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Abstract

Say a graph G is a pentagraph if every cycle has length at least five, and every induced cycle of
odd length has length five. N. Robertson proposed the conjecture that the Petersen graph is the
only internally 4-connected pentagraph, but this was disproved by M. Plummer and X. Zha in 2014.
Plummer and Zha conjectured that every internally 4-connected pentagraph is three-colourable. We
prove this: indeed, we will prove that every pentagraph is three-colourable.



1 Introduction
We say a graph G is internally 4-connected if it is 3-connected, and for every X ⊆ V (G) with |X| = 3,
if G \X has more than one component then one of them is a single vertex. (This is the definition
used by Plummer and Zha [2], although it is non-standard.) Let us say a graph G is a pentagraph
if every cycle has length at least five, and every induced cycle of odd length has length five. (All
graphs in this paper are finite, and have no loops or parallel edges.) Such graphs seem to be richly
structured; indeed N. Robertson [3] proposed the conjecture that the Petersen graph is the only
internally 4-connected pentagraph, although this was disproved by M. Plummer and X. Zha [2] (see
also [1]).

In the same paper, Plummer and Zha proposed the conjecture that all internally 4-connected
pentagraphs have bounded chromatic number, and the stronger conjecture that they are all three-
colourable. The first was proved by Xu, Yu, and Zha [5], who proved that all pentagraphs are
four-colourable; and we will prove the second. Our main theorem is:

1.1 Every pentagraph is three-colourable.

(Some of the results of this paper also appear in a recent manuscript by Wu, Xu, and Xu [4], which
a referee kindly brought to our attention.) The girth of G is the minimum length of a cycle in G; a
hole in G is an induced cycle of length at least four, and an odd hole means a hole with odd length;
and if X ⊆ V (G), G[X] denotes the subgraph induced on X. We first prove the result of Xu, Yu,
and Zha [5], because the proof is short and pretty:

1.2 Every pentagraph is four-colourable.

Proof. It is enough to show that every connected pentagraph is four-colourable. Let G be a
connected pentagraph, let v0 ∈ V (G), and for each k ≥ 0 let Lk be the set of vertices with distance
exactly k from v0. Thus the sets L0, L1, . . . are pairwise disjoint and have union V (G); and for each
k ≥ 1, each vertex in Lk has a neighbour in Lk−1 and has no neighbour in L0 ∪ · · · ∪ Lk−2. Suppose
that for some k ≥ 0, G[Lk] is not bipartite, and choose a minimum such value of k. Thus k ≥ 1; and
since G[Lk] is not bipartite, it contains an odd cycle as a subgraph, and hence an induced odd cycle,
and hence a hole C of length five (since G is a pentagraph). Let C have vertices c1-c2-c3-c4-c5-c1 in
order. For 1 ≤ i ≤ 5, let di ∈ Lk−1 be adjacent to ci. It follows that each of d1, . . . , d5 has only one
neighbour in V (C), since G has girth at least five, and hence d1, . . . , d5 are all distinct. Thus k ≥ 2.
Since G[L0 ∪ · · · ∪Lk−2] is connected, and d1, d3 both have a neighbour in Lk−2, there is an induced
path P between d1, d3 with interior in L0 ∪ · · · ∪ Lk−2. Since

d1-P -d3-c3-c4-c5-c1-d1

is a hole of length at least six, it has even length and so P has odd length. Consequently

d1-P -d3-c3-c2-c1-d1

is an odd hole, and so it has length five, and therefore d1d3 is an edge. Similarly d3d5, d5d2, d2d4, d4d1
are edges, and so G[Lk−1] has a cycle of length five, contradicting the choice of k.

Thus G[Lk] is bipartite for each k, and so G is four-colourable. This proves 1.2.
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Now we turn to the proof of 1.1. This is a consequence of a stronger statement, that every non-
bipartite pentagraph is either isomorphic to the Petersen graph, or has a vertex of degree at most
two, or admits one of two kinds of decomposition, that a minimal non-three-colourable pentagraph
cannot admit. Let us see these decompositions.

• A path-3-cutset means an induced three-vertex path P of G such that G\V (P ) is disconnected.

• A parity star-cutset means a set X ⊆ V (G) such that G \ X is disconnected, and there is a
vertex x ∈ X such that x is adjacent to every other vertex in X, and there is a component A
of G \X such that every two vertices in X \ {x} are joined by an induced path of even length
with interior in V (A). We call this a strong parity star-cutset if A can be chosen such that in
addition x has a neighbour in V (A).

We will prove:

1.3 Let G be a pentagraph. Then either

• G is bipartite; or

• G is isomorphic to the Petersen graph; or

• G has a vertex of degree at most two; or

• G admits a path-3-cutset or a strong parity star-cutset.

Proof of 1.1, assuming 1.3. We prove by induction on |V (G)| that every pentagraph is three-
colourable. Let G be a pentagraph such that every pentagraph with fewer vertices is three-colourable.
If G is isomorphic to the Petersen graph, or some vertex has degree at most two, then G is three-
colourable; so by 1.3 we may assume that G admits a path-3-cutset or a parity star-cutset (indeed,
a strong parity star-cutset, but we do not need “strong” here).

Suppose first that G admits a path-3-cutset, and let v1-v2-v3 be an induced path such that
G \ {v1, v2, v3} is disconnected. Let A1 be the union of at least one and not all of the components
of G \ {v1, v2, v3}, and let A2 be the union of all the other components. For i = 1, 2 let Gi =
G[Ai ∪ {v1, v2, v3}]. From the inductive hypothesis, both G1 and G2 are three-colourable; let φi :
V (Gi)→ {1, 2, 3} be a three-colouring, for i = 1, 2. We may assume that φi(v1) = 1 and φi(v2) = 2
for i = 1, 2. Thus φ1(v3), φ2(v3) ∈ {1, 3}, and if φ1(v3) = φ2(v3) then G is three-colourable. Thus
we may assume that φ1(v3) = 1 and φ2(v3) = 3. Let H1 be the subgraph of G1 induced on the set
of vertices v ∈ V (G1) with φ1(v) ∈ {1, 3}. If v1, v3 belong to different components of H1, then by
exchanging colours in the component containing v3, we obtain another three-colouring of G1 that
can be combined with φ2 to show that G is three-colourable. So we may assume that v1, v3 belong to
the same component of H1, and so there is an induced path P1 of H1 between v1, v3. Consequently
P1 has even length, and length at least four since G has girth at least five. Define H2 in G2 similarly:
then similarly we may assume that v1, v3 belong to the same component of H2, and so there is an
induced path P2 of H2 between v1, v3 with odd length, at least three. But then P1∪P2 is an induced
cycle of G of odd length at least seven, a contradiction.

Now suppose that G admits a parity star-cutset, and let X ⊆ V (G) and v ∈ V (G) \ X, such
that v is adjacent to every vertex in X, and G \ (X ∪{v}) is disconnected, and there is a component
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A of G \ (X ∪ {v}) such that every two vertices in X are joined by an induced path of even length
with interior in V (A). Choose X minimal with this property, and let A1, . . . , Ak be the components
of G \ (X ∪ {v}), where every two vertices in X are joined by an induced path of even length with
interior in V (A1).

(1) For 1 ≤ i ≤ k and for all distinct x, x′ ∈ X, every induced path between x, x′ with interior
in Ai has a length that is even and at least four.

For all distinct x, x′ ∈ X, let P1(x, x′) be an induced path of even length with interior in V (A1). It
follows that P1(x, x′) has length at least four, since v is adjacent to x, x′ and G has girth at least five.
For 2 ≤ i ≤ k, if x, x′ both have a neighbour in Ai, let Pi(x, x′) be an induced path between x, x′ with
interior in Ai. Thus Pi(x, x′) has length at least three, for the same reason. Since P1(x, x′)∪Pi(x, x′)
is an induced cycle of length at least seven, it follows that Pi(x, x′) has even length, and length at
least four, for all choices of x, x′ that both have a neighbour in Ai; and therefore every induced path
between x, x′ with interior in Ai has even length at least four. From the minimality of X, it follows
that every vertex in X has a neighbour in Ai for 2 ≤ i ≤ k; and so, by the same argument with
A1, A2 exchanged, every induced path between x, x′ with interior in A1 has even length at least four.
This proves (1).

For 1 ≤ i ≤ k, let Gi = G[V (Ai) ∪X ∪ {v}].

(2) For 1 ≤ i ≤ k, there is a three-colouring φi : V (Gi)→ {1, 2, 3} with φi(v) = 1 and φi(x) = 2 for
all x ∈ X.

From the inductive hypothesis, Gi admits a three-colouring φi : V (Gi) → {1, 2, 3} with φi(v) = 1.
Choose φi such that φi(x) = 3 for as few vertices x ∈ X as possible. We claim that φi(x) = 2 for all
x ∈ X. To see this, let X2 be the set of x ∈ X with φi(x) = 2, and let X3 be the set of x ∈ X with
φi(x) = 3. Thus X2∪X3 = X. Let H be the subgraph of Gi induced on the set of vertices u ∈ V (Gi)
with φi(u) ∈ {2, 3}. Suppose that X3 6= ∅, and let C be a component of H that contains a vertex of
X3. By exchanging colours in C, the choice of φi implies that some vertex of X2 belong to C, and so
there is a minimal induced path P of H between X2, X3, which therefore has odd length; but from
the minimality of P , all internal vertices of P belong to Ai, contradicting (1). This proves (2).

From (2) it follows that G is three-colourable. This proves 1.1 (assuming 1.3).

2 Pentagraphs that contain large parts of the Petersen graph
In this section we prove part of 1.3. A clique cutset of G is a clique X of G such that G \ X is
disconnected. In a pentagraph G, every clique has cardinality at most two, and so if G has an edge
and G admits a clique cutset, then G admits a strong parity star-cutset. If P is an induced path,
we denote the set of internal vertices of P by P ∗. Two disjoint subsets X,Y of G are anticomplete
if there are no edges between X,Y . Let us say two nonadjacent vertices s, t of a graph H are linked
if there are induced paths Q1, Q2 of H both with ends s, t and both of length at least three, with

3



lengths of different parity. We say that s, t are odd-linked if there is an induced path of H with ends
s, t and with odd length at least five.

We begin with:

2.1 Let G be a pentagraph that does not admit a clique cutset, and let H be an induced subgraph of
G with H 6= G and |V (H)| ≥ 3. Then either

• there is a vertex v ∈ V (G) \ V (H) with at least three neighbours in V (H) (and therefore every
two neighbours of v in V (H) have distance at least three in H); or

• there exist nonadjacent s, t ∈ V (H), and a vertex v ∈ V (G) \ V (H) adjacent to s, t and with
no other neighbours in V (H) (and therefore s, t have distance at least three in H and are not
odd-linked in H); or

• no vertex in V (G) \ V (H) has more than one neighbour in V (H), and there exist nonadjacent
s, t ∈ V (H), not linked in H, and an induced path P of G with length at least three, with ends
s, t and with P ∗ ⊆ V (G)\V (H), such that every vertex of H with a neighbour in P ∗ is adjacent
to both s, t.

Proof. If some v ∈ V (G) \ V (H) has at least three neighbours in V (H) then the first bullet is
satisfied, since G has girth at least five. If some v ∈ V (G) \ V (H) has exactly two neighbours s, t in
V (H), and Q is an induced path of H with ends s, t and with odd length at least five, then adding
v to Q makes a long odd hole G, a contradiction; so s, t are not odd-linked and the second bullet is
satisfied. Thus we may assume that each vertex in V (G)\V (H) has at most one neighbour in V (H).

Let C be a component of G \ V (H). Since G does not admit a clique cutset, and |V (H)| ≥ 3,
it follows that there exist nonadjacent vertices in V (H) both with neighbours in V (C). Thus there
is an induced path P with P ∗ ⊆ V (C), with ends nonadjacent vertices of C. Choose P with P ∗

minimal, and let its ends be s, t. Since no vertex in V (G) \ V (H) has more than one neighbour in
V (H), it follows that P has length at least three. If v ∈ V (H) has a neighbour in P ∗, and v is
nonadjacent to s say, then from the minimality of P ∗, it follows that v has only one neighbour in
P ∗ and that neighbour is adjacent to t. Hence v is nonadjacent to t, since G has girth at least five;
and this contradicts the minimality of P ∗. So every vertex of H with a neighbour in P ∗ is adjacent
to both s, t. Suppose that s, t are linked in H, and so there are induced paths Q1, Q2 of H between
s, t, both of length at least three, and with lengths of different parity. Thus neither contains a vertex
adjacent to both s, t, and so Q∗1, Q∗2 are both anticomplete to P ∗. Consequently both P ∪Q1, P ∪Q2
are long holes, and one has odd length, a contradiction; and so s, t are not linked, and the third
bullet is satisfied. This proves 2.1.

We deduce:

2.2 Let G be a pentagraph that has an induced subgraph isomorphic to the Petersen graph. Then
either G is isomorphic to the Petersen graph, or G admits a clique cutset.

Proof. Let H be an induced subgraph of G isomorphic to the Petersen graph. No two vertices of
H have distance at least three in H. Moreover, every two nonadjacent vertices of H are linked in
H. The result follows from 2.1. This proves 2.2.
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Figure 1: P and P0.

Let P denote the Petersen graph, and let P0,P1,P2 denote the graphs obtained from P by
deleting one edge, one vertex, and two adjacent vertices respectively. (See figures 1 and 2.)

2.3 Let G be a pentagraph that has an induced subgraph isomorphic to P0. Then either G is
isomorphic to P0, or G admits a clique cutset.

Proof. Let H be an induced subgraph of G isomorphic to P0, numbered as in figure 1. (9, 10) is the
only pair of vertices of H that have distance more than two in H. Consequently no three vertices of
H pairwise have distance at least three; and every two vertices of H with distance at least three in
H are odd-linked in H. Moreover, every two nonadjacent vertices are linked in H, and so the result
follows from 2.1. This proves 2.3.
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Figure 2: P1 and P2.

2.4 Let G be a pentagraph that has an induced subgraph isomorphic to P1. Then either G is
isomorphic to one of P,P0,P1, or G admits a clique cutset.

Proof. Let H be an induced subgraph of G isomorphic to P1, numbered as in figure 2. The only
pairs of vertices that have distance at least three in H are the pairs of vertices in {7, 8, 9}. Thus if
the first bullet of 2.1 holds then G contains P and the result follows from 2.2. If the second bullet
of 2.1 holds, then G contains P0 and the result follows from 2.3. Every two nonadjacent vertices of
H are linked, so the third bullet of 2.1 does not hold. This proves 2.4.
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2.5 Let G be a pentagraph that has an induced subgraph isomorphic to P2. Then either G is
isomorphic to one of P,P0,P1, P2, or G admits a path-3-cutset or a strong parity star-cutset.

Proof. Let H be an induced subgraph of G isomorphic to P2, numbered as in figure 2. The only
pairs of vertices that have distance at least three in H are (1, 5) and (3, 7), so the first bullet of 2.1
does not hold, and if the second bullet of 2.1 holds then G contains P1 and the result follows from
2.4 (since if G has a clique cutset then it has a strong parity star-cutset). Thus we may assume
that the third bullet of 2.1 holds, and in particular, no vertex in V (G) \ V (H) has more than one
neighbour in V (H).

Let us say the four sets
{1, 2, 3}, {3, 4, 5}, {5, 6, 7}, {7, 8, 1}

are the sides of H. We may assume that H 6= G, and G does not admit a path-3-cutset, and so
there is a connected subgraph F of G \V (H) such that N(F ) is not a subset of any side of H, where
N(F ) denotes the set of vertices in H with a neighbour in V (F ). Choose F with |V (F )| minimal.
Since N(F ) is not a clique, there is an induced path P with ends s, t ∈ N(F ), nonadjacent; and as in
2.1, by choosing P with P ∗ minimal it follows that s, t are not linked in H, and no vertex of H has
a neighbour in P ∗ except s, t and possibly a common neighbour of s and t. The only nonadjacent
pairs of vertices of H that are not linked are (1, 3), (3, 5), (5, 7), (7, 1), so from the symmetry we may
assume that s = 1 and t = 3. Thus no vertex of V (H) has a neighbour in P ∗ except 1, 3 and possibly
2. Since N(F ) 6⊆ {1, 2, 3}, there is an induced path Q of G with interior in V (F ) with one end
in P ∗ and the other in {4, 5, 6, 7, 8}. Thus Q has length at least two, and F = P ∗ ∪ Q∗, from the
minimality of |V (F )|. Let the vertices of Q be q1-q2- · · · -qk in order, where k ≥ 3, and q1 ∈ P ∗, and
qk ∈ {4, 5, 6, 7, 8}. From the symmetry we may assume that qk ∈ {4, 5, 6}. The vertices 1, 2, 3 may
have neighbours in Q∗, but since no vertex has more than one neighbour in V (H), it follows from
the minimality of |V (F )| that qk is the only vertex in {4, 5, 6, 7, 8} with a neighbour in Q∗.

(1) qk = 4.

There is an induced path R between 1, qk with interior in P ∗ ∪ Q∗, and it has length at least
three since no vertex in V (G) \ V (H) has more than one neighbour in V (H). If qk = 5, then one of

1-R-5-4-8-1, 1-R-5-6-7-8-1

is a long odd hole, a contradiction; and if qk = 6, then one of

1-R-6-5-4-8-1, 1-R-6-7-8-1

is a long odd hole, a contradiction. Since qk ∈ {4, 5, 6}, this proves (1).

(2) 2 has no neighbour in P ∗ ∪Q∗, and P has length three.

(See figure 3.) Suppose that 2 has a neighbour in P ∗ ∪Q∗; then there is an induced path R between
2, 4 with interior in P ∗ ∪Q∗, and it has length at least three. But then one of

2-R-4-5-6-2, 2-R-4-8-7-6-2
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Figure 3: Step (2) of the proof of 2.5.

is a long odd hole, a contradiction. Thus 2 has no neighbour in P ∗ ∪Q∗. Consequently

1-P -3-2-1, 1-P -3-4-8-1

are both holes of length at least five, and one has odd length; so P has length three. This proves (2).

1 2 3

4

567

8

x1y1

Q

Figure 4: Step (3) of the proof of 2.5.

Let the vertices of P be 1-y1-x1-3 in order.

(3) 1 has no neighbour in V (Q), and so q1 = x1.

Suppose that 1 has a neighbour in V (Q); then there is an induced path R between 1, 4 with
R∗ ⊆ V (Q). Since N(R∗) is not a subset of a side of H, the minimality of |V (F )| implies that
R∗ = V (F ), and in particular x1 ∈ R∗ ⊆ V (Q). Since x1 /∈ Q∗, it follows that q1 = x1 ∈ R∗, and so
Q is a subpath of R, contradicting that 1 has a neighbour in V (Q). This proves (3).

See figure 4. Let us say a 1-3 handle is an induced path R of G of length three between 1, 3 such
that R∗ ∩ V (H) = ∅ and no vertex in V (H) has a neighbour in R∗ except 1, 3. Thus P is a 1-3
handle. Let X be the set of neighbours of 3 that belong to 1-3 handles, and let Y be the set of all
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neighbours of 1 that belong to 1-3 handles. Thus x1 ∈ X and y1 ∈ Y , and Y ∩ V (Q) = ∅ by (3). If
some y ∈ Y has a neighbour in Q∗, then Q∗ ∪ {y} induces a connected subgraph of G and 1, 4 both
have neighbours in this subgraph, contrary to the minimality of |V (F )|. Thus Y is anticomplete to
Q∗, and therefore X ∩ Q∗ = ∅. Let D be a connected induced subgraph of G, with Q∗ ⊆ V (D),
maximal such that V (D) ∩ (X ∪ {3, 4}) = ∅ and no vertex in Y ∪ {1, 2, 5, 6, 7, 8} has a neighbour in
V (D). It follows that x1, 4 both have a neighbour in D. (See figure 5.)

1 2 3

4

567

8

x1y1

D

Y X

Figure 5: Handles in the proof of 2.5.

For every two vertices in X ∪{4}, there is a path between them of length four with middle vertex
1; and this path is induced since G has girth at least five. We may assume that X ∪ {3, 4} is not a
strong parity star-cutset, and so D is not a component of G \ (X ∪ {3, 4}). Consequently there is a
vertex v ∈ V (G) \V (D) with a neighbour in V (D) and with v /∈ X ∪{3, 4}. From the maximality of
D, it follows that v has a neighbour in Y ∪ {1, 2, 5, 6, 7, 8}. Since there is a path between this neigh-
bour and 3 of length at most three with vertex set in V (H)∪Y , it follows that 3, v are nonadjacent.

(4) v has a unique neighbour in Y ∪ {1, 2, 5, 6, 7, 8}.

Suppose that v has more than one neighbour in Y ∪ {1, 2, 5, 6, 7, 8}. Every vertex in V (G) \ V (H)
has at most one neighbour in V (H), as we saw earlier, so we may assume that v is adjacent to some
y ∈ Y . Choose x ∈ X adjacent to y. All neighbours of v in V (H)∪X ∪ Y pairwise have distance at
least three in G[V (H) ∪X ∪ Y ], and so v has no more neighbours in Y , and none in {x, 1, 2, 3, 8}.
Since v has two neighbours in Y ∪ {1, 2, 5, 6, 7, 8}, it has a unique neighbour in {5, 6, 7} (say u), and
therefore is nonadjacent to 4. The paths

y-1-8-7-6-5, y-1-8-4-5-6, y-x-3-4-8-7

all have length five, and so v cannot be adjacent to both ends of any of them, and so u 6= 5, 6, 7, a
contradiction. This proves (4).

Let u be the unique neighbour of v in Y ∪{1, 2, 5, 6, 7, 8}. Let R be an induced path with interior
in V (D) ∪ {v} between x1, u, and let S be a minimal path with interior in V (D) ∪ {v} between u
and {3, 4}. Thus one of 3, 4 is an end of S, and the other has no neighbour in V (S).
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• If u = 5, the union of R with one of x1-y1-1-8-7-6-5, x1-y1-1-2-6-5 is a long odd hole.

• If u = 6, the union of R with one of x1-y1-1-8-7-6, x1-y1-1-2-6 is a long odd hole.

• If u = 7, the union of R with one of x1-y1-1-8-7, x1-y1-1-2-6-7 is a long odd hole.

• If u = 8, let T be an induced path with interior in V (D) ∪ {x1, v} between 3, u; then T has
length at least three and the union of T with one of 3-2-6-7-8, 3-2-1-8 is a long odd hole.

• If u = 2, let T be an induced path with interior in V (D)∪ {v} between 4, u; then T has length
at least three and the union of T with one of 4-8-7-6-2, 4-5-6-2 is a long odd hole.

• If u ∈ Y and 4 is an end of S, then the union of S with one of 4-5-6-2-1-u, 4-3-2-1-u is a long
odd hole.

• If u ∈ Y and 3 is an end of S, then S has length at least three, and the union of S with one of
3-2-1-u, 3-4-8-1-u is a long odd hole.

• If u = 1 and 4 is an end of S, then S has length at least three, and the union of S with one of
4-5-6-2-1, 4-3-2-1 is a long odd hole.

• If u = 1 and 3 is an end of S, then S has length at least three, and the union of S with one
of 3-2-1, 3-4-8-1 is an odd hole. So S is a path of length three between 1,3 with interior in
V (D) ∪ {v}, and no vertex of H has a neighbour in S∗ except 1, 3. Consequently S is a 1-3
handle, and so V (D) ∪ {v} contains a vertex in X, a contradiction.

Thus in all cases we obtain a contradiction. This proves 2.5.

3 Jumps across a pentagon
In view of 2.5, we turn our attention to pentagraphs that do not contain P2 as an induced subgraph.
Let G be a pentagraph, and let C be a hole of length five in G. No vertex in V (G) \ V (C) has more
than one neighbour in V (C), since G has girth five. Let P be an induced path with both ends in
V (C), nonadjacent, and with no other vertices in V (C). We call P a jump over C. Let P have ends
s, t; then we call P an s-t jump, and if c is the vertex of C adjacent to both s, t, we say P is a jump
across c. If P is an s-t jump across c and no vertex of V (C) \ {c, s, t} has a neighbour in P ∗, we say
P is a local jump. If P has length three we say that P is a short jump. Then, clearly,

• all jumps have length at least three;

• a jump P is short if and only if no vertex of V (C) \ V (P ) has a neighbour in P ∗;

• short jumps are local;

• local jumps have odd length.

We need to analyze which pairs of vertices of C can be joined by short and local jumps. We begin
with:
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3.1 Let G be a pentagraph not containing P2, and let C be a hole of length five in G. If P1, P2 are
local jumps over C with exactly one common end c, then there is a short jump across c with interior
in P ∗1 ∪ P ∗2 , and consequently neither of them is short.

Proof. (See figure 6.) Suppose that there are local jumps P1, P2 over C with exactly one common
end c say, and there is no short jump across c with interior in P ∗1 ∪ P ∗2 . Choose such P1, P2, c with
P ∗1 ∪ P ∗2 minimal. (Note that P ∗1 ∩ P ∗2 may be nonempty.) Let C have vertices c1-c2-c3-c4-c5-c1 in

c2

c3

c4

c5

c1

a1 a2

b1 b2

P2P1

Figure 6: Local jumps with a common end.

order, where Pi is a ci-c4 jump for i = 1, 2. For i = 1, 2, let ai, bi be the vertices of Pi adjacent to ci
and c4 respectively. For i = 1, 2, let Di = P ∗i \ {ai, bi}.

(1) D1 ∪ {b1} is disjoint from and anticomplete to D2 ∪ {b2}.

Suppose not. Since b2 /∈ V (P1) (because P1 is local) and vice versa, and b1, b2 are not adjacent,
it follows that either there is a path of G[D1∪D2∪{b1}] from b1 to D2 or a path of G[D1∪D2∪{b2}]
from b2 to D1, and from the symmetry we may assume the first. Hence D2 6= ∅, so P2 is not short,
and so c3 has a neighbour in D2. Consequently there is a path between c3 and {c1, c5} with interior
in D1 ∪D2 ∪ {b1}. Let Q be a minimal path from c3 to one of c1, c5, with interior in D1 ∪D2 ∪ {b1}.
It follows that one of c1, c5 is an end of Q and the other has no neighbour in Q∗. Moreover, neither
of c2, c4 has a neighbour in Q∗, and so Q is a short jump. The choice of P1, P2 implies that Q is not
a short jump across c4, and so c1 is an end of Q and Q is a short jump across c2. There is no short
jump across c1 with interior in P ∗1 ∪Q∗, since c2 has no neighbour in P ∗1 ∪Q∗; and since P ∗1 ∪Q∗ is
a proper subset of P ∗1 ∪ P ∗2 , this contradicts the minimality of P ∗1 ∪ P ∗2 . This proves (1).

If a1 = a2, then since the paths P1, P2 have odd length (because they are local), (1) implies that
G[V (P1∪P2)] is an odd hole, which therefore has length five; and so P1, P2 are both short. But then
G[V (C ∪ P1 ∪ P2)] is isomorphic to P2, a contradiction. Thus a1 6= a2, and since a1 /∈ V (P2) and
vice versa, (1) implies that P ∗1 , P ∗2 are disjoint, and every edge between them has an end in {a1, a2}.
Since G[V (P1 ∪ P2)] is not a long odd hole, there is an edge between P ∗1 , P

∗
2 ; so from the symmetry

we may assume that a1 has a neighbour in D2∪{b2}, and therefore there is a c2-c4 jump with interior
in {a1, b2} ∪D2. Since c1, c5 have no neighbours in {a1, b2} ∪D2, this c2-c4 jump is local, contrary
to the minimality of P ∗1 ∪ P ∗2 . This proves 3.1.
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To complete the proof of 1.3 we need:

3.2 Let G be a pentagraph not containing P2, and let C be a hole of length five in G. Then either:

• some vertex of C has degree two; or

• G admits a path-3-cutset; or

• G admits a strong parity star-cutset.

Proof. We claim first that we may number the vertices of C as c1-c2-c3-c4-c5-c1 in order, such that:

(1) There are no short jumps across any of c3, c4, c5, there are no local jumps across c4, and ev-
ery local jump across c3 or c5 contains a vertex that is in a short jump.

Let S be the set of c ∈ V (C) such that there is a short jump across c, and let L be the set of
c ∈ V (C) such that there is a local jump across c. Thus S ⊆ L. If L is a clique, then (1) holds; so we
may assume that c2, c5 ∈ L, where the vertices of C are c1-c2-c3-c4-c5-c1 in order. 3.1 implies that
if c, c′ ∈ L are nonadjacent, then neither of them is in S; so S is a clique, and every vertex of S is
adjacent to every vertex of L \ S. In particular S = {c1}, and L = {c5, c1, c2}. By 3.1 again, either
every local jump across c2 contains a vertex in a short jump across c1, or every local jump across c5
contains such a vertex; and from the symmetry we may assume the second. This proves (1).

c2

c3

c4

c5

c1

X1 X2

X3X5

D

Figure 7: The numbering of C.

Let X1, X3 be the sets of vertices adjacent to c1, c3 respectively that are in short jumps across
c2 (thus, X1, X3 might be empty); and similarly let X2, X5 be the sets of vertices adjacent to c2, c5
respectively that are in short jumps across c1. (See figure 7.) Let X = X1 ∪X2 ∪X3 ∪X5. Thus X
is the set of all vertices that belong to the interior of short jumps.

Now, c4 has no neighbour in X ∪ {c1, c2}, but we may assume that c4 has degree at least
three, and so there is a connected induced subgraph D such that c4 has a neighbour in V (D)
and V (D) ∩ (V (C) ∪X) = ∅, and D is maximal with these properties. Let N be the set of vertices
in V (C) ∪X that have a neighbour in V (D); so c4 ∈ N .

(2) c1, c2 /∈ N , and N ∩ (X1 ∪X2) = ∅.

11



Suppose not; then from the symmetry we may assume that either c1 or some member of X1 be-
longs to N . Choose an induced path P between c4, c1 with interior in D∪X1. Since P ∗ \X1 ⊆ D, it
follows that P ∗ ∩X ⊆ X1; and so |P ∗ ∩X| ≤ 1, since P is induced. Suppose that P is a local jump.
From 3.1, there is no short jump across c2, and in particular X1 = ∅; and so V (P )∩X = ∅, contrary
to (1). Thus P is not local. Let Z be the set of vertices of P that are not equal or adjacent to c1
or to c4. Thus one of c2, c3 has a neighbour in Z, since P is not local and G has girth five. If also
c5 has a neighbour in P ∗, this neighbour also belongs to Z, and so there is a minimal path Q from
c5 to one of c2, c3, with interior in Z. Then no vertex of C has a neighbour in Q∗ except the ends
of Q, and so Q is short, and therefore two vertices of Q∗ belong to X; and since Q∗ ⊆ P ∗. But this
contradicts that Q∗ ⊆ P ∗ and |P ∗ ∩ X| ≤ 1. So c5 has no neighbour in P ∗. If c2 has a neighbour
in P ∗, choose a minimal path between c2, c4 with interior in P ∗; then this is a local jump across c3,
containing no vertices in X, contrary to (1). Thus c3 has a neighbour in P ∗, and hence in Z, and
none of c2, c4, c5 have a neighbour in Z; and so there is a short jump across c2 with interior in P ∗,
and therefore two vertices of P ∗ belong to X, a contradiction. This proves (2).

From (2) it follows that N ⊆ X3∪X5∪{c3, c4, c5}. If N ⊆ {c3, c4, c5} then G admits a P3-cut, so
we may assume from the symmetry that some x3 ∈ X3 belongs to N . If also c5 or some x5 ∈ X5 has
a neighbour in D, then there is an induced path Q between c3, c5 with interior in V (D) ∪X3 ∪X5,
and so neither of c1, c2 have a neighbour in it, and it is therefore a local jump across c4, contrary
to (1). Thus N ⊆ X3 ∪ {c3, c4}. But every two vertices in X3 ∪ {c4} are joined by an induced path
of length four with interior in X1 ∪ {c1, c5}, and so X3 ∪ {c3, c4} is a strong parity star-cutset. This
proves 3.2.

Finally we deduce 1.3, which we restate:

3.3 Let G be a pentagraph. Then either

• G is bipartite; or

• G is isomorphic to the Petersen graph; or

• G has a vertex of degree at most two; or

• G admits a path-3-cutset or a strong parity star-cutset.

Proof. Since P0,P1,P2 all have vertices of degree two, the result is true by 2.5 if G contains
an induced subgraph isomorphic to P2; so we assume it does not. We may assume that G is not
bipartite, and so it has a hole of length five. But then the result follows from 3.2. This proves
3.3.

4 Construction?
Robertson’s conjecture, that the Petersen graph is the only non-bipartite internally 4-connected
pentagraph, is false, but perhaps something like it is true. For instance, in [1] the following is shown:

4.1 The Petersen graph is the only cubic non-bipartite 3-connected pentagraph.
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A cubic 3-connected pentagraph cannot admit a path-3-cutset (because the middle vertex of the P3
must have a neighbour on either side of the cutset, by 3-connectivity), and cannot admit a strong
parity star-cutset (because the “strong” condition implies that such a cutset would be a path-3-
cutset); and so in fact 4.1 follows easily from 1.3.

Is there some hope of extending 4.1 to larger classes of pentagraphs, or indeed to a construction
for all pentagraphs? In [2], Plummer and Zha conjecture that every counterexample to Robertson’s
conjecture is “close to bipartite”, and one might hope that this too would follow from 1.3, but we do
not see how to show it. The problem is, let G be a pentagraph, with a parity star-cutset X ∪ {x},
where x is adjacent to every vertex in X, and A1, . . . , Ak are the components of G \ (X ∪ {x}). As
in the derivation of 1.1 from 1.3, we may assume that each vertex in X has a neighbour in each of
A1, . . . , Ak, and every induced path with ends in X and no other vertex has even length. Let Gi

be the subgraph induced on V (Ai) ∪X ∪ {x}. We would like to apply an inductive hypothesis that
says each Gi is “close to bipartite”, but even if G is internally 4-connected, we do not know that
G1, . . . , Gk are 3-connected; for instance, they might have vertices of degree two.

On the other hand, a parity star-cutset is a “reversible” decomposition, that can be turned into
something like a construction: in the notation above, if we do not know that G is a pentagraph, but
we know that each of G1, . . . , Gk is a pentagraph, it follows that G is indeed a pentagraph. So there
is some hope here for a construction.
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