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Abstract

We construct classes of graphs that are variants of the so-called
layered wheel. One of their key properties is that while the treewidth
is bounded by a function of the clique number, the construction can
be adjusted to make the dependance grow arbitrarily. Some of these
classes provide counter-examples to several conjectures. In partic-
ular, the construction includes hereditary classes of graphs whose
treewidth is bounded by a function of the clique number while the
tree-independence number is unbounded, thus disproving a conjecture
of Dallard, Milanič and Štorgel [Treewidth versus clique number. II.
Tree-independence number. Journal of Combinatorial Theory, Series
B, 164:404–442, 2024.]. The construction can be further adjusted to
provide, for any fixed integer c, graphs of arbitrarily large treewidth
that contain no Kc-free graphs of high treewidth, thus disproving a
conjecture of Hajebi [Chordal graphs, even-hole-free graphs and sparse
obstructions to bounded treewidth, arXiv:2401.01299, 2024].

1 Introduction

Graphs in this paper are oriented and infinite (with neither loops nor mul-
tiple edges). However, this is only for technical reasons and most of our
results will be about finite and simple graphs.

A clique in a graph is a set of pairwise adjacent vertices and an indepen-
dent set is a set of pairwise non-adjacent vertices. The maximum number
of vertices in a clique (resp. indepedendent set) in a graph G is denoted by
ω(G) (resp. α(G)). We denote by χ(G) the chromatic number of G, that is
the minimum number of colors needed to color vertices of G in such a way
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that adjacent vertices receive different colors. A hole in a graph is a chordless
cycle of length at least 4. It is even if it contains an even number of vertices.
We denote by N(v) the neighborhood of v and set N [v] = N(v) ∪ {v}. A
class of graphs is hereditary if it closed under taking induced subgraphs.

A tree decomposition of a graph G is a pair T = (T, (Xs)s∈V (T )) where T
is a tree and every node s ∈ T is assigned a set Xs ⊆ V (G) called a bag such
that the following conditions are satisfied: every vertex is in at least one
bag, for every edge uv ∈ E(G) there exists a bag Xs such that {u, v} ⊆ Xs,
and for every vertex u ∈ V (G), the set {s ∈ V (T )|u ∈ Xs} induces a
connected subgraph of T . The width of T is the maximum value of |Xs| − 1
over all s ∈ V (T ). The independent width of T is the maximum value of
α(Xs) over all s ∈ V (T ). The treewidth of a graph G, denoted by tw(G),
is the minimum width of a tree decomposition of G. The tree-independence
number of a graph G, denoted by tree-α(G), is the minimum independent
width of a tree decomposition of G. It was first defined by Yolov in [12]
and rediscovered independently by Dallard, Milanič and Štorgel in [4]. The
treewidth, and more recently the tree-independence number, attracted some
attention, see for instance the introduction of [4].

The main contribution of this paper is a variant of the so-called layered
wheel. It was first introduced by Sintiari and Trotignon in [11] to provide
graphs of arbitrarily large treewidth that exclude several kinds of induced
subgraphs, such as K4 and even holes, or triangles and thetas (not worth
defining here). Our variant may contain cliques of any size. For every integer
` ≥ 4, we construct a variant that contains only holes of length at least `.
Our construction provides answers to questions and counter-examples to
conjectures due to different authors, all about the treewidth and the tree-
independence number in hereditary classes of graphs, as we explain now.

Conjectures and questions

A hereditary class of graphs C is said to be (tw, ω)-bounded if there exists a
function g such that the treewidth of any graph G ∈ C is at most g(ω(G)).
In [3] and [5], Dallard, Milanič and Štorgel asked whether every (tw, ω)-
bounded class of graphs is in fact polynomially (tw, ω)-bounded. We rephrase
this question formally as follows.

Question 1.1 (Dallard, Milanič and Štorgel, see [5, Question 8.4]). For
every (tw, ω)-bounded class of graphs C, does there exist a polynomial g such
that every graph G ∈ C satisfies tw(G) ≤ g(ω(G)) ?

Our construction provides a negative answer to this question, see Theo-
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rem 5.1 below. In [4, Lemma 3.2] it is observed that the answer is affirmative
for classes with bounded tree-independence number. It is also observed that
hereditary classes of graphs with bounded tree-independence number are
(tw, ω)-bounded (this is an easy consequence of Ramsey theorem, see [5]).
The following conjecture is proposed by Dallard, Milanič and Štorgel.

Conjecture 1.2 (Dallard, Milanič and Štorgel, see [5, Conjecture 8.5]). Let
C be a hereditary graph class. Then G is (tw, ω)-bounded if and only if C
has bounded tree-independence number.

Our construction disproves this conjecture, even when the function that
bounds the treewidth is assumed to be a polynomial, see Theorem 5.2 below.

Our construction also sheds light on certifying a large treewidth in a
graph G by exhibiting some simpler substructure of G of large treewidth.
The well-known Grid Theorem by Robertson and Seymour [9] gives a neat
certificate when the substructure under consideration is a minor of G. When
the substructure under consideration is an induced subgraph of G, the sit-
uation is more complicated and is still the subject of much research. To
understand this better, several questions and conjectures (together with a
survey) are proposed by Hajebi in [8].

Conjecture 1.3 (Hajebi, see [8, Conjecture 1.14]). For every t ≥ 1, every
graph of large enough treewidth has an induced subgraph of treewidth t which
is either complete or K4-free.

Our construction (or more precisely a variant of it) disproves this conjec-
ture, even in a weaker form, where K4 is replaced in the statement by Kc for
any constant c ≥ 4, see Theorem 5.3 below. Note that when c ∈ {1, 2} the
statement is trivially false, and for c = 3 it is already disproved in [11] with
the construction of K4-free graphs of high treewidth with no even holes. For
every integer c, a graph is c-degenerate if each of its induced subgraphs con-
tains a vertex of degree at most c. A variant of Conjecture 1.3 is proposed
in the same paper.

Conjecture 1.4 (Hajebi, see [8, Conjecture 1.15]). For every integer t ≥ 1,
every graph of large enough treewidth has an induced subgraph of treewidth
t which is either complete, complete bipartite, or 2-degenerate.

Our construction also disproves Conjecture 1.4, see Theorem 5.3 below
(even with “2-degenerate” replaced by higher degeneracy).
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Unanswered questions

We would like to point out several questions that our construction does not
answer. It is easily seen to produce graphs whose treewidth is logarithmic
into the number of vertices. This implies (see for instance [1, Theorem 9.2])
that the Max Weight Independent Set problem is polynomial time solvable
for our construction. Hence, we believe the following question might still
have an affirmative answer, and that logarithmic treewidth might be a key
ingredient of an algorithm.

Question 1.5 (Dallard, Milanič and Štorgel, see [4]). Is the Max Weight In-
dependent Set problem solvable in polynomial time in every (tw, ω)-bounded
graph class?

In our counter-example to Conjecture 1.2, we need that the class is
(tw, ω)-bounded by a super-linear function. Hence, our construction does
not seem to help answering the following question.

Question 1.6. Does every hereditary class of graph C such that for some
constant c, every graph G ∈ C satifisfies tw(G) ≤ c ω(G), has bounded tree-
independence number?

We leave as an open question the existence of an even-hole-free variant
of our construction. If it exists, it might disprove the following conjecture.

Conjecture 1.7 (Hajebi, see [8]). For every t ≥ 1, every even-hole-free
graph of large enough treewidth has an induced subgraph of treewidth t which
is either complete or K4-free.

In our counter-example to Conjecture 1.3, we need a graph G such that
ω(G) = c + 1 to guaranty that Kc-free graphs in the class have bounded
treewidth. So, we do not know the answer to the following question (quite
suprisingly, Theorem 5.1 does not seem to help).

Question 1.8. Does there exist a function f : N \ {0} × N \ {0} → N
such that for all integers k, t ≥ 1, all graphs G such that tw(G) ≥ f(k, t)
and ω(G) = k contain an induced subgraph H such that tw(H) ≥ t and
ω(H) = k − 1.

It might be of interest to study what induced subgraphs are contained
in our construction. The original layered wheels from [11] suggest that
maybe the so-called 3-paths-configurations (see the definition in [11]) are
not contained in our construction, or in some variant of our construction.
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It is easy to check that our construction contains as an induced subgraph
an already known construction of Corneil and Rotics, designed to find graphs
of large cliquewidth (not worth defining here) and small treewidth, see [2].
We therefore wonder whether our construction improves bounds about dif-
ferents notions of widths of graphs.

Tools to bound the treewidth

To prove our results, we need to bound the treewidth and the tree-
independence number of graphs produced by our construction. For that
we rely on several known concepts and theorems.

To bound the treewidth and the tree-independence number from below,
we rely on clique minors. For a graph G, two disjoint sets Y ⊆ V (G) and
Z ⊆ V (G) are adjacent if some edge of G has an end in Y and an end
in Z. A clique minor of a graph G is a family of disjoint, connected, and
pairwise adjacent subsets L1, . . . , Lt of V (G). The following is a well-known
consequence of the Helly property of subtrees of trees.

Lemma 1.9. If T = (T, (Xs)s∈V (T )) is a tree decomposition of some graph
G and (L1, . . . , Lt) is a clique minor of G, then there exists s ∈ V (T ) such
that Xs contains at least one vertex of each Li, i ∈ {1, . . . , t}. In particular,
tw(G) ≥ t− 1 and the independent width of T is at least α(G[Xs]).

To bound the treewidth from above, we rely on balanced separations.
A separation of a graph G is a pair (A,B) of subsets of V (G) such that
A∪B = V (G) and no edge of G has one end in A\B and the other in B \A.
The order of the separation is |A ∩ B|. It is balanced if |A \ B| ≤ 2n/3
and |B \ A| ≤ 2n/3 where n = |V (G)|. The separation number sn(G) of G
is the smallest integer s such that every subgraph (or equivalently induced
subgraph) of G has a balanced separation of order s.

Theorem 1.10 (Dvorák and Norin, see [7]). The treewidth of any graph G
is at most 15 sn(G).

We also need the following classical results. A graph is chordal if it
contains no hole. A classical characterization due to Rose [10] tells that a
graph G is chordal graphs if and only if all induced subgraphs H of G contain
a simplicial vertex (in H), where a vertex is simplicial if its neighborhood
is a clique (for our purpose, we only need this characterization of chordal
graphs). The following is usually refered to as the perfection of chordal
graphs.

Theorem 1.11 (Dirac, see [6]). If G is a chordal graph, then χ(G) = ω(G).
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Li

Li+1

v v′ v′′ v′′′

v1 v′1 v′′1 v′′′1

L(v) L(v′) L(v′′) L(v′′′)

Figure 1: Rules R2–R4

Outline of the paper

We define what we call the (f, `)-layered wheels in Section 2. We study
some of their structural properties in Section 3. The (f, `)-layered wheels are
infinite graphs and their finite induced subgraphs are studied in Section 4.
We provide the answers to questions and counter-examples to conjectures
in Section 5.

2 Definition of layered wheels

A function f : N \ {0} → N \ {0} is slow if f(1) = 1, f(2) = 2, f(3) = 3 and
for every i ∈ N\{0}, f(i) ≤ f(i+1) ≤ f(i)+1. Observe that a slow function
is non-decreasing. So, every slow function is either ultimately constant or
tends to +∞.

For every slow function f and every integer ` ≥ 4, we define an oriented
graph G called the (f, `)-layered wheel. The vertex-set of G is countably
infinite. The set of arcs of G is denoted by A(G). Note that all the theorems
in this paper are about the underlying graph of G. The orientations of the
arcs are only used to facilitate the description of several subsets of V (G).
Before defining G precisely, we list five rules giving some properties and
terminology that help stating the formal description.

R1 V (G) is partitioned into sets Li, i ∈ N \ {0}, called the layers of G.

R2 Each layer Li, i ∈ N \ {0}, induces a directed cycle of length at least
`.

R3 If u and v are adjacent vertices in different layers, say v ∈ Li, u ∈ Lj

and i < j, then the arc linking them is oriented from v to u.
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R4 For every i ∈ N \ {0} and every vertex v ∈ Li, there exists an integer
nv and a directed path L(v) = v1 . . . vnv such that V (L(v)) ⊆ Li+1

and L(v) contains all the neighbors of v in Li+1. The vertex v1 is
adjacent to v. Moreover the paths L(v), v ∈ Li, are vertex-disjoint,
Li+1 = ∪v∈LiV (L(v)) and if vv′ ∈ A(G), then vnvv

′
1 ∈ A(G).

It follows that a vertex u ∈ Li+1 has at most one neighbor in Li. If
such a neighbor v exists, we say that v is the parent of u and u is a
child of v. Observe that every vertex in G has at least one child and
at most one parent.

Informally, the directed paths L(v), v ∈ Li, vertex-wise partition Li+1,
and parents in Li and their children in Li+1 appear in the same cyclic
order, see Fig. 1.

R5 If v ∈ Li, then v has at most f(i)−1 neighbors in
⋃

1≤j<i Lj . Moreover,
these neighbors induce a (possibly empty) clique that contains at most
one vertex in each layer. We denote this clique by N↑(v) and we set
N↑[v] = {v} ∪N↑(v).

Now we define the (f, `)-layered wheel G. The first layer L1 is a directed
cycle of length `. We suppose inductively that for some integer i ≥ 1, the
graph induced by the i first layers (so G[L1 ∪ · · · ∪ Li]) is defined, and we
explain how to add the next layer Li+1. We assume that rules R1, . . . , R5
hold for layers L1, . . . , Li. Since f is slow, f(i) ∈ {f(i + 1) − 1, f(i + 1)}.
Hence, by rule R5, for every v ∈ Li, |N↑(v)| ≤ f(i+ 1)− 1.

To fully describe G[L1 ∪ · · · ∪ Li+1], it is sufficient to define for each
v ∈ Li the integer nv, and for each vertex vj ∈ L(v), the set N↑(vj); then
Li+1 can be described as the vertex-set of the directed cycle formed by the
consecutive directed paths L(v), so the neighborhood of every vertex from
Li+1 is fully described. So, let v be a vertex in Li. There are two cases (see
Fig. 2 and Fig. 3):

R6 If |N↑(v)| < f(i+ 1)− 1, then we set nv = `− 2, so L(v) = v1 . . . v`−2.
Moreover, we set:

• N↑(v1) = N↑[v]

• N↑(v2) = · · · = N↑(v`−2) = ∅.

R7 If |N↑(v)| = f(i + 1) − 1, then by rule R5, we have N↑(v) =
{w1, . . . , wf(i+1)−1}, where for all j ∈ {1, . . . , f(i + 1) − 1}, wj ∈ Lij ,
and 1 ≤ i1 < i2 < · · · < if(i+1)−1 < i. We set nv = (f(i+1)−1)(`−2),
so L(v) = v1 . . . v(f(i+1)−1)(`−2). Moreover, we set:
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. . . . . .. . . . . .

...

...

. . . . . .v− v v+

w1

wj

w|N↑(v)|

v−1 v+1
v1 v2 v(l−2)

Figure 2: Rule R6

. . . . . . . . . . . .. . . . . .

...

...

. . . . . .v− v v+

w1

wj

wf(i+1)−1

v−1 v+1
v1 v(j−1)(l−2)+1 v(k−2)(l−2)+1

Figure 3: Rule R7
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• For all j ∈ {1, . . . , f(i+ 1)− 1},

N↑(v(j−1)(`−2)+1) = N↑[v] \ {wj}.

• For all j ∈ {1, . . . , f(i+ 1)− 1} and j′ ∈ {2, . . . , `− 2},

N↑(v(j−1)(`−2)+j′) = ∅.

The description of G[L1 ∪ · · · ∪ Li+1] is now completed (see Fig. 4 for
an example). Note that the new layer Li+1 satisfies rules R1–R5, so the
inductive process can go on, and G is inductively defined. We now give
several informal statements that will hopefully help the reader.

L1

L2

L3

L4

Figure 4: Layers L1 to L4 of the (f, 4)-layered wheel when f(4) = 3

The (f, `)-layered wheel is infinite, but we are only interested in its finite
induced subgraphs, that form a hereditary class of graphs. Recall that the
orientations of the arcs are here only to help describing some sets of vertices
later in the proofs. The statements of the theorems are only about the
underlying undirected graph of G.

The layers of G should be thought of as the sets of a clique minor. More
precisely, it will be shown in Lemma 3.2 that for every pair of layers Li, Lj

there exists an edge with one end in Li and the other in Lj . It follows that for
all integers t ≥ 1, the layers L1, . . . , Lt form a clique minor of G[L1∪· · ·∪Lt],
that has therefore treewidth at least t− 1 by Lemma 1.9.

The integer ` should be thought of as the length of a smallest hole in G.
It controls the number of new vertices with no parent that are introduced
in each new layer. The larger is `, the more of them are needed to prevent
creating short holes.
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For every integer i ≥ 1, the integer f(i+ 1) should be thought of as the
size of the cliques that are allowed to be introduced when the layer Li+1 is
built. When a vertex v ∈ Li is such that |N↑(v)| < f(i+ 1)− 1, its children
(all of which are in Li+1) can be made complete to N↑[v] whithout creating
a clique of size larger than f(i + 1), and this explains the rule R6. When
|N↑(v)| = f(i+ 1)− 1, the children of v cannot be made complete to N↑[v]
whithout creating a clique of size larger than f(i+ 1). This explains why in
rule R7, in the neighborhood of a child of v, we have to exclude one vertex
from N↑[v]. Still, we want to give a chance of later augmentation to as
many cliques as possible, and this is why we create f(i+ 1)− 1 children of
v that cover all possible ways of extending a clique of size f(i+ 1)− 1 that
contains v.

The function f should be thought of as the speed at which bigger and
bigger cliques are introduced in the construction. We keep the flexibility
of tuning f for different purposes. In particular it is convenient that f can
be eventually constant. Then the layered wheel will have bounded clique
size, and yet unbounded treewidth, see Theorem 5.3. On the other hand,
if f tends to +∞, then the layered wheel provides a class of graphs whose
treewidth is bounded by a function of ω that is closely related to f , see
Theorem 5.1 and Theorem 5.2.

3 Structure of layered wheels

Throughout this section, f is a slow function, ` ≥ 4 is an integer and G is
the (f, `)-layered wheel.

Lemma 3.1. All holes of G have length at least `.

Proof. Let H be a hole of G and i be the maximum integer such that H
contains vertices of Li. By rule R2, if V (H) = Li, then H has length at
least `, so we may assume that V (H) 6= Li, implying that some vertex of Li

is not in H since Li induces a hole. Let u1 . . . uj be a subpath of Li that is
included in H and maximal with respect to this property. We have j > 1
since N↑(u1) is a clique by rule R5. Hence, by rule R6 or R7, j ≥ ` − 1.
Hence, H has length at least `.

The following shows that the layers of G form a clique minor of G.

Lemma 3.2. For all integers i ≥ 1 and i′ > i, every vertex u ∈ Li has at
least one neighbor in Li′.
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Proof. We prove the property by induction on i′. If i′ = i + 1, then the
conclusion follows directly from rule R4.

Assume that the property holds for some fixed i′ ≥ i + 1. Let us prove
it for i′+ 1. Note that i′+ 1 ≥ 3. So since f is slow, f(i′+ 1) ≥ 3. Let w be
a vertex in Li. By the induction hypothesis, w has a neighbor v ∈ Li′ . It is
enough to check that the path L(v) defined in R6 or R7 contains a neighbor
of w. We use the notation of rules R6 and R7.

If |N↑(v)| < f(i′ + 1) − 1, then rule R6 applies. So, v1 is adjacent to
w since N↑(v1) = N↑[v]. If |N↑(v)| = f(i′ + 1) − 1, then rule R7 applies.
Since f(i′ + 1) − 1 ≥ 2, there exists j ∈ {1, . . . , f(i′ + 1) − 1} such that
wj 6= w. So, the vertex v(j−1)(`−2)+1 from L(v) is adjacent to w since

N↑(v(j−1)(`−2)+1) = N↑[v] \ {wj}.

Lemma 3.3. For all integers i ≥ 2, ω(G[L1 ∪ · · · ∪ Li]) = f(i).

Proof. Let us prove by induction on i that for all i ≥ 1, there exists a clique
K of G[L1 ∪ · · · ∪Li] on f(i) vertices such that |K ∩Li| = 1. This is clearly
true for i = 1. We suppose inductively that such K exists for some fixed
i ≥ 1 and call v the unique vertex of K∩Li. Since f is slow, f(i+1) = f(i)+1
or f(i + 1) = f(i). In the former case, |N↑(v)| = f(i) − 1 = f(i + 1) − 2,
so rule R6 applies and v has a unique child u satisfying N↑(u) = N↑[v]. So,
K ∪ {u} is a clique on f(i) + 1 = f(i + 1) vertices that contains u. In the
latter case, |N↑(v)| = f(i)−1 = f(i+ 1)−1, so rule R7 applies, and for any
child of u of v, N↑(u) = N↑[v] \ {w} for some w ∈ N↑(v). Hence, we again
find a clique satisfying the conclusion.

We proved that ω(G[L1 ∪ · · · ∪ Li]) ≥ f(i). Let us prove the converse
inequality. For i = 2, it trivially holds. So, suppose i ≥ 3. Let K be a
maximum clique of G[L1∪· · ·∪Li] and j be the maximum integer such that
K ∩ Lj 6= ∅. Note that |K| ≥ 3. By rules R6 and R7, no adjacent vertices
of Lj have a common neighbor in Lj′ if j ≥ j′, so |K ∩ Lj | = {u} for some
u ∈ Lj ; consequently K ⊆ N↑[u]. It follows by rule R5 that |K| ≤ f(i).

An infinite directed path P of G is a vertical path starting in layer i if
i ∈ N∗, P = pipi+1pi+2 . . . and for all j ≥ i, pj ∈ Lj . Observe that P may
not be induced.

Lemma 3.4. Let P = pipi+1pi+2 . . . and Q = qiqi+1qi+2 . . . be two vertical
paths starting in the same layer. If pi 6= qi, then V (P ) ∩ V (Q) = ∅.

Proof. Otherwise, the common vertex of P and Q in Lj such that j is
minimal has two parents, a contradiction to rule R4.
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Lemma 3.5. If pipi+1pi+2 . . . is a vertical path, then for all j ≥ i,

N↑[pj ] ⊆ V (P ) ∪N↑(pi).

Proof. Let us prove the lemma by induction on j. If j = i it trivially holds,
so suppose j > i. By rules R6 or R7, N↑(pj) ⊆ N↑[pj−1]. So, by the
induction hypothesis, N↑[pj ] ⊆ V (P ) ∪N↑(pi).

Let p and q be two vertices of Li. We denote by p
−→
Liq the vertex-set of the

unique directed path of G[Li] from p to q. Note that if p = q, then p
−→
Liq =

{p} and if qp ∈ A(G), then p
−→
Liq = Li. We set p

←−
Liq = {p, q} ∪ (Li \ p

−→
Liq).

Observe that G[p
−→
Liq] and G[p

←−
Liq] edge-wise partition G[Li], so (p

−→
Liq, p

←−
Liq)

is a separation of G[Li] of order 2 (or 1 if p = q) since p
−→
Liq ∩ p

←−
Liq = {p, q}.

Let P and Q be two vertical paths starting in the same layer Li. We
define

A(P,Q) =
⋃

u∈pi
−→
Liqi

N↑[u] ∪
⋃
j>i

pj
−→
Ljqj

and
B(P,Q) =

⋃
1≤j≤i

Lj ∪
⋃
j>i

pj
←−
Ljqj .

Lemma 3.6. If P and Q are two vertical paths starting in the same layer
Li, then:

A(P,Q) ∪B(P,Q) = V (G)

and

A(P,Q) ∩B(P,Q) = V (P ) ∪ V (Q) ∪
⋃

u∈V (pi
−→
Liqi)

N↑[u].

Proof. By its definition, B(P,Q) contains all layers L1, . . . , Li. Vertices of

some layer Lj , j > i, are all either in pj
−→
Ljqj or pj

←−
Ljqj since these two sets

form a separation of Lj . So, they are either in A(P,Q) or in B(P,Q). This
proves the first equality.

The only vertices of A(P,Q) that are in layers L1, . . . , Li are those from⋃
u∈pi

−→
Liqi

N↑[u], and it turns out that they are all in B(P,Q). In the next

layers (so the Lj ’s, j > i), the only vertices that are both in A(P,Q) and

B(P,Q) are the vertices of P and Q since for all j > i, pj
−→
Ljqj ∩ pj

←−
Ljqj =

{pj , qj}. This proves the second equality.
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A vertex w ∈ Lj is an ancestor of a vertex u ∈ Li if wu ∈ A(G) and
j < i. A vertex w ∈ Lj is a descendant of a vertex u ∈ Li if uw ∈ A(G) and
j > i.

Lemma 3.7. If P and Q are two vertical paths starting in the same layer
Li and u ∈ A(P,Q)\B(P,Q), then all the descendants of u are in A(P,Q)\
B(P,Q) and all ancestors of u are in A(P,Q).

Proof. Let us first prove the claim about the descendants of u. Suppose
that the claim does not hold. Then there exists uw ∈ A(G) such that
u ∈ (A(P,Q) \B(P,Q))∩Lj , w ∈ B(P,Q)∩Lj′ and j′ > j. We choose such
a pair u,w subject to the minimality or j′ − j. Since uw ∈ A(G), by rule
R6 or R7, w has a parent v such that u ∈ N [v]. We have v 6= u because
otherwise, w is a child of u and by rule R4, the children of u are in the interior

of pj+1
−−→
Lj+1qj+1, so in A(P,Q) \B(P,Q). If v ∈ V (P ), then by Lemma 3.5,

u ∈ V (P )∪N↑(pi), a contradiction to u ∈ A(P,Q) \B(P,Q). So v /∈ V (P ),

and symmetrically v /∈ V (Q). Hence, v and w (if v ∈ pj′−1
−−−→
Lj′−1qj′−1) or

u, v (if v ∈ pj′−1
←−−−
Lj′−1qj′−1) contradicts the minimality of j′ − j.

Let us now prove the claim about the ancestors of u. Suppose that
the claim does not hold. Then there exists wu ∈ A(G) such that u ∈
(A(P,Q) \ B(P,Q)) ∩ Lj , w ∈ (B(P,Q) \ A(P,Q)) ∩ Lj′ and j′ < j. We
choose such a pair u,w subject to the minimality or j−j′. Since wu ∈ A(G),
by rule R6 or R7, u has a parent v such that w ∈ N [v]. If v ∈ V (P ), then by
Lemma 3.5, w ∈ V (P ) ∪N↑(pi), a contradiction to w ∈ B(P,Q) \ A(P,Q).

So v /∈ V (P ), and symmetrically v /∈ V (Q). If v ∈ pi
−→
Liqi, then w ∈ N↑[v], a

contradiction to w ∈ B(P,Q) \ A(P,Q). So, by rule R4, j ≥ i + 2 and v ∈
pj−1
−−→
Lj−1qj−1 \ {pj−1, qj−1}. It follows that v ∈ (A(P,Q) \B(P,Q)) ∩Lj−1.

So, w and v contradict the minimality of j − j′ unless j − j′ = 1, in which
case w and u contradict rule R4.

Lemma 3.8. If P and Q are two vertical paths starting in the same layer
Li, then S = (A(P,Q), B(P,Q)) is a separation of G.

Proof. Suppose that S is not a separation. Since by Lemma 3.7 V (G) =
A(P,Q) ∪ B(P,Q), there exists in G an edge uv such that u ∈ A(P,Q) \
B(P,Q) and v ∈ B(P,Q) \ A(P,Q). If u and v are in the same layer Lj ,
then j > i because B(P,Q) contains all layers L1, . . . , Li; so we have

u ∈ pj
−→
Ljqj \ {pj , qj} and v ∈ pj

←−
Ljqj \ {pj , qj}, a contradiction since u and

v are adjacent. Otherwise, v is a descendant or an ancestor of u, so by
Lemma 3.7, v ∈ A(P,Q), a contradiction again.
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4 Finite induced subgraphs of layered wheels

Throughout this section, f is a slow function, ` ≥ 4 is an integer and G
is the (f, `)-layered wheel. Moreover, we consider a finite set X ⊆ V (G)
and an integer k ≥ 1 such that ω(G[X]) ≤ k and we study G[X]. We set
n = |X|.

Lemma 4.1. If X contains at most one vertex in each layer of G, then
G[X] is a chordal graph.

Proof. Consider the maximum integer i such that Li ∩X 6= ∅. The unique
vertex v of Li ∩ X has all it neighbors are in layers Lj such that j < i (it
has no neighbor in Li by assumption, and no neighors in Lj , j > i, by the
maximality of i). So N(v) ∩X = N↑(v) ∩X and v is simplicial by rule R5.
This proof can be applied to any induced subgraph of G[X], so G[X] is
chordal.

The arc vu ∈ A(G) is augmenting with respect to X if u is a child of v
and

N↑(u) ∩X = N↑[v] ∩X.

In what follows, we will omit to write “with respect to X” since X is fixed
for the entire section.

Lemma 4.2. If v ∈ Li and f(i+ 1) ≥ k + 2, then there exists at least one
child u of v such that vu is augmenting.

Proof. Assume first that |N↑(v)| < f(i + 1) − 1. Then by rule R6, the
edge vu is augmenting, where u is the only child of v. Indeed, we have
N↑(u) = N↑[v], so N↑(u) ∩ X = N↑[v] ∩ X trivially holds. Thus we may
assume that |N↑(v)| ≥ f(i+ 1)− 1. Now:

f(i)− 1 ≥ |N↑(v)| by rule R5
≥ f(i+ 1)− 1 by assumption
≥ f(i)− 1 because f is slow

So |N↑(v)| = f(i+ 1)− 1 ≥ k + 1. Since ω(G[X]) ≤ k, there exists w ∈
N↑(v)\X. By rule R7, v has a child u such that N↑(u) = N↑[v]\{w}. Since
w /∈ X, we have N↑(u)∩X = N↑[v]∩X, so the edge vu is augmenting.

For every vertex v in G, we denote by a(v) the augmenting child of v that
is a vertex defined as follows: if v has a child u such that vu is augmenting,
then we choose such a child u, and set a(v) = u. Otherwise, we choose any
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child u of v and set a(v) = u. There might be many ways to choose a(v),
but we choose one of them and keep it for the rest of the proof. For every
vertex v, there exists a vertical path induced by {v, a(v), a(a(v)), . . . } that
we call the augmenting path out of v.

When f is a slow function, we set F (k) = sup{i ∈ N\{0}|f(i) ≤ k}. The
function F should be thought of as the maximum number of layers where f
is at most k. Observe that in the case where f is eventually constant, say
f(i) = c for all sufficiently large i, we have F (k) = +∞ for all k ≥ c.

Lemma 4.3. If v ∈ V (G) and P is the augmenting path out of v, then
(V (P ) ∩ (

⋃
i≥F (k+1) Li)) ∩X is a clique. In particular,

|V (P ) ∩X| ≤ F (k + 1) + k − 1.

Proof. If F (k + 1) = +∞, then the conclusion trivially holds (in particular
{i ∈ N \ {0}|i ≥ F (k + 1)} = ∅). Otherwise, V (P ) ∩ (

⋃
i≥F (k+1) Li) induces

an infinite vertical path p1p2 . . . , and each pj for j ≥ 1 is in a layer Li such
that f(i+1) ≥ k+2. So, by Lemma 4.2, there exists an augmenting arc pju
for all j ∈ N \ {0}, so by the definition of augmenting paths, the arc pjpj+1

is augmenting.
Let us now prove that {p1, p2, . . . } ∩ X induces a clique. We prove by

induction on j a stronger fact: {p1, . . . , pj}∩X ⊆ N↑[pj ]∩X (which induces
a clique by rule R5). This is clear for j = 1, and assuming it is proved for a
fixed j, it follows for j + 1 from:

{p1, . . . , pj+1} ∩X = ({p1, . . . , pj} ∩X) ∪ ({pj+1} ∩X)
⊆ (N↑[pj ] ∩X) ∪ ({pj+1} ∩X) (induction hypothesis)
= (N↑(pj+1) ∩X) ∪ ({pj+1} ∩X) (pjpj+1 augmenting)
= N↑[pj+1] ∩X

Hence, {p1, p2, . . . } ∩ X is a clique and therefore contains at most k
vertices. Together with the vertices potentially in layers from 1 to F (k +
1)−1, we obtain that V (P )∩X contain at most F (k+1)+k−1 vertices.

A separation (A,B) of G is fair if there exists a pair of vertical paths
P = pipi+1 . . . , Q = qiqi+1 . . . such that:

• pi and qi are in the same layer Li,

• |pi
−→
Liqi| ≤ `− 1,

• The paths P \pi = pi+1pi+2 . . . and Q\ qi = qi+1qi+2 . . . are augment-
ing paths,
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• A = A(P,Q) and B = B(P,Q) and

• |A ∩X| ≥ n/3 (recall that n = |X|).

Note that the notion of fair separation is defined for G (and not only
for G[X]), but it depends on X. Observe that P and Q are possibly not
augmenting (but removing their first vertex yields an augmenting path).

Lemma 4.4. There exists a fair separation in G.

Proof. Consider two distinct and non-adjacent vertices p and q in the first

layer L1. Note that |p
−→
L1q| ≤ ` − 1 and |q

−→
L1p| ≤ ` − 1 because L1 in-

duces a cycle of length ` by the definition of layered wheels. Let P and
Q be the two augmenting paths starting at p and q respectively. By
Lemma 3.8, (A(P,Q), B(P,Q)) and (A(Q,P ), B(Q,P )) are separations of
G. To prove that one of them is fair, only the condition on |A ∩ X| re-
mains to be checked. Since P and Q are vertex-disjoint by Lemma 3.4,
we have A(P,Q) ∪ A(Q,P ) = V (G). So, either |A(P,Q) ∩ X| ≥ n/3 or
|A(Q,P )∩X| ≥ n/3, so the condition holds for at least one separation.

Observe that in the following lemma, F (k+1) = +∞ is possible. In this
case, the statement becomes trivial, but is stays true : it says that some
subset of X (which is finite) has size at most +∞.

Lemma 4.5. There exists a balanced separation of G[X] of order at most

2F (k + 1) + (`+ 1)k − 2.

Proof. If n ≤ 5, then the conclusion trivially holds because ` + 1 ≥ 5 and
F (k + 1) ≥ 2, so (X,X) is a separation satisfying the conclusion. We
therefore assume from here on that n ≥ 6.

Since a fair separation exists by Lemma 4.4, consider a fair separation
(A,B) of G with notation as in the definition, such that i is maximal and,

among all separations with i maximal, such that |pi+1
−−→
Li+1qi+1| is minimal.

The order of (A∩X,B ∩X) is at most 2F (k+ 1) + (`+ 1)k− 2 because by
Lemma 3.6,

A(P,Q) ∩B(P,Q) = V (P ) ∪ V (Q) ∪
⋃

u∈pi
−→
Liqi

N↑[u],

by Lemma 4.3, |V (P \pi)∩X| ≤ F (k+ 1) +k−1, a similar inequality holds

for Q, and by rule R5, for all u ∈ pi
−→
Liqi, |N↑[u]| ≤ k.
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It remains to prove that (A∩X,B∩X) is a balanced separation of G[X].
Suppose not. By the definition of fair separations, |A ∩X| ≥ n/3. Hence,
|(B ∩ X) \ (A ∩ X)| ≤ 2n/3. So, the reason why (A ∩ X,B ∩ X) is not
balanced is that |(A ∩X) \ (B ∩X)| > 2n/3.

Suppose that no internal vertex of pi+1
−−→
Li+1qi+1 has a parent. Then by

rule R4, either pi = qi or piqi ∈ A(G). Moreover, by rules R6 and R7,

pi+1
−−→
Li+1qi+1 induces a path on ` − 1 vertices. We then set P ′ = P \ pi

and Q′ = Q \ qi, A′ = A(P ′, Q′) and B′ = B(P ′, Q′). It is a routine
matter to check that (A′, B′) is a fair separation, except for the condition
on |A′∩X|. But at most two vertices of A′ are not in A, because by rule R6
and R7, at most one vertex is in N↑[pi] \N↑(pi+1) and at most one vertex
is in N↑[qi] \ N↑(qi+1). Hence, |A′ ∩ X| ≥ |A ∩ X| − 2 > 2n/3 − 2 =
n/3 + (n − 6)/3 ≥ n/3 since n ≥ 6. Consequently, the condition on the
size of A′ is satisfied and (A′, B′) contradicts the optimality of (A,B) since
i+ 1 > i.

We may therefore assume that some vertex u in the interior of

pi+1
−−→
Li+1qi+1 has a parent v. By rule R4, we have v ∈ pi

−→
Liqi. Let R′ be the

augmenting path out of u and R = vuR′. Set A′ = A(P,R), A′′ = A(R,Q),
B′ = B(P,R) and B′′ = B(R,Q). It is a routine matter to check that
(A′, B′) and (A′′, B′′) are fair separations, except for the condition on the
size of A′ or A′′. We have A = A′ ∪A′′. Hence, since |A∩X| ≥ 2n/3, either
|A′ ∩X| ≥ n/3 or |A′′ ∩X| ≥ n/3. So, one of (A′, B′) or (A′′, B′′) is fair and

contradicts the minimality of |pi+1
−−→
Li+1qi+1|.

The following is the main result about the treewidth of layered wheels.
Observe that if F (ω(H)+1) = +∞, then the first conclusion trivially holds.

Lemma 4.6. For all integers ` ≥ 4 and all slow functions f , the (f, `)-
layered wheel G satisfies:

• For every finite induced subgraph H of G:

tw(H) ≤ 15 (F (ω(H) + 1) + (`+ 1)ω(H)− 2) .

• For all integers k ≥ 2 such that F (k − 1) is finite and all integers
t ≤ F (k), there exists a finite induced subgraph H of G satisfying:

ω(H) = k and tw(H) ≥ t− 1.

Proof. Let us prove the first statement. Let H ′ be an induced subgraph
of H. Set k = ω(H ′). By Lemma 4.5, H ′ has a balanced separation of order
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at most 2F (k+ 1) + (`+ 1)k− 2 ≤ 2F (ω(H) + 1) + (`+ 1)ω(H)− 2. Hence
by Theorem 1.10,

tw(H) ≤ 15 (F (ω(H) + 1) + (`+ 1)ω(H)− 2) .

To prove the second statement, set t′ = max(F (k−1)+1, t). Consider the
graph H induced by layers L1, . . . , Lt′ of G. Since F (k− 1) + 1 ≤ t′ ≤ F (k)
(because t ≤ F (k)), f(t′) = k. So by Lemma 3.3, ω(H) = k. By Lemma 3.2,
L1, . . . , Lt′ forms a clique minor of H. So, since t′ ≥ t, by Lemma 1.9,
tw(H) ≥ t− 1.

Observe that when F (k) is finite and F (k + 1) is infinite, Lemma 4.6
does not tell us weather the treewidth of induced subgraphs of G with clique
number exactly k is bounded or not. This is why we do not know the answer
to Question 1.8.

5 Applications of layered wheels

Recall that when f is a slow function, we set

F (k) = sup{i ∈ N \ {0}|f(i) ≤ k}.

Call F the cumulative function of f . Recall that informally, f(i) tells us
what size of clique is obtained when adding the layer Li. This number is
1 at the start, then 2, then 3, and then it grows by at most 1 at each new
layer. Informally, F (k) is the number of layers where the clique number is
at most k. Since f is slow, we have

F : N \ {0} → N \ {0} ∪ {+∞},
F (1) = 1, F (2) = 2 and (?)
F (k + 1) ≥ F (k) + 1 for all k ∈ N \ {0}.

It is clear that the (f, `)-layered wheel could be defined by giving F
instead of f . This one-to-one correspondance between f and F could be
formalized by the fact that for all i ∈ N \ {0}, we have

f(i) = min{k ∈ N \ {0}|F (k) ≥ i}.

but we do not need this. We will just use freely the fact that any slow func-
tion f can be defined by describing its corresponding cumulative function
F , provided that F satisfies the property (?).

The following theorem answers Question 1.1.
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Theorem 5.1. For every function g : N \ {0} → N \ {0} and every integer
` ≥ 4, there exists a (tw, ω)-bounded class of graphs C such that every hole
in C has length at least ` and for all integers k ≥ 2, there exists a graph
H ∈ C satisfying

ω(H) = k and tw(H) ≥ g(k).

Proof. Consider a triangle-free graph J whose treewidth is at least g(2)
(J can be a wall, or a (theta, triangle)-free layered wheel as defined in [11]).
Set F (1) = 1, F (2) = 2 and for all integers k ≥ 3,

F (k) = max{F (k − 1) + 1, g(k) + 1}.

Consider the slow function f whose cumulative function is F . It exists since
F (1) = 1, F (2) = 2, and F (k + 1) ≥ F (k) + 1 for all k ∈ N \ {0}. Also, for
all integers k ≥ 3, F (k) ≥ g(k) + 1.

Consider the class C of all finite induced subgraphs of either J or the
(f, `)-layered wheel G. By Lemma 4.6, C is (tw, ω)-bounded. For all integers
k ≥ 3, the second conclusion of Lemma 4.6 for t = F (k) yields a graph H ∈ C
such that ω(H) = k and tw(H) ≥ F (k) − 1 ≥ g(k). For k = 2, a graph
H ∈ C such that ω(H) = k and tw(H) ≥ g(k) also exists since J ∈ C.

The following theorem disproves Conjecture 1.2.

Theorem 5.2. Let ` ≥ 4 be an integer and F : N \ {0} → N \ {0} be any
super-linear function such that F (1) = 1, F (2) = 2, and F (k+1) ≥ F (k)+1
for all k ∈ N\{0}. Then there exists a hereditary class of graphs C such that
every hole in C has length at least `, C contains graphs of arbitrarily large
tree-independence number and every H ∈ C satisfies

tw(H) ≤ 15 (F (ω(H) + 1) + (`+ 1)ω(H)− 2) .

Proof. Consider the slow function f whose cumulative function is F . Let G
be the (f, `)-layered wheel and C be the class of finite induced subgraphs
of G. By Lemma 3.1, the holes in C all have length at least `. By Lemma 4.6,
the required bound on the treewidth holds.

It remains to prove that C contains graphs of arbitrarily large tree-
independence number. So let c ≥ 1 be an integer. Since F is super-linear,
let k ∈ N \ {0} be such that F (k) ≥ ck. Consider the graph H induced by
the layers L1, . . . , LF (k) of G. By Lemma 3.3, ω(H) = k and by Lemma 3.2,
the layers L1, . . . , LF (k) form a clique minor of H.

Consider any tree-decomposition T = (T, (Xs)s∈V (T )) of H. By
Lemma 1.9, there exists a vertex s ∈ V (T ) such that Xs contains at least
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one vertex of each Li, i ∈ {1, . . . , F (k)}. Consider a subset Y of Xs that
contains exactly one vertex in each layer Li, i ∈ {1, . . . , F (k)}. We have
|Y | = F [k] and ω(H[Y ]) ≤ k. By Lemma 4.1, H[Y ] is chordal. Hence by
Theorem 1.11,

α(H[Xs]) ≥ α(H[Y ]) ≥ |Y |
χ(H[Y ])

=
F [k]

ω(H[Y ])
≥ ck

k
= c.

Hence, for all tree-decompositions of H, some bag contains a stable of
size at least c. It follows that tree-α(H) ≥ c. Since this can be performed
for any integer c, C contains graph of arbitrarily large tree-independence
number.

By allowing f to be eventually constant (or equivalently by allowing infi-
nite values of F ), we obtain the following, that disproves both Conjecture 1.3
and Conjecture 1.4.

Theorem 5.3. For all integers ` ≥ 5, c ≥ 2 and t ≥ 1, there exists a graph G
of treewidth t such that ω(G) = c+1, every hole of G has length at least ` (in
particular, G contains no complete bipartite graph of treewidth at least 2) and
every Kc-free induced subgraph of G (in particular every (c− 2)-degenerate
induced subgraph of G) has treewidth at most 15(c+ (`+ 1)(c− 1)− 2).

Proof. Let f be the function defined by f(i) = min{i, c + 1}. So, f is slow
and the cumulative function F of f satisfies F (c) = c and F (c+ 1) = +∞.
Let G be the graph induced by the layers L1, . . . , Lt+1 of the (f, `)-layered
wheel. By Lemma 3.3, ω(G) ≤ c+ 1. Since the layers L1, . . . , Lt+1 form a
clique minor of G by Lemma 3.2, G has treewidth at least t by Lemma 1.9.

Let H be a Kc-free induced subgraph of G. So ω(H) ≤ c − 1. By
Lemma 4.6 and since F (c) = c, tw(H) ≤ 15(c + (` + 1)(c − 1) − 2). So G
satisfies the conclusion.
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