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Abstract

For graphs G and H, we say that G is H-free if it does not contain H as an induced subgraph.
Already in the early 1980s Alekseev observed that if H is connected, then the Max Weight
Independent Set problem (MWIS) remains NP-hard in H-free graphs, unless H is a path
or a subdivided claw, i.e., a graph obtained from the three-leaf star by subdividing each edge
some number of times (possibly zero). Since then determining the complexity of MWIS in these
remaining cases is one of the most important problems in algorithmic graph theory.

A general belief is that the problem is polynomial-time solvable, which is witnessed by
algorithmic results for graphs excluding some small paths or subdivided claws. A more conclusive
evidence was given by the recent breakthrough result by Gartland and Lokshtanov [FOCS 2020]:
They proved that MWIS can be solved in quasipolynomial time in H-free graphs, where H is
any fixed path. If H is an arbitrary subdivided claw, we know much less: The problem admits a
QPTAS and a subexponential-time algorithm [Chudnovsky et al., SODA 2019].

In this paper we make an important step towards solving the problem by showing that for
any subdivided claw H, MWIS is polynomial-time solvable in H-free graphs of bounded degree.
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1 Introduction
For a graph G = (V, E), a set X ⊆ V is independent (or stable) if there is no edge in E with both
endpoints in X. In the Max Independent Set problem (MIS) we ask to compute α(G), i.e.,
the size of a largest independent set in the instance graph G. The Max Weight Independent
Set problem (MWIS) is a generalization of MIS where each vertex v is assigned a positive weight
w(v), and we ask for maximum W such that the instance graph has an independent set X with
W = ∑

v∈X w(v).
MIS (and MWIS) is a “canonical” hard problem: it was one of the first problems shown to be

NP-hard [3030], it is notoriously hard to approximate [2828, 3131], and it is W[1]-hard [1717]. Many of these
hardness results hold even if we restrict input instances to some natural graph classes [66, 1818, 2020].

In this work we are interested in graph classes defined by forbidding certain substructures. For
graphs G and H, we say that G is H-free if it does not contain H as an induced subgraph. For
simplicity, we will assume that H is connected.

The complexity study of MWIS in H-free graphs dates back to the early 1980s and the work
of Alekseev [44], who observed that for most graphs H the problem remains NP-hard. Indeed, let
us discuss the hard cases. First, MIS (and thus MWIS) is NP-hard in subcubic graphs [2020], which
are H-free whenever H has a vertex of degree at least 4. For the remaining cases we use the
so-called Poljak construction [4343]: if G′ is obtained from G by subdividing one edge twice, then
α(G′) = α(G) + 1. Thus, if Gp denotes the graph obtained from G by subdividing each edge exactly
2p times, then α(Gp) = α(G) + p · |E(G)|. Now observe that if H has a cycle or two vertices of
degree three, then G|V (H)| is H-free. Consequently, for such graph H, MIS is NP-hard in H-free
graphs. Let us point out that the above hardness reductions imply that the problem cannot even be
solved in subexponential time, unless the Exponential-Time Hypothesis (ETH) fails.

Summing up, the only connected graphs H for which we may hope for a polynomial-time
algorithm for MIS in H-free graphs are paths and subdivided claws (or long claws), where a
subdivided claw is a graph obtained from the three-leaf star K1,3 (called the claw) by subdividing
each edge some number of times (possibly 0). In what follows, for t ⩾ 1, by Pt we denote the
t-vertex path. For integers a, b, c ⩾ 1, by Sa,b,c we denote the subdivided claw, where the edges of
K1,3 were subdivided a − 1, b − 1, and c − 1 times, respectively. Alternatively, we may think of
Sa,b,c as the graph obtained from paths Pa+1, Pb+1, and Pc+1 by identifying one endvertex of each
path. We also extend this notation by allowing a = 0: then S0,b,c is the path Pb+c+1.

The complexity of MWIS in H-free graphs when H is a path or a subdivided claw remains one
of the most challenging and important problems in algorithmic graph theory. Despite significant
attention received from the graph theory and the theoretical computer science communities, only
partial results are known. Let us discuss them.

First, consider the case that H = Pt for some t. Since P4-free graphs, also known as cographs,
have very rigid structure (in particular, they have clique-width at most 2), the polynomial-time
algorithm for MWIS in this class of graphs is rather simple [1616]. However, even for P5-free graphs
the situation is much more complicated. The existence of a polynomial-time algorithm for this case
was a long-standing open problem that was finally resolved in the affirmative in 2014 by Lokshtanov,
Vatshelle, and Villanger [3434] using the framework of potential maximal cliques. Later, using the
same approach but with significantly more technical effort, Grzesik, Klimošova, Pilipczuk, and
Pilipczuk [2525] obtained a polynomial-time algorithm for P6-free graphs. The case of P7-free graphs
remains open.

However, some interesting algorithmic results can be obtained if we relax our notion of an
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efficient algorithm. First, it was shown by Bacsó et al. [55] that for every fixed t, MWIS can be
solved in subexponential time 2O(

√
n log n) for Pt-free graphs (by n we always denote the number

of vertices of the instance graph). Another subexponential-time algorithm, with worse running
time, was obtained independently by Brause [99]. While these results do not rule out the possibility
that the problem is NP-hard, let us recall that, assuming the ETH, subexponential algorithms for
MWIS in H-free graphs cannot exist if H is not a path or a subdivided claw. Later, Chudnovsky et
al. [1010, 1111] showed that for every fixed t, the problem admits a QPTAS in Pt-free graphs. Finally, a
very recent breakthrough result by Gartland and Lokshtanov [2121] shows that for every fixed t, the
problem can be solved in Pt-free graphs in quasipolynomial time nO(log3 n); there is also a slightly
simpler algorithm by Pilipczuk, Pilipczuk, and Rzążewski [4242] with running time nO(log2 n). Note
that this means that if for some t, MWIS is NP-hard for Pt-free graphs, then all problems in NP
can be solved in quasipolynomial time. While this does not yet imply that P = NP, it still seems
rather unlikely, according to our current understanding of complexity theory.

The case when H is a subdivided claw is much less understood. The simplest subdivided claw
is the claw S1,1,1 = K1,3. Claw-free graphs appear to be closely related to line graphs [1414] and
thus a polynomial-time algorithm for MWIS in claw-free graphs can be obtained by a modification
of the well-known augmenting path approach for finding a maximum-weight matching [4040, 4444]
(i.e., a maximum-weight independent set in a line graph). We highlight the close relation of claw-
free graphs and line graphs, as it will play an important role in our paper. The next smallest
subdivided claw is the fork, i.e., S2,1,1. A polynomial-time algorithm for MIS in fork-free graphs was
obtained by Alekseev [33]. Later, the algorithm was extended to the MWIS problem by Lozin and
Milanič [3535]. The existence of polynomial-time algorithms in the next simplest cases, i.e., H = S3,1,1
and H = S2,2,1, is wide open. The existence of a polynomial-time algorithm for MWIS in H-free
graphs when every connected component of H is a claw was obtained by Brandstädt and Mosca [88].

Again, some interesting results can be obtained if we look beyond polynomial-time algorithms.
Chudnovsky et al. [1010, 1111] proved that for every subdivided claw H, the MWIS problem in H-free
graphs admits a QPTAS and a subexponential-time algorithm working in time nO(n8/9). We point
out that the arguments used for the case when H is a subdivided claw are significantly more
complicated and technically involved than their counterparts for Pt-free graphs.

More tractability results can be obtained if we put some additional restrictions on the instance
graph, e.g., by forbidding more induced subgraphs [77, 2323, 3333, 3838, 3939, 4141]. A slightly different direction
was considered by Lozin, Milanič, and Purcell [3636], who proved that for every fixed t, MWIS is
polynomial-time solvable in subcubic St,t,1-free graphs. Later, Lozin, Monnot, and Ries [3737] showed a
polynomial time algorithm for MWIS in subcubic S2,2,2-free graphs. Finally, Harutyunyan et al. [2626]
generalized both these results by providing a polynomial-time algorithm for MWIS in subcubic
S2,t,t-free graphs, for any fixed t.

We remark that the case when H is a subdivided claw is the only case where the restriction to
bounded degree graphs leads to an interesting problem. Indeed, the already mentioned hardness
reduction of Alekseev [44] shows that if H is not a path nor a subdivided claw, then MIS in NP-hard
even in subcubic H-free graphs. On the other hand, connected Pt-free graphs of bounded degree are
of constant size and thus of little interest.

In this work, we continue the study of the complexity of MWIS in Sa,b,c-free graphs of bounded
degree. As our main result, we show the following theorem.

Theorem 1.1. For every pair t, ∆ of fixed positive integers, given an n-vertex St,t,t-free graph G
with maximum degree at most ∆, equipped with a weight function w : V (G) → N, in time polynomial
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in n we can find a maximum-weight independent set in G.

Note that our result works for all excluded subdivided claws: the graph Sa,b,c is an induced
subgraph of St,t,t, where t = max(a, b, c), and thus Sa,b,c-free graphs form a subclass of St,t,t-free
graphs.

Furthermore, it follows from the work of Lozin et al. [3737, Theorem 2] (see also [2626]) that if H
is disconnected, say with connected components H1, H2, . . . , Hp, and for each i ∈ [p], MWIS is
polynomial-time solvable in Hi-free graphs of bounded maximum degree, then MWIS is polynomial-
time solvable in H-free graph of bounded maximum degree. This yields the following generalization
of Theorem 1.11.1.

Corollary 1.2. Let H be a fixed graph, whose every component is a subdivided claw, and let ∆ be a
fixed integer. Given an n-vertex H-free graph G with maximum degree at most ∆, equipped with a
weight function w : V (G) → N, in time polynomial in n we can find a maximum-weight independent
set in G.

1.1 Outline of the proof

For a graph G, a set Z ⊆ V (G) is called constricted if there is no induced tree in G that contains Z.
The starting point of our algorithm is a result of Chudnovsky and Seymour [1515] that states that if a
graph G contains a constricted set of size 3, then G admits a certain structure, called an extended
strip decomposition. This (very roughly) means that G is similar in structure to the line graph of
another graph H, where G breaks into atoms that correspond to vertices, edges, and triangles of H.
One can then attempt to use this similarity to solve the MWIS problem. The problem with this
approach is that it only works when no atom contains “almost all” the vertices of the graph.

It is not difficult to see that by deleting a set X ⊆ V (G) of bounded size from an St,t,t-free
graph G of bounded degree, it is possible to obtain a graph with a constricted set of size 3. One
can then try to make use of the extended strip decomposition of G − X, by showing that such a
decomposition can be found where all atoms have roughly equal sizes. While this is a simple idea, it
has remained out of reach for years. In this paper, combining the “central bag method” recently
developed by Abrishami et al. [11] with an in-depth analysis of the process through which extended
strip decompositions are constructed, we have finally been able to show that an extended strip
decomposition where all atoms are small can indeed be found, unless G contains a bounded-size
balanced separator. Note that in the latter case MWIS can be solved in G by an easy recursion. On
a very high level, we first identify an “important” claw-free induced subgraph β of G and show that
β admits the required decomposition, and then, using certain monotonicity properties, we extend
the decomposition to the whole graph.

In what follows we describe our approach in more detail. Let t ⩾ 1 and ∆ ⩾ 3 be fixed integers
and let G be an n-vertex St,t,t-free graph with maximum degree at most ∆.

The proof consists of five steps and the first four of them are purely graph-theoretic. As mentioned
above, in these steps we work under an additional assumption that for some c = c(t, ∆) < 1, the
graph G has no c-balanced separator of constant size, where a set X ⊆ V (G) is c-balanced if every
component of G − X has at most c · n vertices.

Step 1. Finding a central bag decomposition. In the first step, we invoke the recent result
of Abrishami et al. [11] which provides a certain hierarchical decomposition of G, called the central
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bag decomposition. More precisely, it gives us a sequence β0, β1, . . . , βk of connected subgraphs of G,
such that

• β0 = G and βk is claw-free,
• for each i ∈ [k], the graph βi is an induced subgraph of βi−1,
• for each i ∈ [k], every component of βi−1 − βi is small and its neighborhood in βi has bounded

size and simple structure,
• for each i ∈ [k], the graph βi has no balanced separator of bounded size.

For brevity, let us denote β := βk and call it the central bag. We can imagine that β is a “core”
of G, and G can be obtained from β by reversing the central bag decomposition. In other words,
we can start with β and then enlarge it by iteratively adding small subgraphs that have simple
interaction with the core, until we obtain the whole graph G. This step is described in Section 2.12.1.

Step 2. Finding a strip decomposition of the central bag. In the second step we analyze
the central bag β. The structure of claw-free graphs is quite well understood, due to the work
of Chudnovsky and Seymour [1414]. In particular, their results imply that every claw-free graph F
admits a strip decomposition. More precisely, there is some graph H and a function η mapping
edges of H to sets of vertices of F , such that

• the sets η(e) for e ∈ E(H), called atoms11, form a partition of V (F ),
• for every edge xy ∈ E(F ), either x, y ∈ η(e) for some e ∈ E(H), or x ∈ η(e) and y ∈ η(f),

where e, f ∈ E(H) are distinct and e and f share a vertex,
• for distinct e, f ∈ E(H), such that e and f share a vertex, the interaction between sets η(e)

and η(f) is well-structured.

We carefully analyze the strip decomposition obtained for β. We show that our assumptions on
β, in particular that β has bounded degree and has no balanced separator of bounded size, imply
that we can obtain a strip decomposition (H, η) with useful properties. In particular, each atom of
(H, η) is small.

However, in order to proceed, we need (H, η) to have a slightly more rigid structure. We modify
G into a graph G′ by adding three special vertices v1, v2, v3, which are simplicial in G′ (i.e., the
neighborhood of each of them is a clique). Next we obtain G′′ by removing from G′ a carefully
chosen set X ⊆ V (G′) of bounded size. We ensure the following properties of G′′:

• G′′ has maximum degree at most ∆,
• V (β) ∪ {v1, v2, v3} is disjoint from X and it induces a connected subgraph β′′ of G′′,
• the set {v1, v2, v3} is constricted in G′′.

We also modify (H, η) into a strip decomposition (H ′′, η′′) of β′′, making sure that all atoms are
still small and (H ′′, η′′) is tame, which means that it satisfies certain additional technical conditions
concerning the vertices v1, v2, v3.

The property that {v1, v2, v3} is constricted allows us to use the tools developed by Chudnovsky
and Seymour [1515] in their solution to the famous three-in-a-tree problem (see [1212, 1313, 3232] for recent

1Actually, an atom is a certain subset of η(e), but in this high-level exposition let us not go into the detail.

4



important developments involving the three-in-a-tree problem). By the already-mentioned result it
follows that every graph with a constricted three-element set admits the so-called extended strip
decomposition, which is a generalization of strip decompositions of claw-free graphs. An extended
strip decomposition of a graph F is again a pair (H, η), where H is a graph and η is a function
whose domain consists of all edges of H (as it was in the case of strip decompositions), and also all
vertices and triangles of H. In particular, in addition to edge atoms, we also have vertex atoms and
triangle atoms (where a triangle is a clique of size three). The sets given by η form a partition of
V (F ) and the interactions between vertices from distinct sets are restricted. In particular, they are
local in H.

Let us point out that the decomposition (H ′′, η′′) of β′′ is in particular an extended strip
decomposition. Furthermore, as all vertex atoms and triangle atoms are empty, we still have the
property that all atoms are small.

So the outcome of this step is a set X of bounded size that was removed from a graph, and
a tame extended strip decomposition (H ′′, η′′) of the central bag (with three additional vertices
added), where every atom is small. This step is described in Section 33.

Step 3. Extending the strip decomposition of the central bag. Recall that βk, βk−1, . . . , β0
is the central bag decomposition of G. Additionally, for all i ∈ [k], the graph βi is an induced
subgraph of βi−1 and X is disjoint from βk.

The main result of this step is the following statement. Suppose that for some i ∈ [k], we are
given a tame extended strip decomposition (Hi, ηi) of the connected component of βi −X, containing
βk, such that each atom of (Hi, ηi) is small. Then in polynomial time we can find a tame extended
strip decomposition (Hi−1, ηi−1) of the connected component of βi−1 − X, containing βk, such that
each atom of (Hi−1, ηi−1) is small.

The proof combines the techniques developed by Chudnovsky and Seymour [1515] and deep
structural analysis of the central bag decomposition obtained in Step 1. This step is described in
Section 44.

Step 4. Obtaining the extended strip decomposition of G. Using the outcome of Step 2 as
the base case and the statement obtained in Step 3 as an inductive step, we can prove that the
component of G − X containing the central bag admits an extended strip decomposition whose
every atom is small. Then, using the properties of the central bag decomposition and the fact that
X is of bounded size, we can further extend this decomposition so that it covers other components
of G − X.

The following theorem, proven in Section 5.15.1, encapsulates the outcome of the first four steps of
the proof. It is the main technical contribution of our paper.

Theorem 1.3. For every pair t, ∆ of fixed positive integers, there exist c ∈ [1
2 , 1) and integers d, z

and p with the following property. Given an n-vertex St,t,t-free graph G with maximum degree at
most ∆, either G has a c-balanced separator of size at most d, or in time O(np) we can find a set
X ⊆ V (G) of size at most z and an extended strip decomposition (H, η) of G − X, where H has at
most n vertices and every atom of (H, η) has at most 1

10∆ · n vertices.

We note that a similar statement was obtained by Chudnovsky et al. [1010, Lemma 6.5]: They
also obtain a set X and an extended strip decomposition of G − X, where the atoms are “small”
(although this is not measured in the number of vertices, but the total weight). However, the main
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difference is that set X given by Chudnovsky et al. [1010, Lemma 6.5] is not of bounded size, even if
the maximum degree is bounded. Thus it is not useful for our application.

Step 5. Solving MWIS by a reduction to Maximum Weight Matching. Finally, in the
last step we use Theorem 1.31.3 to prove Theorem 1.11.1. The algorithm is recursive and consists of two
main steps. We use notation from Theorem 1.31.3.

First, suppose that G has a c-balanced separator X of size at most dt,∆. Then we can exhaustively
guess the intersection of a fixed optimum solution with X and solve the problem for each component
of G − X independently. The running time is polynomial, as each component is of size at most c · n
for a constant c < 1.

In the other case, if no such separator exists, Theorem 1.11.1 gives us the set X of bounded size
and an extended strip decomposition (H, η) of G − X, where every atom is small. We follow the
idea of Chudnovsky et al. [1010, 1111]. We define certain induced subgraphs of G that we call particles.22
These subgraphs are defined with respect to (H, η), in particular every atom of (H, η) is a particle,
but there are also particles consisting of several (but still constant number of) atoms. The fact that
each atom has at most 1

10∆ n vertices implies that each particle has at most 0.5n vertices.
Chudnovsky et al. [1010, 1111] showed that solving MWIS can be reduced to

• solving MWIS for all particles,
• solving Maximum Weight Matching on an instance graph obtained by a simple modification

of H.

Thus we can exhaustively guess the intersection of a fixed optimum solution with X, solve the
problem for each particle (here we use the fact that they are small), and then combine the results
in polynomial time solving using one of the standard algorithms for finding maximum weight
matchings [1919, 2424]. As all particles are small and the number of vertices of H is at most n, the
running time is polynomial in n.

2 Background and definitions
Let G = (V (G), E(G)) be a graph. For a set X ⊆ V (G), by G[X] we denote the subgraph of G
induced by X and G \ X = G[V (G) \ X]. However, if it does not lead to confusion, we will often
use induced subgraphs and their vertex sets interchangeably. For sets X, Y ⊆ V (G), we say that
X is complete to Y if for every x ∈ X and y ∈ Y , it holds that xy ∈ E(G). We say that X is
anticomplete to Y if for every x ∈ X and y ∈ Y , it holds that xy ̸∈ E(G).

A path is a graph P with vertex set V (P ) = {v1, v2, . . . , vk} and edge set E(P ) = {vivi+1 : 1 ⩽
i ⩽ k − 1}. We denote a path P by p1-p2- . . . -pk. The length of a path P is the number of edges in
P . For X, Y ⊆ V (G), we say that a path P = p1- . . . -pk with P ⊆ V (G) is a path from X to Y if
P ∩ X = {p1} and P ∩ Y = {pk}. The distance between X and Y in G is the length of a shortest
path from X to Y in G. We denote the distance between X and Y by distG(X, Y ). If x, y ∈ V (G),
then we define the distance between x and y, denoted distG(x, y), as distG(x, y) = distG({x}, {y}).

Let v ∈ V (G). By NG(v) we denote the set of vertices in G adjacent to v, and NG[v] =
{v}

⋃
NG(v). For S ⊆ V (G), we denote NG[S] = ⋃

v∈S NG[v] and NG(S) = NG[S] \ S. By Nd
G[S]

2These subgraphs are called atoms in [1010, 1111], but we decided to use another name to avoid confusion with atoms
used in Steps 2, 3, and 4.
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we denote the set of vertices at distance at most d from S in G. If the graph G is clear from the
context, we simplify the notation by dropping the subscript. By ∆(G) we denote the maximum
degree of a vertex in G.

A function w is a weight function on V (G) if w : V (G) → R. If w is a weight function on V (G)
and X ⊆ V (G), we define w(X) = ∑

x∈X w(x). Let w : V (G) → [0, 1] be a weight function on
V (G) with w(G) = 1. A set X ⊆ V (G) is a (w, c)-balanced separator of G if w(D) < c for every
connected component of G \ X. A c-balanced separator is a (w, c)-balanced separator for the weight
function w on V (G) given by w(v) = 1

|V (G)| for all v ∈ V (G). Balanced separators are related to a
graph parameter called treewidth. Roughly speaking, the treewidth is a measure of how “tree-like”
a graph is; we omit a precise definition here as it is not used in the paper. Instead, we will work
with balanced separators of bounded size; it appears that their existence is closely related to the
treewidth of a graph.

Lemma 2.1 ([2727]). Let G be a graph.

1. If the treewidth of G is at most k, then G has a (w, c)-balanced separator of size at most k + 1
for every weight function w with w(G) = 1 and for every c ∈ [1

2 , 1).
2. If for some c ∈ [1

2 , 1) it holds that G has a (w, c)-balanced separator of size k for every weight
function w with w(G) = 1, then the treewidth of G is at most 1

1−c k.

2.1 Separations and central bags

A separation of a graph G is a triple (A, C, B) of pairwise-disjoint vertex subsets of G such that
A ∪ C ∪ B = V (G) and A is anticomplete to B. If S = (A, C, B) is a separation, we write
A(S) = A, C(S) = C, and B(S) = B. In [11], separations are used to construct a sequence of iterated
decompositions of a graph. In this section, we summarize the key results from [11], which are integral
to the proof of our main combinatorial result. For the remainder of the paper, we assume that if
(A, C, B) is a separation, then C is non-empty.

Let c ∈ [1
2 , 1) and let d be a positive integer, let G be a graph with maximum degree ∆, and let

w : V (G) → [0, 1] be a weight function on V (G) with w(G) = 1. Suppose G has no (w, c)-balanced
separator of size at most d. Let S = (A, C, B) be a separation of G such that |C| ⩽ d. Then, it
follows that either w(A) > c or w(B) > c, otherwise C would be (w, c)-balanced separator of G
of size at most d. For the remainder of the paper, if G has no (w, c)-balanced separator of size
at most d and S = (A, C, B) is such that |C| ⩽ d, we assume by convention that w(B) > c and
w(A) < 1 − c.

Two separations S1 = (A1, C1, B1) and S2 = (A2, C2, B2) are A-loosely non-crossing if A1 ∩C2 =
A2 ∩ C1 = ∅. A sequence of separations is an ordered collection of separations. A sequence S of
separations is A-loosely laminar if S1 and S2 are A-loosely noncrossing for every distinct S1, S2 ∈ S.
Two separations S1 = (A1, C1, B1) and S2 = (A2, C2, B2) are non-crossing if (possibly exchanging
the roles of A1 and B1, and of A2 and B2) A1 ∩ C2 = ∅, A2 ∩ C1 = ∅, and A1 ∩ A2 = ∅. A sequence
S of separations is laminar if S1 and S2 are non-crossing for every distinct S1, S2 ∈ S.

Let G be a graph with no d-bounded (w, c)-balanced separator, and let S be an A-loosely laminar
sequence of d-bounded separations of G. The central bag for S, denoted βS , is

βS =
⋂

S∈S
(C(S) ∪ B(S)).
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We equip every A-loosely laminar sequence S of separations with an anchor map, which is a map
anchorS : S → V (G) such that anchorS(S) ∈ C(S) for every S ∈ S. We use the anchor map to define
a weight function wS on βS . Let S = (S1, . . . , Sk), and let w∗(A(Si)) = w(A(Si)\

⋃
1⩽j<i A(Sj)). The

weight function on βS , denoted wS , is defined as follows: wS(v) = w(v) + ∑
S∈anchor−1

S (v) w∗(A(S))
for all v ∈ βS . Several properties of central bags are summarized in the next lemma.

Lemma 2.2 (Abrishami et al. [11]). Let c ∈ [1
2 , 1) and let d, ∆ be positive integers. Let G be a graph

with maximum degree ∆, let w : V (G) → [0, 1] be a weight function on V (G) with w(G) = 1, and
suppose G has no (w, c)-balanced separator of size at most d. Let S be an A-loosely laminar sequence
of d-bounded separations of G, let βS be the central bag for S, and let wS be the weight function on
βS . Then, the following properties hold:

(i) C(S) ⊆ βS for all S ∈ S;
(ii) For every component D of G \ βS , there exists S ∈ S such that D ⊆ A(S);

(iii) wS(βS) = 1; and
(iv) w(N [A(S)]) ⩽ wS(C(S)) for all S ∈ S.

If S is a separation and H is an induced subgraph of G, we define S ∩ H as the separation of H
given by (A(S) ∩ H, C(S) ∩ H, B(S) ∩ H). If S is a sequence of separations and H is an induced
subgraph of G, we define S ∩ H as {S ∩ H | S ∈ S}.

The dimension of a sequence S of separations is the minimum number of laminar sequences with
union S. A sequence S of separations is (a, t)-good if | anchor−1

S (v)| ⩽ a for all v ∈ V (G) and C(S)
has diameter at most t for all S ∈ S.

In this paper, we are interested in St,t,t-free graphs with bounded degree. Let t1 ⩾ 0 and
t2, t3 ⩾ 1. Recall that the graph St1,t2,t3 consists of a vertex v and three paths P 1, P 2, P 3, with one
end v, such that P 1 \ {v}, P 2 \ {v}, and P 3 \ {v} are pairwise disjoint and anticomplete to each
other, and |P i| = ti + 1. The vertex v is called the root of St1,t2,t3 .

The following theorem summarizes the application of central bags to St,t,t-free graphs.

Theorem 2.3 (Abrishami et al. [11]). Let c ∈ [1
2 , 1) and let ∆, t, d be positive integers with d ⩾

(3t + 1)∆(1 + ∆ + . . . + ∆t)3t(∆7t+4+1). Let G be a connected St,t,t-free graph with maximum degree
∆ and no (w, c)-balanced separator of size at most d, where w(v) = 1

|V (G)| for all v ∈ V (G). Then,
we can find in polynomial time a sequence β0, β1, . . . , βk, βk+1 of graphs, where βk+1 ⊆ βk ⊆ βk−1 ⊆
. . . ⊆ β0 = G, such that the following hold:

• k ⩽ 3t(∆7t+4 + 1);
• βi is connected for all 0 ⩽ i ⩽ k + 1;
• For all 1 ⩽ i ⩽ k + 1, there exists a weight function wi on βi, with wi(βi) = 1;
• For all 1 ⩽ i ⩽ k + 1, there is a sequence of separations Si of βi−1, such that:

– Si is A-loosely laminar;
– wi−1(A(S)) < 1 − c for all S ∈ Si;
– βi is the central bag for Si ∩ βi−1 and wi is the weight function on βi;
– C(S) has diameter at most 2(t + 1) and size at most (3t + 1)∆ for all S ∈ Si; and
– For every vertex v ∈ V (G), the set {S ∈ Si | v ∈ C(S)} has size at most 2∆.
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• For all 0 ⩽ i ⩽ k + 1, it holds that βi has no (wi, c)-balanced separator of size at most
d(1 + ∆ + . . . + ∆t)−i;

• βk+1 is claw-free and has no clique cutset.

Proof. Let t1 ⩾ 0 and let t2, t3 ⩾ 1. Let G′ be a connected St1+2,t2,t3-free graph with maximum
degree ∆ and no (w, c)-balanced separator of size d. Let t′ = max(t1, t2, t3). For a graph X, let
X = {X ′ ⊆ V (G′) | X ′ is isomorphic to X}, and let SX be the X-covering sequence for G′, as
defined in [11] before Lemma 2.7. In particular, C(S) ⊆ N [H] for some H isomorphic to X in G.
Let anchorSX

(S) be the root of C(S) for every S ∈ SX .

(1) Every vertex v ∈ V (G′) is the root of at most ∆3t′ claws St1,t2,t3.

Let v ∈ V (G′). Since v has degree at most ∆, there are at most
(∆

3
)
⩽ ∆3 ways to choose three

distinct neighbors a, b, c of v. There are at most ∆t′−1 ways to construct paths of G of length t′ − 1
with one endpoint a (or b or c). Therefore, there are at most ∆3+3(t′−1) = ∆3t′ claws of G with root
v and paths of length at most t′. This proves (11).

By (11) and the fact that St1,t2,t3 has diameter 2t′ +2, it follows that SSt1,t2,t3
is (∆3t′

, 2t′ +2)-good.
Therefore, by [11, Lemma 2.7], dim(SSt1,t2,t3

) ⩽ ∆7t′+4 + 1.
Let k1 = ∆7t′+4 + 1. Now, from [11, Lemma 2.5], we deduce that we can find in polynomial

time a sequence S1, . . . , Sk1 of A-loosely laminar separations and a sequence G = β0, β1, . . . , βk1 of
induced subgraphs of G, satisfying the following:

• βi is connected for 0 ⩽ i ⩽ k1;
• For all 1 ⩽ i ⩽ k1, there exists a weight function wi on βi with wi(βi) = 1;
• βi is the central bag for Si ∩ βi−1 for 1 ⩽ i ⩽ k1;
• βi has no (wi, c)-balanced separator of size at most d(1 + ∆ + . . . + ∆t′)−i for 1 ⩽ i ⩽ k1.
• For all S ∈ Si, it holds that C(S) ⊆ N [H] for some H ⊆ βi isomorphic to St1,t2,t3 .

Further, by the proof of [11, Lemma 2.7], C(S) ∩ C(S′) = ∅ for all S, S′ ∈ Si. Finally, by [11,
Lemmas 4.1 and 2.9], it holds that βk1 does not have St1+1,t2,t3 + K1 as an induced subgraph. If
there exists H ⊆ βk1 such that H is an St1+1,t2,t3 in βk1 , it follows that βk1 ⊆ N [H], so βk1 has a
(wk1 , c)-balanced separator of size (3t′ + 1)∆, a contradiction. Therefore, βk1 is St1+1,t2,t3-free.

By iteratively applying the procedure described thus far 3t′ times, we obtain a sequence
β0, . . . , βk1 , βk1+1, . . . , βk1+k2 , . . . , βk1+k2+...+k3t′ satisfying the statements of the theorem, such that
βk1+...+k3t′ is claw-free. Let k = k1 + . . .+k3t′ . Since ki ⩽ ∆7t′+4 +1, it holds that k ⩽ 3t′(∆7t′+4 +1).

Now, by [11, Theorem 2.12], there exists a sequence of separations SC and an induced subgraph
βk+1 of βk, such that βk+1 is the central bag for SC; C(S) is a clique for every S ∈ S; βk+1 has
no (wk+1, c)-balanced separator of size at most d(1 + ∆ + . . . + ∆t)−(k+1); and βk+1 has no clique
cutset. This completes the proof.

We use Theorem 2.32.3 to prove several important structural results about connected St,t,t-free
graphs with maximum degree ∆ and no bounded balanced separator. We call β0, β1, . . . , βk+1 as
in Theorem 2.32.3 the central bag decomposition of G. This concludes the proof of Step 1 from the
outline of the proof in Section 1.11.1.
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3 Strip decompositions of the central bag
Given a graph G, a strip structure of G is a pair (H, η), where H is a graph possibly with loops or
parallel edges, |E(H)| ⩾ 2, and η is a map with domain the union of E(H) and the set of all pairs
(e, v) where e ∈ E(H), v ∈ V (H) and e incident with v, satisfying the following conditions:

• for every edge e ∈ E(H), we have η(e) ⊆ V (G), and for every v ∈ V (H) incident with e, we
have η(e, v) ⊆ η(e),

• η(e) ∩ η(f) = ∅ for all distinct e, f ∈ E(H),
• for all distinct e, f ∈ E(H), x ∈ η(e) and y ∈ η(f) are adjacent in G if and only if e, f share

an end-vertex v in H, and x ∈ η(e, v) and y ∈ η(f, v).

For e ∈ E(H) with ends u, v, an e-rung of η is an induced path of η(e) with vertices p1, . . . , pk in
order, where for 1 ⩽ i ⩽ k, pi ∈ η(e, u) if and only if i = 1, and pi ∈ η(e, v) if and only if i = k.

If in addition

• the sets {η(e) : e ∈ E(H)} are non-empty and partition V (G), and
• for every v ∈ V (H), the union of the sets η(e, v) for all e ∈ E(H) such that v is incident with

e is a clique of G,

then (H, η) is called an elementary strip structure of G.
Let G be a graph and let (H, η) be a strip structure of G. Let us extend the domain of η

by adding to it the union of V (H) and the set of all triangles of H, as follows. For each vertex
v ∈ V (H), let η(v) ⊆ V (G), and for each triangle D of H let η(D) ⊆ V (G), satisfying the following:

• all the sets η(e) (e ∈ E(H)), η(v) (v ∈ V (H)) and η(D) (for all triangles D of H) are pairwise
disjoint, and their union is V (G),

• for each v ∈ V (H), if x ∈ η(v) and y ∈ V (G) \ η(v) are adjacent in G then y ∈ η(e, v) for
some e ∈ E(H) incident in H with v,

• for each triangle D of H, if x ∈ η(D) and y ∈ V (G) \ η(D) are adjacent in G then y ∈
η(e, u) ∩ η(e, v) for some distinct u, v ∈ D, where e is the edge uv of H.

Finally, for e ∈ E(H), let η̃(e) be the set of all vertices of η(e) that do not belong to any e-rung of
η(e). In this case we say that (H, η) is an extended strip decomposition of G. Let Z ⊆ V (G) and W
be the set of vertices of H that have degree one in H. If

• |Z| = |W |, and for each z ∈ Z there is a vertex v ∈ W such that η(e, v) = {z}, where e is the
(unique) edge of H incident with v,

then we say that (H, η) is an extended strip decomposition of (G, Z).
If (A, C, B) is a separation of G, we call |C| the order of the separation. Let W ⊆ V (H). We

say that (H, W ) is a frame if

• H is connected,
• |W | ≥ 3 and every vertex in W has degree one in H,
• for every separation (A, C, B) of H of order at most two with W ⊆ B ∪ C ≠ V (H), we have

that |C| = 2 and A ∪ C is a path between the two vertices of C.
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Let Z ⊆ V (G) and let (H, η) be an extended strip decomposition of (G, Z). Let W denote the set
of vertices of H of degree one. We say that (H, η) is semi-tame for (G, Z) if

• H has no vertices of degree two,
• (H, W ) is a frame,
• η(e) \ η̃(e) is non-empty for all e ∈ E(H), and
• for every e ∈ E(H) and every v ∈ V (H) incident with e, it holds that η(e, v) ∩ η̃(e) = ∅.

We say that (H, η) is tame for (G, Z) if (H, η) is semi-tame for (G, Z) and if η̃(e) is empty for
every e ∈ E(H).

A set Z is constricted in a graph G if G does not contain an induced tree T with Z ⊆ V (T ).
The main result of [1515] asserts that if G is a connected graph and Z ⊆ V (G) with |Z| ≥ 2, then Z
is constricted in G if and only if for some graph H, (G, Z) admits an extended strip decomposition
(H, η). The following is one of the steps in the proof this result [1515, Section 5]:

Theorem 3.1 (Chudnovsky, Seymour [1515]). Let Z be a constricted set in G′ and let G be an induced
subgraph of G′ such that Z ⊆ V (G). Suppose there is a tame extended strip decomposition (H, η) of
(G, Z). Then in polynomial time we can obtain a semi-tame extended strip decomposition (H ′, η′)
of (G′, Z) such that a subdivision of H is a subgraph of H ′.

3.1 Atoms of extended strip decompositions

Let G be a graph and let (H, η) be an extended strip decomposition of G. We define the following
atoms that correspond to (H, η) as follows:

vertex atom: for each vertex v ∈ V (H), it is A(v) := η(v),
edge atom: for each edge e = uv ∈ E(H), it is A(e) := η(uv) \ (η(uv, v) ∪ η(uv, u)),
triangle atom: for each triangle D = uvw ∈ T (H), it is A(D) := η(uvw).

For a vertex v ∈ V (H), by potato(v), we denote the set ⋃
uv∈E(H) η(uv, v). Each set η(uv, v) is

called a segment of potato(v). For each atom A, let us define its boundary, denoted by boundary(A),
as follows:

• If A is a vertex atom associated with a vertex v, then boundary(A) := potato(v).
• If A is an edge atom associated with an edge uv, then boundary(A) := potato(u) ∪ potato(v).
• If A is a triangle atom associated with a triangle uvw, then boundary(A) := potato(u) ∪

potato(v) ∪ potato(w).

3.2 A tame extended strip decomposition with small atoms

A breakthrough in the understanding of the structure of claw-free graphs is due to the seminal work
of Chudnovsky and Seymour, where a decomposition theorem for claw-free graphs was given in a
series of papers. In particular, the following can be derived from [1414, Theorem 7.2].

Theorem 3.2 (Chudnovsky, Seymour [1414]). Let G be a connected claw-free graph. Then, one of
the following holds.
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• We have α(G) ⩽ 3.
• G is a fuzzy long circular interval graph.
• G admits an elementary strip structure (H, η) such that for every e ∈ E(H), either α(G[η(e)]) ⩽

4 or G[η(e)] is a fuzzy long circular interval graph. Moreover, we can find this elementary
strip structure in polynomial time.

The complexity in the last item follows from Theorem 6.8 in [2929]. We do not give the precise
definition of a “fuzzy long circular interval graph” here since all we need is the fact that fuzzy long
circular interval graphs with maximum degree at most ∆ have treewidth bounded by a constant
multiple of ∆ (see [11] for a precise definition):

Theorem 3.3 (Abrishami et al. [11]). If G is a fuzzy long circular interval graph with maximum
degree at most ∆, then tw(G) ⩽ 4∆ + 3.

The following is an easy observation.

Observation 3.4. If G is a graph with maximum degree ∆, then tw(G) ⩽ |V (G)| ⩽ α(G)(∆ + 1).

Theorem 3.23.2, Theorem 3.33.3, and Observation 3.43.4, together imply the following corollary.

Corollary 3.5. If G is a connected claw-free graph with maximum degree at most ∆, then either
tw(G) ⩽ 4∆ + 3, or G admits an elementary strip structure (H, η) such that for every e ∈ E(H),
we have tw(G[η(e)]) ⩽ 4∆ + 4.

Let G be a connected n-vertex St,t,t-free graph with maximum degree ∆, and assume G has no
(w, c)-balanced separator of size at most d for some w : V (G) → [0, 1] with w(G) = 1, c ∈ [1

2 , 1),
and d > (3t + 1)∆(1 + ∆ + . . . + ∆t)3t(∆7t+4+1). Let β0, . . . , βk+1 be the central bag decomposition
for G. For the remainder of this section, let β = βk+1. By Theorem 2.32.3, β is connected, claw-free,
and has no clique cutset. Since G has no (w, c)-balanced separator of size at most d, it holds
that tw(G) > 4∆ + 3, and so it follows from Corollary 3.53.5 that β admits an elementary strip
structure (H ′, η′) such that for every e ∈ E(H ′), we have tw(β[η′(e)]) ⩽ 4∆ + 4. Recall that for
an edge e = uv ∈ E(H ′), the edge atom A(e) is defined as A(e) = η′(e) \ (η′(e, v) ∪ η′(e, u)). Since
A(e) ⊆ η′(e), it follows that for every e ∈ E(H ′), the graph β[A(e)] has treewidth at most 4∆ + 4.

Lemma 3.6. Let (H ′, η′) be an elementary strip structure of β. Let w be a weight function on β
such that w(β) = 1. For every σ ∈ (0, 1), if there exist an edge e ∈ E(H ′) with w(A(e)) ⩾ σ, then
there is a (w, c)-balanced separator of size 6∆ + 7 in β, where c = max{1

2 , 1 − σ}.

Proof. Let σ ∈ (0, 1) and assume that there exist an edge e = uv ∈ E(H ′) such that w(A(e)) = σ∗ for
some σ∗ ⩾ σ. Let us define a weight function wA on A(e) as follows: for v ∈ A(e), we set wA(v) = w(v)

σ∗

(and so wA(A(e)) = 1). Since tw(β[A(e)]) ⩽ 4∆ + 4, by Lemma 2.12.1, there exists a (wA, 1
2)-balanced

separator of A(e) of size 4∆ + 5. Let us call this separator X. Note that since for every v ∈ V (H ′),
the union of the sets η′(e, v) for all e ∈ E(H ′) with v ∈ e is a clique of β, we have |potato(v)| ⩽ ∆+1
for every v ∈ V (H ′). We claim that X ′ = X ∪potato(u)∪potato(v) is a (w, c)-balanced separator of
size (6∆+7) in β, where c = max{1

2 , 1−σ}. We have |X ′| ⩽ |X|+ |potato(u)|+ |potato(v)| ⩽ 6∆+7.
Let D be a component of β \ X ′. Note that either D ∩ A(e) = ∅ or D ⊆ A(e). If D ∩ A(e) = ∅,
then since w(A(e)) ⩾ σ, we have w(D) ⩽ 1 − σ. If D ⊆ A(e), then since D is also a component
of A(e) \ X, we have wA(D) ⩽ 1

2 , and therefore w(D) ⩽ 1
2 · σ∗ ⩽ 1

2 . Thus, every component D of
β \ X ′ satisfies w(D) ⩽ c, where c = max{1

2 , 1 − σ}. Hence, X ′ is a (w, c)-balanced separator of size
(6∆ + 7) in β.
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Lemma 3.7. For every σ ∈ (0, 1), there exists an elementary strip structure (H, η) of β where H
is 3-connected, and for a weight function w on β, we have w(A(e)) < σ for every edge e ∈ E(H).

Proof. Let (H ′, η′) be an elementary strip structure of β. By Theorem 2.32.3, for every c ∈ [1
2 , 1) and

for some d > 6∆ + 7, it holds that β has no (wS , c)-balanced separator of size at most d. Therefore,
we may assume that w(A(e)) < σ for every edge e ∈ E(H ′) and for every σ ∈ (0, 1). Suppose {v} is
a cutset of size one in H ′. Then, potato(v) is a clique cutset in β. Since β has no clique cutset, it
follows that H ′ is 2-connected.

Let {a, b} ⊆ V (H ′) be a cutset in H ′. Then, potato(a) ∪ potato(b) is a cutset in β. Let
c = max{1

2 , 1 − σ} and let w be a weight function on β. Since |potato(a) ∪ potato(b)| ⩽ 2∆ + 2 and
since β has no bounded (w, c)-balanced separator, one of the components of β\(potato(a)∪potato(b))
has weight greater than c. Let T be the vertex set of this component and let S be the vertex set
of the union of the other components of β \ (potato(a) ∪ potato(b)). Then, if ab ∈ E(H ′), then
T ̸= η′(ab) \ (η′(ab, a) ∪ η′(ab, b)), and therefore η′(ab) \ (η′(ab, a) ∪ η′(ab, b)) is contained in S. Let
H be the graph obtained from H ′ by deleting the edges e ∈ E(H ′) such that η′(e) ∩ S ̸= ∅ and the
vertices v ∈ V (H ′) such that potato(v) ∩ S ̸= ∅, and by adding a new edge f with ends a, b. Let η
be the map obtained from η′ restricted to T ∪ potato(a) ∪ potato(b) by setting

• η(f) \ (η(f, a) ∪ η(f, b)) = S,
• η(f, a) = ⋃

u∈S η′(au, a), and
• η(f, b) = ⋃

u∈S η′(bu, b).

Repeating this procedure until the pattern graph has no cutset of size 2 yields an elementary
strip structure (H, η) of β where H is 3-connected. Observe also that the atoms generated by this
operation preserves having the property of “small” weight since S is the union of the “small” weight
components. Hence, we have w(A(e)) < σ for every edge e ∈ E(H).

Let m1, m2, m3 be three distinct branch vertices of H, and for i = 1, 2, 3, let Mi ⊆ V (β) be
the branch clique that corresponds to mi. Let G′ be the graph obtained from G by adding three
new vertices v1, v2, v3 with NG′(vi) = Mi. Since G has bounded degree, it holds that G′ also has
bounded degree. Let β′′ = β ∪ {v1, v2, v3} and let

Y = {v : v ∈ V (G′) \ β′′ s.t. distG′(v, {v1, v2, v3}) ⩽ t + 1}.

Observe that |Y | ⩽ 3 ∑t+1
i=1 ∆i. Let G′′ = G′ \ Y .

Lemma 3.8. The set {v1, v2, v3} is constricted in G′′.

Proof. Suppose T is an induced tree in G′′ containing v1, v2, v3, and with V (T ) minimal. Then,
either T is a path with both end-vertices in {v1, v2, v3}, or T is a subdivided claw and v1, v2, v3 all
have degree one in T . Since v1, v2, v3 are simplicial vertices of G′′, it follows that T is a subdivided
claw. Let a be the unique vertex of degree three in T , and let T consist of paths T1, T2, T3 where,
for i = 1, 2, 3, Ti is a path from a to vi. Let bi be the neighbor of a in Ti. Since β′′ is claw-free,
we have {a, b1, b2, b3} \ β′′ ̸= ∅. Let u ∈ {a, b1, b2, b3} \ β′′. Since V (G′′) ∩ Y = ∅, it follows that
distG′(u, vi) ⩾ t + 2 for i = 1, 2, 3. But then T \ {v1, v2, v3} contains an induced St,t,t, and so G \ Y
contains an induced St,t,t, a contradiction.
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Note that β′′ is an induced subgraph of G′′ and it is claw-free. Let H ′′ be the graph obtained
from H by adding three new vertices l1, l2, l3 where for i = 1, 2, 3, the unique neighbor of li in H ′′ is
mi. Let η′′ be the map obtained from η by additionally setting

η′′(limi) = η′′(limi, li) = η′′(limi, mi) = {vi}

for i = 1, 2, 3. It is now straightforward to see that (H ′′, η′′) is a semi-tame extended strip
decomposition of (β′′, {v1, v2, v3}).

We summarize the results of this section in the following theorem.

Theorem 3.9. Let G be an n-vertex St,t,t-free connected graph with maximum degree at most ∆
and no (w, c)-balanced separator of size d, where w(v) = 1

n for all v ∈ V (G). Let β0, . . . , βk+1 be
the central bag decomposition of G, and let wk+1 be the weight function on βk+1.

1. For every σ ∈ (0, 1), there exists an elementary strip structure (H, η) of βk+1 where H is
3-connected and wk+1(A(e)) < σ for every edge e ∈ E(H).

2. Let m1, m2, m3 be three distinct branch vertices of H, and for i = 1, 2, 3, let Mi ⊆ V (β) be the
branch clique that corresponds to mi. Let G′ be the graph obtained from G by adding three
new vertices v1, v2, v3 with NG′(vi) = Mi. Let β′′ = βk+1 ∪ {v1, v2, v3} and let

Y = {v : v ∈ V (G′) \ β′′ s.t. distG′(v, {v1, v2, v3}) ⩽ t + 1}.

Let G′′ = G′\Y . The set {v1, v2, v3} is constricted in G′′, and in polynomial time, we can find a
semi-tame extended strip decomposition (H ′′, η′′) of (β′′, {v1, v2, v3}) such that wk+1(A(e)) < σ
for every edge e ∈ E(H ′′).

4 Extending extended strip decompositions
In this section, we prove an essential inductive lemma stating that we can grow an extended strip
decomposition of a central bag of G to an extended strip decomposition of G, while preserving a
bound on the weight of each atom of the strip decompositions. Theorem 3.93.9 and this lemma are the
key components of the proof of Theorem 1.31.3.

Lemma 4.1. Fix integers ∆ ⩾ 3, t, ρ ⩾ 1, and d ⩾ (9/2 · ∆2)∆(2t+2) + (1 + (3t + 1)∆2∆)ρ, and
real number c ∈ [1

2 , 1). Let G be a connected graph with maximum degree ∆ and let w′ be a weight
function on V (G) with w′(G) = 1. Assume G has no (w′, c)-balanced separator of size at most d.
Let β ⊆ G be a connected set and let Z ⊆ β be of size 3. Let S be an A-loosely laminar sequence of
separations of G satisfying the following conditions:

• For every vertex v ∈ V (G), the set {S ∈ S | v ∈ C(S)} has size at most 2∆;
• |C(S)| ⩽ (3t + 1)∆ for every S ∈ S; and
• The diameter of C(S) is at most 2t + 2 for every S ∈ S.

Let β′ be the central bag for S, let w be the weight function on β′, and assume that β ⊆ β′. Let
Y ⊆ G \ β be a set of size at most ρ such that Z is constricted in G − Y . Let M ′ (resp. M) be
the connected component of G − Y (resp. β′ − Y ) containing β. Finally, assume that for each
component D of G − Y , except for M ′, it holds that w(D) < 1 − c.
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Suppose we are given a semi-tame extended strip decomposition (H, η) of (M, Z), whose every
atom is of weight at most 1 − c (under w). Then in polynomial time we can compute a semi-tame
extended strip decomposition (H ′, η′) of (M ′, Z), where H is a subgraph of H ′ and every atom is of
weight at most 1 − c (under w′).

Proof. Recall that every vertex z ∈ Z belongs to η(e, v) for some e ∈ E(H) and v ∈ e, and
η̃(e) ∩ η(e, v) = ∅. Consequently, Z ∩

⋃
e∈E(H) η̃(e) = ∅. Thus (H, η) can be seen as a tame extended

strip decomposition of (M −
⋃

e∈E(H) η̃(e), Z) (here we slightly abuse the definition – formally, the
function η needs to modified by removing the vertices from ⋃

e∈E(H) η̃(e) from all sets). Furthermore,
(M −

⋃
e∈E(H) η̃(e)) is an induced subgraph of M ′. Thus we can apply Theorem 3.13.1 to obtain a

semi-tame extended strip decomposition (H ′, η′) of M ′, such that a subdivision of H is a subgraph
of H ′. In what follows, the sets potato(·) and boundary(·) are defined with respect to (M ′, η′). For
a vertex x and a set X, whenever we write N(x) or N(X) without any subscript, we mean the
neighborhood in G.

Let us fix a frame F ′ for (M ′, η′), i.e., we choose one rung for each strip. For each branch vertex
v of H ′ there is a branch clique KF ′(v) in F ′. In particular, each segment of potato(v) is represented
by a single vertex of KF ′(v). Furthermore, as each branch vertex of H is a branch vertex of H ′, we
observe that for each branch vertex v of H there is a corresponding branch clique in F ′.

We say that a vertex x of M ′ is heavy if there is a branch clique K in F ′, such that x has at
most one non-neighbor in K. Let Heavy be the set of all heavy vertices in M ′.

First, let us observe that Heavy contains all boundaries of atoms of (H, η) and of (H ′, η′).

Claim 4.1.1. For every x ∈ V (M), if x ∈
⋃

uv∈E(H) η(uv, v), then x ∈ Heavy. Consequently, every
connected subset of V (M) \ Heavy is fully contained in a single atom of (H, η).

Proof of Claim. Let uv ∈ E(H) be such that x ∈ η(uv, v) and let K be the branch clique of F ′

that corresponds to v. Thus x belongs to a segment η(uv, v) of ⋃
u′v∈E(H) η(u′v, v). Recall that

K contains exactly one vertex from each segment of ⋃
u′v∈E(H) η(u′v, v). Thus x is adjacent to all

vertices of K, possibly except for the one chosen for the segment η(uv, v).
The second statement follows from the fact that every path in M with endpoints in distinct

atoms of (H, η) must cross their boundaries which, as already observed, are contained in Heavy. ◁

Claim 4.1.2. For every x ∈ V (M ′), if x ∈
⋃

uv∈E(H′) η′(uv, v), then x ∈ Heavy. Consequently,
every connected subset of V (M ′) \ Heavy is fully contained in a single atom of (H ′, η′).

Proof of Claim. The proof is similar (but simpler) as the one of Claim 4.1.14.1.1: If x ∈ η′(uv, v), then
x is adjacent to every vertex from KF ′(v), possibly except for the vertex chosen for the segment
η′(uv, v). ◁

Let D be the set of connected components of M − Heavy.

Claim 4.1.3. For each D ∈ D it holds that w(D) ⩽ 1 − c.

Proof of Claim. By Claim 4.1.14.1.1 each D ∈ D is contained in some atom of (H, η), and the weight of
each atom is at most 1 − c. ◁

A separator S ∈ S is marginal if C(S) ∩ Y ̸= ∅. By Sm we denote the family or marginal
separators from S.

Claim 4.1.4. |
⋃

S∈Sm
C(S)| ⩽ (3t + 1)∆2∆|Y |.
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Proof of Claim. Since for every v ∈ Y , we have |{S ∈ S | v ∈ C(S)}| ⩽ 2∆, we conclude that
|Sm| ⩽ 2∆|Y |. The claim follows from the fact that for all S ∈ S we have |C(S)| ⩽ (3t + 1)∆. ◁

Let Y ′ denote ⋃
S∈Sm

(A(S)∪C(S)). Define S ′ := S \Sm. For S ∈ S ′, let A′(S) denote A(S)∩M ′.
We say that a separation S ∈ S ′ is serious if C(S) is not contained in a single connected component
of M − Heavy.

Claim 4.1.5. For every serious separation S, it holds that C(S) intersects Heavy. Furthermore,
for any x ∈ C(S) ∩ Heavy it holds that C(S) ⊆ N2t+2[x].

Proof of Claim. The first statement follows immediately since C(S) is connected. The second
statement follows by observing that the diameter of C(S) is at most 2t + 2. ◁

Define R := Heavy ∪ {C(S) | S ∈ S ′ is serious}. Let us point out that the set R might be
arbitrarily large. However, we will show that its interaction with the rest of the graph is simple.

Claim 4.1.6. For each S ∈ S ′, there is at most one D ∈ D such that A′(S) − R attaches to D − R.

Proof of Claim. For contradiction, suppose that for some S ∈ S, the set A′(S) − R attaches to
D − R and D′ − R for distinct D, D′ ∈ D. Recall that N(A′(S)) ⊆ C(S) ∪ Y , so NG−Y (A′(S)) ⊆
C(S) \ Y = C(S), as S is not marginal. Consequently, C(S) intersects D and D′, and thus S is a
serious separation. In particular, we have C(S) ⊆ R. Therefore there are no edges from A′(S) − R
to D − R and to D′ − R, a contradiction. ◁

We introduce a classification of components D′ of M ′ − R − Y ′ with respect to their relation to
the elements of D and to A′(S) for S ∈ S ′:

Type 1: D′ is entirely contained in A′(S) for some S ∈ S ′.

Type 2: D′ is entirely contained in some D ∈ D.

Type 3: D′ is not of type 1 nor 2. By Claim 4.1.64.1.6 then there is some D ∈ D such that D′ ⊆
D ∪

⋃
S∈S′ : C(S)⊆D A′(S). Note that in this case, if D′ ∩ A′(S) ̸= ∅, then S is not serious.

Claim 4.1.7. For each component D′ of M ′ − R − Y ′ it holds that w′(D) ⩽ 1 − c.

Proof of Claim. If D′ is of type 1, then D′ ⊆ A′(S) ⊆ A(S) for some S ∈ S ′ and thus w′(D) ⩽
w′(A(S)) ⩽ 1 − c by the assumption on S. If D′ is of type 2, then D′ ⊆ D for some D ∈ D. As for
every v ∈ D it holds that w′(v) ⩽ w(v), we obtain w′(D′) ⩽ w′(D) ⩽ w(D) ⩽ 1 − c by Claim 4.1.34.1.3.
So assume that D′ is of type 3, i.e., D′ ⊆ D ∪

⋃
S∈S′ : C(S)⊆D A′(S) for some D ∈ D. For every S it

holds that w′(C(S) ∪ A(S)) ⩽ w(C(S)) and consequently

w′(D′) ⩽ w′

D ∪
⋃

S∈S′ : C(S)⊆D

A′(S)

 ⩽ w′

D ∪
⋃

S∈S′ : C(S)⊆D

A(S)

 ⩽ w(D) ⩽ 1 − c

by Claim 4.1.34.1.3. ◁

Now we aim to analyze how elements of D interact with R \ Y ′.

Claim 4.1.8. For each D ∈ D it holds that D ∩ (R \ Y ′) ⊆ N2t+2[N [D] ∩ Heavy].
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Proof of Claim. As D ∩ Heavy is clearly contained in N2t+2[N [D] ∩ Heavy], let us consider ((R \
Heavy) \ Y ′) ∩ D. Let S ′

D ⊆ S ′ be the set of serious separations that intersect D.
Consider S ∈ S ′

D. By Claim 4.1.54.1.5 we know that C(S) ∩ Heavy ≠ ∅. Furthermore, as C(S) is
connected and intersects D, we observe that C(S)∩Heavy∩N(D) ̸= ∅. Thus, again using Claim 4.1.54.1.5
for any x ∈ C(S) ∩ Heavy ∩ N(D), we observe that C(S) ⊆ N2t+2[x] ⊆ N2t+2[N [D] ∩ Heavy].

In summary, we obtain

(R \ Heavy \ Y ′) ∩ D ⊆
⋃

S∈S′
D

C(S) ⊆ N2t+2[N [D] ∩ Heavy],

which completes the proof of the claim. ◁

Now let us focus on atoms of (H ′, η′).

Claim 4.1.9. For each atom Q of (H ′, η′), it holds that |N [Q] ∩ (R \ Y ′)| ⩽ (9/2 · ∆2)∆(2t+2).

Proof of Claim. For an atom Q, let DQ be the set of those D ∈ D for which Q ∩ D ̸= ∅. Note that
by Claim 4.1.24.1.2 each D ∈ DQ is fully contained in Q.

First, we focus on N [Q] ∩ Heavy. Recall that every heavy vertex from N [Q] either belongs
to the boundary of Q, or is adjacent to a vertex of the boundary of Q. Thus N [Q] ∩ Heavy ⊆
N [boundary(Q)]. Since |boundary(Q)| ⩽ 9/2 · ∆, we obtain that |N [Q] ∩ Heavy| ⩽ 9/2 · ∆2.

As the boundary of Q is contained in Heavy by Claim 4.1.24.1.2, we have that N [Q]∩((R\Heavy)\Y ′) =
Q ∩ ((R \ Heavy) \ Y ′). We observe that Q ∩ ((R \ Heavy) \ Y ′) ⊆

⋃
D∈DQ

(D ∩ (R \ Y ′)).
Consider D ∈ DQ. By Claim 4.1.84.1.8 we observe that

D ∩ (R \ Y ′) ⊆ N2t+2[N [D] ∩ Heavy] ⊆ N2t+2[N [Q] ∩ Heavy],

and thus Q∩((R\Heavy)\Y ′) ⊆ N2t+2[N [Q]∩Heavy]. Consequently we obtain that N [Q]∩(R\Y ′) ⊆
N2t+2[N [Q] ∩ Heavy] and thus |N [Q] ∩ (R \ Y ′)| ⩽ (9/2 · ∆2)∆(2t+2). ◁

To reach the final contradiction suppose that there is an atom Q of (H ′, η′) such that w′(Q) > 1−c.
Let X = (N [Q] ∩ (R \ Y ′)) ∪ Y ∪

⋃
C∈Sm

C(S) and consider the components of G − X. Note that
each component D of G − X is of one of the following types:

1. is contained in a component of G − Y other than M ′; in this case we have w′(D) < 1 − c by
the assumption of the lemma,

2. is contained in A(S) for some S ∈ Sm; in this case we have w′(D) < 1 − c by the assumption
on S,

3. is contained in Q; in this case we have w′(D) < 1 − c by Claim 4.1.74.1.7,
4. is contained in M ′ \ Q; in this case we have w′(D) < c as w′(Q) > 1 − c.
As, by Claim 4.1.44.1.4 and Claim 4.1.94.1.9, we have

|X| ⩽ |(N [Q] ∩ (R \ Y ′))| + |Y | +

∣∣∣∣∣∣
⋃

C∈Sm

C

∣∣∣∣∣∣
⩽ (9/2 · ∆2)∆(2t+2) + |Y | + (3t + 1)∆2∆|Y |
= (9/2 · ∆2)∆(2t+2) + (1 + (3t + 1)∆2∆)|Y |
= d,

we conclude that G has a (w′, c)-balanced separator X of size at most d, which contradicts our
assumption of the lemma. This completes the proof.
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5 Proofs of main theorems
In this section, we first prove our main combinatorial result, Theorem 1.31.3, and then we use
Theorem 1.31.3 to prove our main algorithmic result, Theorem 1.11.1.

5.1 Combinatorial result

We begin with a lemma about central bags.

Lemma 5.1. Let c ∈ [1
2 , 1) and let d, ∆, t be positive integers with d ⩾ (1 + ∆ + . . . + ∆t)3t∆7t+4 . Let

G be a graph with maximum degree ∆ and no (w, c)-balanced separator of size at most d. Let S be
an A-loosely laminar sequence of separations such that the diameter of C(S) is at most 2(t + 1) for
every S ∈ S, let β be the central bag for S, and let wS be the weight function on β. Let Q, Y ⊆ β,
and let C be a connected component of β \ Y . Let Q′ = N2(t+1)∆[Q] \ C. Let D be a component of
G \ Q′ such that C ∩ D = ∅. Then, one of the following holds:

(i) There exists S ∈ S such that D ⊆ A(S), and so w(D) ⩽ 1 − c, or
(ii) D meets a unique component C ′ of β \ Q, and w(D) ⩽ wS(C ′).

Proof. Let S ∈ S and suppose D ∩ A(S) ̸= ∅. If C(S) ∩ Q ̸= ∅, then C(S) ⊆ Q′ ∪ C and D ⊆ A(S),
so (i) holds. Therefore, we may assume that C(S) ∩ Q = ∅ for all S ∈ S such that D ∩ A(S) ̸= ∅.
Then, there exists a component C ′ of β \Q such that C(S) ⊆ C ′ for all S ∈ S such that D∩A(S) ̸= ∅.
Now, it follows that C ′ is the unique connected component of β \ Q such that D ∩ C ′ ̸= ∅. By (iv)
of Lemma 2.22.2, wS(C ′) ⩾ w(C ′) + ∑

S∈S,C(S)⊆C′ w(A(S)), so (ii) holds.

Now, we are ready to prove the main combinatorial result of the paper.

Theorem 1.3. For every pair t, ∆ of fixed positive integers, there exist c ∈ [1
2 , 1) and integers d, z

and p with the following property. Given an n-vertex St,t,t-free graph G with maximum degree at
most ∆, either G has a c-balanced separator of size at most d, or in time O(np) we can find a set
X ⊆ V (G) of size at most z and an extended strip decomposition (H, η) of G − X, where H has at
most n vertices and every atom of (H, η) has at most 1

10∆ · n vertices.

Proof. Let c = 1 − 1
10∆ and let d = (1 + ∆ + . . . + ∆t)3t∆7t+4 . Let G be an n-vertex St,t,t-free

graph with maximum degree ∆, and assume G has no c-balanced separator of size at most d.
Let w : V (G) → [0, 1] be the weight function on V (G) such that w(v) = 1

n for every v ∈ V (G).
Let k = 3t∆7t+4, and let β0, β1, . . . , βk, βk+1 be the central bag decomposition of G and let wi

be the weight function on βi for 1 ⩽ i ⩽ k + 1. Let {v1, v2, v3}, G′, β′′
k+1, Y , and G′′ be as

in Theorem 3.93.9. By Theorem 3.93.9, we can find in polynomial time a semi-tame extended strip
decomposition (Hk+1, ηk+1) of (β′′

k+1, {v1, v2, v3}) where every atom has weight at most 1 − c (under
wk+1).

Let β′
i = (βi ∪ {v1, v2, v3}) for 1 ⩽ i ⩽ k, let β′

k+1 = β′′
k+1, and let Yi = Y ∩ βi. Let Ci be

the component of β′
i \ Yi that contains β′′

k+1. Let Qk+1 = Q′
k+1 = ∅. Let Qi = Yi ∪ Q′

i+1 and let
Q′

i = N2(t+1)∆[Qi] \ Ci. We now prove the following three statements inductively:

(i) wi(C) < 1 − c for every component C ̸= Ci of β′
i \ Q′

i;

(ii) |Q′
i| ⩽ 3(1 + ∆ + . . . + ∆t) ∑k−i

j=1(1 + ∆ + . . . + ∆2(t+1)∆)j for all k ⩽ i ⩽ 0; and
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(iii) we can obtain in polynomial time a semi-tame extended strip decomposition (Hi, ηi) of
(Ci, {v1, v2, v3}) where every atom has weight at most 1 − c (under wi).

Since Q′
k+1 = ∅, it follows that Ck+1 = β′

k+1, so the base case is true.
Assume the statement holds for i + 1. Note that Qi+1 ⊆ β′

i+1. By Lemma 5.15.1 (plugging in
Q = (Yi ∪Q′

i+1)∩β′
i+1), it follows that for every component C ̸= Ci of β′

i \Q′
i, either wi(C) < 1−c or

wi(C) ⩽ wi+1(C ′) for some component C ′ of β′
i+1 \ Q′

i+1. By the inductive hypothesis, wi+1(C ′) <
1 − c for every component C ′ of β′

i+1 \ Q′
i+1. It follows that wi(C) < 1 − c for every component

C ̸= Ci of β′
i \ Q′

i. This proves (i). Next, note that |Q′
i| ⩽ |N2(t+1)∆[Q′

i−1]| + |N2(t+1)∆[Y ]|. Since
|Y | ⩽ 3(1+∆+. . .+∆t), this proves (ii). Finally, since Ci+1 is a component of β′

i+1\Q′
i+1, Q′

i+1 ⊆ Q′
i,

and Ci+1 ∩ Q′
i = ∅, it follows that Ci+1 ⊆ Ci. By the inductive hypothesis, we have a semi-tame

extended strip decomposition (Hi+1, ηi+1) of (Ci+1, {v1, v2, v3}). Therefore, by Lemma 4.14.1, we can
compute in polynomial time a semi-tame extended strip decomposition (Hi, ηi) of (Ci, {v1, v2, v3})
such that every atom has weight at most 1 − c (under wi). This proves (iii) and completes the
induction.

Now, we have a set Q′
0 of size at most z := 3(1 + ∆ + . . . + ∆t) ∑k

j=1(1 + ∆ + . . . + ∆2(t+1)∆)j

with Y ⊆ Q′
0 and components C1, . . . , Cm of G′ \ Q′

0, such that β′′
k+1 ⊆ C1 and w(Ci) < 1 − c for all

2 ⩽ i ⩽ m. We also obtain a semi-tame extended strip decomposition (H0, η0) of (C1, {v1, v2, v3})
such that every atom has weight at most 1 − c (under w). Let (H ′, η′) be the extended strip
decomposition of C1 \ {v1, v2, v3} given by deleting the vertices v1, v2, v3 where they appear in
(H0, η0). Let X = Q′

0 and let (H, η) be the extended strip decomposition of G − X given by adding
m − 1 isolated vertices c2, . . . , cm to H ′ and extending η′ to η by setting η(x) = η′(x) for all x in
the domain of η′, and η(ci) = V (Ci) for 2 ⩽ i ⩽ m. Since every atom of (H0, η0) has weight at most
1 − c (under w) and w(Ci) < 1 − c for 2 ⩽ i ⩽ m, it follows that every atom of (H, η) has weight at
most 1 − c (under w). Since c = 1 − 1

10∆ and w(v) = 1
n for all v ∈ V (G), we conclude that every

atom of (H, η) has at most 1
10∆ · n vertices. Finally, since (H0, η0) is semi-tame, it holds that every

η′(e) is nonempty, and so |V (H ′)| ⩽ |C1 \ {v1, v2, v3}|. Therefore, |V (H)| ⩽ n. This completes the
proof.

5.2 Solving Maximum Weight Independent Set

In this section we use Theorem 1.31.3 to prove Theorem 1.11.1.

Theorem 1.1. For every pair t, ∆ of fixed positive integers, given an n-vertex St,t,t-free graph G
with maximum degree at most ∆, equipped with a weight function w : V (G) → N, in time polynomial
in n we can find a maximum-weight independent set in G.

Our proof follows the idea of Chudnovsky et al. [1010, 1111], but our starting point is Theorem 1.31.3,
instead of a similar statement obtained by Chudnovsky et al. We aim to reduce the problem of
finding a maximum-weight independent set in a graph given with an extended strip decomposition
to the problem of finding a maximum-weight matching in an auxiliary graph. The algorithm itself
is exactly the same as the one of Chudnovsky et al., but we present it for the sake of completeness.

Let us start with introducing some more terminology. We point out that some notions are
defined in a slightly different way than in [1010, 1111]. This is to make them consistent with the rest of
our paper.

Let G be a graph and let (H, η) be an extended strip decomposition of G. Recall that we have
distinguished some sets called atoms (edge atoms, vertex atoms, and triangle atoms).
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Let us now define some larger sets, called particles. First, for each v ∈ V (H), each edge
uv ∈ E(H), and each triangle uvw ∈ T (H) we have particles that are equal to the corresponding
atoms

Av =η(v),
A⊥

uv =η(uv) \ (η(uv, u) ∪ η(uv, v)),
Auvw =η(uvw).

Additionally, for each uv ∈ E(H) we distinguish three more particles related to uv.

Au
uv =η(u) ∪ η(uv) \ η(uv, v),

Av
uv =η(v) ∪ η(uv) \ η(uv, u),

Auv
uv =η(u) ∪ η(v) ∪ η(uv) ∪

⋃
w : uvw∈T (H)

η(uvw).

The following lemma encapsulates the reduction by Chudnovsky et al. [1010, 1111].

Lemma 5.2 ([1010, 1111]). Let ς ∈ [0, 1] be a fixed constant. Let G be an n-vertex graph equipped with a
weight function w : V (G) → N. Suppose that G is given along with an extended strip decomposition
(H, η), where H has N vertices.
Let I0 ⊆ V (G) be a fixed independent set in G. Furthermore, assume that for each particle A of
(H, η) we are given an independent set I(A) in G[A], such that w(I(A)) ⩾ ς · w(I0 ∩ A).
Then in time polynomial in n+N we can compute an independent set I ′ in G, such that w(I) ⩾ w(I0).

Proof. Let H ′ be the graph obtained from H as follows: For each edge uv of H we add an additional
vertex xuv, adjacent to u and v. We also define a weight function w′ on edges of H ′. For each
uv ∈ E(H), we define:

w′(xuvu) =w(I(Au
uv)) − w(I(Au)) − w(I(A⊥

uv))
w′(xuvv) =w(I(Av

uv)) − w(I(Av)) − w(I(A⊥
uv))

w′(uv) =w(I(Auv
uv)) − w(I(Au)) − w(I(Av)) − w(I(A⊥

uv)) −
∑

w : uvw∈T (H)
w(I(Auvw)).

Let M be a matching in H ′. Let A(M) be the family of particles of (H, η) constructed as follows:

• for every uv ∈ E(H) ∩ M , insert Auv
uv into A(M),

• for every xuvu ∈ M \ E(H), insert Au
uv into A(M),

• for every uv ∈ E(H) such that uv, xuvu, xuvv /∈ M , insert A⊥
uv into A(M),

• for every v ∈ V (H) such that no edge containing v is in M , insert Av into A(M),
• for every uvw ∈ T (H) such that uv, uw, vw /∈ M , insert Auvw into A(M).

The following claim binds independent sets in G with matchings in H ′. For its proof we refer
the reader to [1010, Sections 3.3 and 3.4].

Claim 5.2.1. If M is a maximum-weight matching in H ′ (with respect to w′), then
⋃

A∈A(M) I(A)
is an independent set in G, such that w(I) ⩾ ς · w(I0).
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Now let us argue about the running time. Constructing H ′ and computing w′ can clearly be
performed in time polynomial in n + N . The number of vertices of H ′ is polynomial in N , so finding
a maximum weight matching M in H ′ takes time polynomial in N . Finally, the solution I is also
computed in polynomial time. This completes the proof.

Now we are ready to prove Theorem 1.11.1.

Proof of Theorem 1.11.1. First, we can assume that G is connected, as otherwise we can solve the
problem component by component. Next, note that we can safely assume that ∆ ⩾ 3, as otherwise
G is a path or a cycle and thus the problem is polynomial-time solvable.

Let c, d, z, and p be given by Theorem 1.31.3 for t and ∆. Note that we can safely assume that
z ⩾ log2 ∆ and recall that we treat c, d, z, p as constants. Let δ = ζ · max{p, z, d

log2(c+1)}, where ζ is
an absolute constant (independent on t and ∆), whose value follows from the reasoning below.

We will show by induction on n that a maximum-weight independent set in n-vertex St,t,t-free
graph with maximum degree at most ∆ can be found in time O(nδ). If n is bounded by a constant,
then the problem can be solved by brute-force and thus the claim holds. So from now on assume
that n is sufficiently large and the claim holds for all graphs with fewer than n vertices. Let F (n′)
be the running time of our algorithm on instances of size n′.

First, we check if G has a c-balanced separator of size at most d. Clearly this can be done in
time O(nd+2) by exhaustive enumeration of all vertex subsets S of size at most d and, for each of
them, computing the connected components of G − S.

Case 1. G has a c-balanced separator S of size at most d. The proof in this case is a
standard divide and conquer procedure, we describe it for the sake of completeness.

Claim 5.2.2. The vertices of G − S can be partitioned into sets L, R, each of size at most c+1
2 n.

Proof of Claim. Let D1, D2, . . . , Dr be the connected components of G − S, ordered in way that
|D1| ⩾ |D2| ⩾ . . . ⩾ |Dr|. Recall that for each Di we have |Di| ⩽ cn.

First, consider the case that |D1| ⩾ 1−c
2 n. Note that then |

⋃r
i=2 Di| ⩽ n − |D1| ⩽ c+1

2 n. Thus
we can set L = D1 and R = ⋃r

i=2 Di.
So let us assume that |D1| < 1−c

2 n. Let q be the maximum integer such that |
⋃q

i=1 Di| < 1−c
2 n.

Note that q < r (here we use the fact that n is large compared to d). Furthermore, |Dq+1| ⩽ |Dq|| <

|
⋃q

i=1 Di| < 1−c
2 n and, by the maximality of q, we have |

⋃q+1
i=1 Di| ⩾ 1−c

2 n. Setting L = ⋃q+1
i=1 Di

and R = V (G) − S − L, we obtain that 1−c
2 n < |L| ⩽ (1 − c)n and thus |R| ⩽ c+1

2 n. ◁

Let L and R be as in the claim above. We exhaustively guess the intersection of a fixed optimum
solution with S. To this end, we enumerate all independent sets in G[S], and for each such set
IS we look for a maximum-weight independent set in G whose intersection with S is precisely IS .
This results in at most 2|S| ⩽ 2d branches. In each branch we call the algorithm recursively for
the graphs G[L − N(IS)] and G[R − N(IS)]. The algorithm returns the set with the largest weight
among the solutions obtained in all branches.

The running time is bounded by the following recursive inequality:

F (n) ⩽ O(nd+2) + 2d · 2 · F

(
c + 1

2 n

)
.

A standard calculation shows that this can be upper-bounded by O(nδ), using the fact that
δ ⩾ ζ d

log2(c+1) for a large constant ζ.
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Case 2. G has no c-balanced separator of size at most d. We apply Theorem 1.31.3 to G to
obtain in time O(np) a set X ⊆ V (G) of size at most z and an extended strip decomposition (H, η)
of G − X, where the size of each atom is at most 1

10∆n. Additionally, the maximum degree of H is
at most ∆ and the number of vertices of H is at most n.

We exhaustively guess the intersection IX of a fixed optimum solution with the set X. This
results in at most 2z branches.

Suppose we consider one such branch for an independent set IX ⊆ X. Define G′ = G−X−N(IX).
Observe that now we need to find a maximum-weight independent set in G′. We modify (H, η) by
removing from the sets η all vertices from N(IX). Note that this way we obtain an extended strip
decomposition of G′; for simplicity we will keep calling it (H, η).

Observe that each particle of (H, η) consists of at most 2 + ∆ atoms (note that each edge of
H is in at most ∆ − 1 triangles) and some subset of potato(v) for some v ∈ V (H). Recall that
|potato(v)| ⩽ 3∆/2. Thus, using the fact that n is sufficiently large, we conclude that the size of
each particle is at most

2 + ∆
10∆ n + 3∆ ⩽ 0.5n.

Now note that each vertex is in at most 3∆ particles, so the total size of all particles is at most
3∆ · n. Finally, for each particle A, the graph G′[A] is St,t,t-free and has maximum degree at most
∆. Thus, by the inductive assumption, for each particle A we can compute a maximum-weight
independent set I(A) in G′[A] in time F (|A|) = O(|A|δ). This takes total time

O

 ∑
particle A

F (|A|)

 = O

 max
x1,x2,...,xp

x1+...+xp⩽3∆·n
xi⩽0.5n

p∑
i=1

F (xi)

.

As F (xi) = O(xδ
i ) for δ > 1, a standard calculation shows that the above sum is maximized if the

values of xi are as large as possible. Thus the complexity of this step can be upper bounded by
6∆ · F (0.5n). Now we can apply Lemma 5.25.2 for ς = 1 and I0 being a maximum-weight independent
set in G, in order to find a maximum-weight independent set in G′ in time O(nγ) for a constant γ
(for example we can take γ = 4 by using the classic algorithm of Edmonds [1919]).

The total computation time is given by the recursive inequality:

F (n) ⩽ O(np) + 2z · 6∆ · F (0.5n) + O(nγ).

Again, using standard calculation this can be upper-bounded by O(nδ), since z ⩾ log2 ∆ and
δ ⩾ ζ max{p, z} for a large constant ζ. This completes the proof.

6 Conclusion and open problems
We have shown that the MWIS problem is polynomial-time solvable in St,t,t-free graphs with
bounded maximum degree. An obvious question is whether one can remove the assumption that
the maximum degree is bounded and prove that MWIS is polynomial-time solvable in St,t,t-free
graphs. A natural first step would be to try to find a quasipolynomial-time algorithm, as it was the
case for Pt-free graphs [2121]. However, these problems seem really challenging.

Our result suggests some more modest (and probably easier) research directions. First, instead
of removing the assumption that the degree is bounded, we could relax it and assume that our
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graph has bounded degeneracy. Let us point out that a somewhat related result was obtained for
C>t-free graphs, i.e., graphs that do not contain any induced cycle with more than t vertices. First,
Chudnovsky et al. [1010, 1111] proved that such graphs have treewidth O(t · ∆), which, in particular,
implies that if ∆ is bounded by a constant, then MWIS is polynomial-time solvable. This was later
improved by Gartland et al. [2222], who proved that C>t-free graphs of degeneracy at most d have
treewidth (dt)O(t).

Next, recall that the running time of our algorithm on n-vertex St,t,t-free graphs with maximum
degree ∆ is nf(t,∆) for some function f . Thus we have shown that MWIS is in XP, when parameterized
by the maximum degree ∆ (we refer the reader to the texbook by Cygan et al. [1717] for introduction
to parameterized complexity classes). We think it is interesting to study whether the problem is
fixed-parameter tractable (FPT) with respect to ∆, i.e., if there exists an algorithm with running
time f(∆, t) · ng(t), where g does not depend on ∆.

Finally, from the parameterized complexity point of view, we can ask about the complexity of
the MIS problem under the natural parameterization by the solution size k. Can we decide in time
f(k, t) · ng(t) if a given n-vertex St,t,t-free graph has an independent set of at least k vertices? This
problem is also interesting for Pt-free graphs.

Acknowledgment. We are grateful to Vadim Lozin for pointing out Corollary 1.21.2.
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