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Abstract. A clock is a graph consisting of an induced cycle C and a vertex not in C
with at least two non-adjacent neighbours in C. We show that every clock-free graph of
large treewidth contains a “basic obstruction” of large treewidth as an induced subgraph:
a complete graph, a subdivision of a wall, or the line graph of a subdivision of a wall.

1. Introduction

All graphs in this paper are finite, undirected and simple. Given a graph G and a set
X ⊆ V (G), we write G\X for the graph arising from G by deleting all vertices in X, and
we write G[X] for the subgraph of G induced by X, that is, the graph G \ (V (G) \ X)).
If H is isomorphic to G[X] for some X, we say that G contains H; otherwise, we say G
is H-free. For a family H of graphs, we say that G is H-free if G is H-free for all H ∈ H.

A tree decomposition of a graph G is a pair (T, τ) where T is a tree and τ : V (T ) → 2V (G)

assigns to each vertex of T a subset of V (G), such that the following hold:
• ⋃

t∈V (T ) τ(t) = V (G);
• for every edge xy ∈ E(G), there is a vertex t ∈ V (T ) such that x, y ∈ τ(t); and
• for every v ∈ V (G), the induced subgraph T [{t ∈ V (T ) : v ∈ τ(t)}] is connected.

The width of (T, τ) is maxt∈V (T ) |τ(t)| − 1. The treewidth of G, denoted tw(G), is the
minimum width of a tree decomposition of G.

Treewidth was defined and used by Robertson and Seymour [15] as part of the Graph
Minors series. In particular, from the point of view of graph minors, as well as subgraphs,
it is well-known that (subdivided) walls “cause” large treewidth [14].

In the realm of induced subgraphs, this causal role is partly played by the four natural
families of graphs:

• the complete graph Kt+1;
• the complete bipartite graph Kt,t;
• subdivisions of the (t × t)-wall; and
• line graphs of subdivisions of the (t × t)-wall.
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Figure 1. The 4-basic obstructions

These graphs, shown in Figure 1 and defined in [3], are called t-basic obstructions. For
every t ≥ 1, all t-basic obstructions have treewidth t, and so if a graph G contains a
t-basic obstruction, then tw(G) ≥ t. The converse, on the other hand, is not true: Let
us call a graph t-clean if it does not contain a t-basic obstruction. Each of the following
constructions are examples of 3-clean graphs of arbitrarily large treewidth:

• Pohoata-Davies graphs [11, 13] (see Figure 2), see also t-sails in [9];
• “Layered wheels” [16];
• “Occultations” [6, 8].

Let us say that a class C of graphs is clean if there is a function f : N → N such that
for all t, every t-clean graph G in C satisfies tw(G) ≤ f(t). Then, as we saw above, the
class of all graphs is not clean.

A hole is an induced cycle on four or more vertices. A wheel is a graph consisting of a
hole C and a vertex v with at least three neighbours in C. Wheels appear to be essential
to the construction of two of the above three “non-basic” obstructions: the layered wheels
(hence the name) and the occultations. In fact, these two constructions contain a hole
with a vertex that has arbitrarily many neighbours in it. The Pohoata-Davies graphs,
however, are wheel-free, and so the class of wheel-free graphs is not clean. But the
Pohoata-Davies graphs contain a relaxed version of wheels: A clock is a graph consisting
of a hole C and a vertex v, called the center of the clock, such that the neighbours of
v in C contain two non-adjacent vertices. Observe that every wheel is a clock, and that
clocks are found in abundance in the Pohoata-Davies graphs.

In the present paper, our main result is the following (conjectured in [2]):
Theorem 1.1. The class of clock-free graphs is clean.

In [2], with Abrishami, Alecu, and Vušković, we proved a weakening of Theorem 1.1,
that graphs in which every vertex v has at most one neighbour in every hole not containing
v form a clean class. Explicitly, we proved the following (prisms and pyramids are defined
in Section 2):
Theorem 1.2 (Abrishami, Alecu, Chudnovsky, Hajebi, Spirkl, Vušković [2]). The class
of (clock, prism, pyramid)-free graphs is clean.

On the other hand, the following strengthening of Theorem 1.1 might be true (where a
t-clock is a clock consisting of a hole C and a vertex v with two neighbours x, y ∈ V (C)
where the distance between x and y along C is at least t):
Conjecture 1.3. For every fixed t ≥ 1, the family of t-clock-free graphs is clean.
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In the remainder of this section, we give a brief overview of the proof. First, in Section
3, we use results of [2] to reduce our problem to the case of diamond-free graphs with no
star cutset. Then, we set up for the central bag method, which works as follows:

• We identify an induced subgraph (sometimes called a forcer) that leads to a “nice”
cutset. Which forcer we use varies between applications; here we show in Section
4 that paws and certain seagulls (in particular, local configurations that coincide
with degree more than 2) give rise to cutsets consisting of a clique plus a vertex.
An important feature of this is that the cutset breaks the forcer (that is, we show
that certain vertices of the forcer are separated by the cutset we obtain).

• We organize the cutsets. This consists of two steps. First, it is sometimes conve-
nient to be more permissive with cutsets; so even though we obtain cutsets that
are a clique plus a vertex in the previous step, here we consider cutsets that are
the union of two cliques (with additional restrictions). This change helps with the
next goal: We would like to show that these cutsets are “non-crossing.”

• To do that, first notice that we may assume that none of these cutsets is balanced;
each only cuts off a small part of the graph. Then, we restrict ourselves to cutsets
that cut off as much as possibly (the “core”), as described in Section 5.

• In Section 6, we show that the cutsets we chose satisfy the requirements of the
central bag method, that is, the cutsets are sufficiently “non-crossing” that we
can decompose by all of them simultaneously.

• Section 7 refines what this simultaneous decomposition means; for each cutset,
we keep a “marker path” to remember part of what we cut off. Then, we show
that the resulting graph, the central bag, is simpler than G; intuitively, since the
cutsets we used broke all forcers, we expect the central bag to contain no forcers,
though some additional care is needed due to marker paths. This helps us prove
that the central bag has small treewidth. In this paper, our forcers are related
to vertices of big degree, and so we show that, after deleting vertices of degree
at most 2, each component has bounded size; then we use a result of [2] to show
that treewidth is bounded.

• In the final step, Section 8, we show that G has small treewidth using that the
central bag has small treewidth. This is done using balanced separators, which
are easier to lift from the central bag to G.

While the general setup of the central bag method has appeared in previous papers of
this series, the individual steps outlined above are different depending on which graph
class we work with. In particular, in [2], we assumed that pyramids and prisms do not
occur; here we instead show that they lead to useful cutsets.

2. Definitions

We begin with some definitions that will be used throughout the paper. For ease of
notation, we use graphs and their vertex sets interchangeably. A k-vertex path is a graph
P with vertex set {v1, . . . , vk} such that vivj ∈ E(P ) if and only if |i − j| = 1. Given a
path P , we refer to its vertices of degree at most one as the ends of P , and we denote
by P ∗ the interior of P , that is, the set obtained from P by deleting the ends of P . If
x, y are the ends of P , we also say that P is a path from x to y. By a path in a graph G,
we mean an induced subgraph of G that is a path (and therefore, in particular, “path”
always means “induced path”). The length of a path is its number of edges. A prism is a



4 INDUCED SUBGRAPHS AND TREE DECOMPOSITIONS XIV.

graph consisting of two triangles with disjoint vertex sets {a1, a2, a3} and {b1, b2, b3}, as
well as three paths P1, P2, P3 such that:

• Pi has ends ai and bi for all i ∈ {1, 2, 3}; and
• for distinct i, j ∈ {1, 2, 3}, the only edges between Pi and Pj are the edges aiaj

and bibj.
A pyramid is a graph consisting of a vertex a (called the apex) and a triangle with vertex
set {b1, b2, b3} (called the base), as well as three paths P1, P2, P3 such that:

• Pi has ends a and bi for all i ∈ {1, 2, 3};
• for i ∈ {1, 2, 3}, each path Pi has length at least one, and there is at most one

i ∈ {1, 2, 3} such that the path Pi has length exactly one; and
• for distinct i, j ∈ {1, 2, 3}, the only edge between Pi \ {a} and Pj \ {a} is the edge

aiaj.
A short pyramid is a pyramid in which one of P1, P2, P3 has length exactly one. We
observe:

Lemma 2.1. If G is clock-free, then G does not contain a short pyramid.

Proof. Notice that a short pyramid Q is a clock: with P1, P2, P3 and a, b1, b2, b3 as in the
definition of a pyramid, let us assume that P1 has length exactly one. Then Q \ {b1} is a
hole, and b1 has three neighbours in it, including a and b2, which are non-adjacent (since
P2 has length more than one). ■

A theta is a graph consisting of two non-adjacent vertices a and b (called its ends), as
well as three paths P1, P2, P3 such that:

• Pi has ends a and b for all i ∈ {1, 2, 3}; and
• for distinct i, j ∈ {1, 2, 3}, there are no edges between P ∗

i and P ∗
j .

A graph is a three-path configuration if it is a prism, a pyramid, or a theta. In each case,
we refer to P1, P2, P3 as the paths of the three-path-configuration.

For a graph G and a vertex v ∈ V (G), we write NG(v) for the set of neighbours of
v in G, omitting the subscript when there is no danger of confusion. We write NG[v]
for the set NG(v) ∪ {v}. For X ⊆ V (G), we write NG(X) = ⋃

x∈X NG(x) \ X and
NG[X] = X ∪ NG(X).

Given a graph G, a set X ⊆ V (G) is a cutset of G if G \ X is non-empty and not
connected. A clique cutset is a cutset that is a clique. A star cutset is a cutset X such
that there is a vertex x ∈ X with X ⊆ N [x].

Given X, Y ⊆ V (G), we say that X is anticomplete to Y if there is no edge in G with
one end in X and the other in Y , and we say x ∈ V (G) is anticomplete to Y if {x} is
anticomplete to Y . A separation of G is a triple (A, C, B) of pairwise disjoint subsets of
V (G) with union V (G) such that A is anticomplete to B.

3. Diamonds

A diamond is a four-vertex graph with exactly five edges. In this section, we use the
following results from [2] to reduce Theorem 1.1 to the diamond-free case.

Lemma 3.1 (Abrishami, Alecu, Chudnovsky, Hajebi, Spirkl, Vušković [2]). Let G be a
clock-free graph and let (A, C, B) be a separation of G with A ̸= ∅ and B ̸= ∅. Suppose
that there exist v1, . . . , vk ∈ C such that C ⊆ ⋃k

i=1 N [vi]. Let D1 be a component of A
and let D2 be a component of B. Then there exist cliques X1, . . . , Xk ⊆ C of G such that
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Figure 2. A graph from the Pohoata-Davies construction.

every path from a vertex in D1 to a vertex in D2 has a vertex in ⋃k
i=1 Xi. In particular,

if G admits a star cutset, then G admits a clique cutset.

Lemma 3.2 (Abrishami, Alecu, Chudnovsky, Hajebi, Spirkl, Vušković [2]). Let G be a
clock-free graph and assume that G does not admit a star cutset. Then G is diamond-free.

Combining Lemmas 3.1 and 3.2, we conclude that every clock-free graph that contains
a diamond has a clique cutset; and moreover, every clock-free graph that contains a star
cutset has a clique cutset. Since clique cutsets do not affect treewidth (see Lemma 7 in
[7]), to prove Theorem 1.1, it now suffices to prove the following:

Theorem 3.3. The family of (clock, diamond)-free graphs with no star cutset is clean.

We conclude with a simple observation about diamond-free graphs:

Lemma 3.4. Let G be diamond-free. Then the following hold:
• For every v ∈ V (G), the graph G[N(v)] is a disjoint union of cliques pairwise

anticomplete to each other.
• For every edge xy ∈ E(G), there is exactly one maximal clique of G containing

{x, y}.

Proof. The first bullet point follows from observing that G[N(v)] does not contain an
induced two-edge path; the second follows by observing that N(x) ∩ N(y) is a clique. ■

4. Paws and seagulls

A paw is a graph with vertex set {a, a′, u, v} and edge set {aa′, av, a′v, uv}. A seagull
is a graph with vertex set {a, u, v} and edge set {av, uv}.

Our goal in this section is to show that paws and seagulls give rise to particularly nice
cutsets in (clock, diamond)-free graphs. To this end, we first show that paws and seagulls
are contained in some three-path configuration in a prescribed way; then we show that
choosing the right one of these three-path configurations indicates the location of the
cutset we are looking for.

We require the following folklore result that appeared, for example, in [4]:

Lemma 4.1. Let x1, x2, x3 be three distinct vertices of a graph G. Assume that H is
a connected induced subgraph of G \ {x1, x2, x3} such that V (H) contains at least one
neighbour of each of x1, x2, x3, and that V (H) is minimal subject to inclusion. Then,
one of the following holds:
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(i) For some distinct i, j, k ∈ {1, 2, 3}, there exists P that is either a path from xi to
xj or a hole containing the edge xixj such that

• V (H) = V (P ) \ {xi, xj}, and
• either xk has two non-adjacent neighbours in H or xk has exactly two neigh-

bours in H and its neighbours in H are adjacent.
(ii) There exists a vertex a ∈ V (H) and three paths P1, P2, P3, where Pi is from a to

xi, such that
• V (H) = (V (P1) ∪ V (P2) ∪ V (P3)) \ {x1, x2, x3}, and
• the sets V (P1) \ {a}, V (P2) \ {a} and V (P3) \ {a} are pairwise disjoint, and
• for distinct i, j ∈ {1, 2, 3}, there are no edges between V (Pi)\{a} and V (Pj)\

{a}, except possibly xixj.
(iii) There exists a triangle a1a2a3 in H and three paths P1, P2, P3, where Pi is from ai

to xi, such that
• V (H) = (V (P1) ∪ V (P2) ∪ V (P3)) \ {x1, x2, x3}, and
• the sets V (P1), V (P2) and V (P3) are pairwise disjoint, and
• for distinct i, j ∈ {1, 2, 3}, there are no edges between V (Pi) and V (Pj),

except aiaj and possibly xixj.
We use Lemma 4.1 to find three-path-configurations, as follows:

Lemma 4.2. Let G be a (clock, diamond)-free graph with no star cutset. Let v ∈ V (G),
and let x1, x2, x3 ∈ N(v). If {x1, x2, x3} is not a clique of G, then G contains a three-
path-configuration Q with v, x1, x2, x3 ∈ Q.
Proof. Since G is diamond-free and G[{v, x1, x2, x3}] is not isomorphic to K4, we conclude
that G[{x1, x2, x3}] contains at most one edge.

Since N [v] \ {x1, x2, x3} is not a star cutset in G, it follows that V (G) \ N [v] ̸= ∅.
Since N [v] is not a star cutset in G, it follows that D = G \ N [v] is connected (and
non-empty). Since {v} ∪ N(D) is not a star cutset in G, we conclude that N(D) = N(v)
and so x1, x2, x3 ∈ N(D).

Let H be a minimal induced subgraph of D such that {x1, x2, x3} ⊆ N(H). Then H
satisfies one of the outcomes of Lemma 4.1. Note that outcomes (ii) and (iii) of Lemma
4.1 give us the desired three-path configuration. In the case of outcome (i), with i, j, k
and P as in Lemma 4.1, either P or P ∪ {v} is a hole C in G and xk has at least two
neighbours in P ∗. Since G is clock-free, it follows that xk does not have two non-adjacent
neighbours in C. Therefore, since xk is adjacent to v and has a neighbour in P ∗, it follows
that v ̸∈ C. Thus, xixj ∈ E(G). Moreover, xk has exactly two neighbours in C (and
therefore in P ∗), and they are adjacent. Since G is clock-free, and xk has two neighbours
in P ∗, it follows that xk is non-adjacent to xi, xj. Therefore, P ∪ {v, xk} is a prism in G.
This completes the proof. ■

For disjoint sets X, Y, Z ⊆ V (G), we say that X separates Y from Z if every path P
with one end in Y and the other in Z satisfies P ∩ X ̸= ∅.
Theorem 4.3. Let G be a (clock, diamond)-free graph with no star cutset. Suppose that
G contains a paw; and let a, a′, u, v ∈ V (G) be as in the definition of a paw. Then there
is a vertex b in G \ N(a) and a clique K ⊆ N [b] such that {v} ∪ K separates {u} from
{a, a′}.
Proof. Let A be the component of N(v) containing a and a′. By Lemma 3.4, it follows
that A is a clique. In particular, u ̸∈ A, and so for all distinct a∗, a∗∗ ∈ A, we obtain a
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a∗

a∗∗

v u

bQ1

l(Q1) = 5

a∗

a∗∗

v u

b

Q2

l(Q2) = 4

Figure 3. In the proof of Theorem 4.3, the choice of b = b(Qi) and a
path with l(Qi) vertices of the form P1(Qi) ∪ {b} in the case that Qi is a

pyramid (i = 1) or Qi is a prism (i = 2).

paw with vertex set {a∗, a∗∗, u, v} such that u has degree one and v has degree three in
the paw. Since G is diamond-free, no vertex in V (G)\N [v] has more than one neighbour
in A.

By Lemma 4.2, for all distinct a∗, a∗∗ ∈ A, there is a three-path-configuration in G that
contains all of a∗, a∗∗, u and v. Let Qa∗,a∗∗ be the set of all such three-path-configurations.
Since {a∗, a∗∗, v} is a clique, it follows that every Q ∈ Qa∗,a∗∗ is a prism or a pyramid.
Moreover, for Q ∈ Qa∗,a∗∗ , we define P1(Q), P2(Q), P3(Q) to be the paths of Q such that
v ∈ P1(Q), a∗ ∈ P2(Q) and a∗∗ ∈ P3(Q). Since v is in a triangle of Q, it follows that
v is an end of P1(Q), and u ∈ P1(Q) \ {v}. Let us define b(Q) as the end of P3(Q)
which is not equal to a∗∗; that is, P3(Q) is a path with ends a∗∗ and b(Q). Let us define
l(Q) = |P1(Q) ∪ b(Q)|. See Figure 3.

Let Q be the union of all sets Qa∗,a∗∗ for distinct a∗, a∗∗ ∈ A. Let us pick Q ∈ Q with
l(Q) minimum; and let a∗, a∗∗ ∈ A such that Q ∈ Qa∗,a∗∗ . By changing the labels of
P2(Q) and P3(Q) if necessary (noting that this does not change l(Q)), we may assume
that a∗∗ ̸= a. We claim that b = b(Q) has the desired properties. If Q is a pyramid,
then, by Lemma 2.1, it follows that b is non-adjacent to both a∗, a∗∗. If Q is a prism,
then b is non-adjacent to a∗ since b ∈ P3(Q) \ {a∗∗}. Moreover, b has no neighbour
in A \ {a∗, a∗∗}; for suppose otherwise, letting â be such a neighbour. Then â has two
non-adjacent neighbours (v and b) in the hole P1(Q) ∪ P3(Q), a contradiction as G is
clock-free. Therefore, the only possible neighbour of b in A is a∗∗, and in particular, since
we relabeled P2(Q) and P3(Q) if necessary, it follows that b is non-adjacent to a.

Next, we need to show that b ̸= u. Suppose that b = u. Since b ∈ P3(Q) and u ∈ P1(Q),
it follows that P3(Q) ∩ P1(Q) ̸= ∅, and hence Q is a pyramid with apex b = u. But then,
P1(Q) = {u, v}, and so Q is a short pyramid, contrary to Lemma 2.1.

In what follows, we will show:

(1) In G, the set X = {v} ∪ (N [b] \ (A ∪ P1(Q))) separates {u} from A.

Let us first show that (1) implies the statement of the theorem: By Lemma 3.1 applied
to G \ {v}, it follows that G \ {v} has a clique cutset K contained in N [b] \ (A ∪ P1(Q))
separating {u} from A in G \ {v}; but then K ∪ {v} is the desired cutset of G.

It remains to prove (1). Suppose that (1) does not hold. Then G \ X contains a path
from Y = P1(Q) \ {v, b} to Z = A ∪ (P2(Q) ∪ P3(Q)) \ N [b] (see Figure 4) with interior
disjoint from X; let R be a shortest such path.
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a∗

a∗∗

v u

b = b1

Q1

u

b

Q2

b2

b3

A

Y

Z

a∗

a∗∗

b2

b3

A

v

Z

b1

Y

Figure 4. The sets A, Y and Z in the proof of Theorem 4.3, in the case
that Qi is a pyramid (i = 1) or Qi is a prism (i = 2). Dashed lines

represent paths of arbitrary length (possibly zero).

(2) The path R∗ is non-empty.

Suppose not; then R consists of an edge yz with y ∈ Y and z ∈ Z. Since Y =
P1(Q)\{b, v} is anticomplete to Q∩Z, it follows that z ∈ Z \Q = A\{a∗, a∗∗}. But then
z is adjacent to two non-adjacent vertices, namely a∗ and y, in the hole P1(Q) ∪ P2(Q),
which violates the assumption that G is clock-free. This proves (2).

(3) The path R∗ is disjoint from N [b].

Suppose that there is a vertex r ∈ R∗∩N [b]. Since r ̸∈ X, it follows that r ∈ A∪P1(Q).
This contradicts the fact that R∗ is disjoint from Y ∪ Z, and proves (3).

Let r1, . . . , rt be the vertices of R∗ in order, such that r1 has a neighbour in Y and rt has
a neighbour in Z. There are three vertices in Q that may have neighbours in R∗ \{r1, rt}:
the vertex v, the neighbour b2 of b in P2(Q), and the neighbour b3 of b in P3(Q). Let
us write b1 for the end of P1(Q) which is not equal to v; so b1 = b if Q is a pyramid,
and b1 ∈ N(b) if Q is a prism. See Figure 4. By considering the holes Pi(Q) ∪ Pj(Q) for
distinct i, j ∈ {1, 2, 3}, we conclude that N(x) ∩ Q is a clique for all x ∈ V (G) \ Q.

(4) N(r1) ∩ Q ⊆ P1(Q).

First note that N(r1)∩Q is a clique. If r1 has a neighbour in P1(Q)∗, then N(r1)∩Q ⊆
P1(Q), as desired. Otherwise, r1 is adjacent to b1 as well as at least one of b, b2, and Q
is a prism. Since G is diamond-free, it follows that r1 is adjacent to both b and b2. But
this contradicts (3). We conclude that N(r1) ∩ Q ⊆ P1(Q), and (4) holds.

(5) There exists i ∈ {2, 3} such that rt has no neighbour in Pi(Q).

Suppose not. If N(rt) ∩ Q = {a∗, a∗∗}, then rt ∈ N(v) as G is diamond-free, and so
rt ∈ A; however, this contradicts that R∗ is disjoint from Z. Since N(rt) ∩ Q is a clique
not equal to {a∗, a∗∗}, the only possibility is that rt is adjacent to b; but this contradicts
(3) and thus proves (5).

Let i be as in (5), and let j ∈ {2, 3} \ {i}. We will fix i and j throughout the
remainder of the proof. From the choice of R, it follows that rt has a neighbour in
(A\Pi(Q))∪ (Pj(Q)\N [b]); let R′ be a path from rt to â ∈ {a∗, a∗∗}∩Pi(Q) with interior
in A ∪ (Pj(Q) \ N [b]). Note that the neighbour of â in R′ is a vertex in A.
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v u
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b2

u
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v b1

a∗∗

a∗
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R
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r1
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a∗

a∗∗ R′
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a∗∗

r1

u

b
b3

v b1

R′

rt

r1

v u

b = b1

v u

b = b1

r1

a∗∗ b3

rt

R

R′

R

R

Figure 5. Some of the cases for (7), assuming neither bi nor v has a
neighbour in R∗. In each case, bi is depicted by a hollow node, and a

better choice of Q has been highlighted (consisting of R, R′ and bits of
the previous choice of Q). The vertex r1 may have one neighbour or two

consecutive neighbours in P1(Q); this only affects whether the better
choice for Q is a pyramid or a prism.

(6) If bi has no neighbour in R∗, then v does not have a neighbour in R.

Suppose not, that is, v has a neighbour in R, but bi has no neighbour in R∗. Traversing
P1(Q) from b1 to v, let r0 be the first neighbour of r1. Then there is a hole H = rt-
R′-â-Pi(Q)-bi-b1-P1(Q)-r0-r1-R-rt, and v has two non-adjacent neighbours in H, namely
â ∈ Pi(Q) and a neighbour in R, contrary to G being clock-free. This proves (6).

(7) The vertex bi has a neighbour in R∗. Moreover, if Q is a prism and b3 has a neighbour
in R∗, then, traversing R∗ from r1 to rt, the first neighbour of b3 appears at the same
time or after the first neighbour of b2.

Suppose not. We will show that there is a better choice of Q; see Figure 5. Let us
define two paths T, T ′ as follows:

• If bi has no neighbour in R∗, then T = r1-R∗-rt-(R′ \ {â}) and T ′ = Pi(Q).
• Otherwise, Q is a prism and b3 has a neighbour in R∗; let R̂ be a path from r1

to b3 with interior in R∗. From our assumption, it follows that R̂ contains no
neighbour of b2. We set T = r1-R̂-b3-P3(Q)-a∗∗ and T ′ = b2-P2(Q)-a∗.

In either case, the paths T, T ′ are disjoint, each having an end in A.
We claim that N(v) ∩ T ⊆ A. If bi has no neighbour in R∗, then this follows from

(6). Otherwise, traversing P1(Q) from b1 to v, let r0 be the first neighbour of r1. Then
H = r1-T -a∗∗-a∗-P2(Q)-b2-b1-P1(Q)-r1 is a hole, and since v is adjacent to a∗, a∗∗ in H, it
follows that N(v) ∩ T = {a∗∗}, as desired.
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We now construct a better choice of Q, which is either a pyramid (if |N(r1) ∩ Q| = 1)
or a prism (if |N(r1) ∩ Q| = 2. By (4), we have N(r1) ∩ Q ⊆ P1(Q). See Figure 5.

If N(r1)∩Q = {b′} is a single vertex, then there is a pyramid Q′ with paths P1(Q′) = b′-
P1(Q)-v (which contains u), P2(Q′) = b′-P1(Q)-b1-T ′, and P3(Q′) = b′-r1-T . It follows
that Q′ ∈ Q. Since P1(Q′) ∪ {b(Q′)} = P1(Q′) ⊆ P1(Q) ∪ {b} and since b ̸∈ P1(Q′), we
conclude that P1(Q′)∪{b(Q′)} ⊊ P1(Q)∪{b}, and so l(Q′) < l(Q), contrary to the choice
of Q. This implies that N(r1) ∩ Q = {b′, c}, where b′c ∈ E(Q), and we may assume
that P1(Q) traverses v, c, b′ in this order. We note that b′ ̸= b by (3). Now there is a
prism Q′ in G with paths P1(Q′) = c-P1(Q)-v (which contains u), P2(Q′) = b′-P1(Q)-
T ′, and P3(Q′) = T . It follows that Q′ ∈ Q. Again, we have that P1(Q′) ∪ {b(Q′)} =
P1(Q′) ∪ {b′} ⊆ (P1(Q) \ {b}) ⊊ P1(Q) ∪ {b}, contradicting the choice of Q. This proves
(7).

Let R′′ be a shortest path from rt to bj with interior in (A\Pi(Q))∪(Pj(Q)\N [b]). Since
we showed that N(b)∩A ⊆ {a∗, a∗∗}, it follows that N(b)∩R′′ ⊆ (N(b)∩A∩Pj(Q))∪{bj} ⊆
{bj}. Let P = r1-R-rt-(R′′ \ {bj}); so in particular, N [b] ∩ P = ∅. Since N(x) ∩ Q is a
clique for all x ∈ V (G) \ Q, and since b is the only vertex of Q adjacent to both b2 and
b3, it follows that no vertex of P is adjacent to both b2 and b3. Let P ′ be the shortest
subpath of P containing r1 as well as a neighbour of bi and a neighbour of bj. Since
R′′ contains a neighbour of bj and R∗ contains a neighbour of bi by (7), the path P ′ is
well-defined. Let p be the end of P ′ not equal to r1; and let k ∈ {2, 3} such that bk is
adjacent to p. It follows that bk has no neighbour in P ′ \ {p} Let k′ ∈ {2, 3} \ {k}.

Suppose first that either Q is a pyramid, or Q is a prism and k = 3. Then, there
is a hole H ′ in G, defined as H ′ = r1-P1(Q)-b-bk-p-P ′-r1. The vertex bk′ has two non-
adjacent neighbours in H ′, namely b and a neighbour in P ′. Since G is clock-free, this is
a contradiction.

It follows that Q is a prism and k = 2. It follows that b3 has a neighbour in R∗. But now
(7) implies that the first neighbour of b2 along R∗, traversed from r1 to rt, appears at the
same time or before the first neighbour of b3, which implies that k = 3, a contradiction.
This concludes the proof.

■

Next, we show that certain seagulls lead to similar cutsets as in Theorem 4.3. We start
with two lemmas. Given a graph G, a vertex v ∈ V (G) is a claw center in G if NG(v)
contains three pairwise non-adjacent vertices.
Lemma 4.4. Let G be a clock-free graph and let P be a path in G of length at least 1.
Let a be an end of P and let y be the neighbour of a in P . Let x, v ∈ N(a) such that
{x, y, v} is a stable set. Then at least one of x and v is anticomplete to P \ {a}.
Proof. Suppose not. We may assume that P is chosen minimal such that a ∈ P and
P \ {a} contains both a neighbour of x and a neighbour of v. Then P ∪ {x, v} is a clock:
let w ∈ {x, v} be chosen such that the only neighbour of w in P \ {a} is the end of P
not equal to a. Then w-P -a-w is a hole, and the vertex q ∈ {x, v} \ {w} has at least two
non-adjacent neighbours in it, namely a and a vertex in P \{a, y}. This is a contradiction,
proving Lemma 4.4. ■

Lemma 4.5. Let G be a (clock, diamond)-free graph with no star cutset. Suppose that
G contains a seagull; and let a, u, v ∈ V (G) be as in the definition of a seagull. Suppose
further that a is a claw center in G. Then there is a three-path configuration Q in G such
that a, u, v ∈ Q and a is a claw center in Q.
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Figure 6. Proof of Lemma 4.5. Dashed lines represent paths of
arbitrary length (possibly zero).

Proof. Since N [v] \ {a, u} is not a star cutset in G, it follows that there is a path P in G
with ends a and u and with interior disjoint from N [v]. Let x be the neighbour of a in
P . Then x is non-adjacent to v from the choice of P .

From Lemma 3.4, since a is a claw center, it follows that N(a) has at least three
components. Let us pick y ∈ N(a) such that {x, y, v} is an independent set.

Since N [a] \ {y} is not a star cutset, it follows that there is a path from y to P \ {x}
with interior disjoint from N [a]. Let R be a shortest such path. See Figure 6.

Let r1, . . . , rt denote the vertices of R in order such that y = r1, and rt ∈ P . Traversing
P from x to u, let w and w′ denote the first and last neighbour of rt−1 in P , respectively.
Then, P ′ = a-y-R-w′-P -u is an induced path (due to the choice of R and w′). Applying
Lemma 4.4 to P ′ and a, x, y, v implies that not both x and v have a neighbour in P ′. But
v does have a neighbour in P ′, namely u; so x is anticomplete to P ′.

Now let us consider the hole H = a-y-R-w-P -x-a. Then, since a ∈ N(v) ∩ H and
x, y ̸∈ N(v), it follows that v has no neighbour in H \ {a} as G is clock-free.

Since a-x-P -u-v-a is a hole, it follows that rt−1 either has exactly one neighbour in P ,
or exactly two neighbours in P and they are adjacent. In the former case, we get a theta
Q with ends a and w = w′; in the latter case, we get a pyramid Q with apex a and base
{w, w′, rt−1}. In both cases, a, u, v ∈ Q and a is a claw center in Q. This concludes the
proof. ■

The proof of the next result follows the same structure as the proof of Theorem 4.3:

Theorem 4.6. Let G be a (clock, diamond)-free graph with no star cutset. Suppose that
G contains a seagull with a, u, v ∈ V (G) as in the definition of a seagull. Suppose further
that a is a claw center in G. Then there is a vertex b ∈ V (G) and a clique K ⊆ N [b]
such that {v} ∪ K separates {a} from {u}, and a is non-adjacent to b.

Proof. We first show:

(8) We may assume that the set N(a) ∩ N(v) is empty.

Suppose that there is a vertex a′ ∈ N(a) ∩ N(v). Then, the vertices a, a′, u, v form a
paw (using that G is diamond-free), and so Theorem 4.6 follows from Theorem 4.3, and
we are done. Therefore, we may assume that N(a) ∩ N(v) is empty. This proves (8).

Let Q be the set of all three-path configuration of the form guaranteed by Lemma
4.5; that is, every Q ∈ Q is a three-path configuration containing a, u, v, and a is a claw
center in Q. By Lemma 4.5, the set Q is non-empty. Let Q ∈ Q. Since Q contains
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Figure 7. Name conventions for vertices in the proof of Theorem 4.6 in
the case when Q = Qi is a theta (i = 1) and when Q = Qi is a pyramid
(i = 2). Dashed lines represent paths of arbitrary length (possibly zero).

a claw center, it follows that Q is a pyramid with apex a, or a theta with end a. Let
P1(Q), P2(Q), P3(Q) be the paths of Q, labelled in such a way that v ∈ P1(Q). We define
b(Q) to be the end of P3(Q) which is not equal to a, and we define l(Q) = |P1(Q)∪ b(Q)|.
See Figure 7.

Now, let Q ∈ Q be chosen with l(Q) minimum. We claim that b = b(Q) is the desired
vertex. Note that a and b are not adjacent (if Q is a theta, this is true from the definition
of a theta; if Q is a pyramid, it follows from Lemma 2.1). As in Theorem 4.3, it is
sufficient to prove:

(9) The set {v} ∪ (N [b] \ P1(Q)) separates {u} from {a} in G.

Assuming (9) to be true, by applying Lemma 3.1 to G \ {v} and the star cutset
N [b] \ P1(Q), we obtain the desired clique K.

It remains to prove (9); so we suppose for a contradiction that (9) does not hold. We
first show that u ̸= b. In the case that Q is a pyramid, this is immediate; when Q is a
theta, it follows from the fact that v does not have two non-adjacent neighbours (namely
a and u = b) in the hole P2(Q) ∪ P3(Q). Therefore, u ̸= b.

Next, let us define some notation. We denote the neighbour of a in P2(Q) as x, and
the neighbour of a in P3(Q) as y. Moreover, let us write b1 for the end of P1(Q) not equal
to a, and for i ∈ {2, 3}, let us write bi for the unique neighbour of b in Pi(Q); see Figure
7.

Let X = {v}∪ (N [b]\P1(Q)). Let Y = P1(Q)\{v, a, b}; it follows that u ∈ Y as u ̸= b.
Let Z = (P2(Q) ∪ P3(Q)) \ N [b]; it follows that a ∈ Z. Since we assumed that (9) does
not hold, it follows that there is a path from Y to Z with interior disjoint from X; let R
be a shortest such path. It follows that one end of R is in Y , and the other is in Z, and
R∗ is disjoint from X ∪ Y ∪ Z.

(10) The set R∗ is non-empty, and N [b] ∩ R∗ = ∅.

Since Y is anticomplete to Z, it follows that R∗ is non-empty. Moreover, since N [b] ⊆
X ∪ Y , it follows that N [b] ∩ R∗ = ∅. This proves (10).

Let r1, . . . , rt denote the vertices of R∗ in order, such that r1 has a neighbour in Y and
rt has a neighbour in Z. By (10), the only vertices of Q that may have a neighbour in
R∗ \ {r1, rt} are v, b2, b3.
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By considering the holes Pi(Q) ∪ Pj(Q) for distinct i, j ∈ {1, 2, 3}, we conclude that
N(w) ∩ Q is a clique for all w ∈ V (G) \ Q.

(11) N(r1) ∩ Q ⊆ P1(Q).

Note that N(r1)∩Q is a clique. If r1 has a neighbour in P1(Q)∗, then N(r1)∩Q ⊆ P1(Q),
as desired. Otherwise, r1 is adjacent to b1 as well as at least one of b, b2 and Q is a
pyramid. Since G is diamond-free, it follows that r1 is adjacent to both b and b2. But
this contradicts (10). We conclude that N(r1) ∩ Q ⊆ P1(Q), and (11) holds.

(12) There exists j ∈ {2, 3} such that N(rt) ∩ Q ⊆ Pj(Q).

Suppose not. Then, since rt is non-adjacent to b by (10), and since N(rt) ∩ Q is a
clique, it follows that rt is adjacent to v and a. This contradicts (8) and proves (12).

In the remainder of this proof, let us fix j as in (12) and let i ∈ {2, 3} \ {j}. Since
N(rt) ∩ Q is a clique and b is non-adjacent to rt, it follows that N(rt) ∩ Pi(Q) ⊆ {a}.

(13) The vertex bi has a neighbour in R∗. Furthermore, if Q is a pyramid and b3 has a
neighbour in R∗, then, traversing R∗ from r1 to rt, the first neighbour of b3 appears at the
same time or after the first neighbour of b2.

The proof of (13) is similar to the proof of (7). Suppose that (13) does not hold. Let
R′ be a path from rt to a with interior in Pj(Q) \ N [b]. Traversing P1(Q) from b1 to a,
let r0 be the first neighbour of r1. Let us define a hole H and paths T, T ′ as follows (the
purpose of H will be to show that v does not have neighbours in the part of R that we
are interested in, and T, T ′ will be used to construct a better choice of Q):

• If bi has no neighbour in R∗, then we let H = rt-R′-a-Pi(Q)-bi-b1-P1(Q)-r0-r1-R∗-rt

and T = r1-R∗-rt-R′ and T ′ = Pi(Q).
• Otherwise, Q is a pyramid and b3 has a neighbour in R∗; let R̂ be a path from

r1 to b3 with interior in R∗. From our assumption, it follows that R̂ contains
no neighbour of b2. We set H = r1-R̂-b3-P3(Q)-a-P2(Q)-b2-b1-P1(Q)-r0-r1 and
T = r1-R̂-b3-P3(Q)-a and T ′ = P2(Q).

In either case, we have T ∩ T ′ = {a}.
Suppose first that v has a neighbour q in H \ {a}. Then, since G does not contain a

clock and v is adjacent to a ∈ H, it follows that qa ∈ E(G). But now q ∈ N(a) ∩ N(v),
contrary to (8). Therefore, v has no neighbour in H \ {a}.

By (11), we have N(r1) ∩ Q ⊆ P1(Q). If N(r1) ∩ Q = {b′} is a single vertex, then there
is a theta Q′ with paths P1(Q′) = b′-P1(Q)-a (which contains u since r1 has a neighbour
in Y ), P2(Q′) = b′-P1(Q)-b1-T ′-a, and P3(Q′) = b′-r1-T -a. It follows that Q′ ∈ Q. Since
P1(Q′)∪{b(Q′)} = P1(Q′) ⊊ P1(Q)∪{b} since b ̸∈ P1(Q′), we conclude that l(Q′) < l(Q),
contrary to the choice of Q. This implies that N(r1) ∩ Q = {b′, c}, where b′c ∈ E(P1(Q)),
and we may assume that P1(Q) traverses v, c, b′ in this order. We note that b′ ̸= b by
(10). Also, since r1 has a neighbor in Y , b′ ̸= v. Now there is a pyramid Q′ in G with
paths P1(Q′) = c-P1(Q)-a (which contains u, since Q′ is not a short pyramid by Lemma
2.1), P2(Q′) = b′-P1(Q)-T ′, and P3(Q′) = T . It follows that Q′ ∈ Q. Again, we have
that P1(Q′) ∪ {b(Q′)} = P1(Q′) ∪ {b′} ⊊ P1(Q) ∪ {b}, contradicting the choice of Q. This
proves (13).
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Let R′′ be a shortest path from rt to bj with interior in Pj(Q) \ N [b]). Let P = r1-
R-rt-(R′′ \ {bj}); so in particular, N(b) ∩ P = ∅. Let P ′ be the shortest subpath of P
containing r1 as well as a neighbour of bi and a neighbour of bj. Since R′′ contains a
neighbour of bj and R∗ contains a neighbour of bi by (13), the path P ′ is well-defined.
Let p be the end of P ′ not equal to r1; and let k ∈ {2, 3} be maximum such that bk is
adjacent to p and bk has no neighbour in P ′ \ {p} (such k exists by the choice of P ′, as
otherwise P ′ \ {p} would be a better choice that P ′). Let k′ ∈ {2, 3} \ {k}.

Suppose first that either Q is a theta, or Q is a pyramid and k = 3. Then, there
is a hole H ′ in G, defined as H ′ = r1-P1(Q)-b-bk-p-P ′-r1. The vertex bk′ has two non-
adjacent neighbours in H ′, namely b and a neighbour in P ′. Since G is clock-free, this is
a contradiction.

It follows that Q is a pyramid and k = 2. Since at least one of b2, b3 has a neighbour in
R∗ by (13), it follows from the choice of k that b3 has a neighbour in R∗. But now (13)
implies that the first neighbour of b2 along R∗, traversed from r1 to rt, appears at the
same time or before the first neighbour of b3, which implies that k = 3, a contradiction.
This concludes the proof. ■

5. Central bags

In the previous section, we showed that paws and certain seagulls lead to cutsets in
(clock, diamond)-free graphs. In this section, we will set up the “central bag method,”
(see [1]) which, under certain circumstances, allows us to decompose a graph along several
cutsets simultaneously, obtaining a much simplified graph – the central bag – as a result.
Then, using the structure of the central bag, we show that it has small treewidth. Finally,
we “lift” a certificate of small treewidth for the central bag to a certificate for the original
graph by carefully reversing the decompositions.

As a first step, let us describe the “certificate” of small treewidth. Rather than working
with a tree decomposition, we will work with balanced separators: Let G be a graph. A
weight function on G is a function w : V (G) → [0, 1] such that ∑

v∈V (G) w(v) = 1. For
X ⊆ V (G), we write w(X) for ∑

x∈X w(x).
Let c ∈ [0, 1] and let G be a graph with weight function w. A set X ⊆ V (G) is a (w, c)-

balanced separator for G if for every component D of G \ X, we have w(D) ≤ c. The
following two lemmas show that treewidth is closely related to the existence of balanced
separators:
Lemma 5.1 (Harvey and Wood [12]; stated in this form in [3]). Let G be a graph, let
c ∈ [1

2 , 1), and let k be a positive integer. If G has a (w, c)-balanced separator of size at
most k for every weight function w on G, then tw(G) ≤ 1

1−c
k.

Lemma 5.2 (Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, and
Saurabh [10]). Let G be a graph and let k be a positive integer. If tw(G) ≤ k, then G has
a (w, c)-balanced separator of size at most k + 1 for every c ∈ [1

2 , 1) and for every weight
function w on G.

Therefore, to prove Theorem 3.3, it suffices to show that for every t ∈ N, there exists
a k = k(t) such that for every t-clean (clock, diamond)-free graph G and every weight
function w on G, there is a

(
w, 1

2

)
-balanced separator of size at most k in G. In particular,

we can fix a weight function w and assume (for a contradiction) that for every set X ⊆
V (G) of size at most k, at least one (and therefore exactly one) component of G \ X has
weight more than 1

2 .
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Let us now turn to the cutsets we use to create the central bag. Let G be a graph, and
let w be a weight function on G. For a set X that is not a

(
w, 1

2

)
-balanced separator of G,

we define its canonical separation Sw,G(X) = (A, C, B) where B is the unique component
D of G \ X with w(D) > 1

2 , C = X, and A = V (G) \ (B ∪ C). We note that A is
anticomplete to B.

Let G be a graph, and let w be a weight function on G. Let X be a set of subsets of
V (G), none of which is a

(
w, 1

2

)
-balanced separator of G. Then, we define the central bag

of G and w with respect to X as
β(G, w, X ) =

⋂
X∈X with Sw,G(X)=(A,C,B)

(B ∪ C).

In other words, we delete all the “A-sides” of canonical separations corresponding to sets
X ∈ X .

We would like to say that each component of G\β(G, w, X ) is contained in A for some
Sw,G(X) = (A, C, B) with X ∈ X . To arrange this, we define the following. Let us say
that two separations (A, C, B) and (A′, C ′, B′) of a graph G are loosely non-crossing if
there is no path in G with one end in A ∩ C ′, the other end in A′ ∩ C, and with interior
in A ∩ A′. We observe:

Lemma 5.3. Let G be a graph, and let w be a weight function for G. Let X be a set
of subsets of V (G), none of which is a

(
w, 1

2

)
-balanced separator of G. Suppose that for

all X, X ′ ∈ X , the canonical separations Sw,G(X) and Sw,G(X ′) are loosely non-crossing.
Then, for every component D of G \ β(G, w, X ), there is an X ∈ X such that D ⊆ A,
where (A, C, B) = Sw,G(X).

Proof. From the definition of β(G, w, X ), it follows that there is an X ∈ X such that
D ∩ A ̸= ∅, where (A, C, B) = Sw,G(X). Among all such X, let us choose X and a
component DX of D ∩ A with |DX | as large as possible; and fix (A, C, B) = Sw,G(X).

If DX = D, then the lemma holds; so we may assume that there is a vertex v′ ∈
D ∩ N(DX) (as D is connected). Again from the definition of β(G, w, X ), it follows that
there is an X ′ ∈ X such that v′ ∈ A′, where (A′, C ′, B′) = Sw,G(X ′).

Let DX′ be the component of (DX ∪ {v′}) ∩ A′ containing v′ (which exists, as v′ ∈ A′).
From the choice of X and DX , it follows that DX′ does not contain all vertices of DX .
Since DX ∪ {v′} is connected and DX′ is a proper subset of DX ∪ {v′}, it follows that
there is a vertex v ∈ DX \ DX′ with a neighbour in DX′ . From the choice of DX′ , it
follows that v ̸∈ A′.

Now, let P be a path from v to v′ with interior in DX′ . Then:
• P \ {v} ⊆ DX′ ⊆ A′ and P \ {v′} ⊆ DX′ \ {v′} ⊆ DX ⊆ A;
• v is not in A′, but v has a neighbour in A′ (along P ), and so v ∈ C ′;
• v′ is not in A, but v′ has a neighbour in A (along P ), and so v′ ∈ C.

This is shows that (A, C, B) and (A′, C ′, B′) are not loosely non-crossing, contrary to our
assumption. ■

Given two sets X, X ′ that are not
(
w, 1

2

)
-balanced separators of G, we say that X is a

(w, G)-shield for X ′ (a notion also used in, for example, [3, 4, 5]) if, writing Sw,G(X) =
(A, C, B) and Sw,G(X ′) = (A′, C ′, B′), we have that one of the following holds:

• B ∪ C ⊊ B′ ∪ C ′; or
• B ∪ C = B′ ∪ C ′ and B′ ⊊ B.
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From this definition, it is immediate that for every set X of subsets of V (G) none of
which is a

(
w, 1

2

)
-balanced separator of G, being a (w, G)-shield is a partial order on

X . We now consider the set of all “minimal” elements of X with respect to this order.
Explicitly, we define

corew,G(X ) = {X ′ ∈ X : there is no X ∈ X which is a (w, G)-shield for X ′}.

It follows that for every X ′ ∈ X \ corew,G(X ), there is an X ∈ corew,G(X ) which is a
shield for X ′.

The idea is that if X is a shield for X ′, then X is “strictly more useful” than X ′ (given
that the sets B and B′ are the large components, and we would like the large components
to be as small as possible); so it suffices to consider cutsets X ∈ corew,G(X ).

So far, this description is common to applications of the central bag method; the main
difference is in the types of sets X we use for canonical separations, which we describe in
the next section.

6. 2-clique cutsets

Let G be a diamond-free graph. For a clique K ⊆ V (G) and a set A ⊆ V (G), let us
define cA(K) as follows:

• If |K| ≤ 1, then cA(K) = K.
• Otherwise, let x, y ∈ K be distinct. Then cA(K) = K ∪ (N(x) ∩ N(y) ∩ A).

Note that, by Lemma 3.4, the set cA(K) is a (well-defined) clique.
Let G be a diamond-free graph and let w be a weight function on G. Let K1, K2 be

cliques in G, and suppose that X = K1 ∪K2 is not a
(
w, 1

2

)
-balanced separator of G. Let

(A, C, B) = Sw,G(X). Then, we define closure(K1, K2) = cA∪C(K1 ∩ N(B)) ∪ cA∪C(K2 ∩
N(B)). We observe that:

• The set closure(K1, K2) is the union of at most two cliques K ′
1, K ′

2 where closure(K ′
1, K ′

2) =
closure(K1, K2).

• B is a component of G \ closure(K1, K2), and therefore, closure(K1, K2) is not a(
w, 1

2

)
-balanced separator of G.

• Writing (A′, C ′, B′) = Sw,G(closure(K1, K2)), we have B′ = B.
For a graph G, we denote by ω(G) the size of the largest clique in G. For a diamond-

free graph G and a weight function w such that G has no
(
w, 1

2

)
-balanced separator of

size at most 4ω(G), let us define

X (G) = {closure(K1, K2) : K1, K2 are cliques in G}.

Theorem 6.1. Let G be a (clock, diamond)-free graph, and let w be a weight function
on G. Suppose that G contains no

(
w, 1

2

)
-balanced separator of size at most 4ω(G) and

that G has no star cutset. Let X, X ′ ∈ corew,G(X (G)). Then Sw,G(X) and Sw,G(X ′) are
loosely non-crossing.

Proof. Suppose not. Let (A, C, B) = Sw,G(X) and (A′, C ′, B′) = Sw,G(X ′). Let K1, K2
be cliques such that C = K1 ∪ K2 = closure(K1, K2), and let K ′

1, K ′
2 be cliques such that

C ′ = K ′
1 ∪ K ′

2 = closure(K ′
1, K ′

2).
Since (A, C, B) and (A′, C ′, B′) are not loosely non-crossing, and by symmetry, we may

assume that there is a path P from r′ ∈ A ∩ K ′
1 to r ∈ A′ ∩ K1 with interior in A ∩ A′.
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Since G has no
(
w, 1

2

)
-balanced separator of size at most 4ω(G), it follows that there

is a component B∗ of G \ (C ∪ C ′) with w(B∗) > 1
2 .

Since w(B) > 1
2 and w(B′) > 1

2 from the definition of Sw,G(·), it follows that B∗∩B′ ̸= ∅
and B∗∩B ̸= ∅, and therefore, since B∗ is disjoint from C∪C ′, it follows that B∗ ⊆ B∩B′.

(14) We have that N(B∗) ⊆ K2 ∪ K ′
2 ∪ (K1 ∩ K ′

1).

Suppose not. Since B∗ ⊆ B ∩ B′, it follows that N(B∗) ⊆ (B ∩ C ′) ∪ (B′ ∩ C) ∪ (C ∩ C ′).
Since r ∈ A′ ∩ K1, it follows that B′ ∩ C ⊆ K2; similarly, B ∩ C ′ ⊆ K ′

2. Finally,
(C ∩ C ′) \ (K2 ∪ K ′

2) ⊆ K1 ∩ K ′
1. This implies (14).

(15) The set K1 ∩ K ′
1 is non-empty.

Suppose not. By (14), it follows that N(B∗) ⊆ K2 ∪ K ′
2. Let K3, K4 be cliques such

that C∗ = K3 ∪ K4 = closure(K3, K4) = closure(K2 ∩ N(B∗), K ′
2 ∩ N(B∗)). Letting

A∗ = V (G) \ (C∗ ∪ B∗), we have that Sw,G(C∗) = (A∗, C∗, B∗). We also have C∗ ∈ X (G).
We notice that:

• C∗∪B∗ ⊆ B∪C: Suppose not. Clearly, B∗∪N(B∗) ⊆ B∪C. Therefore, it follows
that there is a vertex x in K3 ∪ K4 which is not in B ∪ C. From the definition
of K3 and K4, it follows that either x has at least two neighbours in K2 ∩ N(B∗)
(but then x ∈ K2 ⊆ C) or x has at least two neighbours in K ′

2 ∩ N(B∗) (but
then x ∈ K ′

2). We conclude that x ∈ K ′
2 ∩ A. Since r′ ∈ A ∩ K ′

1, and since
K ′

1, K ′
2 are cliques, it follows that C ′ ⊆ A ∪ C. Therefore, C ′ ∩ B = ∅. Since B

is connected and B ∩ B′ ̸= ∅, we conclude that B ⊆ B′. Now, since r ∈ A′ ∩ K1
has no neighbour in B, it follows that r ∈ cA∪C(N(B) ∩ K1), and so r has at
least two neighbours in N(B) ∩ K1 ⊆ C ∩ C ′. Since K1 ∩ K ′

1 = ∅, it follows that
N(B) ∩ K1 ⊆ K ′

2. But then r ∈ cA′∪C′(K ′
2), and so r ∈ C ′, a contradiction.

• The vertex r is in A∗: Suppose not. Since r ̸∈ B∗ ∪ N(B∗) (as B∗ ⊆ B and
N(B∗) ⊆ B ∪ C), it follows that r ∈ C∗ and r has at least two neighbours in one
of K2 ∩ N(B∗) and K ′

2 ∩ N(B∗). Since r ∈ A′, it follows that r ̸∈ cA′∪C′(K ′
2), and

so r does not have two or more neighbours in K ′
2. It follows that r has two or

more neighbours in K2 ∩ N(B∗). Then, as G is diamond-free, it follows that r is
adjacent to every vertex in K2. Since r is also adjacent to every vertex in K1 (as
r ∈ K1 and K1 is a clique), it follows that C is a star cutset (separating r′ from
B). This contradicts the assumption that G has no star cutset.

Putting the above two items together, it follows that C∗ ∪ B∗ ⊊ B ∪ C, and so C∗ is
a (w, G)-shield for C = X, a contradiction to the assumption that X ∈ corew,G(X (G)).
This proves (15).

Since r ∈ A′, it follows that r has at most one neighbour in K ′
1. But r is adjacent to

every vertex in K1 ∩ K ′
1 as r ∈ K1 \ K ′

1; and so by (15), it follows that |K1 ∩ K ′
1| = 1.

Let v ∈ K1 ∩ K ′
1.

Next, let us define M = B ∪ B′. Since B and B′ are connected, and have non-
empty intersection B∗, it follows that M is connected. Moreover, since K1 ∪ K ′

1 ⊆
(C ∪ A) ∩ (C ′ ∪ A′), it follows that K1 ∪ K ′

1 is disjoint from M .
We define a vertex t as follows: Since r ∈ cA∪C(K1 ∩ N(B)), it follows that either

r has a neighbour in B, and we let t = r; or the set K1 ∩ N(B) contains at least two
vertices, and we choose t ∈ (K1 ∩ N(B)) \ {v}. Analogously, we define a vertex t′ as
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Figure 8. The proof of Theorem 6.1. Dashed lines represent paths of
arbitrary length (possibly zero).

follows: Since r′ ∈ cA′∪C′(K ′
1 ∩ N(B′)), it follows that either r′ has a neighbour in B′,

and we let t′ = r′; or the set K ′
1 ∩ N(B′) contains at least two vertices, and we choose

t′ ∈ (K ′
1 ∩ N(B′)) \ {v}.

We note that if r ̸= t, then r has no neighbour in M (as r has no neighbour in B from
the choice of t, and r has no neighbour in B′ since r ∈ A′); an analogous statement holds
for r′. Let Q be a path from t to t′ with interior in M ; see Figure 8.

Since both t and t′ have a neighbour in P , we choose P ′ to be a path from t to t′ with
interior contained in P .

We claim that H = t-P ′-t′-Q-t is a hole: No vertex in P ∗ has a neighbour in M , and
if r is in the interior of P ′, then r ̸= t and so r has no neighbour in M ; and similarly for
r′. Therefore, there are no edges from P ′∗ to Q∗; and both P ′ and Q are induced paths.

Moreover, we claim that v ̸∈ H: From the choices of t and t′, we have that v ̸= t, t′;
and since both P and Q are disjoint from C ∩ C ′, it follows that P ′ and Q are disjoint
from {v}.

Since t ∈ K1 and t′ ∈ K ′
1, it follows that t, t′ are two distinct neighbours of v in H.

Moreover, since t ̸∈ cA′∪C′(K ′
1), it follows that t has at most one neighbour in K ′

1, namely
v; so t is non-adjacent to t′. This implies that {v}∪H is a clock, which is a contradiction
and completes the proof. ■

7. Inside the central bag

Throughout this section, we make the following assumption:

Assumption 7.1. Let G be a (clock, diamond)-free graph with no star cutset and let w be
a weight function on G. Suppose that G contains no

(
w, 1

2

)
-balanced separator of size at

most 4ω(G). Let X (G) be as in the previous section, and let β = β(G, w, corew,G(X (G))).

Following the central bag method, we now have two goals:
• Show that β has a small balanced separator; and
• “Lift” this separator to G.

In pursuit of the second goal, it is helpful to extend the central bag β to incorporate
certain bits from each component of G\β. This will help with lifting, as it prevents these
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components from creating arbitrary connections that we do not “see” in β. Instead, we
keep certain “marker paths” to record those connections. To make our lives easier, we
would like to choose marker paths that are as simple as possible; the following lemma
helps with this.

Lemma 7.2. We assume that Assumption 7.1 holds. Let X ∈ X (G). Let (A, C, B) =
Sw,G(X) and let D be a component of A. Let K1, K2 be cliques such that X = K1 ∪ K2 =
closure(K1, K2). Then there is a path P with ends x, y ∈ X and interior in D such that
the following hold:

• The path P has at least three vertices (in other words, x and y are not adjacent);
and

• Every vertex in P ∗ has degree 2 in the graph G[P ∪ X] (and is therefore not
contained in a triangle in G[P ∪ X]).

Proof. Since G has no star cutset, we find that K1 ∩K2 = ∅. We start with the following:

(16) No vertex in K1 has two or more neighbours in K2, and vice versa.

Suppose for a contradiction that v ∈ K1 has at least two neighbours in K2. Then, since G
is diamond-free, it follows that v is adjacent to every vertex in K2. But then X ⊆ N [v],
and so G has a star cutset, a contradiction. This proves (16).

Since G has no star cutset, and hence no clique cutset, it follows that N(D) is not a
clique. Therefore, there is a path with interior in D and non-adjacent ends in N(D) ⊆ X.
Let P be a shortest such path, and let x and y be its ends. We may assume, by symmetry,
that x ∈ K1 and y ∈ K2.

(17) Let v ∈ X \ {x, y} such that v has a neighbour in P ∗. Then v is adjacent to both x
and y.

Suppose not. We may assume that v ∈ K1, and so v is adjacent to x and non-adjacent
to y. From the choice of P , since the path from v to y with interior in P ∗ is not a
better choice for P , it follows that v is adjacent to the neighbour x∗ of x in P . But now
x∗ ∈ closure(K1, K2), a contradiction. This proves (17).

Let us pick x′ as follows: If x has a neighbour in B, then x′ = x. Otherwise, at least
two vertices in K1 \ {x} have a neighbour in B. Note that y has at most one neighbour
in K1 by (16). We choose x′ ∈ K1 \ N(y) such that x′ has a neighbour in B.

Let us now pick y′. If y has a neighbour in B, then we let y′ = y. Otherwise, at least
two vertices in K2 \ {y} have a neighbour in B. Since x has at most one neighbour in
K2, we pick y′ to be a vertex in K2 \ N(x) with a neighbour in B.

From our choices described above, it follows that:
• the vertices x, x′ are in K1 (and possibly equal);
• the vertices y, y′ are in K2 (and possibly equal);
• y is anticomplete to {x, x′} and x is anticomplete to {y, y′};
• if x ̸= x′, then x′ has no neighbour in P ∗ (by (17), since x′ is non-adjacent to y);

and
• If y ̸= y′, then y′ has no neighbour in P ∗ (by (17), since y′ is non-adjacent to x).

Now, let Q be a path from x′ to y′ with interior in B; this exists by the choice of x′ and
y′. Then, H = x′-Q-y′-y-P -x-x′ is a hole in G. If some vertex v ∈ (K1 ∪ K2) \ {x, y} has
a neighbour in P ∗, then by (17), v has two non-adjacent neighbours in H, namely x and
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Figure 9. Proof of Lemma 7.2. A clock in the case that some vertex in
X is adjacent to both x and y. Dashed lines represent paths of arbitrary

length (possibly zero).

y, a contradiction as G is clock-free. It follows that no vertex in (K1 ∪ K2) \ {x, y} has
a neighbour in P ∗. Since P is induced, each of x and y has exactly one neighbour in P ∗.
This completes the proof. ■

By Theorem 6.1, the separations Sw,G(X) and Sw,G(X ′) are loosely non-crossing for all
X, X ′ ∈ corew,G(X (G)). By Lemma 5.3, we may define, for each component D of G \ β,
a set X(D) ∈ corew,G(X (G)) such that, writing (A, C, B) = Sw,G(X(D)), we have that
D ⊆ A (if more than one valid choice for X(D) exists, we pick one arbitrarily). It follows
that D is a component of A.

Given X ∈ corew,G(X (G)), we write D(X) for the union of all components D of G \ β
with X(D) = X. It follows that ⋃

X∈corew,G(X (G))
D(X) = G \ β,

where the union is a disjoint union.
Now, for every X ∈ corew,G(X (G)), let us define P (X) as follows. If D(X) = ∅, then

P (X) = ∅. Otherwise, let us pick a component D of D(X), and let P (X) be a path with
interior in D and ends in X as guaranteed by Lemma 7.2. We call P (X) the marker path
for X.

We define
β∗ = β ∪

⋃
X∈corew,G(X (G))

P (X).

From the choice of paths P (X) as in Lemma 7.2, and since D is a component of G \ β, it
follows that the ends of P (X) are in β, and (P (X))∗ is disjoint from β. Therefore, every
vertex in β∗ \ β has degree two in β∗ and is not contained in a triangle in β∗.

In preparation for the next section, let us also define a weight function w∗ on β∗, as
follows:

• For every v ∈ β, we let w∗(v) = w(v).
• For every X ∈ corew,G(X (G)) with D(X) ̸= ∅, we pick a vertex aX ∈ (P (X))∗

arbitrarily; and we set w∗(aX) = w(D(X)) and w∗(v) = 0 for all v ∈ (P (X))∗ \
{aX}.

Then, for every vertex v ∈ β, its weight remains the same; for every component D of
G \ β, we move its total weight to aX where X = X(D). From this, it is easy to see that
w∗ is a weight function on β∗.
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The following results help us describe ways in which β∗ is structurally simpler than G.

Lemma 7.3. Assuming Assumption 7.1, and with the definition of β∗ as above, the
following holds. Suppose that β∗ contains a seagull with a, u, v as in the definition of a
seagull. Then one of the following holds:

• At least one of a or u is in G \ β.
• NG(u) \ {v} is a clique anticomplete to {v}.
• NG(a) \ {v} is a clique anticomplete to {v}.

Proof. First we show:

(18) If NG(u) \ {v} is a clique, then the lemma holds.

Suppose NG(u) \ {v} is a clique K and v has a neighbour in K. Then NG(u) is
connected, and therefore a clique by Lemma 3.4. Since G contains a seagull, G is not a
complete graph. But now NG(u) is a clique cutset in G, contradicting Assumption 7.1.
This proves (18).

By (18), we may assume that NG(u) \ {v} is not a clique, and similarly NG(a) \ {v} is
not a clique. We may assume that the first outcome does not hold, and it follows that a
and u are in β.

(19) There is a cutset in G of the form {v} ∪ K where K is a clique and which separates
{a} from {u}.

We consider two cases. Suppose first that a is a claw center in G. Then, by Theorem
4.6, there is a vertex b non-adjacent to a and a clique K ⊆ N [b] in G such that {v} ∪ K
separates {a} from {u}, and (19) holds. Therefore, we may assume that a is not a claw
center, and therefore (using Lemma 3.4), we have that NG(a) = K1 ∪ K2, where K1 and
K2 are cliques. We may assume that v ∈ K1. Since NG(a) \ {v} is not a clique, we may
assume that K1 contains a vertex a′ ̸= v. Since G is diamond-free, we have a′u ̸∈ E(G).
Now, by Theorem 4.3 applied to the paw induced by {u, v, a, a′}, we once again obtain
the desired cutset. This proves (19).

It follows that X = closure(K, {v}) ∈ X (G), and so corew,G(X (G)) contains ei-
ther X ′ = X or a (w, G)-shield X ′ for X. Then, writing (A, C, B) = Sw,G(X) and
(A′, C ′, B′) = Sw,G(X ′), it follows that A ⊆ A′ and β ∩ A = ∅.

It follows that a, u ̸∈ A, and therefore a ∈ X or u ∈ X. There is symmetry, and so we
may assume that u ∈ X. Since u ̸∈ K, it follows that u has at least two neighbours in K;
consequently u is adjacent to all vertices of K. Let Q be the component of G \ ({v} ∪ K)
containing u. Since K ∪ {v} ⊆ N [u], and since G has no star cutset by Assumption
7.1, it follows that Q = {u}, and so N(u) = K ∪ {v}, contrary to our assumption that
N(u) \ {v} is not a clique. ■

A simplicial vertex in a graph is a vertex whose neighbourhood is a clique. Let us say
that a vertex u in a graph G is near-simplicial in G if there is a vertex v ∈ V (G) such
that NG(u) \ {v} is a clique. Then, the second and third outcomes of Lemma 7.3 imply
that u and a, respectively, are near-simplicial.

Lemma 7.4. Assuming Assumption 7.1, and with the definition of β∗ as above, the
following hold:
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(i) For every x ∈ β∗, there is a set Z1 ⊆ N(x) such that Z1 = K ∪ {x′} where K is
a clique, with the property that for every v ∈ Nβ∗(x) \ Z1, we have degβ∗(v) ≤ 2.

(ii) For every x in β∗ which is a claw center in β∗, there is a set Z2 ⊆ N(x) such that
Z2 = K ∪{x′, x′′} where K is a clique, with the property that for every neighbour y
of x in β∗\Z2, there is no X ∈ corew,G(X (G)) with X = K1∪K2 = closure(K1, K2)
such that y has a neighbour in a component of D(X) and x, y ∈ K1.

Proof. By our choice of P (X) and by Lemma 7.2, it follows that all vertices in β∗ \ β
have degree two in β∗ and are not contained in triangles in β∗.

Let x ∈ β∗. If x ∈ β∗ \ β, then degβ∗(x) = 2, and both statements hold. So we may
assume that x ∈ β. Moreover, if x is near-simplicial in β∗, then again both (i) and (ii)
hold; so we may assume that this is not the case.

(20) The set Nβ∗(x), which is a disjoint union of cliques by Lemma 3.4, contains at most
one component of size more than one.

Suppose not; let a, u ∈ Nβ∗(x) be non-adjacent such that both a and u are in a clique
of size at least two in Nβ∗(x); say a′ is a common neighbour of x and a in β∗. We apply
Lemma 7.3 to the seagull with vertex set {a, x, u}. Then, since a, u are each in a triangle
in β∗ (with x and a neighbour of x), it follows that a, u ∈ β, so the second or third
outcome of Lemma 7.3 holds. By symmetry, we may assume that NG(a) \ {x} is a clique
K containing a′ and anticomplete to {x}. But a′ is adjacent to x, a contradiction; this
proves (20).

Let K be defined as follows. If Nβ∗(x) has no component of size more than one, then
K = ∅. Otherwise, by (20), we define K to be the unique component of Nβ∗(x) of size
more than one; by Lemma 3.4, we have that K is a clique.

(21) There is at most one vertex in Nβ∗(x) \ K with degree more than two in β∗.

Suppose that a, u ∈ Nβ∗(x) \ K both have degree more than two in β∗. Every neighbour
of x which is in β∗ \ β has degree two in β∗, and hence a, u ∈ β. Applying Lemma 7.3 to
the seagull with vertex set {a, x, u}, we conclude that the second or third outcome holds.
By symmetry, we may assume that there is a clique X such that NG(a) = X ∪ {v} with
X anticomplete to {v}. Since a has degree at least three in β∗, it follows that there are
two distinct vertices y, y′ ∈ X ∩ β∗. Since both are in the triangle {a, y, y′}, it follows
that y, y′ ∈ β. But now, by applying Lemma 7.3 to the seagull with vertex set {x, a, y},
we conclude that one of the following holds:

• The vertex x is near-simplicial in G (contrary to our assumption that x is not
near-simplicial in β∗); or

• NG(y) \ {a} is a clique anticomplete to {a} (contrary to the fact that y′ is in
NG(y) \ {a} and y′a ∈ E(G)).

This is a contradiction, and proves (21).
By (21), there is at most one vertex in Nβ∗(x) \ K of degree more than two in β∗;

let us choose x′ to be this vertex if it exists (letting x′ be an arbitrary vertex in Nβ∗(x)
otherwise). Then Z1 = K ∪ {x′} satisfies (i).

It remains to prove (ii). Let K, Z1, x′ be as above. Suppose that a, u ∈ Nβ∗(x) \ Z1
are distinct and non-adjacent vertices in β. Then, by Lemma 7.3, at least one of a, u is
near-simplicial in G and simplicial in G \ {x}. We define a vertex x′′ as follows: If every
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vertex in Nβ(x) \ Z1 is simplicial in G \ {x}, then x′′ = x′. Otherwise, x′′ is the unique
vertex in Nβ(x) which is not simplicial in G\{x}. Now let Z2 = Z1 ∪{x′′} = K ∪{x′, x′′}.

We claim that Z2 satisfies (ii). Suppose for a contradiction that (ii) does not hold, that
is, there is a vertex y ∈ Nβ∗(x) \ Z2 and a set X ∈ corew,G(X (G)) with X = K1 ∪ K2 =
closure(K1, K2) such that y has a neighbour in a component of D(X) and x, y ∈ K1.

Suppose first that y ∈ β. From the choice of Z2, it follows that NG(y) = {x}∪T , where
T is a clique anticomplete to {x}. It follows that K1 = {x, y}. We note that |T ∩K2| ≤ 1,
as otherwise y is adjacent to all of K2 (since G is diamond-free), but then X ⊆ N [y] is a
star cutset, contradicting Assumption 7.1.

Letting (A, C, B) = Sw,G(X), and using that T is a clique, it follows that either T ∩A =
∅ or T ∩ B = ∅. Since ∅ ̸= N(y) ∩ D(X) ⊆ N(y) ∩ A, and since x ∈ K1 ⊆ X, it follows
that T ∩ A ̸= ∅, and so T ⊆ C ∪ A. Then, y is not in N(B), and y does not have two
neighbours in either K1 or K2, contrary to the fact that X = K1 ∪ K2 = closure(K1, K2),
a contradiction.

It follows that y ∈ β∗ \ β. Then, y ∈ P (X ′) for some X ′ ∈ corew,G(X (G)); and in
particular, there is a component D′ in D(X ′) such that y ∈ D′ and D′ is a component
of G \ β. Since y has a neighbour in a component D of D(X), and D is a component
of G \ β, it follows that D = D′. But then, once again letting (A, C, B) = Sw,G(X), we
conclude that y ∈ A, a contradiction as we had assumed that y ∈ K1 ⊆ C. This proves
(ii). ■

8. Putting everything together

We require the following result and definition of [2]. For a graph G and positive integer
d, we denote by γd(G) the maximum degree of the subgraph of G induced by the set of
vertices with degree at least d in G.

Theorem 8.1 (Abrishami, Alecu, Chudnovsky, Hajebi, Spirkl, Vušković [2]). For all
t, γ > 0, there exists q = q(t, γ) such that every graph G with γ3(G) ≤ γ and treewidth
more than q contains a subdivision of Wt×t or the line graph of a subdivision of Wt×t as
an induced subgraph.

Now we can prove:

Lemma 8.2. For every t ∈ N, there exists a constant n = n(t) such that the following
holds.

Let G be a t-clean graph and assume that Assumption 7.1 holds. With the definition of
β∗ and w∗ as in the previous section, we have that β∗ has a

(
w∗, 1

2

)
-balanced separator

of size at most n.

Proof. Let q be as in Theorem 8.1 applied with t and with γ = t; let n = q + 1. Then, by
Lemma 7.4(i), every vertex in β∗ has at most ω(G) ≤ t (as G is t-clean) neighbours of
degree more than two, it follows that γ3(β∗) ≤ t. Therefore, by Theorem 8.1, and since
G is t-clean, it follows that tw(β∗) ≤ q. Now, by Lemma 5.2, it follows that β∗ has a(
w∗, 1

2

)
-balanced separator of size at most q + 1 = n. ■

Our final step is to lift the balanced separator from β∗ to G. Given two sets X, Y ⊆
V (G), let us say that X has a neighbour in Y if there is an edge xy ∈ E(G) with x ∈ X
and y ∈ Y .
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Theorem 8.3. Let t ∈ N. There exists a c = c(t) such that the following holds. Let G
be a t-clean (clock, diamond)-free graph with no star cutset. Let w be a weight function
on G. Then G has a

(
w, 1

2

)
-balanced separator of size at most c.

Recall that the above, together with Lemma 5.1, implies Theorem 3.3, which in turn
implies Theorem 1.1, as discussed in Section 3. It remains to prove Theorem 8.3.

Proof of Theorem 8.3. Let n = n(t) be as in Lemma 8.2. We define c = max{4t, n(2t +
1)}.

Suppose that G contains no
(
w, 1

2

)
-balanced separator of size at most c. Since G is t-

clean, it follows that ω(G) ≤ t. Since c ≥ 4t, it follows that G contains no
(
w, 1

2

)
-balanced

separator of size at most 4ω(G). Therefore, Assumption 7.1 holds, and in particular, we
can define β∗ and w∗ as in Section 7.

By Lemma 8.2, it follows that β∗ has a
(
w∗, 1

2

)
-balanced separator S of size at most n.

Let us define a set Y as follows. For every v ∈ S such that v ∈ (P (X))∗ for some
X ∈ corew,S(X (G)), we set Y (v) = X. For every v ∈ S which is not a claw center in β∗,
we let Y (v) = Nβ∗(v). For every v ∈ S which is a claw center in β∗, we let Y (v) = Z2
where Z2 is as is Lemma 7.4(ii). Finally, we let Y = S ∪ ⋃

v∈S Y (v). From the definition
of Y (v) above, it follows that Y (v) is either the union of two cliques or the union of a
clique and two vertices for every v ∈ S; therefore, |Y | ≤ |S|(2t + 1) ≤ n(2t + 1) ≤ c, as
desired.

It remains to show that Y is a
(
w, 1

2

)
-balanced separator of G. In order to accomplish

this, we would like to show, roughly speaking, that adding back components of G\β does
not “merge” two components of β∗ \ S, and that for each component of G \ β, its weight
is accounted for, in the corresponding component of β∗ \ S, by a vertex of the form aX

(as defined in Section 7). Both of these statements are formalized in (22) below.
Let D be a component of G\β. Writing X = X(D) and Sw,G(X) = (A, C, B), we have

that D ⊆ A and so w(D) ≤ 1
2 . Let D′ be a component of D \ Y . If D′ has no neighbour

in β \ Y , then D′ is a component of G \ Y and of weight at most 1
2 , as desired. Thus,

from now on, we will focus on the case in which D′ has a neighbour in β \ Y .
Given a component R of β \ Y , let us define R̂ as the component of β∗ \ S containing

R.

(22) Let D be a component of G\β, and let D′ be a component of D \Y . Let X = X(D).
If D′ has a neighbour y in a component R of β \ Y , then aX ∈ R̂. In particular, R̂ is the
same for all components R of β \ Y in which D′ has a neighbour.

Suppose not, that is, D′ has a neighbour y in a component R of β \ Y , but aX ̸∈ R̂. If
(P (X))∗ ∩ S ̸= ∅, say q ∈ (P (X))∗ ∩ S, then X = Y (q) ⊆ Y , and so D′ has no neighbour
in β \ Y ⊆ β \ X. Therefore, we may assume that aX ∈ (P (X))∗ is in a component R′ of
β∗ \ S with R′ ̸= R̂.

Writing X = K1∪K2 = closure(K1, K2), and using that y ∈ β∩NG(D′) ⊆ β∩NG[D] =
X, we may assume that y ∈ K1. Let x, x′ be the ends of P (X). Since (P (X))∗ is
disjoint from S and contains aX ∈ R′, it follows that (P (X))∗ ⊆ R′. But one of x, x′,
say x, is in K1 and therefore adjacent to y ∈ R̂ (which is anticomplete to R′); so we
conclude that x ∈ S (as x has a neighbour in both R̂ and R′, two different components
of β∗ \ S); see Figure 10. But then, as y ∈ Nβ∗(x) \ Y (x), it follows from the choice of
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might be empty.S ∩K2

y

x

Figure 10. Proof of Theorem 8.3. We have shown that P (X) is disjoint
from S, and that x has neighbours in both R′ and R̂, and so x ∈ S.

Dashed lines represent paths of arbitrary length (possibly zero).

Y (x) that x is a claw center in β∗. By Lemma 7.4 and the choice of Y (x), there is no
X ∈ corew,G(X (G)) such X = K1 ∪K2 = closure(K1, K2) such that x, y ∈ K1 and y has a
neighbour in D′ ⊆ D(X). This is a contradiction (because X, x, y, K1, K2 have precisely
those properties), and proves (22).

Let M be a component of G \ Y with M ∩ β ̸= ∅. Suppose first that there are two
distinct components of β∗ \ S such that M ∩ β has a non-empty intersection with each of
them. Then, M contains a path Q with interior in G\β such that the ends of Q are in β,
and in two different components of β∗ \S. It follows that Q∗ is contained in a component
D′ of D \ Y for some component D of G \ β. However, this contradicts (22), which states
that both ends of Q are in the same component of β∗ \ S.

It follows that for every component M of G \ Y with M ∩ β ̸= ∅, there is a component
R̂ of β∗ \ S such that:

• M ∩ β ⊆ R̂; and
• For every x ∈ G \ β such that x is in a component D of G \ β and x ∈ M , we

have that aX(D) ∈ R̂ (by (22)).

Now it follows that w(M) ≤ w∗(R̂) ≤ 1
2 ; but then Y is a

(
w, 1

2

)
-balanced separator, as

desired. ■
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