
INDUCED SUBGRAPHS AND TREE DECOMPOSITIONS
XI. LOCAL STRUCTURE IN EVEN-HOLE-FREE GRAPH OF LARGE

TREEWIDTH

BOGDAN ALECU∗∗¶, MARIA CHUDNOVSKY∗q, SEPEHR HAJEBI §, AND SOPHIE SPIRKL§‖

Abstract. Sintiari and Trotignon showed that for every h ≥ 1, there are (even-hole, K4)-free
graphs of arbitrarily large treewidth in which every h-vertex induced subgraph is chordal. We
prove the converse: given a graph H, every (even-hole, K4)-free graph of large enough treewidth
contains an induced subgraph isomorphic to H, if and only if H is chordal (and K4-free).

As an immediate corollary, the above result settles a conjecture of Sintiari and Trotignon,
asserting that every (even-hole,K4)-free graph of sufficiently large treewidth contains an induced
subgraph isomorphic to the graph obtained from the two-edge path by adding a universal vertex
(also known as the diamond).

We further prove yet another extension of their conjecture with “K4” replaced by an arbitrary
complete graph and the “two-edge path” replaced by an arbitrary forest. This turns out to
characterize forests: given a graph F , for every t ≥ 1, every (even-hole, Kt)-free graph of
sufficiently large treewidth contains an induced subgraph isomorphic to the graph obtained
from F by adding a universal vertex, if and only if F is a forest.

1. Introduction

1.1. Background and the main results. Graphs in this paper have finite vertex sets, no
loops and no parallel edges. Let G = (V (G), E(G)) be a graph. For X ⊆ V (G), we denote by
G[X] the subgraph of G induced by X, and by G \X the induced subgraph of G obtained by
removing X. We use induced subgraphs and their vertex sets interchangeably. For graphs G
and H, we say G contains H if G has an induced subgraph isomorphic to H, and we say G is
H-free if G does not contain H. For a family H of graphs, we say G is H-free if G is H-free
for every H ∈ H. A class of graphs is hereditary if it is closed under isomorphism and taking
induced subgraphs, or equivalently, if it is the class of all H-free graphs for some other family
H of graphs.

The treewidth of a graph G (denoted by tw(G)) is the smallest integer w ≥ 1 for which one
may choose a tree T as well as an assignment (Tv : v ∈ V (G)) of non-empty subtrees of T to
the vertices of G, with the following specifications.

(T1) For every edge uv ∈ E(G), Tu and Tv share at least one vertex.
(T2) For every x ∈ V (T ), there are at most w+1 vertices v ∈ V (G) for which x ∈ V (Tv).

In more intuitive terms, the treewidth of G is the optimized “load” imposed on each node of an
underlying tree T in a representation of G as (a subgraph of) the intersection graph of subtrees
of T .
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Figure 1. The 6-by-6 square grid (left) and the 6-by-6 wall W6×6 (right).

Treewidth is widely recognized as a fundamental graph invariant. Initially a part of Robertson
and Seymour’s graph minors project, the notion of treewidth has gained independent significance
over time, partly due to the convenient structural [17] and algorithmic [6] properties of graphs
with small treewidth.

This also motivates exploring the opposite perspective: What characteristics prevent a graph
from having small treewidth? The typical answer to this question, as well as its analogues for
other width parameters, is to certify large treewidth by a local obstruction which is structurally
less complex than the host graph, yet its treewidth is still relatively large. The prototypical
example of this approach is the Grid Theorem of Robertson and Seymour [17], Theorem 1.1
below, which says that in minor-closed (and subgraph-closed) graph classes, the only obstructions
to bounded treewidth are the “basic” ones: the t-by-t square grid for minors and subdivisions
of the t-by-t hexagonal grid for subgraphs. The t-by-t hexagonal grid is also referred to as the
t-by-t wall, denoted by Wt×t (see Figure 1, and also [3] for full definitions).

Theorem 1.1 (Robertson and Seymour [17]). For every integer t ≥ 1, every graph of sufficiently
large treewidth contains the t-by-t square grid as a minor, or equivalently, a subdivision of Wt×t
as a subgraph.

For hereditary classes, the basic obstructions come in a larger variety: complete graphs,
complete bipartite graphs, subdivided walls, and line-graphs of subdivided walls. Nevertheless,
there are many well-known hereditary classes for which even the above list of obstructions is far
from comprehensive [7, 9, 15, 18]. Let us be more precise. Given an integer t ≥ 1, we say a
graph H is a t-basic obstruction if G is isomorphic to one the following: the complete graph Kt,
the complete bipartite graph Kt,t, a subdivision of Wt×t, or the line-graph of a subdivision of
Wt×t, where the line-graph L(F ) of a graph F is the graph with vertex set E(F ), such that two
vertices of L(F ) are adjacent if the corresponding edges of F share an end (see Figure 2). We
say a graph G is t-clean if G does not contain a t-basic obstruction (as an induced subgraph).
A graph class G is called clean if for every integer t ≥ 1, there exists an integer integer w(t) ≥ 1
(depending on G) for which every t-clean graph in G has treewidth at most w(t).

The basic obstructions can have arbitrarily large treewidth: Kt+1, Kt,t, all subdivisions of
Wt×t and line-graphs of all subdivisions of Wt×t are known to have treewidth t. As a result,
an exhaustive list of induced subgraph obstructions to bounded treewidth must include (an
induced subgraph of) a basic obstruction of each type. One may then speculate that induced
subgraphs admit the neatest possible analogue of Theorem 1.1: every hereditary class is clean.
As mentioned above, however, this is far from true. Sintiari and Trotignon [18] were the first to
identify a non-clean hereditary class, and their find is none other than the much-studied class
of “even-hole-free” graphs. The full statement of their result appears in Theorem 1.2 below. A
hole is an induced cycle on at least four vertices, the length of a hole is its number of vertices
(or edges), and an even hole is a hole of even length.

Theorem 1.2 (Sintiari and Trotignon [18]). For all integers h,w ≥ 1, there exists an (even-hole,
K4)-free graph Gh,w of treewidth more than w and with no hole of length at most h.

One may observe that for every t ≥ 3:
• the complete bipartite graph Kt,t as well as all subdivisions of Wt×t contain “thetas;”
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Figure 2. The 3-basic obstructions. A theta in K3,3 (left), a theta in a
subdivision of W3×3 (middle) and a prism in the line-graph of the same

subdivision of W3×3 (right) are all depicted with dashed lines. An even hole in
each theta and prism is also highlighted.

• line-graphs of all subdivisions of Wt×t contain line-graphs of thetas, also known as
“prisms;” and
• thetas and prisms contain even holes.

See Figure 2 (and also the next section for the definition of a theta and a prism). In particular,
for every t ≥ 1, an even-hole-free graph is t-clean if and only if it is Kt-free. It follows from
Theorem 1.2 that the class of (even-hole, K4)-free graphs is a hereditary class of 4-clean graphs
with unbounded treewidth. In fact, for a while, Theorem 1.2 (along with its counterpart in [18]
concerning theta-free graphs) were the only known reasons why the class of all graphs is not
clean; other (and less complicated) constructions were (re-)discovered later [7, 9, 15].

One would then desire to adjust a non-clean class to make it clean. For instance, Korhonen
[13] proved that every graph class of bounded maximum degree is clean. In the context of
hereditary classes, we pursue this line of inquiry through forbidding (more) induced subgraphs.
Specifically, on may ask the following question.
Question 1.3. Let G be a hereditary graph class. For which graphs H is it true that the class
of all H-free graphs in G is clean?

The class of all graphs then would be the first non-clean class to investigate from this point
of view, which we did in recent joint work with Abrishami:
Theorem 1.4 (Abrishami, Alecu, Chudnovsky, Hajebi and Spirkl [1]). Let H be a graph. Then
the class of all H-free graphs is clean if and only if H is a subdivided star forest.

The next candidate, suggested by Theorem 1.2, is the class of (even-hole, K4)-free graphs.
Considering Question 1.3 for the class G of (even-hole, K4)-free graphs, a necessary condition
for graphs H in the answer is provided by Theorem 1.2 and stated as Observation 1.5 below.
Recall that a graph is chordal if it contains no hole; see Figure 3.
Observation 1.5. Let H be graph such that every (even-hole, K4)-free graph of sufficiently
large treewidth contains H. Then H is a K4-free chordal graph.

In an earlier paper of this series [2] (joint with Abrishami), we approached the converse of
Observation 1.5 by showing that if H is a K3-free chordal graph, that is, a forest, then every
(even-hole, K4)-free graph of sufficiently large treewidth contains H. In fact, we proved:
Theorem 1.6 (Abrishami, Alecu, Chudnovsky, Hajebi and Spirkl [2]). Let H be a graph. Then
for every t ≥ 1, every (theta, prism, Kt)-free graphs of sufficiently large treewidth contains H,
if and only if H is a forest.

Our main result in this paper is a full converse to Observation 1.5:
Theorem 1.7. Given a graph H, every (even-hole, K4)-free graph of sufficiently large treewidth
contains H if and only if H is a K4-free chordal graph.

It is worth noting that, until now, essentially the only chordal graph of clique number three
known to satisfy this result was the complete graph K3 [8]. Particularly, the case where H is a
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Figure 3. An assortment of K4-free chordal graphs: the diamond (left), an
extension of the diamonds as in Theorems 1.9 and 1.13 (middle), and an

arbitrary one (right). All these graphs are in fact 2-trees.

“diamond” (see Figure 3) was of special interest [18]. Due to the prevalence of induced diamonds
in the graphs Gh,w from Theorem 1.2, this was posed by Sintiari and Trotignon as a conjecture:

Conjecture 1.8 (Sintiari and Trotignon [18]). Every (even-hole, K4)-free of sufficiently large
treewidth contains the graph obtained from the two-edge path by adding a universal vertex, also
known as the diamond.

Since a diamond is K4-free and chordal, Theorem 1.7 immediately implies Conjecture 1.8.
Furthermore, our approach in this paper yields another extension of Conjecture 1.8 in which
“K4” is replaced by “Kt” for arbitrary t ≥ 1 and the “two-edge path” is replaced by an arbitrary
forest. Surprisingly, in view of Theorem 1.2, this is tight. For a graph F , let cone(F ) be the
graph obtained from F by adding a vertex adjacent to all vertices in V (F ).

Theorem 1.9. Let F be graph. Then for every t ≥ 1, every (even-hole, Kt)-free graph of
sufficiently large treewidth contains cone(F ), if and only if F is forest.

Theorem 1.9 in particular shows that Conjecture 1.8 holds for even-hole-free graph of bounded
clique number in general, which in turn extends the main result of [5]:

Corollary 1.10. For every integer t ≥ 1, (even-hole, diamond, Kt)-free graphs have bounded
treewidth.

1.2. Reduction to 2-trees. Note that the “only if” implications in both Theorems 1.7 and 1.9
follow directly from Theorem 1.2. For the “if” implication, we prove the corresponding results in
the slightly more general class E of (C4, theta, prism, even wheel)-free graphs (where C4 denotes
the 4-vertex cycle, and a definition of “even wheels” will appear in the next section). At the
same time, as a convenient technical step in our proof, we will reduce the “if” implication in
Theorems 1.7 and 1.9 to the case where the excluded chordal graph is “maximal” with respect
to its clique number.

Let us elaborate. For an integer n, we write [n] for the set of all positive integers less than or
equal to n (so [n] = ∅ if n ≤ 0). A well-known characterization of chordal graphs due to Dirac
[10] shows that for all integers h, k ≥ 1, an h-vertex graph H is a Kk+2-free chordal graph if and
only if there exists a bijection π : V (H)→ [h] such that for every i ∈ [h− 1], the neighborhood
of π(i) in V (H)\π([i]) is a clique of cardinality at most k. This inspires the following definition:
a k-tree is a graph ∇ which is either a k-vertex complete graph, or we have |V (∇)| = h > k and
there exists a bijection $∇ : V (∇)→ [h] such that for every i ∈ [h− k], the set of neighbors of
$∇(i) in V (∇) \$∇([i]), which we refer to as the forward neighbors of $∇(i) in ∇, is a clique
of cardinality exactly k in ∇. For instance, 1-trees are exactly trees. It follows that every k-tree
is a connected, Kk+2-free chordal graph. More importantly, a partial converse holds, too (the
proof is straightforward, yet we include it to keep the paper self-contained).

Theorem 1.11. For every k ≥ 1 and every Kk+2-free chordal graph H, there exists a k-tree ∇
such that H is an induced subgraph of ∇.
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Figure 4. Proof of Theorem 1.11 (when k = 5 and |N | = 2).

Proof. Note that every Kk+2-free chordal graph H is an induced subgraph of a connected Kk+2-
free chordal graph (which, for instance, may be obtained from H by adding a new vertex with
exactly one neighbor in each component of H). Therefore, we only need to show that for every
connectedKk+2-free chordal graphH, there exists a k-tree∇ such thatH is an induced subgraph
of ∇. We prove this by induction on |V (H)| = h. The case h = 1 is trivial, so assume that
h > 1.

Let π : V (H)→ [h] be the bijection obtained from Dirac’s result. Thus, for every i ∈ [h− 1],
the set of neighbors of π(i) in V (H)\π([i]) is a clique on at most k vertices in H. Let π(1) = x0,
let H− = H \{x0}, and let N be the set of neighbors x0 in H. Then N is a non-empty clique on
at most k vertices in H, which in turn implies that H− is a connected Kk+2-free chordal graph
on h − 1 vertices and N is a non-empty clique on at most k vertices in H−. By the induction
hypothesis, there is a k-tree ∇− such that H− is an induced subgraph of ∇−. In particular, N
is a non-empty clique on at most k vertices in ∇−. We deduce:

(1) There is a clique K of cardinality k in ∇− such that N ⊆ K.

This is immediate if ∇− is a complete graph. So we may assume that ∇− is a k-tree that
is not complete. Choose x ∈ N with $−1

∇−(x) ∈ [h − 1] as small as possible. Let M be the set
of forward neighbors of x in ∇− . Then M ∪ {x} is a clique of cardinality k + 1 in ∇− which
contains the clique N of cardinality at most k. This proves (1).

Let K be as in (1). Fix an enumeration {yi : i ∈ [k − |N |]} of the elements of K \ N . We
define ∇ as follows. Let

V (∇) = V (∇−) ∪ {xi : i ∈ {0, . . . , k − |N |}};

E(∇) = E(∇−) ∪

k−|N |⋃
i=0

({xiy : y ∈ N} ∪ {xiyj : j ∈ [i]} ∪ {xixj : j ∈ [k − |N |] \ [i]})

 .

Let $∇(xi) = i + 1 for all i ∈ {0, . . . , k − |N |} and let $∇(z) = $∇−(v) + k − |N | + 1 for all
v ∈ V (∇−) (see Figure 4). One may check that ∇ is k-tree and H is an induced subgraph of ∇;
we omit the details. �

For every t ≥ 1, we denote by Et the class of all Kt-free graphs in E . In view of Theorem 1.11,
Theorems 1.7 and 1.9 follow, respectively, from Theorems 1.12 and 1.13 below. We will prove
both results in the last section.

Theorem 1.12. For every 2-tree ∇, there exists an integer Υ = Υ(∇) ≥ 1 such that every
graph G ∈ E4 with tw(G) > Υ contains ∇.

Theorem 1.13. For every integer t ≥ 1 and every tree T , there exists an integer Γ = Γ(t, T ) ≥ 1
such that every G ∈ Et with tw(G) > Γ contains cone(T ).
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1.3. Outline. We conclude the introduction with a rough account of our main ideas. Due to
the fact that adding universal vertices to a tree results in a 2-tree, the proofs of Theorems 1.12
and 1.13 follow a similar outline, which we give below.

Let G ∈ Et be a graph of huge treewidth. We will show that G contains a copy of a given
2-tree ∇ as a subgraph, not necessarily induced, but close enough so that the outcomes of
Theorems 1.12 and 1.13 would follow immediately from known results. Our method is to grow
this copy of ∇ in G through an inductive process, adding one vertex at a time with respect to
the ordering imposed on V (∇) by $∇, reversed (so $∇(1) is the last vertex to be added).

In order to grow our 2-tree, we use an auxiliary structure that we call a “kaleidoscope,”
consisting of many holes sharing a three-vertex path and otherwise vertex-disjoint. We then
define a notion of “mirroring,” whereby, roughly speaking, a set of vertices is “d-mirrored” by
a kaleidoscope if every vertex in the set has at least d neighbors in each of the kaleidoscope’s
holes, outside of the shared three-vertex path.

The main ingredients to our argument are then as follows:
• In Section 4 (and in particular in Theorem 4.1), we show that given an integer d, if a
vertex is 1-mirrored by a suitably large kaleidoscope, then it is in fact d-mirrored by a
“sub-kaleidoscope” of prescribed size. In particular, when d ≥ 3, it is a wheel center for
all of the holes in the sub-kaleidoscope.
• To begin the growing process, we show in Theorem 5.1 that, assuming our graph has
large treewidth (or more specifically, that it has two vertices connected by many disjoint
paths), we can produce, using the previous bullet point and results from an earlier paper
in the series, a clique of size two which is 3-mirrored by a large kaleidoscope. In general,
our induction hypothesis will be that we can find a large kaleidoscope 3-mirroring the
2-tree we have constructed so far.
• Given two adjacent wheel centers with the same rim, Theorem 3.2 provides some con-
straints on their neighborhoods along the rim. This allows us to find common neighbors
of adjacent vertices in our 2-tree on each of the holes of the large kaleidoscope 3-mirroring
it. These common neighbours are candidates for extending our 2-tree.
• Theorem 5.5 is the core of our induction step. In it, we show that, by choosing the
candidate carefully, we are able to guarantee that it has three neighbors on many of
the other holes of the kaleidoscope. In other words, we are able to find a large sub-
kaleidoscope 3-mirroring the extended 2-tree, thus maintaining the property we need for
the induction.
• Finding that right candidate requires a novel idea, presented in Section 3, which is
totally different from the material developed in the earlier papers in this series: we show
that taking specific minors of G keeps us in the class E . This enables us to essentially
“pretend” certain edges in G do not exist, which in turn allows us to use the machinery
from an earlier paper in order to find the right candidate for extending the 2-tree.

In Section 2, we cover the terminology and the results from earlier papers in this series to be
used in subsequent sections. We complete the proofs of Theorems 1.12 and 1.13 in Section 6.

2. Preliminaries

In this section, we set up our notation and terminology. We also mention a few results from
the earlier papers in this series [1, 2].

Let G = (V (G), E(G)) be a graph and let x ∈ V (G). We denote by NG(x) the set of all
neighbors of x in G, and write NG[x] = NG(x) ∪ {x}. For an induced subgraph H of G (not
necessarily containing x), we define NH(x) = NG(x) ∩H and NH [x] = NH(x) ∪ {x}. Also, for
X ⊆ G, we denote by NG(X) the set of all vertices in G \X with at least one neighbor in X,
and define NG[X] = NG(X)∪X. Let X,Y ⊆ G be disjoint. We say X is complete to Y if every
vertex in X is adjacent to every vertex in Y in G, and X is anticomplete to Y if there is no edge
in G with an end in X and an end in Y .
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Figure 5. From left to right, a theta, a prism and an even wheel. Dashed lines
represent paths of length at least one.

A path in G is an induced subgraph of G that is a path. If P is a path in G, we write
P = p1- · · · -pk meaning V (P ) = {p1, . . . , pk} and pi is adjacent to pj if and only if |i − j| = 1.
We call the vertices p1 and pk the ends of P , and say that P is from p1 to pk. The interior of
P , denoted by P ∗, is the set P \ {p1, pk}. The length of a path is its number of edges (so a path
of length at most one has empty interior). Similarly, if C is a cycle, we write C = c1- · · · -ck-c1
to mean that V (C) = {c1, . . . , ck} and ci is adjacent to cj if and only if |i− j| ∈ {1, k− 1}. The
length of a cycle is its number of vertices (or edges).

A theta is a graph Θ consisting of two non-adjacent vertices a, b, called the ends of Θ, and
three pairwise internally disjoint paths P1, P2, P3 from a to b of length at least two, called the
paths of Θ, such that P ∗1 , P ∗2 , P ∗3 are pairwise anticomplete to each other. For a graph G, by a
theta in G we mean an induced subgraph of G which is a theta.

A prism is a graph Π consisting of two disjoint triangles {a1, a2, a3}and {b1, b2, b3}, called the
triangles of Π, and three pairwise disjoint paths P1, P2, P3 called the paths of Π, where Pi has
ends ai, bi for each i ∈ {1, 2, 3}, and for distinct i, j ∈ {1, 2, 3}, aiaj and bibj are the only edges
between Pi and Pj . For a graph G, by a prism in G we mean an induced subgraph of G which
is a prism.

A wheel in a graph G is a pair (C, v) where C is a hole in G and v ∈ G \ C is a vertex with
at least three neighbors in C. An even wheel in G is a wheel (C, v) in G where v has an even
number of neighbors in H. We say G is even-wheel-free if there is no even wheel in G.

See Figure 5 for a depiction of a theta, a prism, a pyramid and an even wheel. It is straight-
forward to check that the class E of all (C4, theta, prism, even wheel)-free graphs contains the
class of all even-hole-free graphs.

We now mention a few results from two previous papers in the current series [1, 2]. Let k
be a positive integer and let G be a graph. A strong k-block in G is a set B of at least k
vertices in G such that for every 2-subset {x, y} of B, there exists a collection P{x,y} of at least
k distinct and pairwise internally disjoint paths in G from x to y, where for every two distinct
2-subsets {x, y}, {x′, y′} ⊆ B of G, and every choice of paths P ∈ P{x,y} and P ′ ∈ P{x′,y′}, we
have P ∩ P ′ = {x, y} ∩ {x′, y′}. In [1], it is proved that:

Theorem 2.1 (Abrishami, Alecu, Chudnovsky, Hajebi and Spirkl [1]). For every integer k ≥ 1,
the class of all graphs with no strong k-block is clean.

As discussed in Subsection 1.1, for every t ≥ 1, a (theta, prism)-free graph is t-clean if and
only if it is Kt-free. So the following is immediate from Theorem 2.1:

Corollary 2.2. For all integers k, t ≥ 1, there exists an integer β = β(k, t) such that every
(theta, prism, Kt)-free graph with no strong k-block has treewidth at most β(k, t).

Moreover, Theorem 2.3 below reveals further information about the adjacency between dif-
ferent paths joining two vertices in a strong block. This was a major ingredient in our proof of
Theorem 1.7 in [2].

Theorem 2.3 (Abrishami, Alecu, Chudnovsky, Hajebi and Spirkl [2]). For all integers t, ν ≥ 1,
there exists an integer ψ = ψ(t, ν) ≥ 1 with the following property. Let G be a (theta, prism,
Kt)-free graph, let a, b ∈ V (G) be distinct and non-adjacent and let P be a collection of pairwise
internally disjoint paths in G from a to b with |P| ≥ ψ. For each P ∈ P, let xP be the neighbor
of a in P (so xP 6= b). Then there exist P1, . . . , Pν ∈ P such that:
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z2

x1
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Figure 6. Left: a (theta, prism, even wheel)-free graph G containing a clique
{z1, z2} for which NG(z1) ∩NG(z2) = {x1, x2} is a stable set of vertices of

degree three in G (observe that G does contain C4). Right: the graph GCz1
z2

which is a theta with ends a, b.

• {xP1 , . . . , xPν , b} is a stable set in G; and
• for all i, j ∈ [ν] with i < j, xPi has a neighbor in P ∗j \ {xPj}.

We also need a quantified version of Ramsey’s classical theorem, which has appeared in several
references; see, for instance, [11].

Theorem 2.4 (Ramsey [16], see also [11]). For all integers c, s ≥ 1, every graph G on at least
cs vertices contains either a clique of cardinality c or a stable set of cardinality s.

Finally, we include the following well-known lemma which follows directly from Theorem 2.4
combined with Lemma 2 in [14].

Lemma 2.5. For all integers q, r, s, t ≥ 1 there exists an integer o = o(q, r, s, t) ≥ 1 with the
following property. Let G be a (Ks,s,Kt)-free graph. Let X be a collection of pairwise disjoint
subsets of V (G), each of cardinality at most r, with |X | ≥ o. Then there are q distinct sets
X1, . . . , Xq ∈ X which are pairwise anticomplete in G.

3. Class-preserving minors in E

In this section we develop the vital constituent of our procedure for growing 2-trees by iter-
atively obtaining common neighbors of prescribed pairs of adjacent vertices. The main result
is Theorem 3.1, which shows that, although E is a hereditary class, certain minors of certain
graphs in E belong to E . Specifically, for a graph G and two adjacent vertices z1, z2 ∈ V (G), we
define GCz1

z2 to be the graph with the following specifications:
• V (GCz1

z2) = (V (G) \ {z1, z2}) ∪ {z};
• GCz1

z2 [V (G) \ {z1, z2}] = G \ {z1, z2}; and
• NGC

z1
z2

(z) = NG(z1) ∩NG(z2).
See Figure 6. In other words, GCz1

z2 is the minor of G (without parallel edges) obtained by
first contracting the edge z1z2 into a new vertex z, and then removing every edge in the resulting
graph between z and a vertex in (NG(z1)\NG(z2))∪ (NG(z2)\NG(z1)). Our goal in this section
is to prove the following:

Theorem 3.1. Let G ∈ E be a graph and let z1, z2 ∈ V (G) be distinct and adjacent such that
NG(z1)∩NG(z2) is a stable set of vertices of degree at most three in G. Then we have GCz1

z2 ∈ E.

Two remarks: first, as far as our application of Theorem 3.1 is concerned, it suffices to show
that GCz1

z2 is (theta, prism)-free (under the same hypotheses). This is thanks to Theorem 2.3
holding true for the larger class of (theta, prism)-free graphs rather than just E . Second, the
proof of Theorem 3.1 (and so its application in the proof of Theorem 5.4) is the only place in
this paper where we use the assumption that G is C4-free. Nevertheless, as unfortunate as it
may appear, excluding C4 is necessary even if we ask for GCz1

z2 not to “be” a theta; see Figure
6.

We now plunge into the proof of Theorem 3.1, beginning with the following definition. Let G
be a graph, let H be an induced subgraph of G and let v ∈ G \H. We say that:
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(G) v is H-good if |NH(v)| = 1;
(B) v is H-bad if NH(v) is a clique in H with at least two vertices; and
(U) v is H-ugly if NH(v) is not a clique in H.

So every vertex in NG(H) ⊆ G\H is exactly one of H-good, H-bad, or H-ugly. The next result
is an important ingredient for the proof of Theorem 3.1. Similar results have also appeared in
[4, 5].

Theorem 3.2. Let G be a (theta, prism, even wheel)-free graph, let C be a hole in G and let
z1, z2 ∈ G\C be distinct and adjacent, each with at least one neighbor in C. Assume that z1 and
z2 have no common neighbor in C. Then either both z1 and z2 are C-good and their (unique)
neighbors in C are distinct and adjacent, or exactly one of z1 and z2 is C-bad. Consequently, if
G ∈ E, then exactly one of z1 and z2 is C-bad.

Proof. Note that if both z1 and z2 are C-bad, then since z1 and z2 have no common neighbor
in C, it follows that C ∪ {z1, z2} is a prism in G, a contradiction. So we may assume without
loss of generality that z1 is either C-good or C-ugly. If z2 is C-bad, then we are done. So we
can consider the case that z2 is also either C-good or C-ugly; in particular, since neither (C, z1)
nor (C, z2) is an even wheel in G, it follows that for every i ∈ {1, 2}, |NC(zi)| is an odd integer.
Assume first that both z1 and z2 are C-good, say NC(zi) = {xi} for i ∈ {1, 2}. Then since z1
and z2 have no common neighbor in C, and C ∪ {z1, z2} is not a theta in G, it follows that x1
and x2 are distinct and adjacent in G, as required.

This leaves the case where one of z1 and z2, say the former, is C-ugly. Since z1 and z2 have
no common neighbor in C, it follows that NC(z2) ⊆ C \ NC(z1). Note that every component
of C \ NC(z1) is a path in C (and so in G). Moreover, for every component P of C \ NC(z1),
CP = NC [P ]∪ {z1} is a hole in G. Since CP ∪ {z2} is not a theta in G, and (CP , z2) is not even
wheel in G, and z1 and z2 have no common neighbor in C, it follows that z2 has an even number
of neighbors in P . In conclusion, we have shown that z2 has an even number of neighbors in each
component of C \NC(z1). But then z2 has an even number of neighbors in C, a contradiction.
We conclude that either both z1 and z2 are C-good and their neighbors in C are distinct and
adjacent, or exactly one of z1 and z2 is C-bad. In addition, if G ∈ E , then the first outcome does
not hold, as otherwise G[NC [z1] ∪NC [z2]] is isomorphic to C4, a contradiction. This completes
the proof of Theorem 3.2. �

We also need the following lemma.

Lemma 3.3. Let G ∈ E be a graph and let z1, z2 ∈ V (G) be distinct and adjacent such that
NG(z1)∩NG(z2) is a stable set of vertices of degree at most three in G. Let z ∈ V (GCz1

z2) be as
in the definition of GCz1

z2 and let W be an induced subgraph of GCz1
z2 which is either a theta, or

a prism, or an even wheel. Then there is a path P in W with ends a, b for which the following
hold.

(a) We have z ∈ P \ (NW [a] ∪NW [b]), and so W \ P ∗ ⊆ G \ (NG[z1] ∩NG[z2]).
(b) The vertices in P ∗ (including z) have degree two in W , and a, b both have degree three

in W .
(c) In the graph G, both z1 and z2 have a neighbor in W \ P .

Proof. First, assume that there is no path P in W satisfying 3.3(a) and 3.3(b). Since G ∈ E ,
it follows that z ∈ W . Also, since NG(z1) ∩NG(z2) is a stable set of vertices of degree at most
three in G, it follows that NGC

z1
z2

(z) is a stable set of vertices of degree at most two in GCz1
z2 . In

particular, there is no wheel (C, v) in GCz1
z2 where z ∈ NC [v], and z does not belong to a triangle

of a prism in GCz1
z2 . Moreover, from the assumption that there is no path in W satisfying 3.3(a)

and 3.3(b), it follows that there is no wheel (C, v) in GCz1
z2 where z ∈ C \ NC(v), and z does

not belong the interior of a path of a theta or a prism in GCz1
z2 . We deduce that W is a theta

in GCz1
z2 and z is an end of W . Let z′ ∈ V (GCz1

z2) \NGC
z1
z2

[z] = V (G) \ (NG[z1]∩NG[z2]) be the
other end of W and let P1, P2, P3 be the paths of W . Then for every i ∈ [3], Pi has ends z, z′,
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and for some j ∈ {1, 2}, zj is not adjacent to z′ in G. On the other hand, for every i ∈ [3], we
have NPi(z) ⊆ NG(zj)∩ (Pi \ {z}). Thus, traversing Pi \ {z} starting at z′, we may choose xi to
be the first vertex in NG(zj) ∩ (Pi \ {z}); it follows that xi ∈ P ∗i . But then there is a theta in
G with ends zj , z′ and paths zj-xi-Pi-z′ for i ∈ [3], which violates G ∈ E . This proves that there
exists a path P in W with ends a, b for which 3.3(a) and 3.3(b) hold.

It remains to show that P satisfies 3.3(c). Suppose for a contradiction, and without loss of
generality, that z1 is anticomplete to W \ P in G. Then U = (P \ {z}) ∪ {z1} is a connected
induced subgraph of G with a, b ∈ U such that U \ {a, b} ⊆ P ∗ ∪ {z1} is anticomplete to W \ P
in G. Consequently, there exists a path P1 in U from a to b where P ∗1 is anticomplete to W \ P
in G. But now (W \ P ) ∪ P1 is a theta, a prism or an even wheel in G (depending on whether
W is a theta, a prism or an even wheel in G, respectively), which is impossible because G ∈ E .
This completes the proof of Lemma 3.3. �

The next two lemmas, in turn, show that under the assumptions of Theorem 3.1, the graph
GCz1

z2 is theta-free and prism-free.

Lemma 3.4. Let G ∈ E be a graph and let z1, z2 ∈ V (G) be distinct and adjacent such that
NG(z1)∩NG(z2) is a stable set of vertices of degree at most three in G. Then GCz1

z2 is theta-free.

Proof. Suppose for a contradiction that there is a theta W in GCz1
z2 . Let z ∈ V (GCz1

z2) be as
in the definition of GCz1

z2 . Let P be the path in W with ends a, b satisfying Lemma 3.3. It
follows from Lemma 3.3(a) and (b) that a, b are the ends of W , P is a path of W , and we have
z ∈ P \ (NP [a]∪NP [b]). Let Q1, Q2 be the paths of W distinct from P ; so Q1 and Q2 both have
ends a, b, as well. Let C = Q1 ∪Q2. Then C is a hole in G \ {z1, z2} and we have C = W \ P ∗.

From the definition of GCz1
z2 , it follows that W \ {z} ⊆ G \ {z1, z2} and {z1, z2} is complete

to NP (z). As a result, for every i ∈ {1, 2}, there are two paths Pa,i, Pb,i in (P \ {z}) ∪ {zi}
from a to zi and from b to zi, respectively, such that Pa,i \ {zi} and Pb,i \ {zi} are disjoint and
anticomplete in G, and both P ∗a,i and P ∗b,i are disjoint from and anticomplete to C \ {a, b} in G.
We claim that:

(2) Let i ∈ {1, 2}. Then either a is adjacent to zi in G, or NC(zi) ⊆ NQj [b] for some j ∈ {1, 2}.
Similarly, either b is adjacent to zi in G, or NC(zi) ⊆ NQj [a] for some j ∈ {1, 2}.

We only need to show that for every i ∈ {1, 2}, either a is adjacent to zi in G, or NC(zi) ⊆
NQj [b] for some j ∈ {1, 2}. Suppose not. Then we may assume without loss of generality, that
a is a not adjacent to z1 in G, and there is a vertex in Q∗1 \ NQ1(b) which is adjacent to z1 in
G. It follows that Pa,1 has length at least two, and that there is a path R of length at least two
in G from a to z1 such that R∗ ⊆ Q∗1 \ NQ1(b). Also, since Pb,1 ∪ Q2 is a connected induced
subgraph of G containing the two non-adjacent vertices a and z1, it follows that there exists a
path S of length at least two in Pb,1 ∪Q2 from a to z1. But then there is theta in G with ends
a, z1 and paths Pa,1, R, S, contrary to the fact that G ∈ E . This proves (2).

From (2), it follows immediately that:

(3) Let i ∈ {1, 2} such that zi has a neighbor in C. Then the following hold.
• If zi is C-good, then we have NC(zi) ⊆ (NC(a) ∩NC(b)) ∪ {a, b}.
• If zi is C-bad, then for some j ∈ {1, 2}, either NC(zi) = NQj [a] or NC(zi) = NQj [b].
• If zi is C-ugly, then we have a, b ∈ NC(zi).

Now, since C \{a, b} = W \P andW \P ⊆W \P ∗ = C, from Lemma 3.3(a) and the definition
of GCz1

z2 it follows that z1 and z2 have no common neighbor in C, and from Lemma 3.3(c), it
follows that z1 and z2 each have at least one neighbor in C\{a, b}. Consequently, by Theorem 3.2
and without loss of generality, we may assume that z1 is C-bad and z2 is either C-good or C-ugly.
It follows from the second bullet of (3) that for some j ∈ {1, 2}, we have either NC(z1) = NQj [a]
or NC(z1) = NQj [b]. We may exploit the symmetry between a, b and between Q1, Q2, and
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assume that NC(z1) = NQ1 [a]. Since a ∈ V (H) is not a common neighbor of z1 and z2, we
deduce from the third bullet of (3) that z2 is C-good. This, together with the first bullet of
(3), the fact that z2 has a neighbor in C \ {a, b} and the fact that z1 and z2 have no common
neighbor in C, implies that Q2 has length two, say Q2 = a-q-b, and we have NC(z2) = {q}. But
then G[{a, q, z1, z2}] is isomorphic to C4, contrary to the fact that G ∈ E . This completes the
proof of Lemma 3.4. �

Lemma 3.5. Let G ∈ E be a graph and let z1, z2 ∈ V (G) be distinct and adjacent such that
NG(z1)∩NG(z2) is a stable set of vertices of degree at most three in G. Then GCz1

z2 is prism-free.

Proof. Suppose for a contradiction that there is a prism W in GCz1
z2 . Let z ∈ V (GCz1

z2) be as in
the definition of GCz1

z2 . Let P be the path in W with ends a, b satisfying Lemma 3.3. It follows
from Lemma 3.3(a) and (b) that P is a path of W , a and b belong to distinct triangles of W
and we have z ∈ P \ (NP [a] ∪NP [b]). Let aa1a2 and bb1b2 be the triangles of W and let Q1, Q2
be the paths of W distinct from P such that Qi has ends ai, bi for i ∈ {1, 2}. Let C = Q1 ∪Q2.
Then C is a hole in G \ {z1, z2} and we have C = W \ P .

From the definition of GCz1
z2 , it follows that W \ {z} ⊆ G \ {z1, z2} and {z1, z2} is complete

to NP (z). As a result, for every i ∈ {1, 2}, there are two paths Pa,i, Pb,i in (P \ {z}) ∪ {zi}
from a to zi and from b to zi, respectively, such that Pa,i \ {zi} and Pb,i \ {zi} are disjoint and
anticomplete in G, and both P ∗a,i and P ∗b,i are disjoint from and anticomplete to C in G.

Now, since C = W \ P ⊆ W \ P ∗, it follows from Lemma 3.3(a) and the definition of GCz1
z2

that z1 and z2 have no common neighbor in C, and it follows from Lemma 3.3(c) that z1 and
z2 each have at least one neighbor in C \ {a, b}, Consequently, by Theorem 3.2, one of z1 and
z2 is C-bad; say z1 is C-bad. Let us write NC(z1) = {q1, q2} where q1 and q2 are adjacent. Due
to the symmetry between {a1, a2} and {b1, b2}, we may assume, without loss of generality, that
{a1, a2}∩{q1, q2} ⊆ {a1}, and there are disjoint pathsR1 andR2 in C from a1 to q1 and from a2 to
q2, respectively. It follows that either {a1, a2}∩{q1, q2} = ∅ or {a1, a2}∩{q1, q2} = {a1} = {q1}.
In the former case, there is a prism in G with triangles aa1a2, z1q1q2 and paths Pa,1, R1 and
R2. Also, in the latter case, C ′ = a-Pa,1-z1-q2-R2-a2-a is a hole in G and a1 = q1 ∈ G \ C ′
has exactly four neighbors in C ′, namely a, a2, q2 and z1. But then (C ′, z1) is an even wheel in
G. Both latter conclusions violate the assumption that G ∈ E , hence completing the proof of
Lemma 3.5. �

We can now give a proof of Theorem 3.1:

Proof of Theorem 3.1. Suppose not. Let z ∈ V (GCz1
z2) be as in the definition of GCz1

z2 . First,
we show that :

(4) GCz1
z2 is C4-free.

To see this, suppose there is a hole C of length four in GCz1
z2 . Since G ∈ E , it follows that

z ∈ C. So we have NC(z) = C ∩ NG(z1) ∩ NG(z2) and there exists exactly one vertex z′ in C
with z′ ∈ V (GCz1

z2) \NGC
z1
z2

[z] = V (G) \ (NG[z1] ∩NG[z2]). As a result, for some j ∈ {1, 2}, zj
is not adjacent to z′ in G. But now (C \ {z}) ∪ {zj} is a hole of length four in G, contrary to
the fact that G ∈ E . This proves (4).

From (4) and Lemmas 3.4 and 3.5, we deduce that there exists an even wheel (C, v) in GCz1
z2 .

Let W = G[V (C) ∪ {v}] and let P be the path in W with ends a, b satisfying Lemma 3.3. It
follows from Lemma 3.3(a) and (b) that z ∈ P \ (NP [a] ∪ NP [b]) and P is a path of length at
least four in C such that a, b ∈ NC(v) ⊆ NG(v) and v is anticomplete to P ∗ in GCz1

z2 . Let
Q = C \P ∗. Then Q is a path in G from a to b. Let a′ and b′ be the neighbors of a and b in Q,
respectively. Since C is an even wheel in GCz1

z2 , it follows that Q has length at least three, and
so a, a′, b, b′ are all distinct. In addition, we have W \ P ∗ = Q ∪ {v}, W \ P = Q∗ ∪ {v}, and
|NQ(v)| = |NC(v)| ≥ 4 is an even integer.
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From the definition of GCz1
z2 , it follows that W \ {z} ⊆ G \ {z1, z2} and {z1, z2} is complete

to NP (z). As a result, for every i ∈ {1, 2}, there are two paths Pa,i, Pb,i in (P \ {z}) ∪ {zi}
from a to zi and from b to zi, respectively, such that Pa,i \ {zi} and Pb,i \ {zi} are disjoint and
anticomplete in G, and both P ∗a,i and P ∗b,i are disjoint from and anticomplete to Q∗ ∪ {v} in G.
We claim that:

(5) The vertex v has a neighbor in Q \ {a, a′, b, b′}.

Suppose not. Then we have NQ(v) = {a, a′, b, b′}. Then C ′ = Q∗ ∪ {v} = W \ P is a hole in
G. By Lemma 3.3(a) and the definition of GCz1

z2 , z1 and z2 have no common neighbor in C ′, and
by Lemma 3.3(c), z1 and z2 each have at least one neighbor in C ′. Therefore, by Theorem 3.2,
one of z1 and z2, say the former, is C ′-bad in G. Let NC′(z1) = {q, q′} where q and q′ are
adjacent. The symmetry between a′ and b′ and between q and q′ allows us to assume that
|{a′, v} ∩ {q, q′}| ≤ 1, and there are disjoint paths R and R′ in C ′ from v to q and from a′ to q′,
respectively. It follows that either

• {a′, v} ∩ {q, q′} = ∅; or
• {a′, v} ∩ {q, q′} = {a′} = {q′}; or
• {a′, v} ∩ {q, q′} = {v} = {q}.

If the first bullet above holds, then there is a prism in G with triangles aa′v, qq′z1 and paths
Pa,1, R and R′. Also, if the second bullet above holds, then C ′′ = a-Pa,1-z1-q-R-v-a is a hole
in G and a′ = q′ ∈ G \ C ′′ has exactly four neighbors in C ′′, namely a, v, q and z1, which in
turn implies that (C ′′, a′) is an even wheel in G. Similarly, if the third bullet above holds, then
C ′′ = a-Pa,1-z1-q′-R′-a′-a is a hole in G and v = q ∈ G \ C ′′ has exactly four neighbors in C ′′,
namely a, a′, q′ and z1. It follows that (C ′′, v) is an even wheel in G. Each of the last three
conclusions goes against the assumption that G ∈ E . This proves (5).

(6) Let i ∈ {1, 2} such that v is not adjacent to zi in G. Then NW\P (zi) is a non-empty subset
of {a′, b′}.

Suppose not. By Lemma 3.3(c), z1 and z2 each have at least one neighbor inW \P = Q∗∪{v},
and so NW\P (zi) 6= ∅. It follows that there exists a vertex q ∈ Q∗ \{a′, b′} = Q\ (NG[a]∪NG[b])
which is adjacent to zi in G. This, together with (5), implies that (Q∗ \ {a′, b′}) ∪ {v, zi} is
connected, and so there exists a path S of length at least two in (Q∗ \{a′, b′})∪{v, zi} from v to
zi. But now there is a theta in G with ends v, zi and path v-a-Pa,i-zi, v-b-Pb,i-zi and S, contrary
to the fact that G ∈ E . This proves (6).

(7) There exists i ∈ {1, 2} for which v is adjacent to zi in G.

Suppose for a contradiction that v is anticomplete {z1, z2}. By (6), both NW\P (z1) and
NW\P (z2) are non-empty subset of {a′, b′}. Also, by Lemma 3.3(a) and the definition of GCz1

z2 , in
the graphG, z1 and z2 do not have a common neighbor inW \P ∗ = Q∪{v}. Therefore, due to the
symmetry between z1 and z2 and between a′ and b′, it is safe to assume that NQ∗∪{v}(z1) = {a′}
and NQ∗∪{v}(z2) = {b′}. In particular, D = a′-z1-z2-b′-Q-a′ is a hole in G and ND(v) =
NQ(v) \ {a, b}. Recall that |NQ(v)| is an even integer which is at least four, and so |ND(v)| is a
non-zero even integer. Since (D, v) is not even wheel in G and D ∪ {v} is not a theta in G, it
follows that v is D-bad. From this combined with (5), and without loss of generality, we may
assume that v is not adjacent to a′ and there is a path R in G from a′ to v with R∗ ⊆ Q∗\{a′, b′}.
Moreover, again by Lemma 3.3(a) and the definition of GCz1

z2 , in the graph G, z1 and z2 do not
have a common neighbor in W \ P ∗ = Q ∪ {v}. Specifically, there exists i ∈ {1, 2} for which
zi is no adjacent to a. But now there is a theta in G with ends a, zi and paths a-a′-zi, Pa,i and
a-v-b-Pb,i-zi, a contradiction. This proves (7).
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(8) Let i ∈ {1, 2} such that v is not adjacent to zi in G. Then either zi is anticomplete to {a, b}
in G, or v is anticomplete to {z1, z2} in G.

Suppose not. By Lemma 3.3(a), z1 and z2 do not have a common neighbor in {a, b, v} ⊆
Q∪{v} = W \P ∗. But now either either G[{a, v, z1, z2}] or G[{b, v, z1, z2}] is isomorphic to C4,
contrary to the fact that G ∈ E . This proves (8).

Let us now finish the proof. In view of (7), we may assume, without loss of generality, that
v is adjacent to z2 in G. Thus, by (8), z1 is anticomplete to {a, b} in G. Since NW\P (z1) is
a non-empty subset of {a′, b′}, we may assume that a′ is adjacent to z1 in G. Moreover, since
G[{a′, v, z1, z2}] is not isomorphic to C4, it follows that a′ and v are not adjacent in G. But
then there is a theta in G with ends a, z1 and paths a-a′-z1, Pa,1 and a-v-b-Pb,1-z1, contrary to
the fact that G ∈ E . This completes the proof of Theorem 3.1. �

4. Third time is the charm

This section supplies the technical foundation for the proofs of Theorems 1.12 and 1.13.
Despite its crucial role, the proof of Theorem 4.1 below as the main result revolves around three
successive applications of Theorem 2.3. Perhaps more importantly, it highlights the significance
of not giving up after the first two rounds.

In essence, Theorem 4.1 asserts that in a (theta, prism, even wheel)-free graph of bounded
clique number with a configuration of sufficiently many “put-together” holes, a vertex z with at
least one private neighbor in each hole will have several neighbors in most of these holes. This
result, combined with Theorem 3.2, will be used in Section 5 to demonstrate that adjacent pairs
of vertices with neighbors in these holes must indeed have common neighbors within them.

To make this precise, we begin with the definition of said configuration of holes. Given a
graph G and an integer w ≥ 1, a w-kaleidoscope in G is a 4-tuple (a, x, y,W) where:

(K1) a, x, y ∈ V (G), and x-a-y is a path in G (so x and y are distinct and non-adjacent);
(K2) W is a set of w pairwise internally disjoint paths in G \ a from x to y; and
(K3) for every W ∈ W, a is anticomplete to W ∗ in G.
Furthermore, given a subset Z ⊆ V (G) and an integer d ≥ 1, we say that Z is d-mirrored by

(a, x, y,W) if:
(M1) Z is disjoint from (

⋃
W∈W V (W )) ∪ {a};

(M2) the vertex a has at most one neighbor in Z; and
(M3) for every z ∈ Z and every W ∈ W, z is anticomplete to NW [x]∪NW [y], and z has

at least d distinct neighbors in W . In particular, z is anticomplete to {x, y}.
We also say a vertex z ∈ V (G) is d-mirrored by (a, x, y,W) if {z} is d-mirrored by (a, x, y,W).

Our goal in this section is to show that:

Theorem 4.1. For all integers d, t, w ≥ 1, there exists an integer κ = κ(d, t, w) ≥ 1 with the
following property. Let G be a (theta, prism, even wheel, Kt)-free graph, let (a, x, y,W) be a
κ-kaleidoscope in G, and let z ∈ V (G) be 1-mirrored by (a, x, y,W). Then there exists W ′ ⊆ W
with |W ′| = w such that z is d-mirrored by (a, x, y,W ′).

We start with a number of further definitions and lemmas. Let G be a graph, and let s, l ≥ 1
be integers. An (s, l)-palanquin in G is a triple (a, S,L) where:

(P1) a ∈ V (G), S ⊆ NG(a) is a stable set of cardinality s in G, and L is a collection of
l pairwise disjoint paths in G \ (S ∪ {a}); and

(P2) for every L ∈ L, a is anticomplete to L, and every vertex in S has a neighbor in L.
For instance, given a w-kaleidoscope (a, x, y,W) in G for some w ≥ 1, one may easily observe
that (a, {x, y}, {W ∗ : W ∈ W}) is a (2, w)-palanquin in G. Next we have two lemmas about
palanquins, with short and self-contained proofs (and, although less efficiently, these lemmas
can also be deduced from appropriate result in earlier papers of this series).
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π(1) π(2) π(3) π(4) π(5)

L
x

Figure 7. A 5-alignment, where π(3) and π(5) are L-good, π(2) is L-bad and
π(1) and π(4) are L-ugly.

Lemma 4.2. Let p, q, t ≥ 1 be integers. Let G be a (theta, Kt)-free graph and let (a, S,L) be a
(2qp+ 2q, (2qp+ 2q)2t3 + q)-palanquin in G. Then there exists S1 ⊆ S with |S1| = p and L1 ⊆ L
with |L1| = q such that for every L ∈ L1, no two vertices in S1 have a common neighbor in L,
and either x is L-bad for all x ∈ S1, or x is L-ugly for all x ∈ S1.

Proof. We first show that:

(9) There exists L0 ⊆ L with |L0| = q such that for every L ∈ L0, no two vertices in S have a
common neighbor in L.

Suppose not. Since |L| = (2qp + 2q)2t3 + q, it follows that there exists L′1 ⊆ L with |L′1| =
(2qp + 2q)2t3 such that for every L ∈ L′1, there exist two distinct vertices in S with a common
neighbor in L. Since |S| = 2qp + 2q, this in turn implies that there are two vertices x, x′ ∈ S
as well as a subset L′′1 of L′1 with |L′′1| = t3 such that for every L ∈ L′′1, the vertices x, x′ have a
common neighbor yL in L. Thus, we have |{yL : L ∈ L′′1}| = t3, which along with Theorem 2.4
and the assumption that G is Kt-free implies that there are three distinct paths L1, L2, L3 ∈ L′′1
for which {yL1 , yL2 , yL3} is a stable set in G. But now there is a theta in G with ends x, x′ and
paths x-yL1-x′, x-yL2-x′ and x-yL3-x′, a contradiction. This proves (9).

Henceforth, let L0 be as in (9).

(10) There exists S0 ⊆ S with |S0| = 2qp such that for every x ∈ S0 and every L ∈ L0, x is
either L-bad or L-ugly.

Note that every vertex in S has a neighbor in every path in L0 ⊆ L. Therefore, since
|S| = 2qp + 2q and |L0| = q, in order to prove (10), it suffices to show that for every L ∈ L0,
there at most two vertices in S which are L-good. Suppose for a contradiction that there exists
a 3-subset {x1, x2, x3} of S and a path L ∈ L0 such that x1, x2, x3 are all L-good. For each
i ∈ [3], let yi be the unique neighbor of xi in L. We may assume without loss of generality
that the path in L from y1 to y3 contains y2. Recall also that a is complete to {x1, x2, x3} ⊆ S
and anticomplete to L ∈ L0 ⊆ L. But now there is a theta in G with ends a, y2 and paths
a-x1-y1-L-y2, a-x2-y2 and a-x3-y3-L-y2, a contradiction. This proves (10).

Let S0 be as in (10). Fix an enumeration L1, . . . , Lq of the elements of L0. In view of (10),
one may construct a sequence X0 ⊃ X1 ⊃ · · · ⊃ Xq of sets such that:

• X0 = S0 and for every i ∈ [q], we have |Xi| = |Xi−1|/2; and
• for every i ∈ [q], either x is Li-bad for all x ∈ Xi or x is Li-ugly for all x ∈ Xi.

Let S1 = Xq. Then we have |S1| = |Xq| = 2−q|X0| = 2−q|S0| = p, and for every i ∈ [q], either
x is Li-bad for all x ∈ S1 or x is Li-ugly for all x ∈ S1. But then by (9), S1 and L1 satisfy
Lemma 4.2, as required. �

Let G be a graph and let s ≥ 1 be an integer. An s-alignment is a quadruple (S,L, x, π)
where:

(A1) S ⊆ V (G) is stable with |S| = s and L is a path in G \ S and x is an end of L;
(A2) every vertex in S has a neighbor in L; and
(A3) π : [s]→ S is a bijection such that for all i, j ∈ [s] with i < j, traversing L starting

at x, all neighbors of π(i) appear strictly before all neighbors of π(j) in L.
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Figure 8. Proof of Lemma 4.3. Top left: the case i = 1. Top right: the case
i = 2.

See Figure 7. It follows in particular from (A3) that no two vertices in S have a common
neighbor in L.

Lemma 4.3. Let s ≥ 1 be an integer. Let G be a theta-free graph, let (a, S, {L}) be an (s, 1)-
palanquin in G and let xL be an end of L. Assume that no two vertices in S have a common
neighbor in L. Assume also that either x is L-bad for all x ∈ S, or x is L-ugly for all x ∈ S.
Then there exists a bijection π : S → [s] such that (S,L, xL, π) is an s-alignment in G.

Proof. Since no two vertices in S have a common neighbor in L, the result is trivial if every
vertex in S is L-bad. So we may assume that all vertices S are L-ugly. For every x ∈ S,
traversing L starting at xL, let ux, vx be the first and the last neighbor of x in L, respectively;
thus, ux and vx are distinct. In order to prove Lemma 4.3, it suffices to show that for every
two vertices x1, x2 ∈ S, the paths ux1-L-vx1 and ux2-L-vx2 have no vertex in common. Suppose
this is violated by x1, x2 ∈ S. Since x1 and x2 have no common neighbor in L, it follows that
ux1 , ux2 , vx1 , vx2 are pairwise distinct, x1 is not adjacent to ux2 , vx2 , and x2 is not adjacent to
ux1 , vx1 . Since both x1 and x2 are L-ugly, we may assume without loss of generality that for
some {i, j} = {1, 2}, L traverses the vertices xL, ux1 , ux2 , vxi , vxj in this order (where xL and
ux1 might be the same). It follows that there are two paths P and Q in G from x1 to x2 such
that P ∗ contains ux2 and is contained in ux1-L-ux2 , and Q∗ contains vxi and is contained in
vx1-L-vx2 . In particular, P and Q are internally disjoint. Recall also that a is complete to
{x1, x2} ⊆ S and anticomplete to L. Now, if the path ux2-L-vxi has non-empty interior, then
P ∗ and Q∗ are anticomplete, and so there is a theta in G with ends x1, x2 and paths x1-a-x2, P
and Q, a contradiction (see Figure 8 top). Otherwise, since x2 is L-ugly, we have i = 1, and so
there is a theta in G with ends x1, ux2 and paths x1-a-x2-ux2 , x1-P -ux2 and x1-vx1-ux2 , again a
contradiction (see Figure 8 bottom). This completes the proof of Lemma 4.3. �

We apply Lemmas 4.2 and 4.3 to take the main step in the proof of Theorem 4.1. This is
where two of the three applications of Theorem 2.3 show up (and the third one will appear at
the beginning of the proof of Theorem 4.1).

Lemma 4.4. For all integers s, l, t ≥ 1, there exist integers σ = σ(l, s, t) ≥ 1 and λ = λ(l, s, t) ≥
1 with the following property. Let G be a (theta, prism, even wheel, Kt)-free graph. Let (a, S,L)
be an (σ, λ)-palanquin in G. For every L ∈ L, fix an end xL of L. Then there exist S′ ⊆ S with
|S′| = s, an l-subset L′ of L and a bijection π : S′ → [s] such that the following hold.

(a) For every L ∈ L′, the quadruple (S′, L, xL, π) is an s-alignment in G.
(b) For every x ∈ S′ and every L ∈ L′, the vertex x is L-ugly.

Proof. We begin with defining the values of σ and λ. Let ψ(·, ·) be as in Theorem 2.3 and
let o(·, ·, ·, ·) be as in Lemma 2.5. The two successive applications of Theorem 2.3 are already
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signaled by the two nested appearances of ψ(·, ·) below. Let

ψ1 = ψ1(t) = ψ(t, 2);

o1 = o1(t) = o(ψ1, 4, 3, t);

ψ2 = ψ2(t) = ψ(t, o1 + 1);

o2 = o2(t) = o(ψ2, 2, 3, t);

Also, let p = p(s) = s+ 2 and let q = q(l, s, t) = (l + o2)(s+ 2)!. We claim that σ = σ(l, s, t) =
2qp+ 2q and λ = λ(l, s, t) = q(2qp+ 2q)2t3 satisfy Lemma 4.4.

Suppose not. Due to the choice of σ and λ, we can apply Lemma 4.2 to (a, S,L), obtaining
S1 ⊆ S with |S1| = s + 2 and L1 ⊆ L with |L1| = (l + o2)(s + 2)! such that for every L ∈ L1,
no two vertices in S1 have a common neighbor in L, and either x is L-bad for all x ∈ S1, or x
is L-ugly for all x ∈ S1. This, combined with Lemma 4.3, implies that for every L ∈ L1, there
exists a bijection πL : S1 → [s + 2] such that (S1, L, xL, πL) is an (s + 2)-alignment in G. We
deduce that:

(11) There exists L2 ⊆ L1 with |L2| = o2(s + 2)! such that for every x ∈ S1 and every L ∈ L1,
x is L-bad.

Suppose not. From |L1| = (l+o2)(s+2)!, it follows that there exists L′2 ⊆ L1 with L′2 = l(s+2)!
such that for every x ∈ S1 and every L ∈ L′2, x is L-ugly. Since |S2| = s+ 2, this in turn implies
that there exists L′ ⊆ L′2 with |L′| = l as well as a bijection π′ : S2 → [s+ 2], such that πL = π′

for all L ∈ L′. Let S′ = π′([s]) and let π = π′|[s]. Then for every L ∈ L′, (S′, L, xL, π) is an
s-alignment in G, and so S′,L′ satisfy 4.4(a). Also, since S′ ⊆ S1 and L′ ⊆ L′2, it follows that
S′,L′ satisfy 4.4(b). This violates the assumption that Lemma 4.4 fails to hold for our chosen
values of σ and λ, hence proving (11).

Let L2 be as in (11). Since |S1| = s + 2 and |L2| = o2(s + 2)!, it follows that there exists
L3 ⊆ L2 with |L3| = o2 as well as a bijection π : S1 → [s+ 2], such that πL = π for all L ∈ L3.
Let us write x = π(1), z = π(2) and y = π(3) (this is possible because s+ 2 ≥ 3).

For every L ∈ L3, traversing L starting at xL, let uL be the last neighbor of x in L, let z1
L, z

2
L

be the first and the last neighbor of z in L, respectively, and let vL be first neighbor of y in L.
By (11), uL, z1

L, z
2
L and vL are all distinct, appearing on L in this order, and NL(z) = {z1

L, z
2
L} is

a clique in G. Since G is (K3,3,Kt)-free and from the choice of o2, it follows that we can apply
Lemma 2.5 to the sets {{z1

L, z
2
L} : L ∈ L3} and show that:

(12) There exists L′3 ⊆ L3 with |L′3| = ψ2 such that for all distinct L,L′ ∈ L′3, {z1
L, z

2
L} is

anticomplete to {z1
L′ , z

2
L′}.

Next, we launch the first application of Theorem 2.3. Note that {z-z2
L-L-vL-y : L ∈ L′3} is a

collection of ψ2 pairwise internally disjoint paths in G between non-adjacent vertices z and y.
Consequently, due to the choice of ψ2, we can apply Theorem 2.3 to this collection, and deduce
that there exists L3 ∈ L′3 as well as L4 ⊆ L′3 \ {L3} with |L4| = o1 such that:

• {z2
L : L ∈ L4} ∪ {z2

L3
, y} is a stable set in G (though this is already guaranteed by (12));

and
• for all L ∈ L4, z2

L3
has a neighbor in the interior of z2

L-L-vL-y.
For each L ∈ L4, traversing z2

L-L-vL-y from z2
L to y, let w1

L, w
2
L be the first and the last neigh-

bors of z2
L3

in z2
L-L-vL-y, respectively; it follows that {w1

L, w
2
L} ∩ {z2

L, y} = ∅ and z1
L, z

2
L, w

1
L, w

2
L

appear on L in this order. For every L ∈ L4, let CL denote the hole a-x-uL-L-vL-y-a in G. We
deduce that:
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Figure 9. Proof of Lemma 4.4.

(13) For every L ∈ L4, z2
L3

is CL-bad. More explicitly, w1
L and w2

L are distinct and adjacent,
and we have NCL(z2

L3
) = {w1

L, w
2
L}.

To see this, note that z and z2
L3

are two adjacent vertices in G \ CL, each with at least
one neighbor in CL. In fact, we have NCL(z) = {a, z1

L, z
2
L}, and so z is CL-ugly. Since a is

anticomplete to L3 and from (12), it follows that z2
L3

is anticomplete to {a, z1
L, z

2
L} = NCL(z).

Thus, z and z2
L3

have no common neighbor in CL. So by Theorem 3.2, z2
L3

is CL-bad. This
proves (13).

Furthermore, since G is (K3,3,Kt)-free and from the choice of o1, we can apply Lemma 2.5 to
the sets {{w1

L, w
2
L, z

1
L, z

2
L} : L ∈ L4}, and deduce that:

(14) There exists L′4 ⊆ L4 with |L′4| = ψ1 such that for all distinct L,L′ ∈ L′4, {w1
L, w

2
L, z

1
L, z

2
L}

is anticomplete to {w1
L′ , w

2
L′ , z

1
L′ , z

2
L′}.

Now, note that {z2
L3
-w2

L-L-vL-y : L ∈ L′4} is a collection of ψ1 pairwise internally disjoint
paths in G between non-adjacent vertices z2

L3
and y. Together with the choice of ψ1, this allows

an application of Theorem 2.3 to {z2
L3
-w2

L-L-vL-y : L ∈ L′4}. We obtain two distinct paths
L1, L2 ∈ L′4 such that

• {w2
L1
, w2

L2
, y} is a stable set in G (though this already follows from (14)); and

• the vertex w2
L2

has a neighbor in the interior of w2
L1
-L1-vL-y.

Traversing w2
L1
-L1-vL-y from w2

L1
to y, let w,w′ be the first and the last neighbors of w2

L2
in

w2
L1
-L1-vL-y, respectively; it follows that {w,w′} ∩ {w2

L1
, y} = ∅ and w1

L1
, w2

L1
, w, w′ appear on

L1 in this order. In addition, we have:

(15) The vertex w2
L2

is CL1-bad. More precisely, w and w′ are distinct and adjacent, and we
have NCL1

(w2
L2

) = {w,w′}.

Let C1 = a-z-z2
L1
-L1-vL-y-a; then C1 is a hole in G. Note that w2

L2
and z2

L3
are two adja-

cent vertices in G \ C1, each with at least one neighbor in C1. In fact, we have NC1(z2
L3

) =
{z, w1

L1
, w2

L1
}, and so z2

L3
is C1-ugly. This, along with (14), implies that w2

L2
is anticomplete to

{z, w1
L1
, w2

L1
} = NC1(z2

L3
). It follows that w2

L2
and z2

L3
have no common neighbor in C1. But

then by Theorem 3.2, w2
L2

is C1-bad. More precisely, w and w′ are distinct and adjacent, and
we have NC1(w2

L2
) = {w,w′}. Since CL1 \ C1 = x-uL1-L1-z1

L1
, it remains to show that w2

L2
is

anticomplete to uL1-L1-z1
L1
. Suppose not. Recall that by (14), a and w2

L2
are not adjacent in

G. Consequently, there is a path Q of length at least two in G from a to w2
L2

such that Q∗ is
contained in the interior of a-x-uL1-L1-z1

L1
. But then in view of (13), there is a theta in G with

ends a,w2
L2

and paths a-z-z2
L3
-w2

L2
, a-y-vL1-L1-w′-w2

L2
and Q, a contradiction. This proves (15).
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Figure 10. Proof of (17).

Finally, by, (13) and (15), there is a prism in G with triangles z2
L3
w1
L1
w2
L1
, w2

L2
ww′ and paths

z2
L3
-w2

L2
, w2

L1
-L1-w and w1

L1
-L1-uL1-x-a-y-vL1-L1-w′ (see Figure 9), a contradiction. This com-

pletes the proof of Lemma 4.4. �

We are now in a position to prove Theorem 4.1:

Proof of Theorem 4.1. Let σ = σ(1, 4, t) and λ = λ(1, 4, t) be as in Lemma 4.4. Let ψ =
ψ(t, σ + λ) be as in Theorem 2.3 and let o = o(ψ, d, 3, t) be as in Lemma 2.5. Our goal is to
show that κ = κ(d, t, w) = o+ w satisfies 4.1.

Suppose not. Let G be a (theta, prism, even wheel, Kt)-free graph, let (a, x, y,W) be a
κ-kaleidoscope in G, and let z ∈ V (G) be 1-mirrored by (a, x, y,W). Let W ′ ⊆ W be the set of
all paths W ∈ W for which z has at least d neighbors in W . It follows that |W ′| < w, and so
there exists W0 ⊆ W with |W0| = o such that for every W ∈ W0, z has less than d neighbors in
W .

For every W ∈ W0, traversing W from x to y, let xW be the neighbor of x in W , let u1
W , u

2
W

be the first and the last neighbor of z in W , respectively, and let yW be first neighbor of y in W .
It follows that the vertices x, xW , u1

W , u
2
W , yW , y appear on W in this order, and u1

W , u
2
W are the

only two vertices among them which may be the same. Since G is (K3,3,Kt)-free and from the
choice of o, it follows that we can apply Lemma 2.5 to the sets {NW (z) : W ∈ W0}, and show
that:

(16) There exists W1 ⊆ W0 with |W1| = ψ such that for all distinct W,W ′ ∈ W0, NW (z) is
anticomplete to NW ′(z).

Next, note that {z-u1
W -W -xW -x : W ∈ W1} is a collection of ψ pairwise internally disjoint

paths in G between non-adjacent vertices z and x. Consequently, by the choice of ψ, we can
apply Theorem 2.3 to this collection, and deduce that there exist two disjoint subsets W2 and
W3 of W1 with |W2| = σ and |W3| = λ, such that:

• {u1
W : W ∈ W2 ∪W3} ∪ {x} is a stable set in G (though this is already guaranteed by

(16) and (M3) as z is 1-mirrored by (a, x, y,W)); and
• for every W ∈ W2 and every W ′ ∈ W3, u1

W has a neighbor in the interior of LW ′ =
u1
W ′-W ′-xW ′-x.

Let S = {u1
W : W ∈ W2} and let L = {L∗W ′ : W ′ ∈ W3}. Then (z, S,L) is a (σ, λ)-palanquin

in G. This, together with the choices of σ and λ, allows for an application of Lemma 4.4. We
deduce that there exist W1,W2,W3,W4 ∈ W2 and W ′ ∈ W3 such that the following hold.
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Figure 11. Proof of Theorem 4.1.

• ({u1
Wi

: i ∈ [4]}, L∗W ′ , xW ′ , π) is a 4-alignment in G, where π(u1
Wi

) = i for all i ∈ [4].
• For every i ∈ [4], u1

Wi
is LW ′-ugly.

Now, for each i ∈ [4], traversing L∗W ′ starting at xW ′ , let vi, v
′
i be the first and the

last neighbors of u1
Wi

in L∗W ′ , respectively; it follows that {vi, v′i} ∩ {xW ′ , u1
W ′} = ∅ and

the vertices xW ′ , v1, v
′
1, v2, v

′
2, v3, v

′
3, v4, v

′
4, u

1
W ′ , u

2
W ′ , yW ′ appear on W ′ in this order. Let

C = a-x-xW ′-W ′-yW ′-y-a. Then C is a hole inG and u1
W1

and z are two adjacent vertices inG\C,
each with a neighbor in C. Also, u1

W1
is LW ′-ugly, and so C-ugly, and by (16), u1

W1
and z have no

common neighbor in C. This, combined with Theorem 3.2, implies that z is C-bad. More pre-
cisely, a and z are not adjacent (though we do not use this), and NC(z) = NW ′(z) = {u1

W ′ , u
2
W ′}

is a two-vertex clique in G. We further deduce that:

(17) For every i ∈ {2, 3}, u1
Wi

has a neighbor in the interior of u2
W ′-W ′-yW ′-y.

Suppose not. Then by (16), u1
Wi

is anticomplete to u1
W ′-u2

W ′-W ′-yW ′ . Let C ′ denote the hole
z-u1

W1
-v′1-W ′-v4-u1

W4
-z. Then we have NC′(u1

Wi
) = NLW ′ (u

1
Wi

) ∪ {z} = NC(u1
Wi

) ∪ {z}. Also,
u1
Wi

is C-ugly, as it is LW ′-ugly. This, along with the fact that C∪{u1
Wi
} is not a theta in G and

(C, u1
Wi

) is not an even wheel in G, implies that |NC(u1
Wi

)| is an odd integer which is at least
three. But then (C ′, u1

Wi
) is an even wheel in G, a contradiction (see Figure 10). This proves

(17).
To finish the proof, note that by (17), there exists a path P in G from u1

W2
to u1

W3
such

that P ∗ is contained in the interior of u2
W ′-W ′-yW ′-y. But now there is a theta in G with ends

u1
W2
, u1

W3
and paths u1

W2
-z-u1

W3
, u1

W2
-v′2-W ′-v3-u1

W3
and P , a contradiction (see Figure 11). This

completes the proof of Theorem 4.1. �

5. Blurry 2-trees

Here we develop the inductive procedure discussed in Subsection 1.3 for growing a 2-tree
while maintaining its vertex set, all along, mirrored enough by a kaleidoscope of proportionate
size. In particular, this process starts with a pair of adjacent vertices and then repeatedly adds
carefully-chose common neighbors. Let us first ensure that a valid choice of the two initial
vertices is available under the right circumstances:

Theorem 5.1. For all integers d, t, w ≥ 1, there exists ζ = ζ(d, t, w) ≥ 1 with the following
property. Let G be a (theta, prism, Kt)-free graph, let a, b ∈ V (G) be distinct and non-adjacent
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and let P be a collection of pairwise internally disjoint paths in G from a to b with |P| ≥ ζ.
Then there exists a w-kaleidoscope (a, x, y,W) in G as well as a clique Z0 in G with |Z0| = 2,
such that:

(a) Z0 is d-mirrored by (a, x, y,W); and
(b) some vertex in Z0 is adjacent to a.

Proof. Let ψ(·, ·) be as in Theorem 2.3 and let κ = κ(·, ·, ·) be as in Theorem 4.1. Define
κ1 = κ(d, t, w), ψ1 = ψ(t, t3 +κ1 + 1) and κ2 = κ(d, t, ψ1). Let σ = σ(κ2, 3, t) and λ = λ(κ2, 3, t)
be as in be as in Lemma 4.4. Define ζ = ζ(t, w) = ψ(t, σ + λ). We prove that this value of
ζ satisfies 5.1. Let G be a (theta, prism, Kt)-free graph, let a, b ∈ V (G) be distinct and non-
adjacent and let P be a collection of pairwise internally disjoint paths in G from a to b with
|P| ≥ ζ = ψ(t, σ + λ). For each P ∈ P, let xP be the neighbor of a in P (so xP 6= b). From
Theorem 2.3 applied to a, b and P, we deduce that there exist disjoint subsets Q and R of P
with |Q| = σ and |R| = λ, such that:

• {xP : P ∈ Q ∪R} ∪ {b} is a stable set in G; and
• for every Q ∈ Q and every R ∈ R, xQ has a neighbor in R∗ \ {xR}.

For every R ∈ R, let LR = R∗ \ {xR}, and let x′LR be the unique neighbor of xR in LR. Then
x′LR is an end of LR, and the vertices {x′LR : R ∈ R} are pairwise distinct.

We define S = {xQ : Q ∈ Q} and L = {LR : R ∈ LR}. Note that a is complete to the stable
set S ⊆ {xP : P ∈ P} and anticomplete to P ∗ \ xP for every P ∈ P. Therefore, the triple
(a, S,L) is a (σ, λ)-palanquin in G. For every path L ∈ L, fix the end x′L of L, chosen as above.

Since G is (theta, Kt)-free and due to the choices of σ and λ, we can apply Lemma 4.4 to
(a, S,L) together with {x′L : L ∈ L}, and obtain a stable set S′ ⊆ S with |S′| = 3, L′ ⊆ L with
|L′| = κ, and a bijection π : S′ → [3], such that for every L ∈ L′, (S′, L, x′L, π) is a 3-alignment
in G.

Let us write x = π(1), z1 = π(2) and y = π(3). For every L ∈ L′, traversing L starting at x′L,
let uL be the last neighbor of x in L, let zL be the last neighbor of z1 in L and let vL be the
first neighbor of y in L. Let WL = x-uL-L-vL-y. Then WL is a path in G from x to y and we
have zL ∈WL \ (NWL

[x] ∪NWL
[y]). In particular:

(18) For every L ∈ L′, z1 is anticomplete to NWL
[x] ∪ NWL

[y] and z1 has a neighbor in WL

(namely zL).

From (18), it follows that (a, x, y, {WL : L ∈ L′}) is a κ2-kaleidoscope in G by which z1 is
1-mirrored. This, along with the choice of κ2 and Theorem 4.1, implies that there exists L1 ⊆ L′
with |L1| = ψ1 such that z1 is d-mirrored by the ψ1-kaleidoscope (a, x, y, {WL : L ∈ L1}).

Next, for every path L ∈ L1, let PL = z1-zL-L-vL-y. Then P ′ = {PL : L ∈ L1} is a collection
of ψ1 pairwise internally disjoint paths in G between the two non-adjacent vertices z1 and y. By
Theorem 2.3, this time applied to z1, y and P ′, there exist L0, L1, . . . , Lt3+κ ∈ L′ such that:

• {zL0 , zL1 , . . . , zLt3+κ1
, y} is a stable set in G; and

• for all j ∈ [t3 + κ1], zL0 has a neighbor in P ∗Lj \ {zLj}.
Let z2 = zL0 . Then z2 is anticomplete to {a, x, y}. In addition, we claim that:

(19) The following hold.
• The vertex z2 is anticomplete to {uLj : j ∈ [t3 + κ1]}.
• There exists I ⊆ [t3 + κ1] with |I| = κ1 for which z2 is anticomplete to {vLj : j ∈ I}.

Consequently, for every j ∈ I, z2 is anticomplete to {a} ∪ NWLj
[x] ∪ NWLj

[y], and z2 has a
neighbor in WLj .

To see the first assertion, note that for all j ∈ [t3 + κ1], there is a path Qj in G from z2 to y
with Q∗j ⊆ P ∗Lj \ {zLj}; in particular, uLj is anticomplete to Q∗j . Therefore, if z2 is adjacent to
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uLj for some j ∈ [t3 +κ1], then there is a theta in G with ends a, z2 and paths a-x-uLj -z2, a-z1-z2
and a-y-Qj-z2, a contradiction. To prove the second assertion, suppose for a contradiction that
there exists I ′ ⊆ [t3 + κ1] with |I ′| = t3 such that z2 is complete to V ′ = {vLj : j ∈ I ′}. Since G
is Kt-free, it follows from Theorem 2.4 applied to G[V ′] that there exists {v, v′, v′′} ⊆ V ′ which
is a stable set in G. But this yields a theta in G with ends z2, y and paths z2-v-y, z2-v′-y and
z2-v′′-y, a contradiction. This proves (19).

Let I be as in (19). It follows that (a, x, y, {WLj : j ∈ I}) is a κ1-kaleidoscope in G by
which z1 is d-mirrored and z2 is 1-mirrored. From the choice of κ1 and Theorem 4.1 applied to
(a, x, y, {WLj : j ∈ I}) and z2, we conclude that there exists W ⊆ {WLj : j ∈ I} with |W| = w
such that Z0 = {z1, z2} is d-mirrored by the w-kaleidoscope (a, x, y,W). Also, a is adjacent to
z1 ∈ Z0 and non-adjacent to z2 ∈ Z0. This completes the proof of Theorem 5.1. �

Incidentally, there is an immediate corollary of Theorem 5.1 which may be of independent
interest. Let G be a graph and let d ≥ 1 be an integer. We say vertex v ∈ V (G) is d-substantial
if there is a hole C in G \ {v} such that v has at least d + 1 neighbors in C and C \ NC(v) is
not connected.

Corollary 5.2. For all integers d, t ≥ 1, there exists an integer k = k(d, t) with the following
property. Let G be a (theta, prism, even wheel, Kt)-free graph and let a, b ∈ V (G) be distinct
and non-adjacent. Assume that no vertex in NG(a) is d-substantial in G. Then there do not
exist k pairwise internally disjoint paths in G from a to b.

Proof. We show that k(d, t) = ζ(d, t, 1) satisfies 5.2, where ζ(·, ·, ·) comes from Theorem 5.1.
Suppose for a contradiction that there is a collection P of pairwise internally disjoint paths in
G from a to b with |P| ≥ k. By Theorem 5.1, there exists a 1-kaleidoscope (a, x, y, {W}) in G
as well as a clique Z0 in G with |Z0| = 2 such that Z0 is d-mirrored by (a, x, y, {W}), and some
vertex z1 ∈ Z0 is adjacent to a. Let C = a-x-W -y-a. Then C is a hole in G and z1 has at least
d+ 1 neighbors in C. Also, the vertices x, y belong to distinct components of C \NC(z1). But
now z1 is neighbor of a in G which is d-substantial, a contradiction. �

Back to our main theme, the 2-trees we are about to obtain are in fact subgraphs of their
host graphs, falling short of being induced by only an (annoying) notch: for a graph G and a
2-tree ∇ with |V (∇)| = h ≥ 2, by a blurry copy of ∇ in G we mean an induced subgraph Z of
G which in turn contains a spanning subgraph Y with the following specifications.

(B1) Y is a 2-tree isomorphic to ∇.
(B2) Let i, j ∈ [|Y |] = [|Z|] = [|V (∇)|] with i < j for which $Y (i) and $Y (j) are

adjacent in G (and so in Z) but not in Y . Then $Y (j) is adjacent in G to both
forward neighbors of $Y (i) in Y .

In particular, it follows that:

Observation 5.3. Let G be a graph and let ∇ be a 2-tree such that G there is a blurry copy of
∇ in G. Then G has a subgraph isomorphic to ∇. Moreover, if G is K4-free, then G has an
induced subgraph isomorphic to ∇.

Next we demonstrate, through the following lemma, the inductive step of our 2-tree growing
process. Given a 2-tree ∇ on h+ 2 vertices for h ≥ 1 and an integer i ∈ [h], we denote by ∇/i
the 2-tree ∇ \ ($∇[i]) on h− i+ 2 vertices where $∇/i(j) = $∇(i+ j) for all j ∈ [h− i+ 2]. It
is also useful to define ∇/0 = ∇.

Lemma 5.4. For all integers h, t, w ≥ 1, there exists an integer ξ(h, t, w) ≥ 1 with the following
property. Let G ∈ Et be a graph and let ∇ be a 2-tree on h+ 2 vertices. Assume that there is a
blurry copy Z ′ of ∇/1 in G which is 3-mirrored by a ξ-kaleidoscope in G. Then there is a blurry
copy Z of ∇ in G which is 3-mirrored by a w-kaleidoscope in G.
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Figure 12. Proof of Lemma 5.4 (dashed lines represent paths of undetermined
lengths, and dash-dotted lines depict possible edges in the blurry copy).

Proof. Let ψ = ψ(t, 2) be as in Theorem 2.3. Let κ = κ(3, t, w) be as in Theorem 4.1. Let
o = o(·, ·, ·, ·) be as in Lemma 2.5. We claim that ξ = ξ(h, t, w) = o(3h + 2ψκ, 3, 3, t) satisfies
5.4. Let G ∈ Et be a graph and let ∇ be 2-tree on h + 2 vertices. Let Z ′ be a blurry copy
of ∇/1 in G and let (a, x, y,W ′) be a ξ-kaleidoscope in G by which Z ′ is 3-mirrored. Let Y ′
be the spanning subgraph of Z ′ such that Y ′, Z ′ and ∇/1 satisfy (B1) and (B2). In particular,
there is an isomorphism f : V (∇/1) → V (Y ′) between the 2-trees ∇/1 and Y ′. Let u1, u2 be
the two forward neighbors of $∇(1) in ∇ and let zi = f(ui) for i ∈ {1, 2}. Then we have
z1, z2 ∈ V (Y ′) = Z ′. Since Z ′ is a blurry copy of ∇/1 which is 3-mirrored by (a, x, y,W ′), and
from the definition of a blurry copy and a mirrored set, it follows immediately that:

(20) Let z ∈ G \ Z ′ and W ⊆W ′ such that:
• a is not adjacent to z;
• we have {z1, z2} ⊆ NZ′(z) ⊆ NZ′ [z1] ∩NZ′ [z2]; and
• we have |W| = w and z is 3-mirrored by the w-kaleidoscope (a, x, y,W) in G.

Then Z = Z ′ ∪ {z} is a blurry copy of ∇ in G which is 3-mirrored by the w-kaleidoscope
(a, x, y,W) in G.

Therefore, in order to proved Lemma 5.4, it suffices to argue the existence of a vertex z ∈ G\Z ′
as well as a subset W of W ′ for which the three bullets points of (20) hold. We devote the rest
of the proof to this goal.

For everyW ∈ W ′, let CW = a-x-W -y-a. Then CW is a hole in G. Also, since Z ′ is 3-mirrored
by (a, x, y,W ′), it follows from (M2) and (M3) that a is not a common neighbor of z1 and z2,
and that both z1 and z2 are CW -ugly. This, combined with Theorem 3.2, implies that:

(21) For every W ∈ W ′, the vertices z1 and z2 have a common neighbor in W .

Consequently, for every W ∈ W ′, traversing W from x to y, we may choose zW to be the
first common neighbor of z1 and z2 in W . Note also that, by (M3), {z1, z2} is anticomplete to
NW [x] ∪NW [y], which in turn shows that zW ∈ W \ (NW [x] ∪NW [y]). For every W ∈ W ′, let
xW , yW be the neighbors of x and y in W , respectively (see Figure 12). We now deduce that:
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(22) There exists W0 ⊆ W ′ with |W0| = 2ψκ such that:
• for all distinctW,W ′ ∈ W0, the sets {xW , zW , yW } and {xW ′ , zW ′ , yW ′} are anticomplete
in G; and
• for every W ∈ W0, we have {z1, z2} ⊆ NZ′(zW ) ⊆ NZ′ [z1] ∩NZ′ [z2].

To see this, note that since G is (K3,3,Kt)-free and from choice of |W ′| = ξ, we can apply
Lemma 2.5 to the sets {{xW , zW , yW } : W ∈ W ′}, and obtain a subset W ′0 of W ′ with |W ′0| =
3h+ 2ψκ such that for all distinct W,W ′ ∈ W ′0, the sets {xW , zW , yW } and {xW ′ , zW ′ , yW ′} are
anticomplete in G. It remains to show that there exists a subsetW0 ofW ′0 with |W0| = 2ψκ such
that for everyW ∈ W0, we have {z1, z2} ⊆ NZ′(zW ) ⊆ NZ′ [z1]∩NZ′ [z2]. Suppose not. Since zW
is a common neighbor of z1 and z2 for all W ∈ W ′, it follows that there exists W ′′0 ⊆ W ′0 with
|W ′′0 | = 3h such that for every W ∈ W ′′0 , zW has a neighbor z′W ∈ Z ′ \ {z1, z2} which is adjacent
to at most one of z1 and z2. From this and the fact that |Z ′ \ {z1, z2}| < |V (∇)| − 2 = h,
we deduce that there are three distinct paths W1,W2,W3 ∈ W ′′0 such that for some vertex
z′ ∈ Z ′ \ {z1, z2}, we have z′W1

= z′W2
= z′W3

= z′. Recall also that zW1 , zW2 , zW3 are pairwise
non-adjacent because W1,W2,W3 ∈ W ′′0 ⊆ W ′0. But now for some i ∈ {1, 2}, there is a theta
in G with ends zi, z′ and paths zi-zW1-z′, zi-zW2-z′ and zi-zW3-z′, a contradiction. This proves
(22).

Let W0 be as in (22). The following captures the bulk of the difficulty in this proof, also
involving our application of Theorem 3.1. Intuitively, the motivation is to apply Theorem 2.3
to the “paths in W0” from z1 to x. But we cannot; those paths are not induced as z1 may have
neighbours in them. So we pass to the minor offered by Theorem 3.1 precisely to surmount this
complication.

(23) There exist W0 ∈ W0 and W1 ⊆ W0 \ {W0} with |W1| = κ, such that for every W ∈ W1,
zW0 has a neighbor in W ∗.

Let D be the digraph with vertex set W0 where for distinct paths W1,W2 ∈ W0, (W1,W2)
is an arc in D if and only if zW1 has a neighbor in W ∗2 . Note that in order to prove (23), it is
enough to show that D has a vertex of out-degree at least κ. Suppose not. Then every vertex in
D has out-degree less than κ, which in turn implies that every vertex in every “subdigraph” of
D has out-degree less than κ. It follows that every “subdigraph” of D has a vertex of in-degree
less than κ. Let D\ be underlying undirected graph of D (which may have pairs of parallel
edges). Then every subgraph of D\ has a vertex of degree less than 2κ, and so D\ has chromatic
number at most 2κ. Consequently, there exists a stable set W ′1 ⊆ W0 = V (D\) in D\ with
|W ′1| = d|W0|/2κe = ψ. From the definition of D, it follows that for all distinct W1,W2 ∈ W ′1,
zW1 is anticomplete to W ∗2 . Let G1 = G[(

⋃
W∈W ′1

V (zW -W -x)) ∪ {z1, z2}]. Then we have
G1 ∈ E , z1, z2 ∈ V (G1) are distinct and adjacent, and NG1(z1) ∩NG1(z2) = {zW : W ∈ W ′1} is
a stable set of vertices of degree three in G1. We are now prepared to apply Theorem 3.1 and
deduce that G1Cz1

z2 ∈ E . Let z ∈ V (G1Cz1
z2) be as in the definition of G1Cz1

z2 ∈ E . Then we have
V (G1Cz1

z2) = (
⋃
W∈W ′1

V (zW -W -x))∪{z} andNG1 C
z1
z2

(z) = NG1(z1)∩NG1(z2) = {zW : W ∈ W ′1}
is a stable set of vertices of degree two in G1Cz1

z2 . Also, {z-zW -W -x : W ∈ W ′1} is a collection
of ψ pairwise internally disjoint paths in G1Cz1

z2 between non-adjacent vertices z and x. Hence,
by the choice of ψ, we can apply Theorem 2.3 to this collection, and obtain W1,W2 ∈ W ′1 such
that zW1 has a neighbor in the interior of zW2-W2-x in G1Cz1

z2 . But then zW1 has degree at least
three in G1Cz1

z2 , a contradiction. This proves (23).

We can now finish the proof. LetW0 andW1 be as in (23), and write z = zW0 . Then z ∈ G\Z ′
and a is not adjacent to z because z ∈W ∗0 , which implies that a satisfies the first bullet of (20).
Also, the second bullet of (22) implies that z satisfies the first second of (20). In addition, from
the first bullet of (22) combined with (23) and the fact that z ∈ W0 \ (NW0 [x] ∪ NW0 [y]), it
follows that z is 1-mirrored by the κ-kaleidoscope (a, x, y,W1). Due to the choice of κ, we may
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apply Theorem 4.1 and deduce that there exists W ⊆ W1 ⊆ W0 ⊆ W ′ with |W| = w such that
z is 3-mirrored by the w-kaleidoscope (a, x, y,W). Hence, z and W satisfy the third bullet of
(20). This completes the proof of Lemma 5.4. �

We now use Lemma 5.4 to prove the main result of this section:

Theorem 5.5. For all integers h ≥ 0 and t, w ≥ 1, there exists an integer Ξ(h, t, w) ≥ 1 with
the following property. Let G ∈ Et be a graph and let ∇ be a 2-tree on h + 2 vertices. Assume
that there is a clique Z0 in G with |Z0| = 2 which is 3-mirrored by a Ξ-kaleidoscope in G. Then
there is a blurry copy Z of ∇ in G which is 3-mirrored by a w-kaleidoscope in G.

Proof. We begin with defining a sequence {Ξi}hi=0 using a backward recursion. Let Ξh = w. For
every 0 ≤ i < h, let Ξi = ξ(i + 1, t,Ξi+1), where ξ(·, ·, ·) is as in Lemma 5.4. We claim that
Ξ = Ξ(h, t, w) = Ξ0 satisfies 5.5. In fact, we prove a slightly stronger statement which is tailored
to our inductive argument:

(24) Let i ∈ {0, . . . , h}. Assume that there is a clique Z0 in G with |Z0| = 2 which is 3-mirrored
by a Ξ0-kaleidoscope in G. Then there is a blurry copy Zi of ∇/(h− i) in G which is 3-mirrored
by a Ξi-kaleidoscope in G.

We induct on i. The case i = 0 is trivial as ∇/h is a 2-vertex complete graph. Suppose
h ≥ 1 and i ∈ [h]. Assume that there is a clique Z0 in G with |Z0| = 2 which is 3-mirrored
by a Ξ0-kaleidoscope in G. Then ∇/(h − i) is a 2-tree on i + 2 vertices, and by the induction
hypothesis, there is a blurry copy Zi−1 of ∇/(h− i+1) = (∇/(h− i))/1 in G which is 3-mirrored
by a Ξi−1-kaleidoscope in G, where Ξi−1 = ξ(i, t,Ξi). Hence, it follows from Lemma 5.4 that
there is a blurry copy Zi of ∇/h − i in G which is 3-mirrored by a Ξi-kaleidoscope in G. This
proves (24).

Now the result follows from (24) for i = h. This completes the proof of Theorem 5.5. �

6. The coda

With Theorems 5.1 and 5.5 in our arsenal, we are ready to prove Theorems 1.12 and 1.13. In
fact, both results follow directly from the one below:

Theorem 6.1. For all integers h ≥ 0 and t ≥ 1, there exists an integer Ω = Ω(h, t) such that
for every 2-tree ∇ on h vertices and every graph G ∈ Et with tw(G) > Ω, there is a blurry copy
of ∇ in G.

Proof. Let Ξ = Ξ(h, t, 1) be as in Theorem 5.5 and let ζ = ζ(3, t,Ξ) be as in Theorem 5.1. We
show that Ω = Ω(h, t) = β(max{ζ, t}, t) satisfies 6.1, where β(·, ·) is as in Corollary 2.2. Let
∇ be a 2-tree on h-vertices and let G ∈ Et be a graph with tw(G) > Ω. From Corollary 2.2,
it follows that G has a strong max{ζ, t}-block. Since G is Kt-free, it follows that there are
non-adjacent vertices a, b ∈ V (G) for which there exists a collection P of ζ pairwise internally
disjoint paths in G from a to b. By Theorem 5.1, there exists a clique Z0 in G with |Z0| = 2
which is 3-mirrored by a Ξ-kaleidoscope in G. This, along with Theorem 5.5, implies that there
is a blurry copy of ∇ in G (which is 3-mirrored by a 1-kaleidoscope in G), as desired. �

Theorem 1.12 is now immediate:

Theorem 1.12. For every 2-tree ∇, there exists an integer Υ = Υ(∇) ≥ 1 such that every
graph G ∈ E4 with tw(G) > Υ contains ∇.

Proof. Let Υ = Υ(∇) = Ω(|V (∇)|, 4). Then the result follows from Theorem 6.1 combined with
Observation 5.3. �

To prove Theorem 1.13, we also need a result from [12]. For integers d, r ≥ 0, let T rd denote
the rooted tree in which every leaf is at distance r from the root, the root has degree d, and
every vertex that is neither a leaf nor the root has degree d+ 1.
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Theorem 6.2 (Kierstead and Penrice [12]). For all integers d, r ≥ 0 and s, t ≥ 1, there exists
an integer f = f(d, r, s, t) ≥ 1 such that if a graph G contains T ff as a subgraph, then G contains
one of Ks,s, Kt or T rd as an induced subgraph.

Finally, we prove Theorem 1.13:

Theorem 1.13. For every integer t ≥ 1 and every tree T , there exists an integer Γ = Γ(t, T ) ≥ 1
such that every graph G ∈ Et with tw(G) > Γ contains cone(T ).

Proof. Let d and r be the maximum degree and the radius of T , respectively. It follows that
T rd contains T as an induced subgraph. Let f = f(d, r, 3, t) be as in Theorem 6.2 and let
T+ = cone(T ). We claim that Γ = Γ(t, T ) = Ω(|V (T+)|, t) satisfies 1.13, where Ω(·, ·) comes
from Theorem 6.1. Let G ∈ Et be a graph of treewidth more than Γ. From Theorem 6.1 and
Observation 5.3, we deduce that there exists X ⊆ V (G) such that G[X] has a spanning subgraph
isomorphic to the 2-tree T+. As a result, there exists a vertex x ∈ X complete to X \ {x} such
that G[X \{x}] has a spanning subgraph isomorphic to T ff . Since G is {K3,3,Kt}-free, it follows
from Theorem 6.2 that G[X \ {x}] contains T rd (as an induced subgraph). Hence, G[X \ {x}]
contains T , and so G contains cone(T ), as required. �
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