TREE INDEPENDENCE NUMBER III. THETAS, PRISMS AND STARS

MARIA CHUDNOVSKY $\S,$ SEPEHR HAJEBI $^{\dagger,\ddagger},$ AND NICOLAS TROTIGNON*

ABSTRACT. We prove that for every $t \in \mathbb{N}$ there exists $\tau = \tau(t) \in \mathbb{N}$ such that every (theta, prism, $K_{1,t}$)-free graph has tree independence number at most τ (where we allow "prisms" to have one path of length zero).

1. INTRODUCTION

Graphs in this paper have finite and non-empty vertex sets, no loops and no parallel edges. The set of all positive integers is denoted by N, and for every $n \in \mathbb{N}$, we write $[n]$ for the set of all positive integers no greater than n .

Let $G = (V(G), E(G))$ be a graph. A *clique* in G is a set of pairwise adjacent vertices. A stable or independent set in G is a set of vertices no two of which are adjacent. The maximum cardinality of a stable set is denoted by $\alpha(G)$, and the maximum cardinality of a clique in G is denoted by $\omega(G)$. For a graph H we say that G contains H if H is isomorphic to an induced subgraph of G . We say that G is H -free if G does not contain H. For a set H of graphs, G is H-free if G is H-free for every $H \in \mathcal{H}$. For a subset X of $V(G)$, we denote by $G[X]$ the induced subgraph of G with vertex set X, we often use "X" to denote both the set X of vertices and the graph $G[X]$.

Let $X \subseteq V(G)$. We write $N_G(X)$ for the set of all vertices in $G \setminus X$ with at least one neighbor in X, and we define $N_G[X] = N_G(X) \cup X$. When there is no danger of confusion, we omit the subscript "G". For $Y \subseteq G$, we write $N_Y(X) = N_G(X) \cap Y$ and $N_Y[X] = N_Y(X) \cup X$. When $X = \{x\}$ is a singleton, we write $N_Y(x)$ for $N_Y(\{x\})$ and $N_Y[x]$ for $N_Y[\lbrace x \rbrace]$.

Let $x \in V(G)$ and let $Y \subset V(G) \setminus \{x\}$. We say that x is complete to Y in G if $N_Y[x] = Y$, and we say that x is anticomplete to Y in G if $N_G[x] \cap Y = \emptyset$. In particular, if $x \in Y$, then x is neither complete nor anticomplete to Y in G. For subsets X, Y of $V(G)$, we say that X and Y are complete in G if every vertex in X is complete to Y in G , and we say that X and Y are anticomplete in G if every vertex in X is anticomplete to Y in G. In particular, if X and Y are either complete or anticomplete in G , then $X \cap Y = \emptyset$.

Date: 13^{th} August, 2024.

† Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada.

[§] Princeton University, Princeton, NJ, USA. Supported by NSF grant DMS-2348219 and by AFOSR grant FA9550-22-1-0083.

[‡] Corresponding Author (shajebi@uwaterloo.ca).

[⋆] Univ Lyon, EnsL, CNRS, LIP, F-69342, Lyon Cedex 07, France. Partially supported by the French National Research Agency under research grant ANR DIGRAPHS ANR-19-CE48-0013-01 and the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program Investissements d'Avenir (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR), and H2020- MSCA-RISE project CoSP- GA No. 823748.

For a graph $G = (V(G), E(G))$, a tree decomposition (T, β) of G consists of a tree T and a map $\beta: V(T) \to 2^{V(G)}$ with the following properties:

- For every $v \in V(G)$, there exists $t \in V(T)$ with $v \in \beta(t)$.
- For every $v_1v_2 \in E(G)$, there exists $t \in V(T)$ with $v_1, v_2 \in \beta(t)$.
- $T[\{t \in V(T) \mid v \in \beta(t)\}]$ is connected for all $v \in V(G)$.

The treewidth of G, denoted tw(G) is the smallest integer $w \in \mathbb{N}$ such that G admits a tree decomposition (T, β) with $|\beta(t)| \leq w+1$ for all $t \in V(T)$. The tree independence number of G, denoted tree- $\alpha(G)$, is the smallest integer $s \in \mathbb{N}$ such that G admits a tree decomposition (T, β) with $\alpha(G[\beta(t)]) \leq s$ for all $t \in V(T)$.

Both the treewidth and the tree independence number are of great interest in structural and algorithmic graph theory (see [\[2,](#page-16-0) [3,](#page-16-1) [4,](#page-16-2) [6,](#page-16-3) [8\]](#page-16-4) for detailed discussions). They are also related quantitatively because, by Ramsey's theorem [\[11\]](#page-17-0), graphs of bounded clique number and bounded tree independence number have bounded treewidth. Dallard, Milanič, and Štorgel [\[8\]](#page-16-4) conjectured that the converse is also true in hereditary classes of graphs (meaning classes which are closed under taking induced subgraphs). Let us say that a graph class G is tw-bounded if there is a function $f : \mathbb{N} \to \mathbb{N}$ such that every graph $G \in \mathcal{G}$ satisfies tw $(G) \leq f(\omega(G)).$

Conjecture 1.1 (Dallard, Milanič, and Storgel [\[8\]](#page-16-4)). For every hereditary class $\mathcal G$ which is tw-bounded, there exists $\tau = \tau(\mathcal{G}) \in \mathbb{N}$ such that tree- $\alpha(G) \leq \tau$ for all $G \in \mathcal{G}$.

Conjecture [1.1](#page-1-0) was recently refuted [\[5\]](#page-16-5) by two of the authors of this paper. It is still natural to ask: which tw-bounded hereditary classes have bounded tree independence number? So far, the list of hereditary classes known to be of bounded tree independence number is not very long (see [\[2,](#page-16-0) [7,](#page-16-6) [8\]](#page-16-4) for a few). More hereditary classes are known to be tw-bounded. The reasons for the existence of the bound are often highly non-trivial, and it is not known whether the corresponding class has bounded tree independence number. A notable instance is the class of all (theta, prism)-free graphs excluding a fixed forest [\[1\]](#page-16-7), which we will focus on in this paper.

Let us first give a few definitions. Let P be a graph which is a path. Then we write, for $k \in \mathbb{N}$, $P = p_1 \cdots p_k$ to mean $V(P) = \{p_1, \ldots, p_k\}$, and for all $i, j \in [t]$, the vertices p_i and p_j are adjacent in P if and only if $|i - j| = 1$. We call the vertices p_1 and p_k the ends of P, and we say that P is a path from p_1 to p_k or a path between p_1 and p_k . We refer to $V(P) \setminus \{p_1, p_k\}$ as the *interior of* P and denote it by P^* . The *length* of a path is its number of edges. Given a graph G, by a path in G we mean an induced subgraph of G which is a path. Similarly, for $t \in \mathbb{N} \setminus \{1, 2\}$, given a t-vertex graph C which is a cycle, we write $C = c_1 \cdot \cdot \cdot \cdot c_t \cdot c_1$ to mean $V(C) = \{c_1, \ldots, c_t\}$, and for all $i, j \in [t]$, the vertices c_i and c_j are adjacent in G if and only if $|i - j| \in \{1, t - 1\}$. The length of a cycle is its number of edges (which is the same as its number of vertices). For a graph G , a hole in G is an induced subgraph of G which is a cycle of length at least four.

A theta is a graph Θ consisting of two non-adjacent vertices a, b, called the ends of Θ , and three pairwise internally disjoint paths P_1, P_2, P_3 of length at least two in Θ from a to b, called the paths of Θ , such that P_1^*, P_2^*, P_3^* are pairwise anticomplete in Θ (see Figure [1\)](#page-2-0). A prism is a graph Π consisting of two triangles $\{a_1, a_2, a_3\}, \{b_1, b_2, b_3\}$ called the triangles of Π , and three pairwise disjoint paths P_1, P_2, P_3 in Π , called the paths of Π , such that for each $i \in \{1, 2, 3\}$, P_i has ends a_i, b_i , for all distinct $i, j \in \{1, 2, 3\}$, $a_i a_j$ and $b_i b_j$ are the only edges of Π with an end in P_i and an end in P_j , and for every

FIGURE 1. A theta (left) and a prism (right). Dashed lines represent paths of arbitrary (possibly zero) length.

 $i \neq j \in \{1,2,3\}$ $P_i \cup P_j$ is a hole (see Figure [1\)](#page-2-0). If follows that if P_2 has length zero, then each of P_1, P_3 has length at least two. We remark that the last condition is non-standard; the paths of a prism are usually of non-zero length, and a prism with a length-zero path is sometimes called a "line-wheel." For a graph G , a *theta in* G is an induced subgraph of G which is a theta and a *prism in G* is an induced subgraph of G which is a prism.

The following was proved in [\[1\]](#page-16-7) to show that the local structure of the so-called "layered wheels" [\[12\]](#page-17-1) is realized in all theta-free graphs of large treewidth. It also characterizes all forests, and remains true when only the usual "prisms" (with no length-zero path) are excluded:

Theorem 1.2 (Abrishami, Alecu, Chudnovsky, Hajebi, Spirkl [\[1\]](#page-16-7)). Let F be a graph. Then the class of all (theta, prism, F)-free graphs is tw-bounded if and only if F is a forest.

We propose the following strengthening:

Conjecture 1.3. For every forest F, there is a constant $\tau = \tau(F) \in \mathbb{N}$ such that for every (theta, prism, F)-free graph G, we have tree- $\alpha(G) \leq \tau$.

As far as we know, Conjecture [1.3](#page-2-1) remains open even for paths. But our main result settles the case of stars. For every $t \in \mathbb{N}$, let \mathcal{C}_t be the class of all (theta, prism, $K_{1,t}$)-free graphs. We prove that:

Theorem [1](#page-2-2).4. For every $t \in \mathbb{N}$, there is a constant $f_{1,4} = f_{1,4}(t) \in \mathbb{N}$ such that every graph $G \in \mathcal{C}_t$ satisfies tree- $\alpha(G) \leq f_{1,4}$ $\alpha(G) \leq f_{1,4}$ $\alpha(G) \leq f_{1,4}$.

2. Outline of the main proof

Like several earlier results [\[2,](#page-16-0) [4,](#page-16-2) [3\]](#page-16-1) coauthored by the first two authors of this work, the proof of Theorem [1.4](#page-2-2) deals with "balanced separators." Let G be a graph and let $w: G \to \mathbb{R}^{\geq 0}$. For every $X \subseteq G$, we write $w(X) = \sum_{v \in X} w(v)$. We say that that w is a weight function on G if $W(G) = 1$. Given a graph G and a weight function w on G, a subset X of $V(G)$ is called a *w*-balanced separator if for every component D of $G \setminus X$, we have $w(D) \leq 1/2$. The main step in the proof of Theorem [1.4](#page-2-2) is the following:

Theorem [2](#page-2-3).1. For every $t \in \mathbb{N}$, there is a constant $f_{2,1} = f_{2,1}(t) \in \mathbb{N}$ with the following property. Let $G \in \mathcal{C}_t$ and let w be a normal weight function on G. Then there exists $Y \subseteq V(G)$ such that $|Y| \leq f_{2,1}$ $|Y| \leq f_{2,1}$ $|Y| \leq f_{2,1}$ and $N[Y]$ is a w-balanced separator in G.

As shown below, Theorem [1.4](#page-2-2) follows by combining Theorem [2.1](#page-2-3) and the following (this is not a difficult result; see [\[4\]](#page-16-2) for a proof):

Lemma 2.2 (Chudnovsky, Gartland, Hajebi, Lokshtanov and Spirkl; see Lemma 7.1 in [\[4\]](#page-16-2)). Let $s \in \mathbb{N}$ and let G be a graph. If for every normal weight function w on G, there is a w-balanced separator X_w in G with $\alpha(X_w) \leq s$, then we have tree- $\alpha(G) \leq 5s$.

Proof of Theorem [1.4](#page-2-2) assuming Theorem [2.1.](#page-2-3) Let $c = f_{2,1}(t)$ $c = f_{2,1}(t)$ $c = f_{2,1}(t)$ $c = f_{2,1}(t)$ $c = f_{2,1}(t)$. We prove that $f_{1,4}(t) = 5ct$ satisfies the theorem. Let w be a normal weight function on G . By Theorem [2.1,](#page-2-3) there exists $Y \subseteq V(G)$ such that $|Y| \leq c$ and $X_w = N[Y]$ is a w-balanced separator in G. Assume that there is a stable set S in X_w with $|S| > ct$. Since $S \subseteq N[Y]$, it follows that there is a vertex $y \in Y$ with $|N[y] \cap S| \geq t$. But now G contains $K_{1,t}$, a contradiction. We deduce that $\alpha(X_w) \le ct$. Hence, by Lemma [2.2,](#page-3-0) we have tree- $\alpha(G) \le 5ct = f_{1.4}(t)$ $\alpha(G) \le 5ct = f_{1.4}(t)$ $\alpha(G) \le 5ct = f_{1.4}(t)$. This completes the proof of Theorem [1.4.](#page-2-2)

It remains to prove Theorem [2.1.](#page-2-3) The idea of the proof is the following. In [\[3\]](#page-16-1) a technique was developed to prove that separators satisfying the conclusion of Theorem [2.1](#page-2-3) exist. It consists of showing that the graph class in question satisfies two properties: being "amiable" and being "amicable." Here we use the same technique. To prove that a graph class is amiable, one needs to analyze the structure of connected subgraphs containing neighbors of a given set of vertices. To prove that a graph is amicable, it is necessary to show that certain carefully chosen pairs of vertices can be separated by well-structured separators. Most of the remainder of the paper is devoted to these two tasks. Section [3](#page-3-1) and Section ?? contain structural results asserting the existence of separators that will be used to establish amicability. Section [5](#page-7-0) contains definitions and previously known results related to amiability. Section [6](#page-8-0) contains the proof of the fact that the class \mathcal{C}_t is amiable. Section [6](#page-11-0) uses the results of Sections [3](#page-3-1) and [4](#page-6-0) to deduce that \mathcal{C}_t is amicable, and to complete the proof of Theorem [2.1.](#page-2-3)

3. Breaking a wheel

A wheel in a graph G is a pair $W = (H, c)$ when H is a hole in G and $c \in G \setminus H$ has at least three neighbors H. We also use W to denote the vertex set $H \cup \{c\} \subseteq G$. A sector of the wheel (H, c) is a path of non-zero length in H whose ends are adjacent to c and whose internal vertices are not. A wheel is special if it has exactly three sectors, one sector has length one and the other two (called the long sectors) have length at least two (see Figure $2 - A$ $2 - A$ special wheel is sometimes referred to as a "short pyramid.")

For a wheel $W = (H, c)$ in a graph G, we define the set $Z(W) \subseteq W$ as follows (see Figure [2\)](#page-4-0). If W is non-special, then $Z(W) = N_H[c]$. Now assume that W is special. Let ab be the sector of length one of W and let d be the neighbor of c in $H \setminus \{a, b\}$. Then we define $Z(W) = \{a, b, c\} \cup N_H[d].$

Let G be a graph. By a *separation* in G we mean a triple (L, M, R) of pairwise disjoint subsets $V(G)$ with $L \cup M \cup R = V(G)$, such that neither L nor R is empty and L and R are anticomplete in G. Let $x, y \in G$ be distinct. We say that a set $M \subseteq G \setminus \{x, y\}$ separates x and y in G if there exists a separation (L, M, R) in G with $x \in L$ and $y \in R$. Also, for disjoint sets $X, Y \subseteq V(G)$, we say that a set $M \subseteq V(G) \setminus (X \cup Y)$ separates X and Y if there exists a separation (L, M, R) in G with $X \subseteq L$ and $Y \subseteq R$. If $X = \{x\}$, we say that M separates x and Y to mean M separates X and Y.

We have two results in this section; one for the non-special wheels and one for special wheels:

FIGURE 2. A non-special wheel W (left) and a special wheel W (right). Circled nodes represent the vertices in $Z(W)$.

Theorem 3.1. Let G be a (theta, prism)-free graph, let $W = (H, c)$ be a non-special wheel in G such that H has length at least seven. Let $a, b \in G \setminus N[Z(W)]$ belong to (the interiors of) distinct sectors of W. Then $N[Z(W)]$ separates a and b in G.

Proof. Let $S = N_H(c)$ and let $T = N[c] \cup (N[S] \setminus H)$. Then $T \subseteq N[Z(W)]$, and so it suffices to show that T separates a and b (note that $a, b \notin T$). We begin with the following:

(1) Assume that some vertex $v \in G \setminus (W \cup T)$ has either a unique neighbor or two nonadjacent neighbors in some sector $P = p - \cdots - p'$ of W. Let b' be the neighbor of p in $W \backslash P$ and b'' be the neighbor of p' in $W \setminus P$. Then $N_H(v) \subseteq P \cup \{b', b''\}.$

Otherwise, v has a neighbor $d \in H \setminus (P \cup \{b', b''\})$. Also, c has a neighbour $d' \in$ $H \setminus (P \cup \{b', b''\})$, as otherwise W would be a prism or a special wheel. We choose d and d' such that the path Q in $H \setminus P$ from d to d' is minimal. If v has a unique neighbor a in P, then $P \cup Q \cup \{c, v\}$ is a theta in G with ends a and c, a contradiction. Also, if v has two non-adjacent neighbors in P, then $P \cup Q \cup \{v, c\}$ contains a theta with ends c and $v.$ This proves $(1).$ $(1).$

(2) For every $v \in G \setminus (W \cup T)$, there exists a sector P of W such that $N_H(v) \subseteq P$.

Suppose there exists a sector $P = p \cdots - p'$ such that v has two non-adjacent neighbors in P. Then, by (1) , we may assume up to symmetry that v is adjacent to b that is the neighbor of p in $H \setminus P$. By [\(1\)](#page-4-1), b is the unique neighbor of v in some sector Q of W. So the fact that v has at least two neighbors in P contradicts [\(1\)](#page-4-1) applied to v and Q .

Suppose there exists a sector $P = p \cdots - p'$ such that v has a unique neighbor a in P. By [\(1\)](#page-4-1), we may assume that $N_H(v) = \{a, b', b''\}$ where b' is the neighbor of p in $W \setminus P$ and b'' is the neighbor of p' in $W \setminus P$ (because $N_H(v) = \{a, b'\}$ or $N_H(v) = \{a, b''\}$ would imply that v and H form a theta). Let $Q = p \cdots q$ be the sector of W that contains b. By [\(1\)](#page-4-1) applied to v and Q, we have $ap \in E(G)$ and $b''q \in E(G)$. So, b'' is the unique neighbor of v in the sector $R = p'$ - \cdots -q of W. By [\(1\)](#page-4-1) applied to v and R, we have $ap' \in E(G)$ and $b'q \in E(G)$. So H has length six, a contradiction.

We proved that for every sector P of W, either v has no neighbor in P, or v has two neighbors in P , and those neighbors are adjacent. We may therefore assume that v has neighbors in at least three distinct sectors of W , because if v has neighbor in exactly two of them, then $H \cup \{v\}$ would be a prism. So, suppose that $P = p$ - \cdots - p' , $Q = q$ - \cdots - q' and $R = r$ - \cdots -r' are three distinct sectors of W, and v is adjacent to $x, x' \in P$, to

 $y, y' \in Q$ and to $z, z' \in R$. Suppose up to symmetry that p, x, x', p', q, y, y', q', r, z, z' and r' appear in this order along H . Then there is a theta in G with ends c, v and paths $v-x-P-p-c$, $v-y-Q-q-c$ and $v-z-R-r-c$, a contradiction. This proves [\(2\)](#page-4-2).

To conclude the proof, suppose for a contradiction that the interiors of two distinct sectors of W are contained in the same connected component of $G \setminus T$. Then there exists a path $Y = v$ - \cdots -w in $G \setminus T$ and two sectors $P = p$ - \cdots -p' and $Q = q$ - \cdots -q' of W such that v has neighbors in P^* and w has neighbors Q^* . By [\(2\)](#page-4-2), v is anticomplete to $W \setminus P$ and w is anticomplete to $W \setminus Q$ (in particular, Y has length at least one). By choosing such a path Y minimal, we deduce that Y^* is anticomplete to W .

Suppose that v has a unique neighbor, or two distinct and non-adjacent neighbors in P. Next assume that w has a neighbor d in H that is distinct from b' and b'' where b' is the neighbor of p in $W \setminus P$ and b'' is the neighbor of p' in $W \setminus P$, then let d' be a neighbor of c $H \setminus (P \cup \{b', b''\})$ (d'exists for otherwise, W would be a prism or a special wheel). We choose d and d' such that the path R in $H \setminus P$ from d to d' is minimal. We now see that if v has a unique neighbor a in P, then $P \cup Y \cup R \cup \{c\}$ contains a theta with ends a and c, a contradiction. Also, if v has two distinct non-adjacent neighbors in P , then $P \cup Y \cup R \cup \{c\}$ contains a theta with ends c and v. So, w has only two possible neighbors in H, namely, b' and b''. Due to symmetry, we may assume that $b'w \in E(G)$ (so $b''w \notin E(G)$). It follows that b' is non-adjacent to c. If v has a unique neighbor in P, then $H \cup Y$ is a theta in G, so v has a neighbor in P that is non-adjacent to p. In particular, there exists a path R' from v to p' in $P \cup \{v\}$ that contains no neighbor of p. It follows that $R' \cup Q \cup Y \cup \{c\}$ is a theta in G with ends b' and c.

We deduce that v has exactly two neighbor in P , and those neighbors are adjacent. By the same argument, we can prove that w has exactly two neighbors in P that are which are adjacent. But now $H \cup Y$ is a prism in G, a contradiction. This completes the proof of Theorem [3.1.](#page-4-3)

Theorem 3.2. Let G be a (theta, prism)-free graph and let $W = (H, c)$ be a special wheel in G whose long sectors have lengths at least three. Let $a'', b'' \in G \setminus N[Z(W)]$ belong to (the interiors of) distinct sectors of W. Then $N[Z(W)]$ separates a and b in G

Proof. Let ab be the sector of length one of W and let d be the neighbor of c in $H \setminus \{a, b\}$. Let a' be the neighbor of d in the long sector of W containing a and let b' be the neighbors of d in the long sector of W containing b. Then $Z(W) = \{a, a', b, b', c, d\}$. Let P be the path in $H \setminus d$ from a to a' and let Q be the path of $H \setminus d$ from b to b'. Assume, without loss of generality, that $a'' \in P^* \setminus N[Z(W)]$ and let $b'' \in Q^* \setminus N[Z(W)]$.

Let $T = N[c] \cup (N[\{a, b, a', b', d\}] \setminus H)$. Then $T \subseteq N[Z(W)]$, and so it suffices to show that T separates a'' and b'' (note that $a'', b'' \notin T$). Suppose not. Then there exists a path $Y = v$ - \cdots -w in $G \setminus T$ such that v has neighbors in P^* , w has neighbors in Q^* , $Y \setminus v$ is anticomplete to $W \setminus P$ and $Y \setminus w$ is anticomplete to $W \setminus Q$ (note that possibly $v = w$).

Let x be the neighbor of v in P closest to a along P and let x' be the neighbor of v in P closest to a' along P. Let y be the neighbor of w in Q closest to b along P and let y' be the neighbor of w in Q closest to b' along P .

If $x = x'$, then there is a theta in G with ends x and d and paths x-P-a'-d, x-P-a-c-d and x-v-Y-w-y'-Q-b'-d. So, $x \neq x'$, and symmetrically we have $y \neq y'$. If $xx' \notin E(G)$, then there is a theta in G with ends v and d and paths v-x'-P-a'-d, v-x-P-a-c-d and v-Y-w-y'-Q-b'-d. So, $xx' \in E(G)$, and symmetrically we can prove that $yy' \in E(G)$. But now $H \cup Y$ is a prism in G, a contradiction. This completes the proof of Theorem [3.2.](#page-5-0) ■

FIGURE 3. A pyramid Σ . Dashed lines represent paths of arbitrary (possibly zero) length, and circled nodes represent the vertices in $Z(\Sigma)$.

4. Breaking a pyramid

A pyramid is a graph Σ consisting of a vertex a, a triangle $\{b_1, b_2, b_3\}$ disjoint from a and three paths P_1, P_2, P_3 in Σ of length at least two, such that for each $i \in [3]$, the ends of P_i are a and b_i , and for all distinct $i, j \in [3]$, the sets $V(P_i) \setminus \{a\}$ and $V(P_j) \setminus \{a\}$ are disjoint, $b_i b_j$ is the only edge of G with an end in $V(P_i) \setminus \{a\}$ and an end in $V(P_j) \setminus \{a\}$, and for every $i \neq j \in \{1,2,3\}$ $P_i \cup P_j$ is a hole (the assumption that P_1, P_2, P_3 have length at least two is non-standard; usually, one of the paths is allowed to have length 1, and our definition above would refer to a "long" pyramid.)

We say that a is the apex of Σ , the triangle $\{b_1, b_2, b_3\}$ is the base of Σ , and P_1, P_2, P_3 are the paths of Σ . We also define $Z(\Sigma) = N_{\Sigma}[a] \cup \{b_1, b_2, b_3\}$ (so we have $|Z(\Sigma)| = 7$). For a graph G , by a *pyramid in* G we mean an induced subgraph of G which is a pyramid (see Figure [3\)](#page-6-1).

The main result of this section, Theorem [4.1](#page-6-2) below, follows from much more general results of [\[1\]](#page-16-7). However, there is also a short and self-contained proof, which we include here:

Theorem 4.1. Let G be a (theta, prism)-free graph and let Σ be a pyramid in G with apex a, base $\{b_1, b_2, b_3\}$ and paths P_1, P_2 and P_3 as in the definition. Let $u, v \in G \setminus N[Z(\Sigma)]$ belong to distinct paths of Σ . Then $N[Z(\Sigma)]$ separates u and v in G.

Proof. Suppose not. Then there exist $u, v \in G \setminus N[Z(\Sigma)]$, belonging to distinct paths of $Σ$, such that $N[Z(Σ)]$ does not separate u and v in G. It follows that for distinct i, j ∈ [3], there exists a path $Q = x$ - \cdots -y in $G \setminus (\Sigma \cup N[Z(\Sigma)])$ such that x has a neighbor in P_i and y has a neighbor in P_j . We choose $i, j \in [3]$ and Q subject to the minimality of Q. Due to symmetry, we may assume that $i = 1$ and $j = 2$.

From the minimality of Q and the fact that $Q \subseteq G \setminus (\Sigma \cup N[Z(\Sigma)])$, it follows that:

- $N_{P_1}(x) \subseteq P_1 \setminus Z(\Sigma)$, and $Q \setminus x$ and P_1 are anticomplete in G .
- $N_{P_2}(y) \subseteq P_2 \setminus Z(\Sigma)$, and $Q \setminus y$ and P_2 are anticomplete in G .

Now, if some vertex of Q has a neighbor in P_3 , then by the minimality of Q , we must have $x = y$. In particular, x has neighbors in P_1 , P_2 and P_3 . Since a and x are not adjacent in G, it follows that the three paths in G from a to x with interiors in P_1 , P_2 and P_3 form a theta in G with ends a and x, a contradiction. We deduce that Q and P_3 are anticomplete in G.

FIGURE 4. A consistent alignment which is spiky (top left), triangular (top right) and wide (bottom).

Let x' be the neighbor of x in P_1 closest to a along P_1 and let x'' be the neighbor of x in P_1 closest to b_1 along P_1 . Similarly, let y' be the neighbor of y in P_2 closest to a along P_2 and let y'' be the neighbor of y in P_2 closest to b_2 along P_2 . Recall that $x', x'' \in P_1 \setminus Z(\Sigma)$ and $y', y'' \in P_2 \setminus Z(\Sigma)$. If $x' = x''$, then there is a theta in G with ends a, x' and paths $a-P_1-x'$, $a-P_2-y'-y-Q-x-x'$ and $a-P_3-b_3-b_1-P_1-x'$. Also, if x' and x'' are distinct and adjacent in G, then there is a prism in G with triangles $x''xx'$ and $b_1b_2b_3$ and paths $x''-P_1-b_1$, $x-Q-y''-P_2-b_2$ and $x'-P_1-a-P_3-b_3$. Hence, we have $x' \neq x''$ and $x'x'' \notin E(G)$. But now there is a theta in G with ends a, x and paths $a-P_1-x'-x$, $a-P_2-y'-y-Q-x$ and $a-P_3-b_3-b_1-P_1-x''-x$, a contradiction. This completes the proof of Theorem [4.1.](#page-6-2)

5. Alignments and Connectifiers

This section covers a number of definitions and a result from [\[3\]](#page-16-1), which we will use in the proof of Theorem [2.1.](#page-2-3)

Let G be a graph, let P be a path in G and let $X \subseteq G \setminus P$. We say that (P, X) is an *alignment* if every vertex of X has at least one neighbor in P , and one may write $P = p_1 \cdots p_n$ and $X = \{x_1, \ldots, x_k\}$ for $k, n \in \mathbb{N}$ such that there exist $1 \leq i_1 \leq j_1 <$ $i_2 \leq j_2 < \cdots < i_k \leq j_k \leq n$ where $N_P(x_l) \subseteq p_{i_l}$ -P- p_{j_l} for every $l \in [k]$. This is a little different from the definition if [\[3\]](#page-16-1), but the difference is not substantial, and using this definition is more convenient for us here. In this case, we say that x_1, \ldots, x_k is the order on X given by the alignment (P, X) . An alignment (P, X) is wide if each of x_1, \ldots, x_k has two non-adjacent neighbors in P, spiky if each of x_1, \ldots, x_k has a unique neighbor in P and triangular if each of x_1, \ldots, x_k has exactly two neighbors in P and those neighbors are adjacent. An alignment is consistent if it is wide, spiky or triangular. See Figure [4.](#page-7-1)

By a *caterpillar* we mean a tree C with maximum degree three such that not two branch vertices in C are adjacent, and there exists a path P of C where all branch vertices of C belong to P. We call a maximal such path P the *spine* of C. (We note that our definition of a "caterpillar" is non-standard in multiple ways.) By a subdivided star we mean a graph isomorphic to a subdivision of the complete bipartite graph $K_{1,\delta}$ for some $\delta \geq 3$. In other words, a subdivided star is a tree with exactly one branch vertex, which we call its root. For a graph H, a vertex v of H is said to be *simplicial* if $N_H(v)$ is a clique. We denote by $\mathcal{Z}(H)$ the set of all simplicial vertices of H. Note that for every tree T, $\mathcal{Z}(T)$ is the set of all leaves of T. An edge e of a tree T is said to be a leaf-edge of T if e is incident with a leaf of T. It follows that if H is the line graph of a tree T, then $\mathcal{Z}(H)$ is the set of all vertices in H corresponding to the leaf-edges of T.

Figure 5. Examples of a connectifier. Circled nodes represent the vertices in X.

Let H be a graph that is either a caterpillar, or the line graph of a caterpillar, or a subdivided star with root r, or the line graph of a subdivided star with root r. We define an induced subgraph of H , denoted by $P(H)$, which we will use throughout the paper. If H is a path (possibly of length zero), then let $P(H) = H$. If H is a caterpillar, then let $P(H)$ be the spine of H. If H is the line graph of a caterpillar C, then let $P(H)$ be the path in H consisting of the vertices of H that correspond to the edges of the spine of C. If H is a subdivided star with root r, then let $P(H) = \{r\}$. It H is the line graph of a subdivided star S with root r, let $P(H)$ be the clique of H consisting of the vertices of H that correspond to the edges of S incident with r . The legs of H are the components of $H \setminus P(H)$. Let G be a graph and let H be an induced subgraph of G that is either a caterpillar, or the line graph of a caterpillar, or a subdivided star or the line graph of a subdivided star. Let $X \subseteq G \setminus H$ such that every vertex of X has a unique neighbor in H and $N_H(X) = \mathcal{Z}(H)$ (see Figure [5\)](#page-8-1). We call (H, X) a *connectifier*. Also, if H is a single vertex and $X \subseteq N(H)$, we call (H, X) a *connectifer* as well. We say that the connectifier (H, X) is *concentrated* if H is a subdivided star or the line graph of a subdivided star or a singleton.

Let (H, X) be a connectifier in G which is not concentrated. So H is a caterpillar or the line graph of a caterpillar. Let S be the set of vertices of $H \setminus P(H)$ that have neighbors in $P(H)$. Then $(S, P(H))$ is an alignment Let s_1, \ldots, s_k be the corresponding order on X given by $(X, P(H))$. Now, order the vertices of X as x_1, \ldots, x_k where for every $i \in [k]$, the vertex x_i has a neighbor in the leg of H containing s_i . We say that x_1, \ldots, x_k is the order on X given by (H, X) .

The following was proved in [\[3\]](#page-16-1):

Theorem 5.1 (Chudnovsky, Gartland, Hajebi, Lokshtanov and Spirkl; Theorem 5.2 in [\[3\]](#page-16-1)). For every integer $h \in \mathbb{N}$, there is a constant $f_{5,1} = f_{5,1}(h) \in \mathbb{N}$ $f_{5,1} = f_{5,1}(h) \in \mathbb{N}$ $f_{5,1} = f_{5,1}(h) \in \mathbb{N}$ with the following property. Let G be a connected graph. Let $S \subseteq G$ such that $|S| \ge f_{5,1}$ $|S| \ge f_{5,1}$ $|S| \ge f_{5,1}$, the graph $G \setminus S$ is connected and every vertex of S has a neighbor in $G \setminus S$. Then there exists $S' \subseteq S$ with $|S'| = h$ as well as an induced subgraph H of $G \setminus S$ for which one of the following holds.

- \bullet (H, S') is a connectifier, or
- \bullet H is a path and every vertex in S' has a neighbor in H.

6. Amiability

The two notions of "amiability" and "amicability," first introduced in [\[3\]](#page-16-1), are at the heart of the proof of Theorem [2.1.](#page-2-3) We deal with the former in this section and leave the latter for the next one.

Let $s \in \mathbb{N}$ and let G be a graph. An *s*-trisection in G is a separation (D_1, Y, D_2) in G such that the following hold.

- Y is stable set with $|Y| = s$.
- $N(D_1) = N(D_2) = Y$.
- D_1 is a path and for every $y \in Y$ there exists $d_y \in D_1$ such that $N_Y(d_y) = \{y\}.$

(The reader may notice that we will never use the third condition in this paper. It was however necessary in [\[3\]](#page-16-1), so we keep it for easier cross-referencing.)

We say that a graph class G is amiable if there is a function $\sigma : \mathbb{N} \to \mathbb{N}$ with the following property. Let $x \in \mathbb{N}$, let $G \in \mathcal{G}$ and let (D_1, Y, D_2) be a $\sigma(x)$ -trisection in G. Then there exist $H \subseteq D_2$ and $X \subseteq Y$ with $|X| = x$ such that the following hold.

- (D_1, X) is a consistent alignment.
- \bullet (H, X) is either a connectifier or a consistent alignment.
- If (H, X) is not a concentrated connectifier, then the orders given on X by (D_1, X) and by (H, X) are the same.

In this case, we say that H and X are given by amiability. The main result of this section is the following:

Theorem 6.1. For every $t \in \mathbb{N}$, the class C_t is amiable. Moreover, with notation as in the definition of amiability, if (H, X) is a connectifier, then we have $|H| > 1$.

In order to prove Theorem [6.1,](#page-9-0) first we prove the following lemma:

Lemma 6.2. Let $d, s \in \mathbb{N}$, let G be a theta-free graph and let Y be a stable set in G of cardinality $3s(d+1)$. Let P be a path in $G\ Y$ such that every vertex in Y has a neighbor in P , and each vertex of P has fewer than d neighbors in Y. Assume that for every two vertices $y, y' \in Y$, there is a path R in G from y to y' such that P and R^{*} are disjoint and anticomplete in G. Then there is an s-subset S of Y such that (P, S) is a consistent alignment.

Proof. For every vertex $y \in Y$, let P_y be the (unique) path in P with the property that y is complete to the ends of P_y and anticomplete to $P \setminus P_y$. Let I be the graph with $V(I) = Y$ such that two distinct vertices $y, y' \in Y$ are adjacent in I if and only if $P_y \cap P_{y'} \neq \emptyset$. Then I is an interval graph and so I is perfect [\[10\]](#page-17-2). Since $|V(I)| = 3s(d+1)$, it follows that I contains either a clique of cardinality $d+1$ or a stable set of cardinality 3s.

Assume that I contains a clique of cardinality $d+1$. Then there exists $C \subseteq Y$ with $|C| = d + 1$ and $p \in P$ such that $p \in P_y$ for every $y \in C$. Since $p \in P$ has fewer than d neighbors in $C \subseteq Y$, it follows that there are at least two vertices $y, y' \in C \setminus N(p)$. Since $p \in P_y \cap P_{y'}$, it follows that $P \setminus \{p\}$ has two components, and each of y and y' has a neighbor in each component of $P \setminus \{p\}$. It follows that there are two paths P_1 and P_2 from y to y' with disjoint and anticomplete interiors contained in P . On the other hand, there is a path R in G from y to y' such that P and R^* are disjoint and anticomplete in G. It follows that P_1, P_2 and R are pairwise internally disjoint and anticomplete. But now there is a theta in G with ends y, y' and paths P_1, P_2, R , a contradiction.

We deduce that I contains a stable set S' of cardinality 3s. From the definition of I, it follows that (P, S') is an alignment. Hence, there exists $S \subseteq S' \subseteq Y$ with $|S| = s$ such that (P, S) is a consistent alignment. This completes the proof of Lemma [6.2.](#page-9-1)

Proof of Theorem [6.1.](#page-9-0) For every $x \in \mathbb{N}$, let

$$
s = f_{5.1}(3x^2(t+1))
$$

and let

$$
\sigma(x) = 3s(t+1).
$$

We will show that C_t is amiable with respect to $\sigma : \mathbb{N} \to \mathbb{N}$ as defined above. Let $x \in \mathbb{N}$, let $G \in \mathcal{C}_t$ and let (D_1, Y, D_2) be a $\sigma(x)$ -trisection in G. Then Y is a stable set of cardinality $3s(t+1)$, D_1 is a path in $G \setminus Y$ and every vertex in Y has a neighbor in D_1 . Moreover, since G is $K_{1,t}$ -free, no vertex in D_1 has t or more neighbors in Y, and since $N(D_2) = Y$, it follows that for every two vertices $y, y' \in Y$, there is a path R in G from y to y' with $R^* \subseteq D_2$, and so D_1 and R^* are disjoint and anticomplete in G. By Lemma [6.2,](#page-9-1) there exists $S \subseteq Y$ with $|S| = s$ such that (D_1, S) is a consistent alignment.

Now, we show that there exists $H \subseteq D_2$ as well as an x-subset X of $S \subseteq Y$ such that H and X satisfy the definition of amiability. Since D_2 is connected and every vertex in $S \subseteq Y$ has a neighbor in D_2 , it follows that $D_2 \cup S$ is connected too. Since $|S| = s = f_{5,1}(3x^2(t+1))$ $|S| = s = f_{5,1}(3x^2(t+1))$ $|S| = s = f_{5,1}(3x^2(t+1))$, it follows from Theorem [5.1](#page-8-2) that there exists $S' \subseteq S$ with $|S'| = 3x^2(t+1)$ and an induced subgraph H_2 of D_2 for which one of the following holds:

- (H_2, S') is a connectifier.
- H_2 is a path and every vertex of S' has a neighbor in H_2 .

First, assume that (H_2, S') is a concentrated connectifier. Then, since $|S'| \geq t$ and G is $K_{1,t}$ -free, it follows that $|H_2| > 1$. Now, since $|S'| \geq x$, we may choose a concentrated connectifier (H, X) where X is an x-subset of $S' \subseteq S \subseteq Y$ and H is an induced subgraph $H_2 \subseteq D_2$ with $|H| > 1$. In particular, H and X satisfy the definition of amiability.

Next, assume that (H_2, S') is a connectifier which is not concentrated. Consider the orders on S' given by (D_1, S') and by (H_2, S') . Since $|S'| \geq x^2$, it follows from the Erdős-Szekers theorem [\[9\]](#page-16-8) that there is an x-subset X of $S' \subseteq S \subseteq Y$ as well as an induced subgraph H of $H_2 \subseteq D_2$ such that:

- (D_1, X) is a consistent alignment (because (D_1, S) is);
- \bullet (H, X) is a connectifier which is not concentrated; and
- The orders given on X by (D_1, X) and by (H, X) are the same.

It follows that H and X satisfy the definition of amiability.

Finally, assume that H_2 is a path and every vertex in S' has a neighbor in H_2 . Let $H = H_2$. Recall that (D_1, S') is an alignment. In particular, S' is a stable set of cardinality $3x^2(t+1)$, and since G is $K_{1,t}$ -free, no vertex in H_2 has t or more neighbors in S'. Also, for every two vertices $y, y' \in S$, there is a path R in G from y to y' such that $R^* \subseteq D_1$, and so H and R^* are disjoint and anticomplete in G. By Lemma [6.2,](#page-9-1) there exists $S'' \subseteq S' \subseteq S$ with $|S''| = x^2$ such that (H, S'') is a consistent alignment. Consider the order on S'' given by (D_1, S'') and by (H, S'') . Since $|S''| = x^2$, it follows from the Erdős-Szekers theorem [\[9\]](#page-16-8) that there is an x-subset X of $S'' \subseteq S' \subseteq S \subseteq Y$ such that such that:

- (D_1, X) is a consistent alignment (because (D_1, S) is);
- (H, X) is a consistent alignment (because (H, S'') is); and
- The orders given on X by (D_1, X) and by (H, X) are the same.

So H and X satisfy the definition of amiability. This completes the proof of Theorem [6.1](#page-9-0) ■

7. Amicability

Here we complete the proof of Theorem [2.1,](#page-2-3) beginning with the following definition.

Let $m \in \mathbb{N}$ and let G be a graph class G. We say that G is m-amicable if G is amiable and the following holds. Let $\sigma : \mathbb{N} \to \mathbb{N}$ be as in the definition of amiability for \mathcal{G} . Let $G \in \mathcal{G}$ and let (D_1, Y, D_2) be a $\sigma(7)$ -trisection in G. Let $X = \{x_1, \ldots, x_7\} \subseteq Y$

FIGURE 6. Amicability – Note that Z is contained in the highlighted set.

FIGURE 7. H is a caterpillar. Circled nodes depict the vertices in $Z(\Sigma)$.

be given by amiability such that x_1, \ldots, x_7 is the order on X given by (D_1, X) . Let $D_1 = d_1 \cdots d_k$ such that traversing D_1 from d_1 to d_k , the first vertex in D_1 with a neighbor in X is a neighbor of x_1 . Let $i \in [k]$ be maximum such that x_1 is adjacent to d_i and let $j \in [k]$ be minimum such that x_7 is adjacent to d_j . Then there exists a subset Z of $D_2 \cup \{d_k : i + 2 \leq k \leq j - 2\} \cup \{x_4\}$ with $|Z| \leq m$ such that $N[Z]$ separates d_i and d_j . It follows that $N[Z]$ separates $d_1-D_1-d_i$ and $d_j-D_1-d_k$ (see Figure [6\)](#page-11-0).

We prove that:

Theorem 7.1. For every $t \in \mathbb{N}$, the class C_t is max $\{2t, 7\}$ -amicable.

Proof. By Theorem [6.1,](#page-9-0) C_t is amiable, and with notation as in the definition of amiability, if (H, X) is a connectifier, then we have $|H| > 1$. Let $\sigma : \mathbb{N} \to \mathbb{N}$ be as in the definition of amiability for C_t . Let $G \in C_t$ and let (D_1, Y, D_2) be a $\sigma(7)$ -trisection in G. Let $X = \{x_1, \ldots, x_7\} \subseteq Y$ be given by amiability such that x_1, \ldots, x_7 is the order on X given by the consistent alignment (D_1, X) . Let $D_1 = d_1 \cdot \cdot \cdot \cdot d_k$ and $i, j \in [k]$ be as in the definition of amicability. Our goal is to show that there exists a subset Z of $D_2 \cup \{d_k : i + 2 \leq k \leq j - 2\} \cup \{x_4\}$ with $|Z| \leq \max\{2t, 7\}$ such that $N|Z|$ separates d_i and d_j .

Let $i' \in [k]$ be minimum such that x_4 is adjacent to $d_{i'}$, let $j' \in [k]$ be maximum such that x_4 is adjacent to $d_{j'}$, and let H be the induced subgraph of D_2 given by amiability. It follows that $i + 2 < i' \leq j' < j - 2$, (H, X) is either a connectifier with $|H| > 1$ or a consistent alignment, and if (H, X) is not a concentrated connectifier, then x_1, \ldots, x_7 is the order on X given by (H, X) . When (H, X) is a connectifier with $|H| > 1$, then for each $l \in [7]$, let r_l be the unique neighbor of x_l in H (so $r_l \in \mathcal{Z}(H)$) and let L_l be the (unique) shortest path in H from r_l to a vertex $s_l \in N_H[P(H)]$. It follows that $s_l \in H \backslash P(H)$ unless H is a complete graph, where we have $r_l = s_l \in P(H) = \mathcal{Z}(H) = H$.

FIGURE 8. H is the line graph of a caterpillar and (D_1, X) is spiky. Circled nodes represent the vertices in $Z(\Sigma)$.

FIGURE 9. H is the line graph of a caterpillar and (D_1, X) is wide. Circled nodes represent the vertices in $Z(\Sigma)$.

First, consider the case when H is a caterpillar. It follows that for each $l \in [7]$, we have $s_l \in H \setminus P(H)$ and s_l has a unique neighbor $p_l \in P(H)$. Since G is theta-free, it follows that (D_1, X) is triangular, and so $j' = i' + 1$ (see Figure [7\)](#page-11-1). Let Σ be the pyramid with apex p_4 , base $\{d_{i'}, x_4, d_{j'}\}$ and paths

$$
P_1 = p_4 - P(H) - p_1 - s_1 - L_1 - r_1 - x_1 - d_i - D_1 - d_i';
$$

\n
$$
P_2 = p_4 - s_4 - L_4 - r_4 - x_4;
$$

\n
$$
P_3 = p_4 - P(H) - p_7 - s_7 - L_7 - r_7 - x_7 - d_j - D_1 - d_{j'}.
$$

Then $Z(\Sigma)$ is a 7-subset of $D_2 \cup \{d_k : i + 2 \leq k \leq j - 2\} \cup \{x_4\}$. Moreover, we have $d_i \in P_1^* \setminus N[Z(\Sigma)]$ and $d_j \in P_3^* \setminus N[Z(\Sigma)]$. Therefore, by Theorem [4.1,](#page-6-2) $N[Z(\Sigma)]$ separates d_i and d_j , as desired.

Second, consider the case when H is the line graph of a caterpillar. It follows that for each $l \in [7]$, we have $s_l \in H \setminus P(H)$ and s_l has exactly two neighbors $p_l, q_l \in P(H)$, where p_l and q_l are adjacent, and the vertices $p_1, q_1, p_2q_2, \ldots, p_7, q_7$ appear on $P(H)$ in this order. Since G is prism-free, it follows that (D_1, X) is either spiky or wide. Suppose that (D_1, X) is spiky (see Figure [8\)](#page-12-0). Then $i' = j'$. Let Σ be the pyramid with apex $d_{i'} = d_{j'}$, base $\{p_4, s_4, q_4\}$ and paths

$$
P_1 = d_{i'} - D_1 - d_i - x_1 - r_1 - L_1 - s_1 - q_1 - P(H) - p_4;
$$

$$
P_2 = d_{i'} - x_4 - r_4 - L_4 - s_4;
$$

 $P_3 = d_{i'}$ - D_1 - d_j - x_7 - r_7 - L_7 - s_7 - p_7 - $P(H)$ - q_4 .

Then $Z(\Sigma)$ is a 7-subset of $D_2 \cup \{d_k : i + 2 \leq k \leq j - 2\} \cup \{x_4\}$. Moreover, we have $d_i \in P_1^* \setminus N[Z(\Sigma)]$ and $d_j \in P_3^* \setminus N[Z(\Sigma)]$. So by Theorem [4.1,](#page-6-2) $N[Z(\Sigma)]$ separates d_i

FIGURE 10. H is a subdivided star. Circled nodes represent the vertices in $Z(\Sigma)$.

FIGURE 11. H is the line graph of a subdivided star and (D_1, X) is spiky. Circled nodes represent the vertices in $Z(\Sigma)$, and the highlighted path may be of length zero.

and d_j . Now assume that (D_1, X) is wide (see Figure [9\)](#page-12-1). Then $j' - i' > 1$. Let Σ be the pyramid with apex x_4 , base $\{p_4, s_4, q_4\}$ and paths

$$
P_1 = x_4 - d_{i'} - D_1 - d_{i'} - x_1 - r_1 - L_1 - s_1 - q_1 - P(H) - p_4;
$$

\n
$$
P_2 = x_4 - r_4 - L_4 - s_4;
$$

\n
$$
P_3 = x_4 - d_{j'} - D_1 - d_{j'} - x_7 - r_7 - L_7 - s_7 - p_7 - P(H) - q_4.
$$

Let $Z = (N(x_4) \cap \Sigma) \cup \{p_4, s_4, q_4\}$. Then $Z(\Sigma)$ is a 7-subset of $D_2 \cup \{d_k : i + 2 \leq k \leq \Sigma\}$ j−2}∪{x₄}. Also, we have $d_i \in P_1^* \backslash N[Z(\Sigma)]$ and $d_j \in P_3^* \backslash N[Z(\Sigma)]$. So by Theorem [4.1,](#page-6-2) $N[Z(\Sigma)]$ separates d_i and d_j , as required.

Third, consider the case when H is a subdivided star with root r . It follows that $P(H) = \{r\}$ and $H \neq \{r\}$ (because $|H| > 1$). For each $l \in [7]$, we have $r_l, s_l \in H \setminus P(H)$ and r_l is a leaf of H. Since G is theta-free, it follows that (D_1, X) is triangular and so $j'-i' = 1$ (see Figure [10\)](#page-13-0). Let Σ be the pyramid with apex r, base $\{d_{i'}, x_4, d_{j'}\}$ and paths

$$
P_1 = r - s_1 - L_1 - r_1 - x_1 - d_i - D_1 - d_i';
$$

\n
$$
P_2 = r - s_4 - L_4 - r_4 - x_4;
$$

\n
$$
P_3 = r - s_7 - L_7 - r_7 - x_7 - d_j - D_1 - d_j.
$$

FIGURE 12. H is the line graph of a subdivided star, (D_1, X) is wide and the vertices r_4 , s_4 , h_4 are not all the same. Circled nodes represent the vertices in $Z(\Sigma)$, and the highlighted path has length at least one.

FIGURE 13. H is the line graph of a subdivided star, (D_1, X) is wide and $r_4 = s_4 = h_4$. The hole C is highlighted, and circled nodes represent the vertices in $Z(W)$.

Then $Z(\Sigma)$ is a 7-subset of $D_2 \cup \{d_k : i + 2 \leq k \leq j - 2\} \cup \{x_4\}$. Also, we have $d_i \in P_1^* \setminus N[Z(\Sigma)]$ and $d_j \in P_3^* \setminus N[Z(\Sigma)]$. So it follows from Theorem [4.1](#page-6-2) that $N[Z(\Sigma)]$ separates d_i and d_j , as desired.

Fourth, consider the case when H is the line graph of a subdivided star. It follows that for each $l \in [7]$, either we have $s_l \in P(H)$, in which case we set $h_l = s_l$, or we have $s_l \in H \setminus P(H)$, in which case we choose h_l to be the unique neighbour of s_l in $P(H)$. Since G is prism-free, it follows that (D_1, X) is either spiky or wide. There are now three cases to analyze:

Case 1. Suppose that (D_1, X) is spiky (see Figure [11\)](#page-13-1). Then we have $i' = j'$. Consider the pyramid Σ in G with apex $d_{i'} = d_{j'}$, base $\{h_1, h_4, h_7\}$ and paths

$$
P_1 = d_{i'} - D_1 - d_i - x_1 - r_1 - L_1 - s_1 - h_1;
$$

\n
$$
P_2 = d_{i'} - x_4 - r_4 - L_4 - s_4 - h_4;
$$

\n
$$
P_3 = d_{i'} - D_1 - d_j - x_7 - r_7 - L_7 - s_7 - h_7.
$$

FIGURE 14. One of (D_1, X) and (H, X) is spiky and the other is triangular. The hole C is highlighted, and circled nodes represent the vertices in $Z(W)$.

FIGURE 15. One of (D_1, X) and (H, X) is wide. The hole C is highlighted, and circled nodes represent the vertices in $Z(W)$.

Then $Z(\Sigma)$ is a 7-subset of $D_2 \cup \{d_k : i + 2 \leq k \leq j - 2\} \cup \{x_4\}$. Moreover, we have $d_i \in P_1^* \setminus N[Z(\Sigma)]$ and $d_j \in P_3^* \setminus N[Z(\Sigma)]$. Thus, by Theorem [4.1,](#page-6-2) $N[Z(\Sigma)]$ separates d_i and d_j .

Case 2. Suppose that (D_1, X) is wide and the vertices r_4, s_4, h_4 are not all the same (see Figure [12\)](#page-14-0). Then $j'-i' > 1$. Let Σ be the pyramid with apex x_4 , base $\{h_1, h_4, h_7\}$ and paths

$$
P_1 = x_4 - d_{i'} - D_1 - d_i - x_1 - r_1 - L_1 - s_1 - h_1;
$$

\n
$$
P_2 = x_4 - r_4 - L_4 - s_4 - h_4;
$$

\n
$$
P_3 = x_4 - d_{j'} - D_1 - d_{j} - x_7 - r_7 - L_7 - s_7 - h_7.
$$

Then $Z(\Sigma)$ is a 7-subset of $D_2 \cup \{d_k : i + 2 \leq k \leq j - 2\} \cup \{x_4\}$, and we have $d_i \in P_1^* \setminus N[Z(\Sigma)]$ and $d_j \in P_3^* \setminus N[Z(\Sigma)]$. It follows from Theorem [4.1](#page-6-2) that $N[Z(\Sigma)]$ separates d_i and d_j .

Case 3. Suppose that (D_1, X) is wide and $r_4 = s_4 = h_4$ (see Figure [13\)](#page-14-1). Then $j' - i' > 1$. Let $C = x_4-d_{i'}$ - D_1-d_i - x_1 - r_1 - L_1 - s_1 - h_1 - h_7 - s_7 - L_7 - r_7 - x_7 - d_j - D_1 - $d_{j'}$ - x . Then C is a hole on more than seven vertices and $W = (C, h_4)$ is a special wheel in G where $Z(W) = \{d_{i'}, d_{j'}, h_1, h_4, h_7, x_4\};$ in particular, $Z(W)$ is a 6-subset of $D_2 \cup \{d_k\}$. $i+2 \leq k \leq j-2$ \cup $\{x_4\}$. By Theorem [4.1,](#page-6-2) $N[Z(W)]$ separates d_i and d_j .

Finally, assume that (H, X) is a consistent alignment. Recall that (D_1, X) is also a consistent alignment, and that (D_1, X) and (H, X) give the same order x_1, \ldots, x_7 on X. Let R be the unique path in G from x_1 to x_7 with $R^* \subseteq H$. Then $C = d_i x_1 - R x_7 - d_i - D_1 - d_i$ is a hole on more than seven vertices in G . Also, since G is (theta, prism)-free, it follows that either one of (D_1, X) and (H, X) is spiky and the other is triangular, or at least one of (D_1, X) and (H, X) is wide. In the former case, $W = (C, x_4)$ is a special wheel (see Figure [14\)](#page-15-0). It follows from Theorem [3.2](#page-5-0) that $Z(W)$ is a 6-subset of $D_2 \cup \{d_k :$ $i+2 \leq k \leq j-2$ \cup $\{x_4\}$ such that $N[Z(W)]$ separates d_i and d_j . In the latter case, $W = (C, x_4)$ is a non-special wheel (see Figure [15\)](#page-15-1). Since G is $K_{1,t}$ -free, it follows that $Z(W) = N_c[x_4] \subseteq D_2 \cup \{d_k : i + 2 \leq k \leq j - 2\} \cup \{x_4\}$ has cardinality at most 2t. Moreover, by Theorem [3.1,](#page-4-3) $N[Z(W)]$ separates d_i and d_j . This completes the proof of $Theorem 7.1.$ $Theorem 7.1.$

We also need the following result from [\[3\]](#page-16-1):

Theorem 7.2 (Chudnovsky, Gartland, Hajebi, Lokshtanov, Spirkl [\[3\]](#page-16-1)). For every $m \in \mathbb{N}$ and every m-amicable graph class G, there is a constant $f_{7,2} = f_{7,2}(\mathcal{G}, m) \in \mathbb{N}$ $f_{7,2} = f_{7,2}(\mathcal{G}, m) \in \mathbb{N}$ $f_{7,2} = f_{7,2}(\mathcal{G}, m) \in \mathbb{N}$ with the following property. Let G be a graph class which is m-amicable. Let $G \in \mathcal{C}$ and let w be a normal weight function on G. Then there exists $Y \subseteq V(G)$ such that

- $|Y| \le f_{7.2}$ $|Y| \le f_{7.2}$ $|Y| \le f_{7.2}$, and
- $N[Y]$ is a w-balanced separator in G.

Now, defining $f_{2,1}(t) = f_{7,2}(\mathcal{C}_t, \max\{2t, 7\})$ for every $t \in \mathbb{N}$, Theorem [2.1](#page-2-3) is immediate from Theorems [7.1](#page-11-2) and [7.2.](#page-16-9)

8. Acknowledgement

Part of this work was done when Nicolas Trotignon visited Maria Chudnovsky at Princeton University with the generous support of the H2020-MSCA-RISE project CoSP-GA No. 823748.

REFERENCES

- [1] T. Abrishami, B. Alecu, M. Chudnovsky, S. Hajebi, and S. Spirkl. Induced subgraphs and tree decompositions VIII. Excluding a forest in (theta, prism)-free graphs. Combinatorica (2024). [https:](https://doi.org/10.1007/s00493-024-00097-0) [//doi.org/10.1007/s00493-024-00097-0](https://doi.org/10.1007/s00493-024-00097-0).
- [2] T. Abrishami, B. Alecu, M. Chudnovsky, S. Hajebi, and S. Spirkl. Tree independence number I. (Even hole, diamond, pyramid)-free graphs. J. Graph Theory (2024), 1–21.
- [3] M. Chudnovsky, P. Gartland, S. Hajebi, D. Lokshtanov, and S. Spirkl. Induced subgraphs and tree decompositions XV. Even-hole-free graphs have logarithmic treewidth. Preprint available at [https://arxiv.org/abs/2402.14211](https://arxiv.org/abs/ 2402.14211).
- [4] M. Chudnovsky, S. Hajebi, D. Lokshtanov, and S. Spirkl. Tree independence number II. Threepath-configurations. Preprint available at [https://arxiv.org/abs/2405.00265](https://arxiv.org/abs/ 2405.00265).
- [5] M. Chudnovsky and N. Trotignon. On treewidth and maximum cliques. Preprint available at [https:](https://arxiv.org/abs/2405.07471) [//arxiv.org/abs/2405.07471](https://arxiv.org/abs/2405.07471).
- [6] C. Dallard, F. Fomin, T. Korhonen, P. Golovach, and M. Milanič. Computing Tree Decompositions with Small Independence Number. Preprint available at <https://arxiv.org/abs/2207.09993>.
- [7] C. Dallard, M. Krnc, O. Kwon, M. Milanič, A. Munaro, K. Štorgel, and S. Wiederrecht. Treewidth versus clique number. IV. Tree-independence number of graphs excluding an induced star. Preprint available at <https://arxiv.org/pdf/2402.11222>.
- [8] C. Dallard, M. Milanič, and K. Štorgel. Treewidth versus clique number. II. Tree independence number. Preprint available at <https://arxiv.org/abs/2111.04543>.
- [9] P. Erdös and G. Szekeres. A combinatorial problem in geometry. Compositio Math., 2:463–470, 1935.
- [10] M. C. Golumbic. Algorithmic aspects of perfect graphs. In Topics on perfect graphs, volume 88 of North-Holland Math. Stud., pages 301–323. North-Holland, Amsterdam, 1984.
- [11] F. P. Ramsey. On a Problem of Formal Logic. Proc. London Math. Soc. (2), 30(4):264-286, 1929.
- [12] N. L. D. Sintiari and N. Trotignon. (Theta, triangle)-free and (even hole, K_4)-free graphs—part 1: Layered wheels. J. Graph Theory, 97(4):475–509, 2021.