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Abstract. Given an integer c ≥ 1, we say a graph G is c-pinched if G does not contain an
induced subgraph consisting of c cycles, all going through a single common vertex and otherwise
pairwise disjoint and with no edges between them. What can be said about the structure of
c-pinched graphs?

For instance, 1-pinched graphs are exactly graphs of treewidth 1. However, bounded treewidth
for c > 1 is immediately seen to be a false hope because complete graphs, complete bipartite
graphs, subdivided walls and line-graphs of subdivided walls are all examples of 2-pinched
graphs with arbitrarily large treewidth. There is even a fifth obstruction for larger values of
c, discovered by Pohoata and later independently by Davies, consisting of 3-pinched graphs
with unbounded treewidth and no large induced subgraph isomorphic to any of the first four
obstructions.

We fuse the above five examples into a grid-type theorem fully describing the unavoidable
induced subgraphs of pinched graphs with large treewidth. More precisely, we prove that for
every integer c ≥ 1, a c-pinched graph G has large treewidth if and only if G contains one of the
following as an induced subgraph: a large complete graph, a large complete bipartite graph, a
subdivision of a large wall, the line-graph of a subdivision of a large wall, or a large graph from
the Pohoata-Davies construction. Our main result also generalizes to an extension of pinched
graphs where the lengths of excluded cycles are lower-bounded.

1. Introduction

1.1. Background. Graphs in this paper have finite vertex sets, no loops and no parallel edges.
Let G be a graph. For X ⊆ V (G), we denote by G[X] the subgraph of G induced by X, and by
G\X the induced subgraph of G obtained by removing X. We use induced subgraphs and their
vertex sets interchangeably. For graphs G and H, we say G contains H if G has an induced
subgraph isomorphic to H, and we say G is H-free if G does not contain H. A class of graphs
is hereditary if it is closed under isomorphism and taking induced subgraphs.

The treewidth of a graph G (denoted by tw(G)) is the smallest integer w ≥ 1 for which there
exists a tree T as well as an assignment (Tv : v ∈ V (G)) of non-empty subtrees of G with the
following specifications.

(T1) For every edge uv ∈ V (G), Tu and Tv share at least one vertex.
(T2) For every x ∈ V (T ), there are at most w+1 vertices v ∈ V (G) for which x ∈ V (Tv).
As one of the most extensively studied graph invariants, the enduring interest in treewidth

is partly explained by its role in the development of Robertson and Seymour’s graph minors
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Figure 1. The 6-by-6 square grid (left) and the 6-by-6 wall W6×6 (right).

project, as well as the vast range of nice structural [15] and algorithmic [5] properties of graphs
of small treewidth.

Graphs of large treewidth have also been a central topic of research for several decades.
Usually, it is most desirable to certify large treewidth in a graph G by means of a well-understood
“obstruction” which still has relatively large treewidth, and which lies in G under a certain
containment relation. The cornerstone result in this category is the so-called Grid Theorem of
Robertson and Seymour [15], Theorem 1.1 below, which says that under two of the most studied
graph containment relations, namely the graph minor relation and the subgraph relation, the
only obstructions to bounded treewidth are the “basic” ones: the t-by-t square grid for minors,
and subdivisions of the t-by-t hexagonal grid for subgraphs. The t-by-t hexagonal grid is also
known as the t-by-t wall, denoted by Wt×t (see Figure 1, and also [3] for full definitions).
Theorem 1.1 (Robertson and Seymour [15]). For every integer t ≥ 1, every graph of sufficiently
large treewidth contains the t-by-t square grid as a minor, or equivalently, a subdivision of Wt×t
as a subgraph.

It is therefore tempting to inquire about an analogue of Theorem 1.1 for another standard
graph containment relation: induced subgraphs. The basic obstructions in this case already
suggest that a more involved grid-type theorem is to be expected: complete graphs, com-
plete bipartite graphs, subdivided walls, and line-graphs of subdivided walls are all examples
of induced-subgraph-minimal graphs with large treewidth. It is convenient to group all these
graphs together. Given an integer t ≥ 1, we say a graph H is a t-basic obstruction if H is
isomorphic to one of the following: the complete graph Kt, the complete bipartite graph Kt,t,
a subdivision of Wt×t, or the line-graph of a subdivision of Wt×t, where the line-graph L(F )
of a graph F is the graph with vertex set E(F ), such that two vertices of L(F ) are adjacent
if the corresponding edges of F share an end (see Figure 2). We say a graph G is t-clean if G
does not contain a t-basic obstruction (as an induced subgraph). A graph class G is clean if for
every integer t ≥ 1, there exists an integer w(t) ≥ 1 (depending on G) for which every t-clean
graph in G has treewidth at most w(t). Since the basic obstructions have unbounded treewidth
(Kt+1, Kt,t, subdivisions of Wt×t and line-graphs of subdivisions of Wt×t are all known to have
treewidth t), it follows that for every hereditary class of bounded treewidth, there exists some
t ≥ 1 such that every graph in the class is t-clean. The converse would be a particularly nice
grid-type theorem for induced subgraphs: every hereditary class is clean. This, however, is now
known to be far from true, thanks to the numerous constructions [6, 7, 13, 16] of graphs with
arbitrarily large treewidth which are t-clean for small values of t (and we will take a closer look
at the one from [7, 13] in a moment).

On the other hand, there are several hereditary classes that are known to be clean for highly
non-trivial reasons. As a notable example, Korhonen [11] proved that every graph class of
bounded maximum degree is clean, settling a conjecture from [1]:
Theorem 1.2 (Korhonen [11]). For every integer d ≥ 1, the class of all graphs with maximum
degree at most d is clean.

One possible attempt at generalizing Theorem 1.2 is to look for clean classes under weaker
assumptions than bounded maximum degree. For instance, bounded maximum degree is equiv-
alent to excluding a fixed star as a subgraph, and in a recent joint work with Abrishami, we
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Figure 2. The 3-basic obstructions.

extended Theorem 1.2 to graphs that exclude a fixed subdivided star as an induced subgraph.
In fact, we proved:

Theorem 1.3 (Abrishami, Alecu, Chudnovsky, Hajebi and Spirkl [2]). Let H be a graph. Then
the class of all H-free graphs is clean if and only if every component of H is a subdivided star.

Another natural candidate for a configuration forcing large-degree vertices consists of several
cycles sharing a single vertex. For an integer c ≥ 1, let us say a graph G is c-pinched if G
does not contain c induced cycles, all going through a common vertex and otherwise pairwise
disjoint and anticomplete (for disjoint subsets X,Y of vertices in a graph G, we say that X
is anticomplete to Y if no edges between X and Y are present in G, and that X is complete
to Y if all edges with an end in X and an end in Y are present in G). Note that 1-pinched
graphs are forests, which are the only graphs with treewidth 1. For c = 2, it is easily seen that
all basic obstructions are 2-pinched, and we will show that they are the only representatives of
large treewidth in 2-pinched graphs:

Theorem 1.4. The class of all 2-pinched graphs is clean.

One may then ask if the class of c-pinched graphs is clean for all c ≥ 1. But this is false, as
shown by a 10-year-old construction due to Pohoata [13], also re-discovered recently by Davies
[7], which we describe below.

Given an integer n ≥ 1, we write [n] to denote the set of all positive integers less than or
equal to [n]. For an integer s ≥ 1, let PDs be the graph whose vertex set can be partitioned into
a stable set S = {x1, . . . , xs}, and s pairwise disjoint induced paths L1, . . . , Ls with no edges
between them, such that the following hold.

(PD1) For every i ∈ [s], Li has length s− 1 (and so exactly s vertices).
(PD2) For every i ∈ [s], the vertices in the interior of Li may be enumerated from one

end to the other as ui1-ui1- · · · -uis-uis such that for every j ∈ [s], xj has exactly
one neighbor in V (Li), namely uij .

See Figure 3. It is straightforward to show that for every s ≥ 1, PDs is a 3-clean, 3-pinched
graph of treewidth at least s. More generally, as we will prove in Theorem 3.1, the same holds
for every graph obtained from PDs by subdividing the edges of L1, . . . , Ls arbitrarily. We refer
to these graphs as expansions of PDs (see Figure 3). It follows that expansions of the Pohoata-
Davies graphs are “non-basic” obstructions to bounded treewidth in pinched graphs. Strikingly,
the converse turns out to hold, too. We prove that:

Theorem 1.5. For all integers c, s, t ≥ 1, every c-pinched graph of sufficiently large treewidth
contains either a t-basic obstruction or an expansion of PDs.

Since the basic obstructions and the graphs PDs have arbitrarily large treewidth, Theorem 1.5
provides a full grid-type theorem for the class of c-pinched graphs for all c ≥ 1. More generally,
our main result in this paper, Theorem 3.2, renders a complete description of the induced
subgraph obstructions to bounded treewidth in the class of (c, h)-pinched graphs for all c, h ≥ 1,
that is, graphs containing no c induced cycles each of length at least h + 2, all going through
a common vertex and otherwise pairwise disjoint and anticomplete (so a graph is c-pinched if
and only if it is (c, 1)-pinched). Indeed, the strengthening is direct enough that Theorem 1.5 is
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Figure 3. The graph PD6 (left) and an expansion of PD6 (right).

the special case of Theorem 3.2 where h = 1. Note also that no expansion of the graph PD4 is
2-pinched. Therefore, Theorem 1.5 implies Theorem 1.4.

Let us remark that grid-type theorems involving non-basic obstructions, such as Theorem 1.5
(or Theorem 3.2, rather), are as of yet quite rare. Indeed, the only other examples we are aware
of are the analogous result for “c-perforated” graphs – which we proved recently [4] – and an
earlier result from [10] concerning the class of “circle graphs.” As a matter of fact, the proof of
Theorem 3.2 bears a close resemblance to that of the main result of [4], and crucially builds on
some tools developed there.

To elaborate, let G be the non-clean class for which we wish to prove a grid-type theorem.
Roughly speaking, the idea is to break the proof into two steps: first, we show that every t-
clean graph in the class with sufficiently large treewidth must contain an “approximate version”
of the non-basic obstruction we are looking for, and second, we perform further analysis on
the approximate version in pursuit of the exact one. Luckily, in the case of pinched graphs,
the approximate and the exact non-basic obstructions are actually quite close. Note that the
(expansions of) Pohoata-Davies graphs consist of a stable set and a number of pairwise disjoint
and anticomplete paths such that every vertex in the stable set has a neighbor in every path.
We call such a configuration in a graph G a “constellation” (a notion which was also used in [4]
as an approximate non-basic obstruction for perforated graphs).

As for the present paper, our first goal is to show that for all c, t, h ≥ 1, every t-clean (c, h)-
pinched graph of sufficiently large treewidth contains a huge constellation. This involves a useful
result from an earlier paper in this series [2] concerning the “local connectivity” in clean classes,
accompanied by a collection of Ramsey-type arguments to tidy up an induced subgraph ofG with
high local connectivity. The second step then is to turn a constellation into an expansion of a
Pohoata-Davies-like graph. To that end, for every path L in the “path side” of the constellation,
we consider the intersection graph I of the minimal subpaths of L containing all neighbors of
each vertex in the “stable set side” S. Provided that S is large enough, I contains either a big
stable set or a big clique. In the former case, on L, the neighbors of the vertices from the stable
set do not interlace, and the resulting “alignment” of vertices according to their neighbors on L
signals the emergence of a Pohoata-Davies-like structure. In the latter case, several vertices in
S turn out to have neighbors in several pairwise disjoint and anticomplete subpaths of L. This
eventually yields c induced cycles with a vertex in common and otherwise pairwise disjoint and
anticomplete, a contradiction.

We take the two steps above in the reverse order in Sections 4 and 5, respectively. In the
next section, we discuss the connectivity result from [2] (together with its bells and whistles).
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Section 3 introduces a variety of notions from [4] which we use in this paper, and also features
the statement of our main result, Theorem 3.2, of which we give a complete proof in Section 6.

2. Blocks

We begin with a couple of definitions. Let G = (V (G), E(G)) be a graph. For an induced
subgraph H of G and a vertex x ∈ V (G), we denote by NH(x) the set of all neighbors of x
in H, and write NH [x] = NH(x) ∪ {x}. A stable set in G is a set of pairwise non-adjacent
vertices. A path in G is an induced subgraph of G which is a path. If P is a path in G, we
write P = p1- · · · -pk to mean that V (P ) = {p1, . . . , pk} and pi is adjacent to pj if and only if
|i−j| = 1. We call the vertices p1 and pk the ends of P and write ∂P = {p1, pk}. The interior of
P , denoted P ∗, is the set P \ ∂P . The length of a path is its number of edges. Similarly, a cycle
in G is an induced subgraph of G that is a cycle. If C is a cycle in G, we write C = c1- · · · -ck-c1
to mean that V (C) = {c1, . . . , ck} and ci is adjacent to cj if and only if |i− j| ∈ {1, k− 1}. The
length of a cycle is also its number of edges. For a collection P of paths in G, we adopt the
notations V (P) =

⋃
P∈P V (P ), P∗ =

⋃
P∈P P

∗ and ∂P =
⋃
P∈P ∂P .

Let k ≥ 1 be an integer and let G be a graph. A k-block in G is a set B of at least k vertices
in G such that for every 2-subset {x, y} of B, there exists a collection P{x,y} of at least k distinct
and pairwise internally disjoint paths in G from x to y. In addition, we say B is strong if for every
two distinct 2-subsets {x, y}, {x′, y′} ⊆ B of G, every P ∈ P{x,y} and every P ′ ∈ P{x′,y′}, we
have V (P{x,y}) ∩ V (P{x′,y′}) = {x, y} ∩ {x′, y′}. In [2], with Abrishami we proved the following:

Theorem 2.1 (Abrishami, Alecu, Chudnovsky, Hajebi and Spirkl [2]). For all integers k, t ≥ 1,
there exists an integer ξ = ξ(k, t) ≥ 1 such that for every t-clean graph G of treewidth more than
ξ, there is a strong k-block in G.

The following result, which guarantees that the graphs we work with exclude “short subdivi-
sions” of large complete graphs, paves the way for our application of Theorem 2.1. Recall that a
subdivision of graph H is a graph H ′ obtained from H by replacing the edges of H with pairwise
internally disjoint paths of non-zero length between the corresponding ends. Let r ≥ 0 be an
integer. An (≤ r)-subdivision of H is a subdivision of H in which the path replacing each edge
has length at most r + 1.

Theorem 2.2 (Dvořák, see Theorem 6 in [8]; Lozin and Razgon, see Theorem 3 in [12]). For
every graph H and all integers d ≥ 0 and t ≥ 1, there exists an integer m = m(H, d, t) ≥ 1 with
the following property. Let G be a graph with no induced subgraph isomorphic to a subdivision of
H. Assume that G contains a (≤ d)-subdivision of Km as a subgraph. Then G contains either
Kt or Kt,t.

3. Bundles and constellations

In this section we state our main result, Theorem 3.2. We start with a few definitions that
first appeared in [4].

Let G be a graph and let l ≥ 1 be an integer. By an l-polypath in G we mean a set L
of l pairwise disjoint paths in G. We say L is plain if every two distinct paths L,L′ ∈ L
are anticomplete in G. Also, two polypaths L and L′ in G are said to be disentangled if
V (L) ∩ V (L′) = ∅. For an integer s ≥ 1, an (s, l)-bundle in G is a pair b = (Sb,Lb) where
Sb ⊆ V (G) with |Sb| = s and Lb is an l-polypath in G (note that Sb and V (Lb) are not
necessarily disjoint). If l = 1, say Lb = {Lb}, we also denote the (s, 1)-bundle b by the pair
(Sb, Lb). Given an (s, l)-bundle b in G, we write V (b) = Sb ∪ V (Lb), and for every L ∈ Lb, we
denote by bL the (s, 1)-bundle (Sb, L). Also, we say that b is plain if the l-polypath Lb is plain.
For two bundles b and b′ in a graph G, we say b and b′ are disentangled if V (b) ∩ V (b′) = ∅.

An (s, l)-constellation in G is an (s, l)-bundle c = (Sc,Lc) in G such that Sc is a stable set (of
cardinality s) in G \ V (Lc), and every s ∈ Sc has a neighbor in every path L ∈ Lc.
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Figure 4. Top: a (5, 1)-constellation c with Sc = {x1, x2, x3, x4, x5} and
Lc = L. Note that c is 3-meager (with u being the only vertex in L with three
neighbors in Sc) and 6-hollow (with the x3-gap v-L-w of length five being the

longest). Bottom: a 5-alignment.

Let c be an (s, 1)-constellation in a graph G. For a vertex x ∈ Sc, by an x-gap in c we mean
a path P in Lc (possibly of length zero) where x is adjacent to the ends of P and anticomplete
to P ∗. For an integer d ≥ 1, we say c is d-hollow if for every x ∈ Sc, every x-gap in c has length
less than d. Also, we say c is d-meager if every vertex in Lc is adjacent to at most d vertices in
Sc (see Figure 4). In general, for an (s, l)-constellation c, we say c is d-hollow (d-meager) if for
every L ∈ Lc, cL is d-hollow (d-meager).

For an integer s ≥ 1, an s-alignment in G is a triple (S,L, π) where (S,L) is an (s, 1)-
constellation in G and π : [s] → S is a bijection such that for some end u of L, the following
holds.

(AL) For all i, j ∈ [s] with i < j, every neighbor vi ∈ L of π(i) and every neighbor
vj ∈ L of π(j), the path in L from u to vj contains vi in its interior. In other
words, traversing L starting at u, all neighbors of π(i) appear before all neighbors
of π(j).

See Figure 4. In particular, (S,L) is 1-meager.
For integers h, s ≥ 1, an (s, h)-array in a graph G is a plain, h-hollow (s, s)-constellation a in

G which satisfies the following.
(AR) There exists a bijection π : [s]→ Sa such that for every L ∈ La, (Sa, La, π) is an

s-alignment in G.
See Figure 5. It is readily observed that for X ⊆ V (G), if there is an (s, 1)-array a in G with
V (a) = X, then G[X] contains an expansion of the graph PDs, and if G[X] is isomorphic to
an expansion of PDs for some X ⊆ V (G), then there is an (s, 1)-array a in G with V (a) = X.
Moreover, we have:

Theorem 3.1. Let h, s ≥ 1 be integers and let G be a graph. Let a be an (s, h)-array in G.
Then G[V (a)] is a 4-clean, (3, h)-pinched graph of treewidth at least s.

Proof. Let J = G[V (a)]. Note that J contains a Ks,s-minor (by contracting each path L ∈ La
into a vertex), which implies that tw(J) ≥ s.

Let us say that a connected graph H is fragile if either H has a vertex v such that H \NH [v]
is not connected, or H has a set S of at most two vertices such that H \S has maximum degree
at most two. Then every connected induced subgraph of J is fragile. On the other hand, for
an integer t ≥ 3, let W be either a subdivision of Wt×t or the line-graph of such a subdivision.
Then one may observe (see, for instance, Figure 2) that for every vertex v ∈ W , W \NW [v] is
connected, and W contains a stable set S with |S| ≥ 3 all of whose vertices have degree three
in W . It follows that W is not fragile, and so W is not isomorphic to an induced subgraph of
J . In addition, J is easily seen to be {K4,K3,3}-free. So J is 4-clean.
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x x1 x2

Figure 5. A (3, 4)-array (vertex labels x, x1 and x2 are relevant the proof of
Theorem 3.1).

It remains to show that J is (3, h)-pinched. Suppose for a contradiction that there are three
cycles C1, C2, C3 in J of length at least h+2 with C1∩C2∩C3 = {x} and C1\{x}, C2\{x}, C3\{x}
are pairwise disjoint and anticomplete. Choose π : [s] → Sa as in (AR). Since x has degree at
least six in J , it follows that x ∈ Sa. Also, since a is h-hollow, it follows that there is no cycle of
length at least h+2 in J [V (La∪{x})]. Thus, for every ` ∈ [3], we may pick x` ∈ C`∩(Sa\{x}) 6= ∅.
By symmetry, we may assume that there are distinct `1, `2 ∈ [3] for which π−1(x) is smaller
than π−1(x`1) and π−1(x`2). In particular, we may assume without loss of generality that
π−1(x) < π−1(x1) < π−1(x2). But then x, x2 ∈ C2 are in different components of J \ NJ [x1]
(see Figure 5), which violates the fact that C1 \ {x} and C2 \ {x} are disjoint and anticomplete.
This completes the proof of Theorem 3.1. �

Now we can state the main result of this paper:

Theorem 3.2. For all integers c, h, s, t ≥ 1, there exists an integer τ = τ(c, h, s, t) ≥ 1 such
that for every t-clean (c, h)-pinched graph G of treewidth more than τ , there is an (s, h)-array
in G.

In view of Theorem 3.1, Theorem 3.2 yields a complete description of unavoidable induced
subgraphs of (c, h)-pinched graphs with large treewidth (for all c, h ≥ 1). Moreover, as mentioned
above, there is an (s, 1)-array in a graph G if and only if G contains an expansion of PDs. So
Theorem 1.5 is the special case of Theorem 3.2 for h = 1. We also point out that for s ≥ 4 and
h ≥ 1, if a graph G is (2, h)-pinched, then there is no (s, h)-array in G. Hence, Theorem 1.5
implies a strengthening of Theorem 1.4, that for every h ≥ 1, the class of all (2, h)-pinched
graphs is clean.

4. Dealing with plain constellations

In this section, we prove the following:

Theorem 4.1. For all integers c, h, s, t ≥ 1, there exist integers σ = σ(c, h, s, t) and λ =
λ(c, h, s, t) with the following properties. Let G be a t-clean (c, h)-pinched graph. Assume that
there exists a plain (σ, λ)-constellation c in G. Then there is an (s, h)-array in G.

We need a couple of lemmas, beginning with the following. Although we have proved a similar
result in [4], we include the proof here as it is short.

Lemma 4.2. Let a, d, s, l ≥ 1 and let be integers and let G be a graph. Assume that there exists
a d-meager al−1(s+ d(l − 1)), 1)-constellation (S0, L0) in G. Then one of the following holds.

(a) There exists an a-alignment (S,L, π) in G with S ⊆ S0 and L ⊆ L0.
(b) There exists a plain (s, l)-constellation c in G such that Sc ⊆ S0 and L ⊆ L0 for every

L ∈ Lc. In particular, c is also d-meager.

Proof. For fixed a, d and s, we proceed by induction on l. Note that if l = 1, then (S0, L0) is an
(s, 1)-constellation in G satisfying Lemma 4.2(b). Thus, we may assume that l ≥ 2.

Let u, v be the ends of L0. For every vertex x ∈ S0, traversing L0 from u to v, let ux and vx
be the first and the last neighbor of x in L0 (possibly ux = vx), and let Lx = ux-L0-vx. Let Y be
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the largest subset of S0 for which the paths {Lx : x ∈ Y } are pairwise disjoint with
∑
y∈Y |Ly| as

small as possible, and subject to this,
∑
y∈Y |vy-L-v| is as small as possible. Clearly, if |Y | ≥ a,

then Lemma 4.2(a) holds. Therefore, we may assume that |Y | < a. Let W = {uy : y ∈ Y };
then we have |W | < a. By the choice of Y , it follows that for every x ∈ S0, there exists y ∈ Y
such that uy ∈ Lx while Lx is not properly contained in Ly. In other words, for every x ∈ S0,
we have Lx ∩W 6= ∅. Since |S0| = al−1(s + (l − 1)d) and |W | < a, it follows that there exists
A ⊆ S0 with |A| = al−2(s + d(l − 1)) and a vertex w ∈ W , such that for every x ∈ A, we have
w ∈ Lx. On the other hand, since (S0, L0) is d-meager, there are at most d vertices in A which
are adjacent to w, and so

|A \NA(w)| ≥ al−2(s+ d(l − 1))− d ≥ al−2(s+ d(l − 2)) > 0.
It follows that L0 \ {w} has two components, say L1 and L2, and there exists B ⊆ A with
|B| = al−2(s + d(l − 2)) such that every vertex in B has a neighbor in L1 and a neighbor in
L2. It follows that (B,L1) and (B,L2) are both d-meager (al−2(s + d(l − 2)), 1)-constellations
in G. From the induction hypothesis applied to (B,L1), we deduce that either there exists an
a-alignment (S,L) in G with S ⊆ B ⊆ S0 and L ⊆ L1 ⊆ L0, or there exists a plain (s, l − 1)-
constellation c1 in G such that Sc1 ⊆ B ⊆ S0 and L ⊆ L1 ⊆ L0 for every L ∈ Lc1 . In the
former case, Lemma 4.2(a) holds, as required. In the latter case, c = (Sc1 ,Lc1 ∪ {L2}) is a plain
(s, l)-constellation in G such that Sc = Sc1 ⊆ S0 and L ⊆ L1 ∪L2 ⊆ L0 for every L ∈ Lc, and so
Lemma 4.2(b) holds. This completes the proof of Lemma 4.2. �

Indeed, for pinched graphs, it turns out that Lemma 4.2(a) is the only possible outcome:

Lemma 4.3. Let a, c, d, h ≥ 1 be integers and let G be a (c, h)-pinched graph. Assume that there
exists a d-meager (a2cdh−1d(h + 2cdh − 1), 1)-constellation (S0, L0) in G. Then there exists an
a-alignment (S,L, π) in G with S ⊆ S0 and L ⊆ L0.

Proof. Suppose not. Then applying Lemma 4.2 to (S0, L0), it follows that there exists a plain
(dh, 2cdh)-constellation c in G such that Sc ⊆ S0 and L ⊆ L0 for every L ∈ Lc. In particular, c
is d-meager. Let u be an end of L0. Let Lc = {Li : i ∈ [2cdh]} and let ui, vi be the ends of Li for
each i ∈ [2cdh], such that traversing L0 starting at u, the vertices u1, v1, . . . , u2cdh, v2cdh appear
on L0 in this order. For each i ∈ [2cdh − 1], let v′i be the neighbor of vi in L0 \ Li. Since c is
plain, it follows that vi-L0-ui+1 is a path of length at least two in L0 whose interior is disjoint
from {ui, vi : i ∈ [2cdh]} and contains v′i.

For every i ∈ [2cdh], since c is a constellation, every vertex in Sc has a neighbor in Li. Let
Ri be the shortest path in Li containing vi such that every vertex in Sc has a neighbor in Ri.
Since c is d-meager and |Sc| = dh, it follows that for |Ri| ≥ h for all i ∈ [2cdh]. Let wi be the
end of Ri distinct from vi. Then the minimality of Ri implies that there exists a vertex xi ∈ Sc
which is adjacent to wi and anticomplete to Ri \ {wi}. Since |Sc| = dh, it follows that there
exist x ∈ S0 as well as a 2c-subset {ik, jk : k ∈ [c]} of [2cdh], such that i1 < j1 < · · · < ic < jc
and we have xik = xjk = x for all k ∈ [c].

For each k ∈ [c], traversing v′ik -L0-wjk starting at v′ik , let w
′
k be the first neighbor of x in

v′ik -L0-wjk . Since x is adjacent to wjk , it follows that w′k exists (See Figure 6). Let Ck =
x-wik -L0-w′k-x. Then Ck is a cycle of length at least h+2 in G, as Rk∪{v′ik} ⊆ Ck and |Rk| ≥ o.
Now C1, . . . , Cc are c cycles of length at least h+ 2 in G with C1 ∩ · · · ∩ Cc = {x}. Also, since
C1 \ {x}, . . . , Cc \ {x} ⊆ L are contained in pairwise distinct component of L0 \ {v′jk : k ∈ [c]}, it
follows that C1 \{x}, . . . , Cc \{x} ⊆ L are pairwise disjoint and anticomplete in G. This violates
the assumption that G is (c, h)-pinched, hence completing the proof of Lemma 4.3. �

We also need the following quantified version of Ramsey’s Theorem. This has appeared in
several references; see, for instance, [9].

Theorem 4.4 (Ramsey [14], see also [9]). For all integers c, s ≥ 1, every graph G on at least
cs vertices contains either a clique of cardinality c or a stable set of cardinality s.
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wi1 wj1 wi2 wj2 wic wjcui1 vi1

v′i1

uj1 vj1

v′j1

ui2 vi2
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uj2 vj2

v′j2

uic vic

v′ic

ujc vjc

v′jc

x

Ri1 Rj1 Ri2 Rj2 Ri3 Rj3

L0

Figure 6. Proof of Lemma 4.3 (dashed lines depict paths of arbitrary length,
and highlighted paths have length at least h).

From Theorem 4.4, we deduce that:

Lemma 4.5. Let l, s, t ≥ 1 be integers, let G be a graph and let c be a (s, l+ (st)t)-constellation
in G. Then one of the following holds.

(a) G contains Kt or Kt,t.
(b) There exists L ⊆ Lc with |L| = l such that (Sc,L) is a t-meager (s, l)-constellation in G.

Proof. Suppose that Lemma 4.5(a) does not hold. For every L ∈ Lc, let tL be the largest integer
in [s] for which some vertex uL ∈ L has at least tL neighbors in Sc. It follows that:

(1) We have |{L ∈ Lc : tL ≥ t}| < (st)t.

Suppose not. Let S ⊆ {L ∈ Lc : tL ≥ t} with |S| = (st)t. Then for every L ∈ S, we may
choose uL ∈ L and TL ⊆ Sc such that |TL| = t and uL is complete to TL in G. Since |Sc| = s, it
follows that there exist T ⊆ Sc and T ⊆ S with |T | = t and |T | = tt, such that for every L ∈ T ,
we have TL = T . Let U = {uL : L ∈ T }. Then T and U are disjoint and complete in G. Also,
since G is Kt-free and |U | = tt, it follows from Theorem 4.4 that there is a stable set U ′ ⊆ U in
G with |U ′| = t. But then G[T ′ ∪ U ′] is isomorphic to Kt,t, a contradiction. This proves (1).

Now the result is immediate from (1) and the fact that |Lc| = l + ttst. This completes the
proof of Lemma 4.5. �

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. We claim that:

σ = σ(c, h, s, t) = 2s2cht−1t(h+ 2cht− 1);

λ = λ(c, h, s, t) = cs(s!)σs + (σt)t

satisfy Theorem 4.1. Let G be a t-clean (c, h)-pinched graph. Then G does not contain Kt

and Kt,t. Let c be a plain (σ, λ)-constellation in G. By the choice of σ and λ, we may apply
Lemma 4.5 to c, and deduce that Lemma 4.5(b) holds, that is, there exists L0 ⊆ Lc with
|L0| = cs(s!)σt such that for every L ∈ L0, (Sc, L) is a t-meager, plain (σ, 1)-constellation in G.
In particular, since σ = (t(h + 2cht − 1))s2cht−1 , we may apply Lemma 4.3 to (Sc, L) to show
that:

(2) For every L ∈ L0, there exists an s-alignment (SL, QL, πL) in G with SL ⊆ Sc and QL ⊆ L.

Note that |SL| = s for all L ∈ L. Recall also that |Sc| = σ and |L0| = cs(s!)σs. This, along
with a pigeon-hole argument, implies immediately that:



10 INDUCED SUBGRAPHS AND TREE DECOMPOSITIONS XII.

(3) There exists S ⊆ Sc with |S| = s, and L ⊆ L0 with |L| = cs and π : [s] → S such that for
every L ∈ L, (S,QL, π) is an s-alignment in G.

We further deduce that:

(4) There exists S ⊆ L with |S| = s such that for every L ∈ S, the (s, 1)-constellation (S,QL)
is h-hollow.

To see this, since |S| = s and |L| = cs, it suffices to show that for every x ∈ S, there are
fewer than c paths L ∈ L for which there is an x-gap in (S,QL) of length at least h. Suppose
for a contradiction that for some x ∈ S, there are c distinct paths L1, . . . , Lc ∈ L such that
for every i ∈ [c], there is an x-gap Pi in (S,QLi) of length at least h; let yi, zi be the ends of
Pi. It follows that Ci = x-yi-Pi-zi-x is a cycle of length at least h + 2 in G. Now C1, . . . , Cc
are c cycles of length at least h + 2 in G with C1 ∩ · · · ∩ Cc = {x}. Moreover, since c is
plain, C1 \ {x}, . . . , Cc \ {x} ⊆ L are pairwise disjoint and anticomplete in G. This violates the
assumption that G is (c, h)-pinched, and so proves (4).

Let a = (S,S) where S comes from (3) and S comes from (4). Also, let π be as in (3). It
follows from (3) and (4) that a, π satisfies (AR). Hence, a is an (s, h)-array in G. This completes
the proof of Theorem 4.1. �

5. Obtaining a plain constellation

This section contains the main ingredient of the proof of Theorem 3.2:

Theorem 5.1. For all integers c, h, l, s, t ≥ 1, there exists an integer Ω = Ω(c, h, l, s, t) ≥ 1
with the following property. Let G be a (c, h)-pinched graph. Assume that there exists a strong
Ω-block in G. Then one of the following holds.

(a) G contains either Kt or Kt,t.
(b) There exists a plain (s, l)-constellation in G.

Our road to the proof of Theorem 5.1 passes through a number of definitions and lemmas
from [4], beginning with two useful Ramsey-type results for polypaths:

Lemma 5.2 (Alecu, Chudnovsky, Hajebi and Spirkl, Lemma 5.2 in [4]). For all integers
b, f, g,m, n, t ≥ 1 and s ≥ 0, there exists an integer β = β(b, f, g,m, n, s, t) ≥ 1 with the following
property. Let G be a graph and let B be a collection of β pairwise disentangled (b, 2b(g−1)+f)-
bundles in G. Then one of the following holds.

(a) G contains either Kt or Kt,t.
(b) There exists N ⊆ B with |N| = n as well as S ⊆

⋃
b∈B\N Sb with |S| = s, such that for

every b ∈ N, there exists Gb ⊆ Lb with |Gb| = g for which (S,Gb) is an (s, g)-constellation
in G.

(c) There exists M ⊆ B with |M| = m as well as Fb ⊆ Lb with |Fb| = f for each b ∈ M,
such that for all distinct b, b′ ∈M, Sb is anticomplete to Sb′ ∪ V (Fb′) in G.

Lemma 5.3 (Alecu, Chudnovsky, Hajebi and Spirkl, Lemma 5.3 in [4]). For all integers a, g ≥ 1,
there exists an integer ϕ = ϕ(a, g) ≥ 1 with the following property. Let G be a graph and let
F1, . . . ,Fa be a collection of a pairwise disentangled ϕ-polypaths in G. Then for every i ∈ [a],
there exists a g-polypath Gi ⊆ Fi, such that for all distinct i, i′ ∈ [a], either V (Gi) is anticomplete
to V (Gi′) in G, or for every L ∈ Gi and every L′ ∈ Gi′, there is an edge in G with an end in L
and an end in L′.

We continue with a few definitions from [4]. Let G be a graph and let d ≥ 0 and r ≥ 1 be
integers. For X ⊆ V (G), by a (d, r)-patch for X in G we mean a (1, r)-bundle p in G where:

(P1) Sp ⊆ V (G) \ V (Lp);
(P2) every path L ∈ Lp has length at least d; and
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X
L

S

L
xL

yL

X

M

Figure 7. A (4, 5)-patch for X (left) and a (3, 5)-match for X (right).

(P3) for every L ∈ Lp, one may write ∂L = {xL, yL} such that L ∩ X = {xL} and
NL(Sp) = {yL}.

Also, by a (d, r)-match for X in G we mean an r-polypathM in G such that
(M1) every path L ∈M has length at least d; and
(M2) V (M) ∩X = ∂M.

See Figure 7. We also need:

Lemma 5.4 (Alecu, Chudnovsky, Hajebi and Spirkl [4]). For all integers d, l,m, r, r′, s ≥ 1,
there exists an integer η = η(d, l,m, r, r′, s) ≥ 1 with the following property. Let G be a graph,
let X ⊆ V (G) and let p be a (d, η)-patch for X in G. Then one of the following holds.

(a) There exists a plain (s, l)-constellation in G.
(b) G contains a (≤ d+ 1)-subdivision of Km as a subgraph.
(c) There exists a plain (2(d+ 1), r)-matchM for X in G such that V (M) ⊆ V (p).
(d) There exists a plain (d, r′)-patch q for X in G such that V (q) ⊆ V (p).

We can now prove the main result of this section:

Proof of Theorem 5.1. Let H be the unique graph (up to isomorphism) consisting of c induced
cycles of length h+2, all sharing a common vertex and otherwise pairwise disjoint and anticom-
plete. Let m = m(H,h− 1, t) be as in Theorem 2.2 (note that m only depends on c, h, t).

Let γ = (c(h + 2))2chl−1l(h + 2chl − 1); then γ ≥ 2. Let ϕ = ϕ(c, s(γ + 2l − 2)l) be as in
Lemma 5.3. Let

β = β(1, ϕ, l, c, 1, s, t)
be as in Lemma 5.2, and let

η = η(h− 1, l,m, c, 2(l − 1) + ϕ, s)
be as in Lemma 5.4. We prove that

Ω = Ω(c, h, l, s, t) = max{mβ+1, η}
satisfies Theorem 5.1.

Let G be a (c, h)-pinched graph. Then G does not contain a subdivision of H. Suppose for
a contradiction that G contains neither Kt nor Kt,t, and there is no plain (s, l)-constellation in
G. By Theorem 2.2 and the choice of m, G contains no subgraph isomorphic to a (≤ h − 1)-
subdivision of Km. It is convenient to sum up all this in one statement:

(5) The following hold.
• G does not contain Kt or Kt,t.
• There is no plain (s, l)-constellation in G.
• G does not contain a subgraph isomorphic to a (≤ h− 1)-subdivision of Km.

Let B be a strong Ω-block in G and for every 2-subset {x, y} of B, let P{x,y} be the cor-
responding set of Ω paths in G from x to y. Let J be a graph with vertex set B such that
x, y ∈ B are adjacent in J if and only if there exists P{x,y} ∈ P{x,y} of length at most h. Since
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|V (J)| = |B| ≥ mβ+1, it follows from Theorem 4.4 that J contains either clique C on m vertices,
or a stable set on β+ 1 vertices. In the former case, the union of the paths P{x,y} for all distinct
x, y ∈ C forms a subgraph of G isomorphic to a (≤ h− 1)-subdivision of Km, which violates the
third bullet in (5). Therefore, J contains a stable set on β + 1 vertices. This, along with the
choice of Ω, implies that one may choose β + 1 distinct vertices x, y1, . . . , yβ ∈ V (G) as well as,
for each i ∈ [β], a collection Pi of η pairwise internally disjoint paths in G from x to yi, such
that:

• for every i ∈ [β], every path P ∈ Pi has length at least h+ 1 ≥ 2; and
• V (P1) \ {x}, . . . , V (Pβ) \ {x} are pairwise disjoint in G.

For each i ∈ [β], let Li = P∗i , and for every L ∈ Li, let xL and yL be the (unique) neighbors
of x and yi in L, respectively. Thus, we have ∂L = {xL, yL} (note that xL, yL might be the
same, but they are distinct from both x and yi). Let Xi = {xL : L ∈ Li}. It follows that Li is
an η-polypath in G, and

• yi ∈ V (G) \ V (Li);
• every path L ∈ Li has length at least h− 1; and
• L ∩Xi = {xL} and NL(yi) = {yL} for every L ∈ Li.

Therefore, by (P1), (P2) and (P3), for every i ∈ [β], the (1, η)-bundle pi = ({yi},Li) is an
(h− 1, η)-patch for Xi in G. In addition, we show that:

(6) For every i ∈ [β], there is a plain (h − 1, 2(l − 1) + ϕ)-patch qi for Xi in G with V (qi) ⊆
V (pi) ⊆ V (G) \ {x}.

By the choice of η, we can apply Lemma 5.4 to Xi and pi. Note that Lemma 5.4(a) and
Lemma 5.4(b) violate the second and the third bullets of (5), respectively. Assume that
Lemma 5.4(c) holds. Then there is a plain (2o, c)-matchMi for Xi in G with V (Mi) ⊆ V (pi) ⊆
V (G)\{xi}. In particular, for every M ∈Mi, CM = M ∪{x} is a cycle of length at least 2h+ 2
in G. But now {CM : M ∈ Mi} is a collection of c cycles of length at least 2h + 2 in G where
∩M∈MiCM = {x} and the sets {CM \ {x} : M ∈ M} are pairwise disjoint and anticomplete in
G, violating the assumption that G is (c, h)-pinched. So Lemma 5.4(d) holds. This proves (6).

For each i ∈ [β], let qi be as in (6) and let Sqi = {zi} (note that zi may or may not
belong to Xi ⊆ NG(x)). Now, B = {q1, . . . , qβ} is a collection of β pairwise disentangled plain
(1, 2(l− 1) +ϕ)-bundles in G. Given the choice of β, we can apply Lemma 5.2 to B. Note that
Lemma 5.2(a) directly violates the first bullet of (5). Also, if Lemma 5.2(b) holds, then there
is an (s, l)-constellation c in G with Lc ⊆ Lqi for some i ∈ [β]; in particular, c is plain. But this
violates the second bullet of (5). It follows that Lemma 5.2(c) holds, that is, there exists I ⊆ [β]
with |I| = c as well as Fi ⊆ Lqi with |Fi| = ϕ for each i ∈ I, such that for all distinct i, i′ ∈ I,
zi is anticomplete to V (Fi′) ∪ {zi′} in G. We further deduce that:

(7) There are distinct i, i′ ∈ I for which there exist s(γ+ 2l−2)l-polypaths Gi ⊆ Fi and Gi′ ⊆ Fi′
such that for every L ∈ Gi and every L′ ∈ Gi′, there is an edge in G with an end in L and an
end in L′.

Suppose not. Then by the choice of ϕ, we may apply Lemma 5.3 to the ϕ-polypaths {Fi :
i ∈ I} and deduce that for every i ∈ I, there exists a s(γ + 2l− 2)l-polypath Gi ⊆ Fi, such that
for all distinct i, i′ ∈ [a] V (Gi) is anticomplete to V (Gi′) in G. Since s(γ + 2l − 2)l ≥ γ ≥ 2, it
follows that for each i ∈ I, there is a cycle Ci in G[V (Gi)∪{x, zi}] of length at least h+ 2 where
x ∈ Ci. Also, the sets {V (Gi) ∪ {zi} : i ∈ I} are pairwise disjoint and anticomplete in G, which
in turn implies that the sets {Ci \ {x} : i ∈ I} are pairwise disjoint and anticomplete in G. This
yields a contradiction with the assumption that G is (c, h)-pinched, and so proves (7).

Henceforth, let i, i′ ∈ I and Gi,Gi′ be as in (7). Since |Gi| = |Gi′ | = s(γ+ 2l− 2)l ≥ γ+ 2l− 2,
we may choose G′ ⊆ Gi′ with |G′| = γ + 2l − 2. Write G = Gi. It follows that both G and G′ are
plain and disentangled polypaths in G. For every path L ∈ G, let us say L is rigid if there exists
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a vertex xL ∈ L as well as G′L ⊆ G′ with |G′L| = l such that xL has a neighbor in every path in
G′L. We claim that:

(8) Not all paths in G are rigid, that is, there is a path L1 ∈ G such that every vertex in L1 has
a neighbor in at most l − 1 paths in G′.

Suppose not. For every L ∈ G, let xL ∈ L and G′L ⊆ G′ with |G′L| = l be as in the definition
of a rigid path. Since |G| = s(γ + 2l − 2)l and |G′| = γ + 2l − 2, it follows that there exists
S ⊆ G with |S| = s and L ⊆ G′ with L = l such that for every L ∈ S, we have G′L = L. Let
S = {xL : L ∈ S}. Then every vertex in S has a neighbor in every path in L. But now since
G and G′ are plain and disentangled, it follows that (S,L) is a plain (s, l)-constellation in G, a
contradiction with the second bullet of (5). This proves (8).

By (8), there exists a path L0 ∈ G which is not rigid. Let T be the set of all paths L′ ∈ G′
for which some vertex in ∂L0 has a neighbor in L′ in G. Then by (8), we have |T | ≤ 2l − 2.
Consequently, there are γ distinct paths L′1, . . . , L′γ ∈ G′ such that for every i ∈ [γ], the ends of
L0 are anticomplete to L′i in G. For each i ∈ [γ], let xi be the end of L′i which is adjacent to x.
By (7), traversing L′i starting at xi, we may choose yi ∈ L′i to be the first vertex in L′i with a
neighbor in L∗0. Let S0 = {yi : i ∈ [γ]}. It follows that every vertex in S0 has a neighbor in L0
while S0 is anticomplete to the ends of L0, and so (S0, L0) is a (γ, 1)-constellation in G. Also,
by (8), (S0, L0) is (l− 1)-meager. This calls for an application of Lemma 4.3 to (S0, L0), which
implies that there exists a c(h + 2)-alignment (S,L, π) in G with S ⊆ S0 and L ⊆ L0. In fact,
since S0 is anticomplete to ∂L0, we may assume that L ⊆ L∗0.

Let u be the end of L for which (S,L, π) satisfies (AL). For every i ∈ [c], choose εi, δi, θi ∈ [γ]
such that

yεi = π(i(h+ 2)− h− 1);
yδi

= π(i(h+ 2)− 1);
yθi

= π(i(h+ 2));
Traversing L starting at u, let ui be the last neighbor of yεi in L, let vi be the first neighbor of
yδi

in L, and let wi be the first neighbor of yθi
in L. It follows that u, u1, v1, w1 . . . , uc, vc, wc are

pairwise distinct, appearing on L in this order. Also, for every i ∈ [c], Pi = ui-L-vi is a path of
length at least h in G, and P1, . . . , Pc are contained in distinct components of L \ {wi : i ∈ [c]}.
Thus, P1, . . . , Pc are pairwise disjoint and anticomplete in G. Now, for every i ∈ [c], consider
the cycle

Ci = x-xεi-L′εi
-yεi-ui-Pi-vi-yδi

-L′δi
-xδi

-x.
Then C1, . . . , Cc are c cycles in G each of length at least h+4, all going through x and otherwise
pairwise disjoint and anticomplete. This contradicts the assumption that G is (c, h)-pinched,
hence completing the proof of Theorem 5.1. �

6. The end

We conclude the paper with the proof of our main result, which we restate:

Theorem 3.2. For all integers c, h, s, t ≥ 1, there exists an integer τ = τ(c, h, s, t) ≥ 1 such
that for every t-clean (c, h)-pinched graph G of treewidth more than τ , there is an (s, h)-array
in G.

Proof. Let σ = σ(c, h, s, t) and λ = λ(c, h, s, t) be as in Theorem 4.1. Let Ω = Ω(c, h, λ, σ, t) be
as in Theorem 5.1. We define τ(c, h, s, t) = ξ(Ω, t), where ξ(·, ·) comes from Theorem 2.1. Let G
be a t-clean (c, h)-pinched graph of treewidth more than τ . By Theorem 2.1, G contains a strong
Ω-block. Therefore, since G does not contain Kt and Kt,t, it follows from Theorem 5.1 that there
exists a plain (σ, λ)-constellation in G. But now by Theorem 4.1, there is an (s, h)-array in G,
as desired. �
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