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Abstract. Unlike minors, the induced subgraph obstructions to bounded treewidth
come in a large variety, including, for every t ∈ N, the t-basic obstructions: the graphs
Kt+1 and Kt,t, along with the subdivisions of the t-by-t wall and their line graphs. But
this list is far from complete. The simplest example of a “non-basic” obstruction is due
to Pohoata and Davies (independently). For every n ∈ N, they construct certain graphs
of treewidth n and with no 3-basic obstruction as an induced subgraph, which we call
n-arrays.

Let us say a graph class G is clean if the only obstructions to bounded treewidth in
G are in fact the basic ones. It follows that a full description of the induced subgraph
obstructions to bounded treewidth is equivalent to a characterization of all families H
of graphs for which the class of all H-free graphs is clean (a graph G is H-free if no
induced subgraph of G is isomorphic to any graph in H).

This remains elusive, but there is an immediate necessary condition: if H-free graphs
are clean, then there are only finitely many n ∈ N such that there is an n-array which
is H-free. The above necessary condition is not sufficient in general. However, the
situation turns out to be different if H is finite: we prove that for every finite set H of
graphs, the class of all H-free graphs is clean if and only if there is no H-free n-array
except possibly for finitely many values of n.

1. Introduction

The set of all positive integers is denoted by N, and for every integer n, we write Nn for
the set of all positive integers less than or equal to n (so Nn = ∅ if n ≤ 0). Graphs in this
paper have finite vertex sets, no loops and no parallel edges. Let G = (V (G), E(G)) be
a graph. An induced subgraph of G is the graph G \X for some X ⊆ V (G), that is, the
graph obtained from G by removing the vertices in X. For X ⊆ V (G), we use both X
and G[X] to denote the subgraph of G induced on X, which is the same as G\(V (G)\X).
We say G contains a graph H if H is isomorphic to an induced subgraph of G; otherwise,
we say G is H-free. We also say G is H-free for a family H of graphs if G is H-free for
all H ∈ H.
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Figure 1. The 5-by-5 hexagonal grid W5×5.

The treewidth of a graph G (denoted by tw(G)) is the smallest w ∈ N for which G can
be represented as (a subgraph of) an intersection graph of subtrees of a tree, such that
each vertex of the underlying tree appears in at most w + 1 subtrees. For instance, the
“Helly property of subtrees” [8] implies that for every t ∈ N, the complete graph Kt+1

and the complete bipartite graph Kt,t both have treewidth t.
There are also sparse graphs with arbitrarily large treewidth, the most well-known

example of which is the hexagonal grid (see Figure 1). For every t ∈ N, the t-by-t
hexagonal grid, also called the t-by-t wall, denoted Wt×t, has treewidth t [14], and the
same remains true for all subdivisions of Wt×t, as well. Indeed, Robertson and Seymour
proved in 1986 [14] that containing a hexagonal grid as a minor (or a subdivided one as
a subgraph) is qualitatively the only reason why a graph may have large treewidth:

Theorem 1.1 (Robertson and Seymour [14]). For every t ∈ N, every graph of sufficiently
large treewidth contains a subdivision of Wt×t as a subgraph.

For induced subgraphs, however, excluding just the walls is not enough to guarantee
bounded treewidth: note that complete graphs, complete bipartite graphs and subdivided
walls are three pairwise “independent” types of graphs with arbitrarily large treewidth, in
the sense that no graph from one type contains an induced subgraph of another type with
large treewidth. There is also a fourth example, namely the line-graphs of subdivided
walls, where the line-graph L(F ) of a graph F is the graph with vertex set E(F ), such
that two vertices of L(F ) are adjacent if the corresponding edges of F share an end.

It is useful to group all these graphs together: given t ∈ N, we say a graph H is a
t-basic obstruction if G is isomorphic to one the following: the complete graph Kt+1, the
complete bipartite graph Kt,t, a subdivision of Wt×t, or the line-graph of a subdivision
of Wt×t (see Figure 2). For every t ∈ N, every t-basic obstruction has treewidth t, and
each induced subgraph of large treewidth in a basic obstruction of a given type contains a
basic obstruction of the same type and of (relatively) large treewidth. Let us say a graph
G is t-clean if G contains no t-basic obstruction. It follows that every graph of treewidth
less than t is t-clean.

One may hope for the basic obstructions to be the only induced subgraph obstructions
to bounded treewidth. In other words, the neatest possible analog of Theorem 1.1 for
induced subgraphs would be the following: for every t ∈ N, there is a constant n =
n(t) ∈ N such that every t-clean graph has treewidth less than n. However, there are now
several counterexamples to this statement [3, 6, 12, 17]. The simplest construction is due
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Figure 2. The 4-basic obstructions, including a subdivision of W4×4

(middle) and its line-graph (right).
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Figure 3. Left to right: Examples of n-arrays for n ∈ {1, 2, 3}.

to Pohoata and Davies (independently) [6, 12], consisting of 3-clean graphs of arbitrarily
large treewidth. We call these graphs arrays.

Specifically, for n ∈ N, an n-array is a graph consisting of n pairwise disjoint paths
L1, . . . , Ln with no edges between them as well as n pairwise non-adjacent vertices
x1, . . . , xn, such that for every i ∈ Nn:

• each of x1, . . . , xn has at least one neighbor in Li; and
• for every j ∈ Nn−1, all neighbors of xj in Li appear before all neighbors of xj+1

in Li (in particular, each vertex of Li is adjacent to at most one of x1, . . . , xn).
See Figure 3. As mentioned earlier, arrays are 3-clean graphs with unbounded treewidth:

Theorem 1.2 (Pohoata [12], Davies [6]; see also Theorem 3.1 in [2]). For every n ∈ N,
every n-array is a 3-clean graph of treewidth at least n.

This motivates the following definition: A graph class G is said to be clean if the only
induced subgraph obstructions to bounded treewidth in G are in fact the basic ones, that
is, for every t ∈ N, there is a constant n = n(t) ∈ N such that every t-clean graph in
G has treewidth less than n. An exact analog of Theorem 1.1 for induced subgraphs is
therefore equivalent to a characterization of all families H of graphs for which the class
of all H-free graphs is clean.

This appears to be out of reach of the current techniques, and even formulating a
conjecture seems rather difficult. Nevertheless, the known “non-basic” obstructions may
provide some insight into the structural properties of a family H with the above property.
For example, from Theorem 1.2 combined with the definition of a clean class, we deduce
that:
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Observation 1.3. Let H be a family of graphs such that the class of H-free graphs is
clean. Then there exists n0 ∈ N such that for every n ≥ n0 and every n-array A, there is
a graph H ∈ H which is isomorphic to an induced subgraph of A.

The converse to Observation 1.3 is not true in general; indeed, all other non-basic
obstructions discovered so far [3, 17] are counterexamples to this converse:

• Let H be the family of all graphs which are the disjoint unions of two cycles.
Then every n-array with n ≥ 4 contains a graph in H, while it is proved in [3]
that there are 3-clean H-free graphs of arbitrarily large treewidth.

• Let H be the family of all subdivisions of K2,3, also known as the thetas. Then it
is readily observed that every n-array with n ≥ 3 contains a theta, whereas it is
proved in [17] that the class of theta-free graphs is not clean.

It turns out that what allows these counterexamples to occur is the fact that the
corresponding family H of graphs that we are forbidding is infinite. Our main result in
this paper shows for a finite set H of graphs, the necessary condition from Observation 1.3
is in fact sufficient:

Theorem 1.4. Let H be a finite set of graphs. Then the class of all H-free graphs is clean
if and only if there are only finitely many n ∈ N for which there is an H-free n-array.

This may also be regarded as a natural strengthening of the main result from [1], which
handles the special case where H is a singleton:

Theorem 1.5 (Abrishami, Alecu, Chudnovsky, Hajebi and Spirkl [1]). Let H be a graph.
Then the class of all H-free graphs is clean if and only if every component of H is a
subdivided star, that is, a tree with at most one vertex of degree more than two.

1.1. Tassels and tasselled families. Note that by Observation 1.3, we only need to
prove the “if” implication of Theorem 1.4. To that end, we find it technically most
convenient to reformulate the “if” implication in terms of “the columns of the arrays,”
which we refer to as “tassels.”

Let us make this precise. A strand is a graph F obtained from a path P by adding a
new vertex x with at least one neighbor in P , and we say F is a c-strand, for c ∈ N, if x
is not adjacent to the first and last c vertices of P . We call x and P the neck of F and
the path of F , respectively. For c ∈ N, by a c-tassel we mean a graph T obtained from
at least c pairwise disjoint copies of a c-strand F by identifying their necks into a single
vertex, called the neck of T . We also refer to each copy of F in T as a strand of T , and
to the path of each copy of F as a path of T (see Figure 4).

We say that a family H of graphs is tasselled if there is a constant c = c(H) ∈ N
with the property that for every c-tassel T there is H ∈ H such that T contains each
component of H. Also, if H is finite, we define ||H|| =

∑
H∈H |V (H)|. It follows that:

Theorem 1.6. Let H be a finite set of graphs such that there is no H-free n-array except
possibly for finitely many n ∈ N. Then H is tasselled.

Proof. By the assumption, there exists n0 ∈ N such that there is no H-free n-array for
any n ≥ n0. Let c = max{n0, ||H||}. In order to prove that H is tasselled, we show that
for every c-tassel T , there is a graph H ∈ H such that T contains each component of H.

Let d ≥ c be the number of paths of T . Construct an d-array A as follows. Start with
d pairwise disjoint copies T1, . . . , Td of T . For each i ∈ Nd, let xi be the neck of Ti and
fix an enumeration P i

1, . . . , P
i
d of the paths of Ti. For every i, j ∈ Nd, fix a labelling ui

j, v
i
j
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Figure 4. Left: a 3-strand F with neck x and path P . Right: a 3-tassel
T with neck x and paths P1, P2, P3, obtained from three copies of F as its

strands.
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Figure 5. The 3-array A as described in the proof of Theorem 1.6,
obtained from three copies T1, T2, T3 of the 3-tassel T in Figure 4.

of the ends of P i
j . Then, for every i ∈ Nd−1 and every j ∈ Nd, add an edge between ui

j

and vi+1
j (see Figure 5).

Since A is an d-array with d ≥ c ≥ n0, it follows that A is not H-free, and so we may
choose a graph H ∈ H which is contained in A.

Let K be a component of H. Our goal is to show that K is contained in T . This is
immediate if K is a path, because |K| ≤ ||H|| ≤ c and T is a c-tassel. Thus, we may
assume that K is not a path. Since H is contained in A, it follows that some induced
subgraph K ′ of A is isomorphic to K. In particular, K ′ is a connected graph on at most
||H|| vertices which is not a path. Also, from the construction of A, it is readily observed
that the necks x1, . . . , xd of T1, . . . , Td are pairwise at distance at least 2c+3 > ||H|| ≥ |K ′|
in G. Consequently, there exists exactly one i ∈ Nd for which xi belongs to V (K ′).

Now, since K ′ is connected, it follows that for every component P of K ′ \ {xi}, we
have P ⊆ V (A) \ {x1, . . . , xd} and xi has a neighbor in P . This, along with the fact that
P is connected and |P | < ||H|| ≤ c, implies that P ⊆ P i

j ⊆ Ti \ {xi} for some j ∈ Nd.
In conclusion, we have shown that K ′ \ {xi} ⊆ Ti \ {xi}, and so K ′ ⊆ Ti. Hence, K is
contained in T , as desired. ■

In view of Theorem 1.6, in order to prove Theorem 1.4, it suffices to show that:

Theorem 1.7. Let H be a finite set of graphs which is tasselled. Then the class of H-free
graphs is clean.

The rest of the paper is devoted to the proof of Theorem 1.7, which is completed in
Section 7. Note also that Theorems 1.6 and 1.7 combined with Observation 1.3 imply
the following (see also Figure 6).

Corollary 1.8. The following are equivalent for every finite set H of graphs.
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Figure 6. Corollary 1.8

• There is no H-free n-array except possibly for finitely many n ∈ N.
• H is tasselled.
• The class of all H-free graphs is clean.

1.2. Outline. To prove the Theorem 1.7, we proceed as follows. First, in Section 2, we
show that a finite family is tasselled if and only if it is “hassled,” which is described by
containment not in a c-tassel, but in a less restricted c-hassle: while similar to a tassel, the
paths are replaced by walks such that any short stretch is an induced path, the adjacency
from the neck to the walks need not be the same, and we may have edges between walks.

Then, our goal is to show that t-clean graphs of large treewidth contain c-hassles. To
do so, we start with some preliminary Ramsey-type results in Section 3. In Section 4, we
show that in “blocks,” which are sets of vertices with pairwise many paths between them,
we can arrange that those paths are long. This is useful for getting many long induced
paths, which will form part of our c-hassles.

In Section 5, we get a structure of large treewidth consisting of one of the following:
• A large set of paths, and a large set of vertices, each with a neighbor in every

path; or
• Two large sets of paths such that each path in one set has an edge to each path

in the other, but no vertex has neighbors in many paths.
In Section 6, we show how each of these configurations leads to a c-hassle. In the former
case, this is almost immediate, whereas the latter case is more involved: we find a block
whose vertex set is contained in the union of the paths, and leverage the interaction
between the two structures, along with the fact that blocks are long, to find our c-hassle.

In Section 7, we put everything together and prove our main result.

2. Hassled families

In this section, we introduce the notion of a “hassled family” as a variant of tasselled
families, and show that for finite families of graphs, these two properties are in fact
equivalent. This in turn reduces Theorem 1.7 to: for every finite and hassled family
H of graphs, the class of all H-free graphs is clean. The remainder of this paper is
then occupied with a proof of the latter statement, which will appear as Theorem 7.1
in Section 7. In order to define hassled families, first we need another notion, that of a
“c-hassle,” which is similar to a c-tassel except its paths are replaced by walks that are
“locally” isomorphic to a path, and, up to sparsity, there may be additional edges between
these walks.
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Figure 7. A 3-stretched walk W with nW = 11 and φW (i) = wi for all
i ∈ N11.

Let us define all this formally. Let n ∈ N and let P be an n-vertex path (as a graph).
Then we write P = p1- · · · -pn to mean that V (P ) = {p1, . . . , pn} and pi is adjacent to
pj if and only if |i − j| = 1. We call the vertices p1 and pn the ends of P , and refer to
P \ {p1, pn} as the interior of P , denoted P ∗. For vertices u, v ∈ V (P ), we denote by
u-P -v the subpath of P from u to v. Recall that the length of a path is the number of
edges in it.

Let G be a graph. A path in G is an induced subgraph of G which is a path. For
X, Y ⊆ V (G). We say X is complete to Y in G if every vertex of X is adjacent to every
vertex in Y , and we say X and Y are anticomplete in G if there is no edge in G with an
end in X and an end in Y . If x ∈ V (G), we say x is complete (anticomplete) to Y if {x}
and Y are complete (anticomplete) in G.

For n ∈ N∪{0}, by an n-segment we mean a set S of at most n consecutive integers; in
particular, Nn is an n-segment. A graph W is a walk if there is nW ∈ N and a surjective
map φW : NnW

→ V (W ) such that for every i ∈ NnW−1, we have φW (i)φW (i + 1) ∈
E(W ) (one may in fact observe that a graph W is a walk if and only if it is connected).
Given a walk W along with choices of nW and ϕW , for c ∈ N, we refer to φW (Nc) and
φW (NnW

\ NnW−c) as the first c vertices of W and the last c vertices of W , respectively.
We also say W is c-stretched if φW (S) is a path in W for every c-segment S ⊆ NnW

(see
Figure 7 – intuitively, this means a snake of length c− 1 traversing through W can never
see/hit itself).

We now define a c-hassle, where c ∈ N, to be a graph Ξ obtained from at least c pairwise
disjoint c-stretched walks, called the walks of Ξ, by adding edges arbitrarily between the
walks, and then adding a vertex x, called the neck of Ξ, which has a neighbor in each
walk and which is anticomplete to the first and last c vertices of each walk (see Figure 8).

For a family H of graphs, we say H is hassled if for every t ∈ N, there is c = c(H, t) ∈ N
with the property that for every (Kt+1, Kt,t)-free c-hassle T there exists H ∈ H such
that T contains every component of H. In particular, observe that every c-tassel is a
(K4, K3,3)-free c-hassle, and so every hassled family is tasselled. More importantly, for
finite families, the converse is also true:

Theorem 2.1. Let H be a finite set of graphs. Then H is tasselled if and only if H is
hassled.
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x

W3W2W1

Ξ

Figure 8. A 3-hassle Ξ with neck x, where the walks W1,W2,W3 of Ξ
are three copies of the 3-stretched walk W from Figure 7.

The goal of this section is to prove Theorem 2.1, beginning with two lemmas:

Lemma 2.2. Let b, c, k ∈ N, let T be a family of c-tassels, each with exactly c paths,
such that |T | ≥ bkck. For each T ∈ T , let xT be the neck of T and fix an enumeration
P T
1 , . . . , P

T
c of the paths of T . Let K be a connected graph on at most k vertices which

is not a path, and assume that for every T ∈ T , there is an isomorphism fT from K to
an induced subgraph of T ; in particular, T contains K. Then there exist x′ ∈ V (K) and
T ′ ⊆ T with |T ′| = b for which the following hold.

(a) For every T ∈ T ′, we have fT (x
′) = xT .

(b) For every component L of K \ {x′}, there exists i(L) ∈ {1, . . . , c} such that for
every T ∈ T ′, we have fT (L) ⊆ P T

i(L).

Proof. For each T ∈ T , since K is not a path and fT is an isomorphism, it follows that
there is a unique vertex x′

T ∈ V (K) such that fT (x′
T ) = xT . Also, since K has at most k

vertices, it follows that:

(1) There exist x′ ∈ V (K) and T1 ⊆ T with |T1| = bck such that for every T ∈ T1, we
have fT (x

′) = xT .

By (1), for each T ∈ T1 and every component L of K \{x′}, we have fT (L) ⊆ T \{xT},
which in turn implies that there exists i(L, T ) ∈ Nc for which we have fT (L) ⊆ P T

i(L,T ).
Now, since K \ {x′} has at most k components and since |T1| ≥ bck, it follows that there
exists T ′ ⊆ T1 ⊆ T with |T ′| = b, as well as i(L) ∈ Nc for every component L of K \{x′},
such that for each T ∈ T ′, we have i(L, T ) = i(L). Hence, x′ and T ′ satisfy 2.2(b).
Moreover, from (1), it follows that x′ and T ′ satisfy 2.2(a), as desired. ■

Lemma 2.3. For every finite and tasselled set H of graphs, there is a constant ξ =
ξ(H) ∈ N with the following property. For every ξ-hassle Ξ with neck x, there is a graph
H ∈ H such that for every component K of H, one of the following holds.

(a) K is a path.
(b) There exists x′ ∈ V (K) and a map f : V (K) → V (Ξ) with f−1({x}) = {x′}, such

that for every component L of K \ {x′}, the restriction of f to {x′} ∪ L is an
isomorphism from K[{x′} ∪ L] to Ξ[{x} ∪ f(L)].

Proof. Since H is tasselled, it follows that there is a constant c = c(H) ∈ N with the
property that for every c-tassel T there is H ∈ H such that T contains every component
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x

Figure 9. Left: the walk W with nW = 11 and φW (j) = wj for all
i ∈ N11. Right: the path PW

i with gWi (pj) = j for all j ∈ N11. Observe
that for every j ∈ N11, we have φW (gWi (pj)) = wj, and xW is adjacent to

pj in TW if and only if x is adjacent to wj in Ξ.

of H. We claim that

ξ = ξ(H) = ||H||21c||H||+1

satisfies the lemma. To see this, let Ξ be a ξ-hassle with neck x, and let W be the
collection of all walks of Ξ. Recall that each walk in Ξ is ξ-stretched.

For each W ∈ W , let nW and φW be as in the definition of a walk, and construct a
c-tassel TW as follows. Let PW

1 , . . . , PW
c be c pairwise disjoint and anticomplete paths,

each on nW vertices, and for every i ∈ Nc, choose a bijection gWi : V (PW
i ) → NnW

such
that p, p′ ∈ V (PW

i ) are adjacent in PW
i if and only if |gWi (p) − gWi (p′)| = 1 (note that

there are only two such bijections). Let TW be the graph obtained from PW
1 , . . . , PW

c by
adding a vertex xW such that for every i ∈ Nc and every p ∈ V (PW

i ), the vertex xW is
adjacent to p in TW if and only if x is adjacent to φW (gWi (p)) in Ξ (see Figure 9).

Note that for every W ∈ W , in the graph Ξ, the vertex x has a neighbor in W and no
neighbor among the first and last ξ vertices of W . In particular, from the construction
and the fact that ξ ≥ c, it follows that for every i ∈ Nc, x has a neighbor in PW

i and no
neighbor among the first and last c vertices of PW

i . Thus, for every W ∈ W , the graph
TW is a c-tassel with neck xW and paths PW

1 , . . . , PW
c .

Also, since H is tasselled, it follows from the choice of c that for every W ∈ W there
exists H ∈ H such that the c-tassel TW contains every component of H. Consequently,
since |W| ≥ ξ and |H| ≤ ||H||, it follows that there exists H ∈ H and W ′ ⊆ W with
|W ′| = ||H||c||H||+1 such that for every W ∈ W ′, the c-tassel TW contains every component
of H.

We now prove that H satisfies 2.3. Let K be a component of H which is not a path.
We wish to show that K satisfies 2.3(b). Note that for every W ∈ W ′, the c-tassel
TW contains K, and so there is an isomorphism fW from K to an induced subgraph
of TW . This allows for an application of Lemma 2.2 to T = {TW : W ∈ W ′} and
K. Since |V (K)| ≤ |V (H)| ≤ ||H||, we deduce that there exists x′ ∈ V (K) as well as
W1, . . . ,Wc ∈ W ′, such that x′ and T ′ = {TW1 , . . . , TWc} satisfy Lemma 2.2(a) and (b).
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Figure 10. The map f : V (K) → V (Ξ). For each j ∈ N4, we have
fi(L)(yj) = pj+5, which yields f(yj) = wj+5.

Henceforth, for each j ∈ Nc, we write

Tj = TWj
; xj = xWj

; fj = fWj
; nj = nWj

; φj = φWj
.

Also, for i, j ∈ Nc, we write
Pi,j = P

Wj

i ; gi,j = g
Wj

i .

The outcomes of Lemma 2.2 can now be rewritten as:

(2) The following hold.
• For every j ∈ Nc, we have fj(x

′) = xj.
• For every component L of K \ {x′}, there exists i(L) ∈ {1, . . . , c} such that for

every j ∈ Nc, we have fj(L) ⊆ Pi(L),j.

On the other hand, since |K| ≤ |H| ≤ ||H|| ≤ ξ, it follows that every component of
K \ {x′} is a path on less than ξ vertices. This, combined with the second bullet of (2),
yields the following:

(3) For every j ∈ Nc and every component L of K \ {x′}, there exists a ξ-segment
Sj,L ⊆ Nnj

for which we have fj(L) = g−1
i(L),j(Sj,L) ⊆ Pi(L),j.

Let us now finish the proof. Define a map f : V (K) → V (Ξ) as follows. Let f(x′) = x,
and for every component L of K \ {x′} and every y ∈ L, let

f(y) = φi(L)(gi(L),i(L)(fi(L)(y))).
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See Figure 10. We prove that f satisfies Lemma 2.3(b). Let L be a component of
K \ {x′}. By (3), we have f(L) = φi(L)(Si(L),L) ⊆ Wi(L) ⊆ V (Ξ) \ {x}, and so we
have f−1({x}) = {x′}. This, along with the assumption that Wi(L) is a ξ-stretched
walk, implies that f(L) is a path in Wi(L). In particular, the restriction of f to L is an
isomorphism from K[L] to Ξ[f(L)].

It remains to show that for every y ∈ L, the vertices x′, y are adjacent in K if and only
if x, f(y) are adjacent in Ξ. To that end, note that since fi(L) is an isomorphism from K
to an induced subgraph of Ti(L), it follows from the first bullet of (2) that x′ is adjacent
to y in K if and only if fi(L)(x′) = xi(L) is adjacent to fi(L)(y) ∈ Pi(L),i(L) in Ti(L). In
addition, from the definition of Ti, it follows that xi(L) is adjacent to fi(L)(y) ∈ Pi(L),i(L)

in Ti(L) if and only if x is adjacent to φi(L)(gi(L),i(L)(fi(L)(y))) = f(y) in Ξ. This completes
the proof of Lemma 2.3. ■

We also need the following well-known result.

Lemma 2.4 (See Lemma 2 in [11]). For all q, r, t ∈ N there is a constant ∆ = ∆(q, r, t) ∈
N with the following property. Let G be a (Kt+1, Kt,t)-free graph. Let X be a collection
of pairwise disjoint subsets of V (G), each of cardinality at most r, with |X | ≥ ∆. Then
there are q distinct sets X1, . . . , Xq ∈ X which are pairwise anticomplete in G.

We can now prove Theorem 2.1, which we restate:

Theorem 2.1. Let H be a finite set of graphs. Then H is tasselled if and only if H is
hassled.

Proof. The “if” implication is clear as discussed at the beginning of this section. To prove
the “only if” implication, assume that H is a finite set of graphs which is tasselled. Let
ξ = ξ(H) ∈ N be as in Lemma 2.3. For every t ∈ N, let ∆ = ∆(||H||, ||H||, t) be as in
Lemma 2.4, and let

c = c(H, t) = ξ∆||H||21.
We prove that for every (Kt+1, Kt,t)-free c-hassle Ξ, there exists a graph H ∈ H such that
Ξ contains each component of H. This will show that H is hassled.

Let x be the neck of Ξ. By the choice of c, we may choose a set W of ∆||H||21 pairwise
disjoint families of walks of Ξ, each of cardinality ξ. It follows that for every W ∈ W,
the graph ΞW = Ξ[{x}∪ (

⋃
W∈W V (W ))] is a ξ-hassle with neck x, and with W as its set

of walks.
Since H is tasselled, and by the choice of ξ, for each W ∈ W, we can apply Lemma 2.3

to H and ΞW , and obtain a graph HW ∈ H satisfying Lemma 2.3(a) and (b). Moreover,
since |H| ≤ ||H|| and |W| = ∆||H||2, it follows that there exist H ∈ H and X ⊆ W with
|X| = ∆||H|| such that for every W ∈ X, we have HW = H. More explicitly, for every
component K of H, one of the following holds.

• K is a path.
• For every W ∈ X, there exists x′

W ∈ V (K) and an injective map fW : V (K) →
V (ΞW) with f−1({x}) = {x′

W}, such that for every component L of K \ {x′
W},

the restriction of fW to {x′
W}∪L is an isomorphism from K[{x′

W}∪L] to Ξ[{x}∪
fW(L)].

To conclude the proof, it suffices to show that Ξ contains every component K of H.
Assume that K is a path. Since Ξ is a c-hassle, it follows that Ξ contains a path on c
vertices. But now we are done because |K| ≤ ||H|| ≤ c. Consequently, we may assume
that K is not a path, and so the second bullet above holds for K and every W ∈ X. In
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addition, from |K| ≤ ||H|| and |X| = ∆||H||, it follows that there exist x′ ∈ V (K) and
Y ⊆ X with |Y| = ∆ such that for every W ∈ Y, we have x′

W = x′.
On the other hand, {fW(K\{x′}) : W ∈ Y} is a collection of ∆ pairwise disjoint subsets

of Ξ\{x}, each of cardinality less than |K| ≤ ||H||. This, along with the choice of ∆ and
the assumption that Ξ is (Kt+1, Kt,t)-free, allows for an application of Lemma 2.4. We
deduce that:

(4) There exist W1, . . . ,W||H|| ∈ Y for which the sets fW1(K\{x′}), . . . , fW||H||(K\{x′}) ⊆
Ξ \ {x} are pairwise anticomplete in Ξ.

Now, let L1, . . . , Lk be an enumeration of the components of K \ {x′}; then we have
k < |K| ≤ ||H||. Let W1, . . . ,Wk ∈ Y be as in (4). By the second bullet above, for
each i ∈ Nk, the restriction of fWi

to {x′} ∪ Li is an isomorphism from K[{x′} ∪ Li] and
Ξ[{x}∪ fWi

(Li)] with f−1
Wi

({x}) = {x′}. Moreover, by (4), the sets {fWi
(Li) : i ∈ Nk} are

pairwise disjoint and anticomplete in Ξ. Hence, K is isomorphic to

Ξ

[
{x} ∪

(
k⋃

i=1

fWi
(Li)

)]
.

This completes the proof of Theorem 2.1. ■

3. A lemma about pairs of sets of vertices

We now begin to make our way to the proof of Theorem 7.1. In particular, here we
prove a Ramsey-type result that we will use several times later. We need the following
product version of Ramsey’s Theorem.

Theorem 3.1 (Graham, Rothschild and Spencer [9]). For all n, q, r ∈ N, there is a
constant ν(n, q, r) ∈ N with the following property. Let U1, . . . , Un be n sets, each of
cardinality at least ν(n, q, r) and let W be a non-empty set of cardinality at most r. Let
Φ be a map from the Cartesian product U1 × · · · ×Un to W . Then there exist i ∈ W and
Zj ⊆ Uj with |Zj| = q for each j ∈ Nn, such that for every z ∈ Z1 × · · · × Zn, we have
Φ(z) = i.

For an induced subgraph H of a graph G and a vertex x ∈ V (G), we denote by NH(x)
the set of all neighbors of x in H, and write NH [x] = NH(x) ∪ {x}. Let U be a set and
let a ∈ N ∪ {0}. An a-pair over U is a pair (A,B) of subsets of U with |A| ≤ a. Two
a-pairs (A,B), (A′, B′) are said to be disjoint if B ∩B′ = ∅.

Lemma 3.2. For all a, b ∈ N ∪ {0} and m ∈ N, there is a constant Υ = Υ(a, b,m) ∈ N
with the following property. Let G be a graph. Let B1, . . . ,Bm be collections of pairwise
disjoint a-pairs over V (G), each of cardinality at least Υ. Then for every i ∈ Nm, there
exists B′

i ⊆ Bi with |B′
i| ≥ b such that for all distinct i, j ∈ Nm, the following hold.

(a) We have Ai ∩Bj = ∅ for all (Ai, Bi) ∈ B′
i and (Aj, Bj) ∈ B′

j.
(b) Either Ai is anticomplete to Bj in G for all (Ai, Bi) ∈ B′

i and (Aj, Bj) ∈ B′
j, or

for every (Ai, Bi) ∈ B′
i, there exists xi ∈ Ai such that xi has a neighbor in Bj for

every (Aj, Bj) ∈ B′
j.

Proof. We prove that
Υ(a, b,m) = ν(m,max{b, 2}, 22am2

);
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satisfies the theorem, where ν(·, ·, ·) is as in Theorem 3.1. Let B = B1 ∪ · · · ∪ Bm. For
every a-pair (A,B) ∈ B, fix an enumeration A = {xi

A : i ∈ N|A|} of the elements of A;
recall that |A| ≤ a. For every two a-pairs (A,B), (A′, B′) ∈ B, let

I1(A,B
′) = {i ∈ N|A| : x

i
A ∈ B′} ⊆ Na;

I2(A,B
′) = {i ∈ N|A| : NG(x

i
A) ∩B′ ̸= ∅} ⊆ Na.

Let M be the set of all m-by-m matrices whose entries are subsets of Na; so we have
|M| = 2am

2 . Consider the product Π = B1×· · ·×Bm. For every z = ((A1, B1), · · · , (Am, Bm)) ∈
Π, define M1(z),M2(z) ∈M such that for all i, j ∈ Nm, we have

[M1(z)]ij = I1(Ai, Bj);

[M2(z)]ij = I2(Ai, Bj).

It follows that for every z ∈ Π, M1(z),M2(z) are unique, and so the map Φ : Π →M2 with
Φ(z) = (M1(z),M2(z)) is well-defined. This, along with the choice of Υ and Theorem 3.1,
implies that there exists B′

i ⊆ Bi with |Bi| ≥ max{b, 2} ≥ 2 for each i ∈ Nm, as well as
M1,M2 ∈M, such that for every z ∈ B′

1×· · ·×B′
m, we have M1(z) = M1 and M2(z) = M2.

Moreover, we deduce:

(5) Let i, j ∈ Nm be distinct. Then we have Ai ∩ Bj = ∅ for all (Ai, Bi) ∈ B′
i and

(Aj, Bj) ∈ B′
j

Suppose for a contradiction that there are distinct i, j ∈ Nm such that for some
(Ai, Bi) ∈ B′

i and (Aj, Bj) ∈ B′
j, we have Ai∩Bj ̸= ∅. Then we have I1(Ai, Bj) ̸= ∅. Also,

since |B′
j| ≥ max{b, 2} ≥ 2, we may choose (A′

j, B
′
j) ∈ B′

j \ {(Aj, Bj)}. It follows that
I1(Ai, Bj) = [M1]ij = I1(Ai, B

′
j) is non-empty. But then Bj ∩ B′

j ̸= ∅, a contradiction
with the assumption that (Aj, Bj), (A

′
j, B

′
j) ∈ B′

j ⊆ Bj are disjoint. This proves (5).

(6) Let i, j ∈ Nm be distinct. Then either Ai is anticomplete to Bj in G for all (Ai, Bi) ∈
B′
i and (Aj, Bj) ∈ B′

j, or for every (Ai, Bi) ∈ B′
i, there exists xi ∈ Ai such that xi has a

neighbor in Bj for every (Aj, Bj) ∈ B′
j.

Note that for all (Ai, Bi) ∈ B′
i and (Aj, Bj) ∈ B′

j, we have I2(Ai, Bj) = [M2]ij ⊆ Na. If
[M2]ij = ∅, then Ai is anticomplete to Bj in G for all (Ai, Bi) ∈ B′

i and (Aj, Bj) ∈ B′
j.

Otherwise, one may choose k ∈ [M2]ij, and so for each (Ai, Bi) ∈ B′
i, the vertex xi =

xk
Ai

∈ Ai has a neighbor in Bj for every (Aj, Bj) ∈ B′
j. This proves (6).

Now the result follows from (5) and (6). This completes the proof of Lemma 3.2. ■

4. Blocks

This section collects several results from the literature about “blocks” in t-clean graphs
of large treewidth. We begin with a couple of definitions. Given a set X and q ∈ N∪{0},
we denote by 2X the power set of X and by

(
X
q

)
the set of all q-subsets of X. Let G be

a graph. For a collection P of paths in G, we adopt the notation V (P) =
⋃

P∈P V (P )
and P∗ =

⋃
P∈P P ∗. Let k ∈ N. A k-block in G is a set B of at least k vertices in

G such that for every 2-subset {x, y} of B, there exists a collection P{x,y} of k pairwise
internally disjoint paths in G from x to y. In addition, we say B is strong if the collections
{P{x,y} : {x, y} ⊆ B} can be chosen such that for all distinct 2-subsets {x, y}, {x′, y′} of
B, we have V (P∗

{x,y}) ∩ V (P{x′,y′}) = ∅. In [1], with Abrishami we proved the following:
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Theorem 4.1 (Abrishami, Alecu, Chudnovsky, Hajebi and Spirkl [1]). For all k, t ∈ N,
there is a constant κ = κ(k, t) ∈ N such that every t-clean graph of treewidth more than
κ contains a strong k-block.

Given a graph G and d, k ∈ N, we say a (strong) k-block B in G is d-short if for every
2-subset {x, y} ⊆ B of G, every path P ∈ P{x,y} is of length at most d. The following
shows that large enough short blocks contain strong (and short) “sub-blocks.”

Theorem 4.2. For all d, k ∈ N, there is a constant υ = υ(d, k) with the following
property. Let G be a graph and let B be a d-short υ-block in G. Then every k-subset B′

of B is a d-short strong k-block in G.

Proof. Let υ = υ(d, k) = Υ(d + 1, k,
(
k
2

)
), where Υ(·, ·, ·) is as in Lemma 3.2. Let B0

be a d-short υ-block in G, and let B ⊆ B0 with |B| = k. It follows that for every
2-subset {x, y} of B, there is a collection P{x,y} of υ pairwise internally disjoint paths
in G, each of length at most d. Let B{x,y} = {(P, P ∗) : P ∈ P{x,y}}. Then B{x,y} is a
collection of υ pairwise disjoint (d + 1)-pairs over V (G). Thus, the choice of υ allows
for an application of Lemma 3.2 to the collections {B{x,y} : {x, y} ∈

(
B
2

)
}. We deduce

that for every {x, y} ∈
(
B
2

)
, there exists Q{x,y} ⊆ P{x,y} with |Q{x,y}| ≥ k, such that for

all distinct {x, y}, {x′, y′} ∈
(
B
2

)
, the collections B′

{x,y} = {(P, P ∗) : P ∈ Q{x,y}} ⊆ B{x,y}

and B′
{x′,y′} = {(P, P ∗) : P ∈ Q{x′,y′}} ⊆ B{x′,y′} satisfy the outcomes of Lemma 3.2. In

particular, for all distinct {x, y}, {x′, y′} ∈
(
B
2

)
, it follows from Lemma 3.2(a) that for

every P ∈ Q{x,y} and every P ′ ∈ Q{x′,y′}, we have P ∗ ∩ P ′ = ∅. Equivalently, we have
V (Q∗

{x,y}) ∩ V (Q{x′,y′}) = ∅. Hence, B is a d-short strong k-block in G with respect to
{Q{x,y} : {x, y} ∈

(
B
2

)
}}. This completes the proof of Theorem 4.2. ■

Recall that a subdivision of a graph H is a graph H ′ obtained from H by replacing
the edges of H with pairwise internally disjoint paths of non-zero lengths between the
corresponding ends. Let r ∈ N∪{0}. An (≤ r)-subdivision of H is a subdivision of H in
which the path replacing each edge has length at most r + 1. Also, a proper subdivision
of H is a subdivision of H in which the path replacing each edge has length at least two.
We need the following immediate corollary of a result of [7]:

Theorem 4.3 (Dvořák [7]). For every graph H and all d ∈ N ∪ {0} and t ∈ N, there
is a constant m = m(H, d, t) ∈ N with the following property. Let G be a graph with no
induced subgraph isomorphic to a subdivision of H. Assume that G contains a (≤ d)-
subdivision of Km as a subgraph. Then G contains either Kt+1 or Kt,t.

From Theorems 4.2 and 4.3 together, we deduce that:

Theorem 4.4. For all d, t ∈ N, there is a constant η = η(d, t) ∈ N with the following
property. Let G be a t-clean graph. Then there is no d-short η-block in G.

Proof. Let m = m(Wt×t, d, t) ∈ N be as in Theorem 4.3. We show that η = η(d, t) =
max{υ(d,m),m} satisfies the theorem, where υ(·, ·) is as in Theorem 4.2. Let G be a t-
clean graph; that is, G has no induced subgraph isomorphic to a t-basic obstruction, and
in particular a subdivision of Wt×t. Suppose for a contradiction that there is a d-short
η-block B in G. Since |B| ≥ m, we may choose B′ ⊆ B with |B′| = m. It follows from
Theorem 4.2 that B′ is a d-short strong m-block in G. For every 2-subset {x, y} of B′,
let P{x,y} be a collection of m ∈ N pairwise internally disjoint paths in G from x to y as
in the definition of a strong m-block, and fix a path P{x,y} ∈ P{x,y}. Now the union of the
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S

L

W \W ′

W ′

Figure 11. A 6-polypath W which is 3-fancy and 2-loose (left) and a
(3, 3)-constellation (S,L) which is 2-ample (right).

paths P{x,y} for all {x, y} ∈
(
B′

2

)
forms a subgraph of G isomorphic to a (≤ d)-subdivision

of Km. This, together with the choice of m and the assumption that G is t-clean, violates
Theorem 4.3. This contradiction completes the proof of Theorem 4.4. ■

5. Obtaining complete bipartite minor models

The main result of this section, Theorem 5.1, shows that t-clean graphs of sufficiently
large treewidth contain large complete bipartite minor models in which every “branch set”
is a path, such that for every branch set P on at least two vertices, each vertex in P has
neighbors in only a small number of branch sets in the “opposite side” of the bipartition.
The exact statement of 5.1 is somewhat technical and involves a number of definitions
which we give below.

Let G be a graph. For w ∈ N, a w-polypath in G is a set W of w pairwise disjoint
paths in G. Let W be a w-polypath in G. For d ∈ N, we say W is d-loose if for every
W ∈ W , each vertex v ∈ W has neighbors (in G) in fewer than d paths in W \{W} (this
is particular implies that a vertex of “large degree” has “most” of its neighbors on just one
path; we will use this property extensively in Section 6). Also, for w′ ∈ Nw, we say W is
w′-fancy if there exists W ′ ⊆ W with |W ′| = w′ such that for every W ′ ∈ W ′ and every
W ∈ W \W ′, W ′ is not anticomplete to W in G. It follows that if W is a w-polypath in
G which is w′-fancy, then G[V (W)] has a Kw′,w−w′-minor (see Figure 11).

For s, l ∈ N, an (s, l)-cluster in G is a pair (S,L) where S ⊆ V (G) with |S| = s and
L is an l-polypath in G \ S, such that every vertex x ∈ S has at least one neighbor in
every path L ∈ L. If l = 1, say L = {L}, we also denote the (s, 1)-cluster (S,L) by
the pair (S, L). For d ∈ N, we say (S,L) is d-meager if every vertex in V (L) has fewer
than d neighbors in S. Again, it is easily seen that if (S,L) is an (s, l)-cluster in G, then
G[S ∪ V (L)] has a Ks,l-minor (see Figure 11).

Our goal is to prove:

Theorem 5.1. For all c, l, s, t, w ∈ N, there is a constant γ = γ(c, l, s, t, w) ∈ N with the
following property. Let G be a t-clean graph of treewidth more than γ. Then one of the
following holds.

(a) There exists a tt-meager (s, l)-cluster in G.
(b) There exists a 2w-polypath in G which is both w-fancy and (l + ttst

t
)-loose.

The proof of Theorem 5.1 is split into a number of lemmas. To begin with, we need
the following multicolor version of Ramsey’s Theorem for (uniform) hypergraphs.



16 INDUCED SUBGRAPHS AND TREE DECOMPOSITIONS XIII.

Theorem 5.2 (Ramsey [13]). For all n, q, r ∈ N, there is a constant ρ(n, q, r) ∈ N with
the following property. Let U be a set of cardinality at least ρ(n, q, r) and let W be a
non-empty set of cardinality at most r. Let Φ :

(
U
q

)
→ W be a map. Then there exist

i ∈ W and Z ⊆ U with |Z| = n such that for every A ∈
(
Z
q

)
, we have Φ(A) = i.

For graphs (and two colors), it is also convenient to use a quantified version of Ramsey’s
classical result (recall that a stable set is a set of pairwise non-adjacent vertices).

Theorem 5.3 (Ramsey [13]). For all c, s ∈ N, every graph G on at least sc vertices
contains either a clique of cardinality c+ 1 or a stable set of cardinality s.

From Theorem 5.2, we deduce:

Lemma 5.4. For all l, q, s ∈ N, there is a constant σ = σ(l, q, s) ∈ N with the following
property. Let G be a graph and let P be a σ-polypath in G. Then one of the following
holds.

(a) There exists an (s, l)-cluster (S,L) in G such that S ⊆ V (P) and L ⊆ P.
(b) There exists an l-loose q-polypath Q in G with Q ⊆ P.

Proof. We claim that
σ = σ(l, q, s) = ρ(max{l + s, q}, l + 1, 2l+1)

satisfies the lemma, where ρ(·, ·, ·) comes from Theorem 5.2.
Assume that 5.4(a) does not hold. Fix an enumeration P = {P1, . . . , Pσ} of the ele-

ments of P . For every (l + 1)-subset T = {t1, . . . , tl+1} of Nσ with t1 < · · · < tl+1, let
Φ(T ) ⊆ Nl+1 be the set of all i ∈ Nl+1 for which there exists a vertex xti ∈ Pti that has
a neighbor in Ptj for every j ∈ Nl+1 \ {i}. It follows that the map Φ :

(Nσ

l+1

)
→ 2Nl+1

is well-defined. Therefore, by the choice of σ, we can apply Theorem 5.2 and obtain
Z ⊆ Nσ with |Z| = max{l + s, q} as well as F ⊆ Nl+1 such that for every I ∈

(
Z
l+1

)
, we

have Φ(I) = F . Now we claim that:

(7) F is empty.

Suppose not. Then we may choose f ∈ F ⊆ Nl+1. Since |Z| ≥ l+s, it follows that there
exist I, J,K ⊆ Z with |I| = f − 1, |J | = s and |K| = l− f + 1, such that max I < min J
and max J < minK. For every j ∈ J , define Tj = I ∪ {j} ∪K; it follows that Tj ∈

(
Z
l+1

)
and j is the f th smallest element of Tj. In particular, for every j ∈ J , we have Φ(Tj) = F
and so f ∈ Φ(Tj), which in turn implies that there is a vertex xj ∈ Pj that has a neighbor
in Pt for every t ∈ Tj \ {j} = I ∪K. Let S = {xj : j ∈ J} and let L = {Pt : t ∈ I ∪K}.
Then |S| = s, L is an l-polypath in G \ S, and every vertex in S has a neighbor in every
path in L. But now (S,L) is an (s, l)-cluster in G satisfying 5.4(a), a contradiction. This
proves (7).

Since |Z| ≥ q, we may choose Q ⊆ Z with |Q| = q. Let Q = {Pi : i ∈ Q}. Then Q is
a q-polypath in G with Q ⊆ P , and by (7), Q is l-loose. Hence, Q satisfies 5.4(b). This
completes the proof of Lemma 5.4. ■

The following two lemmas have similar proofs:

Lemma 5.5. Let l, s, t ∈ N, let G be a graph and let (S,L0) be an (s, l+ ttst
t
)-cluster in

G. Then one of the following holds.
(a) G contains Kt+1 or Kt,t.
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(b) There exists L ⊆ L0 with |L| = l such that (S,L) is a tt-meager (s, l)-cluster in
G.

Proof. Suppose that 5.5(a) does not hold. For every L ∈ L0, let tL be the largest integer
in Ns for which there exists a vertex uL ∈ L with at least tL neighbors in S. It follows
that:

(8) We have |{L ∈ L0 : tL ≥ tt}| < ttst
t.

Suppose not. Let S ⊆ {L ∈ L0 : tL ≥ tt} with |S| = ttst
t . Then for every L ∈ S,

we may choose uL ∈ L and TL ⊆ S such that |TL| = tt and uL is complete to TL in G.
Since |S| = s, it follows that there exist T ⊆ S and T ⊆ S such that |T | = |T | = tt,
and for every L ∈ T , we have TL = T . Let U = {uL : L ∈ T }. Then T is disjoint from
and complete to U in G. Also, since G is Kt+1-free and |T | = |U | = tt, it follows from
Theorem 5.3 that there are two stable sets T ′ ⊆ T and U ′ ⊆ U in G with |T ′| = |U ′| = t.
But then G[T ′ ∪ U ′] is isomorphic to Kt,t, a contradiction. This proves (8).

Now the result is immediate from (8) and the fact that |L0| = l+ ttst
t . This completes

the proof of Lemma 5.5. ■

Lemma 5.6. Let l, s, w ∈ N, let G be a graph and let Q,Q′ be ((s + 1)l+1wl2)-polypaths
in G with V (Q) ∩ V (Q′) = ∅. Then one of the following holds.

(a) There exists an (s, l)-cluster (S,L) in G such that either S ⊆ V (Q) and L ⊆ Q′,
or S ⊆ V (Q′) and L ⊆ Q.

(b) There exist W ⊆ Q and W ′ ⊆ Q′ with |W| = |W ′| = w such that every vertex in
V (W) has neighbors in fewer than l paths in W ′, and every vertex in V (W ′) has
neighbors in fewer than l paths in W.

Proof. Suppose 5.6(a) does not hold. Let r = swl + w. Then we have

(s+ 1)l+1wl2 = (s+ 1)((s+ 1)wl)l = s(swl + wl)l + (s+ 1)lwl2 ≥ srl + w ≥ r.

In particular, one may choose R′ ⊆ Q′ with |R′| = r. For every Q ∈ Q, let rQ be the
largest integer in Nr for which there exists a vertex pQ ∈ Q which has neighbors in at
least rQ paths in R′. It follows that:

(9) We have |{Q ∈ Q : rQ ≥ l}| < srl.

Suppose not. Let P ⊆ {Q ∈ Q : rQ ≥ l} with |P| = srl. Then for every Q ∈ P , we
may choose pQ ∈ Q and LQ ⊆ R′ such that |LQ| = l and pQ has a neighbor in every path
in LQ. Since |R′| = r, it follows that there exist L ⊆ R′ and S ⊆ P such that |L| = l,
|S| = s, and for every Q ∈ S, we have LQ = L. Let S = {pQ : Q ∈ S}; so we have
|S| = s. But now (S,L) is an (s, l)-cluster in G with S ⊆ V (S) ⊆ V (P) ⊆ V (Q) and
L ⊆ R′ ⊆ Q′, contrary to the assumption that 5.6(a) does not hold. This proves (9).

By (9) and since |Q| ≥ srl +w, we may choose W ⊆ Q with |W| = w such that every
vertex in V (W) has neighbors in fewer than l paths in R′.

Next, for every R ∈ R′, let wR be the largest integer in Nw for which there exists a
vertex qR ∈ R which has neighbors in at least wR paths in W .
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(10) We have |{R ∈ R′ : wR ≥ l}| < swl.

Suppose not. Let P ⊆ {R ∈ R′ : wR ≥ l} with |P| = swl. Then for every R ∈ P , we
may choose pR ∈ R and LR ⊆ W such that |LR| = l and pR has a neighbor in every path
in LR. Since |W| = w, it follows that there exist L ⊆ W and S ⊆ P such that |L| = l,
|S| = s, and for every R ∈ S, we have LR = L. Let S = {qR : R ∈ S}; so we have |S| = s.
But then (S,L) is an (s, l)-cluster in G with S ⊆ V (S) ⊆ V (P) ⊆ V (R′) ⊆ V (Q′) and
L ⊆ W ⊆ Q, contrary to the assumption that 5.6(a) does not hold. This proves (10).

In view of (10) and since |R′| = r = swl + w, we may choose W ′ ⊆ R′ ⊆ Q′ with
|W ′| = w such that every vertex in V (W ′) has neighbors in fewer than l paths in W .
Now W ,W ′ satisfy 5.6(b). This completes the proof of Lemma 5.6. ■

The last tool we need is a recent result from [10], the statement of which requires
another definition. Let G be a graph and let w ∈ N. By a w-web in G we mean a pair
(W,Λ) where

(W1) W is a w-subset of V (G);
(W2) Λ :

(
W
2

)
→ 2V (G) is a map such that for every 2-subset {x, y} of W , Λ({x, y}) =

Λ{x,y} is a path in G with ends x, y; and
(W3) for all distinct 2-subsets {x, y}, {x′, y′} of W , we have Λ{x,y} ∩ Λ{x′,y′} =

{x, y} ∩ {x′, y′}.
It follows that G has a subgraph isomorphic to a subdivision of Kw if and only if there
is a w-web in G. It is proved in [10] that:

Theorem 5.7 (Hajebi [10]). For all a, b, c, s ∈ N, there is a constant θ = θ(a, b, c, s) ∈ N
with the following property. Let G be a graph and let (W,Λ) be a θ-web in G. Then one
of the following holds.

(a) There exists A ⊆ W with |A| = a and a collection B of pairwise disjoint 2-subsets
of W \ A with |B| = b such that for every x ∈ A and every {y, z} ∈ B, x has a
neighbor in Λy,z.

(b) There are disjoint subsets C and C ′ of
(
W
2

)
with |C| = |C ′| = c such that for every

{x, y} ∈ C and every {x′, y′} ∈ C ′, Λ∗
{x,y} is not anticomplete to Λ∗

{x′,y′} in G.
(c) There exists S ⊆ W with |S| = s such that:

- S is a stable set in G;
- for any three vertices x, y, z ∈ S, x is anticomplete to Λ∗

y,z; and
- for all distinct 2-subsets {x, y}, {x′, y′} of S, Λ∗

{x,y} is anticomplete to Λ∗
{x′,y′}.

We are now in a position to prove our main result in this section, which we restate:

Theorem 5.1. For all c, l, s, t, w ∈ N, there is a constant γ = γ(c, l, s, t, w) ∈ N with the
following property. Let G be a t-clean graph of treewidth more than γ. Then one of the
following holds.

(a) There exists a tt-meager (s, l)-cluster in G.
(b) There exists a 2w-polypath in G which is both w-fancy and (l + ttst

t
)-loose.

Proof. Let b = l + ttst
t , let σ = σ(b, (s + 1)b+1wb2 , s) be as in Lemma 5.4 and let θ =

θ(s, b, σ, 2t2) be as in Theorem 5.7. We claim that

γ = γ(c, l, s, t, w) = κ(θ, t)

satisfies the theorem, where κ(·, ·) is as in Theorem 4.1.
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Let G be a t-clean graph of treewidth more than γ. Suppose 5.1(a) does not hold. This,
along with the choice of b, the assumption that G is t-clean, and Lemma 5.5, implies that:

(11) There is no (s, b)-cluster in G.

From the choice of γ and Theorem 4.1, we obtain a strong θ-block B in G. In particular,
for every 2-subset {x, y} of B, we may choose a path Λ{x,y} in G from x to y, such that
for all distinct 2-subsets {x, y}, {x′, y′} of B, we have Λ{x,y}∩Λ{x′,y′} = {x, y}∩{x′, y′}. It
follows that (B,Λ) is a θ-web in G, and so we can apply Theorem 5.7 to (B,Λ). Note that
Theorem 5.7(a) yields an (s, b)-cluster in G, which violates (11). Also, Theorem 5.7(c)
implies that G contains a proper subdivision of K2t2 (as an induced subgraph), which in
turn contains a proper subdivision of every graph on 2t2 vertices. But this violates the
assumption that G is t-clean because |V (Wt×t)| ≤ 2t2.

We conclude that Theorem 5.7(b) holds. In particular, there are two σ-polypaths
C, C ′ in G such that for every L ∈ C and every L′ ∈ C ′, L is not anticomplete to L′

in G. Now, from (11), the choice of σ and Lemma 5.4, it follows that there are two
b-loose ((s + 1)b+1wb2)-polypaths Q ⊆ C and Q′ ⊆ C ′ in G. Furthermore, from (11) and
Lemma 5.6, it follows that there exist W ⊆ Q and W ′ ⊆ Q′ with |W| = |W ′| = w such
that every vertex in V (W) has neighbors in fewer than b paths in W ′, and every vertex
in V (W ′) has neighbors in fewer than b paths in W . But now W ∪W ′ is a 2w-polypath
in G which is both w-fancy and b-loose, and so 5.1(b) holds. This completes the proof of
Theorem 5.1. ■

6. Dealing with complete bipartite minor models

Here we take the penultimate step of our proof by showing that:

Theorem 6.1. For all c, t ∈ N, there is a constant Γ = Γ(c, t) such that every t-clean
graph G of treewidth more than Γ contains a c-hassle.

From Theorem 5.1, we know that every t-clean graph of sufficiently large treewidth
contains, omitting the corresponding parameters, either a meager cluster or a polypath
which is both loose and fancy. So it suffices to prove Theorem 6.1 separately in each of
these two cases. First, we show:

Theorem 6.2. Let c, d ∈ N and let G be a graph. Assume that there is a d-meager
(2cd, 2c2d)-cluster in G. Then G contains a c-hassle.

Proof. Let (S,L) be a d-meager (2cd, 2c2d)-cluster in G. For every path P in G[V (L)],
let SP be the set of all vertices in S with a neighbor in P . For every L ∈ L and each end
u of L, let Lu be the longest path in L containing u such that |SLu | < cd; then u is an
end of Lu. It follows that:

(12) For every L ∈ L and every end u of L, we have |Lu| ≥ c.

Suppose for a contradiction that |Lu| ≤ c− 1. Then since (S,L) is d-meager, it follows
that |SLu| < (c− 1)d < |S|. Let v be the end of Lu other than u. Since |SLu| < |S| and
every vertex in S has a neighbor in L, it follows that L \ Lu ̸= ∅. Let v′ be the unique
neighbor of v in L\Lu, and let P = u-Luv-v′. Then |P | ≤ c, and since (S,L) is d-meager,
it follows that |SP | < cd. This violates the choice of Lu, and proves (12).
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From (12), it follows that for every L ∈ L, there are fewer than 2cd vertices in S with
a neighbor among the first or last c vertices of L. This, along with |S| = 2cd and the fact
that every vertex in S has a neighbor in every path in L, implies that for every L ∈ L,
there is a vertex xL ∈ S with a neighbor in L and no neighbor among the first and last
c vertices of L. On the other hand, we have |L| = c|S|. Thus, there exist x ∈ S and
W ⊆ L with |W| = c such that for every L ∈ W , the vertex x has a neighbor in L and
no neighbor among the first and last c vertices of L. But now Ξ = G[{x} ∪ V (W)] is a
c-hassle in G with neck x and with W as its set of walks (each of which is a path in Ξ).
This completes the proof of Theorem 6.2. ■

Handling the second outcome of Theorem 5.1 is more demanding. We prove:

Theorem 6.3. For all c, d, t ∈ N, there is a constant Ω = Ω(c, d, t) ∈ N with the following
property. Let G be a t-clean graph. Assume that there exists a 2Ω-polypath in G which is
both Ω-fancy and d-loose. Then G contains a c-hassle.

We need to prepare for the proof of Theorem 6.3. Let G be a graph, let x, y ∈ V (G) be
distinct and non-adjacent, and let P be a collection of pairwise internally disjoint paths
in G from x to y. An x-slash for P in G is a path W in G \ {x, y} such that for every
P ∈ P , the unique neighbor of x in P belongs to W . Our first lemma says that:

Lemma 6.4. Let c, p, q ∈ N. Let G be a graph, let x, y ∈ V (G) be distinct and non-
adjacent, and let P0 be a collection of c(p + 1)q pairwise internally disjoint paths in G
from x to y. Let W0 be an x-slash for P0 in G. Then one of the following holds.

(a) There exists P ⊆ P0 with |P| = p and a path W ⊆ W0, such that:
• W is an x-slash for P in G; and
• there is no path Q of length at most c+ 1 in V (P) ∪W from x to y.

(b) There exists a collection Q of q pairwise internally disjoint paths in G from x to
y, each of length at most c+ 1.

Proof. Let C be a maximal set of pairwise internally disjoint paths in G from x to y, each
of length at most c + 1. In particular, for every Q ∈ C, Q∗ is a path in G on at most c
vertices.

Note that if |C| ≥ q, then 6.4(b) holds, as required. Thus, we may assume that |C| < q,
and so |V (C∗)| < cq. In particular, W0\C∗ has at most cq components, and since the paths
in P0 are pairwise internally disjoint, it follows that there are at most |V (C∗)| < cq paths
P in P0 for which P ∩ C∗ ̸= ∅. This, along with the assumption that |P0| = c(p + 1)q
and W0 is an x-slash for P0 in G, implies that there exist P ⊆ P0 with |P| = p and
V (P) ∩ C∗ = ∅, as well as a component W of W0 \ C∗ ⊆ G \ {x, y}, such that for every
P ∈ P , the unique neighbor of x in P belongs to W . In other words, W is an x-slash for
P . Moreover, we have (V (P) ∪W ) ∩ C∗ = ∅, and so by the maximality of C, there is no
path Q of length at most c+ 1 in V (P) ∪W from x to y. Now P and W satisfy 6.4(a),
as desired. ■

The next lemma is the main step in the proof of Theorem 6.3.

Lemma 6.5. For all c, q, t ∈ N, there is a constant µ = µ(c, q, t) ∈ N with the following
property. Let G be a graph, let x, y ∈ V (G) be distinct and non-adjacent, and let P0 be a
collection of µ pairwise internally disjoint paths in G from x to y. Assume that there is
an x-slash for P0 in G. Then one of the following holds.

(a) G contains Kt+1 or Kt,t.
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(b) G contains a c-hassle.
(c) There is a collection Q of q pairwise internally disjoint paths in G from x to y,

each of length at most c+ 1.

Proof. Let b = b(c, t) = tt(2c2 + (2ctt)t
t
). Let Υ(·, ·, ·) be as in Lemma 3.2, and let

Υ1 = Υ(2c+ 2, 1, c);

m = cΥ1;

Υ2 = Υ(c, b, 3);

be as in Lemma 3.2. We will show that

µ = µ(c, q, t) = c((c+ 2)mΥ2 + 1)q

satisfies the lemma. Let G be a graph, let x, y ∈ V (G) be distinct and non-adjacent, let
P0 be a collection of µ pairwise internally disjoint paths in G from x to y, and let W0 be
an x-slash for P0 in G.

Assume that none of the three outcomes of 6.5 hold. We apply Lemma 6.4 to x, y,P0

and W0. In particular, since 6.5(c) is equivalent to Lemma 6.4(b), it follows from the
choice of µ that:

(13) There exists P ⊆ P0 with |P| = (c+ 2)mΥ2 and a path W ⊆ W0 such that:
• W is an x-slash for P in G; and
• there is no path Q of length at most c+ 1 in V (P) ∪W from x to y.

From now on, let P and W be as in (13). For every vertex v ∈ NV (P)(x), we denote
by Pv the unique path in P for which v is the unique neighbor of x in Pv. Since W is
an x-slash for P , it follows that NV (P)(x) ⊆ W . Let w1 and w2 be the ends of W . Since
|P| = cmΥ2 + 2mΥ2, it follows that one may choose 3m pairwise disjoint Υ2-subsets
{U1,i, Vi, U2,i : i ∈ Nm} of NV (P)(x) ⊆ W , such that the following hold.

• For each i ∈ Nm, there are Υ2 pairwise disjoint paths {Av : v ∈ Vi} in W , each
on c vertices, such that for every v ∈ Vi:

– Av contains v; and
– Traversing W from w1 to w2, every vertex in U1,i appears before every vertex

in Av, and every vertex in Av appears before every vertex in U2,i.
In particular, traversing W from w1 to w2, every vertex in U1,i appears before
every vertex in Vi, and every vertex in Vi appears before every vertex in U2,i (see
Figure 12).

• For every i ∈ Nm−1, traversing W from w1 to w2, every vertex in U2,i appears
before every vertex in U1,i+1 (see Figure 13).

We deduce that:

(14) For every i ∈ Nm, there exist u1,i ∈ U1,i, vi ∈ Vi and u2,i ∈ U2,i, for which Avi is
disjoint from Pu1,i

∪ Pu2,i
and anticomplete to (Pu1,i

∪ Pu2,i
) \ {x}.

To see this, let
Ai = {(Av, ∅) : v ∈ Vi};

B1,i = {(∅, P ∗
u ) : u ∈ U1,i};

B2,i = {(∅, P ∗
u ) : u ∈ U2,i}.

Then Ai,B1,i,B2,i are three collections of pairwise disjoint c-pairs over V (G), each of
cardinality Υ2. By the choice of Υ2, we can apply Lemma 3.2 to Ai,B1,i,B2,i. It follows
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W

x

U1,i U2,i

w1 w2
v ∈ Vi

Av

Vi

Figure 12. The subsets U1,i, Vi, U2,i of NV (P)(x) ⊆ W and the paths
{Av : v ∈ Vi}.

W

U1,i U2,i
w1

Vi U1,i+1 U2,i+1

w2
Vi+1

x

Figure 13. The subsets U1,i, Vi, U2,i, U1,i+1, Vi+1, U2,i+1 of NV (P)(x) ⊆ W .

that there exist U ′
1,i ⊆ U1,i, V ′

i ⊆ Vi and U ′
2,i ⊆ U2,i with |U ′

1,i| = |V ′
i | = |U ′

2,i| = b
such that the collections A′

i = {(Av, ∅) : v ∈ V ′
i }, B′

1,i = {(∅, P ∗
u ) : u ∈ U ′

1,i} and
B′
2,i = {(∅, P ∗

u ) : u ∈ U ′
2,i} satisfy Lemma 3.2(a) and 3.2(b). In fact, Lemma 3.2(a) along

with the assumption that x, y /∈ W , implies that for every u1 ∈ U ′
1,i, every v ∈ V ′

i and
every u2 ∈ U ′

2,i, we have Av ∩ (Pu1 ∪ Pu2) = ∅. It remains to show that there exist
u1,i ∈ U ′

1,i, vi ∈ V ′
i and u2,i ∈ U ′

2,i, for which Avi is anticomplete to (Pu1,i
∪ Pu2,i

) \ {x}.
Suppose not. Note that for every v ∈ V ′

i , since v ∈ Av is a neighbor of x, it follows from
the second bullet of (13) that y is anticomplete to Av. Consequently, by Lemma 3.2(b),
there exists j ∈ {1, 2} such that for every v ∈ Vi, there exists a vertex xv ∈ Av which has
a neighbor in P ∗

u for every u ∈ U ′
j,i. On the other hand, since b ≥ 2ctt, it follows that there

exists V ⊆ V ′
i with |V | = 2ctt. Now, let S = {xv : v ∈ V } and let L = {P ∗

u : u ∈ U ′
j,i}.

Then (S,L) is a (2ctt, b)-cluster in G. This, combined with the choice of b, Lemma 5.5,
and the assumption that G is (Kt+1, Kt,t)-free, implies that there exists a tt-meager
(2ctt, 2c2tt)-cluster in G. But then by Theorem 6.2, G contains a c-hassle. This violates
the assumption that 6.5(b) does not hold, and so proves (14).

Henceforth, for each i ∈ Nm, let u1,i ∈ U1,i, vi ∈ Vi and u2,i ∈ U2,i be as in (14).
We write Ai = Avi , P1,i = Pu1,i

and P2,i = Pu2,i
. Also, we denote by a1,i, a2,i the ends

of Ai, such that W traverses the vertices w1, a1,i, a2,i, w2 in this order. It follows that
W traverses the vertices w1, u1,i, a1,i, a2,i, u2,i, w2 in this order, and a1,i, a2,i are the only
vertices among u1,i, a1,i, a2,i, u2,i which can be the same (only if c = 1).
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Let i ∈ Nm be fixed. For each j ∈ {1, 2}, traversing aj,i-W -uj,i starting at aj,i, let
w′

j,i be the first vertex in aj,i-W -uj,i with a neighbor in Pj,i \ {x} (note that w′
j,i exists

because uj,i has a neighbor in Pj,i \{x}). From (14), we know that Ai is disjoint from and
anticomplete to (P1,i∪P2,i)\{x}; in particular, for every j ∈ {1, 2}, uj,i ∈ Pj,i \{x} has a
neighbor in the interior of aj,i-W -uj,i. It follows that for every j ∈ {1, 2}, the vertex w′

j,i

belongs to the interior of aj,i-W -uj,i, and there is a path Rj,i in G from w′
j,i to y whose

interior is contained in P ∗
j,i.

For every i ∈ Nm and each j ∈ {1, 2}, let R′
j,i be the longest path of length at most

c+ 1 in Rj,i \ {y} containing w′
j,i. It follows that:

(15) For every i ∈ Nm and each j ∈ {1, 2}, we have R′
j,i \{w′

j,i} ⊆ P ∗
j,i. Consequently, the

sets {R′
1,i ∪R′

2,i : i ∈ Nm} are pairwise disjoint in G.

Observe that by the choice of R′
j,i, either R′

j,i = Rj,i \ {y}, in which case (15) follows
immediately from the fact that R∗

j,i ⊆ P ∗
j,i, or R′

j,i is a path on c + 2 vertices with
R′

j,i \ {w′
j,i} ⊆ P ∗

j,i. This proves (15).

Now, for each i ∈ Nm, let W ′
i = w′

1,i-W -w′
2,i, and let Wi = G[R′

1,i∪W ′
i∪R′

2,i] be the walk
such that traversing Wi from φWi

(1) to φWi
(nWi

), we first traverse the path R′
1,i starting at

the end distinct from w′
1,i and stopping at w′

1,i, then we traverse the path W ′
i from w′

1,i to
w′

2,i, and then we traverse R′
2,i starting at w′

2,i (so we have nWi
= |R′

1,i|+ |W ′
i |+ |R′

2,i|−2).
In particular, we have Wi ⊆ V (P∗) ∪W . We claim that:

(16) The following hold.
• For all i ∈ Nm, the walk Wi is c-stretched and x has a neighbor in Wi.
• For all i ∈ Nm, the vertex x has no neighbors among the first and last c vertices

of Wi.
• The paths {W ′

i : i ∈ Nm} are pairwise disjoint.
• The sets {Wi \W ′

i : i ∈ Nm} are pairwise disjoint.

The first bullet is immediate from |Ai| = c and the observation that both R′
1,i-w′

1,i-W -a2,i
and R′

2,i-w′
1,i-W -a1,i are paths in G containing Ai. Also, the third bullet is trivial, and the

fourth is immediate from (15). It remains to prove the second bullet. Note that by the
definition of R′

1,i and R′
2,i, either y has a neighbor among the first or the last c vertices

of Wi, or the first c+ 1 vertices of Wi are contained in P ∗
1,i, and the last c+ 1 vertices of

Wi are contained in P ∗
2,i. In the former case, the result follows directly from the second

bullet of (13), and in the latter case, the result follows from the fact that x has exactly
one neighbor in P ∗

1,i and exactly one neighbor in P ∗
2,i. This proves (16).

We can now finish the proof. For every k ∈ Nc, let

Ik = {i ∈ Nm : i = k (mod c)};

Bk = {(Wi \W ′
i ,W

′
i ) : i ∈ Ik}.

From the choice of m and the third bullet of (16), it follows that B1, . . . ,Bc are collections
of pairwise disjoint (2c+ 2)-pairs over V (G), each of cardinality Υ1. The choice of Υ1 in
turn allows for an application of Lemma 3.2 to B1, . . . ,Bc. In particular, Lemma 3.2 (a)
implies that for every k ∈ Nc, there exists ik ∈ Ik such that Wik \W ′

ik
and Wil are disjoint

for all distinct k, l ∈ Nc. This, combined with the third and the fourth bullet of (16),
implies that Wi1 , . . . ,Wic are pairwise disjoint. But now by the first two bullets of (16),
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the subgraph of G induced on {x} ∪Wi1 ∪ · · · ∪Wic is a c-hassle with neck x and walks
Wi1 , . . . ,Wic , contradicting the assumption that 6.5(b) does not hold. This completes the
proof of Lemma 6.5. ■

From Lemma 6.5, we deduce the following:

Lemma 6.6. For all c, d, q, t ∈ N, there is a constant ζ = ζ(c, d, q, t) ∈ N with the
following property. Let G be a graph and let W be a d-loose polypath in G. Let x, y ∈
V (W) be distinct and non-adjacent, and let P be a collection of ζ pairwise internally
disjoint paths in G from x to y with V (P) ⊆ V (W). Then one of the following holds.

(a) G contains Kt+1 or Kt,t.
(b) G contains a c-hassle.
(c) There exists a collection Q of q pairwise internally disjoint paths in G from x to

y, each of length at most c+ 1.

Proof. Let µ = µ(c, q, t) ∈ N be as in Lemma 6.5. We show that
ζ(c, d, q, t) = 2dµ

satisfies the lemma. Let W ∈ W such that x ∈ W . Then x has at most two neighbors
in W . Also, since W is d-loose, it follows that x has neighbors in at most d − 1 paths
in W \ {W}. This, along with the fact that |P| = ζ ≥ 2(d− 1)µ + 2, implies that there
exists P1 ⊆ P with |P1| = 2µ and a path W1 ∈ W \ {W}, such that for every P ∈ P1,
the unique neighbor of x in P belongs to W1. In particular, we have x /∈ W1 because
W,W1 ∈ W are distinct (hence disjoint) and x ∈ W . Since W1 \ {y} has one or two
components (depending on whether y ∈ W ∗

1 or not), it follows that there exist P0 ⊆ P1

with |P0| = µ as well as a component W0 of W1 \ {y}, such that for every P ∈ P0, the
unique neighbor of x in P belongs to W0. Therefore, P0 is a collection of µ pairwise
internally disjoint paths in G from x to y, and W0 is an x-slash for P0 in G. Now the
result follows from Lemma 6.5 applied to P0. ■

We can now restate and prove Theorem 6.3:

Theorem 6.3. For all c, d, t ∈ N, there is a constant Ω = Ω(c, d, t) ∈ N with the following
property. Let G be a t-clean graph. Assume that there exists a 2Ω-polypath in G which is
both Ω-fancy and d-loose. Then there is a c-hassle in G.

Proof. Let η = η(c+ 1, t) be as in Theorem 4.4. Let ζ = ζ(c, d, η, t) be as in Lemma 6.6.
We define

Ω = Ω(c, d, t) = κ(max{tη, ζ}, t) + 1,

where κ(·, ·) is as in Theorem 4.1. Let G be a t-clean graph and let W be a 2Ω-polypath
in G which is both Ω-fancy and d-loose. Suppose for a contradiction that G does not
contain a c-hassle.

Let H = G[V (W)]. Then H is a t-clean graph which has a KΩ,Ω-minor. It follows
that H has treewidth at least Ω, which along with Theorem 4.1 implies that there is a
strong max{tη, ζ}-block in G. In particular, we may choose a tη-subset B of V (H) such
that for every 2-subset {x, y} of B, there exists a collection P{x,y} of ζ pairwise internally
disjoint paths in H from x to y. Since |B| = tη and since G is Kt+1-free, it follows from
Theorem 5.3 that there exists a stable set A ⊆ B in H of cardinality η.

Now, fix a 2-subset {x, y} of A. Then x, y are non-adjacent in G, and so by the choice
of ζ, we can apply Lemma 6.6 to W and P{x,y}. Note that Lemma 6.6(a) violates the
assumption that G is t-clean, and Lemma 6.6(b) violates the assumption that G contains
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no c-hassle. Thus, Lemma 6.6(c) holds, that is, there exists a collection Q{x,y} of η
pairwise internally disjoint paths in G from x to y, each of length at most c+1. But now
A is a (c + 1)-short (not necessarily strong) η-block in G. Combined with the choice of
η and Theorem 4.4, this violates the assumption that G is t-clean, hence completing the
proof of Theorem 6.3. ■

Combining Theorem 5.1, 6.2 and 6.3, we deduce Theorem 6.1, restated below.

Theorem 6.1. For all c, t ∈ N, there is a constant Γ = Γ(c, t) such that every t-clean
graph G of treewidth more than Γ contains a c-hassle.

Proof. Let l = 2c2tt and let s = 2ctt. Let Ω = Ω(c, l + ttst
t
, t) be as in Theorem 6.3. Let

Γ = Γ(c, t) = γ(c, l, s, t,Ω);

where γ(·, ·, ·, ·, ·) is as in Theorem 5.1. Let G be a t-clean graph of treewidth more than
Γ. It follows from Theorem 5.1 that either there exists a tt-meager (s, l)-cluster in G,
or there is 2Ω-polypath in G which is both Ω-fancy and (l + ttst

t
)-loose. In the former

case, by Theorem 6.2, G contains a c-hassle. Also, in the latter case, the choice of Ω
along with Theorem 6.3 implies that G contains a c-hassle. This completes the proof of
Theorem 6.1. ■

7. Part assembly

Finally, let us bring everything together and prove Theorem 1.7. First, from Theo-
rem 6.1, we deduce that:

Theorem 7.1. Let H be a finite set of graphs which is hassled. Then the class of all
H-free graphs is clean.

Proof. Let H be a finite set of graphs which is hassled. In order to show that the class of
all H-free graphs is clean, it is enough to prove, for every t ∈ N, that there is a constant
ℓ = ℓ(t,H) ∈ N such that every t-clean graph of treewidth more that ℓ contains some
graph H ∈ H.

We begin with setting the value of ℓ. Since H is hassled, it follows that for every t ∈ N,
there is a constant c = c(t,H) ∈ N such that every (Kt+1, Kt,t)-free c-hassle contains
all components of some graph in H. Let Γ = Γ(c, t) be as in Theorem 6.1, and let
∆ = ∆(||H||, ||H||, t) be as in Lemma 2.4. Define

ℓ = ℓ(t,H) = ||H||21∆+ Γ.

Let G be a t-clean graph of treewidth more than ℓ. Since ℓ ≥ Γ, by Theorem 6.1, there
is an induced subgraph Ξ of G which is a c-hassle. This, combined with the assumption
that H is hassled and G is (Kt+1, Kt,t)-free, implies that there exists W ⊆ V (Ξ) ⊆ V (G)
with |W | ≤ ||H|| such that G[W ] contains all components of some graph in H.

Let m ∈ N be maximum such that there are m pairwise disjoint subsets W1, . . . ,Wm

of V (G), each of cardinality at most ||H||, such that for every i ∈ Nm there exists H ∈ H
such that Wi contains every component of H. We claim that:

(17) m ≥ ||H||∆.

Suppose not. Let G′ = G\ (W1∪· · ·∪Wm). Then we have tw(G′) ≥ tw(G)−m||H|| >
tw(G) − ||H||21∆ > Γ. Thus, by Theorem 6.1, there is an induced subgraph Ξ′ of G′

which is a c-hassle. Since H is hassled and G is (Kt, Kt,t)-free, it follows that there
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exists W ′ ⊆ V (Ξ′) ⊆ V (G′) with |W ′| ≤ ||H|| and H ∈ H such that W ′ contains every
component of H. But this violates the maximality of m, and so proves (17).

By (17), we can choose pairwise disjoint subsets W1, . . . ,W||H||∆ of V (G), each of
cardinality at most ||H||, such that for every i ∈ N||H||∆, there exists Hi ∈ H such that
Wi contains every component of Hi. Since |H| ≤ ||H||, it follows that there exists a
graph H ∈ H, as well as I ⊆ N||H||∆ with |I| = ∆, such that for every i ∈ I, we have
Hi = H. Also, since G is (Kt, Kt,t)-free, from the choice of ∆, it follows that there exist
i1, . . . , i||H|| ∈ I such that Wi1 , . . . ,Wi||H|| are pairwise anticomplete in G.

Let K1, . . . , Kh be the components of H. Then h ≤ ||H||, and for every j ∈ Nh, there
exists Xj ⊆ Wij such that G[Xj] is isomorphic to Kj. Now G[X1∪· · ·∪Xh] is isomorphic
to H, as desired. ■

Now Theorem 1.7 is immediate from Theorems 2.1 and 7.1.

8. Connection to unavoidable binary strings

We conclude the paper with a brief discussion around explicit constructions of tasselled
families. There is one particularly nice example of tasselled families, described in the
following corollary of Theorem 1.6 (we omit the proof as it is straightforward).

Corollary 8.1. Given a, b ∈ N, let Ha,b be the set of all strands F such that the path
of F has vertices v1, . . . , va+b+1 in this order, and the neck x of F is non-adjacent to
v1, . . . , va and adjacent to va+1. (Thus, Ha,b contains 2b distinct graphs, corresponding to
all possible ways for x to be adjacent to va+2, . . . , va+b+1.) Then Ha,b is tasselled.

While a full description of all tasselled families remains unknown, a promising approach
is to attempt to model the “tasselled” property word-combinatorially, and then use results
from the literature on formal languages in order to gain insight into the graph problem.

One way to view a strand F is as a binary string denoting neighbors of the neck in
the path. More explicitly, for a strand F with neck v and path P , if p1, . . . , pt are the
vertices of P in order, then we can define the binary string SP,v = b1 . . . bt where bi = 1
if pi ∈ N(v), and bi = 0 otherwise (note that the string SP,v is uniquely defined up to
reversal). Moreover, every strand F of a c-tassel with neck v corresponds to a binary
string (again, unique up to reversal) which starts and ends with at least c zeroes, but
which is not an all-zero string; let us say such a string is c-padded.

For a graph K, we say a vertex v ∈ V (K) is a neck for K if every component of K \{v}
is a path, and we denote by SK,v the set of all strings SP,v where P is a component of
K \ {v}. It is easy to see that:

Theorem 8.2. Let H be a set of graphs. Then H is tasselled if and only if there exists c
such that, for every c-padded string S, there is a graph H ∈ H with the following property.
For every component K of H, one may choose a neck v of K such that for every string
S ′ ∈ SK,v, the string S contains either S ′ or its reverse as a consecutive substring.

There is an interesting special case of this where every graph in H is a c′-tassel for some
c′ ∈ N. Note that in this case, every H ∈ H is connected and the set SH,v has cardinality
one for each neck v of H. So the question of whether H is tasselled translates into:

Question 8.3. For which sets S of strings is it true that there is a constant c = c(S) ∈ N
such that every c-padded string S contains either a string in S or the reverse of a string
in S as a consecutive substring?
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If the above holds for some fixed c, let us call such a set S a c-unavoidable language.
In view of our aim, it is of particular interest to identify the minimal c-unavoidable
languages (with respect to the inclusion). In particular, the only sets of cardinality one
which are c-unavoidable for some c ∈ N are of the form S = {0 · · · 01} (up to reversal)
and S = {0 · · · 0}, and one may observe that this matches the outcome of Theorem 1.5.
However, in general, larger c-unavoidable languages seem harder to describe; for example,
the following is 3-unavoidable:

{00011, 0001000, 1010, 010010, 111, 110011, 11011, 110010011, 00010011001000}.
On the other hand, for a finite set S of strings, it is finitely testable if S is c-unavoidable

for some c ∈ N. To see this, note that if there is a c-padded string S which does not
contain any string in S nor the reversal of a string in S, then, assuming s to be the length
of the longest string in S, one may choose S such that c ≤ s and S has length at most
(s+2)2s (which follows by noticing that a repetition of a consecutive substring of length
s in S not containing the first or last c bits can be used to shorten S).

The following, closely related question, has been studied before:

Question 8.4. For which sets S of strings is it true that every sufficiently long string
contains a string in S as a consecutive substring?

These sets S are called unavoidable languages (see, for example [15, 16]). In particular,
in [4, 5] it is shown that every minimal unavoidable language is finite. This is not the
case for c-unavoidable languages; for example, S = {01k0 : k ∈ N} is 1-unavoidable.
However, if we omit the string 01k0 for some k ∈ N, then 0 . . . 01k0 . . . 0 avoids S. It
would be interesting to consider which results on unavoidable languages generalize to
c-unavoidable languages.

References

[1] Tara Abrishami, Bogdan Alecu, Maria Chudnovsky, Sepehr Hajebi, and Sophie Spirkl. Induced
subgraphs and tree decompositions VII. Basic obstructions in H-free graphs. J. Combin. Theory
Ser. B, 164:443–472, 2024.

[2] Bogdan Alecu, Maria Chudnovsky, Sepehr Hajebi, and Sophie Spirkl. Induced subgraphs and tree
decompositions XII. Grid theorem for pinched graphs. arXiv:2309.12227, 2023.

[3] Marthe Bonamy, Édouard Bonnet, Hugues Déprés, Louis Esperet, Colin Geniet, Claire Hilaire,
Stéphan Thomassé, and Alexandra Wesolek. Sparse graphs with bounded induced cycle packing
number have logarithmic treewidth. In Proceedings of the 2023 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 3006–3028. SIAM, Philadelphia, PA, 2023.

[4] W. Bucher, A. Ehrenfeucht, and D. Haussler. On total regulators generated by derivation relations.
Theoret. Comput. Sci., 40(2-3):131–148, 1985.

[5] Christian Choffrut and Karel Culik, II. On extendibility of unavoidable sets. In STACS 84 (Paris,
1984), volume 166 of Lecture Notes in Comput. Sci., pages 326–338. Springer, Berlin, 1984.

[6] James Davies. Appeared in an Oberwolfach technical report, DOI:10.4171/OWR/2022/1.
[7] Zdeněk Dvořák. Induced subdivisions and bounded expansion. European J. Combin., 69:143–148,

2018.
[8] Martin Charles Golumbic. Algorithmic graph theory and perfect graphs, volume 57 of Annals of

Discrete Mathematics. Elsevier Science B.V., Amsterdam, second edition, 2004. With a foreword by
Claude Berge.

[9] Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer. Ramsey theory. Wiley Series in
Discrete Mathematics and Optimization. John Wiley & Sons, Inc., Hoboken, NJ, paperback edition,
2013.

[10] Sepehr Hajebi. Induced subdivisions with pinned branch vertices. European J. Combin., 124:Paper
No. 104072, 2025.



28 INDUCED SUBGRAPHS AND TREE DECOMPOSITIONS XIII.

[11] Vadim Lozin and Igor Razgon. Tree-width dichotomy. European J. Combin., 103:Paper No. 103517,
8, 2022.

[12] Andrei Cosmin Pohoata. Unavoidable induced subgraphs of large graphs. Senior thesis, Princeton
University, 2014.

[13] F. P. Ramsey. On a Problem of Formal Logic. Proc. London Math. Soc. (2), 30(4):264–286, 1929.
[14] Neil Robertson and Paul Seymour. Graph minors. V. Excluding a planar graph. Journal of Combi-

natorial Theory, Series B, 41(1):92–114, 1986.
[15] L. Rosaz. Unavoidable languages, cuts and innocent sets of words. RAIRO Inform. Théor. Appl.,

29(5):339–382, 1995.
[16] Laurent Rosaz. Inventories of unavoidable languages and the word-extension conjecture. Theoret.

Comput. Sci., 201(1-2):151–170, 1998.
[17] Ni Luh Dewi Sintiari and Nicolas Trotignon. (Theta, triangle)-free and (even hole, K4)-free graphs—

part 1: Layered wheels. J. Graph Theory, 97(4):475–509, 2021.


	1. Introduction
	1.1. Tassels and tasselled families
	1.2. Outline

	2. Hassled families
	3. A lemma about pairs of sets of vertices
	4. Blocks
	5. Obtaining complete bipartite minor models
	6. Dealing with complete bipartite minor models
	7. Part assembly
	8. Connection to unavoidable binary strings
	References

