

Riemannian Frank-Wolfe with Application to the Geometric Matrix Mean

Melanie Weber, Princeton University Suvrit Sra, Laboratory for Information and Decision Systems, MIT

Abstract

We consider constrained optimization of geodesically convex objectives over geodesically convex subsets of Riemannian manifolds. We address these constraints via a Riemannian Frank-Wolfe (RFW) approach, that offers to be promising due to its "projection free" nature.

First, we prove an abstract convergence result for RFW; then we specialize it to the manifold of positive definite matrices, for the specific task of computing the Riemannian centroid (also known as Karcher mean). This specialization relies crucially on a "log-linear oracle," a subroutine key to implementing RFW – remarkably, this oracle is seen to admit a closed form solution, which may be of independent interest.

Geometric Optimization

Consider

where $\phi : \mathcal{M} \to \mathbb{R}$ is differentiable and g-convex. The g-convexity guarantees the following optimality result:

Proposition (Optimality) Let $x^* \in \chi \subset \mathcal{M}$ be a local optimum. Then, x^* is globally optimal, and for all $y \in \chi$ $\langle \operatorname{grad} \phi(x^*), \operatorname{Exp}_y^{-1}(x^*) \rangle \ge 0$.

Geometric Matrix Mean

We demonstrate RFW on a simple, but important class of constraint optimization problems on the Riemannian manifold of Hermitian positive definite (HPD) matrices , i. e. $\mathcal{M} = \mathbb{P}_d$. Consider

 $\min_{X \in \chi \subseteq \mathbb{P}_d} \phi(X), \quad \text{where } \chi = \{ X \in \mathbb{P}_d | L \preceq X \preceq U \}$

where ϕ and the "HPD-interval" χ are g-convex.

To solve this problem, we implement RFW with the following adapted log-linear oracle:

We discuss two other variations, including a nonconvex Euclidean Frank-Wolfe (EFW) method, as well a setting under which RFW attains a linear rate of convergence. Experiments against recently published methods for the Riemannian centroid highlight the competitiveness of RFW.

Background

In this work, we consider the optimization of a geodesically (g-)convex function on a Riemannian manifold ${\mathcal M}$ over a compact, g-convex set χ .

If χ is simple, Riemannian projected-gradient methods offer a practical solution. However, in several settings the computation of these (metric) projections onto the constraint set is computationally expensive driving the search for projection-free methods.

Using this argument, we can replace the linear oracle in the Euclidean FW by the following log-linear oracle:

 $\min_{z \in \chi} \langle \operatorname{grad} \phi(x_k), \operatorname{Exp}_{x_k}^{-1}(z) \rangle ,$

where χ is compact and g-convex. This allows for a Riemannian FW scheme. One can show the following global convergence result for RFW:

Theorem (Convergence of RFW) Let $s_k = \frac{2}{k+2}$ be the stepsize of RFW. Then, $\phi(x_k) - \phi(x^*) = O(1/k)$.

By introducing a notion of optimal transport to the RFW scheme and requiring μ -strong g-convexity, we can establish linear convergence rates by applying the PL inequality. In particular, we can prove the following linear result:

Theorem (Linear Convergence of RFW) Let $s_k = \frac{r\sqrt{\mu\Delta_k}}{\sqrt{2}M_{\phi}}$ (M_{ϕ} : curvature constant). Then, RFW converges linearly at

manifold.

Fig. 1: Geometric Optimization

Computation of the geometric

center of mass on a Riemannian

matrix mean as the minimiza-

tion problem of finding the

 $\min_{L \prec Z \prec U} \langle X_k^{1/2} \nabla^{\mathbb{H}} \phi(X_k) \; X_k^{1/2}, \log(X_k^{-1/2} Z X_k^{-1/2}) \rangle \; .$

For this, we can derive a closed-form solution:

Theorem (log-linear oracle)

Let $L, U \in \mathbb{P}_d$, $L \preceq U$. Then, for arbitrary $S \in \mathbb{H}_d$, $X \in \mathbb{P}_d$ there exists a closed-form solution to $\max_{L \leq Z \leq U} \operatorname{tr}(S \log(XZX)) \quad .$

The constraint set χ is not only g-convex, but also convex in the usual sense. Therefore, we can also apply a (non-convex) Euclidean Frank-Wolfe scheme (EFW), albeit with a slower convergence rate. We can derive an analogous closed-form solution for the Euclidean linear oracle.

An implementation of both RFW and EFW is given below.

Algorithm 3 Frank-Wolfe for fast geometric mean
1: $(A_1,\ldots,A_N), \ oldsymbol{w} \in \mathbb{R}^N_+$
2: $\bar{X} \approx \operatorname{argmin}_{X>0} \sum_{i} w_i \delta_R^2(X, A_i)$
3: for $k = 0, 1,$ do
4: $\nabla \phi(X_k) = X_k^{-1} \left(\sum_i w_i \log(X_k A_i^{-1}) \right)$
5: Compute Z_k using (i) for EFW and (ii) for RFW:
6. (i) $Z_h \leftarrow \operatorname{argmin}_{H \leq R \leq A} \langle \nabla \phi(X_h), Z - X_h \rangle$

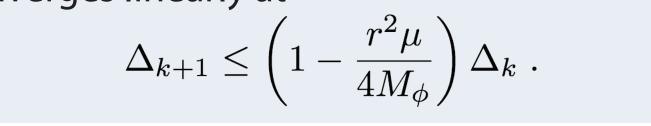
In the Euclidean case ($\mathcal{M} = \mathbb{R}^n$), Frank-Wolfe (FW) schemes provide a projection-free approach: Instead of projection, FW relies on a "linear" oracle that maximizes a conditional gradient - which can often be much simpler.

FW methods have been applied to a variety of (Euclidean) optimization problems, including convex, nonconvex, submodular and stochastic settings. However, they have not been studied in the manifold case - a gap in the literature, that we attempt to fill.

Algorithm 1 Euclidean Frank-Wolfe without line-search

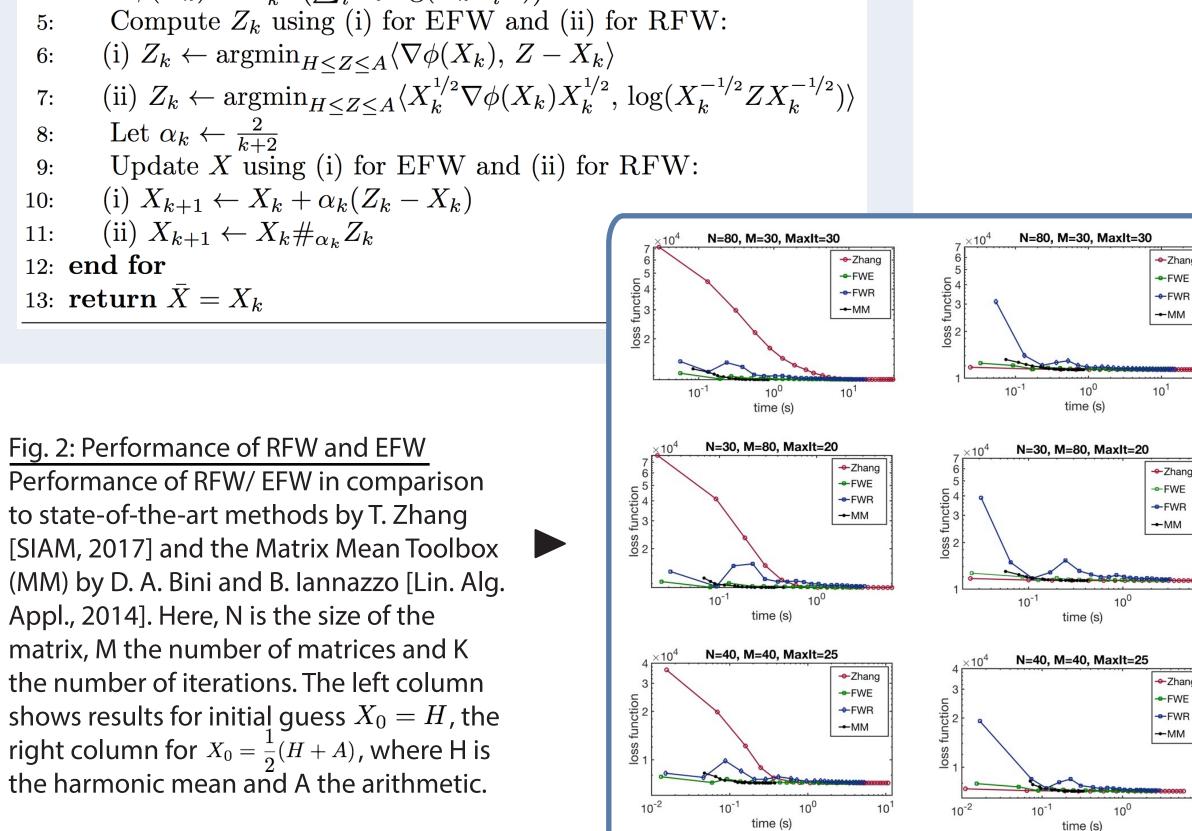
1: Initialize with a feasible point $x_0 \in \mathcal{X} \subset \mathbb{R}^n$ 2: for k = 0, 1, ... do

- Compute $z_k \leftarrow \operatorname{argmin}_{z \in \mathcal{X}} \langle \nabla \phi(x_k), z x_k \rangle$
- Let $s_k \leftarrow \frac{2}{k+2}$ 4:
- Update $x_{k+1} \leftarrow (1-s_k)x_k + s_k z_k$



```
Algorithm 2 Riemannian Frank-Wolfe (RFW) for g-convex optimization
1: Initialize x_0 \in \mathcal{X} \subseteq \mathcal{M}; assume access to the geodesic map \gamma : [0, 1] \to \mathcal{M}
2: for k = 0, 1, ... do
          z_k \leftarrow \operatorname{argmin}_{z \in \mathcal{X}} \langle \operatorname{grad} \phi(x_k), \operatorname{Exp}_{x_k}^{-1}(z) \rangle
         Let s_k \leftarrow \frac{2}{k+2}
         x_{k+1} \leftarrow \gamma(s_k), where \gamma(0) = x_k and \gamma(1) = z_k
5:
6: end for
```


- We introduce Riemannian Frank-Wolfe (RFW) for constrained g-convex optimization on Riemannian manifolds. Analogous to the Euclidean case, we show that RFW attains a non-asymptotic sublinear rate of convergence. Furthermore, under additional assumptions on the objective function and the constraint set, we show that RFW can attain linear convergence rates.
- We specialize RFW for g-convex problems on the manifold of Hermitian positive definite (HPD) matrices, for which we present a closed-form solution to the required RFW "linear" oracle. In addition, we discuss a direct non-convex Euclidean FW (EFW) method (which converges to the global optimum due to g-convexity); here the linear oracle involves a semi-definite program (SDP), which is shown to have a closed-form solution.



-FWE

- FWR

-MM

←FWE ←FWR ←MM

time (s)

M. Frank

& P. Wolfe

(1956)

