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TUNG T. NGUYEN †, SOPHIE SPIRKL§∥, AND NGUY˜̂eN DUY TÂN‡&
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1. Introduction

Network theory plays a fundamental role in the study and understanding of collective behav-

iors of several systems [9, 51, 53]. For example, it has found applications in neuroscience,

ecology, neural dynamics, biology, and many physical systems [3, 6, 23, 34, 42, 48]. Typi-

cally, we often consider these systems as a single network. However, many real-world systems

are multi-layered; namely, the system can have two levels of connections: on the first level,

there are connections within each sub-network; on the higher level, there are connections

between the sub-networks. While the addition of an extra level of connections provides a

more realistic and richer modeling option, it can also bring new challenges in analyzing the

dynamics of these systems. The quest to understand the dynamics of phase oscillators on

these multilayer networks has sparked a lot of interest due to its wide range of applications

(see [8, 26, 27, 31, 33, 35, 40, 47, 52]). In [44], we introduce a new method to study this

problem using a reduced and much smaller representation system. More precisely, we dis-

cover a process that allows us to broadcast solutions from the reduced system to the original

multilayer network. Amongst its various applications, our new approach offers a simple way

to find equilibrium points and analyze their stability on a multilayer network. It is worth

mentioning that our approach is based on a concept in graph theory known as the “joined

union” of graphs which we now recall. Let G be a graph with d vertices {v1, v2, . . . , vd}.
Let G1, G2, . . . , Gd be graphs representing layers in a given multilayer network. The joined
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union G[G1, G2, . . . , Gd] is obtained from the union of G1, . . . , Gd by joining with an edge

each pair of a vertex from Gi and a vertex from Gj whenever vi and vj are adjacent in G

(see [14, 21, 50] for some further discussions). In this framework, G represents precisely the

connections between layers.

Due to its potential wide range of applications as explained above, the following question

seems natural.

Question 1.1. Given a graph Γ, can we decompose it as the joined union of smaller graphs?

1.1. Homogeneous sets. It turns out that the above question has been extensively studied

by graph theorists but from a different perspective. Specifically, it is studied through the the-

ory of modular decomposition using homogeneous sets which we now recall (see, for example,

[13, 25]). A homogeneous set or module in a graph Γ is a set X of vertices of Γ such that

every vertex in V (Γ) \X is adjacent to either all or none of the vertices in X. Thus, vertices

in V (Γ) \ X do not “distinguish” vertices in X. This makes homogeneous sets a natural

generalization of connected components (which are, in particular, homogeneous sets X such

that every vertex outside X is non-adjacent to every vertex in X). Note that V (Γ) as well as

all vertex sets of size at most one are homogeneous sets; we refer to homogeneous sets X with

2 ≤ X < |V (Γ)| as non-trivial homogeneous sets. We remark that the theory of homogeneous

sets is closely related to Question 1.1 in the sense that for a graph join Γ = G[G1, G2, . . . , Gd],

each copy of Gi is a homogeneous set of Γ. Conversely, a graph contains a non-trivial homo-

geneous set if and only if it can be composed as G[G1, G2, . . . , Gd] where at least one of the

Gi has more than one vertex.

Homogeneous sets are a well-studied structure in graph theory, and can be found in polynomial

time [19, 43, 49]. Their inverse operation is substitution: a vertex v in a graph Γ is replaced

by a graph H with vertex set X, and for every vertex u in V (Γ) \ {v}, we add all edges from

u to X if and only if uv ∈ E(Γ); so X is a homogeneous set in the resulting graph.

The class of perfect graphs plays an important role in graph theory [7, 17] and optimization

[29]. This class is closed under substitution [38], meaning that if Γ and H are perfect, then

the graph obtained by substituting H for a vertex of Γ is again a perfect graph. In addition,

and in part due to this connection with perfect graphs, homogeneous sets are useful in more

than one way [2, 16, 18] in efforts to prove the Erdős-Hajnal conjecture [24], one of the most

notable open questions in structural and extremal graph theory. Substitution also interacts

well with twin-width [11] (that is, substituting a graph H for a vertex of a graph Γ results

in a graph whose twin-width is the maximum of the twin-widths of Γ and H). Twin-width

is a parameter describing the complexity of a structure; it is used not only for graphs, but

also for groups (via Cayley graphs) [10] and permutations as well as other binary structures

[12].

In this paper, we will concentrate on the case where Γ is a Cayley graph (see [15, 37]). We

consider the following question: Which properties of G and S lead to the existence of a

non-trivial homogeneous set in Cay(G,S)? Which Cayley graphs are prime, that is, they do
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not admit a non-trivial homogeneous set? Because Cayley graphs are highly symmetric, the

criteria for the presence of a homogeneous set turn out to be similar to those given by Barber

[4] for Cay(G,S) to admit a decomposition as a wreath product of smaller graphs.

1.2. Outline. This paper is meant to be as self-contained as possible so that it is accessible

to readers possessing different backgrounds. The structure of our article is as follows. In Sec-

tion 2, we recall some standard concepts in graph theory. In Section 3, we will then establish

a connection between the existence of non-trivial homogeneous sets and decompositions as

wreath products for vertex-transitive graphs. This leads to a criterion for when Cayley graphs

are prime. Finally, we will briefly look into the case of directed graphs and show analogous

results for them as well. Section 4 studies Cayley graphs associated with a ring R. Here, the

interplay between the additive and multiplicative structure of R plays a fundamental role in

our investigation.

Amongst the various results that we prove in this section, we give a complete classification of

prime unitary graphs.

2. Definitions and notation

Throughout this article, unless specified otherwise, all graphs are undirected, simple, and

finite. One can define an undirected simple finite graph as follows:

Definition 2.1 (Graph). A simple undirected finite graph Γ is a pair (V (Γ), E(Γ)), where

V (Γ) is a finite set and E(Γ) is an anti-reflexive symmetric relation on Γ. In other words,

E(Γ) is a set of pairs (x, y) ∈ V (Γ)2, such that (x, x) /∈ E(Γ) for every x ∈ V (Γ), and if

(x, y) ∈ E(Γ), then (y, x) ∈ E(Γ).

The set V (Γ) is called the set of vertices of Γ, and E(Γ) is the set of edges. For a pair x, y of

vertices, we say that xy is an edge (or that x and y are adjacent) if (x, y) ∈ E(Γ).

Definition 2.2 (Graph morphism). Let Γ and ∆ be two graphs. We define a graph morphism

between Γ and ∆ to be a map from V (Γ) to V (∆) f , such that if u, v ∈ V (Γ) are two adjacent

vertices in Γ, then f(u), f(v) are two adjacent vertices in ∆.

The class of graphs we are interested in particular is the class of Cayley graphs. We define a

Cayley graph as follows:

Definition 2.3 (Cayley graph). Let G be a group and S ⊆ G \ {1} a set such that if

s ∈ S, then s−1 ∈ S. We define the Cayley graph with generators in S to be the graph

Γ = Cay(G,S), with V (Γ) = G and E(Γ) = {(x, y) ∈ G2|x−1y ∈ S}.

We will now introduce the definition of a group action on graphs.

Definition 2.4 (Group acting on a graph). Let G be a group and Γ a graph. We say that G

acts on Γ if there is an action of G on V (Γ), such that if xy is an edge in Γ, then [g · x][g · y]
is an edge in Γ.
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We call a graph Γ vertex-transitive if there is a group G acting on Γ such that the action of

G on V (Γ) is transitive.

Now we will define the wreath product of graphs.

Definition 2.5 (Wreath product). Let Γ,∆ be two graphs. We define the wreath product

(also known as the lexicographic product) of Γ and ∆ as the graph Γ ·∆, whose set of vertices

is V (Γ)× V (∆) and such that (x, y)(x′, y′) is an edge in Γ ·∆ if either xx′ is an edge in Γ, or

x = x′ and yy′ is an edge in ∆.

Remark 2.6. The wreath product is a special case of the joined union. Specifically, the wreath

product of Γ and ∆ is exactly the joined union Γ[∆, · · · ,∆].

Definition 2.7 (Connectedness). Let Γ be a graph. We call connected components of Γ, the

equivalence classes on V (Γ) for the following relation: Two vertices x and y are equivalent if

and only if there exists a finite sequence of vertices x1, · · · , xn such that for all i between 1

and n− 1, xi and xi+1 are either adjacent or equal, with x1 = x and xn = y. We say that the

graph Γ is connected if it has exactly one connected component.

Definition 2.8 (Induced subgraph). Let Γ be a graph and let H ⊆ V (Γ) be a non-empty

subset. We define Γ[H] to be the subgraph of Γ induced by H, that is: V (Γ[H]) = H and

E(Γ[H]) = {(x, y) ∈ E(Γ)|x, y ∈ H}.

Definition 2.9 (Graph complement). Given a graph Γ, the complement Γ∗ of Γ is the graph

such that for distinct x, y ∈ V (Γ) = V (Γ∗), we have that xy is an edge in exactly one of Γ

and Γ∗.

A graph is anti-connected if its complement is connected.

Definition 2.10 (Valence). If Γ is a graph and v ∈ V (Γ) a vertex, we define the valence (or

degree ) of v, as the number of vertices adjacent to v.

Finally, we recall the definition of homogeneous sets.

Definition 2.11 (Homogeneous sets). Let Γ be a graph and H a non-empty subset of V (Γ).

We say that H is homogeneous (in Γ) if, for every x /∈ H, either x is adjacent to all elements

of H or to none. A homogeneous set H is non-trivial if 2 ≤ |H| < |V (Γ)|.

We will show how the notion of a homogeneous set can help to detect whether a vertex-

transitive graph can be written as a non-trivial wreath product and we will apply it more

specifically to Cayley graphs, as well as more precisely to Cayley graphs over rings.
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3. Homogeneous sets and Cayley graphs

3.1. Homogeneous sets and the wreath product.

First note that any graph Γ is isomorphic to a wreath product of the form ∗·Γ and Γ ·∗, where
∗ is a graph with a single vertex. Therefore, we call such a product trivial. The question that

we will examine is when a given graph is isomorphic to a non-trivial wreath product. Note

that if Γ ·∆ is a non-trivial wreath product, then it has non-trivial homogeneous sets of the

form {x} × V (∆), where x is a vertex in V (Γ).

From this simple observation, we have a necessary condition: that every graph that is a non-

trivial wreath product has a non-trivial homogeneous set. We call a graph with no non-trivial

homogeneous sets prime.

The presence non-trivial homogeneous set does not imply that a graph is a non-trivial wreath

product: Consider the graph with vertices {1, 2, 3} such that 1 is adjacent to 2 and 3 and 2, 3

are non-adjacent:

1

2

3

Note that the set {2, 3} is homogeneous and non-trivial and so the graph is not prime, but it

is not a non-trivial wreath product, because it has 3 vertices and 3 is a prime number.

We can however show that for vertex-transitive graphs, except for two extreme cases, namely

complete graphs (all vertices are adjacent) and cocomplete graphs (no vertices are adjacent),

the converse is true.

For that, we will need to establish a simple lemma (we believe this is well-known, but include

a proof for completeness):

Lemma 3.1. Let Γ be a graph and let H,H ′ be two non-disjoint homogeneous sets. Then

H ∪H ′ is a homogeneous set.

Proof. Take x ∈ H ∩ H ′. Take y /∈ H ∪ H ′, such that y is adjacent to some element in

z ∈ H ∪H ′. Without loss of generality, we may assume that z ∈ H, since there is symmetry

between H and H ′. Since y and z are adjacent, it follows y is adjacent to every element in

H and in particular to x. Since x is also an element of H ′, this implies that y is adjacent to

every element in H ′ and thus H ∪H ′ is homogeneous. □

Now we will show a criterion for when a vertex-transitive graph is a non-trivial wreath prod-

uct.
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Theorem 3.2. Let Γ be a vertex-transitive graph that is not complete nor cocomplete. Then

Γ is a non-trivial wreath product if and only if it is not prime.

Proof. We have already observed that if Γ is a non-trivial wreath product then it has non-

trivial homogeneous sets.

Now conversely assume that Γ has a homogeneous setX. By assumption, Γ is vertex-transitive

and thus there exists G a group acting on Γ, such that G acts transitively on V (Γ). We will

now distinguish three cases:

Case 1: Assume that Γ is a disconnected graph. Consider then C a connected component.

Since by assumption, Γ is not a graph with no edges, we can assume additionally that |C| > 1.

Note that if C ′ is another connected component, then since G acts transitively on Γ, there

exists g ∈ G, such that gC = C ′. Now choose g1, · · · , gn ∈ G, such that for every C ′ connected

component in C, there exists a unique i such that C ′ = giC.

Now take A to be the graph whose vertices are g1, · · · , gn and with no edges. Let us denote by

∆ the subgraph induced by C. Note then that Γ is isomorphic to A ·∆ with the isomorphism

being the map that to (gi, x) associates gi · x.

Case 2: Assume now that Γ is not anti-connected. Consider Γ∗ the complement graph to

Γ: that is a graph with vertices V (Γ) and for two distinct vertices x, y, xy is an edge in Γ∗ if

and only if xy is not an edge in Γ.

Now if Γ is not anti-connected, then its complement Γ∗ is not connected and not the graph

with no edges, and so by the first case, there exist two graphs A,H such that Γ∗ is isomorphic

to the non-trivial wreath product A·Γ[H]. Therefore Γ is isomorphic to the non-trivial wreath

product A∗ · Γ∗[H].

Case 3: Finally assume that Γ is both connected and anti-connected. As a reminder, X

denotes a non-trivial homogeneous set of Γ. Choose a distinguished point x0 ∈ X and pick H

a maximal (in the sense of inclusion) non-trivial homogeneous set of Γ containing x0. Such

a maximal set exists since Γ is finite and thus any non-empty set of subsets of V (Γ) has a

maximal element. Let us now show that for every g ∈ G, either gH ∩ H = ∅ or gH = H.

Suppose that gH ∩H ̸= ∅. Note that by 3.1 gH ∪H is a homogeneous set containing H so by

maximality ofH, either gH∪H = V (Γ), or gH∪H = H. Let us show that gH∪H ̸= V (Γ). In

order to prove this, we will first show that |H| ≤ |V (Γ)|
2 . Since Γ is connected and H ̸= V (Γ),

there exists y /∈ H such that y is adjacent to an element of H. The valence of y then has to

be at least |H|, since y is connected to all elements of H. Now, since Γ is also anti-connected,

we see that Γ∗ is connected. Therefore there exists a y′ ∈ V (Γ)\H such that y′ is adjacent to

some vertex in H in the graph Γ∗. Therefore y′ is not adjacent to some element in H in the

original graph Γ. Since H is homogeneous, it follows that y′ is not adjacent to any element in

H and thus the valence of y′ is at most |V (Γ)| − |H|. Since the graph Γ is vertex-transitive,

all of its vertices have the same valence, which we shall denote d. Since the valence of y is

greater than |H|, we have that d ≥ |H| and since the valence of y′ is at most |V (Γ)|, we also
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have d ≤ |V (Γ)|. As such
|H| ≤ d ≤ |V (Γ)− |H|

Therefore:

|gH ∪H| = |gH|+ |H| − |gH ∩H|
= 2|H| − |gH ∩H|
≤ |V (Γ)| − |gH ∩H|
< V (Γ)

as we assume that gH ∩ H ̸= ∅. Since H is the maximal homogeneous subset of V (Γ)

containing x0 and distinct from V (Γ), we get that gH ∪H ⊆ H and thus gH = H, since it

has the same number of elements as H.

As a consequence, it follows that for all g, g′ ∈ G, gH = g′H or gH ∩ g′H = ∅. Then, choose
g1, · · · , gn ∈ G, such that g1H, · · · , gnH are all distinct and g1H ∪ · · · ∪ gnH = V (Γ), which

is possible, since G acts transitively on Γ. Define a graph A whose vertices are g1, · · · , gn and

gigj is an edge in A if [gi · x0] [gj · x0] is an edge in Γ (with x0 the distinguished element in

H). Now let us show that Γ is isomorphic to A · Γ[H].

Consider the map

Φ =

{
V (A) ·H −→ Γ

(gi, h) 7→ gi · h
and let us show first that this map is a morphism of graphs. Suppose that (gi, h) and (gj , h

′)

are adjacent. Then first assume that gi and gj are adjacent. Then we get that gix0 and gjx0
are adjacent. Since gjH is homogeneous, this proves that gix0 is adjacent to gj · h′. Since

gj ·h′ is adjacent to at least one element in giH and giH is homogeneous, it follows that gj ·h′
is adjacent to gi · h ∈ giH. Consequently Φ(gi, h) and Φ(gj , h

′) are adjacent. Now instead

assume that gi = gj and h, h′ are adjacent. Then gih and gih
′ = gjh

′ are adjacent and so

Φ(gi, h) and Φ(gj , h
′) are adjacent.

Now we shall prove that Φ is a bijection. To prove the injectivity, assume that gih = gjh
′.

Then gih ∈ giH ∩ gjH, proving that giH ∩ gjH ̸= ∅ and thus by construction gi = gj . And

so gih = gih
′ and therefore we also conclude that h = h′.

Now let us prove the surjectivity of Φ. Take y ∈ V (Γ). Then, by construction, there exists i

such that y ∈ giH and so y ∈ im(Φ).

Finally, let us prove that the inverse of Φ is also a morphism. Assume that yy′ is an edge in

Γ. Pick h, h′ and i, j, such that gih = y and gjh
′ = y′. First, if we assume that gi = gj , then

hh′ is an edge. Now if we assume that gi ̸= gj , then since gih is adjacent to gjh
′, and since

giH and gjH are both homogeneous, we get that gix0 is adjacent to gjx0 and so gigj is an

edge in A.

Note finally that A has more than one element, because H ̸= V (Γ) and thus we need at least

two gi’s to cover V (Γ). Observe also that H contains at least two elements as X ⊆ H and X

is a non-trivial homogeneous set.
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We conclude that Γ is a non-trivial wreath product. □

Remark 3.3. Note that a similar result has been established in the thesis of Rachel V. Barber

[4] (Lemma 1, page 12) for digraphs. The lemma states that a vertex-transitive digraph

is a wreath product if and only if it can be decomposed into a “block system” with the

property that if B,B′ are two blocks, then either for all vertices b ∈ B and b′ ∈ B′, (b, b′)

is an edge, or all vertices b ∈ B, b′ ∈ B′ are not connected by an edge. What we show

here is that for undirected graphs, which are neither complete nor cocomplete, such a block

system exists provided that there is a homogeneous set. For graphs that are not connected

(resp. anti-connected), such block system consists of the connected (resp. anti-connected)

components; and for graphs that are both connected and anti-connected, such blocks are

maximal homogeneous sets.

In light of this theorem, provided we disregard the complete graphs and graphs with no edges,

the existence of block systems and the existence of homogeneous sets are equivalent, and thus

in the parts that follow, we will simply focus on homogeneous sets.

3.2. Homogeneous sets in Cayley graphs.

In this subsection, we will prove the following theorem:

Theorem 3.4. Let Cay(G,S) be a Cayley graph such that S ̸= G \ {1} and S ̸= ∅. Then

Cay(G,S) has a non-trivial homogeneous set if and only if there exists a non-trivial subgroup

H of G such that if c ∈ S \H, then the right coset Hc is included in S.

Furthermore, if Cay(G,S) is both connected and anti-connected, we may choose H to be the

maximal homogeneous set containing 1; and this H is a subgroup of G.

Before proving this theorem, let us acknowledge that a very similar result already exists in

the thesis of Rachel V. Barber [4] in the form of Corollary 1 on page 16, stating that every

Cayley digraph Cay(G,S) is a non-trivial wreath product of two vertex-transitive graphs if

and only if there exists a non-trivial subgroup H of G such that G \ S is a union of double

cosets of H.

In light of the equivalence between the existence of non-trivial wreath products and the

existence of non-trivial homogeneous sets established by Theorem 3.2, the similarity is to be

expected. Corollary 1 of Barber requires S to be a union of double cosets, while in our case we

work with right cosets. It is important to observe that if Γ is undirected, then in fact the two

criteria are the same. Indeed, every double coset is a union of right cosets. Now conversely,

if we assume that S has the property that if g ∈ S \H, then Hg ⊆ S, then since the graph

is undirected, S is stable under taking inverses. Thus we start by taking g ∈ S \H and then

note that g−1H ⊆ S and so by taking inverses we get that gH ⊆ S and so HgH ⊆ S. We will

later see how the point of view of homogeneous sets can be used in the case of the directed

graphs as well.

Now let us prove the theorem.
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Proof. First, suppose that Cay(G,S) is not connected. Set H = ⟨S⟩, the subgroup of G

generated by S. Then using our hypothesis that S ̸= ∅, we see that, the induced subgraph

Cay(G,S)[H] of Cay(G,S), is the connected component of Cay(G,S) containing 1. Since

S ⊆ H, we see that S \H = ∅. Therefore S \H is an empty union of right cosets. Finally we

see that since Cay(G,S) is not connected, H ̸= G.

Assume now that Cay(G,S) is not anti-connected. Set H = ⟨G \ S⟩ be the subgroup of G

generated by G \ S. Then the induced subgraph Cay(G,S)∗[H] of complement Cay(G,S)∗

of Cay(G,S) is the connected component of Cay(G,S)∗ containing 1. Since by assumption,

Cay(G,S) is not a complete graph, H ̸= {1}. By assumption, Cay(G,S)∗ is not connected

and thus H ̸= G. From our definition of H, we see that G \ S ⊆ H. For each g ∈ S \H, we

have Hg ∩H = ∅ and therefore Hg ⊆ S.

Finally assume that Cay(G,S) is both connected and anti-connected. We take H to be the

maximal homogeneous set containing 1. Since G acts transitively on Cay(G,S) and it is both

connected and anti-connected, by lemma 3.2, we see that if gH ∩H ̸= ∅, then gH = H. This

property implies that H is a subgroup. Indeed consider g, h ∈ H. Then 1 ∈ g−1H∩H and we

see that g−1H = H. Thus g−1h ∈ H proving that H is indeed a subgroup. Take s ∈ S \H.

Let us show that Hs ⊆ S. We have that s is adjacent to 1, but is not in H. Since H is

homogeneous, this implies that s is adjacent to every element in H and therefore ∀h ∈ H,

h−1s ∈ S, which implies that Hs ⊆ S, as expected. □

While the focus of this paper is on undirected graphs, we will show in the section that follows

how the technique of homogeneous sets can be used for directed graphs as well.

Finally, we can make the following observation concerning the homogeneous sets in Cayley

graphs:

Theorem 3.5. Let Cay(G,S) be a Cayley graph and let H ⊆ G be a homogeneous set of G

containing 1. Then the subgroup ⟨H⟩ generated by H is also a homogeneous set.

Proof. Consider the maximal homogeneous set M of Γ such that M contains H and M is

contained in ⟨H⟩. Let us prove that M = ⟨H⟩. We can prove by induction on n that

∀g1, · · · , gn ∈ H, g1 · · · gn ∈M . To start the induction, observe that if n = 0 we have an empty

product equal to 1 and by assumption 1 ∈ H ⊆M . Now suppose that the statement is true for

some n ∈ N. Consider the product g1 · · · gn+1. Now g1M is homogeneous and g1 ∈M ∩ g1M ,

since M contains 1 and so by Lemma 3.1, it follows that M ∪ g1M is a homogeneous set

containing H and contained in ⟨H⟩ and thus by maximality of M , g1M ∪ M ⊆ M . By

induction we have that g2 · · · gn+1 ∈ M and so g1 · · · gn+1 ∈ M . Since this statement is true

for every n ∈ N,M contains all the product of the elements of H and since G is a finite group,

this implies that ⟨H⟩ ⊆M , proving that ⟨H⟩ =M is homogeneous. □

3.3. Cayley digraphs and the wreath product.
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First note that we will work on simple digraphs. We can define a simple digraph as a set

of vertices V (Γ) together with an anti-reflexive relation E(Γ). We say that xy is an edge if

(x, y) ∈ E(Γ). Now for a directed graph Γ, we define the underlying undirected graph of Γ,

denoted S(Γ), to be the undirected graph with vertices V (Γ) and edges

{(x, y) ∈ V (Γ)2| xy is an edge in Γ or yx is an edge in Γ}

We say that Γ is connected if S(Γ) is connected, and that Γ is anti-connected if S(Γ∗) is

connected, with Γ∗ being the complement (di)graph of Γ defined as a graph vertex with

the vertex set V (Γ) and edges of the form {(x, y)|x ̸= y and xy is not an edge in Γ}. For a

digraph Γ we say it is complete (resp. cocomplete) if E(Γ∗) = ∅ (resp. E(Γ) = ∅).

For a directed graph Γ and a subset H ⊆ V (Γ), we say that H is in-homogeneous if, for every

v ∈ V (Γ) \H, either vh is an edge of Γ for all h ∈ H, or vh is not an edge of Γ for all h in

G.

Similarly, we say that H ⊆ V (Γ) is out-homogeneous if, for every v ∈ V (Γ) \H, either hv is

an edge of Γ for all h ∈ H, or hv is not an edge of Γ for all h in G.

Finally, H is bihomogeneous if it is both in- and out-homogeneous. As in the undirected

case, we say that a bihomogeneous set is non-trivial if it contains at least two vertices, and

does not contain all vertices of Γ. Likewise, the notions of vertex-transitive and (non-trivial)

wreath product are defined in analogy with the undirected case. Note that just like for the

undirected case, we have the following lemma:

Lemma 3.6. Let Γ be a directed graph and H,H ′ two bihomogeneous sets with non-empty

intersections. Then H ∪H ′ is bihomogeneous.

Now we will prove the following theorem:

Theorem 3.7. If Γ is a vertex-transitive directed graph such that Γ is neither complete

nor cocomplete, then Γ is a non-trivial wreath product if and only if Γ has a non-trivial

bihomogeneous set.

Proof. For the “if” case, we note that if Γ is isomorphic to ∆ · ∆′, then ∆[{x}] · ∆′ is a

bihomogeneous set.

Now, we take a group G acting on Γ, with transitive action on V (Γ). To prove the “only if”

case we distinguish several cases:

In the first case, assume that Γ is not connected. Then, as in the directed case of Theorem 3.2,

we take the connected components g1C, · · · , gnC and we use that there are no edges between

them (regardless of direction). Again, Γ is isomorphic to A · Γ[C] where A is the graph with

vertex set {g1, · · · , gn} and no edges. Note that C contains more than 1 element since Γ∗ is

not complete and thus Γ has at least one edge.
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In the second case, we assume that Γ is not anti-connected. Take then C a connected com-

ponent in S(Γ∗). Note that for every g ∈ G, either g ·C = C or g ·C ∩C = ∅. Moreover, g ·C
is a connected component in S(Γ∗). To prove this, we first show that if we take x, y ∈ g · C,
then there exists a path in S(Γ∗) from x to y. Note that both g−1 · x and g−1 · y are in

C and so there exist x1, · · · , xn, such that x1 = x, xn = y and xixi+1 ∈ E(S(Γ∗)). Now

take any i between 1 and n − 1. We have that xixi+1 ∈ E(S(Γ∗)) and so xixi+1 /∈ E(Γ) or

xi+1xi /∈ E(Γ). As such, [g · xi][g · xi+1] ∈ E(Γ∗) or [g · xi+1][g · xi] ∈ E(Γ∗) and either way,

[g · xi][g · xi+1] ∈ S(E(Γ∗)), proving that g ·C is connected in S(Γ∗), since g · x1, · · · g · xn is a

path from x to y in S(Γ∗). Now assume that y is adjacent to x ∈ g ·C in S(Γ∗). Let us show

that y ∈ g · C. Since y is adjacent to some x, it follows that xy ∈ E(S(Γ∗)), so xy ∈ E(Γ∗)

or yx ∈ E(Γ∗). As such, [g−1 · x][g−1 · y] ∈ E(S(Γ∗)) and since C is a connected component

of S(Γ∗) and x ∈ C, we have that g−1 · y ∈ C and therefore y ∈ g · C.

Now we shall prove that if x ∈ C and y /∈ C, then xy ∈ E(Γ) and yx ∈ E(Γ). Indeed, if, say,

xy /∈ E(Γ), then xy ∈ E(Γ∗) ⊆ E(S(Γ∗)) contradicting that C is a connected component. By

the same reasoning, we have that yx ∈ E(Γ). Finally, if we pick g1, · · · , gn ∈ G such that

g1C, · · · , gnC form a partition on V (Γ), then if A denotes the complete graph on {g1, · · · , gn},
then Γ is isomorphic to the product A · Γ[C].

Finally, we assume Γ is both connected and anti-connected. We take x0 ∈ V (Γ) and let X

be a non-trivial bihomogeneous set containing x0. Choose a maximal bihomogeneous set H

containing X; let us show that for every g ∈ G, either g ·H = H or g ·H ∩H = ∅. Assume

that g · H ∩ H ̸= ∅. We will then show that g · H = H. To prove this, just like in the

undirected case of 3.2, we will show that |H| ≤ |G|
2 . Since Γ is connected, there exists x /∈ H

and h0 ∈ H such that either xh0 is an edge or h0x is an edge. The two cases are symmetric,

so we will assume that xh0 is an edge. Since H is in-homogeneous, we get that for every

h ∈ H, xh is an edge, and thus the out-degree of x is at least |H|. Note that since the graph

is, by assumption, vertex-transitive, we have that the in-degree and out-degrees are constant,

equal to each other, and equal at every vertex.

Now, since Γ is anti-connected, it follows that there exists x′ /∈ H, such that x′ is adjacent to

some h1 ∈ H in S(Γ∗). This means that either h1x
′ or x′h1 is not an edge in Γ. We assume

without loss of generality that x′h1 is not an edge. Then, for every h ∈ H, x′h is not an edge

and therefore the in-degree of x′ is at most |V (Γ)|− |H|. Thus we conclude that |H| ≤ |V (Γ)|
2 .

The rest of the proof follows the same way as that of 3.2. □

Using the same techniques, we can establish the following result:

Theorem 3.8. Let G be a group and S ⊆ G \ {1}, such that S ∪S−1 is distinct from G \ {1}
and S ̸= ∅. Then Cay(G,S) has a non-trivial bihomogeneous set if and only if there exists a

subgroup H of G such that for every g ∈ S \H, HgH ⊆ S.
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4. Homogeneous sets in Cayley graphs of a ring

Let R be a commutative ring, and let S be a subgroup of the set R× of units of R. Throughout

this section, we write Cay(R,S) for the Cayley graph Cay((R,+), S). In this section, we delve

into the question of determining when Cay(R,S) is a prime graph. We will focus on undirected

graphs and hence we will assume that −1 ∈ S for the rest of this section (since S is a subgroup

of R×, this is equivalent to the condition that S = −S). We remark that this type of Cayley

graph is particularly interesting because it captures the interplay between the additive and

multiplicative structures of R. Here ideals of rings play a key role. We call an ideal I of R

non-trivial if I ̸= 0, R. Special cases of these Cayley graphs have been extensively studied in

the literature. For instance, when S = R×, the resulting graph Cay(R,R×) is called a unitary

Cayley graph (see [5, 36]). Additionally, when R is the ring of integers modulo a number N

and S is associated with a Dirichlet character, the resulting graph is a generalization of the

classical Paley graphs (see [20, 45, 41]). It is worth noting that due to their arithmetic nature,

these Paley graphs exhibit intriguing properties and have found applications in diverse fields

such as coding and cryptography theory (see [28, 32]).

4.1. Some general properties of Cay(R,S). In this section, we prove some foundational

results about the primality of Cay(R,S). We start our investigation with the following theo-

rem.

Theorem 4.1. Let R be a commutative ring and let S ⊆ R× be a subgroup. Suppose that

Cay(R,S) is connected and anti-connected. If Cay(R,S) is not prime, then there exists a

non-trivial ideal I such that I is a homogeneous set.

Proof. By Theorem 3.4, ifH is a maximal non-trivial homogeneous set of Cay(R,S) containing

0, then H is a subgroup of (R,+). We claim that H is an ideal in R as well. First, we

observe that if s ∈ S ⊆ R×, then the multiplication by s is an automorphism of Cay(R,S).

Consequently, sH is also a homogeneous set. Since 0 ∈ H ∩ sH, we conclude that H ∪ sH is

also a homogeneous set. By the maximality of H, either sH = H or H ∪ sH = R. However,

the second case cannot happen since

|H ∪ sH| = |H|+ |sH| − |H ∩ sH| ≤ 2
|R|
2

− 1 < |R|.

We conclude that sH = H. We now claim if r ∈ R, then rH = H. In fact, since Cay(R,S) is

connected, we can write

r =

d∑
i=1

misi,

where mi ∈ Z and si ∈ S. For each h ∈ H, we have

rh =
d∑
i=1

mi(sih).

Since sih ∈ H and H is a subgroup of (R,+), we conclude that rh ∈ H. So, we conclude that

H is an ideal in R. □
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The following is an immediate corollary of having a homogeneous set which is at the same

time an ideal in R. (The fact that the induced subgraph corresponding to I contains no edges

follows from the fact that I is an ideal and every element of S is a unit.) For each natural

number n, we denote by En the cocomplete graph on n vertices.

Corollary 4.2. Let R be a commutative ring and S ⊆ R×. Let I be a non-trivial ideal in R

which is also a homogeneous set in Cay(R,S). Let Φ: R → R/I be the canonical ring map

and n = |I|. Then

Cay(R,S) ∼= Cay(R/I,Φ(S)) · En.

For two regular graphs G,H of degree rG and rH respectively, the spectrum of the wreath

product of G ·H = is well-known. In fact, by Remark 2.6, we know that G ·H is the joined

union G[H, . . . ,H]. By [14, Theorem 3] and [22, Theorem 3.3], we know that the spectrum

of G ·H is the union of

rH + |H|Spec(G),

and |G| copies of
Spec(H) \ {rH}.

For the case Cay(R,S) = Cay(R/I,Φ(S)) · En, we have rH = 0, |H| = |I|, |G| = |R/I|.
Therefore, we see that its spectrum is the union of

|I|Spec(Cay(R/I,Φ(S))),

and |R/I|(|I| − 1) copies of 0.

Corollary 4.3. Let R be a commutative ring and S ⊆ R×. Suppose that Cay(R,S) is con-

nected and anti-connected. If Cay(R,S) is not prime, then 0 is an eigenvalue of Cay(R,S)

with multiplicity at least |R|
2 .

Proof. This follows directly from the fact that

|R/I|(|I| − 1) = |R| − |R|
|I|

≥ |R| − |R|
2

=
|R|
2
. □

In the following proposition, we provide necessary and sufficient conditions for an ideal I to

be a homogeneous set in Cay(R,S).

Proposition 4.4. Let R be a commutative ring and S ⊆ R×. Let I be an ideal in R. Then

I is a homogeneous set in Cay(R,S) if and only if one of the following conditions holds.

(1) I = R.

(2) I ̸= R and

S + I = {s+m|s ∈ S,m ∈ I} = S.
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Proof. First, suppose that I is a homogeneous set. The case I = R is trivial so we assume

that I ̸= R. Since S ⊆ R× and I is an ideal, we conclude that S∩I = ∅. Let x ∈ S and m ∈ I.

Since (x, 0) ∈ E(Cay(R,S)) and I is a homogeneous set, we have (x,−m) ∈ E(Cay(R,S)) as

well. By definition, x+m ∈ S.

Conversely, let us prove that if the following condition is satisfied

S + I = {s+m|s ∈ S,m ∈ I} ⊆ S,

then I is homogeneous. We remark that since I ∩S = ∅, we have the following partition of R

R = I
⊔
S
⊔

(R \ (I ∪ S))

Let x ∈ R \ I. Then we know either x ∈ S or x ∈ R \ (I ∪ S). If x ∈ S then (x,m) ∈
E(Cay(R,S)) for all m ∈ I. Let us consider the case x ̸∈ (I ∪ S). We claim that (x,m) ̸∈
E(Cay(R,S)) for all m ∈ I. Suppose to the contrary, then x −m ∈ S for some m ∈ I. We

then have

x = (x−m) +m ∈ S + I = S.

This shows that x ∈ S, which is a contradiction. □

Corollary 4.5. Suppose that I, J are two ideals in a commutative ring R such that both of

them are homogeneous sets in Cay(R,S). Then I + J is also a homogeneous set.

We now recall the definition of the Jacobson radical of a commutative ring.

Definition 4.6. Let R be a commutative ring. The Jacobson radical of R is defined the the

following equivalent definitions (see [39, Section IV] and [46, Chapter 4.3]).

(1) Rad(R) = ∩M where M runs through the set of all maximal ideals of R.

(2) Rad(R) = {r ∈ R|1− rs ∈ R× for all s ∈ R}.

(3) Rad(R) is an ideal and it is the largest ideal K such that 1− r is a unit in R for all

r ∈ K.

(4) Rad(R) is the largest nilpotent ideal in R.

Now, suppose that I is a non-trivial ideal in R such that I is a homogeneous set in Cay(R,S).

By Proposition 4.4 we know that

1 + I = {1 +m|m ∈ I} ⊂ S ⊂ R×.

Therefore, by Condition 3 in Definition 4.6, we conclude that I ⊂ Rad(R). Thus we have

proved the following.

Proposition 4.7. Each non-trivial homogeneous ideal in R is a subset of Rad(R). In partic-

ular, each such ideal is nilpotent.
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We recall that a finite commutative ring is called semisimple if Rad(R) = R (see [46, Propo-

sition a, Chapter 3] and take into account that finite commutative ring is Artinian). By

Theorem 4.1 and Proposition 4.7 we have the following corollary.

Corollary 4.8. Let R be a semisimple commutative ring and let S ⊆ R× be a subgroup.

Suppose that Cay(R,S) is connected and anti-connected. Then Cay(R,S) is prime.

We now study the functorial properties of Cay(R,S). For this, we introduce the following

definition.

Definition 4.9. Let R,R′ be rings and let S, S′ be subgroups of R×, (R′)× respectively.

(1) A homomorphism from (R,S) → (R′, S′) is a ring homomorphism Φ : R → R′ such

that S = Φ−1(S′).

(2) Without causing any confusion, we will denote this homomorphism by Φ as well. We

say that Φ is surjective if the ring map Φ : R→ R′ is.

With this definition, we have the following proposition.

Proposition 4.10. Let R,R′ be rings and let S, S′ be subgroups of R×, (R′)× respectively.

Let Φ: (R,S) → (R′, S′) be a surjective homomorphism. Let I ′ ̸= R′ be an ideal in R such

that I ′ is a homogeneous set in Cay(R′, S′). Then I = Φ−1(I ′) is an ideal in R which is also

a homogeneous set in Cay(R,S).

Proof. By definition Φ−1(I) is an ideal in R. We note that since S′ ∩ I ′ = ∅, we must have

I ̸= R. To show that I is homogeneous, we only need to show that

S + I = S.

In fact, we have

Φ(S + I) = Φ(S) + Φ(I) = S′ + I ′ = S′.

Therefore

S + I ⊆ Φ−1(S′) = S.

Since we always have S ⊆ S + I, we conclude that S + I = S. □

Remark 4.11. We compare Definition 4.9 to the notion of a graph homomorphism defined in

Definition 2.2. We remark that with Definition 2.2, if f(x) = f(y), then x and y are non-

adjacent in G. We also note that in general, if f is a graph homomorphism, then f−1(X),

where X is a homogeneous set in H, need not be a homogeneous set in G. For this to be

true, we need the modified assumption that if f(x) ̸= f(y), then xy ∈ E(G) if and only if

f(x)f(y) ∈ E(H) (note that this assumption does not imply that f is a graph homomorphism,

as it allows for adjacent vertices to have the same image). The setting of Proposition 4.10 in

fact gives us a graph homomorphism from Cay(R,S) to Cay(R′, S′) which also satisfies the

modified assumption.
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Lemma 4.12. Let R be a commutative ring and let S ⊆ R×. Let I be an ideal in R which

is also a homogeneous set in Cay(R,S) such that I ̸= R. Let Φ: R → R/I be the canonical

ring map. Then Φ−1(Φ(S)) = S. In other words, the induced map Φ: (R,S) → (R/I, S/I) is

a surjective homomorphism.

Proof. We always have S ⊆ Φ−1(Φ(S)). Let t ∈ Φ−1(Φ(S)). Then Φ(t) ∈ Φ(S). That means

we can find s ∈ S such that Φ(t) = Φ(s). Equivalently, t − s = m for some m ∈ I. We then

have

t = s+m.

However, since I is a homogeneous set, from Proposition 4.4 we know that I + S = S. This

shows that t ∈ S. We conclude that Φ−1(Φ(S)) ⊆ S and hence Φ−1(Φ(S)) = S. □

We recall that a positive integer p is a prime number if it has no non-trivial factor. Said

differently, p is a prime number if for every n ≥ 1 and every surjective homomorphism

Φ : Z/p → Z/n, we have that Φ is an isomorphism. Inspired by this fact, we make the

following definition.

Definition 4.13. Let R be a ring and S ⊆ R×. We say that the pair (R,S) is primitive if it

is minimal in the following sense: if Φ : (R,S) → (R′, S′) is a surjective homomorphism, then

it is an isomorphism.

Roughly speaking, the pair (R,S) is primitive if it has no non-trivial quotients. Combining

the results that we proved so far, we have:

Proposition 4.14. Let R be a commutative ring and S ⊆ R×. Suppose that Cay(R,S)

is connected and anti-connected. Then Cay(R,S) is prime if and only if the pair (R,S) is

primitive.

Proof. If Cay(R,S) is not prime, then there exists a non-trivial ideal I such that I is a

homogeneous set. We then have a surjective homomorphism Φ: (R,S) → (R/I, S/I). Since

I is non-trivial, it follows that Φ is not an isomorphism.

Conversely, suppose that Cay(R,S) is a prime graph. Let Φ: (R,S) → (R′, S′) be a surjective

homomorphism. Since {0} is a homogeneous ideal in Cay(R′, S′), we know that ker(Φ) =

Φ−1(0) is a homogeneous set in Cay(R,S) as well. Since Cay(R,S) is prime, we conclude

that ker(Φ) = {0}. This shows that Φ is an isomorphism. □

4.2. Generalized Paley graphs. In this section, we will focus on the case where S is

associated with a multiplicative function on R. To start, let us consider ψ : R → C to be a

multiplicative function, namely

ψ(ab) = ψ(a)ψ(b),∀a, b ∈ R,

ψ(0) = 0 and ψ(1) = 1. We say that ψ is an even function if ψ(−1) = 1.
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Definition 4.15. The Paley digraph Pψ is defined as the Cayley graph Cay((R,+), ker(ψ))

where

ker(ψ) = {a ∈ R|ψ(a) = 1}.

We can see easily that Cay(R, ker(ψ)) is an undirected graph if and only if ψ is even. From

now on, we will always assume that ψ is even.

The name generalized Paley digraph is motivated by the classical Paley digraph Cay(Fq, ker(ψ))
where Fq is a finite field with q elements and ψ : Fq → C is defined by

ψ(a) =


0 if a = 0

1 if a ∈ F×
q and a is a square in Fq

−1 else.

These digraphs are named after the English mathematician Raymond Paley (see [41]).

Remark 4.16. By definition, 1 ∈ ker(ψ). Consequently, Pψ is not an empty graph. Said

differently, its complement P cψ is not a complete graph.

Remark 4.17. We remark that in the above definition, we do not require that ker(ψ) is a

subgroup of R×. However, as we will see later, this property is automatic if ψ is primitive, a

concept that we will define below (see Lemma 4.20).

Definition 4.18. Let I be a non-trivial ideal in R. Let ψ : R/I → C be a multiplicative

function. Let ψ̂I : R → R/I → C be the induced multiplicative function. Such ψ̂I is called a

non-primitive multiplicative function, and we say that ψ̂I factors through R/I. If ψ : R→ C
is a multiplicative function which is not of the form ψ̂I for non-trivial I, then we say that ψ

is a primitive.

From now on, without further notice, we will assume that R is a commutative ring.

Proposition 4.19. If ψ is not primitive, then Pψ is not prime.

Proof. Since ψ is not primitive, we can find a non-trivial ideal I such that ψ = ψ̂I where

ψI : R/I → C is a multiplicative function. We claim that I is a homogeneous set in Pψ = P
ψ̂I
.

In fact, let a ∈ R and a ̸∈ I. Then for h ∈ I, we have ψ(a) = ψ(a − h) = ψ(h − a), using

that ψ is even. Consequently, if ψ(a) = 1 then (a, h) ∈ E(Pψ) for all h ∈ I. Otherwise,

(a, h) ̸∈ E(Pψ) for all h ∈ I. By definition, I is a homogeneous set and hence Pψ is not

prime. □

It turns out that the converse of this proposition also holds under some mild assumptions.

To show this fact, we first introduce the following lemma.
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Lemma 4.20. Let R be a finite commutative ring. Suppose that ψ : R → C is primitive.

Then

R× = {a|ψ(a) ̸= 0.}.
In particular, ker(ψ) ⊆ R×.

Proof. If a ∈ R× then

1 = ψ(1) = ψ(a)ψ(a−1).

This shows that ψ(a) ̸= 0. Conversely, suppose a ∈ R such that ψ(a) ̸= 0. We will show that

a ∈ R×. The multiplication map ma : R→ R sending x 7→ ax is a group homomorphism. Let

I = ker(ma). We claim that ψ(x+ b) = ψ(x) for all x ∈ R and b ∈ I. In fact, we have

ψ(a)ψ(x) = ψ(ax) = ψ(a(x+ b)) = ψ(a)ψ(x+ b).

Since ψ(a) ̸= 0, we conclude that ψ(x) = ψ(x + b). This shows that ψ factors through R/I.

Since ψ is primitive, we conclude that I = {0} and consequently a ∈ R×. □

Lemma 4.21. Assume that ψ : R → C is primitive. Let I be an ideal of R such that I is a

homogeneous set in Pψ. Then I = {0} or I = R.

Proof. Let us assume that I ̸= R. We claim that ψ factors through R → R/I → C. More

precisely, we will show that if x ∈ R and m ∈ I then

ψ(x) = ψ(x+m).

If ψ(x) = ψ(x +m) = 0, then we are done. Otherwise, either ψ(x) ̸= 0 or ψ(x +m) ̸= 0.

First, let us assume that ψ(x) ̸= 0. Then x ∈ R× by Lemma 4.20. By definition, ψ(1) = 1

and therefore (0, 1) ∈ E(Pψ). Since I ̸= R, it follows that 1 ̸∈ I. Furthermore, I is an ideal

which is also a homogeneous set, we conclude that (−x−1m, 1) ∈ E(Pψ) as well. Consequently

ψ(x−1m+ 1) = 1. This shows that ψ(x) = ψ(x+m).

For the case ψ(x + m) ̸= 0, by an identical argument applied to the pair (y, y − m) with

y = x+m, we also have ψ(x) = ψ(x+m). We conclude that in all cases, ψ(x) = ψ(x+m).

Since ψ is primitive, it follows that I = {0}, as desired. □

Corollary 4.22. If ψ : R → C is primitive, then Pψ has no non-trivial homogeneous set

which is also an ideal in R.

Lemma 4.23. Suppose ψ is primitive. Assume further that Pψ is connected but Pψ is not a

complete graph. Then Pψ is anti-connected.

Proof. Let S = ker(ψ) and Sc = R \ S. Then the complement of Pψ is Γ(R,Sc \ {0}). This
complement is connected if and only if Sc generates (R,+) as an abelian group. We first

claim that the abelian group I = ⟨Sc⟩ generated by Sc is an ideal in R. In fact, let sc ∈ Sc

and s ∈ S. Then

ψ(ssc) = ψ(s)ψ(sc) = ψ(sc) ̸= 1.
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This shows that ssc ∈ Sc. Now, let r ∈ R be an arbitrary element. Since S generates R as an

abelian group, we can write r =
∑t

i=1misi, where si ∈ S and mi ∈ Z. We then have

rsc =
t∑
i=1

mi(sisc) ∈ I.

Suppose that y ∈ I. By definition, we can write y =
∑p

i=1 ni(sc)i where ni ∈ Z and (sc)i ∈ Sc.

We then have

ry =

p∑
i=1

ni(r(sc)i) ∈ I.

Since this is true for all r ∈ R and y ∈ I, we conclude that I is an ideal in R.

We claim that I = R. Suppose to the contrary that I ̸= R. Let m be an arbitrary maximal

ideal in R. If x ∈ m then ψ(x) = 0 by Lemma 4.20. Consequently, x ∈ Sc and hence x ∈ I.

Since this is true for every x, we conclude that m ⊆ I.We conclude that I is the only maximal

ideal in R. In other words, R is a local ring and its maximal ideal is I. By Lemma 4.20, we

must have ψ(I) = 0. We note that since Pψ is not complete, S ̸= R \ {0}. Therefore, Sc

contains a non-zero element. Consequently, I ̸= 0. Additionally, because ψ is primitive, we

can find r ∈ R \ I such that ψ(r) ̸= 1 (otherwise, we have ψ(I) = 0 and ψ(x) = 1 for each

x ∈ S = R \ I. In other words, ψ factors through the nontrivial quotient R → R/I.) This

would be impossible since we then have r ∈ Sc ⊆ I. □

Combining Corollary 4.22, Lemma 4.23 and Theorem 4.1, we have the following proposition

which is the converse of Proposition 4.19.

Theorem 4.24. Let ψ : R → C be a primitive multiplicative function. Assume further that

Pψ is connected and Pψ is not complete. Then Pψ is prime.

Remark 4.25. The condition that Pψ is connected is necessary for Theorem 4.24. For example,

let R = Z/2×Z/2 and ψ : R→ C be the function such that ψ((a, b)) = 0 if (a, b) ̸= (1, 1) and

ψ((1, 1)) = 1. Then, ψ is primitive but Pψ is not connected. In fact, X1 = {(0, 0), (1, 1)} and

X2 = {(1, 0), (0, 1)} are two connected components of R. We refer the reader to Section 4.3

for some further discussions for this type of graph.

Remark 4.26. Observe that if ψ : R → C is a primitive multiplicative function such that Pψ
is complete then R is a field (note that a complete graph Kn is not prime if n ≥ 3). Indeed,

if Pψ is complete then ker(ψ) = R \ {0}. By Lemma 4.20, we conclude that R× = R \ {0}.
This implies that R is a field.

4.3. Unitary Cayley graphs. We continue with some discussions on the unitary graph of

a finite commutative ring. We first introduce this concept (see [1, 36] for some further studies

regarding it.)
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Definition 4.27. Let 1 : R→ C be the principal multiplicative function defined by

1(r) =

{
1 if r ∈ R×,

0 else.

The unitary graph associated with R is Cay(R, ker(1)) = Cay(R,R×). We will denote this

graph by XR.

Question 4.28. When is XR prime?

To answer this question, we recall the following definition of the tensor product of two graphs.

In the literature, other names are used for this concept including direct product and Kronecker

product (see [30, Page 36]).

Definition 4.29. Let G,H be two graphs. The tensor product G × H of G and H is the

graph with the following data:

(1) The vertex set of G×H is the Cartesian product V (G)× V (H); and

(2) Two vertices (g, h) and (g′, h′) are adjacent in G×H if and only if (g, g′) ∈ E(G) and

(h, h′) ∈ E(H).

We remark that if R = R1×R2, then an element r = (r1, r2) ∈ R is a unit if and only if r1, r2
are both units. From this observation, we see that XR

∼= XR1 ×XR2 .

Let Rss be the semisimplification of R, namely

Rss = R/Rad(R).

where Rad(R) is the Jacobson radical of R as defined in Definition 4.6. There is a canonical

ring map

Φ : R→ Rss.

Proposition 4.30. The map Φ has the following properties.

(1) Φ is surjective.

(2) Let r ∈ R. Then r is a unit in R if and only if Φ(r) is a unit in Rss.

Proof. Clearly Φ surjective. Now let x be an element in R. Suppose that x̄ = Φ(x) is a unit

in Rss. By definition, there exists y ∈ R such that xy − 1 ∈ Rad(R). By the definition of the

Jacobson radical, this implies that

xy = 1 + (xy − 1),

is a unit in R. Consequently, x is a unit in R. The converse statement is clear since Φ is a

ring homomorphism. □
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By Proposition 4.30, we see that 1 factors through R → R/Rad(R). Therefore, 1 is not

primitive and hence by Proposition 4.19, XR is not prime unless R = Rss, namely, R is

semisimple. From now on, we will assume that R is semisimple. By the structure theorem,

it follows that R is a product of fields R =
∏d
i=1 ki where ki are fields of size qi. We have

R× =
∏d
i=1 k

×
i . From this decomposition, we see that XR

∼=
∏d
i=1Xki =

∏
Kqi where Kn

is a complete graph on n nodes. Therefore, our question can be reduced to the following

question.

Question 4.31. Let n1, . . . , nd be positive integers. When is
∏d
i=1Kni prime?

We remark that the vertex set of this graph is the set of d-tuple (s1, s2, . . . , sd) where 0 ≤
si ≤ ni− 1. Two vertices (s1, s2, . . . , sd) and (t1, t2, . . . , td) are connected if and only if si ̸= ti
for all 1 ≤ i ≤ d. We remark that the complement of

∏d
i=1Kni is always connected if d ≥ 2.

In other words,
∏d
i=1Kni is anti-connected if d ≥ 2.

Remark 4.32. If d = 1 then XR
∼= Kq1 and we can see that Kqi is not prime unless qi = 2.

From now on, we will assume that d > 1. From Remark 4.25, we know that K2 ×K2 is not

connected. Additionally, we know that the tensor product behaves well with respect to the

disjoint union of graphs (see [30, Page 54]). Specifically, if G,H1, H2 are graphs then

G× (H1 +H2) ∼= (G×H1) + (G×H2).

Here H1 +H2 is the disjoint union of H1 and H2. From this, we can see that if there is more

than one ni = 2, the product
∏d
i=1Kni is not connected.

Lemma 4.33. Suppose that d ≥ 2. The graph
∏d
i=1Kni is connected if and only if there is

at most one ni = 2.

Proof. The if part has been proved above. Let us prove the “only if” part. Let (s1, s2, . . . , sd)

and (t1, t2, . . . , td) be elements of
∏d
i=1Kni . If ni > 2 for all i, we can find (u1, u2, . . . , ud)

such that

ui ̸∈ {si, ti},∀1 ≤ i ≤ d.

By definition, (u1, u2, . . . , ud) is connected to both (s1, s2, . . . , sd) and (t1, t2, . . . , td). Thus,

we find a path

(s1, s2, . . . , sd) → (u1, u2, . . . , ud) → (t1, t2, . . . , td).

Now, suppose that one of the ni is 2. Without loss of generality, we can assume that n1 = 2.

Again, we can find (u1, u2, . . . , ud) such that

ui ̸∈ {si, ti},∀2 ≤ i ≤ d.

If s1 = t1, we can find u1 such that u1 ̸= t1. Then we have the following path:

(s1, s2, . . . , sd) → (u1, u2, . . . , ud) → (t1, t2, . . . , td).
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If s1 ̸= t1, we have the following path

(s1, s2, . . . , sd) → (t1, u2, . . . , ud).

By the previous case, there is a path from (t1, u2, . . . , ud) → (t1, t2, . . . , td). This shows that

there is a path from (s1, s2, . . . , sd) to (t1, t2, . . . , td). □

Remark 4.34. Lemma 4.33 can also be deduced from [30, Corollary 5.10] which asserts that

a tensor product of connected nontrivial graphs is connected if and only at most one of the

factors is bipartite. In our case, Kni is connected. It is bipartite if and only if ni = 2.

Now back to our problem of whether XR is prime where R =
∏d
i=1 ki. As we explained above,

we have

XR
∼=

d∏
i=1

Xki
∼=

d∏
i=1

Kqi ,

where qi = |ki|. Clearly, the multiplicative function 1 : R → C is primitive. We also know

that XR is anti-connected. Therefore, by Proposition 4.24, we conclude XR is prime if and

only if it is connected. By the above lemma, this happens if and only if at most one qi = 2.

In summary, we have proved the following.

Theorem 4.35. For a commutative ring R, the graph XR is prime if and only if R = F2 or

R ∼=
∏d
i=1 ki where d ≥ 2 and ki are fields such that there is at most one i such that |ki| = 2.
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16. Maria Chudnovsky, The Erdős–Hajnal conjecture – a survey, Journal of Graph Theory 75 (2014), no. 2,

178–190.

17. Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas, The strong perfect graph theorem,

Annals of mathematics (2006), 51–229.
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19. Alain Cournier, Sur quelques algorithmes de décomposition de graphes, Ph.D. thesis, Montpellier 2, 1993.

20. Kevin Cramer, Mike Krebs, Nicole Shabazi, Anthony Shaheen, and Edward Voskanian, The isoperimetric

and Kazhdan constants associated to a Paley graph, Involve, a Journal of Mathematics 9 (2016), no. 2,

293–306.
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41. Ján Mináč, Lyle Muller, Tung T Nguyen, and Nguyen Duy Tân, On the Paley graph of a quadratic

character, To appear in Mathematica Slovaca (2023).

42. Adilson E Motter, Seth A Myers, Marian Anghel, and Takashi Nishikawa, Spontaneous synchrony in

power-grid networks, Nature Physics 9 (2013), no. 3, 191–197.

43. John H Muller and Jeremy Spinrad, Incremental modular decomposition, Journal of the ACM (JACM) 36

(1989), no. 1, 1–19.

44. Tung T Nguyen, Roberto C Budzinski, Federico W Pasini, Robin Delabays, Ján Mináč, and Lyle E Muller,
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50. Dragan Stevanović, Large sets of long distance equienergetic graphs, Ars Math. Contemp. 2 (2009), no. 1,

35–40.

51. Steven H Strogatz, Exploring complex networks, Nature 410 (2001), no. 6825, 268–276.

52. L. Tiberi, C. Favaretto, M. Innocenti, D. S. Bassett, and F. Pasqualetti, Synchronization patterns in

networks of Kuramoto oscillators: A geometric approach for analysis and control, 2017 IEEE 56th Annual

Conference on Decision and Control (CDC), IEEE, 2017, pp. 481–486.

53. Duncan J Watts and Steven H Strogatz, Collective dynamics of small-world networks, Nature 393 (1998),

no. 6684, 440–442.


	1. Introduction
	1.1. Homogeneous sets
	1.2. Outline

	2. Definitions and notation
	3. Homogeneous sets and Cayley graphs
	3.1. Homogeneous sets and the wreath product
	3.2. Homogeneous sets in Cayley graphs
	3.3. Cayley digraphs and the wreath product

	4. Homogeneous sets in Cayley graphs of a ring
	4.1. Some general properties of Cay(R,S)
	4.2. Generalized Paley graphs
	4.3. Unitary Cayley graphs

	References

