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Abstract

The cochromatic number of a graph G is the minimum number of stable sets and cliques of G
covering the vertex-set of G. In this paper we survey some resent results and techniques developed
in an attempt to answer the question: excluding which induced subgraphs causes a graph to have
bounded cochromatic number?

1 Introduction

All graphs in this paper are finite and simple. Let G be a graph. We denote by V (G) the vertex-set
of G. A tournament is a directed graph, where for every two vertices u, v exactly one of the (ordered)
pairs uv and vu is an edge. For tournaments S and T , we say that T is S-free if no subtournament of
T is isomorphic to S. If S is a family of tournaments, then T is S-free if T is S-free for every S ∈ S.
A tournament is transitive if it has no directed cycles (or, equivalently, no cyclic triangles). For a
tournament T , we denote by α(T ) the maximum number of vertices of a transitive subtournament
of T . Finally, the chromatic number of T is the smallest number of transitive subtournaments of T
whose vertex-sets have union V (T ).

We say that a tournament S is a hero if there exists d > 0 such that every S-free tournament
has chromatic number at most d, and S is a celebrity if there exists 0 < c ≤ 1 such that every
S-free tournament T has α(T ) ≥ c|V (T )|. Heroes and celebrities are studied in [1]. Somewhat
surprisingly, it turns out that a tournament is a hero if and only if it is a celebrity (the “only if”
implication is clear, but the “if” is non-trivial). The main result of [1] says that all heroes (and
equivalently celebrities) can be constructed starting from single vertices by repeatedly applying two
growing operations; and every tournament constructed in that way is a hero.

Similar questions make sense for undirected graphs as well as tournaments, and the goal of this
paper is to survey recent progress on this topic.

2 Heroes without direction

Let G be an undirected graph. For a subset X of V (G) we denote by G|X the subgraph of G
induced by X. The complement Gc of G is the graph with vertex set V (G), such that two vertices
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are adjacent in G if and only if they are non-adjacent in Gc. A clique in G is a set of vertices all
pairwise adjacent. A stable set in G is a set of vertices all pairwise non-adjacent (thus a stable set
in G is a clique in Gc). The largest size of a clique in G is denoted by ω(G), and the largest size of
a stable set by α(G). The chromatic number of G is the smallest number of stable sets of G with
union V (G). Given a graph H, we say that G is H-free if G has no induced subgraph isomorphic to
H. If G is not H-free, we say that G contains H. For a family F of graphs, we say that G is F-free
if G is F -free for every F ∈ F .

As with tournaments, one might ask what graphs H have the property that every H-free graph
G has chromatic number bounded by a constant d (where d depends on H, but not on G). However,
this question does not have an interesting answer. The complete graph on n vertices is H-free for
every H that is not a complete graph, and has chromatic number n. On the other hand, for every
k > 0 there exist graphs with no clique of size three and with chromatic number at least k (this is a
theorem of Erdős [4]), and so only graphs with at most two vertices have the property.

Let us modify the question a little. The cochromatic number of a graph G is the minimum number
of stable sets and cliques of G with union V (G). We denote the cochromatic number of G by coχ(G).
Let us say that a family H is heroic if there exists a constant d(H) > 0 such that coχ(G) ≤ d(H)
for every every H-free graph G, and it is celebrated if there exists a constant 0 < c(H) ≤ 1 such that
every H-free graph G contains either a clique or a stable set of size at least c(H)|V (G)|. Clearly, if
H is heroic, then it is celebrated. This turns out to be a better undirected analogue of the concepts
discussed in the Introduction. Heroic and celebrated families of undirected graphs were studied in
[3].

Let G be a complete multipartite graph with m parts, each of size m. Then G has m2 vertices,
and no clique or stable set of size larger than m; and the same is true for Gc. Thus every celebrated
family contains a complete multipartite graph and the complement of one. The girth of a graph is
the smallest length of a cycle in it. Recall that for every positive integer g there exist graphs with
girth at least g and no linear-size stable set (this is a theorem of Erdős [4]). Consequently, every
celebrated family must also contain a graph of girth at least g, and, by taking complements, a graph
whose complement has girth at least g. Thus, for a finite family of graphs to be celebrated, it must
contain a forest and the complement of one. In particular, if a celebrated family only contains one
graph H, then |V (H)| ≤ 2. The following conjecture, proposed in [3], states that these necessary
conditions for a finite family of graphs to be celebrated are in fact sufficient for being heroic.

Conjecture 2.1 A finite family of graphs is heroic if and only if it contains a complete multipartite
graph, the complement of a complete multipartite graph, a forest, and the complement of a forest.

We remark that this is closely related to a well-known conjecture made independently by Gyárfás
[5] and Sumner [10], that can be restated as follows in the language of heroic families:

Conjecture 2.2 For every complete graph K and every forest T , the family {K,T} is heroic.

For partial results on Conjecture 2.2 see [6, 7, 8, 9].
Since a complete graph is a multipartite graph, the complement of one, and the complement

of a forest, we deduce that Conjecture 2.1 implies Conjecture 2.2. The main result of [3] is that
Conjecture 2.1 and Conjecture 2.2 are in fact equivalent. A graph G is c-split if V (G) = X ∪ Y ,
where
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• ω(X) ≤ c, and

• α(Y ) ≤ c.

The fact that Conjecture 2.2 implies Conjecture 2.1 is a consequence of the following theorem of
[3]:

Theorem 2.1 Let K and J be graphs, such that both K and Jc are complete multipartite. Then
there exists a constant c(K,J) such that every {K,J}-free graph is c(K,J)-split.

Now let F be a family of graphs that contains a complete multipartite graph, the complement
of a complete multipartite graph, a forest, and the complement of a forest, and let G be an F-free
graph. By Theorem 2.1, there exists a constant c such that G is c-split. Now applying Conjecture 2.2
to G|X and Gc|Y , the assertion of Conjecture 2.1 follows.

3 Cographs

The goal of this section is to discuss a generalization of Theorem 2.1. A cograph is a graph obtained
from one-vertex graphs by repeatedly taking disjoint unions and disjoint unions in the complement. In
particular, complete graphs, their complements, complete multipartite graphs, and their complements
are all cographs. Thus Theorem 2.1 says that excluding a pair of cographs (a complete multipartite
graph and the complement of one) from a graph G guarantees that G has a partition into two parts,
each of which excludes a cograph that is in some sense simpler (a complete graph or its complement).
It turns out that this idea can be generalized to all cographs.

Let us make this more precise. We say that a graph G is anticonnected of Gc is connected. A
component of G is a maximal non-empty connected subgraph of G, and an anticomponent of G is a
maximal non-empty anticonnected induced subgraph of G.

First we observe that for every cograph G with at least two vertices, exactly one of G,Gc is
connected. Next we recursively define a parameter, called the height of a cograph, that measures its
complexity. The height of a one-vertex cograph is zero. If G is a cograph that is not connected, let
m be the maximum height of a component of G; then the height of G is m + 1. If G is a cograph
that is not anticonnected, let m be the maximum height of an anticomponent of G; then the height
of G is m+ 1.

Let G be a graph. Given a pair of graphs H1, H2, we say that G is {H1, H2}-split if V (G) =
X1 ∪X2, where the subgraph of G induced by Xi is Hi-free for every i ∈ {1, 2}. One of the results
of [2] is the following:

Theorem 3.1 Let k > 0 be an integer, and let H and J be cographs, each of height k+ 1, such that
H is anticonnected, and J is connected. Then there exist cographs H̃ and J̃ , each of height k, such
that H̃ is connected, and J̃ is anticonnected, and every {H,J}-free graph is (H̃, J̃)-split.

Clearly Theorem 2.1 follows from Theorem 3.1 by taking k = 1, and observing the cographs of
height one are complete graphs and their complements.
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4 Excluding pairs of graphs

Given an integer P > 0, a graph G, and a set of graphs F , we say that G admits an (F , P )-partition
if the vertex set of G can be partitioned into P subsets X1, . . . , XP , so that for every i ∈ {1, . . . , P},
either |Xi| = 1, or the subgraph of G induced by Xi is F -free for some F ∈ F (we remark that the
condition that |Xi| = 1 is only necessary when all the members of F are one-vertex graphs).

The proof of Theorem 2.1 in [3] relies on the following fact:

Theorem 4.1 Let p > 0 be an integer. There exists an integer r > 0 such that for every graph G,
if every induced subgraph of G with at most r vertices is p-split, then G is p-split.

Here is a weaker statement that would still imply Theorem 2.1 (here Kp is the complete graph
on p vertices, and Sp is the complement of Kp):

Theorem 4.2 Let p > 0 be an integer. There exist integers r, k > 0 such that for every graph G, if
every induced subgraph of G with at most r vertices is p-split, then G admits a ({Kp, Sp}, k)-partition.

However, the proof of Theorem 3.1 did not follow the same route, and no result similar to
Theorem 4.2 exists in the setting of general cographs, because of the following theorem of [2]:

Theorem 4.3 Let H, J be graphs, each with at least one edge. Then for every choice of integers
r, k there is a graph G such that

• for every S ⊆ V (G) with |S| ≤ r, the graph G|S is {H,J}-split, and

• G has no ({H,J}, k)-partition.

Unfortunately, we do not have an easy construction for Theorem 4.3; our proof involves proba-
bilistic arguments.

By taking complements, the conclusion of Theorem 4.3 also holds if each of H and J has a non-
edge. Thus Theorem 4.2 is in a sense the strongest theorem of this form possible. In view of this
fact, the proof of Theorem 3.1 in [2] takes a different route, and uses a much more general result,
which roughly says that excluding a pair of graphs, one of which is not connected and the other not
anticonnected, causes a graph to “break apart” into a bounded number of simpler pieces.

Here is a more precise statement. We denote by c(H) the set of components of H, and by ac(H)
the set of anticomponents of H. We remark that for every non-null graph G, at least one of c(G) or
ac(G) equals {G}.

Theorem 4.4 For every pair of graphs (H,J) there exists an integer P such that every {H,J}-free
graph admits a (c(H) ∪ ac(J), P )-partition.

Please note that Theorem 4.4 is trivial unless H is not connected and J is not anticonnected.
Even though Theorem 4.4 was motivated by trying to prove Theorem 3.1, its generality makes it an
interesting result on its own (possibly more so than Theorem 3.1).

To deduce Theorem 3.1 from Theorem 4.4 one just needs to observe the following:

Theorem 4.5 Let P, k be positive integers. Let F be a set of connected cographs, all of height at
most k. Then there exists a connected cograph C of height k such that for every partition X1, . . . , XP

of V (C) there exists i ∈ {1, . . . , P} such that C|Xi contains every member of F .

The proof of Theorem 4.5 is not difficult, and can be found in [2].
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5 Back to tournaments

Given tournaments H1 and H2 with disjoint vertex sets, we write H1 ⇒ H2 to mean the tournament
H with V (H) = V (H1) ∪ V (H2), and such that H|V (Hi) = Hi for i = 1, 2, and every vertex
of V (H1) is adjacent to (rather than from) every vertex of V (H2). One of the results of [1] is a
complete characterization of all heroes. An important and the most difficult step toward that is the
following:

Theorem 5.1 If H1 and H2 are heroes, then so is H1 ⇒ H2.

It turns out that translating the proof of Theorem 4.4 into the language of tournaments gives
the following result [2]:

Theorem 5.2 Let H1, H2 be non-null tournaments, and let H be H1 ⇒ H2. Let m = max(|V (H1)|, |V (H2)|).
Then every H-free tournament admits an ({H1, H2}, 2(m+ 1)m)-partition.

Theorem 5.2 immediately implies Theorem 5.1. More precisely, we have:

Theorem 5.3 Let H1, H2 be non-null tournaments, and let H be H1 ⇒ H2. Assume that for i = 1, 2
every every Hi-free tournament has chromatic number at most di. Let m = max(|V (H1)|, |V (H2)|)
and let d = max(d1, d2). Then every H-free tournament has chromatic number at most 2(m+ 1)md.

We remark that this proof of Theorem 5.1 is much simpler than the one in [1].
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