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Abstract. Given a family H of graphs, we say that a graph G is H-induced-minor-free if no
induced minor of G is isomorphic to a member of H, We denote by Wt×t the t-by-t hexagonal
grid, and by Kt,t the complete bipartite graph with both sides of the bipartition of size t. We
show that the class of {Kt,t, Wt×t}-induced minor-free graphs with bounded clique number has
subpolynomial treewidth. Specifically, we prove that for every integer t there exist ϵ ∈ (0, 1] and
c ∈ N such that every n-vertex {Kt,t, Wt×t}-induced minor-free graph with no clique of size t has
treewidth at most 2c log1−ϵ n.

1. Introduction

All graphs in this paper are finite and simple, and all logarithms are base 2. For standard graph
theory terminology that is not defined here we refer to reader to [14]. Let G = (V (G), E(G)) be a
graph. For a set X ⊆ V (G), we denote by G[X] the subgraph of G induced by X, and by G \X
the subgraph of G induced by V (G)\X. In this paper, we use induced subgraphs and their vertex
sets interchangeably. For subsets X, Y ⊆ V (G) we say that X is complete to Y if X and Y are
disjoint and every vertex of X is adjacent to every vertex of Y , and that X is anticomplete to Y
if X and Y are disjoint and every vertex of X is non-adjacent to every vertex of Y .

For graphs G and H, we say that H is an induced minor of G if there exist disjoint connected
induced subgraphs {Xv}v∈V (H) of G such that Xu is anticomplete to Xv if and only if u is non-
adjacent to v in H; in this case we say that G contains an H-induced-minor. Given a family H of
graphs, we say that a graph G is H-induced-minor-free if no induced minor of G is isomorphic to
a member of H.

For a graph G, a tree decomposition (T, χ) of G consists of a tree T and a map χ : V (T ) → 2V (G)

with the following properties:
(1) For every v ∈ V (G), there exists t ∈ V (T ) such that v ∈ χ(t).
(2) For every v1v2 ∈ E(G), there exists t ∈ V (T ) such that v1, v2 ∈ χ(t).
(3) For every v ∈ V (G), the subgraph of T induced by {t ∈ V (T ) | v ∈ χ(t)} is connected.

For each t ∈ V (T ), we refer to χ(t) as a bag of (T, χ). The width of a tree decomposition (T, χ),
denoted by width(T, χ), is maxt∈V (T ) |χ(t)| − 1. The treewidth of G, denoted by tw(G), is the
minimum width of a tree decomposition of G. Graphs of bounded treewidth are well-understood
both structurally [21] and algorithmically [5].
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Let f : N → N be a function. A class C of graphs has treewidth bounded by f if every n-vertex
graph in C has treewidth at most f(n). If f can be taken to be a constant function, C is said
to have bounded treewidth. The question of which classes defined by forbidden induced subgraphs
or minors have bounded treewidth has received significant attention in recent years, including [6],
[16], [18], [19], a series of papers involving some of the authors of this manuscript, and others.
However, a recent result of [4] suggests that this question is unlikely to have a nice answer. On
the other hand, classes whose treewidth is bounded by a slow-growing function seem to be better
behaved, and are still of interest from the algorithmic perspective.

A clique in a graph is a set of pairwise adjacent vertices, and a stable (or independent) set
is a set of pairwise non-adjacent vertices. Given a graph G with weights on its vertices, the
Maximum Weight Independent Set (MWIS) problem is the problem of finding a stable set
in G of maximum total weight. We will discuss MWIS here, but much of what we say applies
to a wide variety of algorithmic questions, as is explained in [9]. MWIS is known to be NP-hard
[15], but it can be solved in polynomial time on graph classes whose treewidth is bounded by
a logarithmic function, in quasi-polynomial time on graph classes whose treewidth is bounded
by a poly-logarithmic function, and in sub-exponential time on graph classes whose treewidth is
bounded by a subpolynomial function. This suggests that MWIS is unlikely to be NP-hard on
these classes of graphs.

We denote by Wt×t the t-by-t hexagonal grid, and by Kt,t the complete bipartite graph with
both sides of the bipartition of size t. For a positive integer t, we denote by Ct the class of
{Kt,t,Wt×t}-induced-minor-free graphs, and by C∗

t be the subclass of Ct consisting of all graphs
with no clique of size t. The following conjecture has become known in the area:
Conjecture 1.1. For every t ∈ N, there is an integer d = d(t) such that every n-vertex graph
G ∈ C∗

t satisfies tw(G) ≤ logd n.

Here we prove a weakening of this, replacing the poly-logarithmic bound on treewidth by a
subpolynomial one:
Theorem 1.2. For every t ∈ N, there exist ϵ = ϵ(t) ∈ (0, 1], c = c(t) ∈ N and d ∈ N such that
every n-vertex graph G in C∗

t satisfies tw(G) ≤ 2a log1−ϵ n.

We remark that in view of Lemma 3.6 of [1] and the main theorem of [12], Theorem 1.2 can be
restated in the language of forbidden induced subgraphs instead of induced minors, but we will
not do it here.

Theorem 1.2 has the following corollary:
Corollary 1.3. For every t ∈ N and for every ϵ > 0 there exists N ∈ N such that every n-vertex
graph G ∈ C∗

t with n > N satisfies tw(G) < nϵ.

Since for G ∈ {Wn×n, Kn,n, Kn}, tw(G) ≥ |V (G)| 1
2 , every induced-minor-closed class of graphs

satisfying the conclusion of Corollary 1.3 is contained in C∗
s for some s ∈ N. Moreover, for every

induced-minor-closed graph class C, either C has subpolynomial treewidth, or for every N ∈ N
there is a graph G ∈ C with |V (G)| > N such that tw(G) ≥ |V (G)| 1

2 .

1.1. Definitions and notation. We continue with a few more definitions that will be used
throughout the paper. Let G be a graph. We denote by cc(G) the set of connected components
of G. For a vertex v ∈ V (G) we denote by N(v) the set of neighbors of v, and N [v] denotes
N(v) ∪ {v}. We denote the set of vertices in G at distance exactly 2 from v by N2(v). For a set
X ⊆ V (G) we denote by N(X) the set of all vertices of G \X that have a neighbor in X, and we
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let N [X] = N(X) ∪X. A path in G is an induced subgraph that is a path. The length of a path
is the number of edges in it. We denote by P = p1- . . . -pk a path in G where pipj ∈ E(G) if and
only if |j − i| = 1. We say that p1 and pk are the ends of P . The interior of P , denoted by P ∗, is
the set P \ {p1, pk}. For i, j ∈ {1, . . . .k} we denote by pi-P -pj the subpath of P with ends pi, pj.

Let G be a graph and let A,B ⊆ G be disjoint. We say that a set X ⊆ V (G)\ (A∪B) separates
A from B if for every connected component D of G\X, D∩A = ∅ or D∩B = ∅. Let a, b ∈ V (G)
be non-adjacent. A set X ⊆ V (G) \ {a, b} separates a from b if for every connected component
D of G \ X, |D ∩ {a, b} | ≤ 1. We also call X an a-b-separator. We denote by connG(a, b) the
minimum size of an a-b-separator in G.

1.2. Proof outline and organization. First we prove Lemma 2.1 that states that the number
of edges in a bipartite graph in Ct is linear in the number of vertices on the smaller side of the
bipartition, provided no two vertices on the other side are twins (this last assumption is necessary
because of the example of a large star). The proof uses a result of [7] and some probabilistic
arguments. This lemma is separate from the rest of the proof, and we believe it to be of independent
interest.

Let us now describe the main proof. For this informal presentation we find it easier to go
through the proof in reverse order. First we use a result of [6] that states that the edges of
every graph in C∗

t can be partitioned into a small number of star forests. Then, following the
ideas introduced in [18] and developed in [6], we reduce the problem of bounding the treewidth
of graphs in C∗

t to a subclass of consisting of what we call "(F, r)-based" graphs. A graph G is
(F, r)-based if there exists an induced star forest F with no isolated vertices in G, such that G
admits a tree decomposition in which every bag consists of at most r objects, each of which is a
star of F or a single vertex; moreover, this phenomenon persists in all induced subgraphs of G
(with F modified appropriately). (F, r)-based graphs are defined at the start of Section 6. This
is the only place in the proof where we explicitly use the bound on the clique number; the rest of
the proof only assumes that the graph at hand is (F, r)-based for some F and r. This reduction
is done in Section 8.

The next observation is that graphs in Ct are (p, q)-slim for appropriately chosen parameters p
and q. This means that in every stable set of p vertices there exists a pair a, b such that there
are no q disjoint and pairwise anticomplete a-b-paths in G (we call such a pair q-slim). The main
ingredient of this proof is a lemma, essentially proved in [11], applied to an appropriate graph.
Analyzing the outcomes of that lemma through the lens of the main theorem of [12] gives the
result. The details are explained in Section 5.

The next step is to reduce the task of bounding the treewidth of an (F, r)-based graph in Ct

to the question of separating q-slim pairs of vertices. This is immediate from a theorem in [2] if
the clique number is bounded, but here we present a different proof, which is more in the spirit of
[10], that does not use this assumption. For precise definitions of the terms below, see Section 7.
Let G be an (F, r)-based graph in Ct; it is enough to show that every normal weight function w
on G admits a small w-balanced separator. Since G is (F, r)-based, we can find (by repeatedly
using the existence of the special tree decomposition in a sequence of induced subgraphs of G)
pairwise anticomplete sets Y1, . . . , Yp, each of size at most r, and such that N [Yi] is a balanced
separator in G \ ⋃j<i Yj. Next, assume that for every q-slim pair of vertices yi ∈ Yi and yj ∈ Yj,
there is a small yi-yj-separator Syiyj

in G. Let C be the union of all such Syiyj
. Then C is still

small. We may assume that some component D of G \ (C ∪ ⋃p
i=1 Yi) has w(D) > 1

2 . From the
choice of Y1, . . . , Yp, each Yi contains a vertex vi with a neighbor in D. Since G is (p, q)-slim, some
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pair (vi, vj) is q-slim. But Svivj
⊆ C, and yet there is a vi-vj-path with interior in D, which is a

contradiction. This proof is done in Section 7.
Our next and final goal is to prove Theorem 6.3, asserting that every q-slim pair in an (F, r)-

based graph in Ct admits a small separator. This is the most novel part of the paper, where new
ideas are needed. Let G be an (F, r)-based graph in Ct, and let (a, b) be a q-slim pair of vertices
in G, and assume that no small a-b-separator exists. Using the special tree decomposition and a
lemma from [9], we can find a very large (but with size bounded as a function of r and t) collection
of a-b-separators S1, . . . , Sx, all pairwise disjoint and anticomplete to each other, such that each
Si has the following properties:

• Si has a partition Di ∪ Yi ∪Xi.
• Yi is stable.
• Xi ⊆ N(Yi).
• |Di ∪ Yi| ≤ r.

This is done in Section 6. Let D = ⋃x
i=1 Di and M = ⋃x

i=1 Yi. Then the sizes of D and M are still
under control. Note that M is a stable set. Next, we use Lemma 2.1 and averaging arguments to
produce an induced subgraph of H of G \D and a a subset C of M such that

• the size of H is a small proportion of the size of G.
• the size of C is bounded as a function of t and r.
• every a-b-path in G \ (D ∪ M) contains a subpath with interior in H such that at least p

vertices of C have neighbors in the subpath.
Such a triple (H,C,D ∪M) is called a good a-b-barrier and its existence is proved in Section 4.

Since G is (p, q)-slim, it follows from the definition of a good barrier that every a-b-path in
G \ (D ∪M) contains a subpath Q such that

• Q ⊆ H, and
• there is a q-slim pair (u, v) with u, v ∈ C such that Q contains a subpath with ends u, v.

Inductively (on the size of H) there is a small (subpolynomial in V (H)) set S ⊆ V (H) such
that every q-slim pair (u, v) with u, v ∈ C is separated in H \ S. But now S ∪ M ∪ D is an
a-b-separator in G. This argument is carried out in Section 3 and it completes the proof. See
Fig. 1 for a diagrammatic depiction of the outline of the proof of Theorem 6.3.

For every q-slim pair (a, b)
Small a-b separator

or
(a, b) is mineable Good barrier separating a and b

G is slim-barred

G is slim barred

The family is (p, q)-slim

Small separator for every slim pair

Theorem 5.1

Theorem 4.1
Theorem 6.1

Theorem 3.3

Figure 1. Outline of the proof of the existence of small separators for q-slim pairs
in (F, r)-based graphs in Ct.

Finally, we remark that the results in Section 3 and Section 4 are stated in greater generality
than what we need for the proof of Theorem 1.2, as we expect them to be useful for other families
of graphs that admit balanced separators with small domination number.
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2. The bipartite lemma

Given a graph G, we say that u, v ∈ V (G) are twins in G if N(u) \ {v} = N(v) \ {u}. If G is
clear from the context, we will simply say that u and v are twins. A twin class in G is a maximal
set of vertices, every two of which are twins. It is not hard to see that every graph has a unique
partition into twin classes.

Lemma 2.1. There exists a function f such that the following holds. Let G be a bipartite Kt,t-
induced-minor-free graph with bipartition (A,B) such that no two vertices in B are twins. Then
|E(G)| ≤ f(t)|A|.

Proof. It follows from the main result of [7] that there exists ∆ = ∆(t) such that G is ∆-degenerate.
We may assume that ∆ > 2. [7] also implies the existence of ∆′ = ∆′(t) as a degeneracy bound for
graphs with no K2t-subgraph and no induced subdivision of Kt,t. Let f(t) = 240∆2∆′∆+(∆+1)∆.
Let us take a degenerate ordering of V (G), that is an ordering v1, . . . , vn in which each vi has at
most ∆ neighbors in {vi+1, . . . , vn}. We may assume that the ordering v1, . . . , vn was chosen so
that the vertices of A appear as late as possible: if vi ∈ A then all the vertices of degree at most
∆ in G \ {v1, . . . , vi−1} are in A.

(1) If 1 ≤ i < j ≤ n, vi ∈ A and {vi+1, . . . , vj} ∩ A = ∅ then j − i ≤ ∆.

Let i < l ≤ j. It follows from our choice of the ordering that |N(vl)\{v1, . . . , vi−1} | > ∆. More-
over, since vi+1, . . . , vl−1 ∈ B and B is stable, we have that ∆ ≥ |N(vl) \ {v1, . . . , vl−1} | = |N(vl) \
{v1, . . . , vi} |. This implies that vl ∈ N(vi) \ {v1, . . . , vi−1}. Since |N(vi) \ {v1, . . . , vi−1} | ≤ ∆, (1)
follows.

Let s ∈ N be minimal such that vs ∈ A. Let B1 = B ∩ {vs, . . . , vn}. Let G′ = G \ B1 and
B′ = B \B1. Note that every vertex in B′ has a degree at most ∆ in G′.

(2) |E(G′)| ≥ |E(G)| − |A|(∆ + 1)∆.

Since G is bipartite, E(G) \ E(G′) = E(G[{vs, . . . , vn}]). By (1), | {vs, . . . , vn} | ≤ |A|(∆ + 1).
Since G[{vs, . . . , vn}] is ∆-degenerate, |E(G′)| ≥ |E(G)| − |A|(∆ + 1)∆. This proves (2).

Let r = 40∆2∆′. Let k ∈ N ∪ {0} be maximal such that there exist a1, . . . , ak ∈ A satisfying
that, for all 1 ≤ i ≤ k, |N2

G′\NG′ [{a1,...,ai−1}](ai)| ≤ r. Let A1 = {a1, . . . , ak} and let A′′ = A \ A1
and B′′ = B′ \NG′(A1). Let G′′ = G[A′′ ∪B′′].

(3) |E(G′′)| ≥ |E(G′)| − 2r∆|A1|

Since there are no twins in B, we have that for every i ≤ k, |NG′(ai) \ N [{a1, . . . , ai−1}]| ≤ 2r.
Thus, since every vertex in B′ has a degree at most ∆ in G′, we deduce that |E(G′′)| ≥ |E(G′)| −
2r∆|A1|, proving (3).

If |A′′| = 0 then (2) and (3) imply that

|E(G)| ≤ (2r∆ + (∆ + 1)∆) |A|
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and so we are done. Therefore, we may assume for a contradiction that |A′′| > 0.

(4) Let S = {{u, v} s.t u, v ∈ A′′ and u ∈ N2
G′′(v)}, then |S| ≥ r|A′′|

2

Since for every v ∈ A′′, we have |N2
G′′(v)| > r, there are at least r|A′′| ordered pairs of vertices

in A′′ at distance 2. Dividing by 2 accounts for the double counting. This proves (4).

Sample X ⊆ A′′ by iterating over every element of A′′ and including it in X with probability
p = 1

∆ . We will say that u, v ∈ X is a good pair if there exists b ∈ B′′ for which N(b)∩X = {u, v}.
We now show that the expected number of good pairs is fairly high. Let {u, v} ∈ S. We have that

P (u, v is a good pair) ≥ 1
∆2

(
1 − 1

∆

)∆−2
≥ 1

10∆2 ,

as this bounds the probability of the event that N(b) ∩ X = {u, v} for b ∈ B such that {u, v} ⊆
N(b). Therefore, by (4), E [# good pairs] = ∑

{u,v}∈S P (u, v is a good pair) ≥ 1
10∆2

r|A′′|
2 . So there

exists a choice of X∗ with at least r|A′′|
20∆2 good pairs. Let Γ be the graph with vertex set X∗, and

where u is adjacent to v if and only if u, v is a good pair.

(5) E(Γ) ≤ ∆′|X∗|.

Since Γ is an induced minor of G, it follows that Γ is Kt,t-induced-minor-free, and in particular no
induced subgraph of Γ is a subdivision of Kt,t. Next suppose that there is a clique K of size 2t in
Γ; let K = {k1, . . . , k2t}. It follows from the definition of a good pair that for every 1 ≤ j < j ≤ 2t
there exists bij ∈ B such that N(bij) ∩ K = {ki, kj}. But then K ∪ {bij}1≤i<j≤2t is an induced
subdivision of K2t in G, contrary to the fact that G is Kt,t-induced-minor-free. This proves that Γ
has no clique of size 2t. Now the main result of [7] implies that Γ is ∆′-degenerate, and therefore
|E(Γ)| ≤ ∆′|X∗|. This proves (5).

On the other hand, by the choice of X∗ we have that |E(Γ)| ≥ r|A′′|
20∆2 ≥ r|X∗|

20∆2 ≥ 2∆′|X∗|, con-
trary to (5). Hence |A′′| = 0, concluding the proof. ■

3. Separating slim pairs in barred graphs

Let G = (V,E) be a graph, let a, b ∈ V be non-adjacent and let t, s ∈ N. We say that the
pair (a, b) is s-wide if there exist s internally anticomplete a-b-paths in G; a pair of non-adjacent
vertices that is not s-wide is said to be s-slim. We say that G is (t, s)-slim if for every stable set
S ⊆ V of size t, there exist a, b ∈ S such that (a, b) is s-slim. Similarly, we say that a graph class
F is (t, s)-slim if every graph in F is (t, s)-slim.

In this section, we take the first step to our next goal: showing that an s-slim pair can be
separated by a small subset of vertices. To do so we define the notion of a "barrier". Loosely
speaking, a barrier separating a from b is a relatively small induced subgraph F of G such that, in
order to separate a from b in G, it suffices to delete a few vertices from G \F and then separate a
few slim pairs from each other in F . Now fix a slim pair (a, b). Assuming that such a barrier exists
for every s-slim pair for an appropriately chosen s (which is a property we called "slim-barred"),
we design a recursive procedure to obtain a "small" a-b-separator in G. This reduces the problem
of separating slim pairs of vertices to the problem of finding good barriers. In this section, we
define and analyze this reduction.
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Let G = (V,E) be a graph, let C,X, Y, Z be disjoint (and possibly empty) subsets of V and let
t, p ∈ N. Let G′ = G \ C. We say that B = (X, Y, Z, C) is a (t, p)-barrier if the following hold:

(1) Every X-Z path P in G′ contains an X-Z path P ′ such that the interior of P ′ is contained
in Y .

(2) For every X-Z path P in G′, | {C ∈ cc(C) | N(P ) ∩ C ̸= ∅} | ≥ t.
(3) Every connected component of C has at most p vertices.

We say that two (t, p)-barriers B = (X, Y, Z, C) and B′ = (X ′, Y ′, Z ′, C ′) are disjoint if X ∪Y ∪Z
is disjoint from X ′ ∪ Y ′ ∪ Z ′. Similarly, we say that two (t, p)-barriers B = (X, Y, Z, C) and
B′ = (X ′, Y ′, Z ′, C ′) are anticomplete if X ∪ Y ∪ Z is anticomplete to X ′ ∪ Y ′ ∪ Z ′. Let u, v ∈
V \ (X ∪ Y ∪Z ∪C). We say that B separates u from v (in G) if both X ∪C and Z ∪C separate
u from v in G. See Fig. 2 for an illustration.

X ZY
u v

. . .
≥ t

C

Figure 2. Visualization of a barrier separating u from v.

We say that a (t, p)-barrier B = (X, Y, Z, C) is reduced if every connected component ofX∪Y ∪Z
intersects both X and Z.

Lemma 3.1. Let B = (X, Y, Z, C) be a (t, p)-barrier separating u from v. Then there exist
X ′ ⊆ X, Y ′ ⊆ Y, Z ′ ⊆ Z such that (X ′, Y ′, Z ′, C) is a reduced (t, p)-barrier separating u from v.

Proof. Let Γ be the union of all connected components in X ∪ Y ∪Z meeting both X and Z. Let
X ′ = X ∩ Γ, Y ′ = Y ∩ Γ, Z ′ = Z ∩ Γ.

(6) (X ′, Y ′, Z ′, C) is a (t, p)-barrier.

Condition 1 holds as every X ′-Z ′ path in G\C contains a path with interior in Y , and therefore
in Y ′. Condition 2 holds as every X ′-Z ′ path is also a X-Z path. Condition 3 holds since C is
unchanged. This proves (6).

(7) X ′ ∪ C separates u from v.

Suppose not. Then there is a u-v-path P with P ∩ (X ′ ∪C) = ∅. Since (X, Y, Z, C) separates u
from v, it follows that P ∩ X ̸= ∅ and P ∩ Z ̸= ∅, and consequently P contains an X-Z path Q.
Since (X, Y, Z, C) is a barrier, we may assume that Q∗ ⊆ Y . But then Q∩X ′ ̸= ∅, a contradiction.
This proves (7).

Similarly, Z ′ ∪ C separates u from v and, thus, (X ′, Y ′, Z ′, C) separates u from v. ■
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Let p, s, t ∈ N and let c, f, g : N → N be functions such that c(n)+f(n)+g(n) < n. We say that
an n-vertex graph G is (s, t, p, c, f, g)-slim-barred if for every s-slim pair (u, v) there exist disjoint
subsets X, Y, Z, C,M of V \ {u, v} such that

(1) B = (X, Y, Z, C) is a (t, p)-barrier in G \M that separates u from v.
(2) |cc(C)| ≤ c(n).
(3) |M | ≤ f(n).
(4) |X ∪ Y ∪ Z| ≤ g(n).

Similarly, we say that a graph class F is (s, t, p, c, f, g)-slim-barred if every graph in F is
(s, t, p, c, f, g)-slim-barred.

Lemma 3.2. Let s, t ∈ N and let c, f, g : N → N be functions such that g(n) < n. Let H be a
hereditary graph class that is (t, s)-slim and (s, t, p, c, f, g)-slim-barred. Let

h(n) = max
G∈H, |V (G)|≤n

max
(a,b) is an s-slim pair in G

connG(a, b).

Then, h obeys the following recursive inequality.

h(n) ≤

n if n ≤ 10
f(n) + 3(c(n)p)2 + (c(n)p)2h(g(n)) otherwise

Proof. We proceed by induction on n. If n ≤ 10, then the statement holds trivially. Let G
be an n-vertex graph in H and (a, b) be an s-slim pair in G. Let X, Y, Z, C,M be disjoint
subsets of V \ {a, b} as in the definition of (s, t, p, c, f, g)-slim-barred for a and b. Let I ={
{u, v}

∣∣∣u, v ∈ C and u, v is an s-slim pair in X ∪ Y ∪ Z ∪ {u, v}
}
. For every pair {u, v} ∈ I, let

Mu,v be a u-v separator in X∪Y ∪Z∪{u, v} of size connX∪Y ∪Z∪{u,v}(u, v). Let M ′ = ⋃
{u,v}∈I Mu,v.

(8) M ∪M ′ ∪ C separates a from b in G.

Suppose not and let P be a path from a to b in G \ (M ∪ M ′ ∪ C). Since (X, Y, Z, C) separates
a from b in G, both P ∩ X and P ∩ Z are non-empty. Therefore, P contains an X-Z path.
Since (X, Y, Z, C) is a (t, p)-barrier, it follows that N(P ) meets at least t connected components
of C. Since H is (t, s)-slim, there exist u, v ∈ N(P ) ∩ C such that the pair (u, v) is s-slim. Then
Mu,v ⊆ M ′. But since both u and v have neighbors in P , there is a u-v-path with interior in P .
This is a contradiction, and (8) follows.

(9) For all {u, v} ∈ I, |Mu,v| ≤ h(g(n)) + 2.

If |Mu,v| ≤ 2, the statement trivially holds, so we may assume that |Mu,v| ≥ 2. Let c, d ∈ Mu,v

and let M ′
u,v be a u-v separator in (X ∪ Y ∪ Z ∪ {u, v}) \ {c, d} with |M ′

u,v| minimum. Then, by
induction, we have |Mu,v| ≤ 2 + |M ′

u,v| ≤ 2 + h(g(n)). This proves (9).

Since C contains at most |C|2 ≤ (c(n)p)2 slim pairs, and using both (8) and (9), we get an a-b
separator of size

|M | + |C| + |M ′| ≤ f(n) + c(n)p+ (c(n)p)2(h(g(n)) + 2) ≤ f(n) + 3(c(n)p)2 + (c(n)p)2h(g(n)).

■
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Theorem 3.3. Let s, t ∈ N and let c, f, g : N → N be increasing functions such that g(n) < n and
such that the ratio n

g(n) is non-increasing. Let H be a hereditary graph class that is (t, s)-slim and
(s, t, p, c, f, g)-slim-barred. Let

h(n) = max
G∈H, |V (G)|≤n

max
(a,b) is an s-slim pair in G

connG(a, b).

Then, h(n) ≤ 20(f(n) + 3c(n)2p2)(c(n)p)
2 log (n)

log( n
g(n))

Intuitively, Theorem 3.3 follows by analyzing the recursion tree for the function h obtained
by Lemma 3.2. It has a depth of at most log (n)

log( n
g(n))

and each of its nodes has at most (c(n)p)2

children; consequently it has a most 2(c(n)p)
2 log (n)

log( n
g(n)) vertices. The contribution of each vertex of

the recursion tree is, at most, 10(f(n) + 3c(n)2p2). We now proceed with a formal proof.

Proof of Theorem 3.3. Let N ∈ N. Let

H(n) =

n if n ≤ 10
f(N) + 3(c(N)p)2 + (c(N)p)2H(g(n)) otherwise

.

By Lemma 3.2 and since f and c are increasing, we have that h(n) ≤ H(n) for all n ≤ N , so it is

sufficient to prove that H(N) ≤ 20(f(N) + 3c(N)2p2)(c(N)p)
2 log (N)

log( N
g(N)) .

We prove the following slightly stronger statement: for all n ≤ N , we have

H(n) ≤ 20(f(N) + 3c(N)2p2)(c(N)p)
2 log (n)

log( n
g(n)) − (f(N) + 3c(N)2p2)

c(N)2p2 − 1 .

Let K = f(N) + 3(c(N)p)2 and z = c(N)2p2. We proceed by induction on n. If n ≤ 10, then
20K − K

z−1 ≥ 19K ≥ 19 ≥ n.

Therefore, we may assume that n > 10 and that for all n′ ≤ n, H(n′) ≤ 20K z

log (n′)

log
(

n′
g(n′)

)
− K

z−1 .
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Now we have that
H(n) ≤ K + z H(g(n))

≤ K + z

20K z

log (g(n))

log( g(n)
g(g(n))) − K

z − 1


≤ K + z

20K z

log (g(n))
log( n

g(n)) − K

z − 1



= K + z

20Kz
log (n

g(n)
n )

log( n
g(n)) − K

z − 1


= K + z

20Kz
log (n)

log( n
g(n))

−1
− K

z − 1


= K + 20K z

log (n)
log( n

g(n)) − zK

z − 1

= 20K z

log (n)
log( n

g(n)) −
(

z

z − 1 − 1
)
K

= 20K z

log (n)
log( n

g(n)) − K

z − 1
as required.

■

4. From mines to barriers

In this section, we introduce the notion of “mineable” pairs of vertices. Informally, a pair a, b
is mineable if there exist many “almost disjoint” a-b-separators each with a small dominating set
(a “core”), and these cores are pairwise disjoint and anticomplete. We show that mineable pairs
of vertices admit good barriers separating them (after deleting a small set of vertices from the
graph). This is then used to prove that our graph class is slim-barred. We now proceed with
formal definitions. In this paper the we will only apply mineability with z = p = 1. We include
the more general form for potential future applications.

Let x, y, z, p ∈ N and let G be a graph. For a, b ∈ V (G), we say that (a, b) is (x, y, z, p)-mineable
in G if there exist disjoint Y1, . . . , Yx ⊆ V \ {a, b} for which the following hold:

(1) For every i, there exists non-empty Xi ⊆ N(Yi) \ {a, b} such that X ′
i = Yi ∪ Xi is an a-b

separator in G \ ⋃j<i Yj.
(2) a and b belong the the same component of G \⋃x

j=1 Yj; and in particular for every i, a and
b belong to the same component of G \ ⋃j<i Yj.

(3) For distinct i, j ∈ [x], Yi and Yj are anticomplete.
(4) For every i, |cc(Yi)| ≤ y.
(5) For every i, every component of Yi has size at most p.
(6) Every vertex of G is contained in at most z of the sets X ′

1, . . . , X
′
x.

The goal of this section is to show that every mineable pair (with appropriately chosen parameters)
in a Kt,t-induced-minor-free graphs can be separated by a barrier with certain properties:
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Theorem 4.1. There exists a function ϕ : N → N such that the following holds. Let t, p, x, y, z ∈
N. Let G be an n-vertex Kt,t-induced-minor-free graph and let (a, b) be an (x, y, z, p)-mineable pair
in G. Then there exist disjoint subsets X, Y, Z, C,M of V (G) \ {a, b} such that

(1) B = (X, Y, Z, C) is a (t, p)-barrier in G \M that separates a from b.
(2) |cc(C)| ≤ 100

99 (4z + 2t)ϕ(t)yt.
(3) |M | ≤ xyp.
(4) |X ∪ Y ∪ Z| ≤ 100n(4z+2t)2

x
.

We start with a lemma, which roughly states that the property of (a, b) being (x, y, z, p)-mineable
implies that we can find a sufficiently large number of small, pairwise anticomplete (t, p)-barriers
in G each of which separate a from b.

Lemma 4.2. Let G be a graph with n = |V (G)|, let x, y, z, t ∈ N, and let w = ⌈ 99
100

x
4z+2t

⌉.
Let a, b ∈ V (G) and assume that (a, b) is (x, y, z, p)-mineable in G. Then there exists a set
C ⊆ V (G) \ {a, b} with |cc(C)| ≤ xy and a collection B = {Bi = (Ii, Ji, Ki, C)}i∈[w] of (t, p)-
barriers, such that

• For every i, (Ii, Ji, Ki, C) separates a from b.
• For every i, |Ii ∪ Ji ∪Ki| ≤ 100n(4z+2t)2

x
.

• For all distinct i, j ∈ [w], Bi and Bj are anticomplete.

See Fig. 3 for an illustration of the outcome of Lemma 4.2.

I1 K1J1
a b

C

I2 K2J2 Iw KwJw
. . .

Figure 3. Visualization of the result of Lemma 4.2.

The proof of Lemma 4.2 proceeds by a “distance layering” argument. We obtain a set C and
a-b separators X1, . . . , Xx in G \ C using that (a, b) is mineable. We define the “distance from a”
for every vertex v to be the number of separators Xj we need to pass through in order to get from
a to v in G \ C. This acts much like a distance function, with an approximate triangle inequality
and the property that walking along any edge changes the distance by at most z. This lets us
define “distance layers” as all vertices that have a certain distance from a. Our barriers will be
unions of not too many consecutive distance layers. The bound on the size of the layers follows
from an averaging argument.

Proof. Let Y1, . . . , Yx and X1, . . . , Xx be sets as in the definition of (x, y, z, p)-mineable, with
X ′

i = Yi ∪Xi for each i. Let C = ⋃x
i=1 Yi; observe that |cc(C)| ≤ xy as |cc(Yi)| ≤ y for each i. For

each subset W ⊆ V (G) \ C, let ψ(W ) = |{i : W ∩Xi ̸= ∅}|. For every vertex v ∈ G \ C we define
da(v) := min

a-v-path P in G\C
ψ(P ),
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where da(v) = ∞ if there is no a-v path in G \ C. For j ∈ N we denote by Sj the set of vertices
v ∈ ⋃x

i=1 Xi such that da(v) = j.
The following properties regarding ψ and da are immediate from the definitions, and are used

implicitly in the analysis that follows.

• For W,W ′ ⊆ V (G) \ C we have ψ(W ∪ W ′) ≤ ψ(W ) + ψ(W ′). In particular, for distinct
v1, v2 ∈ V (G) and a path P with ends v1 and v2, we have da(v2) ≤ da(v1) + ψ(P ).

• If W is a walk from a to v in G \ C, then da(v) ≤ ψ(W ).
• If v1, v2 ∈ V (G) \ C are adjacent and da(v1) < da(v2), then v2 ∈ Sk for some k ∈

[da(v1), da(v1) + z].

We now define m =
⌊

x
2z+t

⌋
, and for j ∈ [m] we let i−j = (j − 1)(2z + t) + 1 and i+j = i−j + z.

Write Wj = ⋃i+
j

k=i−
j

Sk. Then the sets Wj are pairwise disjoint. We let

Lj =
{
v ∈ G \ (C ∪Wj ∪Wj+1) : i−j ≤ da(v) < i−j+1

}
.

Next we prove the following.

(10) For j ∈ [m− 1], Bj = (Wj, Lj,Wj+1, C) is a (t, p)-barrier.

Recall that, for each j, no component of Yj has more than p vertices. As C is the union of the
sets Yj, and the sets Yj are pairwise anticomplete, it follows that Bj satisfies condition (3) in the
definition of a (t, p)-barrier.

Next, we show that Bj satisfies condition (1) in the definition of a (t, p)-barrier. Let P be a
Wj-Wj+1 path in G \ C; we show that there is a subpath P ′ of P that is a Wj-Wj+1 path with
(P ′)∗ ∈ Lj. If P consists of a single edge then the statement holds trivially, so we may assume this
is not the case. Write P = v1-v2- . . . -vr. If da(vi) ≥ i−j for every 1 ≤ i ≤ r, let α = 1, otherwise
let α = max

{
i : 1 ≤ i ≤ r, da(vi) < i−j

}
+ 1. Note that α ≤ n as da(vn) ≥ i−j+1 > i−j since P is a

Wj-Wj+1 path.
We show that vα ∈ Wj. If α = 1 then this is true because P is a Wj-Wj+1 path. Otherwise,

by the choice of α, we have da(vα−1) < da(vα), so vα ∈ Sk for some k ∈ [da(vα−1), da(vα−1) + z].
Furthermore, by the choice of α we have vα ≥ i−j , and since da(vα−1) < i−j we have da(vα−1)+z < i+j .
Thus k ∈ [i−j , i+j ], so vα ∈ Wj.

We further observe that α < r, since da(vα) ≤ i+j < i−j+1 ≤ da(vr). We may thus define
β = min

{
i : α < i ≤ r, d(vi) ≥ i−j+1

}
. An argument analogous to the previous paragraph shows

that vβ ∈ Wj+1.
It follows immediately from the definitions of α and β that i−j ≤ da(vi) < i−j+1 for each i such

that α < i < β. In particular, we have that vα-P -vβ is a Wj-Wj+1 path contained in Wj ∪Lj ∪Wj+1.
It follows that vα-P -vβ contains a subpath (possibly itself) that is a Wj-Wj+1 path with interior
in Lj. Thus, Bj satisfies condition (1) in the definition of a (t, p)-barrier.

It remains to check condition (2) in the definition of a (t, p)-barrier. In view of the first condi-
tion, it is enough to show that every Wj-Wj+1 path P with P ∗ ⊆ Lj satisfies the second condition.
Observe that if ψ(P ) ≥ t, then the second condition is satisfied as the sets Yi are pairwise anti-
complete.

We now show that ψ(P ) ≥ t. Let u ∈ Wj and v ∈ Wj+1 be the ends of P , and let P1 be a
a-u-path in G \ C achieving ψ(P1) = da(u) ≤ i+j . Then appending P to P1 yields an a-v walk W
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in G \ C. We thus have have
da(v) ≤ ψ(W ) ≤ da(u) + ψ(P ) ≤ i+j + ψ(P ).

On the other hand, since v ∈ Wj+1 we know that da(v) ≥ i−j+1 ≥ i+j + t. Consequently, i+j + t ≤
da(v) ≤ i+j +ψ(P ), thus ψ(P ) ≥ t, and condition (2) in the definition of a (t, p)-barrier is satisfied.
This proves (10).

(11) For j ∈ [m− 1], Bj separates a and b.

It suffices to show that Wℓ ∪ C separates a from b for every ℓ ∈ [m]. First, since each X ′
k

separates a from b in G \ C, it follows that every a-b path in G \ C meets X ′
k for all k ∈ [x], and

therefore da(b) ≥ x.
Now let ℓ ∈ [m], and let P = v1- . . . -vr be an a-b path in G \ C, where v1 = a and vr = b.

Observe that by the definition of i−ℓ it holds that i−ℓ < x. Since da(b) ≥ x, we can define α ∈ [r]
to be maximal such that da(vα) < i−ℓ ; note that α ≤ r − 1. We now have that vα+1 ∈ Sk for
some k ∈ [da(vα), da(vα) + z]. By the choice of α we have k ≥ i−j , and since da(vα) < i−ℓ we have
da(vα) + z < i−ℓ + z = i+ℓ , so vα+1 ∈ Wℓ. Since every a-b path P in G \C meets Wℓ, it follows that
Wℓ ∪ C separates a from b in G, proving (11).

Finally, we show that a large enough subset of the Bj are pairwise anticomplete and have suffi-
ciently small size. First, we put m′ = ⌊m

2 ⌋ = ⌊ x
4z+2t

⌋ and B′ = {B2i : i ∈ [m′]}.

(12) For distinct α, β ∈ [m′], B2α and B2β are anticomplete.

Assume without loss of generality that α < β. We have da(v) ≤ i+2α+1 for all v ∈ (W2α ∪ I2α ∪
W2α+1) and da(v) ≥ i−2β for all v ∈ (W2β ∪ I2β ∪W2β+1). Since α < β we have 2β − (2α + 1) > 0,
and thus

i−2β − i+2α+1 = (2β − (2α + 1))(2z + t) − z ≥ 2z + t− z > 0.
Since da takes values at most i2α+1 on vertices in (W2α ∪ L2α ∪W2α+1) and values at least i−2β on
vertices in (W2β ∪L2β ∪W2β+1), and i+2α+1 < i−2β, we conclude that B2α and B2β are disjoint. Fur-
thermore, suppose that vα ∈ (W2α ∪L2α ∪W2α+1) and vβ ∈ (W2β ∪L2β ∪W2β+1) are adjacent. Then
we have vβ ∈ Sk for some k ∈ [da(vα), da(vα) + z], and consequently da(vβ) ∈ [da(vα), da(vα) + z].
But da(vα) + z < i−2β ≤ da(vβ), a contradiction. It follows that B2α and B2β are anticomplete,
proving (12).

We now define

B′′ =
{
B2i : i ∈ [m′], |W2i ∪ L2i ∪W2i+1| >

100n(4z + 2t)2

x

}
⊆ B′

and write B = B′ \ B′′, so that for each B2i ∈ B it holds that |W2i ∪ L2i ∪W2i+1| ≤ 100n(4z+2t)2

x
.

(13) It holds that |B| ≥ 99
100

100n(4z+2t)2

x
.

Since the B2i (for i ∈ [m′]) are pairwise disjoint, we have ∑m′

i=1 |W2i ∪ I2i ∪ W2i+1| ≤ n. Thus,
we also have ∑B2i∈B′′ |W2i ∪ L2i ∪W2i+1| ≤ n. Since

∑
B2i∈B′′

|W2i ∪ L2i ∪W2i+1| > |B′′|
(

100n(4z + 2t)2

x

)
,
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we have |B′′| < x
100(4z+2t)2 ≤ x

100(4z+2t) . Letting B = B′ \ B′′, we have

|B| = |B′| − |B′′| >
⌊

x

4z + 2t

⌋
− x

100(4z + 2t) ,

and thus |B| ≥ 99
100

x
4z+2t

, proving (13).

We may now arbitrarily remove elements from B so that it has size ⌈ 99
100

x
4z+2t

⌉, completing the
proof. ■

Next we show that in the collection of barriers produced by Lemma 4.2 we can choose one with
vertex set anticomplete to almost all components of C.

Lemma 4.3. There exists a function ϕ : N → N such that the following holds. Let β, p, t ∈ N. Let
G be an n-vertex Kt,t-induced-minor-free graph and let a, b ∈ V (G). Let B = {Bi = (Xi, Yi, Zi, C)}β

i=1
be a family of pairwise anticomplete (t, p)-barriers separating a from b. Then there exists C ′ ⊆ C

with |cc(C ′)| ≤ ϕ(t)|cc(C)|t
β

, i∗ and X ′
i∗ ⊆ Xi∗ , Yi∗ ⊆ Y ′

i∗ , Z ′
i∗ ⊆ Zi∗ , such that (X ′

i∗ , Y ′
i∗ , Z ′

i∗ , C ′) is a
(t, p)-barrier in G \M where M = C \ C ′.

See Fig. 4 for an illustration of the outcome of Lemma 4.3.

X1 Z1Y1
a b

C

X ′
i∗ Z ′

i∗Y ′
i∗ Xβ ZβYβ. . .. . .

C ′

Figure 4. Visualization of Lemma 4.3.

Proof. Let ϕ be the function f from Lemma 2.1. Let B′ = {B′
i = (X ′

i, Y
′

i , Z
′
i, C)}β

i=1 be the family
of reduced pairwise anticomplete (t, p)-barriers obtained by applying Lemma 3.1 on each member
of B.

Let D = cc
(⋃

i≤β(X ′
i ∪ Y ′

i ∪ Z ′
i)
)

and C = cc(C). Now consider the bipartite graph Γ with
bipartition (D, C) and where there is an edge from d ∈ D to c ∈ C if there is an edge from d to c in
G. Γ is an induced minor of G as it can be obtained by deleting every vertex not in C ∪ ⋃D∈D D
and contracting every component of D and C. Therefore, Γ is Kt,t-induced-minor-free. Let Γ′ be
the induced subgraph of Γ containing exactly one representative for each twin class of vertices in
D.

(14) |E(Γ′)| ≥ |E(Γ)|
t

The second condition of the definition of a (t, p)-barrier together with the fact that all barriers
in B′ are reduced imply that degΓ(d) ≥ t for every d ∈ D. It follows that every twin class in D
contains fewer than t elements, as otherwise, there is a Kt,t-induced-minor in G. This proves (14).

The graph Γ′ satisfies the assumptions of Lemma 2.1, and therefore |E(Γ′)| ≤ ϕ(t, k)|C|. By
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(14), |E(Γ)| ≤ ϕ(t, k)|C|t. Therefore, there is a (t, p)-barrier B′
i∗ and a set C ′ ⊆ C such that

|C ′| ≤ ϕ(t)|C|t
β

and N(X ′
i∗ ∪ Y ′

i∗ ∪ Z ′
i∗) ⊆ ⋃

c∈C′ c. Let C ′ = ⋃
c∈C′ c. Noting that each component of

C ′ is a component of C and thus contains at most p vertices, we deduce that (X ′
i∗ , Y ′

i∗ , Z ′
i∗ , C ′) is

a (t, p)-barrier in G \M where M = C \ C ′ as required. ■

Now we summarize what we have shown so far to prove the main result of this section:

Proof of Theorem 4.1. Let ϕ be defined as in Lemma 4.3. The assertion of Theorem 4.1 follows
by combining the family of (t, p)-barriers obtained in Lemma 4.2 with Lemma 4.3. ■

5. The class Ct is slim

The goal of this section is to prove the following:

Theorem 5.1. For every t ∈ N there exist p, q ∈ N such that the class Ct is (p, q)-slim.

We start with some definitions from [11]. Let G,H be graphs. Let V (H) = {v1, . . . , vk}.
An induced H-model in G is a k-tuple K = (C1, . . . , Ck) of pairwise disjoint connected induced
subgraphs of G such that for all distinct i, j ∈ {1, . . . , k}, the sets Ci and Cj are anticomplete if
an only if vi is non-adjacent to vj in H. We say that K is linear if every Ci is a path in G.

Let G be a graph. For k, l ∈ N, a (k, l)-block in G is a pair (B,P) where B ⊆ V (G) with
|B| ≥ k, and P is map assigning to each 2-subset {x, y} of B a set of at least l pairwise internally
disjoint paths in G from x to y. We write P{x,y} = P({x, y}). We denote by V (P{x,y}) the union
of the interiors of the paths that are elements of P{x,y}. We say that (B,P) is strong if for all
distinct 2-subsets {x, y}, {x′, y′} of B, we have V (P) ∩ V (P) = ∅; that is, each path P ∈ P{x,y} is
internally disjoint from each path P ′ ∈ P{x′,y′}.

We need the following result that was essentially proved in [11].

Lemma 5.2. For all s, ρ, σ ∈ N there exist positive integers f = f(s, ρ, σ) and g = g(s, ρ, σ) with
the following property. Let G be a graph and let (B,Q) be a strong (f, g)-block in G such that B
is a stable set and for every {x, y} ⊆ B, the paths (Q∗ : Q ∈ Q{x,y}) are pairwise anticomplete in
G. Then one of the following holds.

(a) There is an induced subgraph of G isomorphic to a proper subdivision of Ks.
(b) There is a linear induced Kρ,σ-model in G.

The difference between Lemma 5.2 here and Lemma 3.6 of [11] is that in [11] it is assumed
that G is Kt+1-free (and t is another parameter in the statement of the theorem), but there is no
assumption that the set B is stable. However, the only place in the proof where the bound on the
clique number of G is used is an application of Ramsey Theorem to conclude that a large subset
of B is stable, so we do not need that assumption here.

We also need the following, which follows immediately from the main result of result of [12].
Following [12], we say that a (s, l)-constellation is a graph C in which there is a stable set SC with
|SC | = s, such that C \ SC has exactly l components, every component of C \ SC is a path, and
every vertex of SC has at least one neighbor in each component of S \ SC .

Theorem 5.3. For all s, l, r ∈ N, there is a positive integer a = a(s, l, r) with the following
property. Let G be a graph that that contains a Ka,a-induced-minor. Then one of the following
holds.

(a) There is an induced subgraph of G isomorphic to either Kr,r, a subdivision of Wr×r, or the
line graph of a subdivision of Wr×r.
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(b) There is an (s, l)-constellation in G.

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let G ∈ Ct. Let ρ = a(t, t, t) from Theorem 5.3. Let q = g(t2, ρ, ρ) +
f(t2, ρ, ρ) and p = f(t2, ρ, ρ) as in Lemma 5.2. We will show that G is (p, q)-slim. Suppose that
there is a stable set B ⊆ V (G) with |B| = p such that every pair x, y in B is q-wide.

Since |B| ≤ p, it follows that for every x, y ∈ B there exists a set Q{x,y} of x-y-paths whose
interiors are disjoint from B and pairwise anticomplete with |Q{x,y}| = g(t2, ρ, ρ). Let G′ be the
graph obtained from B ∪ ⋃

x,y∈B V (Q{x,y}) by replacing each vertex v in ⋃
x,y∈B V (Q{x,y}) with a

clique consisting of vertices v{x,y} for every x, y ∈ B such that v belongs to a path of Q{x,y}. Now
for every x, y ∈ B, let Q′

{x,y} be the set of paths obtained by replacing each vertex v in each
path of Q{x,y} by its copy v{x,y}. Let Q′ = ⋃

x,y∈B Q′
{x,y}. Then (B,Q′) is an (f(s, ρ, ρ), g(s, ρ, ρ))

strong block satisfying the assumptions of Lemma 5.2. It follows from Lemma 5.2 that one of the
following holds.

(a) There is an induced subgraph of G′ isomorphic to a proper subdivision of Kt.
(b) There is a linear induced Kρ,ρ-model in G′.

Suppose first that G′ contains an induced subgraph F isomorphic to a proper subdivision of Kt.
Then no two vertices of F are adjacent twins, and so F is isomorphic to an induced subgraph of
G. It follows that G contains a subdivision of Wt,t, contrary to the fact that G ∈ Ct. Thus we
deduce that that there is a linear induced Kρ,ρ-model (C1, . . . , C2ρ) in G′.

We apply Theorem 5.3 to G′[⋃2ρ
i=1 Ci] to deduce that G′ contains an induced subgraph F iso-

morphic to either Kt,t, a subdivision of Wt×t, or the line graph of a subdivision of Wt×t or a
(t, t)-constellation. In all cases, no two vertices of F are adjacent twins, and so F is isomorphic
to an induced subgraph of G. But in all cases F contains either an induced Wt×t-model, or an
induced Kt,t-model, contrary to the fact that G ∈ Ct. ■

6. Separating slim pairs of vertices in (F, r)-based graphs in Ct

Let G be a graph and let F be an induced subgraph of G such that every component of F is a star
(with at least two vertices). For every star S of F , let the center of S, denoted by c(F ), be defined
as follows. If |S| = 2, then let c(S) be an arbitrary vertex of S. If |S| > 2, let c(S) be the vertex of
degree greater than one in S. Let l(S) = S \ c(S). Let C(F ) be the set of all centers of stars of F ;
we call the vertices of C(F ) the centers of F . Let L(F ) = F \ C(F ); we call the vertices of L(F )
the leaves of F . Observe that both C(F ) and L(F ) are stable sets. For a set X ⊂ V (G), we say
that X is F -based if S ⊂ X for every star S of F with S ∩X ̸= ∅. We define the F -measure of an
F -based subset X, µF (X), as follows. Let a(X) = |{S such that S is a star of F and S∩X ̸= ∅}|.
Let b(X) = |X \ F |. Then µF (X) = a(X) + b(X). Let G′ be an induced subgraph of G and let
S be a star of F . If c(S) ∈ G′ and l(S) ∩ G′ ̸= ∅, the projection of S onto G′, pG′(S), is the star
S ∩ G′. We define F (G′) to be the induced subgraph of G′ whose components are pG′(S) where
S is a star of F with c(S) ∈ G′ and l(S) ∩ G′ ̸= ∅. We define C(F (G′)) = C(F ) ∩ F (G′) and
L(F (G′)) = L(F ) ∩ F (G′). Let r be a positive integer. We say that G is (F, r)-based if every
induced subgraph G′ of G admits a tree decomposition (T ′, χ′) such that for each t ∈ V (T ′), χ′(t′)
is an F (G′)-based set with µF (G′)(χ′(t′)) ≤ r. We call (T ′, χ′) an (F, r)-tree decomposition of G′.
The goal of this section is to prove that, for appropriately chosen q, every q-slim pair of vertices
in an (F, r)-based graph in Ct has a small separator.

We start with the following:
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Theorem 6.1. Let G be a graph, let F be an induced subgraph of G such that every component
of F is a star (with at least two vertices), and let r, q, x ∈ N. Assume that G is (F, r)-based. Let
a, b ∈ V (G) be an q-slim pair in G. Then there exists a set D ⊆ V (G) with |D| ≤ r(q − 1)x such
that either

(1) D is an a-b-separator in G, or
(2) (a, b) is (x, r(q − 1), 1, 1)-mineable in G \D.

We start with a lemma.

Lemma 6.2. Let G be a graph, let q ∈ N, and let a, b ∈ V (G) be a q-slim pair. Let (T, χ) be a
tree decomposition of G. Then there exists I ⊆ V (T ) with |I| < q such that for every a-b-path P
in G we have that (⋃t∈T χ(t)) ∩ P ∗ ̸= ∅.

For q = 3 this is Theorem 2.6 of [9], but the same proof works for all q.
We can now prove Theorem 6.1.

Proof of Theorem 6.1. We may assume that a and b are in the same component of G, for otherwise
the empty set is in a-b-separator in G. Let G0 = G. Let (T0, χ0) be an (F, r)-tree decomposition
of G0. Let I0 be as in Lemma 6.2. Let
C1 = ⋃

t∈I0(χ(t) \ F ),
Y1 = ⋃

t∈I0(χ(t) ∩ C(F )) and
X1 = ⋃

t∈I0(χ(t) ∩ L(F )) .
Then Y1 ⊆ C(F ), X1 ⊆ N(Y1) ∩ L(F ) and Y1 ∪ X1 is an (a, b)-separator in G0 \ C1. Since
Y1 ⊆ C(F ), it follows that Y1 is a stable set, and so every component of Y1 has size one. Moreover
|C1 ∪ Y1| ≤ r(q − 1). Let G1 = G0 \ (C1 ∪ Y1). We may assume that a and b are in the same
component of G1, for otherwise the theorem holds setting D = C1 ∪ Y1.

We proceed as follows. Assume that for some i ≥ 1 we have defined Gi, Ci, Y1, . . . , Yi, X1, . . . , Xi

with the following properties:
(1) Gi = G \ (Ci ∪ ⋃j≤i Yj).
(2) a and b are in the same component of Gi.
(3) |Ci ∪ ⋃j≤i ∪Yj)| ≤ i(q − 1)r.
(4) |Yj| ≤ r(q − 1) for all j ≤ i.
(5) Y1, . . . , Yi are disjoint subsets of C(F ).
(6) ⋃i

j=1 Yi is a stable set.
(7) For every j < i, Xj ⊆ L(F ) ∩N(Yj).
(8) X1, . . . , Xi are disjoint subsets of L(F ).
(9) Yi ∪Xi is an a-b-separator in G \ (Ci ∪ ⋃j<i Yj).

Note that G1, C1, X1, Y1 satisfy the conditions above. If i = x, we stop. If i < x, proceed as
follows.

Let (Ti, χi) be an (F, r)-tree decomposition of Gi. Let Ii be as in Lemma 6.2. Let
Ci+1 = Ci ∪ ⋃t∈Ii

(χ(t) \ F (Gi)),
Yi+1 = ⋃

t∈Ii
(χ(t) ∩ C(F (Gi))) and

Xi+1 = ⋃
t∈Ii

(χ(t) ∩ L(F (Gi))).
Then Xi+1 ⊆ N(Yi+1) ∩ L(F ) and Yi+1 ∪ Xi+1 is an (a, b)-separator in G \ (Ci+1 ∪ ⋃

j<i+1 Yj)| =
Gi \ Ci+1. Moreover, |Yi+1| ≤ r(q − 1) and

|Ci+1 ∪
⋃

j≤i+1
Yj| ≤ |Ci ∪

⋃
j≤i

Yj| + |
⋃

t∈Ii

χ(t) \ L(F (Gi)| ≤ (i− 1)r(q − 1) + r(q − 1) = i(q − 1)r.
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It follows from the definitions of C(F (Gi)) and L(F (Gi)) that Yi+1 is disjoint from ⋃
j≤i Yj, andXi+1

is disjoint from ⋃
j≤i Xj. Let Gi+1 = Gi \ (Ci+1 ∪⋃j≤i+1 Yj). If a and b are in different components

of Gi+1, then Ci+1 ∪ ⋃
j≤i+1 Yj is an a-b-separator of size at most (i + 1)(q − 1)r ≤ x(q − 1)r in

G, and the theorem holds. Thus we may assume that a and b are in the same component of
Gi+1. Now Gi+1, Ci+1, Y1, . . . Yi+1, X1, . . . , Xi+1 satisfy the conditions above, and we can continue
the process.

It follows that we may assume that i = x. Now, setting D = Ci, the sets Y1, . . . , Yx, X1, . . . , Xx

show that (a, b) is (x, (q − 1)r, 1, 1)-mineable in G \D, as required. ■

We can now prove the main result of this section. Let ϕ be as in Theorem 4.1. We define
ψ(t, q) = 1002

99 (4 + 2t)2ϕ(t)(q − 1).

Theorem 6.3. Let t ∈ N and let p, q be as in Theorem 5.1. Let r ∈ N be such that r ≥ ψ(t, q).
Then, for every (F, r)-based graph G ∈ Ct on n vertices, and every q-slim pair (a, b) in G, there
exists an a-b separator in G of size at most 25(log(r)+

√
log n log r).

Proof. By Theorem 5.1 G is (p, q)-slim. Let ϕ : N → N be as in Theorem 4.1. Let x =
2
√

log(n) log(r)100(4 + 2t)2 ≤ 2
√

log(n) log(r)r. We define the following functions.

c(n) = 100
99 (4 + 2t)ϕ(t) r(q − 1) t ≤ r2

100 .

f(n) = 2xr(q − 1) ≤ xr2

100 .

g(n) = 100n(4 + 2t)2

x
≤ 2−

√
log(n) log(r).

(15) G is (q, t, 1, c, f, g)-slim-barred.

Let (c, d) be a q-slim pair in G. Since G is (F, r)-based, Theorem 6.1 implies that there is
D ⊆ V (G) with |D| ≤ xr(q − 1) such that either

(1) D is a c-d-separator in G, or
(2) (c, d) is (x, r(q − 1), 1, 1)-mineable in G \D.

If D is a c-d-separator in G, then setting X = Y = Z = C = ∅ and M = D gives a (t, 1) barrier
in G \ M . Thus, we may assume that (c, d) is (x, (q − 1)r, 1, 1)-mineable in G \ D. Since (c, d)
is q-slim in G and G ∈ Ct, Theorem 4.1 implies that there exist disjoint subsets X, Y, Z, C,M ′ of
V (G) \ (D ∪ {c, d}) such that

(1) B = (X, Y, Z, C) is a t-barrier in G \M ′ that separates c from d.
(2) |C| ≤ 100

99 (4 + 2t)ϕ(t) r(q − 1) t.
(3) |M ′| ≤ xr(q − 1).
(4) |X ∪ Y ∪ Z| ≤ 100n(4+2t)2

x
.

Setting M = M ′ ∪D, we get that there exist disjoint subsets X, Y, Z, C,M of V (G) \ {c, d} such
that

(1) B = (X, Y, Z, C) is a t-barrier in G \M that separates c from d.
(2) |C| ≤ 100

99 (4 + 2t)ϕ(t) r(q − 1) t.
(3) |M | ≤ 2xr(q − 1).
(4) |X ∪ Y ∪ Z| ≤ 100n(4+2t)2

x
.
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This proves (15).

Now since (a, b) is q-slim and G is (q, t, c, f, g)-slim-barred, Theorem 3.3 implies that there is

an a-b-separator of size at most 20(f(n) + 3c(n)2)c(n)
2 log n

log n
g(n) in G. We now bound this quantity.

20(f(n) + 3c(n)2)c(n)
2 log n

log n
g(n) = 20(f(n) + 3c(n)2)c(n)2

√
log n
log r

≤ 20
(
xr2

100 + 3r4

100

)
c(n)2

√
log n
log r

≤ xr4c(n)2
√

log n
log r

≤ xr424 log(r)
√

log n
log r

≤ xr424
√

log n log r

≤ r525
√

log n log r

= 25(log(r)+
√

log n log r).

■

7. Bounding the treewidth of (F, r)-based graphs in Ct

In this section, we complete the treatment of (F, r)-based graphs, proving the following. Recall
that ψ(t, q) = 1002

99 (4 + 2t)2ϕ(t)(q − 1), where ϕ is as in Theorem 4.1.

Theorem 7.1. Let t ∈ N, let p, q be as in Theorem 5.1, and let r ≥ ψ(t, q). Then every n-vertex
(F, r)-based graph G in Ct satisfies tw(G) ≤ 29 log(r)+5

√
log n log r.

We remark that a version of Theorem 7.1 could be proved using Theorem 6.3 and Theorem 6.5
of [2] if the clique number of G is bounded. Here we will include a different proof that does not
use this assumption.

For a graph G a function w : V (G) → [0, 1] is a normal weight function on G if w(V (G)) = 1,
where for X ⊆ V (G) we denote ∑v∈X w(v) by w(X). Let c ∈ [0, 1] and let w be a normal weight
function on G. A set X ⊆ V (G) is a (w, c)-balanced separator if w(D) ≤ c for every component
D of G \X. The set X is a w-balanced separator if X is a (w, 1

2)-balanced separator.
The following result was originally proved by Robertson and Seymour in [20], and tightened

by Harvey and Wood in [17]. It was then restated and proved in the language of (w, c)-balanced
separators in [3].

Theorem 7.2. Let G be a graph, let c ∈ [1
2 , 1), and let d be a positive integer. If for every

normal weight function w : V (G) → [0, 1], G has a (w, c)-balanced separator of size at most d,
then tw(G) ≤ 1

1−c
d.

We now prove the main result of this section.
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Proof of Theorem 7.1. We start with the following.

(16) Let w : V (G) → [0, 1] be a normal weight function on G. Then G admits a (w, 1
2)-balanced

separator of size at most rp+ (rp)225(log(r)+
√

log n log r) .

Let G1 = G, X0 = ∅ and w1 = w. For i ∈ {1, . . . , p}, Assume that X1, . . . , Xi−1, G1, . . . , Gi have
already been defined and proceed as follows. Let (Ti, χi) be an (F, r)-tree decomposition of Gi. It
is well known (see e.g. the proof of Lemma 7.19 in [13] or Theorem 2.7 in [9]) that there exists
ti ∈ V (Ti) such that wi(D) ≤ 1

2 for every component D of G \ χi(ti). Let Xi = χi(t1) \ L(F (Gi)).
Then |Xi| ≤ r.

If i < p, define Gi+1 = Gi \ Xi and wi+1(v) = wi(v)
1−Σu∈Xi

wi(u) for every v ∈ Gi+1. Then wi+1 is a
normal weight function on Gi+1, and we repeat the process to define Xi+1. We stop when i = p
and X1, . . . , Xp have been defined.

Next, let P be the set of all q-slim pairs (v, v′) such that v ∈ Xi and v′ ∈ Xi′ for some 1 ≤ i <

i′ ≤ p. For every (v, v′) ∈ P , let Xvv′ be a v-v′-separator in G of size at most 25(log(r)+
√

log n log r)

given by Theorem 6.3. Let X = ⋃p
i=1 Xi ∪ ⋃(v,v′)∈P Xvv′ . Then |X| ≤ rp+ (rp)225(log(r)+

√
log n log r).

We show that X is a balanced separator in G. Suppose for contradiction that there is a component
D of G \X with w(D) > 1

2 . Then wi(D) > 1
2 for every i. Since χ(ti) is a wi-balanced separator in

Gi for every i, it follows that for every i ∈ {1, . . . , p} there is vi ∈ Xi ∩C(F (Gi)) such that vi has
a neighbour in D (in fact, vi has a neighbour in D ∩ χi(ti) ∩ L(F (Gi))). By Theorem 5.1 there
exist v, v′ ∈ {v1, . . . , vp} such that (v, v′) ∈ P . But there is a path from v to v′ with interior in D,
contrary to the fact that D ⊆ G \Xvv′ . This proves (16).

From (16) and Theorem 7.2 we deduce that

tw(G) ≤ 2
(
rp+ (rp)225(log(r)+

√
log n log r)

)
≤ 4(rp)225(log(r)+

√
log n log r)

≤ r425(log(r)+
√

log n log r)

= 29 log(r)+5
√

log n log r.

■

8. Bounding the treewidth of C∗
t

In this section, we prove the main result of this paper, which we restate.

Theorem 1.2. For every t ∈ N, there exist ϵ = ϵ(t) ∈ (0, 1], c = c(t) ∈ N and d ∈ N such that
every n-vertex graph G in C∗

t satisfies tw(G) ≤ 2a log1−ϵ n.

We follow the general road map of [6], but we phrase our arguments in a slightly different
language. A star-coloring of a graph G is a proper coloring such that the union of every two color
classes induces a star forest in G (that is a graph where each component is a star or a singleton).
The star chromatic number of G is the minimum k such that G admits a star coloring with k color
classes. The following is immediate from Theorem 11 of [6] and Ramsey Theorem:

Theorem 8.1. For every t ∈ N there is an integer d1 = d1(t) such that every graph in C∗
t has

star-chromatic number d1.

We will also use the main result of [6]:
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Theorem 8.2. There exists an integer d2 such that for all t,∆ ∈ N, every graph in C∗
t with

maximum degree at most ∆ has treewidth at most (t∆)d2.

Finally, we need the following result of [8]:
Theorem 8.3. There is an integer d3 such that every graph G contains a subcubic subgraph of
treewidth at least tw(G)

logd3 (tw(G)) .

Proof of Theorem 1.2. Let d1 be as in Theorem 8.1, and let C1, . . . , Cd1 be the color classes of a
star coloring of G. For i, j ∈ {1, . . . , d1} let F ′

ij = G[Ci ∪ Cj]. Then F ′
ij is a star forest. Let

Fij be the graph obtained from F ′
ij be removing all isolated vertices; write Eij = E(Fij). Note

that ⋃i,j∈{1,...,d1} Eij = E(G); we call {Eij}i,j∈{1,...,d1} the corresponding edge partition. We say
that Eij is active in G if some vertex of G is incident with more than three edges of Eij. We
define the dimension of G to be the number of pairs (i, j) for which Eij is active, and denote the
dimension of G by dim(G). Let p, q be as in Theorem 5.1, let d2 be as in Theorem 8.2, and let
r0 = max

{
ψ(t, q), (3td2

1)d2
}
.

(17) If dim(G) = 0, then tw(G) ≤ r0.

Since dim(G) = 0, it follows that the maximum degree of G is at most 3d2
1. Now (17) follows from

Theorem 8.2.

Let d3 be as in Theorem 8.3. Next, we recursively define a sequence of integers r1, . . . , rd1
2 .

Having defined r1, . . . , ri, let ri+1 = 29 log(ri logd3 n)+5
√

log(ri logd3 (n)) log(n)).
We will prove by induction on dim(G) that tw(G) ≤ rdim(G). The base case is (17), thus we

assume that we have proved the result for graphs of dimension at most i, and that dim(G) = i+1.
Let i0, j0 ∈ 1, . . . d1 be such that Ei0j0 is active in G.

(18) Let G0 be an induced subgraph of G with tw(G0) > ri logd3 n. Let G′ be the graph obtained
from G0 by contracting the edges of Fi0j0(G0). Then tw(G′) ≤ ri logd3 n.

Suppose not. By Theorem 8.3 G′ contains a subcubic subgraph G′′ with tw(G′′) > ri. The third
and fourth paragraphs of the proof of Lemma 7 of [6] show how to construct an induced subgraph
H of G0 that contains G′′ as a minor, and such that every vertex of H is incident with at most
three edges of Ei0j0 . It follows that tw(H) ≥ tw(G′′) > ri.

We now show that dim(H) ≤ i and get contradiction. First observe that C1 ∩ V (H), . . . , Cd2
1

∩
V (H) is a star coloring of H with corresponding edge partition {Epq ∩E(H))}p,q∈{1,...,d1}. It follows
that the set Ei0j0 ∩V (H) is not active in H. Moreover, if the set Epq is not active in G, then the set
Epq ∩V (H) is not active in H. Since Ei0j0 is active in G, we deduce that dim(H) < dim(G) = i+1,
a contradiction. This proves (18).

(19) G is (Fi0j0 , ri logd3 n)-based.

Let G0 be an induced subgraph of G. We need to show that G0 admits an (Fi0j0 , ri logd3 n)-based
tree decomposition. Let G′ be the graph obtained from G0 by contracting the edges of Fi0j0(G0).
Then every vertex of G′ is either a vertex of G or corresponds to a component of Fi0j0(G0); we call
the latter kind of vertex a star vertex. Let (T, χ′) be a tree decomposition of G′ of width tw(G′).
We construct a tree decompositon (T, χ0) of G0, where for every t ∈ T , χ0(t) is obtained from
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χ′(t) by replacing every star vertex with the component of G(Fi0j0) to which it corresponds. Since
we know by (18) that tw(G′) ≤ ri logd3 n, it follows that (T0, χ0) is an (Fi0j0 , ri logd3 n)-based tree
decomposition of G0, and (19) follows.

Now, in view of (19), Theorem 7.1 implies that tw(G) ≤ ri+1, as required. This completes
the inductive proof that tw(G) ≤ rdim(G).

We now bound ri. Let c0 = r0 + 18d3. Now we show that ri ≤ 216ic0 log1−1/2i
n. It is enough to

prove that log ri ≤ 16ic0 log1−1/2i

n. To do so, we proceed by induction. The base case trivially
holds as c0 ≥ r0. For i ≥ 1, let ci = 16ic0 and ϵi = 1

2i . By the induction hypothesis, we have that

log ri+1 ≤ 9 log
(
2ci log(1−ϵi)(n) logd3 n

)
+ 5

√(
ci log(1−ϵi)(n) + log

(
logd3(n)

))
log(n))

≤ 9ci log(1−ϵi)(n) + 9d3 log log n+ 5√
ci log(1−ϵi/2)(n) + 5

√
d3 log log(n) log(n))

≤ 14ci log1−ϵi/2(n) + 9d3 log log n+ 5
√
d3 log log(n) log(n)

≤ 14ci log1−ϵi/2(n) + ci log1−ϵi/2(n) + ci log1−ϵi/2(n)
≤ 16ci log1−ϵi/2(n)

Setting c = cd2
1

and ϵ = ϵd2
1

completes the proof.
■
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