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Abstract Geometric Optimization

In this work, we consider the optimization of a geode-
sically (g-)convex function on a Riemannian manifold     
       over a compact, g-convex set     .

If      is simple, Riemannian projected-gradient meth-
ods o�er a practical solution. However, in several set-
tings the computation of these (metric) projections 
onto the constraint set is computationally expensive - 
driving the search for projection-free methods.

In the Euclidean case (                 ), Frank-Wolfe (FW) 
schemes provide a projection-free approach: Instead 
of projection, FW relies on a “linear” oracle that maxi-
mizes a conditional gradient - which can often be 
much simpler. 

FW methods have been applied to a variety of (Euclid-
ean) optimization problems, including convex, non-
convex, submodular and stochastic settings.  Howev-
er, they have not been studied in the manifold case 
- a gap in the literature, that we attempt to �ll.
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Abstract
 
We consider constrained optimization of geodesically 
convex objectives over geodesically convex subsets of 
Riemannian manifolds. We address these constraints 
via a Riemannian Frank-Wolfe (RFW) approach, that 
o�ers to be promising due to its “projection free” 
nature.

First, we prove an abstract convergence result for 
RFW; then we specialize it to the manifold of positive 
de�nite matrices, for the speci�c task of computing 
the Riemannian centroid (also known as Karcher 
mean). This specialization relies crucially on a 
“log-linear oracle,” a subroutine key to implementing 
RFW – remarkably, this oracle is seen to admit a 
closed form solution, which may be of independent 
interest.

We discuss two other variations, including a non-
convex Euclidean Frank-Wolfe (EFW) method, as well 
a setting under which RFW attains a linear rate of con-
vergence. Experiments against recently published 
methods for the Riemannian centroid highlight the 
competitiveness of RFW.
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Consider        

where       is di�erentiable and g-convex. The 
g-convexity guarantees the following optimality result:  

We introduce Riemannian Frank-Wolfe (RFW) for constrained g-convex optimization on Riemannian 
manifolds. Analogous to the Euclidean case, we show that RFW attains a non-asymptotic sublinear rate 
of convergence. Furthermore, under additional assumptions on the objective function and the constraint 
set, we show that RFW can attain linear convergence rates.

We specialize RFW for g-convex problems on the manifold of Hermitian positive de�nite (HPD) matrices, for which we present a 
closed-form solution to the required RFW “linear” oracle. In addition, we discuss a direct non-convex Euclidean FW (EFW) method (which 
converges to the global optimum due to g-convexity); here the linear oracle involves a semi-de�nite program (SDP), which is shown to 
have a closed-form solution. 

We apply RFW and EFW to the computation of the geometric matrix mean of HPD matrices. We believe the closed-form solutions for the 
“log-linear” and linear oracles for RFW and EFW, respectively should be of wider interest too. These oracles lie at the heart of why RFW and 
EFW result in outperforming state-of-the-art methods for computing the Riemannian mean of HPD matrices.

Using this argument, we can replace the linear oracle in the 
Euclidean FW by the following log-linear oracle:

where      is compact and g-convex. This allows for a Rie-
mannian FW scheme. One can show the following global 
convergence result for RFW:

Theorem (Convergence of RFW)

Let    be the stepsize of RFW. Then,               
     

By introducing a notion of optimal transport to the RFW 
scheme and requiring    -strong g-convexity, we can es-
tablish linear convergence rates by applying the PL in-
equality. In particular, we can prove the following linear 
result:

Theorem (Linear Convergence of RFW)

Let         (    : curvature constant). Then, RFW 
converges linearly at                    

  We demonstrate RFW on a simple, but important
   class of constraint optimization problems on the
  Riemannian manifold of Hermitian positive de�nite  
  (HPD) matrices , i. e.         . Consider

  where     and the “HPD-interval”      are g-convex.

To solve this problem, we implement RFW with the fol-
lowing adapted log-linear oracle:

For this, we can derive a closed-form solution: 

Theorem (log-linear oracle)

Let       ,    . Then, for arbitrary               , 
there exists a closed-form solution to
              .                    

The constraint set      is not only g-convex, but also 
convex in the usual sense. Therefore, we can also apply a 
(non-convex) Euclidean Frank-Wolfe scheme (EFW), 
albeit with a slower convergence rate. We can derive an 
analogous closed-form solution for the Euclidean linear 
oracle. 

An implementation of both RFW and EFW is given below.

Fig. 1: Geometric Optimization
Computation of the geometric 
matrix mean as the minimiza-
tion problem of �nding the 
center of mass on a Riemannian 
manifold.

Fig. 2: Performance of RFW and EFW
Performance of RFW/ EFW in comparison 
to state-of-the-art methods by T. Zhang 
[SIAM, 2017] and the Matrix Mean Toolbox 
(MM) by D. A. Bini and B. Iannazzo [Lin. Alg. 
Appl., 2014]. Here, N is the size of the 
matrix, M the number of matrices and K 
the number of iterations. The left column 
shows results for initial guess          , the 
right column for           , where H is 
the harmonic mean and A the arithmetic.
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