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Abstract

We provide lower and upper bounds on the minimum size of a maxi-
mum stable set over graphs of flag spheres, as a function of the dimension
of the sphere and the number of vertices. Further, we use stable sets to-
gether with graph rigidity to obtain an improved Lower Bound Theorem
for the face numbers of flag spheres. We propose a graph rigidity approach
to settle the Lower Bound Conjecture for flag spheres in full.

1 Introduction
Given a graph G, a set X ⊆ V (G) is stable (or independent) if no edge of G has
both ends in X. Equivalently, X is a clique in the complementary graph of G.
We denote by α(G) the size of a largest stable set in G; a stable set of size α(G) is
called a maximum stable set of G. Stable sets are a basic concept in graph theory,
but it is in general very difficult to understand what the structure of maximum
stable sets is (this is related to the fact that the problem of computing α(G)
is NP-complete). In this paper we study maximum stable sets in graphs whose
clique complex is topologically a sphere of fixed dimension (these are called
graphs of flag spheres). These graphs possess a beautiful recursive structure,
since the neighborhood of every vertex is a graph of the same type but of lower
dimension. They are also of great interest in topological combinatorics and
beyond, e.g. in the study of manifolds with nonpositive sectional curvature, via
the Charney-Davis conjecture [3, 5].

Our main objective is the following natural invariant: the minimum size over
maximum stable sets in n-vertex graphs of flag (d − 1)-dimensional spheres,
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namely

α(d, n) = min(α(G) : |V (G)| = n, cl(G) triangulates the (d − 1)-dimensional sphere).

(Here cl(G) is the complex of cliques of G.) For fixed d we are interested in the
growth of α(d, n) as n → ∞.

Conjecture 1.1. For every d ≥ 2 and n ≥ 2d, α(d, n) = ⌈ n+d−3
2(d−1) ⌉.

This conjecture holds for d = 2 (easy) and d = 3 (see Theorem 2.3, using
the 4-color theorem (4CT) for the lower bound). For d = 4 we prove that the
conjectured upper bound holds. For general d ≥ 4 we show:

Theorem 1.2. Let d ≥ 4 and n ≥ 2d. Then

1
4n

1
d−2 ≤ α(d, n) ≤

⌈⌈ n
⌊d/4⌋ ⌉ + 1

6

⌉
.

The lower bound slightly improves on the Ramsey bound (Ω(n 1
d )) by using

the 4CT within the base case d = 4, see Theorem 2.7. The upper bound, which
is roughly 2n

3d for large d, is obtained by taking the join of copies of the best
flag 3-spheres constructed in Theorem 2.4 for the upper bound, and taking up
to 3 extra suspensions to reach dimension d − 1. Indeed, a maximum stable set
in the join is a maximum stable set in a component of the join – now, ignoring
rounding, such component is a 3-sphere on a 4/d fraction of the n vertices, and
a 1/6 fraction of its vertices form a maximum stable set.

Our second result is an improved lower bound theorem on the number of
edges for the class of flag spheres; the proof relies on the existence of a large
stable set in such graphs. Deducing from this bound lower bounds on the number
of higher dimensional k-faces appeared in the proof of [14, Prop.3.2], following
the MPW-reduction.

Theorem 1.3. (i) Fix δ > 0. There exists d(δ) such that for all d ≥ d(δ) and
n large enough (compared to δ and d), each n-vertex flag (d − 1)-sphere has at
least (d + 1−δ

2d+1 )n edges.
(ii) For all d ≥ 6, and n large enough (compared to d), each n-vertex flag

(d − 1)-sphere has at least (d + 0.987
2d+1 )n edges.

Note that the Lower Bound Theorem for simplicial spheres [2, 8] guarantees
in (i) for simplicial spheres at least dn −

(
d+1

2
)

edges, hence more than (d − δ)n
edges, and Gal’s conjecture [5], which, if true, is tight, guarantees at least
(2d − 3)n − 2d(d − 2) edges, hence more than (2d − 3 − δ)n edges (it does hold
for d ≤ 5). For d ≥ 6 the lower bound in Theorem 1.3(ii) appears to be new.
If Conjecture 1.1 holds then this lower bound would further improve to at least
(d + 1

2d−2 )n edges, for all d ≥ 6, for large enough n.
Outline: In Section 2 we construct low dimensional flag spheres whose

maximum independent sets are small, proving Conjecture 1.1 for d = 3 and
the upper bound there for d = 4, and deducing both bounds in Theorem 1.2.
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In Section 3 we prove Theorem 1.3 by combining stable sets with framework
rigidity. We propose in Problem 3.5 a rigidity statement that would settle both
Gal’s lower bound conjecture for flag spheres [5], and a conjecture of Lutz and
Nevo on characterizing the extremal cases [11]. In Section 4 we give some results
and conjectures regarding the corresponding invariant for the other extreme:

αM (d, n) = max(α(G) : |V (G)| = n, cl(G) triangulates the (d − 1)-dimensional sphere).

2 The construction
We construct graphs, denoted Wd,k. First we analyze their α, and next we
analyze their clique complex. Figure 1(middle) illustrates W3,3.
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Figure 1: Middle: The graph W3,3 is depicted. The bold black and bold white
vertices indicate stable sets of size α(W3,3) = 4. The shaded edges indicate edges
that are not visible from a front view of the depicted realization of the flag 2-
sphere cl(W3,3) in 3-space. Similarly, Right: the graph X(3, 2, 2) is depicted.
The bold white vertices indicate a stable set of size α(X(3, 2, 2)) = 3; Left: the
graph Y (3, 2, 1) is depicted. The bold white vertices indicate a stable set of size
α(Y (3, 2, 1)) = 4.

Fix an integer d ≥ 2. For k ≥ 1 let Wd,k be the following graph. V (Wd,k) =
{a, b} ∪ X1 ∪ . . . ∪ Xk where the sets X1, . . . , Xk, {a, b} are pairwise disjoint and
|Xi| = 2d−2 for every i ∈ {1, . . . , k}. Denote Xi = {yi

1, . . . , yi
d−1, zi′

1 , . . . , zi
d−1}.

Next we list the edges of Wd,k.
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• a is complete to X1 and b is complete to Xk and there are no other edges
incident with a, b.

• For every i, the induced graph Wd,k[Xi] is the 1-skeleton of the (d − 1)-
dimensional crosspolytope, a.k.a. the graph of the octahedral (d − 2)-
sphere, with non-edges yi

1zi
1, . . . , yi

d−1zi
d−1.

• Xi is anticomplete to Xj if |i − j| > 1.

• For 1 ≤ i ≤ k−1, the set of edges of Wd,k with one endpoint in Xi and the
other endpoint in Xi+1 is E+

i ∪ E−
i , where E+

i = {yi
syi+1

t , zi
szi+1

t : 1 ≤
s ≤ t ≤ d − 1} and E+

i = {yi
szi+1

t , zi
syi+1

t : 1 ≤ t < s ≤ d − 1}. Denote
E+ := ∪1≤i≤d−1E+

i and E− := ∪1≤i≤d−1E−
i .

• All pairs of vertices of Wd,k that are not mentioned above are non-edges.

Now we define certain “edge subdivisions” on Wd,k, corresponding to stellar
subdivisions at edges of the complex cl(Wd,k).

Define an edge subdivision of a graph G = (V, E) at an edge xy ∈ E as
the process producing the new graph G(xy) = (V ′, E′) where V ′ = V ∪ {vxy}
(vxy /∈ V ) and E′ = (E \ {xy}) ∪ {xvxy, yvxy} ∪ {uvxy : ux, uy ∈ E}. Note that
the stellar subdivision of cl(G) at the edge xy produces cl(G(xy)); in particular,
cl(G) and cl(G(xy)) are homeomorphic.

Now, consider a maximal clique among the neighbors of a (resp. b) in Wd,k,
say y1

1y1
2y1

3 . . . y1
d−1 (resp. yk

1 yk
2 yk

3 . . . yk
d−1). Make the following sequence of 2d−2

edge subdivisions: X(d, k, 0) := Wd,k, and for j ∈ {1, . . . , d − 1}, having defined
X(d, k, j − 1) and uj−1 (for j > 1), let X(d, k, j) := X(d, k, j − 1)(ay1

j ) and
uj := vay1

j
. For example, Figure 1(right) illustrates X(3, 2, 2).

Next let Y (d, k, 0) := X(d, k, d−1), and for j ∈ {1, . . . , d−1}, having defined
Y (d, k, j − 1) and wj−1 (for j > 1), let Y (d, k, j) := Y ′′(d, k, j − 1)(byk

j ) and
wj := vbyk

j
. For example, Figure 1(left) illustrates Y (3, 2, 1).

Theorem 2.1. For every d ≥ 2, k ≥ 1, d − 1 ≥ j ≥ 0,
α(X(d, k, j)) = k + 1 = |V (X(d,k,j))|−2−j

2d−2 + 1.
For every d ≥ 3, k ≥ 1, d − 1 ≥ j ≥ 1,
α(Y (d, k, j)) = k + 2 = |V (Y (d,k,j))|−2+(d−1−j)

2d−2 + 1.

Proof. Let G be one of the graphs X(d, k, j) or Y (d, k, j). Let U be the set of
vertices of the form uj in G, and let W be the set of vertices of the form wj in G.
Then W ̸= ∅ only if |U | = d−1. Moreover U ∪a and W ∪b are both cliques in G.
Denote by NG(v) the neighbors of v in G. Then, X1 \ NG(a) ⊆ {y1

1 , . . . , y1
d−1},

and for every j we have that X1 \ NG(uj) = {y1
1 , . . . , y1

j−1, z1
j }. In particular,

α(G[X1 \ NG(v)]) ≤ 1 for every v ∈ U ∪ {a}. Similarly, α(G[Xk \ NG(v)]) ≤ 1
for every v ∈ W ∪ {b}.

Let S be a stable set of G. First we prove an upper bound on |S|. Clearly
for every i we have that α(G[Xi]) = 2. Moreover every vertex of Xi+1 has a
neighbor in every non-edge of G[Xi], and every vertex of Xi has a neighbor in
every non-edge of G[Xi+1]. Consequently, |S ∩ (Xi ∪ Xi+1)| ≤ 2.
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Hence |S \ (U ∪ W ∪ {a, b})| ≤ k + 1. Suppose |S \ (U ∪ W ∪ {a, b})| = k + 1.
Then k is odd, and |S∩X1| = |S∩Xk| = 2. It follows that S∩(U∪W ∪{a, b}) = ∅
and |S| = k + 1.

Next suppose that |S \ (U ∪ W ∪ {a, b})| = k. Since U ∪ {a} and W ∪ {b}
are both cliques, it follows that |S| ≤ k + 2, and so we may assume that G =
X(d, k, j) for some j (for otherwise G = Y (d, k, j) and the upper bound on α(G)
holds).

In particular W = ∅ and b is adjacent to every vertex of Xk. Since |S \ (U ∪
W ∪ {a, b})| = k, it follows that |S ∩ (X1 ∪ Xk)| = 2. If |S ∩ Xk| ≠ ∅, then
b ̸∈ S, and, since U ∪ {a} is a clique, we have that |S| ≤ k + 1. Thus we may
assume that S ∩ Xk = ∅, and so |S ∩ X1| = 2. Since α(G[X1 \ N(v)]) ≤ 1 for
every v ∈ U ∪ {a}, we deduce that S ∩ (U ∪ {a}) = ∅, and so |S| = k if b /∈ S
and |S| = k + 1 if b ∈ S.

Clearly if |S \ {a, b}| < k then, since U ∪ {a} and W ∪ {b} are both cliques,
we have that |S| ≤ k + 1. Thus in all cases the upper bound on |S| holds.

Next we show that if G = X(d, k, j) for some j ≥ 0 then α(G) = k + 1. Let
S′ =

⋃
i∈1,...,k; i odd{yi

1, zi
1}. If k is odd let S = S′. If k is even, let S = S′ ∪{b}.

In both cases |S| = k + 1.
Finally we show that if G = Y (d, k, j) for some j ≥ 1 then α(G) = k + 2.

Since j ≥ 1, we have that a is anticomplete to {y1
1 , . . . , y1

d−1} and w1 ∈ W . Let

S = {a, w1} ∪
⋃

i∈{1,...,k}; k−i odd

{yi
1} ∪

⋃
i∈{1,...,k}; k−i even

{zi
1}.

Then S a stable set of size k + 2 in G.
So far we have proved that α(X(d, k, j)) = k + 1 for every d ≥ 2, k ≥ 1

and d − 1 ≥ j ≥ 0, and that α(Y (d, k, j)) = k + 2 for every d ≥ 3, k ≥ 1 and
d − 1 ≥ j ≥ 1. The remaining equalities follow by a direct computation.

Observe that Wd,1 is the 1-skeleton of the d-dimensional crosspolytope. Fur-
ther,

Observation 2.2. The clique complex of W3,k is a flag 2-sphere for every k ≥ 1.

Proof. For each i, W3,k[Xi] is a 4-cycle. Consider W3,k[Xi ∪ Xi+1]: adding to
the two disjoint 4-cycles W3,k[Xi] ∪ W3,k[Xi+1] the “vertical” edges yi

syi+1
s and

zi
szi+1

s makes a cylinder subdivided into 4 squares; adding the other edges in
W3,k that cross from Xi to Xi+1 subdivides each of the four squares into two
triangles. Thus, the clique complex of W3,k[X1 ∪ . . . ∪ Xk] is a triangulated
cylinder, and adding a, b with their edges makes the clique complex a flag 2-
sphere.

Next we show:

Theorem 2.3. For every n ≥ 6, α(3, n) = ⌈ n
4 ⌉.

Proof. Observe that |V (X(3, k, j))| ≡4 2 + j, and |V (Y (3, k, j))| ≡4 j, and
thus for every n ≥ 6 there exist integers k ≥ 1 and j ≥ 0 and a graph G ∈
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{X(3, k, j), Y (3, k, j)} such that |V (G)| = n. Now by Theorem 2.1 for every
k ≥ 1 and j ≥ 0 we have that α(X(3, k, j)) = ⌈ |V (X(3,k,j))|

4 ⌉, and for every k ≥ 1
and j ≥ 1 we have that α(Y (3, k, j)) = ⌈ |V (Y (3,k,j))|

4 ⌉. Finally, since X ′′(3, k, j)
and Y ′′(3, k, j) are obtained from cl(W3,k) by stellar edge subdivisions, it follows
from Observation 2.2 that their clique complexes are flag 2-spheres. We have
shown that for every n ≥ 6, α(3, n) ≤ ⌈ n

4 ⌉. Since by the 4CT every n-vertex
triangulation of the 2-dimensional sphere has a stable set of size ⌈ n

4 ⌉, α(3, n) ≥
⌈ n

4 ⌉.
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2

yi+1
3

yi
1 yi

2

yi
3

yi+1
1 zi+1

2

yi+1
3

yi
1 zi

2

yi
3

Figure 2: Two triangular prisms with the induced graphs in W ′
4,k on their

vertices. Left: prism of Case 1. Right: prism of Case 2. The grey edges
indicate edges not visible from a front view of the depicted realization embeded
in 3-space. The red edge is bent inside the right prism. In purple are sample
induced tetrahedra. Note that in each prism, its clique complex triangulates it.

For d = 4, the graph W4,k, with all “non vertical” edges in E+∪E− deleted –
namely delete the edges in E+∪E−\{yi

syi+1
s , zi

szi+1
s : 1 ≤ i ≤ k−1, 1 ≤ s ≤ 3},

induces a cell structure on the 3-sphere, consisting of tetrahedra with a vertex a
or b and of triangular prisms consisting of a triangle on Xi and the corresponding
triangle on Xi+1 (the corresponding vertices differ only in the superscript).
Adding the non-vertical edges in E+ ∪ E− adds exactly one diagonal in each
square face. For each triangular prism T , exactly one of two cases hold:

Case 1. The 3 diagonals on the square faces of T form a path. In this
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case, the clique complex on the induced subgraph W4,k[V (T )] triangulates T ,
by three tetrahedra. (V (T ) stands for the vertices of T .) For example, if
V (T ) = {yi

1, yi
2, yi

3, yi+1
1 , yi+1

2 , yi+1
3 } then the three tetrahedra are given by the

vertex sets {yi
1, yi+1

1 , yi+1
2 , yi+1

3 }, {yi
1, yi

2, yi+1
2 , yi+1

3 } and {yi
1, yi

2, yi
3, yi+1

3 }.
Case 2. The 3 diagonals on the square faces of T form a matching. In

this case the cliques of the graph G(T ) := W4,k[V (T )] make the octahedral 2-
sphere, triangulating the boundary of the prism T . Note that adding any edge
e (of the three missing edges in G(T )), cl(G(T ) ∪ {e}) triangulates T by four
tetrahedra. There are exactly two such prisms (for a fixed 1 ≤ i ≤ k − 1),
one has vertices yi

1, zi
2, yi

3; yi+1
1 , zi+1

2 , yi+1
3 and its “antipodal prism” has vertices

zi
1, yi

2, zi
3; zi+1

1 , yi+1
2 , zi+1

3 .
For every 1 ≤ i ≤ k − 1 we add the edge yi

1zi+1
2 to triangulate the first,

and the edge zi
1yi+1

2 to triangulate the second (such added edge is “bent” inside
the prism, the resulted triangulation of the prism is topological, not geometric);
denote the resulting graph by W ′

4,k. Let X ′(4, k, j) and Y ′(4, k, j) be the graphs
obtained from X(4, k, j) and Y (4, k, j), respectively, by adding these same edges.
See Figure 2 for an illustration of how the triangular prisms are triangulated.

Theorem 2.4. The clique complex of W ′
4,k is a flag 3-sphere for every k ≥ 1.

Proof. By the discussion above on the triangulation of the triangular prisms,
for every prism T in Case 1, cl(W4,k[V (T )]) triangulates T , and for every prism
T in Case 2, cl(W ′

4,k[V (T )]) triangulates T . Thus, there are only two claims to
verify, showing no “extra cliques” appear, namely: for every 1 ≤ i ≤ k − 1,

(i) all the triangles containing the edge yi
1zi+1

2 are contained in V (T (i)) :=
{yi

1, zi
2, yi

3; yi+1
1 , zi+1

2 , yi+1
3 }, and

(ii) all the triangles containing the edge zi
1yi+1

2 are contained in V (T ′(i)) :=
{zi

1, yi
2, zi

3; zi+1
1 , yi+1

2 , zi+1
3 }.

We verify that (i) holds. (For (ii), one either verifies similarly, or uses sym-
metry.) Indeed, the potential “extra” triangles could occur only in the unique
prism T ′′(i) that intersects T (i) in the unique square containing both yi

1 and
zi+1

2 . Note that V (T ′′(i)) \ V (T (i)) = {zi
3, zi+1

3 }, however, neither yi
1zi+1

3 nor
zi

3zi+1
2 are edges in W ′

4,k, hence no extra triangles occur, as desired.

Next we show:

Theorem 2.5. For all n ≥ 8, α(4, n) ≤ ⌈ n+1
6 ⌉.

Proof. Observe that |V (X(4, k, j))| ≡6 2 + j, and |V (Y (4, k, j))| ≡6 j − 1 (here
0 ≤ j ≤ 3), and thus for every n ≥ 8 there exist integers k ≥ 1 and j ≥ 0 and a
graph G ∈ {X(4, k, j), Y (4, k, j)} such that |V (G)| = n. Now by Theorem 2.1
for every k ≥ 1 and j ≥ 0 we have that α(X(4, k, j)) = ⌈ |V (X(4,k,j))|+1

6 ⌉, and
for every k ≥ 1 and j ≥ 1 we have that α(Y (4, k, j)) = ⌈ |V (Y (4,k,j))+1|

6 ⌉. Since
X ′(4, k, j) and Y ′(4, k, j) are obtained from X(4, k, j) and Y (4, k, j) by adding
edges, we deduce that α(X ′(4, k, j)) ≤ ⌈ |V (X(4,k,j))|+1

6 ⌉ = ⌈ |V (X′(4,k,j))|+1
6 ⌉ for

every k ≥ 1 and j ≥ 0, and α(Y ′(4, k, j)) ≤ ⌈ |V (Y (4,k,j))|+1
6 ⌉ = ⌈ |V (Y ′(4,k,j))|+1

6 ⌉
and for every k ≥ 1 and j ≥ 1.
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Finally, since cl(X ′(4, k, j)) and cl(Y ′(4, k, j)) are obtained from cl(W ′(4, k))
by stellar edge subdivisions, it follows from Theorem 2.4 that their clique com-
plexes are flag 3-spheres. This completes the proof.

Remark 2.6. In fact, α(X ′(4, k, j)) = ⌈ |V (X(4,k,j))|+1
6 ⌉ for every k ≥ 1 and

j ≥ 0, and α(Y ′(4, k, j)) = ⌈ |V (Y (4,k,j))|+1
6 ⌉ for every k ≥ 1 and j ≥ 1.

Indeed, for d = 4 the sets S constructed in the proof of Theorem 2.1 are also
independent in X ′(4, k, j) and Y ′(4, k, j) resp.

Finally we prove the lower bound of Theorem 1.2.

Theorem 2.7. Let d ≥ 4. Then for all n ≥ 2d,

α(d, n) ≥ 1
4n

1
d−2

Proof. The proof is by induction on d, and we work in the generality of flag
homology spheres, over some fixed field. Let ∆ be a (d − 1)-flag homology
sphere. Recall ∆ has at least 2d vertices [13], say it has n vertices.

For the base case let d = 4. Then the link of v in ∆, denoted lkv(∆), is a
planar triangulation for every vertex v of ∆, and therefore, by the 4CT, lkv(∆)
contains a stable set of size ⌈ |V (lkv(∆))|

4 ⌉. Thus if for some vertex v of ∆ we have
that |V (lkv(∆))| ≥ n

1
2 , then the theorem holds. If |V (lkv(∆))| < n

1
2 for every

v, then a stable set of size n

n
1
2

= n
1
2 > 1

4 n
1
2 can be obtained greedily. Indeed,

set I = ∅. At each iteration, starting with the graph G, add some vertex v from
the remaining graph to I and delete v and its neighbors from the graph; repeat
as long as the remaining graph is nonempty. Then the resulted I is stable in
G and its cardinality equals the number of iterations, which is at least n/

√
n.

This finishes the case when d = 4.
Now we turn to general d. In this case lkv(∆) is a (d − 2)-flag homology

sphere for every vertex v of ∆, and therefore, inductively, lkv(∆) contains a
stable set of size 1

4 |V (lkv(∆))| 1
d−3 . Thus if for some vertex v of ∆ we have that

|V (lkv(∆))| ≥ n
d−3
d−2 , then the theorem holds. If |V (lkv(∆))| < n

d−3
d−2 for every v,

then a stable set of size n

n
d−3
d−2

= n
1

d−2 > 1
4 n

1
d−2 can be obtained greedily. This

completes the proof.

.

3 Lower bounds on f1

The goal of this section is to prove Theorem 1.3.

Proof. Let ∆ = cl(G) be a flag (d − 1)-sphere on n = f0(∆) vertices and
f1 = f1(∆) edges. Let ϵ > 0, and assume f1 < (d + ϵ)n. We look for the largest
ϵ = ϵ(d) for which we reach a contradiction (when d is chosen large enough, and
then n is chosen large enough w.r.t. d).
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By an easy restatement of Turán’s theorem from [12] there is a stable set I
of G with |I| ≥ n

2(d+ϵ)+1 .
We may assume d ≥ 4. Then, we use the following well known facts: (i) G is

generically d-rigid [8, Thm.1.2], hence its space of stresses (see e.g. [10, Eq.(1)]
for a definition, a.k.a. affine 2-stresses [10, Def.2]) has dimension g2(∆) :=
f1 − dn +

(
d+1

2
)
, see e.g. the discussion above Theorem 6.3 in Kalai [8]. (ii) For

every vertex link, its graph is generically (d − 1)-rigid (see Gluck [6] for d = 4
and Kalai [8, Thm.1.2] for d ≥ 5), and is not stacked (by flagness), hence, by
the Cone Lemma, see e.g. [16, Cor.1.5], for every vertex v ∈ ∆ there exists a
stress supported in the closed star of v (namely in the induced graph of G on v
and its neighbors) such that some edge containing v has a nonzero weight.

Now, as I is independent, the stresses mentioned above, one per v ∈ I, are
linearly independent (indeed, the stress for v has at least one edge containing v
with a nonzero weight, while the weights on the edges containing v is zero for
the stresses of all u ∈ I \ {v}), and hence

f1 − dn +
(

d + 1
2

)
≥ |I| ≥ n

2(d + ϵ) + 1 ,

Thus, for n large enough w.r.t. d, we can ignore the
(

d+1
2

)
term and get:

ϵn > n
2(d+ϵ)+1 , namely ϵ > 1

2(d+ϵ)+1 .

Solving the quadric for ϵ we get a contradiction if ϵ <
−(2d+1)+

√
(2d+1)2+8

4 .
Hence for arbitrarily small δ > 0, if d is large enough we reach a contradiction

for ϵ = 1−δ
2d+1 , proving part (i). For part (ii), note that

√
x2 + 8 − x > 3.95

x for
x ≥ 13 = 2 · 6 + 1, thus for all d ≥ 6 (and large enough n) we will reach a
contradiction if ϵ ≤ 3.95

4(2d+1) = 0.987
2d+1 .

Note that if Conjecture 1.1 holds then plugging the larger value for |I| yields
f1 ≥ (d + 1

2d−2 )n for all d ≥ 6 and large enough n.

Conjecture 3.1. For all d ≥ 5, the graph of every flag (d − 1)-sphere is gener-
ically (d + 1)-rigid.

If true, this conjecture would imply f1 ≥ (d + 1)f0 −
(

d+2
2

)
for flag spheres

of dimension d − 1 ≥ 4. A standard use of the Cone and Gluing Lemmas, see
Kalai [8], reduces Conjecture 3.1 to the case d = 5. For d < 5 its assertion is
false.

Conjecture 3.1 holds for flag spheres with few vertices:

Lemma 3.2. Let d ≥ 5. The graph of every flag (d − 1)-sphere on at most
2d + 3 vertices is generically (d + 1)-rigid.

Proof. First, note that for d ≥ 4, if ∆ is a flag (d − 1)-sphere with a generically
(d+1)-rigid graph, and ∆′ is obtained from ∆ by Whiteley’s vertex split, then ∆′

has a generically (d + 1)-rigid graph, as the two new vertices in ∆′ have at least
2(d − 2) common neighbors by [13] (see also [5, Lem.2.1.14]) and 2(d − 2) ≥ d;
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see Whiteley [18, Prop.1] for the case d = 3, however, his proof easily extends
to d > 3.

Second, note that for d ≥ 5, the graph of the (d − 1)-dimensional octahedral
sphere is (d+1)-rigid, by induction on d. Indeed, one checks that the graph of the
4-dimensional octahedral sphere is 6-rigid. Decompose the (d − 1)-dimensional
octahedral sphere as a union of two cones over the same (d − 2)-dimensional
octahedral sphere. By the Cone Lemma [16, Cor.1.5] and induction, each of the
two cones has a generically (d + 1)-rigid graph, and by the Gluing Lemma [1]
the union of these two graphs is generically (d + 1)-rigid, as the intersection of
the cones has 2(d − 1) ≥ d + 1 vertices.

Third, the proofs of [15, Prop.5.4, 5.5, 5.6] show that every flag (d − 1)-
sphere with at most 2d+3 vertices can be obtained from the (d−1)-dimensional
octahedral sphere by a sequence of (at most three) vertex splits, and hence, by
the previous two items, has a generically (d + 1)-rigid graph.

Remark 3.3. Alan Lew suggested to us a balder conjecture, based on computer
experiments, that for d ≥ 3 the graph of every flag (d − 1)-sphere is generically
(2d − 1 − ⌊

√
2d + 1/2⌋)-rigid, which, by Jordán [7, Lem.2.1(2)], would be tight

for the octahedral (d − 1)-sphere. If true, this conjecture would imply f1 ≥
(2d − O(

√
d))n for n-vertex flag (d − 1)-spheres.

Let us single out the case of the octahedral spheres, which may be of inde-
pendent interest.

Conjecture 3.4. (Alan Lew) For every d ≥ 3, the graph of the octahedral (d −
1)-sphere, namely the complete graph on 2d vertices minus a perfect matching,
is generically (2d − 1 − ⌊

√
2d + 1/2⌋)-rigid.

Inspired by Alan Lew’s conjectures we propose the following problem. For
d ≥ 4, call a flag (d − 1)-sphere irreducible if it is not a suspension and if every
edge is contained in an induced 4-cycle. Edge contractions show that is it enough
to prove Gal’s conjecture on γ-nonnegativity [5] for irreducible triangulations in
order to confirm his conjecture for all flag spheres.

Problem 3.5. Let d ≥ 4. Then the graph of every irreducible flag (d−1)-sphere
is generically (2d − 3)-rigid.

If true, it would imply both Gal’s lower bound conjecture for flag spheres,
namely, γ2 := f1 − (2d−3)n+2d(d−2) ≥ 0 (where n is the number of vertices),
and a conjecture of Lutz and Nevo [11, Conj.6.1] characterizing the cases of
equality γ2 = 0. Further, it would imply γ2 ≥ d − 3 for irreducible flag (d − 1)-
spheres.

Explicit irreducible flag spheres are not so easy to come by. Alan Lew
verified by computer that the assertion of Problem 3.5 holds for the irreducible
flag 3-sphere on 12 vertices recently constructed by Venturello [17].
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4 αM(d, n)
Fix d ≥ 4 and let n → ∞. Then there exist simplicial (d − 1)-spheres on
n vertices where the proportion of vertices in an independent set is arbitrarily
close to 1. To see this, start with the boundary complex ∆ of a cyclic d-polytope
with m > d vertices, and note that ∆ is a neighborly (d − 1)-sphere, i.e. all(

m
⌊ d

2 ⌋
)

subsets consisting of ⌊ d
2 ⌋ vertices are faces in ∆. It is easy to check that ∆

has Θ(m⌊ d
2 ⌋) facets. Perform stellar subdivisions on all facets. Then the set I of

the newly added vertices is stable and of size Θ(m⌊ d
2 ⌋) , while only the original

m vertices are not in I.
In contrast, for flag spheres we conjecture that the proportion of vertices in

an independent set can not exceed 1/2.

Conjecture 4.1. For all d ≥ 2, αM (d, n) = ⌊ n−2(d−2)
2 ⌋.

This conjecture clearly holds for d = 2 and we prove it for d = 3. The lower
bound holds for all d ≥ 2 by the following construction: consider the (d−2)-fold
suspension over the (n − 2(d − 2))-gon. A maximum stable set is obtained by
taking every second vertex along the (n − 2(d − 2))-gon.

Theorem 4.2. For all n ≥ 6, αM (3, n) = ⌊ n−2
2 ⌋.

Proof. The construction above proves the lower bound αM (3, n) ≥ ⌊ n−2
2 ⌋. To

show αM (3, n) ≤ ⌊ n−2
2 ⌋, let I be a maximum stable set in the graph G = (V, E)

of a flag 2-sphere on n vertices (it forces n ≥ 6). Let G′ = (V, B) be the
subgraph of G whose edges are those with exactly one vertex in I. Then G′ is
bipartite and planar. Further, G′ has at least two vertices in I (as each vertex
in G has a non-neighbor) and at least two (in fact 4) vertices in the complement
of I (as each vertex in I has degree at least 4 by flagness). Thus, G′ has at most
2n − 4 edges (this is known, see e.g. [9, Lemmas 4.2, 4.3] for a proof). On the
other hand,

|B| =
∑
v∈I

deg(v) ≥ 4|I|,

as each vertex in G has degree at least 4, and for all v ∈ I the degree is preserved
when passing to G′. Thus 4|I| ≤ 2n − 4, hence |I| ≤ ⌊ n−2

2 ⌋.
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