PRINCETON Riemannian Frank-Wolfe with Application to the
UNIVERSITY Geometric Matrix Mean

/

BB Massachusetts : : : : E mw25@math.princeton.edu E

I I I Institute of Melanie Weber, Princeton UnlverS|ty ! https://web.math.princeton.edu/~mw25 !
I I Technology Suvrit Sra, Laboratory for Information and Decision Systems, MIT T GGELILLEELE PP L e EE et :

Abstract Geometric Optimization

Geometric Matrix Mean

We consider constrained optimization of geodesically We demonstrate RFW on a simple, but important

- : Consider i
convex objectives over geodesically convex subsets of sexCM ?(@) class of constraint optimization problems on the
Riemannian manifolds. We address these constraints " M — R is differentiable and - Riemannian manifold of Hermitian positive definite
via a Riemannian Frank-Wolfe (RFW) approach, that where ¢ : M — R is difterentiable and g-convex. The (HPD) matrices . i.e. M = P, . Consider
i e HArAiact " - ' he following optimality result: s T R
offers to be promising due to its “projection free g-convexity guarantees the gop y |
min  ¢(X), wherex ={X ePy4|L <X U}

nature. o . . Fig. 1: Geometric Optimization M XexCPq

Proposition (Optimality) Computation of the geometric where ¢ and the “HPD-interval” X are g-convex
First, we prove an abstract convergence result for |c-)|eotti:rvn ale ;{ng f/c\)/rl akl)le ya Ieoial optimum. Then, z* is globally ?;:ggs:;a;ftﬁ fdf;]'g't’;]“eza
RFW; .then we specialize it to the manifold of positive ' (erad ¢(z*), Exp= ! (z*)) > 0 fne:;ﬁc:)fj.mass onafiemannian 14 solve this problem, we implement RFW with the fol-
deﬁn!te matr.lces, for th.e specific task of computing ? y - lowing adapted log-linear oracle:
the Riemannian centroid (also known as Karcher . . . , _ /2 m 172 C1/2,, o —1/2
mean). This specialization relies crucially on a Using this argument, we can replace the linear oracle in the LéIIZl%U<Xk VEp(Xk) X,/ log(X, " ZX, 7)) .

“log-linear oracle/” a subroutine key to implementing Euclidean FW by the following log-linear oracle: For this. we can derive a closed-form solution:

RFW - remarkably, this oracle is seen to admit a min (grad ¢(xg), Expx_kl (2)),
closed form solution, which may be of independent | eX | | Theorem (log-linear oracle)
interest. where X is compact and g-convex. This allows for a Rie-

let L,U € P;,L <X U.Then, for arbitraryS cHy x cp,

mannian FW scheme. One can show the following global
there exists a closed-form solution to

convergence result for RFW:

We discuss two other variations, including a non- max_ tr(Slog(X ZX))
convex Euclidean Frank-Wolfe (EFW) method, as well L=Z=U
a setting under which RFW attains a linear rate of con- Theorem (gonvergence of RFW) ] | e
i i : _ : The constraint set X is not only g-convex, but also
vergence. Experiments against recently.pub.llshed Let 5 = 75 be the stepsize of RFW. Then, o | by Y? | I
methods for the Riemannian centroid highlight the convexin the tsual Sense. ThEretore, we cah al>o apply a
competitiveness of RFW. d(zg) — o(x™) = O(1/k) . (non-convex) Euclidean Frank-Wolfe scheme (EFW),
albeit with a slower convergence rate. We can derive an
By introducing a notion of optimal transport to the RFW analogous closed-form solution for the Euclidean linear
scheme and requiring p-strong g-convexity, we can es- oracle.
tablish linear convergence rates by applying the PL in- . . .
BaCkground . NVETY Yy applying the F An implementation of both RFW and EFW is given below.
equality. In particular, we can prove the following linear
result:
. . o . Algorithm 3 Frank-Wolfe for fast geometric mean
In this Work, we consider the optlmlzatlon of a geode— Theorem (Linear COnvergence of RFW) L (Ay,...,AN), w € R_lj\_r
sically (g-)convex function on a Riemannian manifold T Ak 2. X ~ argming.o 32, wid% (X, Ay)
M oze?a compact, g-convex set X Let Sk = V2M, (Mg : curvature constant). Then, RFW 3. for k — 0,1,),(?,0(10 &
' ' converges linearly at £ V(X)) = X (3, wilog(Xx A7)
TZN 5: Compute Zj using (i) for EFW and (ii) for RFW:
If X is simple, Riemannian projected-gradient meth- Api1 < (1 Y ) Ay . 6: (i) Zi argmmHSZSA(VleS;Xk)a Z—)fZ) I
ods offer a practical solution. However, in several set- ¢ ; (Eitzo’j iar%mmH<Z<A<Xk VOXR) Xy log(Xy, T2, 7))
o ° . . . : k _—
tings the computation of these (metric) projections 9:  Update Xk{fé?ng (i) for EFW and (ii) for REW:
onto the constraint set is computationally expensive - 10 EQ)))(?‘H i);}c ;akézk — Xi)
. . . . : . . : : 11 ok .10°  N=80, M=30, Maxlt=30 10°  N=80, M=30, Maxlt=30
driving the search for projection-free methods. Algorithm 2 Riemannian Frank-Wolfe (RFW) for g-convex optimization i ond for T TETTeRE ; = e
1: Initialize zg € X C M; assume access to the geodesic map ~ : [0,1] - M 13: return X = Xy : N oy | Car |
In the Euclidean case (M = R"), Frank-Wolfe (FW) 2: for k=0,1,... do N | ¢
. . . . —1 e p e - y .
schemes provide a projection-free approach: Instead 3 2k ¢ argmin,cy (grad ¢(zy), Expy, (2)) e I
of projection, FW relies on a“linear” oracle that maxi- ;l‘ Let S’z_ = (H% here ~(0) and (1) Fig. 2: Performance of RFW and EFW A0 N30, M0, Mt o' N30, M=, Maxi20
: " : _ : - Lk+1 < Y\Sk), where y(U) = I and 7y(1) = 2k Performance of RFW/ EFW in comparison sl | “ewe 5l kgl
Mizes a. conditional gradient - which can often be 6: end for to state-of-the-art methods by T. Zhang B bt Sa) i |
much Slmpler- [SIAM, 2017] and the Matrix Mean Toolbox B> 82 N g2
(MM) by D. A. Bini and B. lannazzo [Lin. Alg. Sl - : acin :
. . . Appl., 2014]. Here, N is the size of the U tmew Y e
FW methods have been applied to a variety of (Euclid- matrix, M the number of matrices and K 01 Nt s, W25 A s
ean) optimization problems, including convex, non- the number of iterations. The left column b v ]
b dul d stochasti tti H o o shows results forinitia{guess Xo = H, the 52| “ s - B |
convex, submodular and stochastic settings. Howev- Contr|but|ons right column for Xo = 2(1 + 4), where H s TN | :
er, they have not been studied in the manifold case the harmonic mean and A the arithmetic. i i i _ _
- a gap in the literature, that we attempt to fill. e e 9
* We introduce Riemannian Frank-Wolfe (RFW) for constrained g-convex optimization on Riemannian . IS v | o
manifolds. Analogous to the Euclidean case, we show that RFW attains a non-asymptotic sublinear rate N, o =
of convergence. Furthermore, under additional assumptions on the objective function and the constraint - \g”"a'“—'ﬂ
Algorithm 1 Euclidean Frank-Wolfe without line-search set, we show that RFW can attain linear convergence rates.
1: Initialize with a feasible point xg € X C R" - : - .. : : :
o for k—0.1.. .. do P ’ * We specialize RFW for g-convex problems on the manifold of Hermitian positive definite (HPD) matrices, for which we present a
3 Compute 2y  argmin, (Vo (zk), 2 — Tk) closed-form solution to the required RFW “linear” oracle. In addition, we discuss a direct non-convex Euclidean FW (EFW) method (which
4: Let s, + %5 converges to the global optimum due to g-convexity); here the linear oracle involves a semi-definite program (SDP), which is shown to
5. Update 11 < (1 — sg)zp + sk2x have a closed-form solution.
6: end for \
é(V‘F-) T/Larl‘;( * We apply RFW and EFW to the computation of the geometric matrix mean of HPD matrices. We believe the closed-form solutions for the
. VWolre p . ” . . . . .
(1956) log-linear” and linear oracles for RFW and EFW, respectively should be of wider interest too. These oracles lie at the heart of why RFW and
\ J

EFW result in outperforming state-of-the-art methods for computing the Riemannian mean of HPD matrices.



