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Abstract. We say a class C of graphs is clean if for every positive integer t there exists a
positive integer w(t) such that every graph in C with treewidth more than w(t) contains an
induced subgraph isomorphic to one of the following: the complete graph Kt, the complete
bipartite graph Kt,t, a subdivision of the (t × t)-wall or the line graph of a subdivision of the
(t × t)-wall. In this paper, we adapt a method due to Lozin and Razgon (building on earlier
ideas of Weißauer) to prove that the class of all H-free graphs (that is, graphs with no induced
subgraph isomorphic to a fixed graph H) is clean if and only if H is a forest whose components
are subdivided stars.

Their method is readily applied to yield the above characterization. However, our main result
is much stronger: for every forest H as above, we show that forbidding certain connected graphs
containing H as an induced subgraph (rather than H itself) is enough to obtain a clean class of
graphs. Along the proof of the latter strengthening, we build on a result of Davies and produce,
for every positive integer η, a complete description of unavoidable connected induced subgraphs
of a connected graph G containing η vertices from a suitably large given set of vertices in G.
This is of independent interest, and will be used in subsequent papers in this series.

1. Introduction

A brief background. All graphs in this paper are finite and simple.
Treewidth is a well-studied graph parameter that is of great interest in both structural and

algorithmic graph theory. It was notably featured in the seminal work of Robertson and Seymour
on graph minors [18], and in numerous other papers ever since. For a more in-depth overview of
the literature, the reader is invited to see, for example, Bodlaender’s survey [9] and the references
therein.

As a part of their graph minors series, Robertson and Seymour fully described the unavoidable
minors in graphs of large treewidth. The relevant result, the so-called Grid Theorem [19], states
that every graph of large enough treewidth must contain a minor isomorphic to a large grid,
or equivalently, a subgraph isomorphic to a large wall (the (t × t)-wall, denoted by Wt×t, is a
planar graph of maximum degree three on 2t2 − 2t vertices; see [2] for a precise definition and
see Figure 1). Since walls have large treewidth themselves, and treewidth cannot increase when
taking minors, that result gives a structural dichotomy: a graph has large treewidth if and only
if it contains a large wall as a subgraph.
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Figure 1. The 3-basic obstructions, including a subdivision of W3×3 (middle)
and its line graph (right).

The overarching goal of the current series and of several other recent works [1, 7, 15, 16, 20, 21]
is to understand treewidth from the perspective of induced subgraphs rather than minors. A first
remark is that to force bounded treewidth, we need to forbid four kinds of induced subgraphs: a
complete graph Kt, a complete bipartite graph Kt,t, all subdivisions of the (t × t)-wall Wt×t for
some t, and the line graphs of all subdivisions of Wt×t for some t. Let us call these graphs the
t-basic obstructions (see Figure 1), and say that a graph G is t-clean if G contains no induced
subgraph isomorphic to a t-basic obstruction. Moreover, we say a class C of graphs is clean if
the treewidth of t-clean graphs in C is bounded from above by a function of t.

The class of all graphs is not clean: various constructions of unbounded treewidth avoiding
the basic obstructions have been discovered [7, 10, 20]. In fact, it is at the moment unclear
whether a dichotomy similar to the Grid Theorem is at all achievable for induced subgraphs.
Nevertheless, steady progress is being made. Of note is the following result, characterizing all
finite sets of graphs which yield bounded treewidth when forbidden as induced subgraphs:

Theorem 1.1 (Lozin and Razgon [16]). Let H be a finite set of graphs. Then the class of all
graphs with no induced subgraph isomorphic to a member of H has bounded treewidth if and only
if H contains a complete graph, a complete bipartite graph, a forest of maximum degree at most
three in which every component has at most one vertex of degree more than two, and the line
graph of such a forest.

In addition, several clean classes have been identified. For instance, Aboulker, Adler, Kim,
Sintiari and Trotignon [1] proved that every proper minor-closed class of graphs is clean:

Theorem 1.2 (Aboulker, Adler, Kim, Sintiari and Trotignon [1]). For every graph H, the class
of all graphs with no minor isomorphic to H is clean. Equivalently, for every graph H and
integers t ≥ 1, there exists an integer ξ = ξ(H, t) ≥ 1 such that every graph with no minor
isomorphic to H and treewidth more than ξ contains either a subdivision of Wt×t or the line
graph of a subdivision of Wt×t as an induced subgraph.

They also conjectured that graph classes of bounded maximum degree are clean, which was
later proved by Korhonen [15]:

Theorem 1.3 (Korhonen [15]). For every integer d ≥ 1, the class of graphs of maximum degree
at most d is clean. Equivalently, for all integers d, t ≥ 1, there exists an integer γ = γ(d, t) ≥ 1
such that every graph with maximum degree at most d and treewidth more than γ contains either
a subdivision of Wt×t or the line graph of a subdivision of Wt×t as an induced subgraph.

There are also a number of results concerning holes, where a hole in a graph is an induced
cycle of length at least four. In particular, it was shown that (even hole, diamond, pyramid)-free
graphs are clean [3], and graphs in which no vertex has two or more neighbors in a hole disjoint
from itself are clean [4]. It was also independently proved twice that graphs with no long hole
are clean. For every positive integer λ, let Hλ be the class of all graphs with no hole of length
more than λ.
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Figure 2. The smallest tree that is not a subdivided star.

Theorem 1.4 (Gartland, Lokshtanov, Pilipczuk, Pilipczuk and Rzążewski [13], Weißauer [21]).
For every integer λ ≥ 1, the class Hλ is clean.

Our results. The main result of this paper is Theorem 4.1. The precise statement of The-
orem 4.1 requires some set-up, and we postpone it until Section 4. Informally, we show that
every t-clean graph of sufficiently large treewidth contains, as an induced subgraph, a “connec-
tification” of any given subdivided star forest F . Roughly speaking, this is a graph which can
be partitioned into a “rooted” copy of F and a second part, which only attaches at the roots of
F and “minimally connects” these roots.

The proof of Theorem 4.1 uses three ingredients. The first one is Theorem 8.1, which adapts
the methods from [16] (itself employing the strategy from [21]) in order to show that clean
graphs with a large block – a certain kind of highly connected structure – must contain a large
subdivided star forest. As a byproduct of this, we also obtain another way to derive Theorem 1.4.

The second ingredient is Theorem 6.5. This theorem combines a result of Weißauer linking
blocks and tree decompositions, together with Korhonen’s bounded degree result (Theorem 1.3),
in order to show that the class of graphs without a large block is clean.

The final ingredient, Theorem 5.2, is a result of independent interest, and will be used in
future papers in our series. Starting from a result of Davies [11], we provide a complete de-
scription of minimal connected graphs containing many vertices from a suitably large subset of
a connected component. Put differently, we show that if a large enough set of vertices belongs
to the same component, then a large subset of them are contained in one of a few prescribed
induced subgraphs.

We note that the first two out of those intermediate results already yield (the difficult direction
of) an appealing dichotomy for clean classes defined by one forbidden induced subgraph. Indeed,
writing FH for the class of graphs with no induced subgraph isomorphic to H, we prove:

Theorem 1.5. Let H be a graph. Then FH is clean if and only if H is a subdivided star forest.

While the stronger Theorem 4.1 might appear unwieldy at first, we remark that it has easier-
to-state implications that are still more general than the above dichotomy. To illustrate this,
denote by F̃H the class of all graphs with no induced subgraph isomorphic to a subdivision of
H. It follows that the “if” direction of Theorem 1.5 is equivalent to F̃H being clean for every
subdivided star forest H, and Theorem 1.4 is equivalent to F̃H being clean for every cycle H.
Then Theorem 4.1 readily implies the following, where by a subdivided double star, we mean a
a tree with at most two vertices of degree more than two.

Theorem 1.6. Let H be a forest in which one component is a subdivided double star and every
other component is a subdivided star. Then F̃H is clean.

We remark that a full grid-type theorem for induced subgraphs is equivalent to a characteri-
zation of families H of graphs for which the class of all H-free graphs is clean. This remains out
of reach, and Theorem 1.5 takes the first step towards answering this question by characterizing
all singletons H for which the class of all H-free graphs is clean.

Here is a natural next step: for which finite families H of graphs is the class of all H-free
graphs clean? From Theorem 1.5, it follows that such a finite set H containing a subdivided star
forest has the above property. One may then speculate that in fact all finite set of graphs with
the above property must contain a subdivided star forest. This, however, is false: for instance,
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assume that H is the unique double star on six vertices (see Figure 2; note that H is the smallest
tree that is not a subdivided star). Then H = {H, K3} has the above property; in fact, this
follows from the main result of an upcoming paper [6] where the last four authors of the present
work provide a full description of finite families H for which the class of all H-free graphs is
clean.

Outline of the paper. We set up our notation and terminology in Section 2. Section 3
describes the construction of [10], which is used to prove the “only if” direction of Theorem 1.5.
In Section 4, we state Theorem 4.1 precisely, and show how to deduce Theorems 1.5 and 1.6
from it. In Section 5, we show that a connected graph G with a sufficiently large subset S of
its vertices contains an induced connectifier with many vertices from S. The main result of
Section 6 is Theorem 6.5, where we prove that the class of graphs with no k-block is clean. In
Section 7, we show that in a t-clean graph, every huge block can be transformed into a large
block such that there is no short path between any two vertices of the new block. Section 8
uses this in order to show that a t-clean graph with a huge block contains a large subdivided
star forest. Finally, in Section 9, we combine the main results from Sections 5, 6 and 8 to prove
Theorem 4.1.

2. Preliminaries

Graphs, subgraphs, and induced subgraphs. All graphs in this paper are finite and with no
loops or multiple edges. Let G = (V (G), E(G)) be a graph. A subgraph of G is a graph obtained
from G by removing vertices or edges, and an induced subgraph of G is a graph obtained from
G by only removing vertices. Given a subset X ⊆ V (G), G[X] denotes the subgraph of G
induced by X, that is, the graph obtained from G by removing the vertices not in X. We put
G \ X = G[V (G) \ X] (and in general, we will abuse notation and use induced subgraphs and
their vertex sets interchangeably). Additionally, for an edge e ∈ E(G), we write G − e to denote
the graph obtained from G by removing the edge e. For a graph H, by a copy of H in G, we
mean an induced subgraph of G isomorphic to H, and we say G contains H if G contains a
copy of H. We also say G is H-free if G does not contain H. For a class H of graphs we say G
is H-free if G is H-free for every H ∈ H. For a graph H, we write G = H whenever G and H
have the same vertex set and the same edge set.

Neighborhoods. Let v ∈ V (G). The open neighborhood of v, denoted by N(v), is the set of all
vertices in G adjacent to v. The closed neighborhood of v, denoted by N [v], is N(v) ∪ {v}. Let
X ⊆ G. The open neighborhood of X, denoted by N(X), is the set of all vertices in G \ X with
at least one neighbor in X. If H is an induced subgraph of G and X ⊆ G with H ∩ X = ∅, then
NH(X) = N(X) ∩ H. Let X, Y ⊆ V (G) be disjoint. We say X is complete to Y if all possible
edges with one end in X and one end in Y are present in G, and X is anticomplete to Y if there
is no edge between X and Y . In the case X = {x}, we often say x is complete (anticomplete) to
Y to mean X is complete (anticomplete) to Y .

Tree decompositions and blocks. A tree decomposition (T, χ) of G consists of a tree T and
a map χ : V (T ) → 2V (G) with the following properties:

(i) For every vertex v ∈ V (G), there exists t ∈ V (T ) such that v ∈ χ(t).
(ii) For every edge v1v2 ∈ E(G), there exists t ∈ V (T ) such that v1, v2 ∈ χ(t).
(iii) For every vertex v ∈ V (G), the subgraph of T induced by {t ∈ V (T ) | v ∈ χ(t)} is

connected.
For each t ∈ V (T ), we refer to χ(t) as a bag of (T, χ). The width of a tree decomposition

(T, χ), denoted by width(T, χ), is maxt∈V (T ) |χ(t)| − 1. The treewidth of G, denoted by tw(G),
is the minimum width of a tree decomposition of G.
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Cliques, stable sets, paths, and cycles. A clique in G is a set of pairwise adjacent vertices
in G, and a stable set in G is a set of pairwise non-adjacent vertices in G. A path in G is an
induced subgraph of G that is a path, while a cycle in G is a (not necessarily induced) subgraph
of G that is a cycle. If P is a path, we write P = p1- · · · -pk to mean that V (P ) = {p1, . . . , pk},
and pi is adjacent to pj if and only if |i − j| = 1. We call the vertices p1 and pk the ends of P ,
and say that P is from p1 to pk. The interior of P , denoted by P ∗, is the set P \ {p1, pk}. For a
path P in G and x, y ∈ P , we denote by P [x, y] the subpath of P with ends x and y. The length
of a path P is the number of its edges. Let C be a cycle. We write C = c1- · · · -ck-c1 to mean
V (C) = {c1, . . . , ck}, and ci is adjacent to cj if and only if |i − j| ∈ {1, k − 1}. A hole of G is an
induced subgraph of G that is a cycle. The length of a cycle or a hole is the number of its edges.

Subdivisions. By a subdivision of a graph G, we mean a graph obtained from G by replacing
the edges of G by pairwise internally disjoint paths between the corresponding ends. Let r ≥ 0
be an integer. An r-subdivision of G is a subdivision of G in which the path replacing each edge
has length r +1. Also, a (≤ r)-subdivision of G is a subdivision of G in which the path replacing
each edge has length at most r + 1, and a (≥ r)-subdivision of G is defined similarly. We refer
to a (≥ 1)-subdivision of G as a proper subdivision of G.

Classes of graphs. A class C of graphs is called hereditary if it is closed under isomorphism
and taking induced subgraphs, or equivalently, if C is the class of all H-free graphs for some
family H of graphs. For a class of graphs C and a positive integer t, we denote by Ct the class
of all t-clean graphs in C. Thus, C is clean if for every positive integer t there exists a positive
integer w(t) such that every graph in Ct has treewidth at most w(t). The following is immediate
from the definition of a clean class.

Lemma 2.1. Let X be a class of graphs. Assume that for every t, there exists a clean class of
graphs Yt such that X t ⊆ Yt. Then X is clean. In particular, every subclass of a clean class is
clean.

Forests and stars. By a branch vertex of a graph G, we mean a vertex of degree more than
two in G. For every forest F , we say a vertex v ∈ V (F ) is a leaf of F if v has degree at most one
in F . We denote by L(F ) the set of all leaves of F . By a star we mean a graph isomorphic to
the complete bipartite graph K1,δ for some integer δ ≥ 0, and a star forest is a forest in which
every component is a star. Then subdivided stars are exactly trees with at most one branch
vertex, and subdivided star forests are exactly forests in which every component is a subdivided
star. A subdivided double star is a tree with at most two branch vertices.

By a rooted subdivided star S we mean a subdivided star S together with a choice of one
vertex r in S, called the root, such that if S is not a path, then r is the unique branch vertex of
S. A rooted subdivided star forest F is a subdivided star forest with a choice of a root for every
component of F . We also refer to the root of each component of F as a root of F , and denote
by R(F ) the set of all roots of F . By a stem in F , we mean a path in F from a leaf to a root. It
follows that each stem is the (unique) path from a leaf of some component of F to the root of
the same component. The reach of a rooted subdivided star S is the maximum length of a stem
in S. Also, the reach of a subdivided star forest F is the maximum reach of its components and
the size of F is the number of its components. For a positive integer θ and graph H, we denote
by θH the disjoint union of θ copies of H. For integers δ ≥ 0 and λ ≥ 1, we denote by Sδ,λ the
(λ − 1)-subdivision of K1,δ. So for δ ≥ 3, θSδ,λ is a subdivided star forest of maximum degree δ,
reach λ and size θ.

3. A construction from [10]

The goal of this section is to prove the “only if” direction of Theorem 1.5 using a construction
from [10].
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Figure 3. The graphs J0,1,4 (left) and J1,1,4 (right).

We begin with a definition, which will be used in subsequent sections, as well. Let P be a
path and ρ, σ ≥ 0 and θ ≥ 1 be integers. A 2θ-tuple (p1, . . . , p2θ) of vertices of P is said to be a
(ρ, σ)-widening of P if

• the vertices p1 and p2θ are the ends of P ;
• traversing P from p1 to p2θ, the vertices p1, . . . , p2θ appear on P in this order;
• P [p2i−1, p2i] has length ρ for each i ∈ [θ], and;
• P [p2i, p2i+1] has length at least σ for each i ∈ [θ − 1].

The (ρ, σ)-widening (p1, . . . , p2θ) is strict if for each i ∈ [θ − 1], P [p2i, p2i+1] has length equal
to σ. Also, we say a θ-tuple (p1, . . . , pθ) of vertices of P is a σ-widening of P if the 2θ-tuple
(p1, p1 . . . , pθ, pθ) is a (0, σ)-widening of P .

We now describe the construction of [10] (though [10] only mentions the case ρ = 0). Let
ρ ≥ 0, σ ≥ 1 and θ ≥ 2 be integers. We define J = Jρ,σ,θ to be the graph with the following
specifications (see Figure 3).

• J contains θ pairwise disjoint and anticomplete paths P1, . . . , Pθ.
• For each j ∈ [θ], Pj admits a strict (ρ, σ)-widening (pj

1, . . . , pj
2θ).

• We have J \ (
⋃

i∈[θ] V (Pi)) = {x1, . . . , xθ} such that x1, . . . , xθ are all distinct, and for
all i, j ∈ [θ], we have NJ(xi) =

⋃
j∈[θ] Pj [pj

2i−1, pj
2i].

The following was proved in [11]. Here we include a proof for the sake of completeness.

Theorem 3.1. For all integers ρ ≥ 0, σ ≥ 1 and θ ≥ 2, Jρ,σ,θ is a 4-clean graph of treewidth at
least θ.

Proof. Note that Jρ,σ,θ contains a Kθ,θ-minor (by contracting each path Pi into a vertex), which
implies that tw(Jρ,σ,θ) ≥ θ. Also, Jρ,σ,θ is easily seen to be {K4, K3,3}-free. Let us say that a
connected graph H is feeble if either H has a vertex v such that H \ NH [v] is not connected, or
H has a set S of at most two branch vertices such that H \ S has maximum degree at most two.
Then every connected induced subgraph of Jρ,σ,θ is feeble. On the other hand, for an integer
t ≥ 4, let H be either a subdivision of Wt×t or the line graph of such a subdivision. Then one
may observe that for every vertex v ∈ H, H \NH [v] is connected. Moreover, H contains a stable
set S of branch vertices with |S| ≥ 3. It follows that H is not feeble, and so H is not isomorphic
to an induced subgraph of Jρ,σ,θ. Hence, Jρ,σ,θ is 4-clean, as desired. ■

The proof of the next lemma is straightforward, and we leave it to the reader.

Lemma 3.2. For all integers σ ≥ 1 and θ ≥ 2, the following hold.
• J0,σ,θ has girth at least 2σ + 4.
• Let u1, u2 ∈ J1,σ,θ such that for each i ∈ {1, 2}, NJ1,σ,θ

(ui) contains a stable set of
cardinality three. Then there is no path of length less than σ + 2 in J1,σ,θ from u1 to u2.

We are now ready to prove the main result of this section.

Theorem 3.3. Let H be a graph for which FH is clean. Then H is a subdivided star forest.
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Proof. By the assumption, for every integer t ≥ 1, there exists an integer w(t) ≥ 1 such that
every t-clean graph in FH has treewidth at most w(t). We deduce:
(1) H is a forest.

Suppose not. Let σ be the length of the shortest cycle in H. By Theorem 3.1, J0,σ,w(4)+1 is
4-clean. Also, by the first outcome of Lemma 3.2, J0,σ,w(4)+1 has girth at least 2σ + 4, and so
J0,σ,w(4)+1 ∈ FH . But then we have tw(J0,σ,w(4)+1) ≤ w(4), which violates Theorem 3.1. This
proves (1).
(2) Every component of H has at most one branch vertex.

Suppose for a contradiction that some component C of H contains two branch vertices u and
v. By (1), H is a forest, and so C is a tree. Therefore, there exists a unique path in H from u to
v, say of length σ, and we have |NH(u)\NH(v)|, |NH(v)\NH(u)| ≥ 2. It follows from the second
outcome of Lemma 3.2 that J1,σ,w(4)+1 ∈ FH . Also, by Theorem 3.1, J1,σ,w(4)+1 is 4-clean. But
then we have tw(J1,σ,w(4)+1) ≤ w(4), a contradiction with Theorem 3.1. This proves (2).

Now the result follows from (1) and (2). This completes the proof of Theorem 3.3. ■

4. Connectification and statement of the main result

Here we state the main result of the paper, Theorem 4.1. Then we discuss how it implies
Theorems 1.5 and 1.6.

We need numerous definitions. A vertex v of a graph G is said to be simplicial if NG(v) is
a clique of G. The set of all simplicial vertices of G is denoted by Z(G). It follows that every
degree-one vertex in G belongs to Z(G). In particular, for every forest F , we have L(F ) = Z(F ).

By a caterpillar we mean a tree C of maximum degree three in which all branch vertices lie
on a path. A path P in C is called a spine for C if all branch vertices of C belong to V (P ) and
subject to this property P is maximal with respect to inclusion (our definition of a caterpillar is
non-standard for two reasons: a caterpillar is often allowed to be of arbitrary maximum degree,
and a spine often contains all vertices of degree more than one.)

Let C be a caterpillar with θ ≥ 3 leaves. Note that C has exactly θ − 2 branch vertices,
and both ends of each spine of C are leaves of C. Also, for every leaf l ∈ L(C), there exists
a unique branch vertex in C, denoted by vl, for which the unique path in C from l to vl does
not contain any branch vertex of C other than vl (and, in fact, {vl : l ∈ L(C)} is the set of all
branch vertices of C). We say an enumeration (l1, . . . , lθ) of L(C) = Z(C) is σ-wide if for some
spine P of C, the θ-tuple (l1, vl2 , . . . , vlθ−1 , lθ) is a σ-widening of P . Also, let H be the line graph
of C. Then assuming el to be the unique edge in C incident with the leaf l ∈ L(C), we have
Z(H) = {el : l ∈ L(C)}. An enumeration (el1 , . . . , elθ ) of Z(H) is called σ-wide if (l1, . . . , lθ)
is a σ-wide enumeration of L(C). By a σ-caterpillar, we mean a caterpillar C for which L(C)
admits a σ-wide enumeration. It follows that if H is the line graph of a caterpillar C, then Z(H)
admits a σ-wide enumeration if and only if C is a σ-caterpillar.

Let H be a graph and S be a set. We say H is S-tied if Z(H) ⊆ H ∩ S and loosely S-tied
if Z(H) = H ∩ S. Also, for a positive integer η ≥ 1, we say H is (loosely) (S, η)-tied if H is
(loosely) S-tied and |H ∩ S| = η. It follows that if H is loosely (S, η)-tied, then |Z(H)| = η.

For a graph G, a set S ⊆ G and integers η ≥ 2 and σ ≥ 1 and i ∈ {0, . . . , 4}, we say an
induced subgraph H of G is an (S, η, σ)-connectifier of type i if H satisfies the condition (Ci)
below.
(C0) H is a loosely (S, η)-tied line graph of a subdivided star in which every stem has length at

least σ.
(C1) H is an (S, η)-tied rooted subdivided star with root r in which every stem has length at

least σ, and we have (H ∩ S) \ L(H) ⊆ {r}.
(C2) H is an (S, η)-tied path with H ∩ S = {s1, . . . , sη} where (s1, . . . , sη) is a σ-widening of H.
(C3) H is a loosely (S, η)-tied σ-caterpillar.
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r

Figure 4. From left to right: an (S, 4)-connectifier H of type 0, 1, 2, 3 and 4.
Circled nodes depict the vertices in H ∩ S. Note that for the subdivided star, r

may or may nor belong to S (and if it does, then we have η = 5).

(C4) H is a loosely (S, η)-tied line graph of a σ-caterpillar.
See Figure 4. We say H is an (S, η)-connectifier of type i if it is an (S, η, 1)-connectifier of

type i. Also, we say H is an (S, η, σ)-connectifier (resp. (S, η)-connectifier) if it is an (S, η, σ)-
connectifier (resp. (S, η)-connectifier) of type i for some i ∈ {0, . . . , 4}.

Note that connectifiers of type 0 contain large cliques, and since we mostly work with t-clean
graphs, they do not come up in our arguments. However, for the sake of generality, we cover
them in both the above definition and the main result of the next section, Theorem 5.2. We
also remark that, unlike the connectifiers of other types, connectifiers of type 1 in fact need to
be “tied” rather than “loosely tied.” For instance, let G be a subdivided star with root r and
let S = L(G) ∪ {r}. Then for every η > 1, every (S, η)-connectifier in G contains r.

Let σ be a positive integer, F be a graph and X ⊆ F with |X| ≥ 2. Let π : [|X|] → X be
a bijection. By a σ-connectification of (F, X) with respect to π, we mean a graph Ξ with the
following specifications.

• F is an induced subgraph of Ξ.
• F \ X is anticomplete to Ξ \ F .
• Let H = Ξ \ (V (F ) \ X). Then H is (X, |X|, σ)-connectifier in Ξ of type i for i ∈ [4]

such that
– if H is of type 2 (that is, H is path), then, traversing H from one end to another,

(π(1), . . . , π(|X|)) is a σ-widening of H, and;
– if H is of type 3 or 4, then (π(1), . . . , π(|X|)) is a σ-wide enumeration of Z(H).

Also, by a σ-connectification of (F, X), we mean a σ-connectification of (F, X) with respect
to some bijection π : [|X|] → X.

Let Cσ,F,X,π be the class of all graphs with no induced subgraph isomorphic to a σ-connectification
of (F, X) with respect to π, and Cσ,F,X be the class of all graphs with no induced subgraph iso-
morphic to a σ-connectification of (F, X). In other words, Cσ,F,X is the intersection of all classes
Cσ,F,X,π over all bijections π : [|X|] → X. As a result, for every π : [|X|] → X, we have
Cσ,F,X ⊆ Cσ,F,X,π.

The following is our main result, which we will prove in Section 9.

Theorem 4.1. Let σ ≥ 1 be an integer, F be a rooted subdivided star forest of size at least two
and π : [|R(F )|] → R(F ) be a bijection. Then the class Cσ,F,R(F ),π is clean.

Next we discuss briefly how to deduce Theorems 1.5 and 1.6 using Theorem 4.1. The “only
if” direction of Theorem 1.5 is proved in Theorem 3.3. Also, the “if” direction of Theorem 1.5
follows from Theorem 1.6. So it suffices to prove Theorem 1.6, which we restate:

Theorem 4.2. Let H be a forest in which one component is a subdivided double star and every
other component is a subdivided star. Then F̃H is clean.

Proof. We define F and σ as follows. If H is a subdivided star forest, then let F = 2H be rooted
and σ = 2. If H is not a subdivided star forest, let H ′ be the 1-subdivision of H. Then there
are two branch vertices u1, u2 ∈ H ′ and a path Q in H ′ from u1 to u2 with Q∗ ̸= ∅ such that
F ′ = H ′ \ Q∗ is a subdivided star forest. For each i ∈ {1, 2}, let Fi be the component of F ′
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containing ui. Then ui is a vertex of maximum degree in Fi and so ui is a valid choice for a root
of Fi. Let F ′ be rooted such that u1, u2 ∈ R(F ′). Let δ, λ and θ be the maximum degree, the
reach and the size of F ′, respectively. So we have δ, θ ≥ 2 and λ ≥ 1. Let F = θSδ+1,λ be rooted
with its unique choice of roots and let σ = |Q| ≥ 3. Then, every σ-connectification of (F, R(F ))
contains a subdivision of H. Therefore, for every bijection π : [|R(F )|] → R(F ), we have
F̃H ⊆ Cσ,F,R(F ) ⊆ Cσ,F,R(F ),π. It follows that for every integer t ≥ 1, we have F̃ t

H ⊆ Cσ,F,R(F ),π.
This, together with Theorem 4.1 and Lemma 2.1, implies Theorem 4.2. ■

In fact, one may deduce Theorem 1.5 directly using the material from Sections 3, 6, 7 and 8
(and in particular, skipping Section 5).

5. Obtaining a connectifier

We begin with the following folklore result, see, for example, [2] for a proof.
Theorem 5.1. Let G be a connected graph, X ⊆ V (G) with |X| = 3 and H be a connected
induced subgraph of G with X ⊆ H and with H minimal subject to inclusion. Then one of the
following holds.

• There exists a vertex a ∈ H and three paths {Px : x ∈ X} (possibly of length zero) where
Px has ends a and x, such that

– H =
⋃

x∈X Px, and;
– the sets {Px \ {a} : x ∈ X} are pairwise disjoint and anticomplete.

• There exists a triangle with vertex set {ax : x ∈ X} in H and three paths {Px : x ∈ X}
(possibly of length zero) where Px has ends ax and x, such that

– H =
⋃

x∈X Px;
– the sets {Px \ {a} : x ∈ X} are pairwise disjoint and anticomplete, and;
– for distinct x, y ∈ X, axay is the only edge of H between Px and Py.

Theorem 5.1 may be reformulated as follows: for every choice of three vertices x, y, z in a
connected graph G, there is an induced subgraph H of G containing x, y, z such that, for some
δ ∈ [3], H is isomorphic to either a subdivision of K1,δ or the line graph of a subdivision of
K1,δ, and Z(H) ⊆ {x, y, z}. The main result of this section, the following, can be viewed as a
qualitative extension of Theorem 5.1.
Theorem 5.2. For every integer η ≥ 1, there exists an integer µ = µ(η) ≥ 1 with the following
property. Let G be a graph and S ⊆ V (G) with |S| ≥ µ such that S is contained in a connected
component of G. Then G contains an (S, η)-connectifier H. In particular, H is connected,
|H ∩ S| = η, and every vertex in H ∩ S has degree at most η in H.

For a graph G, S ⊆ G and positive integer η, one may observe that (S, η)-connectifiers are
minimal with respect to being connected and containing η vertices from S. Also, for η1, η2 ≥ 4
(which, given Theorem 5.1, captures the main content of Theorem 5.2) and distinct i1, i2 ∈
{0, 1, . . . , 4}, no (S, η1)-connectifier of type i1 contains an induced subgraph which is an (S, η2)-
connectifier of type i2. Therefore, Theorem 5.2 provides an efficient characterization of all
minimally connected induced subgraphs of G containing many vertices from a sufficiently large
subset S of vertices in G.

In order to prove Theorem 5.2, we need a few definitions and a result from [11]. By a big
clique in a graph J , we mean a maximal clique of cardinality at least three. A graph J is said
to be a bloated tree if

• every edge of J is contained in at most one big clique of J .
• for every big clique K of J and every v ∈ K, v has at most one neighbor in J \ K; and
• the graph obtained from J by contracting each big clique into a vertex is a tree.

It follows that every bloated tree is connected, and every connected induced subgraph of a
bloated tree is a bloated tree. Furthermore, we deduce:
Lemma 5.3. Let J be a bloated tree. Then for every cycle C in J , V (C) is a clique of J .
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Proof. Suppose for a contradiction that for some cycle C in J , V (C) contains two vertices which
are non-adjacent in J . Let C be chosen with |V (C)| = k as small as possible. It follows that
k ≥ 4. Let C = c1- · · · -ck-c1 such that c1 and ci are not adjacent for some i ∈ {3, . . . , k − 1}.
Let P be a path in J from c1 to ci with P ∗ ⊆ {c2 . . . , ci−1} and let Q be a path in J from
c1 to ci with Q∗ ⊆ {ci+1 . . . , ck}. So P and Q are internally vertex-disjoint and |P |, |Q| ≥ 3.
Also, H = J [P ∪ Q] is a connected induced subgraph of J , and so H is a bloated tree. If P ∗ is
anticomplete to Q∗, then H is cycle. But then the graph obtained from H by contracting each
big clique into a vertex is H itself, which is not tree, a contradiction with H being a bloated
tree. It follows that there exists p ∈ P ∗ and q ∈ Q∗ such that pq ∈ E(J). Consequently,
C1 = c1-P -p-q-Q-c1 and C2 = ci-P -p-q-Q-ci are two cycles in J with |V (C1)|, |V (C2)| < |V (C)|.
Thus, by the choice of C, for each i ∈ {1, 2}, Ki = J [V (Ci)] is a clique of J . For each i ∈ {1, 2},
let K ′

i be a maximal clique of J containing Ki. Then we have c1 ∈ K ′
1 and ci ∈ K ′

2, which implies
that K ′

1 and K ′
2 are distinct. But now the edge pq ∈ E(J) is contained in two maximal cliques

of J , namely K ′
1 and K2, which violates J being a bloated tree. This proves Lemma 5.3. ■

The following was proved in [11]:

Theorem 5.4 (Davies [11]). For every integer k ≥ 1, there exists an integer f = f(k) such that
if G is a connected graph and S ⊆ V (G) with |S| ≥ f(k), then G has an induced subgraph J
which is a bloated tree and |J ∩ S| ≥ k.

We also need the following well-known result; see, for example, [2] for a proof.

Lemma 5.5. For all positive integers d, q, there exists a positive integer N(d, q) such that for
every connected graph G on at least N(d, q) vertices, either G contains a vertex of degree at least
d, or there is a path in G with q vertices.

For a graph G and a set S ⊆ G, by an S-bump we mean a vertex v ∈ G \ S of degree two in
G, say NG(v) = {v1, v2}, such that v1v2 /∈ E(G). Also, by suppressing the S-bump v we mean
removing v from G and adding the edge v1v2 (hence, G is a subdivision of the resulting graph).
We are now ready to prove Theorem 5.2, which we restate:

Theorem 5.2. For every integer η ≥ 1, there exists an integer µ = µ(η) ≥ 1 with the following
property. Let G be a graph and S ⊆ V (G) with |S| ≥ µ such that S is contained in a connected
component of G. Then G contains an (S, η)-connectifier H. In particular, H is connected,
|H ∩ S| = η, and every vertex in H ∩ S has degree at most η in H.

Proof. Let f(·) be as in Theorem 5.4, and N(·, ·) be as in Lemma 5.5. We choose

µ = µ(η) = f(max{N(η, 8η2 + η), 2}).

By Theorem 5.4, since |S| ≥ µ, it follows that G has an induced subgraph J which is a bloated
tree with |J ∩ S| ≥ max{N(η, 8η2 + η), 2}, and subject to this property, J has as few vertices as
possible. Assume that η = 2. Then, since J is connected and |J ∩ S| ≥ 2, there is a path H in J
with ends in S and H∗ ∩ S = ∅. But then H is an (S, 2)-connectifier of type 2 in G, as desired.
Therefore, we may assume that η ≥ 3.
(3) Let X ⊆ J such that X is connected. Then for every connected component Q of J \ X, we
have Q ∩ S ̸= ∅. In particular, we have Z(J) ⊆ S.

Suppose not. Let Q be a component of J \X such that Q∩S = ∅. Since X connected, it holds
that J \ Q is connected, as well. It follows that J \ Q is bloated tree and |(J \ Q) ∩ S| = |J ∩ S|,
which contradicts the minimality of J . This proves (3).

Let J1 be the graph obtained from J by successively suppressing S-bumps in J until there are
none. Then J1 is also a bloated tree, and J is a subdivision of J1. The following is immediate
from (3) and the definition of J1.
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(4) J1 has no S-bump and J1 ∩ S = J ∩ S. Also, for every X ⊆ J1 with X connected and every
connected component Q of J1 \ X, we have Q ∩ S ̸= ∅. In particular, we have Z(J1) ⊆ S.

Since J is a bloated tree and so contains no hole, it follows that J is a subdivision of J1 with
the additional property that for every edge e ∈ E(J1) which is contained in a big clique of J1, we
have e ∈ E(J) (that is, e is not subdivided while obtaining J from J1). This, along with the fact
that J1 ∩ S = J ∩ S, implies that J contains an (S, η)-connectifier if and only if J1 contains an
(S, η)-connectifier. Therefore, in order to prove Theorem 5.2, it suffices to show that J1 contains
an (S, η)-connectifier, which we do in the rest of the proof.
(5) Let K be a maximal clique of J1, and for every v ∈ K, let Qv be the connected component of
J1 \ (K \ {v}) containing v. Then for every two distinct vertices u, v ∈ K, we have Qu ∩ Qv = ∅,
and uv is the only edge of J1 between Qu and Qv.

Suppose for a contradiction that there exist two distinct vertices u, v ∈ K for which either
Qu ∩Qv ̸= ∅ or there is an edge in J1 different from uv with one end in Qu and one end in Qv. It
follows that J1[Qu ∪Qv]−uv is connected, and so there exists a path P in J1 of length more than
one from u to v with P ∗ ⊆ (Qu ∪Qv)\{u, v} ⊆ J1 \K. Let x ∈ P ∗. Then C = u-P -v-u is a cycle
in J1. Since J1 is a bloated tree, by Lemma 5.3, V (C) is a clique, and so x is adjacent to both u
and v. Now, suppose that there exists a vertex y ∈ K \NJ1(x). Then we have y /∈ {u, v}, and so
C ′ = x-u-y-v-x is a cycle in J1 where V (C ′) contains two non-adjacent vertices, namely x and
y, which contradicts Lemma 5.3 and the fact that J1 is a bloated tree. Therefore, x is complete
to K, and so K ∪ {x} is a clique of J1 strictly containing K. This violates the maximality of K,
and so proves (5).

(6) Suppose that J1 contains a big clique K with |K| ≥ η. Then J1 contains an (S, η)-connectifier
of type 0.

For every v ∈ K, let Qv be the connected component of J1 \ (K \ {v}) containing v. Then
by (5), for every two distinct vertices u, v ∈ K, we have Qu ∩ Qv = ∅, and there is no edge in
J1 with one end in Qu and one end in Qv except for uv. Also, by (4), for every v ∈ K, we
have Qv ∩ S ̸= ∅. Therefore, since Qv is connected, we can choose a path Pv in Qv from v to
a vertex ℓv ∈ S (possibly v = ℓv) with Pv ∩ S = {ℓv}. It follows that for distinct u, v ∈ K, we
have Pu ∩ Pv = ∅, and there is no edge in J1 with one end in Pu and one end in Pv except for
uv. Now, let K ′ ⊆ K with |K ′| = η. Since η ≥ 3, it follows that H = J1[

⋃
v∈K′ Pv] is a loosely

(S, η)-tied line graph of a subdivided star; that is, H is an (S, η)-connectifier of type 0 in J1.
This proves (6).

(7) Let x ∈ J1 such that NJ1(x) is a stable set of J1, and for every a ∈ NJ1(x), let Qa be the
connected component of J1 \ x containing a. Then the sets {Qa : a ∈ NJ1(x)} are pairwise
disjoint and anticomplete to each other.

Suppose for a contradiction that there exist two distinct vertices a, b ∈ NJ1(x) for which either
Qa ∩ Qb ̸= ∅, or there is an edge in J1 with one end in Qa and one end in Qb. It follows that
J1[Qa ∪ Qb] is connected, and so there exists a path P in J1 of length more than one from a to
b with P ∗ ⊆ Qa ∩ Qb \ {a, b} ⊆ J1 \ {a, b, x}. Then C = a-P -b-x-a is a cycle in J1 where V (C)
contains two non-adjacent vertices, namely a and b. This contradicts Lemma 5.3 and the fact
that J1 is a bloated tree, and so proves (7).

Now we can handle the case where J1 contains vertices of large degree.
(8) Suppose that J1 has a vertex of degree at least η. Then J1 contains an (S, η)-connectifier of
type 0 or 1.

Since J1 is a bloated tree, for every vertex x ∈ J1, either NJ1(x) is a clique, or NJ1(x) is
stable set, or J1[NJ1(x)] has an isolated vertex y for which NJ1(x) \ {y} is a clique. Therefore,
J1 has a vertex of degree at least η, and it follows that either J1 contains a big clique K with
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|K| ≥ η or there exists a vertex x ∈ V (J1) of degree at least η in J1 such that NJ1(x) is a stable
set of J1. In the former case, (8) follows from (6). So we may assume that the latter case holds.
For each a ∈ NJ1(x), let Qa be the connected component of J1 \ x containing a. Then by (7),
the sets {Qa : a ∈ NJ1(x)} are pairwise disjoint and anticomplete to each other. Also, by (4),
for every a ∈ NJ1(x), we have Qa ∩ S ̸= ∅. Therefore, since Qa is connected, we can choose a
path Pa in Qa from a to a vertex ℓa ∈ S (possibly a = ℓa) with Pa ∩ S = {ℓa}. It follows that
the paths {Pa : a ∈ NJ1(x)} are pairwise disjoint and anticomplete to each other. Let A be a
subset of NJ1(x) with |A| = η − 1 if x ∈ S and |A| = η if x /∈ S. Then H = J1[

⋃
a∈A Pa] is a

(S, η)-tied rooted subdivided star with root x such that (H ∩ S) \ L(H) ⊆ {x}; that is, H is
(S, η)-connectifier in J1 of type 1. This proves (8).

Henceforth, by (8), we may assume that J1 has no vertex of degree at least η. Also, by (4),
we have |J1| ≥ |J1 ∩ S| ≥ N(η, 8η2 + η). As a result, by Lemma 5.5, J1 contains a path P on
8η2 + η vertices.
(9) Suppose that there is no path in P \ S of length 8η. Then J1 contains an (S, η)-connectifier
of type 2.

Suppose not. Then P contains no (S, η)-tied path. Let |P ∩ S| = s. It follows that s < η.
Therefore, since there is no path in P \ S of length 8η, we have |P | ≤ 8η(s + 1) + s < 8η2 + η, a
contradiction. This proves (9).

In view of (9), we may assume that P contains a path P1 of length 8η with P1 ∩ S = ∅, say

P1 = d0-a1-b1-c1-d1-a2-b2-c2-d2- · · · -a2η-b2η-c2η-d2η.

For each i ∈ [2η], let Ai = {ai, bi, ci}, let Li be the connected component of J1 \ Ai containing
P1[d0, di−1], and let Ri be the connected component of J1 \Xi containing P1[di, d2η]. We deduce:

(10) For each i ∈ [2η], Li and Ri are distinct, and so Li ∩ Ri = ∅.

Suppose not. Then J1[Li ∪ Ri] is connected. Therefore, there exists a path Z in J1 from a
vertex z ∈ Li to a vertex z′ ∈ Ri such that Z∗ ⊆ (Li ∪ Ri) \ P1. But then C = z-P1-z′-Z-z is a
cycle in J1 and V (C) contains two non-adjacent vertices, namely ai and ci, contradicting that
J1 is a bloated tree. This proves (10).

(11) For each i ∈ [2η], there exists a component Qi of J1 \ Ai different from Li and Ri.

Suppose not. Then J1 \ Ai has exactly two distinct components, namely Li and Ri. Assume
that bi has degree two in J1. Then, since bi ∈ P1 ⊆ J1 \ S, it follows that bi is an S-bump, which
violates (4). So there exists a vertex z ∈ NJ1(bi)\Ai ⊆ Li∪Ri, say z ∈ Li. Consequently, since Li

is connected, there exists a path Z in Li from z to a vertex z′ ∈ P1[d0, di−1] with Z ∩ P1 = {z′}.
But then C = bi-z-Z-z′-P1-bi is a cycle in J1 and V (C) contains two non-adjacent vertices,
namely bi and di−1, contradicting that J1 is a bloated tree. This proves (11).
(12) For each i ∈ [2η], let Qi be as in (11). Then we have P1 ∩ Qi = ∅ and NJ1(Qi) ⊆ Ai. Also,
the sets {Qi : i ∈ [2η]} are pairwise disjoint and anticomplete to each other.

The first two assertions are immediate from the fact that Qi is a component of J1 \Ai different
from Li and Ri. For the third one, suppose for a contradiction that Qi ∪ Qj is connected for
some distinct i, j ∈ [2η], say i < j. Since J1 is connected and NJ1(Qj) ⊆ Aj , it follows that
Qj ∪ Aj is connected, and so Qi ∪ Qj ∪ Aj is connected. As a result, there exists a path
R in J1 with one end q ∈ Qi and one end q′ ∈ Aj ⊆ Ri with R∗ ⊆ Qj . Also, we have
Ai ∩ R ⊆ Ai ∩ (Qi ∪ Qj ∪ Aj) ⊆ P1 ∩ (Qi ∩ Qj) = ∅. In other words, R is a path in J1 \ Ai from
q ∈ Qi to q′ ∈ Li. But then we have q ∈ Qi ∩ Ri, a contradiction with (11). This proves (12).

For each i ∈ [2η], let Qi be as in (11). Then by (4), since Ai is connected, we have Qi ∩S ̸= ∅.
Also, from (11) and the connectivity of J1, we have NQi(Ai) ̸= ∅. Therefore, since Qi is
connected, we can choose a path Wi in Qi from a vertex in xi ∈ NQi(Ai) to a vertex in yi ∈ Qi∩S
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(possibly xi = yi) such that W ∗
i ∩ (NQi(Ai) ∪ S) = ∅. Let Gi = J1[Ai ∪ Wi]. It follows that Gi

is connected and Gi ∩ S = {yi}.
The following is easily observed:

(13) The sets {Gi : i ∈ [2η]} are pairwise disjoint and anticomplete to each other. Also, for every
i ∈ [2η], di−1ai and cidi are the only edges in J1 with one end in Gi and one end in P1 \ Gi.

The proof is almost concluded. Note that since J1 is a bloated tree, it follows that for
every i ∈ [2η], there is no cycle in J1 containing both ai and ci. Consequently, we have either
|NAi(xi)| = 1, or NAi(xi) = {ai, bi}, or NAi(xi) = {bi, ci}, as otherwise xi-ai-bi-ci-xi is a cycle
in J1 containing both ai and ci. Let I ⊆ [2η]. We say I is light if |NAi(xi)| = 1 for every i ∈ I.
Also, we say I is heavy if for every i ∈ I, we have either NAi(xi) = {ai, bi}, or NAi(xi) = {bi, ci}.
It follows that there exists I ⊆ [2η] with |I| = η which is either light or heavy. Let i1 and iη

be smallest and the largest elements of I, respectively. It follows from η ≥ 3 that i1 and iη are
distinct and iη ≥ 3. Let Z1 be a path in Gi1 from ci1 to yi1 , and let Zη be a path in Giη from
aiη to yiη . Let

H = J1

P1[ci1 , aiη ] ∪ (Z1 ∪ Zη) ∪

 ⋃
i∈I\{i1,iη}

Gi

 .

Using (13), it is straightforward to observe that if I is light, then H is a loosely (S, η)-tied
caterpillar, and if I is heavy, then H is a loosely (S, η)-tied line graph of a caterpillar. In other
words, H is an (S, η)-connectifier of type 3 or 4. This completes the proof of Theorem 5.2. ■

6. Strong k-blocks

Let G be a graph. By a separation in G we mean a triple (L, M, R) of pairwise disjoint subsets
of vertices in G with L ∪ M ∪ R = G, such that neither L nor R is empty and L is anticomplete
to R in G. Let x, y ∈ G be distinct. We say a set M ⊆ G \ {x, y} separates x and y if there
exists a separation (L, M, R) in G with x ∈ L and y ∈ R. For a positive integer k, a k-block
in G is a maximal set B of at least k vertices such that no two distinct vertices x, y ∈ B are
separated by a set M ⊆ G \ {x, y} with |M | < k. The application of k-blocks to bounding the
treewidth in hereditary graph classes is not unprecedented; see for example, [16, 21]. However,
we find it best to work with a stronger notion of a k-block, which we define next.

Let k be a positive integer and let G be a graph. A strong k-block in G is a set B of at least k
vertices in G such that for every 2-subset {x, y} of B, there exists a collection P{x,y} of at least
k distinct and pairwise internally disjoint paths in G from x to y, where for every two distinct
2-subsets {x, y}, {x′, y′} ⊆ B and every choice of paths P ∈ P{x,y} and P ′ ∈ P{x′,y′}, we have
P ∩ P ′ = {x, y} ∩ {x′, y′}.

In this section, we prove that for all positive integers k and t, every t-clean graph with no
strong k-block has bounded treewidth. In other words, we show that for every positive integer
k, the class of all graphs with no strong k-block is clean.

To begin with, we need some definitions as well as a couple of results from the literature. For
a tree T and an edge xy ∈ E(T ), we denote by Tx,y the component of T − xy containing x. Let
G be a graph and (T, χ) be a tree decomposition for G. For every S ⊆ T , let χ(S) =

⋃
x∈S χ(x).

Also, for every edge xy ∈ E(T ), we define an adhesion for (T, χ) as χ(x, y) = χ(x) ∩ χ(y) =
χ(Tx,y) ∩ χ(Ty,x). For every x ∈ V (T ), by the torso at x, denoted by χ̂(x), we mean the graph
obtained from the bag χ(x) by, for each y ∈ NT (x), adding an edge between every two non-
adjacent vertices u, v ∈ χ(x, y). It is a well-known observation that clique cutsets do no effect the
treewidth. More precisely, the following holds (a proof can be worked out easily using Lemma
5 from [8]).

Theorem 6.1 (folklore, see Lemma 5 in [8]). Let G be a graph and let (T, χ) be a tree decompo-
sition for G. Then the treewidth of G is at most the maximum treewidth of a torso χ̂(x) taken
over all x ∈ V (T ).
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Next we bring the material we need from [12] and [22]. The fatness of a tree decomposition
(T, χ) of an n-vertex graph G is the (n + 1)-tuple (a0, . . . , an), where ai denotes the number
of parts of (T, χ) of size n − i. If (T, χ) has lexicographically minimum fatness among all tree
decompositions with all adhesions less than k, we call (T, χ) k-atomic. Also, a tree decomposition
(T, χ) of a graph G is tight if for each vertex x ∈ V (T ) and every neighbor y ∈ V (T ) of x, there
is a component C of χ(Ty,x) \ χ(Tx,y) such that every vertex in χ(x, y) has a neighbor in C. The
following is proved in [22].

Lemma 6.2 (Weißauer, Lemma 6 in [22]). Every k-atomic tree decomposition is tight.

Let (T, χ) be a tree decomposition for a graph G and S be a set of pairwise disjoint subtrees
of T . Let T ′ be the tree obtained from T by contracting every subtree S ∈ S into a new vertex
vS . Let χ′ : V (T ′) → 2V (G) be defined as follows. Let χ′(vS) = χ(S) for every S ∈ S, and let
χ′(v) = χ(v) for every v ∈ V (T ′) \ {vS : S ∈ S} = V (T ) \ (

⋃
S∈S S). One may readily observe

that (T ′, χ′) is a tree decomposition for G, which is referred to as a contraction of (T, χ). The
following theorem from [12] is the key ingredient in our proof of the main result of this section.1

Theorem 6.3 (Erde and Weißauer [12], see also [14]). Let r be a positive integer, and let G
be a graph containing no subdivision of Kr as a subgraph. Then G admits a tree decomposition
(T, χ) for which the following hold.

• (T, χ) is a contraction of a k-atomic tree decomposition for G with k = r(r − 1).
• Every adhesion of (T, χ) has cardinality less than r2.
• For every x ∈ V (T ), either χ̂(x) has fewer than r2 vertices of degree at least 2r4, or χ̂(x)

has no minor isomorphic to K2r2.

It is straightforward to check that every contraction of a tight tree decomposition is tight.
Also, for every positive integer k and every graph G, if G contains a subdivision of Kk3 as
a subgraph, then G contains a strong k-block. Therefore, the following is immediate from
Theorem 6.3 and Lemma 6.2.

Theorem 6.4. Let k be a positive integer and let G be a graph containing no strong k-block.
Then G admits a tight tree decomposition (T, χ) for which the following hold.

• Every adhesion of (T, χ) has cardinality less than k6.
• For every x ∈ V (T ), either χ̂(x) has fewer than k6 vertices of degree at least 2k12, or

χ̂(x) has no minor isomorphic to K2k6.

We can now prove the main result of this section. For every positive integer k, let Bk be the
class of all graphs with no strong k-block.

Theorem 6.5. For every integer k ≥ 1, the class Bk is clean.

Proof. Let t ≥ 1 and let G ∈ Bt
k, that is, G is a t-clean graph with no strong k-block. We aim

to show that there exists an integer w(k, t) ≥ 1 such that tw(G) ≤ w(k, t). By Theorem 6.4,
G has a tight tree decomposition (T, χ) for which every torso either has fewer than k6 vertices
of degree at least 2k12 or has no minor isomorphic to K2k6 . For each x ∈ V (T ), let Kx ⊆ χ̂(x)
be the set of all vertices in χ̂(x) of degree at least 2k12. We define τx as follows: if |Kx| < k6,
then let τx = χ̂(x) \ Kx, and otherwise let τx = χ̂(x). It follows that either τx has maximum
degree less than 2k12, or τx has no minor isomorphic to K2k6 . Let ξ(·, ·) be as in Theorem 1.2
and γ(·, ·) be as in Theorem 1.3. Let

γ0 = γ(3, t),
γ1 = γ(2k12, 2γ0),

1We remark that the corresponding statement in [12], namely “Theorem 4” therein, does not explicitly mention
that (T, χ) is a contraction of a k-atomic tree decomposition. However, as the reader can check, the proof given in
Section 3 of [12] is easily seen to yield this: it starts with a k-atomic tree decomposition “(T, V)” with k = r(r−1),
and concludes at the end that the desired tree decomposition is a certain contraction of (T, V).
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ξ1 = ξ(K2k6 , 2γ0),
w1 = w1(k, t) = max{γ1, ξ1}.

We claim that:
(14) For every x ∈ V (T ), we have tw(τx) ≤ w1.

Suppose for a contradiction that tw(τx) > w1 for some x ∈ V (T ). Note that either τx

has maximum degree less than 2k12 or τx has no minor isomorphic to K2k6 . Therefore, the
choice of w1 together with Theorems 1.2 and 1.3 implies that τx contains an induced subgraph
W which is isomorphic to either a subdivision of W2γ0×2γ0 or the line graph of a subdivision of
W2γ0×2γ0 . On the other hand, it can be seen that for every positive integer q, every subdivision of
W2q×2q contains an induced subgraph isomorphic to a proper subdivision of Wq×q (see Figure 5.)
Consequently, W , and so τx, contains an induced subgraph W0 which is isomorphic to either a
proper subdivision of Wγ0×γ0 or the line graph of a proper subdivision of Wγ0×γ0 . In particular,
W0 has maximum degree at most three. Let us say a non-empty subset K ⊆ W0 is a blossom
if there exists y ∈ NT (x) such that K ⊆ χ(x, y), and subject to this property, K is maximal
with respect to inclusion. It follows that every blossom K is a clique in W0 and so we have
|K| ∈ {1, 2, 3}. Also, every two blossoms intersect in at most one vertex, and since no two
triangles in W0 share a vertex, blossoms of cardinality three are pairwise disjoint. Let K be the
set of all blossoms, and for every blossom K ∈ K, let us fix yK ∈ NT (x) such that K ⊆ χ(x, yK).
From the maximality of blossoms, it follows that the vertices {yK : K ∈ K} are all distinct. Note
that (T, χ) is tight, and so for every y ∈ NT (x), there exists a component C(y) of χ(Ty,x)\χ(Tx,y)
such that the every vertex in χ(x, y) has a neighbor in C(y). Since (T, χ) is a tree decomposition,
it follows that the sets {C(yK) : y ∈ NT (x)} are pairwise distinct, disjoint and anticomplete
in G. Let HK be a connected induced subgraph of G[(C(yK) ∪ K)] which contains K, and
subject to this property, assume that HK is minimal with respect to inclusion. It follows that if
|K| = 1, then HK = K, if |K| = 2, then HK is a path in G between the two vertices in K with
H∗

K ⊆ C(yK), and if |K| = 3, then HK satisfies one of the two outcomes of Theorem 5.1. Also,
the sets {HK \ K : K ∈ K} are pairwise distinct, disjoint and anticomplete in G. Now, let

H = G

[(
W0 \

( ⋃
K∈K

K

))
∪
( ⋃

K∈K
HK

)]
.

Let H ′ be the minor of H obtained through the following steps in order:
(i) For every blossom K ∈ K with |K| = 3, contract the connected induced subgraph HK of

H into a vertex.
(ii) For every blossom K ∈ K with |K| = 2 such that K is contained in a triangle of W0,

contract the path HK in H into an edge between the two vertices in K.
(iii) Contract each triangle of the resulting graph after (ii) into a vertex.
Since W0 is isomorphic to either a proper subdivision of Wγ0×γ0 or the line graph of a proper
subdivision of Wγ0×γ0 , it is readily observed that H ′ is isomorphic to a subdivision of Wγ0×γ0 .
It follows that H contains Wγ0×γ0 as a minor, and so we have tw(H) ≥ γ0 = γ(3, t) + 1. Note
that since W0 has maximum degree at most three, H has maximum degree at most three, as
well. Therefore, by Theorem 1.3, H, and so G, contains either a subdivision of Wt×t or the line
graph of a subdivision of Wt×t as a induced subgraph. But this violates the assumption that G
is t-clean, and so proves (14).

Now, for every x ∈ V (T ), if |Kx| < k6, then we have χ̂(x) = τx ∪ Kx, and otherwise we have
χ̂(x) = τx. This, along with (14), implies that tw(χ̂(x)) ≤ w1 + k6 for every x ∈ V (T ). Hence,
writing w(k, t) = w1(k, t) + k6, by Theorem 6.1, we have tw(G) ≤ w(k, t). This completes the
proof of Theorem 6.5. ■

Note that for every integer k ≥ 1, if a graph G contains a strong k-block, then G contains
Kk as a topological minor, which in turn implies that G contains every k-vertex graph as a
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Figure 5. Proof of (14): the subgraph of W8×8 induced by the filled nodes
(top) is isomorphic to a proper subdivision of W4×4 (bottom). Note the

correspondence between the numbered removed nodes at the top and the inner
faces of the subdivided wall at the bottom.

topological minor. Therefore, the following common strengthening of Theorems 1.2 and 1.3 is
in fact an immediate corollary of Theorem 6.5:

Corollary 6.6. For every graph H, the class of all graphs with no H-topological-minor is clean.

7. k-blocks with distant vertices

The main result of this section, Theorem 7.2, asserts that for every positive integer k, every
graph containing a sufficiently large block contains either a subgraph that is a subdivision of a
large complete graph with all paths short, or an induced subgraph which contains a k-block with
its vertices pairwise far from each other. This will be of essential use in subsequent sections, and
before proving it, we recall the classical result of Ramsey (see e.g. [5] for an explicit bound).

Theorem 7.1 (See [5]). For all integers a, b ≥ 1, there exists an integer R = R(a, b) ≥ 1 such
that every graph G on at least R(a, b) vertices contains either a clique of cardinality a or a stable
set of cardinality b. In particular, for all integers t ≥ 1 and ρ ≥ R(t, t), every graph G containing
Kρ,ρ as a subgraph contains either Kt or Kt,t as an induced subgraph.

For a graph G and a positive integer d, a d-stable set in G is a set S ⊆ G such that for every
two distinct vertices u, v ∈ S, there is no path of length at most d in G from u to v. Note that
a d-stable set is also a d′-stable set for every 0 < d′ ≤ d. Here comes the main result of this
section.

Theorem 7.2. For all integers d, k ≥ 1 and m ≥ 2, there exists an integer k0 = k0(d, k, m) ≥ 1
with the following property. Let G be a graph and B0 be a strong k0-block in G. Assume that
G does not contain a (≤ d)-subdivision of Km as a subgraph. Then there exists A ⊆ G with
S ⊆ B0 \ A such that S is both a strong k-block and a d-stable set in G \ A.
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Proof. Let R(m, k) be as in Theorem 7.1. We show that

k0 = k0(d, k, m) =
(

R(m, k)
2

)
(d − 1) + R(m, k)

satisfies Theorem 7.2. Let X ⊆ B0 with |X| = R(m, k). Let g =
(R(m,k)

2
)
. Let e1, . . . , eg be an

enumeration of all 2-subsets of X, and let ei = {xi, yi} for each i ∈ [g]. Let U0 = ∅, and for
every i ∈ [g], having defined Ui−1, we define Pi and Ui as follows. If there exists a path P in G
of length at most d from xi to yi with P ∗ ∩ (Ui−1 ∪ X) = ∅, then let Pi = P and Ui = Ui−1 ∪ P ∗

i .
Otherwise, let Pi = ∅ and Ui = Ui−1. It follows that for all i, j ∈ [g] with i < j and Pi, Pj ̸= ∅,
we have Pi ∩ P ∗

j = Ui ∩ P ∗
j = ∅ and P ∗

i ∩ Pj = P ∗
i ∩ X = ∅.

Let G0 be the graph with V (G0) = X and for each i ∈ [g], xi is adjacent to yi in G0 if and
only if Pi ̸= ∅.
(15) G0 contains no clique of cardinality m.

Suppose for a contradiction that G0 contains a clique C of cardinality m. Then for every i ∈ [g]
with ei ⊆ C, we have Pi ̸= ∅. Also, for all distinct i, j ∈ [g], we have Pi ∩ P ∗

j = P ∗
i ∩ Pj = ∅. But

then G[
⋃

ei⊆C Pi], and so G contains a (≤ d)-subdivision of Km as a subgraph, a contradiction.
This proves (15).

Since |G0| = |X| = R(m, k), it follows from Theorem 7.1 and (15) that G0 contains a stable
set S of cardinality k. Let A = Ug ∪ (X \ S). Then we have |A| ≤ g(d − 1) + R(m, k) − k.
Therefore, since S ⊆ B0 \ A and B0 is a strong (g(d − 1) + R(m, k))-block, we deduce that S
is a strong k-block in G \ A. It remains to show that S is a d-stable set in G \ A. Suppose
not. Then there exists x, y ∈ S and a path Q in G \ A of length at most d from x to y. Thus,
we may choose i ∈ [g] such that ei ⊆ Q ∩ S. Therefore, assuming P = Q[xi, yi], we have
P ∗ ∩ S = ∅. Now P is a path in G \ A (and so in G) of length at most d from xi to yi with
P ∗ ⊆ G \ (A ∪ S) = G \ (Ug ∪ X) ⊆ G \ (Ui−1 ∪ X). It follows that Pi ̸= ∅. But we have ei ⊆ S
and S is a stable set in G0, which implies that Pi = ∅, a contradiction. This completes the proof
of Theorem 7.2. ■

8. Planted subdivided star forests

In this section we extend ideas from [16] to produce a subdivided star forest whose roots are
contained in sets with useful properties. Let G be a graph, S ⊆ G, and F a subdivided star
forest. We say a subgraph F ′ of G isomorphic to F is S-planted if F ′ is rooted and R(F ′) ⊆ S.
Write Hλ for the class of graphs with no holes of length greater than λ. The main result of this
section is the following.

Theorem 8.1. For all positive integers d, k, t, δ, λ, and θ with δ ≥ 2, there exists a positive
integer k1 = k1(d, k, t, δ, λ, θ) with the following property. Let G be a t-clean graph and let B1 be
a strong k1-block in G. Then there exist A ⊆ V (G) and S ⊆ B1 \ A such that the following hold.

• S is both a strong k-block and a d-stable set in G \ A.
• G \ A contains an S-planted copy of θSδ,λ.
• G \ A contains a hole of length greater than λ.

In particular, we have F t
θSδ,λ

, Ht
λ ⊆ Bk1.

Note that Theorem 8.1, combined with Theorem 6.5 and Lemma 2.1, implies Theorems 1.4
and 1.5 at once. Theorem 8.1 is also a key tool in the proof of Theorem 4.1 in Section 9. We
need the following two results from [16].

Lemma 8.2 (Lozin and Razgon [16]). For all positive integers a and b, there is a positive
integer c = c(a, b) such that if a graph G contains a collection of c pairwise disjoint subsets of
V (G), each of cardinality at most a and with at least one edge between every two of them, then
G contains Kb,b as a subgraph.



18 INDUCED SUBGRAPHS AND TREE DECOMPOSITIONS VII.

Theorem 8.3 (Lozin and Razgon [16]). For all positive integers p and r, there exists a positive
integer m = m(p, r) such that every graph G containing a (≤ p)-subdivision of Km as a subgraph
contains either Kp,p as a subgraph or a proper (≤ p)-subdivision of Kr,r as an induced subgraph.

We deduce the following lemma.
Lemma 8.4. For every integer t ≥ 1, there exists an integer n = n(t) ≥ 1 with the following
property. Let G be a t-clean graph and let ρ be an integer with ρ ≥ R(t, t), where R(·, ·) is as in
Theorem 7.1. Then G does not contain a (≤ ρ)-subdivision of Kn as a subgraph.
Proof. Let n = n(t) = m(R(t, t), 2t2), where m(·, ·) is as in Theorem 8.3. Suppose for a con-
tradiction that G contains a (≤ ρ)-subdivision of Kn as a subgraph. Then by Theorem 8.3, G
either contains Kρ,ρ as a subgraph, or contains an induced subgraph H isomorphic to a proper
subdivision of K2t2,2t2 . In the former case, by Theorem 7.1, G contains either Kt or Kt,t, which
violates the assumption that G is t-clean. In the latter case, note that a proper subdivision
of K2t2,2t2 contains a proper subdivision of every bipartite graph on at most 2t2 vertices. In
particular, H, and so G, contains a subdivision of Wt×t, again contradicting that G is t-clean.
This proves the Lemma 8.4. ■

We are now ready to prove the main result of this section.

Proof of Theorem 8.1. Let R(·, ·) be as in Theorem 7.1. Let c = c(λ, R(t, t)), where c(·, ·) is as
in Lemma 8.2. Let n = n(t), be as in Lemma 8.4. Let k0(·, ·, ·) be as in Theorem 7.2. Let

k1 = k1(d, k, t, δ, λ, θ) = k0(max{d, R(t, t), 2λ + 1}, max{k, R(c, δ), θ}, n).
We claim that this choice of k1 satisfies Theorem 8.1. To see this, suppose that G is a t-clean
graph which has a strong k1-block B1. Note first that, by Lemma 8.4, G does not contain
a (≤ max{d, R(t, t), 2λ + 1})-subdivision of Kn as a subgraph. Therefore, by Theorem 7.2,
there exist A ⊆ G and S ⊆ B1 \ A such that S is both a strong max{k, R(c, δ), θ}-block and
a max{d, R(t, t), 2λ + 1}-stable set in G \ A. In particular, S is both a strong k-block and a
d-stable set in G \ A, which proves the first bullet of Theorem 8.1. Next we claim that:
(16) For every x ∈ S, there exists a copy Fx of Sδ,λ in G \ A where x ∈ Fx has degree δ in Fx.

It is easily seen that |S| ≥ 2. Pick a vertex y ∈ S \ {x}. Since S is a strong R(c, δ)-block
in G \ A, there exists a collection {Pi : i ∈ [R(c, δ)]} of pairwise internally disjoint paths in
G \ A from x to y. Since S is a (2λ + 1)-stable set in G \ A, for each i ∈ [R(c, δ)], Pi has length
greater than λ + 1. Let P ′

i be the subpath of Pi of length λ containing x as an end. Then
{P ′

i : i ∈ [R(c, δ)]} is a collection of R(c, δ) pairwise disjoint subsets of G \ A, each of cardinality
λ. Let Γ be the graph with V (Γ) = [R(c, δ)] such that for all distinct i, j ∈ [R(c, δ)], i is adjacent
to j in Γ if and only if P ′

i \{x} is not anticomplete to P ′
j \{x} in G. By Theorem 7.1, Γ contains

either a clique of cardinality c or a stable set of cardinality δ. Suppose first that Γ contains a
clique of cardinality c. Then Lemma 8.2 implies that G contains KR(t,t),R(t,t) as a subgraph, and
thus by Theorem 7.1, G contains Kt or Kt,t, which violates the assumption that G is t-clean.
Consequently, Γ has a stable set I of cardinality δ. But now Fx = G[

⋃
i∈I P ′

i ] is a copy of Sδ,λ

in G \ A where x ∈ Fx has degree δ in Fx. This proves (16).
Now we can prove the second bullet of Theorem 8.1. For every x ∈ S, let Fx be as in (16).

Note that since S is a (2λ+1)-stable set in G\A, it follows that for all distinct x, x′ ∈ S, Fx and
Fx′ are disjoint and anticomplete to each other. Also, since S is a strong θ-block, there exists
S′ ⊆ S with |S′| = θ. But now G[

⋃
x∈S′ Fx] is an S-planted copy of θSδ,λ in G \ A, as desired.

It remains to prove the third bullet of Theorem 8.1. Proceeding as in the proof of (16), we
choose distinct vertices x, y ∈ S and two internally disjoint paths P1 and P2 in G\A from x to y
such that P ′

1 \ {x} is anticomplete to P ′
2 \ {x}, where for each i ∈ {1, 2}, P ′

i is the subpath of Pi

of length λ containing x as an end. Traversing P1 from x to y, let z be the first vertex in P ∗
1 with

a neighbor in P2 \ {x} (this vertex exists, since the neighbor of y in P1 is adjacent to P2 \ {x}).
Also, traversing P2 from x to y, let w ∈ P2 \ {x} be the first neighbor of z in P2 \ {x}. Note that



INDUCED SUBGRAPHS AND TREE DECOMPOSITIONS VII. 19

since P ′
1 is anticomplete to P ′

2, it follows that either z /∈ P ′
1 or w /∈ P ′

2. But now x-P1-z-w-P2-x
is a hole in G \ A of length at least λ + 3. This completes the proof of Theorem 8.1. ■

9. Proof of Theorem 4.1

The last step in the proof of Theorem 4.1 is the following. Note that the condition δ ≥ 3 is
due to the fact that there is only one choice of roots for subdivided star forests in which every
component has a branch vertex, and so it is slightly more convenient to work with them.

Lemma 9.1. For all positive integers t, δ, λ, σ, θ with δ ≥ 3 and θ ≥ 2, there exists an integer
k2 = k2(t, δ, λ, σ, θ) ≥ 1 with the following property. Let G be a t-clean graph containing a strong
k2-block. Then G contains a σ-connectification of (θSδ,λ, R(θSδ,λ)). In other words, we have
Ct

σ,θSδ,λ,R(θSδ,λ) ⊆ Bk2.

Proof. Let µ(·) be as in Theorem 5.2. Let

γ1 = µ(max{t, σθ, θ + 1}),

γ2 = µ(γ1),

γ3 = γ2((2tγ1 + δ)λ + 1).
Let k1(·, ·, ·, ·, ·, ·) be as in Theorem 8.1. We define:

k2 = k2(t, δ, λ, σ, θ) = k1

(
2σ − 1, γ3 + R(t, t)

(
γ3
2t

)
, t, 2tγ1 + δ, λ, γ2

)
.

Let B2 be a strong k2-block in G. By Theorem 8.1, there exist A ⊆ G and S ⊆ B2 \ A such that
the following hold. Let G0 = G \ A.

• S is both a strong R(t, t)
(γ3

2t

)
-block and a (2σ − 1)-stable set in G0.

• G0 contains an S-planted copy F of γ2S2tγ1+δ,λ.
Then |R(F )| = γ2 and |F | = γ3. For every x ∈ R(F ), let Fx be the component of F with

root x. Let W be the set of all vertices in G0 \ F with at least 2t neighbors in F .

(17) We have |W | < R(t, t)
(

γ3
2t

)
.

Suppose not. Let q = R(t, t)
(γ3

2t

)
and let w1, . . . , wq ∈ W be distinct. For every i ∈ [q], let

Ni be a set of 2t neighbors of wi in F . It follows that there exist I ⊆ [q] and N ⊆ F such that
|I| = R(t, t), |N | = 2t and Ni = N for all i ∈ I. Note that since F is a forest, N contains
a stable set N ′ of G0 with |N ′| = t. Also, since G0 is t-clean, it does not contains a clique of
cardinality t. Thus, by Lemma 7.1, G0[{wi : i ∈ I}] contains a stable set N ′′ of cardinality t.
But then G0[N ′ ∪ N ′′] is isomorphic to Kt,t, which contradicts that G0 is t-clean. This proves
(17).

Let G1 = G0 \W . Then G1 is a t-clean induced subgraph of G. In order to prove Theorem 9.1,
it suffices to show that G1 contains a σ-connectification of θSδ,λ, which we do in the rest of the
proof.

Recall that S is both a strong (γ3 + R(t, t)
(γ3

2t

)
)-block and a (2σ − 1)-stable set in G0. Thus,

since S \ W ⊆ G1, by (17), S \ W is both a strong γ3-block and a (2σ − 1)-stable set in G1.
Also, we have R(F) ⊆ S \ W . It follows that R(F ) is a (2σ − 1)-stable set in G1, and for every
two distinct vertices x, x′ ∈ R(F ), since |F \ R(F )| < γ3, there is a path in G1 \ (F \ R(F ))
from x to x′. Consequently, G1 \ (F ∪ R(F )) has a component containing R(F ). Let G2 be
the graph obtained from G1 by contracting Fx into x for each x ∈ R(F ). Then G2 contains
G1 \ (F ∪ R(F )) as a spanning subgraph, and so G2 has a component containing R(F ). Since
R(F ) ≥ γ2 = µ(γ1), from Theorem 5.2 applied to G2 and R(F ), it follows that G2 contains a
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connected induced subgraph H2 such that, assuming S′ = H2 ∩ R(F ), we have |S′| = γ1 and
every vertex in S′ has degree at most γ1 in H2. Let

H1 = G1

H2 ∪

 ⋃
x∈S′

Fx

 .

In other words, H1 is the induced subgraph of G1 obtained from H2 by undoing the contraction
of Fx into x for each x ∈ H2 ∩ R(F ). It follows that H1 is a connected induced subgraph of G1
and H1 ∩ R(F ) = H2 ∩ R(F ) = S′. Moreover, since R(F) is a (2σ − 1)-stable set in G1, S′ is
also a (2σ − 1)-stable set in H1.
(18) For every x ∈ S′, we have |NFx(H1 \ Fx)| < 2tγ1.

Note that NH1\Fx
(Fx) = NH2(x), and so |NH1\Fx

(Fx)| ≤ γ1. Also, since H1 is an induced
subgraph of G1, by the definition of W , no vertex in NH1\Fx

(Fx) ⊆ G1 \ F has at least 2t
neighbors in Fx. Therefore, we have |NFx(H1 \ Fx)| < 2tγ1. This proves (18).

The following is immediate from (18) and the fact that for every x ∈ S′, Fx is isomorphic to
S2tγ1+δ,λ.
(19) For every x ∈ S′, Fx contains an induced copy F ′

x of Sδ,λ containing x such that F ′
x \ {x}

is anticomplete to H1 \ F ′
x.

Next, we define:

H ′
1 = H1 \

 ⋃
x∈S′

(F ′
x \ {x})

 .

It follows that H ′
1 is a connected induced subgraph of G1 and S′ ⊆ H ′

1 is a (2σ − 1)-stable set
in H ′

1.
(20) H ′

1, and so G1, contains an (S′, θ, σ)-connectifier H of type i for some i ∈ [4].

Since |S′| ≥ γ1 = µ(max{t, θσ, θ + 1}), we can apply Theorem 5.2 to H ′
1 and S′. It follows

that H ′
1 contains an (S′, max{t, θσ, θ + 1})-connectifier H ′. Since S′ is a (2σ − 1)-stable set in

H ′
1, H ′ ∩ S′ is also a (2σ − 1)-stable set in H ′. It is straightforward to observe that if H ′ is of

type i for i ∈ {2, 3, 4}, then H ′, and so H ′
1, contains an (S′, θ, σ)-connectifier H. Also, if H ′ is of

type 0, then H ′ contains a clique of cardinality t, which violates that G1 is t-clean. It remains to
consider the case where H ′ is of type 1. Then H ′ contains an (S′, θ + 1)-tied rooted subdivided
star H ′′ with root r in which every stem has length at least σ and (H ′′ ∩ S′) \ L(H ′′) ⊆ {r}.
Since θ ≥ 2, it follows that H ′′ has at least three vertices and r is not a leaf of H ′′. If H ′′ is a
path with ends h1, h2 ∈ S′, then θ = 2 and r ∈ S′. This, along with the fact that H ′′ ∩ S′ is
a (2σ − 1)-stable set in H ′′, implies that H = H ′′[h1, r] has length at least 2σ. But then H is
a (S′, θ, σ)-connectifier of type 2 in H ′′, and so in H ′

1. Also, if H ′′ is not a path, then r is the
unique branch vertex of H ′′. Again, since H ′′ ∩ S′ is (2σ − 1)-stable set in H ′ (and so in H ′′),
there exists a stem P of H ′′ such that every stem of H ′′ other than P has length at least σ.
Therefore, H = H ′ \ (P \ {r}) is an (S′, θ, σ)-connectifier of type 1 in H ′′, and so in H ′

1. This
proves (20).

Let H be as in (20). Let X = H ∩ S. Let F ′ =
⋃

x∈X F ′
x and Ξ = G1[H ∪ F ′]. Then by (19),

F ′ is an induced subgraph of Ξ isomorphic to θSδ,λ and F ′ \ X is anticomplete to Ξ \ F . Also,
we have Ξ \ (F ′ \ X) = H. But then by (20), Ξ is a σ-connectification of (F ′, X), and so Ξ is an
induced subgraph of G isomorphic to a σ-connectification of (θSδ,λ, R(θSδ,λ)). This completes
the proof of Lemma 9.1. ■

We need one more definition before proving Theorem 4.1. For two rooted subdivided star
forests F1 and F2, we say F2 embeds in F1 if R(F2) ⊆ R(F1) and there exists a collection S of
stems of F1 such that F2 = F1 \ ((

⋃
P ∈S P ) \ R(F1)).
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Now we prove Theorem 4.1, which we restate:

Theorem 4.1. Let σ ≥ 1 be an integer, let F be a rooted subdivided star forest of size at least
two and let π : [|R(F )|] → R(F ) be a bijection. Then the class Cσ,F,R(F ),π is clean.

Proof. Let F be of maximum degree δ ≥ 0, reach λ ≥ 0 and size θ ≥ 2. For every x ∈ R(F ),
let Fx be the component of F with root x. Let F + = θSδ+3,λ+1 be rooted (with its unique
choice of roots). For every y ∈ R(F +), let F +

y be the component of F + with root y. Then for
every x ∈ R(F ) and every y ∈ R(F +), F +

y contains a copy F +
x,y of Fx such that F +

x,y embeds
in F +

y . Now, for every choice of bijections π : [θ] → R(F ) and π+ : [θ] → R(F +), and every
σ-connectification Ξ+ of (F +, R(F +)) with respect to π+, let

Ξ = (Ξ+ \ F +) ∪

 ⋃
i∈[θ]

F +
π(i),π+(i)

 .

It follows that Ξ is isomorphic to a σ-connectification of (F, R(F )) with respect to π. In other
words, for every bijection π : [θ] → R(F ), every σ-connectification of (F +, R(F +)) contains an
induced subgraph isomorphic to a σ-connectification of (F, R(F )) with respect to π. Therefore,
we have Cσ,F,R(F ),π ⊆ Cσ,F +,R(F +). This, together with Lemma 9.1, implies that for every
integer t ≥ 1, we have Ct

σ,F,R(F ),π ⊆ Ct
σ,F +,R(F +) ⊆ Bk2 , where k2 = k2(t, δ + 3, λ + 1, σ, θ) is as

in Lemma 9.1. Now the result follows from Theorem 6.5 and Lemma 2.1. ■
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