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Abstract

Counting independent sets in graphs and hypergraphs under a variety of restrictions is a classical

question with a long history. It is the subject of the celebrated container method which found

numerous spectacular applications over the years. We consider the question of how many inde-

pendent sets we can have in a graph under structural restrictions. We show that any n-vertex

graph with independence number α without bKa as an induced subgraph has at most nO(1) ·αO(α)

independent sets. This substantially improves the trivial upper bound of nα, whenever α ≤ no(1)

and gives a characterization of graphs forbidding of which allows for such an improvement. It

is also in general tight up to a constant in the exponent since there exist triangle-free graphs

with αΩ(α) independent sets. We also prove that if one in addition assumes the ground graph is

chi-bounded one can improve the bound to nO(1) · 2O(α) which is tight up to a constant factor

in the exponent.

1 Introduction

Problems involving counting independent sets in graphs and hypergraphs have a long history. They

have been studied both due to their intrinsic interest and since one can encapsulate many natural

questions in terms of counting independent sets in an appropriate (hyper)graph see e.g. a recent

survey [27] for many examples and a detailed history of such questions. Let us denote by α(G) the

maximum size of an independent set and by i(G) the number of independent sets in a graph G.

There are two trivial bounds which often serve as a baseline for more involved arguments.

2α(G) ≤ i(G) ≤
α(G)∑
j=0

(
n

j

)
. (1)

The lower bound follows since all subsets of the maximum size independent set are themselves

independent and the upper bound simply account for all subsets of size up to α(G). Both of these

bounds can be tight, for example, if G is an empty or complete (hyper)graph, respectively. Note

also that if α(G) = Ω(n) the upper bound is also exponential in α(G) so the two bounds match

up a constant in the exponent. We will be consequently mostly interested in the regime when α
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is somewhat small compared to n when one can approximate the upper bound on the right by(
n

α(G)

)α(G)
or even more loosely by just nα(G).

Trying to improve the upper bound in (1) has garnered a lot of interest over the years and is the

subject of the celebrated container method. In the case of graphs it was introduced in the 1980’s

by Kleitman and Winston [21, 22] who used it to count lattices and graphs without four-cycles.

Variations of the method have been used over the years to attack a variety of problems for example

Alon [1] and Sapozhenko [28] used it to count the number of independent sets in regular graphs

which in turn has applications to counting sum-free sets in Abelian groups (see e.g. [1, 24, 29]).

Another remarkable example is the recent breakthrough lower bound on the off-diagonal Ramsey

numbers [26]. The method has been extended to the hypergraph case independently by Balogh,

Morris, and Samotij [3] and Saxton and Thomason [30] and has found an even more impressive array

of applications, see e.g. the survey [4] produced to accompany an ICM 2018 talk on the subject of

the container method for more examples and information. At a high level, the container method

allows one to translate knowledge about a variety of statistics in a (hyper)graph (for example having

a control of codegrees) to improvements on the upper bound in (1).

In this paper, we study whether having structural information about a graph leads to an improve-

ment in the upper bound (1). Perhaps one of the most studied structural properties of graphs is

being H-free for a small fixed graph H. Here and throughout the paper a graph G being H-free

stands for not having H as an induced subgraph. This leads to a very natural question, does G

being H-free imply a substantial improvement in the upper bound (1)? On the positive side, Farber

in [14] showed in 1987 that forbidding a 2K2 does indeed lead to such an improved bound. Unfortu-

nately, the answer is in general no. If one takes a graph consisting of α− 1 vertex disjoint complete

graphs of order as equal as possible (namely the complement of the (α − 1)-partite Turán graph

on n vertices) one obtains a graph with roughly (n/α)α−1 independent sets, which is quite close to

the upper bound in (1). On the other hand, this graph avoids most graphs as induced subgraphs,

in fact, all of its induced subgraphs are themselves vertex disjoint unions of complete graphs. Our

first result shows that one can improve the upper bound substantially if we forbid any such graph

as an induced subgraph.

Theorem 1. Any bKa-free n-vertex graph G with α = α(G) has i(G) ≤ nO(1) · αO(α).

Besides characterizing which forbidden graphs lead to an improvement this result is also tight up

to a constant factor in the exponent so long as a ≥ 3 and b ≥ 2. Indeed, taking b − 1 disjoint

complete graphs of order about n/b each gives an n-vertex bKa-free graph with roughly (n/b)b−1

independent sets and independence number b− 1. This shows the polynomial factor in n needs to

grow with b. One can show the same is true for a by taking a graph consisting of a disjoint complete

graphs of order about n/a each and then placing additional edges between parts independently with

suitable probability to ensure there will be few copies of (not necessarily induced) Ka,a’s in the

complement but with still many independent sets. One can then add a few edges to destroy these

copies without destroying too many independent sets. More interestingly, one can not, in general,

improve the second term either (beyond a constant factor in the exponent). This follows since

there exist triangle-free graphs (so bKa-free for any a ≥ 3) with at least α(G)Ω(α(G)) independent

sets. This follows by combining two results. The first one is due to Davies, Jenssen, Perkins and
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Roberts [12] (see also [9] for a slightly weaker but qualitatively similar result) showing that any

n-vertex triangle-free graph with maximum degree d has i(G) ≥ exp
((

1
2 + od(1)

)
· log2 d

d · n
)

. The

second is that there exist triangle-free graphs G with all degrees being (1 + o(1))
√

1
2n log n and

α(G) ≤ (1 + o(1))
√

2n log n. One obtains such a graph with high probability from the famous

triangle-free process see e.g. [5, 15] for more details on this topic. This produces a triangle-free

graph with at least α(
√
2/4+o(1))α independent sets and α = Θ(

√
n log n).

Our second main result shows that we can in fact go further and even match the trivial lower bound

from (1) up to a constant factor in the exponent if we in addition assume our ground graph is

chi-bounded. Here, a hereditary class of graphs G is said to be chi-bounded if there exists some

function g : N → R such that χ(G) ≤ g(ω(G)) for every G ∈ G. It is a well-studied notion with

many interesting applications and connections, see e.g. a recent survey of Scott and Seymour [31].

Theorem 2. Let G be a chi-bounded hereditary class of graphs. For any bKa-free n-vertex graph

G ∈ G with α = α(G) we have i(G) ≤ nO(1) · 2O(α).

Since forbidding bK2 as an induced subgraph implies chi-boundedness, we conclude that the stronger

bound of Theorem 2 also holds in Theorem 1 when a = 2, completing the picture as we have shown

such an improvement is impossible when a ≥ 3.

There are two main tools behind our arguments. The first one is a certain hypergraph analogue of

an induced Kövári-Sós-Turán Theorem introduced in the graph case by Loh, Tait, Timmons and

Zhou [25] and extended and used to settle a variety of problems recently in [2, 6, 17, 18, 19]. The

proof of this lemma is based on the dependent random choice technique (see e.g. the survey [16]

for more information). The second ingredient is a certain local-to-global transference lemma for

independent set counts, the proof of which is based on the ideas behind the container method.

Notation. Given a graph G we denote by α(G), ω(G), χ(G) and i(G) the independence number,

clique number, chromatic number, and number of independent sets in G respectively. We denote

by It(G) the family of all independent sets of size t in G and write it(G) = |It(G)|. Given a set of

vertices X in a graph G we write dG(X) for the number of common neighbors of all vertices in X.

For counting simplification purposes we consider an empty set of vertices as independent. For the

remainder of this paper, all logs are in base 2.

2 Counting independent sets locally

In this section, we will prove our key technical tool, namely a hypergraph variant of the induced

version of the Kövári-Sós-Turán Theorem [23]. The classical theorem of Kövári, Sós, and Turán

dating back to 1954 states that if an n vertex graph does not contain a Ks,s as a not necessarily

induced subgraph, then it has at most O(n2−1/s) edges. It proved itself as an incredibly useful

tool over the years as in many problems one can easily verify there are no Ks,s-subgraphs and

as a result conclude that the graph in question is “locally sparse”. Erdős extended this result to

hypergraphs in 1964 [13] showing that forbidding the r-partite r-uniform complete hypergraph as

a not necessarily induced subgraph of an r-uniform n-vertex hypergraph implies the number of
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edges is at most O(nr−ε) for some ε > 0 depending on the forbidden hypergraph. Another natural

extension of the classical theorem in which one only forbids Ks,s as an induced subgraph was only

considered about 10 years ago in the graph case by Loh, Tait, Timmons, and Zhou [25] and has

found some very interesting further extensions and applications in the last few years. Unfortunately,

the straightforward generalisation can not hold, as even a complete graph is Ks,s-free so long as

s ≥ 2. However, if one, in addition, forbids a clique (even of a size polynomial in n) one suddenly

recovers the classical bound.

Our technical lemma gives in a sense a common extension of both of these results. Roughly speaking

our result states that if one forbids a complete r-partite graph as an induced subgraph and assumes

there are no large cliques in our graph then there are at most O(nr−ε) cliques of size r for some

ε > 0 depending on the forbidden graph. Our result is actually slightly stronger, we assume a

more flexible condition that every m vertices contain an independent set of size a (not having a

large clique implies such a condition holds via Ramsey’s Theorem). We note that in [25] a similar

result focusing on the number of larger cliques has been proved but only under a much stronger

assumption that a complete bipartite graph is forbidden. We also note that our result is not a

full-fledged extension of Erdős’ result as it only applies to clique complexes, namely hypergraphs

whose edges are cliques of a graph. One can actually prove such a stronger variant using a similar

approach although since we do not need it here we choose not to do so. Part of the reason for this

is that for our chi-bounded result, we need a very precise bound here, namely one that gives us a

(slight) improvement even under a much weaker local assumption. We note also that the result is

stated in the complement compared to the above discussion since this is how we will use it.

We start with a precise definition of the local condition we will use.

Definition 3. A graph G is (m, a)-cliquey if all m-vertex induced subgraphs of G contain a Ka.

So in particular, by Ramsey’s theorem, we know that any graph G is (α(G)a, a)-cliquey for any a.

We advise the reader that the following lemma and its proof might be initially easier to read under

the assumption that m is polynomially smaller than n which ensures ε > 0 is an absolute constant

depending only on a and b. Indeed, this is sufficient for our proof of Theorem 1 and we suspect for

most future applications as well. However, as mentioned above we need the more precise version,

which allows for smaller, subpolynomial gains under weaker assumptions to prove Theorem 2.

Lemma 4. Let a, b ≥ 1 and n ≥ m be integers. Let G be a bKa-free n-vertex graph which is

(m, a)-cliquey. Then there are at most nb−ε/b! independent sets of size b in G, where

ε :=

(
log n

m

8ab log n

)b

.

Proof. We write εb :=
(

log n
m

8ab logn

)b
as the values of m, a and n for which we will use this expression

always remain the same. We prove the lemma by induction on b. If b = 1, the lemma is vacuous

since G being (m, a)-cliquey and Ka-free imply we must have n < m. Let us now assume b ≥ 2 and

that the lemma holds for any (b− 1)Ka-free graph. Let G be a bKa-free (m, a)-cliquey graph with

n vertices. If a = 1 or n < b there are no independent sets of size b in G and the lemma holds, so

we may in addition assume a ≥ 2 and n ≥ b.
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We may assume n > m as otherwise, εb = 0 and the desired bound is larger than
(
n
b

)
so is trivially

true. Suppose towards a contradiction that G has more than nb−εb

b! independent sets of size b. Our

general strategy will be to find a set of vertices containing many independent sets of size b− 1 for

which all a(b − 1) subsets have more than m non-neighbours. By induction, this set will contain

(b− 1)Ka which will be used to create an induced bKa.

Let T be a random subset of vertices of G obtained by sampling t =
⌊
4ab logn
log n

m

⌋
> 2ab · logn

log n
m

times

uniformly at random, with repetitions, a vertex of G. Let U be the set of vertices not adjacent to

any vertex of T . Let X count the number of independent sets of size b − 1 contained in U . An

independent set I of size b − 1 is contained within U only if all t vertices we sampled belong to

its common non-neighbourhood, which happens with probability (dḠ(I)/n)t so by using Jensen’s

inequality (and convexity of f(x) = xt) we get

EX =
∑

I∈Ib−1(G)

(
dḠ(I)

n

)t

≥ |Ib−1(G)|

(∑
I∈Ib−1(G) dḠ(I)

n|Ib−1(G)|

)t

≥ nb−1

(b− 1)!

(
b|Ib(G)|
n · nb−1

(b−1)!

)t

>
nb−1

(b− 1)!
· n−tεb

>
nb−1

(b− 1)!
· n−εb−1/2,

where in the second inequality we used |Ib−1(G)| ≤
(

n
b−1

)
≤ nb−1

(b−1)! (and the fact this term appears

with a power 1 − t ≤ 0) and the hypergraph handshake lemma. In the third inequality, we used

the assumed lower bound on |Ib(G)|. In the final inequality we used tεb =
⌊
4ab logn
log n

m

⌋
·
(

log n
m

8ab logn

)b
<

1
2

(
log n

m
8a(b−1) logn

)b−1
=

εb−1

2 . On the other hand, given a set of a(b − 1) vertices with less than m

common non-neighbours the probability that this set is a subset of U is at most
(
m
n

)t
. So if we

let Y be the random variable counting the number of a(b− 1)-sized subsets of U with less than m

common non-neighbours we have

EY ≤
(

n

a(b− 1)

)(m
n

)t
≤ na(b−1) · 2−t log n

m < na(b−1) · n−2ab = n−a(b+1).

This shows that there is an outcome for which

X −
(

n

b− 1

)
· Y >

nb−1−εb−1/2 − n−2−(a−1)(b+1)

(b− 1)!
≥ nb−1−εb−1/2 − n−2

(b− 1)!
.

Let us consider such an outcome U . Note that since X ≤
(

n
b−1

)
and nb−1−εb−1/2 − n−2 > 0 we

must have Y = 0. Furthermore, since b ≥ 2 we have εb−1 ≤ 2(b − 1) logn
log n

m
, which is equivalent to

nb−1−εb−1/2 > mb−1. This implies that X > mb−1−n−2

(b−1)! >
(
m−1
b−1

)
, so |U | ≥ m. This, together with

a ≥ 2 implies there must be an edge inside G[U ], so X ≤
(

n
b−1

)
− 2 ≤ nb−1−2

(b−1)! , where we used

n ≥ b ≥ 2. Combined with the above lower bound on X we get nb−1− 2 > nb−1−εb−1/2−n−2 which

implies nεb−1/2 > 1 + 1
nb−1 which in turn gives X > nb−1−εb−1/2−n−2

(b−1)! ≥ nb−1−εb−1

(b−1)! .

If b = 2 this implies |U | = |X| > n1−ε1 > m so we can find a Ka inside of G[U ]. For b ≥ 3 consider
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an auxiliary graph G′ on the same vertex set for which G′[U ] = G[U ] but every vertex in V (G) \U
is adjacent to every other vertex of G′. G′ is an n vertex graph, is clearly (m, a)-cliquey and has

more than nb−1−εb−1

(b−1)! independent sets of size b− 1. So by the inductive assumption, it must contain

a (b− 1)Ka as an induced subgraph. Since b− 1 > 2 the vertices of this (b− 1)Ka are not adjacent

to all other vertices and hence must belong to U . Hence, in either case, we find an induced copy of

(b− 1)Ka inside G[U ]. Finally, since Y = 0 the a(b− 1) vertices comprising this (b− 1)Ka have at

least m common non-neighbours. Among them, we can find a Ka giving us an induced bKa in G

and the desired contradiction.

3 Translating counts from local to global

In this section, we prove our second technical result which will allow us to propagate a tiny gain

in the number of independent sets of some small size b to a more substantial one globally. The

basic idea behind the proof is reminiscent of the proofs of the container theorems (see e.g. [3, 30])

although for the specific regime we work with we have a very simple proof (motivated in part by

the ideas in [7]).

The following definition will come in useful in tracking independent set counts on subgraphs.

Definition 5. Given a graph G and a real m ≥ 0 let

i(G,m) := max
G′⊆G,|G′|≤m

i(G′).

In other words, i(G,m) denotes the maximum number of independent sets contained in an induced

subgraph of G with up to m vertices.

Lemma 6. Let b ≥ 1, and suppose G is an n-vertex graph with at most nb−ε/b! independent sets

of size b. Then, i(G) ≤ nb−1 · i(G,n1−ε/2b−1
).

Proof. We call any independent set of size b atypical. Now for any 1 ≤ i ≤ b − 1 we call an

independent set of size b− i typical if it belongs to fewer than n1−ε/2i atypical independent sets of

size b− i+1 and we say it is atypical otherwise. Let It denote the collection of atypical independent

sets of size t. So Ib consists of all independent sets of size b in G and has size |Ib| ≤ nb−ε/b!.

Since each atypical independent set of size b − i belongs to at least n1−ε/2i atypical independent

sets of size b − i + 1 and each of these sets can contain at most b − i + 1 of them we conclude

|Ib−i| · n1−ε/2i ≤ |Ib−i+1| · (b− i + 1). We conclude that

|Ib−i| ≤
|Ib| · b · (b− 1) · · · (b− i + 1)

n1−ε/2 · n1−ε/4 · · ·n1−ε/2i
≤ nb−i−ε/2i

(b− i)!
. (2)

We now count the independent sets of G based on the size of the largest typical independent set

they contain. Note that there are at most
(

n
b−i

)
i(G,n1−ε/2i) independent sets in G with the largest

typical independent set they contain having size b− i. Indeed, there are
(

n
b−i

)
choices for the typical

independent set, and once this is fixed the rest of the independent set is restricted to vertices which
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extend it into any atypical independent set of size b − i + 1 (by maximality) and by definition

of typicality there are at most n1−ε/2i such vertices. This only leaves the independent sets not

containing any typical independent sets at all. Note that any such set is restricted to use only the

vertices which are atypical independent sets of size one, of which there are by (2) at most n1−ε/2b−1
.

Putting all of this together we conclude that the number of independent sets in G is at most

i(G,n1−ε/2b−1
) +

b−1∑
i=1

(
n

b− i

)
i(G,n1−ε/2i) ≤ nb−1 · i(G,n1−ε/2b−1

),

as desired.

4 Counting independent sets in H-free graphs

In this section, we prove our main results. We begin with Theorem 1 which we state here in a

slightly more precise form.

Theorem 7. Let a, b ≥ 1 be integers. There exists C = C(a, b) ≥ 0 such that any bKa-free n-vertex

graph G with α = α(G) has i(G) ≤ nC · α2aα.

Proof. We will prove the theorem with ε = ε(a, b) := (16ab)−b, C = C(a, b) = (b − 1)2b−1/ε. We

proceed by induction on n. Observe first that if n ≤ α2a, then the desired inequality holds since

i(G) ≤ nα ≤ α2aα, as desired. Let us now assume that n > α2a and that any induced subgraph H of

G on m < n vertices satisfies the desired inequality. In particular, this implies i(G,m) ≤ mC · α2aα

for any m < n.

Ramsey’s Theorem implies that G (and in fact any graph) is (αa, a)-cliquey. Lemma 4 implies there

are at most nb−ε/b! independent sets of size b in G since(
log n

αa

8ab log n

)b

≥ (16ab)−b.

By Lemma 6 this implies

i(G) ≤ nb−1 · i(G,n1−ε/2b−1
) ≤ nb−1 · nC−Cε/2b−1 · α2aα = nCα2aα.

This completes the induction and the proof.

We note that by being more careful with the numbers in the above argument one can improve the

bound to nO(1) · α(1+o(1))aα.

We proceed with our result in the chi-bounded case, namely Theorem 2. The proof is similar to the

above, the main distinction being that we can lower the base case to n being linear in α rather than

polynomial. This however comes with additional issues concerning the fact that Lemma 4 stops

giving us a polynomial gain in counts of small independent sets. The gain is still sufficient for our

purposes though.
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Theorem 8. Let a, b ≥ 1 be integers and let G be a chi-bounded, bKa-free hereditary class of graphs.

There exists C = C(G) > 0 such that for every G ∈ G we have i(G) ≤ |G|C · 2Cα(G).

Proof. Let g be a non-decreasing integral chi-bounding function, so that |G′|
α(G′) ≤ χ(G′) < g(ω(G′))

for any G′ ∈ G. Let C = g(a) · (16ab)2b.

Let G ∈ G be an N -vertex bKa-free graph and let α = α(G).

Let G′ be an induced subgraph of G with αg(a) vertices. By our chi-boundedness assumption we

have α(G)g(ω(G′)) ≥ α(G′)g(ω(G′)) > |G′| = α(G)g(a) so ω(G′) > a. In particular, this implies

that G, as well as any of its induced subgraphs, are (αg(a), a)-cliquey.

Let m := αg(a) and εn :=
(

log n
m

8ab logn

)b
. We note that while εn is a function of a, b,m as well as

n the values of a, b,m will remain fixed throughout the argument. Now for any n ≥ m Lemma 4

implies that any n-vertex subgraph of G contains at most nb−ε/b! independent sets of size b. This

in turn via Lemma 6 implies it has at most nb−1 · i(G,n1−εn/2b−1
) independent sets in total. Since

this subgraph was arbitrary we have that for any real n ≥ m we have

i(G,n) ≤ nb−1 · i
(
G,n1−εn/2b−1

)
. (3)

Suppose first that 2m ≤ n ≤ m2. Then, combined with (3) we get

εn =

(
log n

m

8ab log n

)b

≥ 1

(16ab)b logbm
=: c =⇒ i(G,n) ≤ nb−1 · i(G,n1−c).

The main benefit compared to (3) is that the exponent c does not depend on n (which is also why

we require an assumption on the rough size of n). This makes it easier to iterate the bound to get

for any integer j ≥ 1 that:

i(n,G) ≤ nb−1 · i
(
G,n1−c

)
≤ n(b−1)j · i

(
G,max{n(1−c)j , 2m}

)
≤ n(b−1)/c · i(G, 2m)

≤ (m2)(b−1)(16ab)b logb m · 22m ≤ 22(b−1)(16ab)b logb+1 m+2m ≤ 22b(16ab)
b(b+1)b+1m ≤ 2Cα.

Suppose now n ≥ m2. This combined with (3) gives

εn =

(
log n

m

8ab log n

)b

≥ 1

(16ab)b
=: c =⇒ i(G,n) ≤ nb−1 · i(G,n1−c).

Similarly to the above, we get that in this range

i(G,n) ≤ n(b−1)(1+(1−c)+(1−c)2+...+(1−c)j) · i
(
G,max{n(1−c)j+1

,m2}
)

≤ n(b−1)/c · i
(
G,m2

)
≤ n(b−1)(16ab)b · 2Cα.
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Putting all of this together, since i(G) = i(G,N) this completes the proof if N ≥ 2m. In the

remaining case the trivial bound of 2N ≤ 22g(a)α suffices.

We note that by being more careful with the numbers in the above argument one can improve the

bound to nO(1) · 2(1+o(1))g(a)α.

5 Concluding Remarks and Open problems

In this paper, we improve the trivial upper bound on the number of independent sets in bKa-free

graphs. One of the main points of interest in improving upper bounds on the number of independent

sets in a variety of graphs is that it allows for reducing the number of events we need to run various

union bound arguments. It would be very interesting to find such applications of our results.

Another interesting future direction might be to try to obtain similar improvements under other

structural restrictions.

Our bounds are tight up to a constant in the exponent in general. It would be interesting to obtain

optimal exponents, at least asymptotically. This certainly seems to require additional ideas. With

this in mind, we sketch here an alternative argument, inspired by the one of Farber [14] that he

used to settle the 2K2-free case, which can be used to prove both of our main results in the case one

forbids a disjoint union of (b− 1)K2 and Ka. Instead of counting all independent sets, we will only

count maximal ones. Since each maximal independent set contains at most 2α(G) independent sets

of G and every independent set is contained in at least one maximal one this shows the difference

between two counts is at most 2α(G). The argument now proceeds by induction on b. The case

b = 1 follows immediately from Ramsey’s Theorem. For larger b, let us fix an arbitrary vertex v.

There are three types of maximal independent sets in G

1. Ones that do not contain v, and are hence also maximal in G \ {v}.

2. Ones that do contain v, and are, after removal of v, maximal in G \ {v}

3. Ones that do contain v, but are, after removal of v, not maximal in G \ {v}

It is easy to see that the number of maximal independent sets of type 1. plus the number of maximal

independent sets of type 2. equals the number of maximal independent sets of G \ {v}. On the

other hand, for any maximal independent set of type 3. there must exist a vertex u adjacent to v

but otherwise having no neighbours in the maximal independent set. This means that we can upper

bound the number of such maximal independent sets by going through all neighbours u of v (at

most n choices) and counting maximal independent sets in the set of common non-neighbours of v

and u. The crucial observation is that this set must be (b− 2)K2 +Ka-free as we could extend any

such induced subgraph by vu to a (b− 1)K2 + Ka. So we can use induction to get a strong upper

bound on the number of independent sets of type 3. which suffices to prove the desired bounds.

As we already mentioned the number of independent sets and the number of maximal independent

sets are at most a factor of 2α(G) apart, so they behave similarly. On the other hand, no such
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relation seems to hold with the count of maximum independent sets. This leads to the natural

question of whether one can improve our results if instead of counting independent sets we count

only maximum ones. For example, even the following initial question remains open.

Question 9. Does every n-vertex triangle-free graph with independence number α contain at most

2O(α) maximum independent sets?

If true this would be tight (up to a constant factor in the exponent) by considering nK2. Or, more

generally, by taking a disjoint union of mK2 and a triangle-free graph on n − 2m vertices with

as small independence number as possible so as to show the above result would be tight even for

essentially any choice of α.

Given a graph G with weights on its vertices, the Maximum Weight Independent Set (MWIS)

problem asks to find the independent set in G of maximum weight. It is well-known that MWIS

is (very) computationally difficult in general, and is in particular (strongly) NP-hard [20]. This

motivated a considerable amount of work on getting efficient algorithms for MWIS for graphs under

various restrictions, see [11] for a more detailed treatment of the history and many examples. For

example, it is known that a polynomial time algorithm exists for graphs with bounded treewidth.

In fact, combining the results of [10, 11] gives that it is enough to have a bounded independence

number in every bag of some tree decomposition1. A natural next step is to explore whether this

can be further relaxed to allow the independence number bound to grow with n, in particular, given

several recent results (see [8, 10, 11] and references therein) showing various structural restrictions

imply the existence of a tree decomposition with each bag having independence number at most

polynomial in log n. In addition, there is a polynomial time algorithm for MWIS if we are given

a tree decomposition in which every bag has only polynomially many independent sets. All of

this motivates the question of exploring which structural restrictions guarantee that there are only

polynomially many independent sets in a graph with a small independence number. Theorem 1 tells

us that an n-vertex, bKa-free graph G with α(G) ≤ O(log n/ log logn) has nO(1) independent sets.

Theorem 2 tells us that under the additional assumption that G belongs to a chi-bounded class of

graphs the same holds already when α(G) ≤ O(log n).
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