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Abstract

For graphs G and H, we say that G is H-free if it does not contain H as an induced subgraph.
Already in the early 1980s Alekseev observed that the Max Weight Independent Set problem
(MWIS) remains NP-hard in H-free graphs, unless every component of H is a path or a subdivided
claw, i.e., a graph obtained from the three-leaf star by subdividing each edge some number of times
(possibly zero). Since then, determining the complexity of MWIS in these remaining cases is one of
the most important problems in algorithmic graph theory.

In this paper we make an important step towards solving the problem by providing a polynomial-
time algorithm for MWIS in graphs excluding a fixed graph forest of paths and subdivided claws as
an induced subgraph, and a fixed biclique as a subgraph.

1 Introduction
A vertex-weighted graph is an undirected graph G equipped with a weight function w : V (G) → N.
For X ⊆ V (G), we use w(X) as a shorthand for

∑
x∈X w(x) and for a subgraph H of G, w(H) is

a shorthand for w(V (H)). By convention we use w(∅) = 0. Throughout the paper, we assume that
arithmetic operations on weights are performed in unit time.

For a graph G, a set I ⊆ V (G) is independent or stable if there is no edge of G with both endpoints in I.
By α(G) we denote the number of vertices in a largest independent set in G. In the Max Independent
Set (MIS) problem, we are given an undirected graph G, and ask for an independent set of size α(G).
In the Max Weight Independent Set (MWIS) problem we are given an undirected vertex-weighted
graph (G,w) and ask for a maximum-weight independent set in (G,w). Note that MIS is a special case
of MWIS where all weights are equal. By n we always denote the number of vertices of the instance
graph.

MIS (and MWIS as its generalization) is a “canonical” hard problem: It was one of the first problems
shown to be NP-hard [3030], it is notoriously hard to approximate [2929, 3232], and it is W[1]-hard [1919]. Many
of these hardness results hold even if we restrict input instances to some natural graph classes [99, 2020, 2222].
Thus, a very natural research direction is to consider restricted instances and try to capture the boundary
between “easy” and “hard” cases.
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State of the art. The study of the complexity of MWIS in restricted graph classes is a central
topic in algorithmic graph theory [22, 55, 88, 1717, 2626, 5454]. Particular attention is given to classes that are
hereditary, i.e., closed under vertex deletion. Among such classes a special role is played by ones defined
by forbidding certain substructures. For graphs G and H, we say that G is H-free if it does not contain
H as an induced subgraph.

In what follows, for t ⩾ 1, by Pt we denote the t-vertex path. For integers a, b, c ⩾ 1, by Sa,b,c we
denote the graph obtained from the three-leaf star (i.e., the claw) by subdividing the three edges a− 1,
b − 1, and c − 1 times, respectively. Alternatively, we may think of Sa,b,c as the graph obtained from
paths Pa+1, Pb+1, and Pc+1 by identifying one endvertex of each path. By dSa,b,c we denote the graph
with d components, each of which is isomorphic to Sa,b,c.

Let S be the family of subcubic forests H whose every component has at most one vertex of degree
3, i.e., whose every component is either a path or a subdivided claw.

The complexity study of MWIS in H-free graphs dates back to the early 1980s and the work of
Alekseev [44], who observed that for most graphs H the problem remains NP-hard. Indeed, let us discuss
the hard cases. First, MIS (and thus MWIS) is NP-hard in subcubic graphs [2222], which are H-free
whenever H has a vertex of degree at least 4. For the remaining cases we will use the so-called Poljak
construction [5151]: If G′ is obtained from G by subdividing one edge twice, then α(G′) = α(G)+1. Thus,
if Gp denotes the graph obtained from G by subdividing each edge exactly 2p times, then α(Gp) =
α(G) + p · |E(G)|. Now observe that if H has a cycle or two vertices of degree three in one component,
then G|V (H)| is H-free. Consequently, for such graph H, MIS is NP-hard in H-free graphs. Let us point
out that the above hardness reductions imply that MIS cannot even be solved in subexponential time
unless the Exponential-Time Hypothesis (ETH) fails.

Summing up, the only graphs H for which we may hope for a polynomial-time (or even subexponential-
time) algorithm for MWIS in H-free graphs are precisely the graphs in S.

The complexity of MWIS in H-free graphs when H ∈ S remains one of the most challenging and
important problems in algorithmic graph theory. Despite significant attention received from the graph
theory and the theoretical computer science communities, only partial results are known. Let us discuss
them.

First, consider the case that H = Pt for some t. Since P4-free graphs, also known as cographs, have
very rigid structure (in particular, they have clique-width at most 2), the polynomial-time algorithm for
this class of graphs is rather simple [1818]. However, already for P5-free graphs the situation is much more
complicated. The existence of a polynomial-time algorithm for P5-free graphs was a long-standing open
problem that was finally resolved in the affirmative in 2014 by Lokshtanov, Vatshelle, and Villanger [3535]
using the framework of potential maximal cliques. Later, using the same approach but with significantly
more technical effort, Grzesik, Klimošová, Pilipczuk, and Pilipczuk [2727] obtained a polynomial-time
algorithm for P6-free graphs. The case of P7-free graphs remains open.

However, some interesting algorithmic results can be obtained if we relax our notion of an efficient
algorithm. First, it was shown by Bacsó et al. [77] that for every fixed t, MWIS can be solved in
subexponential time 2O(

√
n logn) for Pt-free graphs. Another subexponential-time algorithm, with worse

running time, was obtained independently by Brause [1313]. While these results do not rule out the
possibility that the problem is NP-hard, let us recall that, assuming the ETH, subexponential algorithms
for MWIS in H-free graphs cannot exist if H /∈ S. Later, Chudnovsky et al. [1515] showed that for every
fixed t, the problem admits a QPTAS in Pt-free graphs. Finally, a very recent breakthrough result by
Gartland and Lokshtanov [2323] shows that for every fixed t, the problem can be solved in quasipolynomial
time nO(log3 n); see also a slightly simpler algorithm by Pilipczuk, Pilipczuk, and Rzążewski [5050] with
running time nO(log2 n). Note that this means that if for some t, MWIS is NP-hard for Pt-free graphs,
then all problems in NP can be solved in quasipolynomial time. While this does yet not imply that P =
NP, it still seems rather unlikely according to our current understanding of complexity theory.

Now let us turn to the case when H is a subdivided claw. The simplest subdivided claw is the
claw itself, i.e., S1,1,1 = K1,3. Claw-free graphs appear to be closely related to line graphs [1616] and
thus a polynomial-time algorithm for MWIS in claw-free graphs can be obtained by a modification of
the well-known augmenting path approach for finding a maximum-weight matching [4343, 4949, 5252] (i.e., a
maximum-weight independent set in a line graph). Let us highlight the close relation of claw-free graphs
and line graphs, as it will play an important role in our paper. The next smallest subdivided claw is the
fork, i.e., S2,1,1. A polynomial-time algorithm for MIS in fork-free graphs was obtained by Alekseev [66].
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Later it was extended to the MWIS problem by Lozin and Milanič [3636]. For disconnected H, it is known
that MWIS is polynomial-time-solvable in dS1,1,1-free graphs, for every fixed d [1010]. The existence of
polynomial-time algorithms in the next simplest (connected) cases, i.e., H = S3,1,1 and H = S2,2,1, is
wide open.

Again, some interesting results can be obtained if we look beyond polynomial-time algorithms. Chud-
novsky et al. [1515] proved that for every subdivided claw H, the MWIS problem in H-free graphs admits
a QPTAS and a subexponential-time algorithm working in time nO(n8/9). We point out that the argu-
ments used for the case when H is a subdivided claw are significantly more complicated and technically
involved than their counterparts for Pt-free graphs. These results were then simplified and improved by
Majewski et al. [4242]: They obtained another (faster) QPTAS and a subexponential-time algorithm with
running time nO(

√
n logn). The pinnacle of this line of research is the quasipolynomial-time algorithm for

MWIS in H-free graphs, for every H ∈ S, given by Gartland et al. [2424].
More tractability results can be obtained if we put some additional restrictions on the instance graph.

In particular, there is a long line of research concerning graphs excluding a fixed (but still small) path or
a subdivided claw and, simultaneously, some other small graphs, see e.g. [1111, 1212, 2525, 2828, 3434, 3737–3939, 4141, 4444–
4848]. A slightly different direction was considered by Lozin, Milanič, and Purcell [3737], who proved that for
every fixed t, MWIS is polynomial-time solvable in subcubic St,t,1-free graphs. Later, Lozin, Monnot,
and Ries [3838] showed a polynomial time algorithm for subcubic S2,2,2-free graphs. Finally, Harutyunyan
et al. [2828] generalized both these results by providing a polynomial-time algorithm for subcubic St,t,2-free
graphs, for any fixed t.

We remark that the case when H is a subdivided claw (or, more precisely, is in S and contains at
least one component which is not a path) is the only case where the restriction to bounded degree graphs
leads to an interesting problem. Indeed, the already mentioned hardness reduction of Alekseev [44] shows
that if H /∈ S, then MIS is NP-hard even in subcubic H-free graphs. On the other hand, if H is a forest
of paths, then connected H-free graphs of bounded degree are of constant size and thus of little interest.

In this work, we continue and significantly extend the study of the complexity of MWIS in H-free
graphs with additional restrictions, where H ∈ S.

Our results. As a warm-up, we present a polynomial-time algorithm for H-free graphs of bounded
degree, where H ∈ S.

Theorem 1 There exists an algorithm that, given a vertex-weighted graph (G,w) on n vertices with max-
imum degree ∆ and integers d, t in time 2O(dt∆2)nO(t∆2) either finds an induced dSt,t,t or the maximum
possible weight of an independent set in (G,w).

Note that by picking appropriate d and t, Theorem 1Theorem 1 yields a polynomial-time algorithm for MWIS for
bounded-degree graphs excluding a fixed graph from S as an induced subgraph.

Then we proceed to the main result of the paper: we show that MWIS remains polynomial-time
solvable in dSt,t,t-free graphs, even if instead of bounding the maximum degree, we forbid a fixed biclique
as a subgraph.

Theorem 2 For every fixed integers d, t, and s there exists a polynomial-time algorithm that, given a
vertex-weighted graph (G,w) that does not contain dSt,t,t as an induced subgraph nor Ks,s as a subgraph,
returns the maximum possible weight of an independent set in (G,w).

Let us remark that by the celebrated Kövári-Sós-Turán theorem [3333], classes that exclude Ks,s as a
subgraph capture all hereditary classes of sparse graphs, where by “sparse” we mean that the graph has
a subquadratic number of edges. Furthermore, by a simple Ramsey argument, for every positive integer
r there exists an integer s such that if G is Kr-free and Kr,r-free, then G does not contain Ks,s as a
subgraph. Hence, equivalently, Theorem 2Theorem 2 yields a polynomial-time algorithm for MWIS for graphs that
are simultaneously H-free (for some H ∈ S), Kr-free, and Kr,r-free.

Our techniques. As in the previous works [1515, 2424], the crucial tool in handling dSt,t,t-free graphs is
an extended strip decomposition. Its technical definition can be found in preliminaries; for now, it suffices
to say that it is a wide generalization of the preimage graph of a line graph (recall that line graphs are
S1,1,1-free) that allows for recursion for the MWIS problem. An extended strip decomposition of a graph
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G identifies some induced subgraphs of G as particles and, knowing the maximum possible weight of an
independent set in each particle, one can compute in polynomial time the maximum possible weight of
an independent set in G. (We remark that this computation involves advanced combinatorial techniques
as it relies on a reduction to the maximum weight matching problem in an auxiliary graph.) In other
words, finding an extended strip decomposition with small particles compared to |V (G)| is equally good
for the MWIS problem as splitting the graph into small connected components.

The starting point is the following theorem of [4242].

Theorem 3 ([4242, Corollary 12] in a semi-weighted setting) There exists an algorithm that, given
an n-vertex graph G with a set U ⊆ V (G) and integers d, t, in polynomial time outputs either:

• an induced copy of dSt,t,t in G, or

• a set X of size at most (d−1)(3t+1)+(11 log n+6)(t+1) and a rigid extended strip decomposition
of G−N [X] with every particle containing at most |U |/2 vertices of U .

(A rigid extended strip decomposition is an extended strip decomposition that does not have some
unnecessary empty sets. By N [X] we denote the set consisting of X and all vertices with a neighbor in
X.) Let us remark that the result stated in [4242, Theorem 2] is for unweighted graphs (i.e., U = V (G)
using the notation from Theorem 3Theorem 3), but the statement of Theorem 3Theorem 3 can be easily derived from the
proof, see also [2424].

Consider the setting of Theorem 1Theorem 1, i.e., the graph G has maximum degree ∆. We apply Theorem 3Theorem 3 to
G with U = V (G). If we get the first outcome, i.e., an induced dSt,t,t in G, we return it and terminate.
So assume that we get the second outcome, i.e., the set X. Note that as |X| = O(dt + t log n), we
have |N [X]| = O(dt∆ + t∆ log n). It is now tempting to exhaustively branch on N [X] (i.e., guess the
intersection of the sought independent set with N [X]) and recurse on the particles of the extended strip
decomposition of G−N [X]. However, implementing this strategy directly gives quasipolynomial (in n)
running time bound of nO(dt∆+t∆ logn), as the branching step yields up to 2|N [X]| = 2O(dt∆) · nO(t∆)

subcases and the depth of the recursion is O(log n).
Our main new idea now is to perform this branching lazily, by considering a more general border

version of the problem, where the input graph is additionally equipped with a set of terminals and we
ask for a maximum weight of an independent set for every possible behavior on the terminals.

Input: A vertex-weighted graph (G,w) with a set T ⊆ V (G) of terminals.
Task: Compute fG,w,T : 2T → N ∪ {−∞} defined for every IT ⊆ T as

fG,w,T (IT ) = max{w(I) | I ⊆ V (G) ∧ I is independent ∧ I ∩ T = IT }.

Border MWIS

A similar application of a border version of the problem to postpone branching in recursion appeared
for example in the technique of recursive understanding [1414, 3131].

Let us return to our setting, where we have a set X of size O(dt + t log n) and an extended strip
decomposition of G−N [X] with particles of size at most half of the size of V (G). We would like to remove
N [X] from the graph, indicate N(N [X]) as terminals and solve Border MWIS in (G−N [X],w, T :=
N(N [X])) using the extended strip decomposition for recursion. Note that, thanks to the bounded degree
assumption, the size of T = N(N [X]) is bounded by O(dt∆2 + t∆2 log n).

This approach almost works: the only problem is that, as the recursion progresses, the set of terminals
accummulates and its size can grow beyond the initial O(dt∆2 + t∆2 log n) bound. Luckily, this can be
remedied in a standard way: we alternate recursive steps where Theorem 3Theorem 3 is invoked with U = V (G)
with steps where Theorem 3Theorem 3 is invoked with U = T . In this manner, we can maintain a bound of
O(dt∆2 + t∆2 log n) on the number of terminals in every recursive call. Note that this bound also
guarantees that the size of the domain of the requested function fG,w,T is of size 2O(dt∆2)nO(t∆2), which
is within the promised time bound.

Let us now move to the more general setting of Theorem 2Theorem 2. Here, the starting points are the recent
results of Weißauer [5353] and Lozin and Razgon [4040] that show that in the St,t,t-free case, excluding a
biclique as a subgraph is not that much different than bounding the maximum degree.

A k-block in a graph G is a set B of k vertices, no two of which can be separated by deleting fewer
than k vertices. More precisely, there is no set X of size less than k, such that more than one component
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of G−X contains a vertex from B. The following result was shown by Weißauer (we refer to preliminaries
for standard definitions of tree decompositions, adhesions, and torsos).

Theorem 4 (Weißauer [5353]) Let G be a graph and k ⩾ 2 be an integer. If G has no (k + 1)-block,
then G admits a tree decomposition with every adhesion of size at most k, in which every torso has at
most k vertices of degree at least 2k(k − 1).

Even though the statement of the result in [5353] is just existential, the proof actually yields a polynomial-
time algorithm to compute such a tree decomposition.

It turns out that dSt,t,t-free graphs with no large bicliques have no large blocks.

Lemma 5 For any d, t, and s there exists k such that the following holds. Every dSt,t,t-free graph with
no subgraph isomorphic to Ks,s has no k-block.

Let us remark that Lozin and Razgon [4040] showed Lemma 5Lemma 5 for St,t,t-free graphs. However, an extension
of their argument applies to dSt,t,t-free graphs; we include it in Appendix AA.

Combining Theorem 4Theorem 4 and Lemma 5Lemma 5 we immediately obtain the following.

Corollary 6 For any d, t, and s there exists k such that the following holds. Given a dSt,t,t-free graph G
with no subgraph isomorphic to Ks,s, in polynomial time one can compute a tree decomposition of G with
each adhesion of size at most k, in which every torso has at most k vertices of degree at least 2k(k− 1).

To prove Theorem 2Theorem 2 using Corollary 6Corollary 6 we need to carefully combine explicit branching on the (bounded
number of) vertices of large degree in a single bag with — as in the bounded degree case — applying
Theorem 3Theorem 3 to the remainder of the graph and indicating N(N [X]) as the terminal set of the border
problem passed to the recursive calls. Finally, we combine these steps with the information passed
between the bags of the tree decomposition.

2 Preliminaries
Our algorithms take a vertex-weighted graph (G,w) as an input. In the recursion, we will be working
on various induced subgraphs of G with vertex weight inherited from w. Somewhat abusing notation,
we will keep w for the weight function in any induced subgraph of G.

Tree decompositions. Let G be a graph. A tree decomposition of G is a pair (T , β) where T is
a tree and β : V (T ) → 2V (G) is a function satisfying the following: (i) for every uv ∈ E(G) there exists
t ∈ V (T ) with u, v ∈ β(t), and (ii) for every v ∈ V (G) the set {t ∈ V (T ) | v ∈ β(t)} induces a connected
nonempty subtree of T . For every t ∈ V (T ) and st ∈ E(T ), the set β(t) is the bag at node t and the
set σ(st) := β(s) ∩ β(t) is the adhesion at edge st. An adhesion of a tree decomposition (T , β) is the
adhesion at some edge of T . The critical property of a tree decomposition (T , β) is that if st ∈ E(T )
and Vs and Vt are two connected components of T − {st} that contain s and t, respectively, then σ(st)
separates

⋃
x∈Vs

β(x) \ σ(st) from
⋃

x∈Vt
β(x) \ σ(st) in G.

The torso of a bag β(t) in a tree decomposition (T , β) is a graph H with V (H) = β(t) and uv ∈ E(H)
if uv ∈ E(G) or there exists a neighbor s ∈ NT (t) with u, v ∈ σ(st). That is, the torso of β(t) is created
from G[β(t)] by turning the adhesion σ(st) into a clique for every neighbor s of t in T .

Extended strip decompositions. We follow the notation of [2424, 4242]. A triangle in a graph is a
set of three distinct, pairwise adjacent vertices. For a graph H, by T (H) we denote the set of triangles in
H. Similarly as we write xy instead of {x, y} for an edge, we write xyz instead of {x, y, z} for a triangle.
An extended strip decomposition of a graph G is a pair (H, η) that consists of:

• a simple graph H,

• a vertex set η(x) ⊆ V (G) for every x ∈ V (H),

• an edge set η(xy) ⊆ V (G) for every xy ∈ E(H), and its subsets η(xy, x), η(xy, y) ⊆ η(xy),

• a triangle set η(xyz) ⊆ V (G) for every xyz ∈ T (H),
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η(gf)
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Figure 1: A graph H (top) and a schematic view of an extended strip decomposition (H, η) of G. Green
areas depict the sets η(xy, y). Solid line indicates that all edges between two sets exist. Dashed line
denotes that edges might exist. Picture from [2424], courtesy of the authors.

which satisfy the following properties:

1. The family {η(o) | o ∈ V (H) ∪ E(H) ∪ T (H)} is a partition of V (G).

2. For every x ∈ V (H) and every distinct y, z ∈ NH(x), the set η(xy, x) is complete to η(xz, x) (i.e.,
all possible edges between these two sets exist).

3. Every uv ∈ E(G) is contained in one of the sets η(o) for o ∈ V (H)∪E(H)∪T (H), or is as follows:

• u ∈ η(xy, x), v ∈ η(xz, x) for some x ∈ V (H) and y, z ∈ NH(x), or

• u ∈ η(xy, x), v ∈ η(x) for some xy ∈ E(H), or

• u ∈ η(xyz) and v ∈ η(xy, x) ∩ η(xy, y) for some xyz ∈ T (H).

A schematic picture of an extended strip decomposition of a graph is shown in ??.
An extended strip decomposition (H, η) is rigid if for every xy ∈ E(H), the sets η(xy), η(xy, x), and

η(xy, y) are nonempty, and for every isolated x ∈ V (H), the set η(x) is nonempty. Note that if (H, η) is
a rigid extended strip decomposition of G, then |V (H)| is bounded by |V (G)|.
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For an extended strip decomposition (H, η) of a graph G, we identify five types of particles.

vertex particle: Ax := η(x) for each x ∈ V (H),

edge interior particle: A⊥
xy := η(xy) \ (η(xy, x) ∪ η(xy, y)) for each xy ∈ E(H),

half-edge particle: Ax
xy := η(x) ∪ η(xy) \ η(xy, y) for each xy ∈ E(H),

full edge particle: Axy
xy := η(x) ∪ η(y) ∪ η(xy) ∪

⋃
z : xyz∈T (H)

η(xyz) for each xy ∈ E(H),

triangle particle: Axyz := η(xyz) for each xyz ∈ T (H).

As announced in the introduction, to solve MWIS in G it suffices to know the solution to MWIS in
particles. The proof of the following lemma follows closely the lines of the proof of analogous statement
of [1515] and is included for completeness in Appendix BB.

Lemma 7 Given a Border MWIS instance (G,w, T ), an extended strip decomposition (H, η) of G,
and a solution fG[A],w,T∩A to the Border MWIS instance (G[A],w, T ∩ A) for every particle A of
(H, η), one can in time 2|T | times a polynomial in |V (G)| + |V (H)| compute the solution fG,w,T to the
input (G,w, T ).

We need the following simple observations.

Lemma 8 Let G be a Kt-free graph and let (H, η) be a rigid extended strip decomposition of G. Then
the maximum degree of H is at most t− 1.

Proof. Let x ∈ V (H). Observe that the sets {η(xy, x) | y ∈ NH(x)} are nonempty and complete to
each other in G. Hence, G contains a clique of size equal to the degree of x in H. □

Lemma 9 Let G be a graph and let (H, η) be an extended strip decomposition of G such that the maxi-
mum degree of H is at most d. Then, every vertex of G is in at most max(4, 2d+ 1) particles.

Proof. Pick v ∈ V (G) and observe that:

• If v ∈ η(x) for some x ∈ V (H), then v is in the vertex particle of x and in one half-edge and one
full-edge particle for every edge of H incident with x. Since there are at most d such edges, v is in
at most 2d+ 1 particles.

• If v ∈ η(xy) for some xy ∈ E(H), then v is in at most four particles for the edge xy.

• If v ∈ η(xyz) for some xyz ∈ T (H), then v is in the triangle particle for xyz and in three full edge
particles, for the three sides of the triangle xyz. □

3 Bounded-degree graphs: Proof of Theorem 11
This section is devoted to the proof of Theorem 1Theorem 1.

Let d, t be positive integers and let (G,w) be the input vertex-weighted graph. We denote n := |V (G)|
and ∆ to be the maximum degree of G. Let

ℓ := (d− 1)(3t+ 1) + ⌈11 log n+ 6⌉(t+ 2) = O(dt+ t log n)

be an upper bound on the size of X for any application of Theorem 3Theorem 3 for any induced subgraph of G.
We describe a recursive algorithm that takes as input an induced subgraph G′ of G with weights w

and a set of terminals T ⊆ V (G′) of size at most 4ℓ∆2 and solves Border MWIS on (G′,w, T ). The
root call is for G′ := G and T := ∅; indeed, note that fG,w,∅(∅) is the maximum possible weight of an
independent set in G.

Let (G′,w, T ) be an input to a recursive call. First, the algorithm initializes fG′,w,T (IT ) := −∞ for
every IT ⊆ T .

If |V (G′)| ⩽ 4∆2ℓ, the algorithm proceeds by brute-force: it enumerates independent sets I ⊆ V (G′)
and updates fG′,w,T (I ∩ T ) with w(I) whenever the previous value of that cell was smaller. As ℓ =
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O(dt + t log n), this step takes 2O(dt∆2)nO(t∆2) time. This completes the description of the leaf step of
the recursion.

If |V (G′)| > 4∆2ℓ, the algorithm proceeds as follows. If |T | ⩽ 3∆2ℓ, let U := V (G′), and otherwise,
let U := T . The algorithm invokes Theorem 3Theorem 3 on G′ and U . If an induced dSt,t,t is returned, then it
can be returned by the main algorithm as it is in particular an induced subgraph of G. Hence, we can
assume that we obtain a set X ⊆ V (G) of size at most ℓ and an extended strip decomposition (H, η) of
G∗ := G′ −NG′ [X] whose every particle contains at most |U |/2 vertices of U .

Observe that as |X| ⩽ ℓ and the maximum degree of G is ∆, we have |NG′(NG′ [X])| ⩽ ∆2ℓ. Let
T ∗ := (T ∩ V (G∗))∪NG′(NG′ [X]). Note that we have T ∗ ⊆ V (G∗) and |T ∗| ⩽ 5∆2ℓ. For every particle
A of (H, η), we invoke a recursive call on (G∗

A := G∗[A],w, T ∗
A := T ∗ ∩ A), obtaining fG∗

A,w,T∗
A

(or
an induced dSt,t,t, which can be directly returned). We use Lemma 7Lemma 7 to obtain a solution fG∗,w,T∗ to
Border MWIS instance (G∗,w, T ∗).

Finally, we iterate over every IT ⊆ T ∗∪NG′ [X] (note that T ⊆ T ∗∪NG′ [X]) and, if IT is independent,
update the cell fG′,w,T (IT ∩T ) with the value w(IT \T ∗)+fG∗,w,T∗(IT ∩T ∗), if this value is larger than
the previous value of this cell. This completes the description of the algorithm.

The correctness of the algorithm is immediate thanks to Lemma 7Lemma 7 and the fact that NG′ [X] is adjacent
in G′ only to NG′(NG′ [X]), which is a subset of T ∗.

For the complexity analysis, consider a recursive call to (G∗
A,w, T ∗

A) for a particle A. If |T | ⩽ 3∆2ℓ,
then |T ∗

A| ⩽ |T ∗| ⩽ 4∆2ℓ. Otherwise, U = T and |T ∩ A| ⩽ |T |/2 ⩽ 2∆2ℓ. As |NG′(NG′ [X])| ⩽ ∆2ℓ,
we have |T ∗

A| ⩽ 3∆2ℓ. Hence, in the recursive call the invariant of at most 4∆2ℓ terminals is maintained
and, moreover:

• if |T | ⩽ 3∆2ℓ, then U = V (G′) and |V (G∗
A)| = |A| ⩽ |V (G′)|/2;

• otherwise, V (G∗
A) ⊆ V (G′) and |T ∗

A| ⩽ 3∆2ℓ, hence the recursive call will fall under the first bullet.

We infer that the depth of the recursion is at most 2⌈log n⌉.
At every non-leaf recursive call, we spend nO(1) time on invoking the algorithm from Theorem 3Theorem 3,

2O(dt∆2)nO(t∆2) time to compute fG∗,w,T∗ using Lemma 7Lemma 7, and 2O(dt∆2)nO(t∆2) time for the final iter-
ation over all subsets IT ⊆ T ∗ ∪ NG′ [X]. Hence, the time spent at every recursive call is bounded by
2O(dt∆2)nO(t∆2).

At every non-leaf recursive call, we make subcalls to (G∗
A,w, T ∗

A) for every particle A of (H, η).
Lemmas 88 and 99 ensure that the sum of |V (G∗

A)| over all particles A is bounded by (2∆ + 3)|V (G′)|.
Hence, the total size of all graphs in the i-th level of the recursion is bounded by n · (2∆+3)i. Since the
depth of the recursion is bounded by 2⌈log n⌉, the total size of all graphs in the recursion tree is bounded
by nO(log∆). Since this also bounds the size of the recursion tree, we infer that the whole algorithm runs
in time 2O(dt∆2)nO(t∆2).

This completes the proof of Theorem 1Theorem 1.

4 Graphs with no large bicliques: Proof of Theorem 22
This section is devoted to the proof of Theorem 2Theorem 2.

Let d, t, s be positive integers and let k be the constant depending on d, t, s from Corollary 6Corollary 6. Note
that we can assume that k ⩾ 2. Again, let (G,w) be the input vertex-weighted graph, let n := |V (G)|,
and let

ℓ := (d− 1)(3t+ 1) + ⌈11 log n+ 6⌉(t+ 2) = O(dt log n)

be an upper bound on the size of X for any application of Theorem 3Theorem 3 for any induced subgraph of G.11
The general framework and the leaves of the recursion are almost exactly the same as in the previous

section, but with different thresholds. That is, we describe a recursive algorithm that takes as input an
induced subgraph G′ of G with weights w and a set of terminals T ⊆ V (G′) of size at most 32k6ℓ and
solves Border MWIS on (G′,w, T ). The root call is for G′ := G and T := ∅ and the algorithm returns
fG,w,∅(∅) as the final answer.

Let (G′,w, T ) be an input to a recursive call. The algorithm initiates first fG′,w,T (IT ) = −∞ for
every IT ⊆ T .

1As the dependence of k on d, t, s is superpolynomial, for the sake of simplicity, we do not try to optimize the dependence
of the complexity bound on d, t, s.
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If |V (G′)| ⩽ 32k6ℓ, the algorithm proceeds by brute-force: it enumerates independent sets I ⊆ V (G′)
and updates fG′,w,T (I ∩ T ) with w(I) whenever the previous value of that cell was smaller. As ℓ =
O(dt log n) and k is a constant depending on d, t, and s, this step takes polynomial time. This completes
the description of the leaf step of the recursion.

Otherwise, if |V (G′)| > 32k6ℓ, we invoke Corollary 6Corollary 6 on G′, obtaining a tree decomposition (T , β) of
G′. If |T | ⩽ 24k6ℓ, let U := V (G′) \ T , and otherwise, let U := T .

For every t1t2 ∈ E(T ), we proceed as follows. For i = 1, 2, let Ti be the connected component of
T − {t1t2} that contains ti and let Vi =

⋃
x∈Ti

β(x) \ σ(t1t2). Clearly, σ(t1t2) separates V1 from V2. We
orient the edge t1t2 towards ti with larger |U ∩ Vi|, breaking ties arbitrarily.

There exists t ∈ V (T ) of outdegree 0. Then, for every connected component C of G′ − β(t) we have
|C ∩ U | ⩽ |U |/2. Fix one such node t and let B := β(t) and let C be the set of connected components
of G′ − B. Let GB be a supergraph of G′[B] obtained from G′[B] by turning, for every C ∈ C, the
neighborhood NG′(C) into a clique. Note that GB is a subgraph of the torso of β(t). Hence, by the
properties promised by Corollary 6Corollary 6, for every C ∈ C we have |NG′(C)| ⩽ k (as this set is contained in a
single adhesion of an edge incident with t in T ) and GB contains at most k vertices of degree at least
2k(k − 1). Let Q be the set of vertices of GB of degree at least 2k(k − 1).

We perform exhaustive branching on Q. That is, we iterate over all independent sets J ⊆ Q and
denote GJ := G′ −Q−NG′(J), T J := T ∩ V (GJ), UJ := U ∩ V (GJ). For one J , we proceed as follows.

We invoke Theorem 3Theorem 3 to GJ with set UJ , obtaining a set XJ of size at most ℓ and a rigid extended
strip decomposition (HJ , ηJ) of GJ −NGJ [XJ ] whose every particle has at most |UJ |/2 ⩽ |U |/2 vertices
of U . Note that GJ is an induced subgraph of G′, which is an induced subgraph of G, so there is no
induced dSt,t,t in GJ .

A component C ∈ C is dirty if NGJ [XJ ] ∩NG′ [C] ̸= ∅ and clean otherwise. Let

Y J := (NGJ [XJ ] ∩B) ∪
⋃

C∈C : C is dirty

(NG′(C) ∩ V (GJ)).

The following bounds will be important for further steps.

|NGJ [XJ ] ∩B| ⩽ 2k(k − 1)|XJ |. (1)

To see (11) observe that in the graph GJ , a vertex v ∈ XJ ∩B has at most 2k(k − 1)− 1 neighbors in B
(as every vertex of B \ Q has degree less than 2k(k − 1) in GB), while every vertex v ∈ XJ \ B has at
most k neighbors in B, as every component of G′ − B has at most k neighbors in B. Since k ⩾ 2 and
thus 2k(k − 1)− 1 ⩾ k, this proves (11).

|Y J | ⩽ (2k(k − 1) + k + (2k(k − 1))2)|XJ | ⩽ 4k4|XJ | ⩽ 4k4ℓ = O(k4dt log n). (2)

To see (22), consider a dirty component C ∈ C. Observe that either C contains a vertex of XJ or
NG′(C) ∩ V (GJ) contains a vertex of NGJ [XJ ] ∩ B. There are at most |XJ | dirty components of
the first type, contributing in total at most k|XJ | vertices to Y J . For the dirty components of the
second type, although there can be many of them, we observe that if v ∈ NG′(C) ∩ NGJ [XJ ] ∩ B,
then NG′(C) ∩ V (GJ) ⊆ NGB [v]. Hence, for every dirty component of the second type, it holds that
NG′(C)∩V (GJ) ⊆ NGB [NGJ [XJ ]∩B]. Since each vertex of NGJ [XJ ]∩B has degree less than 2k(k−1)
in GB , by (11) we have ∣∣NGB

[
NGJ [XJ ] ∩B

]∣∣ ⩽ (2k(k − 1))2|XJ |.
Adding the upper bound on |NGJ [XJ ] ∩B| from (11), the bound (22) follows.

A component C ∈ C is touched if it is dirty or NG′(C) contains a vertex of Y J . Let

ZJ := (NGJ [Y J ] ∩B) ∪
⋃

C∈C : C is touched

NG′(C) ∩ V (GJ).

Now let us argue that

|ZJ | ⩽ 2k(k − 1)|Y J | ⩽ 8k6|XJ | ⩽ 8k6ℓ = O(k6dt log n). (3)

Indeed, if C is touched, then NG′(C) contains a vertex v ∈ Y J (if C is dirty, NG′(C)∩V (GJ) is contained
in Y J), and then NG′(C) is contained in NGB [v]. Also, for v ∈ Y J we have NGJ [v]∩B ⊆ NGB [v]. Hence,
ZJ ⊆ NGB [Y J ]. Since the maximum degree of a vertex of B \Q is 2k(k − 1)− 1, this proves (33).
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For every touched C ∈ C, denote GC := GJ [NG′ [C]∩V (GJ)] and TC := ((T ∩C)∪NG′(C))∩V (GJ).
We recurse on (GC ,w, TC), obtaining fGC ,w,TC

.
Let

GY := GJ − Y J −
⋃

C∈C : C is touched

C.

Note that, by the definition of dirty and touched, GY is an induced subgraph of GJ −NGJ [XJ ]. Hence,
(HJ , ηJ) can be restricted to a (not necessarily rigid) extended strip decomposition (HJ , ηJ,Y ) of GY .

Let TY := (T ∪ZJ)∩ V (GY ). For every particle A of (HJ , ηJ,Y ), we recurse on (GY [A],w, TY ∩A),
obtaining fGY [A],w,TY ∩A. Then, we use these values with Lemma 7Lemma 7 to solve a Border MWIS instance
(GY ,w, TY ), obtaining fGY ,w,TY .

Next, we iterate over every independent set IT ⊆ T J ∪ TY ∪ Y J . For fixed IT , let I ⊆ V (G′) be the
union of the following sets:

(i) J ,

(ii) IT ,

(iii) a maximum-weight independent set in GY whose intersection with TY is IT ∩ Y Y ,

(iv) for each touched component C ∈ C, a maximum-weight independent set in GC whose intersection
with TC is IT ∩NG′ [C].

Observe that I is independent. Indeed, all neighbors of J were removed when defining GJ , and Y J

separates touched components from each other and from GY . Thus, making sure that all partial solutions
agree on Y J , we ensure that I does not contain two adjacent vertices.

Second, note that the sets listed in (iii) and (iv) have weights, respectively, fGY ,w,TY (IT ∩ TY ) and
fGC ,w,TC

(NG′ [C]∩ IT ). Consequently, I is an independent set in G′, satisfying I ∩ (Q∪ T ∪ TY ∪ Y J) =
J ∪ IT , of weight:

w(J)+w(IT \TY )+ fGY ,w,TY (IT ∩TY )+
∑
C∈C

C is touched

(fGC ,w,TC
(NG′ [C] ∩ IT )−w(IT ∩NG′(C))) . (4)

We update the cell fG′,w,T ((IT ∪ J) ∩ T ) with this value if it is larger than the previous value of this
cell. This completes the description of the algorithm.

For the proof of correctness, we already observed that I, defined above, is an independent set and its
weight is (44). Thus it suffices to argue that we can compute its weight using the information returned
by appropriate recursive calls. This is indeed the case, as for every touched component C, the whole
NG′(C)∩V (GJ) is in the terminal set for the recursive call (GC ,w, TC) and the whole NG′(C)∩V (GY )
is in ZJ and thus in the terminal set for the Border MWIS instance (GY ,w, TY ).

For the sake of analysis, consider a recursive call on (GC ,w, TC) for a touched component C. If
|T | ⩽ 24k6ℓ and U = V (G′)\T , then |TC | ⩽ |T |+k ⩽ 32k6ℓ and |V (GC)\TC | ⩽ |C \T | ⩽ |V (G′)\T |/2.
Otherwise, if |T | > 24k6ℓ and U = T , then |TC | ⩽ |T |/2 + k ⩽ 16k6ℓ + k ⩽ 24k6ℓ. Thus, the recursive
call on (GC ,w, TC) will fall under the first case of at most 24k6ℓ terminals.

Analogously, consider a recursive call on (GY [A],w, TY ∩ A) for a particle A of (HJ , ηJ,Y ). If
|T | ⩽ 24k6ℓ and U = V (G′) \ T , then |TY ∩ A| ⩽ |TY | ⩽ |T | + |ZJ | ⩽ 32k6ℓ due to (33). Furthermore,
|V (GY [A]) \ TY | ⩽ |V (G′) \ T |/2. Otherwise, if |T | > 24k6ℓ and U = T , then |TY ∩A| ⩽ |T |/2+ |ZJ | ⩽
16k6ℓ + 8k6ℓ ⩽ 24k6ℓ again due to (33). Thus, the recursive call on (GY [A],w, TY ∩ A) will fall under
the first case of at most 24k6ℓ terminals.

Finally, note that a recursive call (G′,w, T ) without nonterminal vertices (i.e., with T = V (G′)) is a
leaf call.

We infer that all recursive calls satisfy the invariant of at most 32k6ℓ terminals and the depth of the
recursion tree is bounded by 2⌈log n⌉ (as every second level the number of nonterminal vertices halves).

At each recursive call, we iterate over at most 2k subsets J ⊆ Q. Lemma 8Lemma 8 ensures that the maximum
degree of HJ is at most 2t − 1, while Lemma 9Lemma 9 ensures that every vertex of GY is used in at most 4t
particles of (HJ , ηJ,Y ). In a subcall (GC ,w, TC) for a touched component C, vertices of C are not used
in any other call for the current choice of J , while all vertices of V (GC) \C are terminals. Consequently,
every nonterminal vertex v of G′ is passed as a nonterminal vertex to a recursive subcall at most 2k · 4t
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number of times (and a terminal is always passed to a subcall as a terminal). Furthermore, a recursive
call without nonterminal vertices is a leaf call. As the depth of the recursion is O(log n), we infer that,
summing over all recursive calls in the entire algorithm, the number of nonterminal vertices is bounded
by nO(log t+k) and the total size of the recursion tree is nO(log t+k).

At each recursive call, we iterate over all 2k subsets J ⊆ Q and then we invoke Theorem 3Theorem 3 and iterate
over all independent sets IT in T J ∪ TY ∪ Y J . Thanks to the invariant |T | ⩽ 32k6ℓ and bounds (22),
and (33), this set is of size O(k6ℓ). Hence, every recursive call runs in time nO(k6t)+kcd,t , where cd,t is a
constant depending on d and t. As k is a constant depending on d, t, s, the final running time bound is
polynomial in n. This completes the proof of Theorem 2Theorem 2.

5 Conclusion
While it is generally believed that MWIS is polynomial-time-solvable in St,t,t-free (and even dSt,t,t-free)
graphs (with no further assumptions), such a result seems currently out of reach. Thus it is interesting to
investigate how further can we relax the assumptions on instances, as we did when going from Theorem 1Theorem 1
to Theorem 2Theorem 2. In particular, we used the assumption of Kr-freeness twice: once in Lemma 5Lemma 5 and then
to argue that H (the pattern of an extended strip decomposition we obtain) is of bounded degree. On
the other hand, the assumption of Kr,r-freeness was used just once: in Lemma 5Lemma 5. Thus it seems natural
to try to prove the following conjecture.

Conjecture 10 For every integers t, r there exists a polynomial-time algorithm that, given an St,t,t-free
and Kr-free vertex-weighted graph (G,w) computes the maximum possible weight of an independent set
in (G,w).
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A Appendix: Proof of Lemma 55
For positive integers a, b, the Ramsey number of a and b, denoted by Ram(a, b), is the smallest integer r
such that every graph on r vertices contains either an independent set of size a or a clique of size b. It
is well-known that Ram(a, b) ⩽

(
a+b−2
a−1

)
.

For a graph H, a subdivision of H is any graph obtained from H by subdividing each edge arbitrarly
many (possibly 0) times. By a t-subdivision (resp., (⩽ t)-subdivision) we mean a subdivision where each
edge was subdivided exactly (resp., at most t) times. A proper subdivision is one where each edge was
subdivided at least once. By S(r, t) we denote the t-subdivision of the r-leaf star. In particular, S(3, t)
is exactly St,t,t.

We will need the following two technical results shown by Lozin and Razgon [4040].

Lemma 11 ([4040, Lemma 2]) There is a function c : N×N → N with the following property. If a graph
G contains a collection of c(a, p) pairwise disjoint subsets of vertices, each of size at most a and with at
least one edge between any two of them, then G contains Kp,p as a subgraph.

Lemma 12 ([4040, Theorem 3]) There is a function m : N×N → N with the following property. Every
graph G containing a (⩽ p)-subdivision of Km(h,p) as a subgraph contains either Kp,p as a subgraph or a
proper (⩽ p)-subdivision of Kh,h as an induced subgraph.

The following lemma is the main technical ingredient of the proof. It can be seen as a strengthening
of Claim 2 in [4040].

Lemma 13 For all positive integers d, p,m there exists k = k(d, p,m) such that the following holds. If
G contains a k-block, then it contains:

1. a (⩽ p)-subdivision of Km as a subgraph or

2. Kp,p, as a subgraph, or

3. dSp,p,p as an induced subgraph.

Proof. Let c be the function given by Lemma 11Lemma 11. Define the following constants

q = 2 Ram(d, c(3p+ 1, p)),

r = (q/2− 1)(3p+ 1) + 3,

ℓ = Ram(p, c(p, p)),

k′ = max

(
m+ q, p

(
r

2

)
+ ℓ

)
,

k = Ram(2k′,m).

Suppose that G has a k-block B̃ but no subgraph isomorphic to Kp,p nor induced subgraph isomorphic
to dSp,p,p. We aim to show that G has a (⩽ p)-subdivision of Km as a subgraph. In particular, if G[B̃]

contains Km itself, we are done. Thus, by the choice of k, there is an independent set B ⊆ B̃ of size 2k′.
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Consider a pair {x, y} of distinct vertices from B. Since x and y are non-adjacent and cannot be
separated by deleting fewer than k vertices, by Menger’s theorem there is a set P(x, y) of k ⩾ 2k′

pairwise internally disjoint x-y-paths in G. Without loss of generality we can assume that each such
path is induced.

Claim 1 There is a subset B′ ⊆ B of size k′ with the following property. For each pair of distinct
vertices x, y ∈ B′ there is a set P ′(x, y) of k′ pairwise internally disjoint induced x-y-paths in G that do
not contain any vertices from B′ \ {x, y}.

Proof of Claim. Let B′ be any set of k′ vertices from B. Consider any two distinct vertices x, y ∈ B′.
As the interiors of paths in P(x, y) are pairwise disjoint, we observe that at most k′ paths might contain
vertices from B′ \ {x, y}. Thus P(x, y) contains at least |P(x, y)| − k′ ⩾ k′ paths that do not intersect
B′ \ {x, y}. ⌟

Fix a pair {x, y} of distinct vertices from B′. A path in P ′(x, y) is long if it has at least p internal
vertices and short otherwise. The pair {x, y} is distant if at least ℓ paths in P ′(x, y) are long.

Let Q ⊆ B′ be a minimum-size subset of B′ that intersects all distant pairs. (It might be useful
to think of Q as a minimum vertex cover in a graph with vertex set B′ where the edges correspond to
distant pairs.) We consider two cases, depending whether Q is “large” or “small”.

Case 1 (large Q): |Q| ⩾ q. In this case there is a set consisting of at least |Q|/2 ⩾ Ram(d, c(3p+1, p))
pairwise disjoint distant pairs (i.e., a matching in the mentioned graph). Let M be such a set of size
exactly Ram(d, c(3p+ 1, p)).

Claim 2 For each {x, y} ∈ M , there is a set S{x,y} contained in the union of paths in P ′(x, y) that
induces S(r, p) in G.

Proof of Claim. Fix {x, y} ∈ M . For a long path P ∈ P ′(x, y), let prefix(P ) be the set of p first
vertices of P , starting from the side of x, but excluding x itself. So prefix(P ) induces a p-vertex path,
and prefix(P ) ∪ {x} induces a (p+ 1)-vertex path in G.

Fix any set P ′
long of ℓ long paths from P ′(x, y), and define Z = {prefix(P ) | P ∈ P ′

long}. Consider
an auxiliary graph Z with vertex set Z, in which two elements are adjacent if and only if there is an edge
between one set and the other (we emphasize here that the sets in Z are pairwise disjoint).

If Z contains a clique of size c(p, p), then, by Lemma 11Lemma 11, we obtain a subgraph isomorphic to Kp,p

in G, a contradiction. Thus, since |Z| = ℓ = Ram(r, c(p, p)), we obtain an independent set of size r in Z.
The p paths forming this independent set, together with x, induce the desired copy of S(r, p). ⌟

Observe that even though the pairs in M are pairwise disjoint, the sets S{x,y} might still intersect.
In the next claim we extract from them induced copies of Sp,p,p that are pairwise disjoint.

Claim 3 For each {x, y} ∈ M there is an induced copy of Sp,p,p contained in S{x,y}, such that for any
distinct {x, y}, {x′, y′} ∈ M ′ the corresponding copies of Sp,p,p are disjoint.

Proof of Claim. Fix an arbitrary order {x1, y1}, . . . , {x|M |, y|M |} on pairs in M . The proof is by
induction.

The copy of Sp,p,p for {x1, y1} can be selected by picking any three out of r paths in the copy of S(r, p)
given by Claim 2Claim 2. So let i ∈ [1, |M |−1] and suppose that for each 1 ⩽ j ⩽ i we have selected an induced
copy Sj of Sp,p,p contained in S{xj ,yj}. Note that in total we have selected i · (3p+1) vertices. Consider
the pair {xi+1, yi+1} and let P 1, . . . , P p be the t-vertex paths obtained from S{xi+1,yi+1} by deleting xi+1.
Since each of the i(3p+ 1) selected vertices can belong to at most one of the paths P 1, . . . , P p, at most
i(3p+1) ⩽ (|M |−1)(3p+1) of these paths might intersect S1∪ . . .∪Si. So, as r = (|M |−1)(3p+1)+3,
there is always a choice of three paths that are disjoint with S1 ∪ . . . ∪ Si. Recall that by Claim 1Claim 1 the
vertex xi+1 is not contained

⋃
1⩽j⩽i S

j . Thus the vertices of the three selected paths, together with xi+1,
form the set Si+1. ⌟

Note that the copies of Sp,p,p extracted in Claim 3Claim 3, even though pairwise disjoint, might still have
edges between them. Thus it remains to show that we can extract d copies of Sp,p,p that together form
an induced dSp,p,p in G. We proceed similarly as in the proof of Claim 2Claim 2. Let S be the family consisting

16



of induced copies of Sp,p,p for all {x, y} ∈ M ; they are given by Claim 3Claim 3. Let S be the graph with vertex
set S where two vertices are adjacent if and only if there is an edge from one set to another. Note that
|S| = Ram(d, c(3p + 1, p)). An independent set in S of size d corresponds to an induced dSp,p,p in G.
On the other hand, if S has a clique of size at least c(3p + 1, p), then by Lemma 11Lemma 11 we obtain Kp,p as
a subgraph of G. By the choice of |S| one of these cases must happen, and both yield a contradiction.
Thus we conclude that Case 1 cannot occur.

Case 2 (small Q): Q < q. Define B′′ = B′ \ Q; note that |B′′| ⩾ k′ − q ⩾ m. For any distinct
x, y ∈ B′′, let P ′′(x, y) be obtained from P ′(x, y) by removing all long paths. By the definition of Q we
observe that for all x, y we have |P ′′(x, y)| ⩾ k′ − ℓ ⩾ p

(
m
2

)
.

Let R be any m-element subset of B′′.

Claim 4 For each pair {x, y} of distinct vertices of R there is a path P {x,y} ∈ P ′′(x, y) such the paths
selected for distinct pairs are internally disjoint.

Proof of Claim. The proof is similar to the proof of Claim 3Claim 3. We use induction. Enumerate pairs of
distinct vertices from R as {x1, y1}, . . . , {x(m2 ), y(m2 )}.

The path P {x1,y1} can be arbitrarily chosen from P ′′(x1, y1). Suppose that we have selected paths
P {x1,y1}, . . . , P {xi,yi} for some 1 ⩽ i <

(
m
2

)
. Since each path is short, the selected paths have in total at

most i · p < p
(
m
2

)
internal vertices.

Now consider the set P ′′(xi+1, yi+1). Recall that the paths in this set are pairwise internally disjoint.
Since |P ′′(xi+1, yi+1)| ⩾ p

(
m
2

)
, we observe that there is a path in P ′′(xi+1, yi+1) which is internally

disjoint from all previously selected paths. We pick this path as P {xi+1,yi+1}. ⌟

Recall that for each distinct x, y ∈ R, the path P {x,y} does not contain vertices from R\{x, y}. Thus
the set R with the paths given by Claim 4Claim 4 forms a (⩽ p)-subdivision of Km which is a subgraph of G.
This concludes the proof of Lemma 13Lemma 13. □

Now we can proceed to the proof of Lemma 5Lemma 5.

Proof. (of Lemma 5Lemma 5.) Define

p = max(s, p),

h = d(3t+ 1) (i.e., the number of vertices of dSt,t,t),
m = m(h, p),

k = k(d, p,m),

where functions m and k are given, respectively, by Lemma 12Lemma 12 and Lemma 13Lemma 13.
For a contradiction, suppose that G has a k-block. As Kp,p contains Ks,s as a subgraph and dSp,p,p

contains dSt,t,t as an induced subgraph, by Lemma 13Lemma 13 we conclude that G contains a (⩽ p)-subdivision
of Km as a subgraph. By Lemma 12Lemma 12 we observe that G contains a proper (⩽ p)-subdivision of Kh,h as
an induced subgraph.

It is straightforward to verify that this induced subgraph contains a subdivision of dSt,t,t (in fact, of
any graph with at most h vertices and at most h edges) as an induced subgraph. Therefore G contains
an induced subgraph isomorphic to dSt,t,t, a contradiction. □

B Appendix: Proof of Lemma 77
Before we present the proof of Lemma 7Lemma 7, let us first recall how extended strip decompositions can be
used to solve MWIS.

B.1 Independent sets in G and matchings
Let (H, η) be an extended strip decomposition of G. Section 3.3 of [1515] shows a link between independent
sets in G and matchings in an auxiliary graph H ′ (which is a slight modification of the host graph H).
Assume for every particle A of (H, η) we have fixed an independent set I(A) of G[A] with weight a(A).
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The graph H ′ is created from H by adding, for every edge xy ∈ E(H), a new vertex txy and edges
txyx and txyy. Furthermore, the weight function w′ : E(H) → Z is defined as follows:

w′(txyx) := a(Ax
xy)− a(A⊥

xy)− a(Ax),

w′(txyy) := a(Ay
xy)− a(A⊥

xy)− a(Ay),

w′(xy) := a(Axy
xy)− a(A⊥

xy)− a(Ax)− a(Ay)−
∑

z, s.t. xyz∈T (H)

a(Axyz).

Let
A0 = {A⊥

xy | xy ∈ E(H)} ∪ {Ax | x ∈ V (H)} ∪ {Axyz | xyz ∈ T (H)}.

and
a0 =

∑
A∈A0

a(A).

A selection is a function σ that assigns to every node x ∈ V (H) an edge of H incident with x or a value
⊥. Given a selection σ, we define a set M(σ) ⊆ E(H ′) as follows:

• if σ(x) = ⊥, then x is not an endpoint of any edge of M(σ);

• if σ(x) = xy but σ(y) ̸= xy, then xtxy ∈ M(σ);

• if σ(x) = xy = σ(y), then xy ∈ M(σ).

Note that, for every selection σ, the set M(σ) is a matching in H ′. In the other direction, if M is a
matching in H ′, then we define a selection σ(M) as:

• if no edge of M is incident with x ∈ V (H), then σ(M)(x) = ⊥;

• if txyx or xy belongs to M , then σ(M)(x) = xy.

It is straightforward to check that M(σ(M)) = M for every matching M in H ′ and σ(M(σ)) = σ for
every selection σ. Hence, selections are in one-to-one correspondence with matchings in H ′.

Let J be an independent set in G. Define a selection σ(J) as follows: for every x ∈ V (H), let
σ(J)(x) = ⊥ if J ∩

⋃
y∈NH(x) η(xy, x) = ∅ and otherwise σ(J)(x) = xy for the unique edge xy incident

with x with J ∩ η(xy, x) ̸= ∅. In the other direction, for a matching M in H ′, define a subset A(M) of
particles of (H, η) as follows:

• start with A(M) := A0;

• for every edge txyx ∈ M for x, y ∈ V (H), replace Ax and A⊥
xy with Ax

xy;

• for every edge xy ∈ M for x, y ∈ V (H), replace Ax, Ay, A⊥
xy, and all particles Axyz for z ∈

V (H), xyz ∈ T (H) with Axy
xy.

Observe that the elements of A(M) are pairwise disjoint. Furthermore,⋃
A(M) = V (G) \

⋃
x∈V (H)

⋃
y∈NH(x)

y ̸=σ(M)(x)

η(xy, x). (5)

We have the following.

Lemma 14 ([1515]) For every matching M in H ′, the set⋃
A∈A(M)

I(A)

is an independent set of weight
a0 +

∑
e∈M

w′(e).
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Lemma 15 ([1515]) For every independent set J in H ′, σ(J) is a selection and∑
e∈M(σ(J))

w′(e) = −a0 +
∑

A∈A(M(σ(J)))

(a(A)−w(A ∩ J)) .

Furthermore, for every A ∈ A(M(σ(J))), the set

(J \A) ∪ I(A)

is also an independent set in G.

B.2 Proof of Lemma 77
We iterate over every IT ⊆ T . For fixed IT , we aim at computing fG,w,T (IT ). If IT is not independent,
we set fG,w,T (IT ) = −∞. In the remainder of the proof, we show how to compute in polynomial time
the value fG,w,T (IT ) for fixed independent IT ⊆ T .

For a particle A of (H, η), let a(A) := fG[A],w,T∩A(IT ∩ A) and let I(A) be an independent set
witnessing this value, that is, an independent set in G[A] of weight a(A) with I(A) ∩ T ∩ A = IT ∩ A.
Note that as IT is independent, the value a(A) is not equal to −∞ and such an independent set exists.

We say that x ∈ V (H) is forced if IT ∩
⋃

y∈NH(x) η(xy, x) ̸= ∅. Note that since IT is independent, if
x is forced, then η(xy, x) ∩ IT ̸= ∅ for exactly one edge xy incident with x. We call such an edge xy the
enforcer of x. Note that an edge xy may be the enforcer of both x and y. We say that a selection σ is
compliant if for every forced x ∈ V (H), the value σ(x) equals to the enforcer of x; by the equivalence of
selections and matchings in H ′, we also say that a matching M in H ′ is compliant if σ(M) is compliant.

We now observe that Lemmata 1414 and 1515 reduce our task to finding a compliant matching in H ′ of
maximum possible weight.

Lemma 16 If M is a compliant matching in H ′, then the set

J :=
⋃

A∈A(M)

I(A)

is an independent set of weight
a0 +

∑
e∈M

w′(e)

such that J ∩ T = IT .

Proof. Lemma 1414 asserts that J is indeed an independent set in G with weight as in the statement. It
remains to show that J ∩ T = IT .

First, for every v ∈ J ∩ T , there exists a unique A ∈ A(M) such that v ∈ A. Then, v ∈ IT as
I(A) ∩A ∩ T = A ∩ IT . This proves J ∩ T ⊆ IT .

Second, we claim that for every v ∈ IT there exists A ∈ A(M) with v ∈ A. This is immediate from (55)
unless v ∈ η(xy, x) for some xy ∈ E(H). However, in this case, as M is compliant, σ(M)(x) = xy and
either Ax

xy or Axy
xy belongs to A(M). Hence, as v ∈ IT ∩ A and I(A) ∩ A ∩ T = A ∩ IT , we have

v ∈ I(A) ⊆ J . This proves IT ⊆ J ∩ T and completes the proof of the lemma. □

Lemma 17 If J is an independent set in G with J ∩ T = IT , then M(σ(J)) is a compliant matching
with ∑

e∈M(σ(J))

w′(e) ⩾ −a0 +w(J).

Proof. By Lemma 1515, σ(J) is a selection. Furthermore, for every A ∈ A(M(σ(J))) we have J∩A∩T =
IT ∩ A. By the optimality of I(A), a(A) ⩾ w(J ∩ A). Consequently, Lemma 1515 implies the promised
bound on the weight of M(σ(J)).

It remains to check that M(σ(J)) is compliant. This is immediate: if xy is the enforcer of x ∈ V (H),
then by definition η(xy, x)∩ IT ̸= ∅, so η(xy, x)∩ J ̸= ∅ and consequently σ(J)(x) = xy. This completes
the proof of the lemma. □
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Hence, it remains to show how to find a maximum-weight compliant matching in H ′.

Lemma 18 A maximum-weight compliant matching in (H ′,w′) can be found in polynomial time.

Proof. Construct a family C as follows: for every forced x with enforcer xy, add the set {txyx, xy} ⊆
E(H ′) to C. We seek for a matching M ′ in H ′ of maximum weight among matchings such that for every
C ∈ C it holds that |C ∩M | = 1.

Execute the following reduction rules. First, for forced x with enforcer xy, delete from H ′ and all
sets in C the edge txyy and all edges incident with x except for xy and txyx (these edges never belong
to the matching we are looking for). Then, exhaustively, as long as there exists C ∈ C of size 1, pick
the unique element e of C and include it into the solution: delete from C all sets containing e and delete
all edges incident with an endpoint of e from H ′ and all remaining elements of C. Let M0 be the set of
edges e on which the last reduction rule was executed in the course of the algorithm.

Let C = {txyx, xy} be an element that remains in C. Observe that now in H ′ the vertex txy is of
degree 1 and x is of degree 2 and, furthermore, y is not forced. The sought matching M needs to take
one of the edges of C; we gadget out this choice by modifying the weight of xy to w′(xy) − w′(txyx)
and deleting the edge txyx. Let M1 be the set of edges txyx that were deleted in this process and let
(H ′′,w′′) be the final graph.

For a matching M ′′ in H ′′, observe that a set M consisting of M0, M ′′ and an edge txyx ∈ M1

whenever xy /∈ M ′′, is a compliant matching in H ′ of weight w′(M) = w′′(M ′′) + w′(M0) + w′(M1).
In the other direction, for a compliant matching M in H ′, observe that M0 ⊆ M and, furthermore,
M ′′ := M ∩ E(H ′′) is a matching in H ′′ of weight w′′(M ′′) = w′(M) − w′(M0) − w′(M1) as for
every txyx ∈ M1, either txyx ∈ M and xy /∈ M (and then txyx contributes w′(txyx) to w′(M1) and
w′(M) and nothing to w′′(M ′′)) or xy ∈ M and txyx /∈ M (and then xy contributes w′(xy) to w′(M),
w′(xy)−w′(txyx) to w′′(M ′′) and txyx contributes w′(txyx) to w′(M1)).

Consequently, we reduced the problem of finding a maximum-weight compliant matching in (H ′,w′)
to a classic maximum-weight matching problem in (H ′′,w′′), which is solvable in polynomial time [2121].
This completes the proof of the lemma and of Lemma 7Lemma 7. □
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