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Abstract. Given an integer k > 4 and a graph H, we prove that,
assuming P̸=NP, the List-k-Coloring Problem restricted to H-free
graphs can be solved in polynomial time if and only if either every
component of H is a path on at most three vertices, or removing the
isolated vertices of H leaves an induced subgraph of the five-vertex
path. In fact, the “if” implication holds for all k ≥ 1.

1. Introduction

Graphs in this paper have finite vertex sets, no loops and no parallel
edges. Let G = (V (G), E(G)) be a graph. An induced subgraph of G is
the graph G \ X for some X ⊆ V (G), that is, the graph obtained from
G by removing the vertices in X. For X ⊆ V (G), we use both X and
G[X] to denote the subgraph of G induced on X, which is the same as
G \ (V (G) \X). We also say G contains a graph H if H is isomorphic to
an induced subgraph of G; otherwise, we say G is H-free.
For an integer k ≥ 1, we write [k] = {1, . . . , k}. Given a graph G, a

proper k-coloring of G is a map φ : V (G) → [k] such that for every edge
uv ∈ E(G), we have φ(u) ̸= φ(v). A list-k-assignment for G is a map
L : V (G) → 2[k]. Given a list-k-assignment L for G, an L-coloring of G is
a proper k-coloring φ of G such that φ(v) ∈ L(v) for all v ∈ V (G). The
k-Coloring Problem is to decide, for a graph G, whether G admits a
k-coloring, and the List-k-Coloring Problem asks, for a graph G and
a list-k-assignment L of G, whether G admits an L-coloring.

The complexity of coloring problems on graphs with forbidden patterns is
a subject of great interest at the intersection of structural and algorithmic
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Figure 1. The graphs 7P3 (left) and P5 + 6P1 (right).

graph theory (we refer the reader to [3] for a survey). In certain problems
such as Coloring and k-List-Coloring (see [3] for the definitions),
the complexity while restricted to H-free graphs has been characterized.
However, the analogous results for k-Coloring and List-k-Coloring
have remained out of reach.

Specifically, the List-2-Coloring Problem can be solved in polyno-
mial time via a reduction to 2SAT [2], whereas the 3-Coloring Problem
is famously known to be NP-hard [8]. In fact, the 3-Coloring Problem
remains NP-hard in the class of H-free graphs except possibly for some
rather restricted choices of H:

Theorem 1.1 (Holyer [5], Kamiński and Lozin [7], Leven and Galil [9]).
Let k ≥ 3 be an integer and let H be a graph with at least one component
which is not a path. Then the k-Coloring Problem restricted to H-free
graphs is NP-hard.

The converse to Theorem 1.1 is wide open. In general, for the k-
Coloring Problem, no value of k ≥ 3 is known for which the “easy”
choices of H are completely distinguished from the “hard” ones. The sit-
uation with the List-k-Coloring Problem was also the same until re-
cently, when the last two authors together with Li [4] settled the case k = 5.
For integers r, s ≥ 1, we denote by rPs the graph obtained from the disjoint
union of r copies of the s-vertex path, and we write Ps instead of 1Ps. For
graphs H1, H2, we write H1 + H2 to denote the disjoint union of H1 and
H2 (see Figure 1):

Theorem 1.2 (Hajebi, Li, Spirkl [4]). Suppose that P̸=NP. Let H be a
graph. Then the List-5-Coloring Problem restricted to H-free graphs
can be solved in polynomial time if and only if for some integer r ≥ 1,
either rP3 or P5 + rP1 contains H.

In this paper, we extend the conclusion of Theorem 1.2 to all k > 4.
Like [4], our main contribution is to show that for every r ≥ 1, excluding
(an induced subgraph of) rP3 results in a polynomial-time solvable case,
which also happens to be true for all k ≥ 1:

Theorem 1.3. Let k, r ≥ 1 be fixed integers. Then the List-k-Coloring
Problem restricted to rP3-free graphs can be solved in polynomial time.

As shown in Theorem 1.5 below, Theorem 1.3 along with a number of
results from the literature (collected in Theorem 1.4) yields a full dichotomy
for the List-k-Coloring Problem on H-free graphs for all k > 4.
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Theorem 1.4. Let k ≥ 1 be integers. Then the List-k-Coloring Prob-
lem restricted to H-free graphs can be solved in polynomial time if

• H = P5 + rP1 for some r ≥ 1 (Couturier, Golovach, Kratsch and
Paulusma [1]);

and remains NP-hard if either

• H = P6 and k > 3 (Golovach, Paulusma and Song [3]); or
• H = P4+P2 and k > 4 (Couturier, Golovach, Kratsch and Paulusma
[1]) .

Thus, our main result is the following.

Theorem 1.5. Let k > 4 be an integer and let H be a graph. Then the
List-k-Coloring Problem restricted to H-free graphs can be solved in
polynomial time if for some integer r ≥ 1, either rP3 or P5 + rP1 contains
H. Otherwise, the List-k-Coloring Problem on H-free graphs is NP-
hard.

Proof (assuming Theorem 1.3). If rP3 contains H for some integer r ≥ 1,
then the result follows from Theorem 1.3, and if P5 + rP1 contains H for
some integer r ≥ 1, then the result follows from the first bullet of Theorem
1.4. So we may assume that neither holds. Our goal is then to show that
the List-k-Coloring Problem on H-free graphs is NP-hard.
By Theorem 1.1, we may assume that each component of H is a path.

Since rP3 does not contain H for any r ≥ 1, it follows that H contains P4.
This, combined with the assumption that P5 + rP1 does not contain H for
any r ≥ 1, implies that H contains either P6 or P4 + P2. But then the
result follows from the second and the third bullet of Theorem 1.4. ■

It remains to prove Theorem 1.3, which we do in the next section. We
also remark that for k = 3, 4, a full dichotomy of the List-k-Coloring
Problem on H-free graphs remains unknown.

2. The algorithm

We begin by providing some context. The proof of Theorem 1.2 in [4]
consists of two steps. The first one, which works for general k, reduces the
problem in polynomial time to polynomially many instances in which no
three vertices with a common color in their lists induce a path. The second
step, confined to the case k = 5, renders an intricate analysis within radius-
two balls around vertices with list-size more than two, eventually reducing
the problem to lists of size at most two (and so to 2SAT). In our proof
of Theorem 1.3, the first step remains untouched, but the second step is
superseded by Theorem 2.1 below, which has a significantly less technical
proof, and holds true for all k.

For integers k, r ≥ 1, by a (k, r)-instance we mean a pair (G,L) where
G is an rP3-free graph and L is a list-k-assignment of G. We say that a
(k, r)-instance (G,L) is admissible if G admits an L-coloring.
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Figure 2. A (4, 2)-instance (G,L) (left) and the graph Γ (right).

Theorem 2.1. Let k, r ≥ 1 be fixed integers. Let (G,L) be a (k, r)-instance
where G has n ≥ 1 vertices. Assume that for every 3-subset {x, y, z} of
V (G) inducing a path, we have L(x) ∩ L(y) ∩ L(z) = ∅. Then it can be
decided in time O(n5/2) whether (G,L) is admissible.

Proof. For every i ∈ [k], let Gi = G[{v ∈ V (G) : i ∈ L(v)}]. By our as-
sumption, we have thatGi is P3-free, and so it follows that every component
of Gi is a clique of G. Let Ci be the set of all components of Gi.

We construct a bipartite graph Γ with bipartition (A,B) where the ver-
tices in A and B are labelled as

A = {av : v ∈ V (G)};

B = {biC : i ∈ [k], C ∈ Ci}
such that

E(Γ) =
k⋃

i=1

⋃
C∈Ci

{avbiC : v ∈ C}.

See Figure 2. It follows that |V (Γ)| = n + |C1| + · · · + |Ck| ≤ (k + 1)n.
Moreover, we have:

(1) (G,L) is admissible if and only if Γ has a matching which covers all
vertices in A.

To see the “only if” implication, assume that G admits an L-coloring φ.
Then, for every vertex v ∈ V (G), we have v ∈ V (Gφ(v)), and so there exists
a unique component Cv ∈ Cφ(v) such that v ∈ Cv. This, along with the

definition of Γ, implies that for every v ∈ V (G), we have avb
φ(v)
Cv

∈ E(Γ).

Let M = {avbφ(v)Cv
: v ∈ V (G)}; then we have |M | = |A|. We claim that M

is a matching in Γ. Clearly, no two edges in M share an end in A. Also no
two edges in M share an end in B; for otherwise there are distinct vertices
u, v ∈ V (G) as well as i ∈ [k] and C ∈ Ci such that φ(u) = φ(v) = i and
Cu = Cv = C. But this violates the fact that φ is a proper coloring and C
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is a clique of G. The claim follows, and so does the “only if” implication
of (1).

For the “if” implication, assume that there exists a matching M ⊆ E(Γ)
in Γ which covers A. From the definition of Γ, it follows that there exists a
map φ : V (G) → [k], as well as a component Cv ∈ Cφ(v) for each v ∈ V (G),

such that M = {avbφ(v)Cv
: v ∈ V (G)}. We claim that φ is an L-coloring of

G. Assume that u, v ∈ V (G) are distinct and there exists i ∈ [k] such that
φ(u) = φ(v) = i. Then we have Cu, Cv ∈ Ci. Also, since M is a matching
in Γ, it follows that biCu

and biCv
are distinct, which in turn implies that Cu

and Cv are distinct components of Gi. This, combined with the fact that
Gi is an induced subgraph of G, implies that u ∈ Cu and v ∈ Cv are not
adjacent in G. Thus, φ is a proper k-coloring of G. Moreover, for every

vertex v ∈ V (G), since avb
φ(v)
Cv

∈ M ⊆ E(Γ), it follows from the definition
of Γ that v ∈ Cv ∈ Cφ(v), and so v ∈ V (Gφ(v)). Therefore, we have that
φ(v) ∈ L(v) for every v ∈ V (G). This proves (1).

By (1), Theorem 2.1 is immediate from a well-known result of Hopcroft
and Karp [6] that the cardinality of a maximum matching in an n-vertex
bipartite graph can be computed in time O(n5/2). ■

Let us turn to the “first step” as discussed at the beginning of this
section. For integers k, r ≥ 1 and a (k, r)-instance (G,L), by a (G,L)-
profile we mean a set I of pairs (G′, L′) where G′ is an induced subgraph
of G and L′ is a list-k-assignment for G′ such that L′(v) ⊆ L(v) for all
v ∈ V (G′). In particular, if I is a (G,L)-profile for a (k, r)-instance (G,L),
then every pair (G′, L′) ∈ I is a (k, r)-instance, as well.

Theorem 2.2 (Hajebi, Li and Spirkl, see Theorem 5.1 in [4]). Let k, r ≥ 1
be fixed integers. Then there exists an integer p = p(k, r) ≥ 1 such that for
every (k, r)-instance (G,L) with |V (G)| = n ≥ 1, there is a (G,L)-profile
I with the following specifications.

• |I| ≤ O (np) and I can be computed from (G,L) in time O (np).
• For every (G′, L′) ∈ I and every 3-subset {x, y, z} of V (G′) inducing
a path, we have L′(x) ∩ L′(y) ∩ L′(z) = ∅.

• (G,L) is admissible if and only if some (G′, L′) ∈ I is admissible.

Finally, we merge Theorems 2.1 and 2.2 to deduce Theorem 1.3, restated
as follows:

Theorem 2.3. For all fixed integers k, r ≥ 1, there exists an algorithm
which, given a (k, r)-instance (G,L), decides in polynomial time whether
(G,L) is admissible.

Proof. The algorithm is as follows. Given a (k, r)-instance (G,L):

1. Compute the (G,L)-profile I as in Theorem 2.2.
2. For each (k, r)-instance (G′, L′) ∈ I, decide whether (G′, L′) is admis-

sible.
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3. If there exists a (k, r)-instance (G′, L′) ∈ I which is admissible, then
return “(G,L) is admissible.” Otherwise, return “(G,L) is not admis-
sible.”

The correctness of the above algorithm is immediate from the third bullet
of Theorem 2.2. Also, the first two bullets of Theorem 2.2 combined with
Theorem 2.1 imply that the above algorithm runs in polynomial time. This
completes the proof of Theorem 2.3. ■
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