x, x〉 = −1, x0 > 0}
〈u, v〉

∑n
i=1 uivi

∑n
i=1 uivi −u0v0 +

∑n
i=1 uivi

d(u, v)
√
〈u− v, u− v〉 arccos(〈u, v〉) arccosh(−〈u, v〉)

Curvature κ = 0 κ = 1 κ = −1
Sum of angles π > π < π

Circle length C(r) = 2πr C(r) = 2π sin r C(r) = 2π sinh r

Disc area A(r) = 2πr2/2 A(r) = 2π(1− cos r) A(r) = 2π(cosh r − 1)

Principle
Curvatures

Characteristic
Graph

constant sectional curvature, i.e., Euclidean, Spherical, and Hyperbolic space. The properties of
these spaces are listed in Table 1. Our goal is then to estimate a suitable embedding curvature
κ ∈ {−1, 0, 1} for a given graph G.

Deciding the curvature of a space is a difficult and computationally intensive task. For instance,
Gromov’s δ-hyperbolicity measures the ”tree-likeness” of metric spaces and has been used to deter-
mine the hyperbolicity of graphs [1, 4]. However, δ-hyperbolicity is challenging to compute on large
graphs (current state-of-the-art algorithms still have a worst case time complexity of (O(|V |4) [3])
and, moreover, only determines hyperbolicity and not whether Spherical or Euclidean space would
be appropriate choices.

In Riemannian geometry, curvature measures how much a manifold deviates from being (locally)
Euclidean. Ricci curvature in particular measures the amount by which the volume growth of
distance balls deviates from their growth in Eucldiean space. Discretizations of Ricci curvature
on graphs as proposed by [11] and [8] have recently been used to study geometric properties of
networks [13, 15, 16]. However, Ollivier-Ricci curvature can be very expensive to compute even
for mid-sized graphs as it involves solving an optimal transport problem for each edge in the graph.
Forman-Ricci curvature, on the other hand, can be computed for large graphs but only considers very
local information, i.e., the growth of 1-hop neighborhoods that are attached to an edge.

An alternative approach could be to estimate the metric signature of a graph, e.g., via spectral
approaches as suggested in [17]. However, this method too suffers from serious challenges: First,
it requires to compute the full all-pairs shortest-path matrix Dsp – which is infeasible for any large
scale graph. Second, even in cases where computing Dsp is tractable, small changes in the graph can
have large effects on the sign of its spectrum, making this method impractical for all graphs that are
not perfectly embeddable in one of the model spaces.

In the following, we investigate an alternative approach based on graph motifs. This allows us to
scale to large graphs while getting an estimate of global curvature from the volume-growth in local
neighborhoods.
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Figure 1: (a) Example neighborbood with δ(G) = 0. (b) Embedding of G into a 3-regular graph G3.
Auxiliary nodes are inidicated as ◦.

2.1 Graph Motifs and Neighborhood Structures

We start from the observation that certain graph motifs are characteristic for certain embedding
spaces, i.e., they can be embedded with small or no distortion in the matching space. These motifs
are n-cycles for Spherical space, trees for Hyperbolic space and n-grids for Euclidean space (see also
Table 1). An important property that makes embedding spaces suitable for these structures are their
growth of area (or volume) with regard to the radius of a disc (or ball). For instance, trees benefit from
a fast growing area in the embedding space, as the number of nodes in a tree grows exponentially
with the level of the tree. In n-cycles on the other hand, the number of unique visited nodes stays
constant for distances d > n. These different neighborhood growth rates correspond to the growth of
disc area in hyperbolic and spherical space (see A(r) in Table 1). A first approach could therefore be
based on estimating the local growth rate in a neighborhood via such motifs. However, in an arbitrary
input graph, motifs may be irregular and may overlap, which complicates their detection and analysis.

Thus, our first step is to regularize the input graph G by transforming it into a three-regular graph
G3, i.e. a graph in which every vertex has exactly three neighbors. For this purpose, we follow
the approach outlined in [2]: The transformation depends on the node degree of each node and is
shown in Figure 1b. In particular, we add auxiliary vertices and connections to achieve 3-regularity
for leaves (deg(x) = 1) and chains (deg(x) = 2). The 3-fork (deg(x) = 3) is already 3-regular
and therefore invariant under this transformation. For stars (deg(x) > 4) which is characteristic
for tree-like structure, we replace the center node by a ring of auxiliary nodes to gain 3-regularity.
Remarkably, this transformation causes only a small distortion when the edges are appropriately
re-weighted, as shown by [2]:
Theorem 2.1 ([2]). G ↪→φ G3 is a (ε+ 1, ε)-quasi-isometric embedding, i.e.

dG3
(φ(x), φ(y)) ≤ (ε+ 1)dG(x, y) + ε ,

where ε = maxe∈E(G) l(e) denotes the maximum edge weight.

Given the regularized representation, we then estimate the growth of local neighborhoods as follows:
Let G3 = (V,E) be the regularized graph and let N (v, r) = {u ∈ V : dG(u, v) = r} be the set
of all nodes that are exactly at distance r from v in G3. We then say that a local neighborhood
N (v) =

⋃R
r=1N (v, r) is expanding, if

|N (v, 1)| < |N (v, 2)| < . . . < |N (v,R)| .

Otherwise, we say that N (v) is contracting.

For the characteristic graphs of a model space, the neighborhoods {N (v)}v∈V will be uniformly
expanding or contracting for all v. However, in real-world graphs, we will likely encounter a mixture
of expanding and contracting neighborhoods. We therefore determine a suitable κ by computing the
following weighted average (MOTIFCOUNT γ):

γ =
∑
v∈V

σ(v) |N (v)| ; σ(v) =

{
1, N (v) contracting

−1, N (v) expanding .

Then, if γ � 0, we assume κ = 1; if γ � 0, assume κ < 0 and if γ ≈ 0, assume κ = 0.
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Figure 2: Experimental results MOTIFCOUNT.

The benefit of a regularized representation in this context is that it resolves overlaps between the
motifs: In the transformation, auxiliary vertices are added to introduce a three-regular structure. This
separates overlapping motifs, since the auxiliary vertices add to the neighborhood count, allowing for
a realistic approximation of neighborhood growth rates without the need to determine multiplicities
of vertices that are part of multiple motifs. Furthermore, this approach scales to large graphs as its
runtime complexity is linear in the average size of a neighborhood.

3 Experiments

In this section our goal is to test the ability of MOTIFCOUNT to determine a suitable embedding
curvature for relational data. For this purpose, we applied it to various model and real world
graphs. The estimated values are shown in fig. 2. It can be seen that the estimated values match
our theoretical expectations: For instance, regular polytope structures (icosahedron, n-cycle) are
classified as spherical, which aligns with the fact that the corresponding 3-regular graphs are planar
and can be isometrically embedded into the 3-sphere by Steinitz’ theorem.

Furthermore, model networks as classically studied in network science are hyperbolic if they exhibit
a latent hierarchical structure. To test this, we sampled ten networks each from the Albert-Barabasi,
Watts-Strogatz and Erdös-Renyi models for each choice of hyperparameters and averaged the MO-
TIFCOUNT scores. Both the Albert-Barabasi and the Watts-Strogatz (Small world) model are classified
as hyperbolic for typical hyperparameters. For the Albert-Barabasi model, we tested for different
attachment parameters: Linear attachment (m = 1) results in a sparse graph with a large number
of chains, making a Euclidean embedding space suitable. For superlinear attachment (m > 1), the
network exhibits a community structure due to the presence of a few large hubs. In these cases, the
networks are classified as hyperbolic.

For the Erdös-Renyi model, we study embeddability in the context of phase transition. The Erdös-
Renyi model undergoes two phase transitions as the edge threshold increases: The emergence of
a giant component at p = 1/N and full connectivity at p = logN/N . We generated ten networks
from slightly above and slightly below each of the thresholds and averaged MOTIFCOUNT scores.
We observe that in the sparse regime (i.e., below the connectivity threshold), the Euclidean space is
the most suitable embedding space. As the networks become more and more connected, stars and
tree-like structures emerge, creating hyperbolicity. Close to and above the connectivity threshold, the
sample networks are then classified as hyperbolic. Our observations are consistent with theoretical
analysis of Gromov’s δ-hyperbolicity for the Erdös-Renyi and Small World models in [4].

We also tested MOTIFCOUNT on real-world networks (Figure 2). The Stanford bunny, a volumetric
surface mesh commonly studied in computer graphics, is classified as spherical. The grid-like road
network, resembling a lattice, is classified as Euclidean. We further tested networks with an implicit
hierarchical structure, i.e., word co-occurrences in a text corpus (bible) and a network of political
blogs. Both exhibit a community structure and are classified as hyperbolic.
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4 Conclusion

This short paper introduced a heuristic method for identifying embedding spaces based on local
volume growth. We presented preliminary experimental results that demonstrate the method on a few
classic examples. Ongoing work includes a systematic test of the method on large and diverse data
sets, as well as a careful analysis of its limitations. In particular, we investigate inaccuracies that are
introduced by the method’s local approach. For this purpose, we are extending our comparison to
(theoretical) benchmarks, e.g. by comparing MOTIFCOUNT to δ-hyperbolicity. Furthermore, we are
working on quantifying the cost (distortion) of embeddings in a “wrong” space, linking back to the
importance of learning representations with suitable geometric priors.
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