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With the rapid rise of data science since 
the late 1990s, networks have emerged as 
a powerful tool to represent complex sys-
tems. We present geometric tools for cha-
racterizing such complex networks 
through the analysis of so far widely 
neglected network properties to provide 
novel insights into their structure and evo-
lution.

1. We introduce a discrete Forman-Ricci   
curvature and its corresponding geomet-
ric �ows as characteristics for static and 
dynamics networks. Our work suggests a 
number of data mining applications inclu-
ding denoising and the extrapolation of 
network evolution.

2. We extend the introduced formalism to 
higher dimensions in an attempt to study 
the global shape of networks. Our setting 
allows for a network-theoretic formulation 
of a Gauß-Bonnet style theorem and the 
computation of Euler characteristics. 
Attempting to describe the long-term be-
havior of networks qualitatively, we intro-
duce prototype networks that give rise to 
a global classi�cation scheme based on 
Ricci-curvature. 
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In [1], we introduce a discrete Ricci curvature building on an earlier notion by R. Forman

that proved to be a powerful edge-based characteristic. The corresponding Ricci �ow provi-
des a counterpart for dynamic networks

that gives rise to a number of data mining tools as proposed in [1,3]. A more theoretical 
work [2] extends the 1-dimensional notion for graphs to a higher-dimensional formulation 
for polyhedral complexes. We de�ne Euler characteristics for networks as

or

in terms of the k-dimensional Ricci curvature 
nal faces (k=2). For the simpli�ed case of unweighted networks, this gives

which can be calculated directly from a given network. For simplicity, we only consider trian-
gular, 2-dimensional faces and neglect higher order faces. In this notion, one can prove the 
following Gauss-Bonnet style argument:

i.e. we can predict the evolution of a network (characterized by the sign of its curvature) by 
the Euler characteristic. This allows for de�ning the prototype networks as follows:

γ̃(e)− γ(e) = −RicF(γ(e)) · γ(e) ,
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Lemma:
Let X be a 2-dimensional cell complex, satisfying certain geometric constraints
(see [2]). Then, if R1 > 0, then χ(X) > 0.

Definition: Let X be a 2-dimensional polyhedral complex with Euler charac-
teristic χ as given by the Gauß-Bonnet formula. Then we define X to be

1. Spherical, if χ > 0 ,

2. Euclidean, if χ = 0 ,

3. Hyperbolic, if χ < 0 .

Can one see the shape of a network?

1. Network Classi�cation with curvature-based distance 
2. Detection of interesting regions in dynamic networks
3. Network extrapolation, prediction of network evolution
4. Clustering
5. Denoising

We demonstrate how Forman-Ricci curvature captures essential features of 
real-world networks, including community structure and directionality. In compari-
son to established network characteristics that are node-based and highly depen-
dent on node degrees, we show that edge weights encode important information 
that node-based characteristics fail to capture.

The evaluation of a set of real-world networks – drawn from �elds of current major 
interest in Data Science – and comparison with three established model networks 
(Erdös-Rényi, Watts-Strogatz, Albert-Barabási) showed close similarity between the 
real-world networks and the Albert-Barabási model. By measuring the (dis-)similari-
ty between graphs with a curvature-based distance we introduce a classi�cation 
scheme for networks. While common distance measures would require an align-
ment of nodes (NP-hard), we perform curvature-based distance estimates in             .

The curvature maps visualize and statistically evaluate the results. By adding a spa-
tial dimension to commonly used histograms, one gains insight into the communi-
ty structure and directionality of networks.

We introduce a network-theoretic Gauß-Bonnet argument that allows for com-
putation of Euler characteristics for networks via combinatorial curvature func-
tions. With this, we attempt to de�ne a “prototype” networks that gives rise to a 
classi�cation scheme based on the network’s shape. Using small examples, we 
show the evolution of such prototypic limit cases: By evaluating Ricci curva-
ture, one can see the structure of a network.

5. Denoising

2. Detecting 
interesting regions

(Gnutella �le exchanges)

Google Webgraph
(curvature-colored plot)

Higher order faces

Prototype networks

O (n3 )

http://www.my.edu/smithlab
mailto:john@smith.com

