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Abstract. Given a family H of graphs, we say that a graph G is H-free if no induced subgraph
of G is isomorphic to a member of H. Let Wt×t be the t-by-t hexagonal grid and let Lt be the
family of all graphs G such that G is the line graph of some subdivision of Wt×t. We denote by
ω(G) the size of the largest clique in G. We prove that for every integer t there exist integers c1(t),
c2(t) and d(t) such that every (pyramid, theta, Lt)-free graph G satisfies:

• G has a tree decomposition where every bag has size at most ω(G)c1(t) log(|V (G)|).
• If G has at least two vertices, then G has a tree decomposition where every bag has indepen-

dence number at most logc2(t)(|V (G)|).
• For any weight function, G has a balanced separator that is contained in the union of the

neighborhoods of at most d(t) vertices.
These results qualitatively generalize the main theorems of [2] and [9].

Additionally, we show that there exist integers c3(t), c4(t) such that for every (theta, pyramid)-
free graph G and for every non-adjacent pair of vertices a, b ∈ V (G),

• a can be separated from b by removing at most w(G)c3(t) log(|V (G)|) vertices.
• a can be separated from b by removing a set of vertices with independence number at most

logc4(t)(|V (G)|).

1. Introduction

All graphs in this paper are finite and simple, and all logarithms are base 2. Let G =
(V (G), E(G)) be a graph. For a set X ⊆ V (G), we denote by G[X] the subgraph of G in-
duced by X, and by G \ X the subgraph of G induced by V (G) \ X. In this paper, we use induced
subgraphs and their vertex sets interchangeably. For graphs G, H we say that G contains H if H
is isomorphic to G[X] for some X ⊆ V (G). In this case, we say that X is an H in G. We say
that G is H-free if G does not contain H. For a family H of graphs, we say that G is H-free if G
is H-free for every H ∈ H.

The open neighborhood of v, denoted by NG(v), is the set of all vertices in V (G) adjacent to
v. The closed neighborhood of v, denoted by NG[v], is N(v) ∪ {v}. Let X ⊆ V (G). The open
neighborhood of X, denoted by NG(X), is the set of all vertices in V (G) \ X with at least one
neighbor in X. The closed neighborhood of X, denoted by NG[X], is NG(X) ∪ X. When there is
no danger of confusion, we omit the subscript G. Let Y ⊆ V (G) be disjoint from X. We say X
is complete to Y if all possible edges with an end in X and an end in Y are present in G, and X
is anticomplete to Y if there are no edges between X and Y .

For a graph G, a tree decomposition (T, χ) of G consists of a tree T and a map χ : V (T ) → 2V (G)

with the following properties:
(1) For every v ∈ V (G), there exists t ∈ V (T ) such that v ∈ χ(t).
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(2) For every v1v2 ∈ E(G), there exists t ∈ V (T ) such that v1, v2 ∈ χ(t).
(3) For every v ∈ V (G), the subgraph of T induced by {t ∈ V (T ) | v ∈ χ(t)} is connected.

For each t ∈ V (T ), we refer to χ(t) as a bag of (T, χ). The width of a tree decomposition (T, χ),
denoted by width(T, χ), is maxt∈V (T ) |χ(t)| − 1. The treewidth of G, denoted by tw(G), is the
minimum width of a tree decomposition of G. Graphs of bounded treewidth are well-understood
both structurally [29] and algorithmically [5].

A clique in a graph G is a set of pairwise adjacent vertices; the clique number of G, denoted
by ω(G), is the largest size of a clique in G. A stable (or independent) set in a graph G is a set
of pairwise non-adjacent vertices of G. The stability (or independence) number α(G) of G is the
largest size of a stable set in G. Given a graph G with weights on its vertices, the Maximum
Weight Independent Set (MWIS) problem is the problem of finding a stable set in G of
maximum total weight. This problem is known to be NP-hard [19], but it can be solved efficiently
(in polynomial time) in graphs of bounded treewidth.

The independence number of a tree decomposition (T, χ) of G is maxt∈V (T ) α(G[χ(t)]). The tree
independence number of G, denoted tree-α(G), is the minimum independence number of a tree
decomposition of G. The tree-independence number was defined by Dallard, Milanič and Štorgel
[16] as a way to understand graphs whose high treewidth can be explained by the presence of
a large clique, and targeting the complexity of the MWIS problem. Combining results of [16]
and [14] yields an efficient algorithm for the MWIS problem for graphs of bounded tree-α. In
[23], similar algorithmic results are obtained for a much more general class of problems. Recently,
the study of the structure of graphs with low tree-α(G) has gained momentum, see for example
[17, 15, 21].

A hole in a graph is an induced cycle of length at least four. A path in a graph is an induced
subgraph that is a path. The length of a path or a hole is the number of edges in it. We denote by
P = p1- . . . -pk be a path in G where pipj ∈ E(G) if and only if |j − i| = 1. We say that p1 and pk

are the ends of P . The interior of P , denoted by P ∗, is the set P \ {p1, pk}. For i, j ∈ {1, . . . .k}
we denote by pi-P -pj the subpath of P with ends pi, pj.

A theta is a graph consisting of two distinct vertices a, b and three paths P1, P2, P3 from a to
b, such that Pi ∪ Pj is a hole for every i, j ∈ {1, 2, 3}. It follows that a is non-adjacent to b and
the sets P ∗

1 , P ∗
2 , P ∗

3 are pairwise disjoint and anticomplete to each other. If a graph G contains an
induced subgraph H that is a theta, and a, b are the two vertices of degree three in H, then we
say that G contains a theta with ends a and b.

A pyramid is a graph consisting of a vertex a and a triangle {b1, b2, b3}, and three paths Pi

from a to bi for 1 ≤ i ≤ 3, such that Pi ∪ Pj is a hole for every i, j ∈ {1, 2, 3}. It follows that
P1 \ a, P2 \ a, P3 \ a are pairwise disjoint, and the only edges between them are of the form bibj.
It also follows that at most one of P1, P2, P3 has length exactly one. We say that a is the apex of
the pyramid and that b1b2b3 is the base of the pyramid.

(Theta, pyramid)-free graphs have received significant attention in structural graph theory.
Often another family of graphs, called “prisms”, is excluded. Treewidth and tree-independence
number of (Theta, pyramid, prism)-free graphs were studied in [2] and [9]. In [2], a logarithmic
upper bound on treewidth is obtained (where the bound depends on the clique number of the
graph), while in [9] tree-independence number is bounded by a polylogarithmic function of the
number of vertices.

The scope of this paper is broader in the following sense. Let Wt×t be the t-by-t hexagonal grid,
and let Lt be the family of all graphs G such that G is the line graph of some subdivision of Wt×t.
Observe that ⋃

t Lt contains a sequence of graphs for which the treewidth grows asymptotically as
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the square root of the number of vertices. It follows that Lt needs to be excluded to achieve sub-
polynomial (in the number of vertices) bounds on treewidth. Since all graphs in ⋃

t Lt are (pyramid,
theta)-free and have clique number at most three, excluding ⋃

t Lt is necessary even in the class
of (theta, pyramid)-free graphs with bounded clique number. The situation for tree-independence
number is similar.

We prove that this necessary condition is, in fact, sufficient in (theta pyramid)-free graphs.
Since every Lt contains a prism if we choose t large enough, this is a qualitative generalization of
the results of [2] and [9] (the degree of the polynomial in log(|V (G)|) in the bound on the tree-
independence number is worse here). For an integer t, let Mt be the class of all (theta, pyramid,
Lt)-free graphs. We prove:
Theorem 1.1. For every positive integer t, there is an integer c = c(t) such that every graph
G ∈ Mt has treewidth at most ω(G)c log(|V (G)|).
Theorem 1.2. For every positive integer t there exists c = c(t) such that for every graph G ∈ Mt

on at least 3 vertices, we have tree-α(G) ≤ logc n.
We remark that Theorem 1.2 follows immediately from Theorem 1.1 using a result of [11]; we

explain this in Section 7. Theorem 1.1 is tight since there exist (theta, triangle)-free graphs with
logarithmic treewidth [30]. For the same reason Theorem 1.2 is tight up to the degree of the
polynomial (in fact, we do not have a counterexample to c = 1).

As is explained in [2], by the celebrated Courcelle’s theorem [13], Theorem 1.1 also implies the
existence of polynomial time algorithms for a large class of NP-hard problems, such as Stable
Set, Vertex Cover, Dominating Set, and Coloring, when the input restricted to graphs
in Mt with bounded clique number. Similarly, the algorithmic implications of Theorem 1.2 using
results of [23] are discussed in [9].

Finally, Theorem 1.2 is a promising step toward the following:
Conjecture 1.3 (from [7]). For every positive integer t, there is an integer d = d(t) such that for
every n ≥ 2, every n-vertex graph with no induced minor isomorphic to Kt,t or to Wt×t has tree-α
at most logd n.

Let G be a graph and let A, B ⊆ G be disjoint. We say that a set X ⊆ V (G)\ (A∪B) separates
A from B if for every connected component D of G \ X, D ∩ A = ∅ or D ∩ B = ∅. Let G be
a graph and let a, b be two non-adjacent vertices of G. We say that a set X ⊆ V (G) \ {a, b}
separates a from b if for every connected component D of G \ X, |D ∩ {a, b} | ≤ 1. A graph is said
to be k-pairwise separable if for every pair of non-adjacent vertices of G, there exists a set X with
|X| ≤ k that separates them from each other.

In order to prove Theorem 1.1, we need a result on pairwise-separability. We were able to obtain
such a result in a more general setting (without excluding Lt), which may be of independent
interest. Here we denote by Ht the class of (Kt, pyramid, theta)-free graphs.
Theorem 1.4. For every integer t ≥ 2, there exists a positive integer c such that every n-vertex
graph in Ht is tc log n-pairwise separable.

Once again, using a result of [11], we also get a version of this theorem where the size of the
separator is replaced by its independence number (see Section 7 for details):
Theorem 1.5. There exists an integer c such that for every n-vertex (theta, pyramid)-free graph
G and every non-adjacent pair u, v ∈ V (G) there exists X ⊆ V (G) \ {u, v} with α(X) ≤ logc n
such that X separates u from v.
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For a graph G, a function w : V (G) → [0, 1] is a weight function if ∑
v∈V (G) w(v) ≤ 1. For

S ⊆ V (G), we write w(S) := ∑
v∈S w(v). A weight function w is a normal weight function on

G if w(V (G)) = 1. If 0 < w(V (G)) < 1, we call the function w′ : V (G) → [0, 1] given by
w′(v) = w(v)∑

u∈V (G) w(u) the normalized weight function of w. Let c ∈ [0, 1] and let w be a weight
function on G. A set X ⊆ V (G) is a (w, c)-balanced separator if w(D) ≤ c for every component
D of G \ X. The set X is a w-balanced separator if X is a (w, 1

2)-balanced separator. Given two
sets of vertices X and Y of G, we say that X is a core for Y if Y ⊆ N [X]. A graph G is said to
be k-breakable if for every weight function w : V (G) → [0, 1], there exists a w-balanced separator
with a core of size strictly less than k. When the weight function w is clear from the context, we
may omit it from the notation. Our last result is:

Theorem 1.6. For every positive integer t, there is an integer d = d(t) such that every graph
G ∈ Mt is d-breakable.

In Section 7, we follow the outline of the proof (and use some results) of [8] to deduce Theorem 1.1
from Theorem 1.4 and Theorem 1.6.

1.1. Proof outline and organization. Most of the work in this paper is devoted to proving
Theorem 1.4 and Theorem 1.6. Theorem 1.1, Theorem 1.2 and Theorem 1.5 are deduced from
them using existing results in Section 7. An important tool for both the main proofs is “extended
strip decompositions” from [12]. They are introduced in Section 2.

Let us start by outlining the proof of Theorem 1.6 that is proved in Section 3. The high-level
idea of the proof is similar to [7], but the details are different because of the different properties
of the graph class in question. Let G ∈ Mt. We may assume that G is connected. For a
contradiction, we fix a weight function w such that G does not have a w-balanced separator with
a small core. By using the normalized weight function of w, we may assume that w is normal. By
Lemma 5.3 of [10], there is a path P = p1- . . . -pk in G such that N [P ] is a w-balanced separator in
G. We choose P with k minimum; consequently we may assume that there is a component B of
G \ N [P \ {pk}] with w(B) > 1

2 . We now analyze the structure of the set N = N(B) ⊆ N(P ). To
every vertex n ∈ N we assign a subpath I(n) of P , that is the minimal subpath of P that contains
N(n) ∩ P . We define a new graph H with vertex set N where n1 and n2 are adjacent if and only
if I(n1) ∩ I(n2) ̸= ∅. Let S be a maximum stable set in H. We first show that for every s ∈ S, we
can find a small core (in G) for the set NH [s] (when viewed as a subset of G). This, in particular,
allows us to assume that |S| is large. Now, we focus on one vertex n ∈ S and use it to show that
G (with a subset with a small core deleted) admits an extended strip decomposition. This allows
us to produce a separator X(n) with a small core that is not yet balanced, but exhibits several
useful properties. More explicitly, the component of G\X(n) with maximum w-weight only meets
P on one side of I(n). So n either “points left” or “points right”. Then we show that the vertex
of S with the earliest neighbors in P points right, and the vertex of S with the latest neighbors
in P points left. Now we focus on two vertices n, n′ ∈ S such that I(n) and I(n′) are consecutive
along P where the change first occurs, and conclude that X(n) ∩ X(n′) is a w-balanced separator
in G. This completes the proof of Theorem Theorem 1.6.

We now turn to the proof of Theorem 1.4. This is the most novel part of the paper, where
several new ideas are introduced. Let G ∈ Ht and let a, b ∈ V (G) be non-adjacent. We consider
carefully chosen subsets Xi of balls of radius i around a with a ∈ Xi, and iteratively construct a
set C that, when the process stops, separates a from b. We will show that |C| ≤ tc log(|V (G)|)
(where the same c works for all graphs in Ht), thus proving Theorem 1.4.
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Throughout the process, Xi satisfies two key properties. The first one is that Xi is “cooperative”
(as defined in Section 5). The second one is that at each step of the construction, we only add to
Xi vertices that have a lower value in the partition of V (G) defined by Theorem 6.1 (see Section 6
for the defintion of “value”).

At each step i, we examine the attachments Ni of the component Di of G \ (N [Xi] ∪ C) with
b ∈ D. Note that N(Di) ⊆ N(Xi). First, we show that Ni ∩ N(b) is small and add Ni ∩ N(b) to
C. Next we define two matroids on Ni \ N(b): M1 is the matching matroid into Xi, and M2 is
the matroid whose independent sets are linkable to b by disjoint paths with interior in Di; both
matroids are defined precisely in Section 5. Suppose first that there is a large subset I of Ni that
is independent in both matroids. We use the fact that I is independent in M1 and that Xi is
cooperative to obtain a large subset Z of I that is “constricted” in Di ∪ Z (see Section 2 for a
precise definition). This allows us to construct an extended strip decomposition of (Di ∪ Z, Z).
Now, we use results from Section 4 to get a contradiction to the fact that Z is independent in M2.

Thus, we may assume that no such set I exists. We apply the Matroid Intersection Theorem to
construct a partition (A1, A2) of Ni \ N(b) such that the sum of the ranks rkMi

(Ai) is small. By
Menger’s Theorem, there is a small subset Z2 of Di ∪ A2 such that Z2 separates A2 from b; we add
Z2 to C. By König’s Theorem, there is a small subset Z1 of NXi

(Ni) ∪ Ni such that every edge
between A1 and Xi has an end in Z1. We add Z1 ∩Ni to C and focus on Z1 ∩Xi. By Theorem 6.1,
the number of vertices with a neighbor in Z1 ∪ Xi whose value is higher than the maximum value
of a vertex in Z1 ∪ Xi is bounded by tc′ (where the same c′ works for every graph in Ht); we add
all such vertices to C. Note that at this point Ni ⊆ N(Z1) ∪ C. If N(Z1) ̸⊆ C, we construct
Xi+1 = Xi ∪ (N(Z1) \ C) and continue.

By Theorem 6.1 for some i ≤ log(|V (G)|) it holds that N(Z1) ⊆ C. Now Ni ⊆ C and
consequently C separates Xi from b. Since a ∈ Xi, C has the required separation properties,
and we stop the process. This completes the description of the proof of Theorem 1.4.

This paper is organized as follows. In Section 2, we define constricted sets and extended strip
decompositions. In Section 3, we prove Theorem 1.6. In Section 4, we establish an important
property of constricted sets in Kt,t-free graphs (a super-class of Ht), that will be used in the proof
of Theorem 1.4 to obtain a bound on the size of a set that is independent in both M1 and M2. In
Section 5, we define cooperative sets and prove several lemmas about their properties; that is also
where we describe the application of the Matroid Intersection Theorem. In Section 6, we prove
Theorem 1.4. Finally, in Section 7, we show how to use Theorem 1.4 and Theorem 1.6 to prove
Theorem 1.1, Theorem 1.2, and Theorem 1.5.

2. Constricted sets and extended strip decompositions

An important tool in the proof of Theorem 1.4 is the “extended strip decompositions” of [12].
We explain this now after introducing some definitions from [7]. Let G, H be graphs, and let
Z ⊆ V (G). Let W be the set of vertices of degree one in H. Let T (H) be the set of all triangles
of H. Let η be a map with domain the union of E(H), V (H), T (H), and the set of all pairs
(e, v) where e ∈ E(H), v ∈ V (H) and e incident with v, and range 2V (G), satisfying the following
conditions:

• For every v ∈ V (G) there exists a unique x ∈ E(H) ∪ V (H) ∪ T (H) such that v ∈ η(x).
• For every e ∈ E(H) and v ∈ V (H) such that e is incident with v, η(e, v) ⊆ η(e)
• Let e, f ∈ E(H) with e ̸= f , and x ∈ η(e) and y ∈ η(f). Then xy ∈ E(G) if and only if

e, f share an end-vertex v in H, and x ∈ η(e, v) and y ∈ η(f, v).
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• If v ∈ V (H), x ∈ η(v), y ∈ V (G)\η(v), and xy ∈ E(G), then y ∈ η(e, v) for some e ∈ E(H)
incident with v.

• If D ∈ T (H), x ∈ η(D), y ∈ V (G) \ η(D) and xy ∈ E(G), then y ∈ η(e, u) ∩ η(e, v) for
some distinct u, v ∈ D, where e is the edge uv of H.

• |Z| = |W |, and for each z ∈ Z there is a vertex w ∈ W such that η(e, w) = {z}, where e
is the (unique) edge of H incident with w.

Under these circumstances, we say that η is an extended strip decomposition of (G, Z) with pattern
H (see Figure 1). As a slight abuse of notation, for v ∈ V (G) we will denote by η−1(v) the unique
x ∈ E(H) ∪ V (H) ∪ T (H) such that v ∈ η(x), as guaranteed by the first condition.

Let e be an edge of H with ends u, v. An e-rung in η is a path p1- . . . -pk (possibly k = 1) in
η(e), with p1 ∈ η(e, v), pk ∈ η(e, u) and {p2, . . . , pk−1} ⊆ η(e) \ (η(e, v) ∪ η(e, u)). We say that η
is faithful if for every e ∈ E(H), there is an e-rung in η.

A set A ⊆ V (G) is an atom of η if one of the following holds:
• A = η(v) for some v ∈ V (H).
• A = η(D) for some D ∈ T (H).
• A = η(e) \ (η(e, u) ∪ η(e, v)) for some edge e of H with ends u, v.

We say that an atom is a vertex atom, a triangle atom, or an edge atom depending on which of
the previous conditions holds. For an atom A of η, the boundary δ(A) of A is defined as follows:

• If v ∈ V (H) and A = η(v), then δ(A) = ⋃
e∈E(H) : e is incident with v η(e, v).

• If A = η(D) , and D ∈ T (H) with D = v1v2v3, then δ(A) = ⋃
i ̸=j∈{1,2,3} η(vivj, vi) ∩

η(vivj, vj)
• If A = η(e) \ (η(e, u) ∪ η(e, v)) for some edge e of H with ends u, v, then δ(A) = η(e, u) ∪

η(e, v).
A set Z ⊆ V (G) is constricted if it is stable and for every T ⊆ G such that T is a tree, |Z ∩V (T )| ≤
2.

The main result of [12] is the following.
Theorem 2.1. Let G be a connected graph and let Z ⊆ V (G) with |Z| ≥ 2. Then Z is constricted
if and only if for some graph H, (G, Z) admits a faithful extended strip decomposition with pattern
H.

3. Dominated Balanced Separators in Mt

We need the following results from [7]:
Lemma 3.1. There exists an integer c with the following property. Let t ≥ 2 be an integer.
Let G be an Lt-free graph, and let w be a weight function on G. Let D be a component of G
with w(D) > 1

2 . Let Z ⊆ D, and let η be a faithful extended strip decomposition of (D, Z) with
pattern H. Assume that w(A) ≤ 1

2 for every atom A of η. Then there exists Y ⊆ V (G) with
|Y | ≤ ct9 logc t, such that N [Y ] is a w-balanced separator in G.

Lemma 3.2. Let G, H be graphs, Z ⊆ V (G) with |Z| ≥ 2, and let η be a faithful extended strip
decomposition of (G, Z) with pattern H. Let A be an atom of η. Then δ(A) has a core of size at
most 3.

We also need the following, which is an immediate corollary of Lemma 6.8 of [10]:
Lemma 3.3. Let G, H be graphs, Z ⊆ V (G) with |Z| ≥ 3, and let η be an extended strip
decomposition of (G, Z) with pattern H. Let Q1, Q2, Q3 be paths in G, pairwise anticomplete to
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a
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c

d

e
f

g

h

η(a)

η(c)

η(d)

η(b)

η(cd)

η(ce)

η(de)

η(cde)

η(e)

η(ef)

η(g)

η(f)

η(h)

η(fh)

η(gf)

η(ef, e) η(ef, f)

η(bd)

η(ac)

Figure 1. Example of an extended strip decomposition with its pattern (here dash
lines represent potential edges). This figure was created by Paweł Rzążewski and
we use it with his permission.

each other, and each with an end in Z. Then for every atom A of η, at least one of the sets
N [A] ∩ Q1, N [A] ∩ Q2 and N [A] ∩ Q3 is empty.

Finally, we need the following result from [1].

Lemma 3.4. Let x1, x2, x3 be three distinct vertices of a graph G. Assume that H is a connected
induced subgraph of G \ {x1, x2, x3} such that V (H) contains at least one neighbor of each of x1,
x2, x3, and that V (H) is minimal subject to inclusion. Then, one of the following holds:

(i) For some distinct i, j, k ∈ {1, 2, 3}, there exists P that is either a path from xi to xj or a
hole containing the edge xixj such that

• V (H) = V (P ) \ {xi, xj}; and
• either xk has two non-adjacent neighbors in H or xk has exactly two neighbors in H

and its neighbors in H are adjacent.
(ii) There exists a vertex a ∈ V (H) and three paths P1, P2, P3, where Pi is from a to xi, such

that
• V (H) = (V (P1) ∪ V (P2) ∪ V (P3)) \ {x1, x2, x3};
• the sets V (P1) \ {a}, V (P2) \ {a} and V (P3) \ {a} are pairwise disjoint; and
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• for distinct i, j ∈ {1, 2, 3}, there are no edges between V (Pi) \ {a} and V (Pj) \ {a},
except possibly xixj.

(iii) There exists a triangle a1a2a3 in H and three paths P1, P2, P3, where Pi is from ai to xi,
such that

• V (H) = (V (P1) ∪ V (P2) ∪ V (P3)) \ {x1, x2, x3};
• the sets V (P1), V (P2) and V (P3) are pairwise disjoint; and
• for distinct i, j ∈ {1, 2, 3}, there are no edges between V (Pi) and V (Pj), except aiaj

and possibly xixj.

We are now ready to prove Theorem 1.6.

Proof. We may assume that t ≥ 2. Let G ∈ Mt and let w be a weight function on G. By working
with the normalized function of w, we may assume that w is normal. Let c be as in Lemma 3.1.
Let d = ct9 logc t + 100. We will show that there is a set Y ⊆ G with |Y | < d such that N [Y ] is a
(w, 1

2)-balanced separator in G. Suppose no such Y exists.
By the proof of Lemma 5.3 of [10], there is a path P in G such that N [P ] is a w-balanced

separator in G. Let P = p1- . . . -pk, and assume that P was chosen with k minimum. It follows
that there exists a component B of G \ N [P \ {pk}] such that w(B) > 1

2 . Let N = N(B). Then
N ⊆ N(P \ {pk}).

(1) There is no Y ⊆ G with |Y | < d such that N ∪ N [pk] ⊆ N [Y ].

Suppose such Y exists. We will show that N [Y ] is a w-balanced separator in G. We may
assume that there is a component D of G\N [Y ] with w(D) > 1

2 . Since w(B) > 1
2 , we deduce that

D∩B ̸= ∅. Since N ⊆ N [Y ], it follows that D ⊆ B, and so D∩N [P ] ⊆ N [pk]. Since N [pk] ⊆ N [Y ],
we deduce that D is contained in a component of G\N [P ], and therefore w(D) < 1

2 , a contradiction.
This proves that N [Y ] is a w-balanced separator in G, contrary to our assumption, and (1) follows.

For every vertex n ∈ N let l(n) be the minimum i ∈ {1, . . . , k−1} such that n is adjacent to pi and
let r(n) be the maximum i ∈ {1, . . . , k − 1} such that n is adjacent to pi. Let I(n) = l(n)-P -r(n).
Let H be the graph with vertex set N and such that n1n2 ∈ E(H) if and only if I(n1)∩ I(n2) ̸= ∅.
Let N0 be a stable set of size α(H) in H. Write N0 = {k1, . . . , km} where r(ki) < l(ki+1) for every
i ∈ {1, . . . , m − 1}. Observe that H is an interval graph, and therefore the complement of H is
perfect [4]. It follows that there exists a partition K1, . . . , Km of V (H) such that for every i, Ki

is a clique of H and ki ∈ Ki. Since Ki is a clique of H, it follows from the Helly property of the
line that there exists j(i) ∈ {1, . . . m} such that pj(i) ∈ I(n) for every n ∈ Ki.

(2) Let N ′ ⊆ N be such that the sets I(n1) ∩ I(n2) ̸= ∅ for all n1, n2 ∈ N ′. Then there exists
X ′ ⊆ P with |X ′| ≤ 3 and n′ ∈ N ′ such that N ′ ⊆ N [X ′ ∪ {n′}].

It follows from the Helly property of the line that there exists pj ∈ ⋂
n∈N ′ I(n). Let X ′ = {ps :

s ∈ {j − 1, j, j + 1} ∩ {1, . . . , k − 1}}. If N ′ ∈ N [X ′], then (2) holds, setting n′ to be an arbitrary
element of N ′. Thus, we may assume that there exists n′ ∈ N ′ such that n′ is anticomplete to X ′.
It is now enough to show that every n ∈ N ′ \ (N [X ′] ∪ {n′}) is adjacent to n′. Suppose not, and
let n ∈ N ′ \ N [X ′ ∪ {n′}]. Since pj ∈ I(n) ∩ I(n′) it follows that both n′ and n have neighbors
in p1-P -pj−2 and in pj+2-P -pk−1. It follows that there is a path P1 from n′ to n with interior in
p1-P -pj−2 and a path P2 from n′ to n with interior in pj+2-P -pk−1. Since n′, n ∈ N , there is a path
from n′ to n with interior in B. But now P1 ∪ P2 ∪ P3 is a theta with ends n, n′, a contradiction.
(See Fig. 2) This proves (2).
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X′

n′

B

n

P2P1

P3

Figure 2. Visualisation for (2)

In the remainder of the proof, we will consider, for each i ∈ {1, . . . , m}, and “interval” of N0
starting at i, but we will need to choose its end in a particular way. We will explain this next.
Let i ∈ {2, . . . , m} and let J(i) = pl(ki)−1-P -pr(ki)+1. Let PL(i) be the component of P \ J(i)∗

containing p1, and let PR(i) be the component of P \ J(i)∗ containing pk.
The following is immediate from (2):

(3) There exists k′
i ∈ Ki such that every k ∈ Ki has a neighbor in J(i) ∪ {k′

i}.

(4) There exists Y ′
i ⊆ P ∪ N with |Y ′

i | ≤ 18 with pl(ki)−1, pl(ki), pl(ki)+1, pr(ki)−1, pr(ki), pr(ki)+1 ∈ Y ′
i

such that N(J(i)) ∩ N ⊆ N [Y ′
i ].

Let Z1 = {pl(ki)−1, pl(ki), pl(ki)+1} and let Z2 = {pr(ki)−1, pr(ki), pr(ki)+1}. Let N1 be the set of
vertices n ∈ N with I(n) ⊆ I(ki), N2 the set of vertices in n ∈ N such that pl(ki)−1 ∈ I(n) and N3
the set of vertices in n ∈ N such that pr(ki)+1 ∈ I(n). Then N(J(i)) ∩ N = N1 ∪ N2 ∪ N3. By the
maximality of N0 it follows that the sets I(n) pairwise meet for all n ∈ N1. Now (2) implies that
for every i ∈ {1, 2, 3} there exist n′

i ∈ Ni and X ′
i ⊆ P with |X ′

i| ≤ 3 such that Ni ⊆ N(X ′
i ∪ n′

i).
Let

Y ′
i = X ′

1 ∪ X ′
2 ∪ X ′

3 ∪ {n′
1, n′

2, n′
3} ∪ Z1 ∪ Z2.

Now N(Ji) ∩ N ⊆ N [Y ′
i ]. This proves (4).

Let Y ′
i be as in (4).

(5) There exists X ′
i ⊆ P ∩ N(ki) with |X ′

i| ≤ 4 with the following proprety. For every path
Q = q1- . . . -qs in G \ N [Y ′

i ] where q1 has a neighbor in J(i) and qs has a neighbor in B, we have
that Q meets N [X ′

i ∪ {ki}].

We may assume that Q \ qs is anticomplete to B, and that Q \ q1 is anticomplete to J(i). Since
q1 ̸∈ N [Y ′

i ], we deduce that s > 1. If |N(ki)∩V (P )| ≤ 4, let X ′
i = N(ki)∩P . If |N(ki)∩V (P )| > 4,
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let J be the set of consisitng of the two minimum values of j, and the two maximum values of j
such that pj ∈ N(ki) ∩ J(i), and let X ′

i = {pj : j ∈ J}. Assume that Q ∩ N [X ′
i ∪ {ki}] = ∅. It

follows that ki is anticomplete to Q. Let R be a path from ki to qs with interior in B.
Suppose first that q1 has a neighbor v in J(i)\N(ki). Since q1 ̸∈ N [Y ′

i ], it follows that there exists
a subpath P ′ = pj-P -pl of J(i) with j < l such that pj, pl are adjacent to ki, ki is anticomplete to
{pj+1, . . . , pl−1} and v ∈ {pj+1, . . . , pl−1} (see Fig. 3).

B

ki

q1

qs

Q

R

v
P ′

Figure 3. Visualisation for (5)

If q1 has two non-adjacent neighbors in P ′, then P ′ ∪ Q ∪ R contains a theta with ends q1, ki;
if v is the unique neighbor of q1 is P ′, then P ′ ∪ Q ∪ R is a theta with ends v, ki; and if q1 has
exactly two neighbors u, v in P ′ and u is adjacent to v, then P ′ ∪ Q ∪ R is a pyramid with apex
ki and base uvq1. This proves that N(q1) ∩ J(i) ⊆ N(ki) ∩ J(i).

Since qs has a neighbor in B and qs−1 is anticomplete to B, it follows that qs ∈ N , and therefore
qs has a neighbor in P . Since s > 1, qs is anticomplete to J(i) and has a neighbor in P \ J(i).
Assume that qs has a neighbor in PR(i) (the argument for the other case is analogous). Let
l > r(ki) be minimum such that pl has a neighbor in Q. Let j < r(ki) be maximum such that q1
is adjacent to pj. Then j ∈ N(ki) ∩ J(i). Let S = ki-pr(ki)-P -pl. Since pj ̸∈ X ′

i, it follows that
pj is anticomplete to S \ ki.Now if pl has two non-adjacent neighbors in Q ∪ R, then Q ∪ R ∪ S
contains a theta with ends pl, ki; if pl has a unique neighbor v in Q ∪ R, then Q ∪ R ∪ S is a
theta with ends v, ki; and if pl has exactly two neighbors u, v ∈ Q ∪ R and u is adjacent to v,
then Q∪R∪S is a pyramid with apex ki and base pluv, in all cases a contradiction. This proves (5).

Let X ′
i be as in (5) and let Yi = Y ′

i ∪ X ′
i ∪ {ki, k′

i}. Then ki, k′
i, pl(ki)−1, pl(ki), pr(ki), pr(ki)+1 ∈ Yi.

Let Zi = (N [Yi] ∩ N(P )) ∪ J(i)∗. Let Ui = (V (G) \ Zi) ∪ {ki, k1, pl(ki)−1, pr(ki)+1}. Then B ⊆ Ui.
Let Di be the component of Ui containing B. Then k1, pk ∈ Di, and therefore P \ J(i)∗ ⊆ Di.
Also, ki ∈ Di. Write (z1, z2, z3) = (pl(ki)−1, ki, pr(ki)+1). Let G′

i = G[Di].
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From now on, we assume that i > 1.

(6) One of the following holds.
(i) There is a component D′

i of G′
i \ N [z2] with z1, z3 ∈ D′

i, and ni ∈ N(z2) ∩ N(D′
i) such that

the set {z1, z2, z3} is constricted in the graph Gi = G[D′
i ∪ {ni, z2}] , or

(ii) There is a path Ti from z1 to z3 in G′
i such that either z2 has a unique neighbor in Ti, or

zi has at least two non-adjacent neighbors in Ti , or
(iii) no component of G′

i \ N [z2] contains both z1 and z3 .

We may assume that there is a component D′
i of G′

i \ N [z2] such that z1, z3 ∈ D′
i. Then there

is a neighbor ni of z2 such that ni has a neighbor in D′
i. Let Gi = G[D′

i ∪ {ni, z2}]. We may also
assume that no path Ti as in outcome (ii) exists.

Suppose that that {z1, z2, z3} is not constricted in Gi. Then there is a tree T containing z1, z2, z3.
Since z1, z2, z3 have degree one in Gi, it follows that T is a subdivision of K1,3 and z1, z2, z3 are
the leaves of T . Let t be the unique vertex of T of degree three, and for j ∈ {1, 2, 3} let Pj be the
path of T from t to zj. Since P1 ∪P3 does not satisfy outcome (ii), it follows that t is non-adjacent
to z2. By (5), Di \ {z1, z2, z3} is anticomplete to J(i)∗ in G, and in particular T \ {z1, z2, z3} is
anticomplete to J(i)∗ in G. Now, if l(z2) = r(z2), we get that T ∪ J(i)∗ is a theta with ends
t, pl(z2); if r(z2) = l(z2) + 1, we get that T ∪ J(i)∗ is a pyramid with base z2pl(z2)pr(z2) and apex
t; and if r(z2) ≥ l(z2) + 2, we get that T ∪ {pl(z2), pr(z2)} is theta with ends t, z2; in all cases, a
contradiction. This proves (6).

Our next goal is to define a special connected set Ai.

(7) Suppose that outcome (ii) or outcome (iii) of (6) holds. Then there exists ∆i ⊆ G \ N [P ] with
|∆i| ≤ 2 and a component Ai of G′

i \ N [{ki} ∪ ∆i] such that
(1) w(Ai) > 1

2 , and
(2) at least one of the sets PL(i) ∩ NG[Ai] and PR(i) ∩ NG[Ai] is empty.

Suppose first that outcome (iii) of (6) holds, and so no component of G′
i \ N [z2] contains both

z1 and z3. Let ∆i = ∅. Since (N [Yi] ∩ N(P )) ∪ N [{z2}] is not a balanced separator in G, there is a
component Ai of G′

i\N [z2] with w(Ai) > 1
2 . Then |Ai∩{z1, z3}| ≤ 1. Since (N [Yi]∩N(P ))∪N [{z2}]

is disjoint from PL(i) ∪ PR(i), it follows that one of the sets N [Ai] ∩ PL(i) and N [Ai] ∩ PR(i) is
empty, as required.

Thus, we may assume that outcome (ii) of (6) holds. Let Ti = t1- . . . -tm be a path as in
outcome (ii) of (6) where t1 = z1 and tm = z3. Let q be minimum and r be maximum such that z2
is adjacent to tq, tr. Then r ̸= q+1. Let ∆i = {tq, tr}. Since ki ∈ Yi, it follows that ∆i ⊆ G\N [P ].
Since (N [Yi] ∩ N(P )) ∪ N [{ki, tq, tr}] is not a w-balanced separator in G, it follows that there is a
component Ai of G′

i \ N [{ki, tq, tr}] with w(Ai) > 1
2 .

Suppose PL(i) ∩ N [Ai] ̸= ∅ and PR(i) ∩ N [Ai] ̸= ∅. Since ki ∈ Yi, it follows that tq, tr ̸∈ N(P ),
and consequently N [{ki, tq, tr}]∩(PL(i)∪PR(i)) = ∅. We deduce that NG(Ai)∩(PL(i)∪PR(i)) = ∅;
therefore Ai ∩ PL(i) ̸= ∅ and Ai ∩ PR(i) ̸= ∅, and so PL(i) ∪ PR(i) ⊆ Ai. Consequently, there is a
path R from z1 to z3 with R∗ ⊆ Ai. Recall that R∗ ∩N [{ki, tq, tr}] = ∅, and R∗ ∩N [Yi]∩N(P ) = ∅.
Let R′ be a minimal subpath of R from a vertex r with a neighbor in t1-Ti-tq−1 to a vertex r′ with
a neighbor in tr+1-Ti-tm. Since z1 has a unique neighbor in G′

i, it follows that r is non-adjacent to
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z1, and similarly r′ is non-adjacent to z3. Since J(i) ∪ Ti ∪ {ki} is not a theta or a pyramid, we
deduce that either pr(ki) > pl(ki) + 1, or r > q + 1. Now exactly of the following holds.

(i) There is a path S from ki to r′ with S∗ ⊆ tr-Ti-tm and such that S is anticomplete to
t1-Ti-tq.

(ii) r = q, and tq+1 is the unique neighbor of r′ in tq+1-Ti-tm.
Also, switching the roles of z1 and z3, exactly one of the following holds:

(i) There is a path S ′ from ki to r with S∗ ⊆ t1-Ti-tq and such that S ′ is anticomplete to
tr-Ti-tm.

(ii) r = q, and tq−1 is the unique neighbor of r in t1-Ti-tq−1.
We claim that at least one of the following holds:

(i) There is a path S from ki to r′ with S∗ ⊆ tr-Ti-tm and such that S is anticomplete to
t1-Ti-tq.

(ii) There is a path S ′ from ki to r with S∗ ⊆ t1-Ti-tq and such that S ′ is anticomplete to
tr-Ti-tm.

Suppose not. Then q = r, tq−1 is the unique neighbor of r in t1-Ti-tq−1, and tq+1 is the unique
neighbor of r′ in tq+1-Ti-tm. From the minimality of R′ we have that R′ \ {r, r′} is anticomplete to
Ti. By (5), G′

i \ {z1, z2, z3} is anticomplete to J(i)∗. But now J(i) ∪ Ti ∪ R′ is a theta with ends
tq−1, tq+1, a contradiction. This proves the claim.

Exchanging the roles of z1, z3 if necessary, we may assume that
• There is a path S from ki to r′ with S∗ ⊆ tr-Ti-tm and such that S is anticomplete to

t1-Ti-tq.
Let 1 ≤ x ≤ y ≤ q − 1 such that x is minimum and y is maximum with tx, ty adjacent to

r. Recall that r is non-adjacent to pl(ki), and r is non-adjacent to tq. Now if x = y, then
t1-Ti-tq ∪S ∪R′ ∪{pl(ki)} is a theta with ends tx, ki; if y = x+1, then t1-Ti-tq ∪S ∪R′ ∪{pl(ki)} is
a pyramid with apex ki and base rtxty; and if y > x + 1, then t1-Ti-tx ∪ ty-Ti-tq ∪ S ∪ R′ ∪ {pl(ki)}
is a theta with ends r, ki; in all cases a contradiction. This proves (7).

We have defined a set Ai in the case when outcome (ii) or outcome (iii) of (6) holds. Now
we define Ai in the remaining case. Thus, assume that outcome (i) of (6) holds and {z1, z2, z3} is
constricted in Gi. By Theorem 2.1, there is a graph Hi such that (Gi, {pl(ki)−1, ki, pl(ki)+1}) admits
a faithful extended strip decomposition ηi with pattern Hi.

(8) There exists an atom A of ηi, and a component Ai of A such that w(Ai) > 1
2 .

Suppose not. Then by Lemma 3.1 applied to Gi, we deduce that there exists Wi ⊆ Gi with
|Wi| ≤ d − 100, such that N [Wi] is a w-balanced separator in Gi. It follows from the definition
of Gi that N [Yi ∪ Wi ∪ {pk, k1, pl(ki)−1, pr(ki)+1, ni}] is a w-balanced separator in G, which is a
contradiction since |Yi| < 80. This proves (8).

If outcome (i) of (6) holds, let Ai be as in (8). This completes the definition of Ai.

(9) If PL(i) ∩ NG[Ai] ̸= ∅, then |PR(i) ∩ NG[Ai]| ≤ 2.

If outcome (ii) or outcome (iii) of (6) holds, this follows immediately from (7). Thus we may
assume that outcome (i) of (6) holds and {z1, z2, z3} is constricted in Gi. Suppose that both
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PL(i) ∩ NG[Ai] ̸= ∅ and |PR(i) ∩ NG[Ai]| > 2. It follows from the definition of Gi that PL(i) ∩
NGi

[Ai] ̸= ∅ and |PR(i) ∩ NGi
[Ai]| > 2.

Let Q1 = z1-PL(i). Since N [P ] is a w-balanced separator, we have that N(pk) ∩ B ̸= ∅; let
Q be a path from z2 to pk with Q∗ ⊆ B. Then F = z3-PR(i)-pk-Q-z2 is a path. Let Q3 be the
minimal subpath of F from z3 to a vertex of NGi

[Ai], and let Q2 be the minimal subpath of F
from z2 to a vertex of NGi

[Ai]. Since |PR(i) ∩ NGi
[Ai]| > 2, it follows that Q2 is anticomplete to

Q3. But now Q1, Q2, Q3 are pairwise disjoint and anticomplete to each other; zi is an end of Qi,
and Qi ∩ NGi

[Ai] ̸= ∅ for every i ∈ {1, 2, 3}, contrary to Lemma 3.3. This proves (9).

If outcome (i) of (6) holds let δi be the boundary of Ai in ηi, let ∆′
i be a core for δi with |∆′

i| ≤ 3
(such ∆′

i exists by Lemma 3.2), and let ∆i = ∆′
i ∪ {ni}, where ni is as in (6)(i). If outcome (ii) or

outcome (iii) of (6) holds, let ∆i be as in (7) and let δi = N [∆i]. In both cases let γi = NG[Ai]∩P .

(10) Let Z ⊆ V (G) with Yi ∪ {pk, ki, pl(ki)−1, pr(ki)+1} ⊆ Z and such that δi ⊆ N [Z]. Let D ⊆
G \ N [Z] be connected with w(D) > 1

2 . Then D ⊆ Ai, N [D] ∩ J(i) = ∅, and there exists
v ∈ D ∩ N(B).

Since w(B) > 1
2 , it follows that B ∩ D ̸= ∅. Similarly, since w(Ai) > 1

2 , Ai ∩ D ̸= ∅. Since
Yi ⊆ Z, it follows from (4) and (5) that J(i) ∩ N [D] = ∅. Since Yi ∪ {pk, ki, pl(k1)−1, pr(ki)+1} ⊆ Z
and since δi ⊆ N [Z], it follows that NG\J(i)(Ai) ⊆ N [Z]. We deduce that D ⊆ Ai. Since pk ∈ Z,
and since N [P ] is a balanced separator in G, it follows that D \ B ̸= ∅. Since D is connected,
there exists v ∈ D \ B with a neighbor in B. This proves (10).

(11) |PR(2) ∩ NG[A2]| > 2.

Suppose that PR(2) ∩ NG[A(2)] ≤ 2. Let

Z = Y1 ∪ Y2 ∪ {pk} ∪ ∆i ∪ (γ2 ∩ PR(2)).

We claim that N [Z] is a balanced separator in G. Suppose not, and let D be a component of
G \ N [Z] with w(D) > 1

2 . By (10) D ⊆ A2 , N [D] ∩ J(2) = ∅ and there exists v ∈ D \ B with a
neighbor in B. Then v ∈ N ∩ A2. Let v′ ∈ P be a neighbor of v, choosing v′ ∈ PR(2) if possible.
Since N [D] ∩ J(2) = ∅ and since v ∈ A2, it follows that v′ ∈ N [A2] ∩ (P \ J(2)). Since Y1 ⊆ Z,
it follows from (4) that v is anticomplete to J(1). Since k′

1 ∈ Y1 and k′
2 ∈ Y2, (3) implies that

v ̸∈ K1 ∪ K2. Since v ∈ N , it follows from the choice of v′ that v′ ∈ γ2 ∩ PR(2). But now v′ ∈ Z
and so v ∈ N [Z], contrary to the fact that v ∈ D. This proves that N [Z] is a balanced separator
in G, contrary to the fact that |Z| < d, and (11) follows.

(12) PL(m) ∩ NG[Am] ̸= ∅.

Suppose that PL(m) ∩ NG[Am] = ∅. Let

Z = Ym ∪ {pk} ∪ ∆i.

We claim that N [Z] is a balanced separator in G. Suppose not, and let D be a component of
G \ N [Z] with w(D) > 1

2 . By (10) D ⊆ Am, N [D] ∩ J(m) = ∅, and there exists v ∈ D \ B with a
neighbor in B. Then v ∈ N ∩ Am; let v′ ∈ P be a neighbor of v, choosing v′ ∈ PL(m) if possible.
Since N [D]∩J(m) = ∅ and since v ∈ Am, we deduce that v′ ∈ N [Am]∩(P \J(m)). Since k′

m ∈ Ym,
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it follows from (3) that v ̸∈ Km. By the choice of v′, we deduce that v′ ∈ PL(m), a contradiction.
This proves that N [Z] is a balanced separator in G, contrary to the fact that |Z| < d, and (12)
follows.

By (11) |PR(2) ∩ NG[A(2)]| > 2, and therefore by (9) PL(2) ∩ NG[A(2)] = ∅. In view of this,
let i be maximum such that PL(i) ∩ NG[Ai] = ∅. By (12), i < m. By the maximality of i,
PL(i + 1) ∩ NG[Ai+1] ̸= ∅, and therefore by (9) |PR(i + 1) ∩ NG[Ai+1]| ≤ 2. Let

Z = Y1 ∪ Yi ∪ Yi+1 ∪ ∆i ∪ ∆i+1 ∪ (γi+1 ∩ PR(i + 1)) ∪ {pk}.

Then |Z| < d. To complete the proof, we obtain a contradiction by showing that N [Z] is a
w-balanced separator in G.

Suppose not, and let D be a component of G \ N [Z] with w(D) > 1
2 . By (10), D ⊆ Ai ∩ Ai+1,

N [D]∩(J(i)∪J(i+1)) = ∅, and there exists v ∈ D\B with a neighbor in B. Then v ∈ N∩Ai∩Ai+1;
let v′ ∈ P be a neighbor of v. Then v′ ∈ NG[Ai] ∩ NG[Ai+1] ∩ (P \ (J(i) ∪ J(i + 1))), and therefore
v′ ∈ PL(i + 1) ∪ PR(i + 1). Since PL(i) ∩ N [Ai] = ∅ and PR(i + 1) ∩ N [Ai+1] ⊆ Z, it follows that
v′ ∈ Z. But now v ∈ N [Z], contrary to the fact that v ∈ D.

■

4. Constricted sets in Kt,t-free graphs

Although we only use the results of this section on graphs in Ht, they hold for a much larger
class, namely Kt,t-free graphs. We, therefore, prove them in their full generality. Let G and H
be graphs, Z ⊆ V (G) with |Z| ≥ 2 and let η be an extended strip decomposition of (G, Z) with
pattern H. We say that a path P = p1- . . . -pk in G is a leaf path starting at p1 and ending at pk

if p1 ∈ Z.
The main result of this section is the following:

Theorem 4.1. For every t ∈ N there exists c = c(t) ∈ N with the following property. Let G be a
Kt,t-free graph, Z ⊆ V (G) with |Z| ≥ 2 and H be a graph. Let η be an extended strip decomposition
of (G, Z) with pattern H. Then for every vertex v ∈ V (G) \ Z, there exists X ⊆ V (G) \ v such
that X intersects all the leaf paths ending at v and α(X) ≤ c(t).

In the remainder of the proof, we will need the following consequence of Theorem 4.1:

Theorem 4.2. For every t ∈ N there exists c = c(t) ∈ N with the following property. Let G
be a Kt,t-free graph, let ω = ω(G), and let Z ⊆ V (G) be constricted. Then for every vertex
v ∈ V (G) \ Z, there exist at most ωc pairwise vertex-disjoint (except at v) paths starting in Z and
ending at v.

We first prove Theorem 4.2 assuming Theorem 4.1. For positive integers a, b let R(a, b) be the
smallest integer R, often called the Ramsey number, such that every graph on R vertices contains
either a stable set of size a or a clique of size b.

Theorem 4.3 (Ramsey [28]). For all c, s ∈ N, R(c, s) ≤ cs−1

Lemma 4.4. For every t ∈ N there exists c = c(t) ∈ N with the following property. Let G be a
Kt,t-free graph, ω = ω(G), Z ⊆ V (G) with |Z| ≥ 2. Let H be a graph, and let η be an extended
strip decomposition of (G, Z) with pattern H. Then, for every vertex v ∈ V (G) \ Z, there are at
most ωc pairwise vertex-disjoint (except at v) leaf paths ending at v.
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Proof. Let c(t) be the constant given by Theorem 4.1. By Lemma 4.1, there exists a set X that
intersects all the leaf paths ending in v and α(X) ≤ c(t). Since G is Kω+1-free, we have that
|X| ≤ R(c(t), ω + 1) ≤ ω2c(t), and the result follows. ■

Proof of Theorem 4.2. By Theorem 2.1, there exists an extended strip decomposition of (G, Z).
Now, the theorem follows from Lemma 4.4. ■

We now turn to the proof of Theorem 4.1. For the rest of this section, fix an integer t > 1 and
let G be a Kt,t-free graph, Z ⊆ V (G) with |Z| ≥ 2, and H be a graph. Let η be an extended strip
decomposition of (G, Z) with pattern H. Let x, y ∈ V (H), we say that y is a special neighbor of
x if xy ∈ E(H) and α(η(xy, x)) ≥ t. In that case, we call xy a special edge of x. We say that a
vertex v ∈ V (G) is safe if either

• there is no edge xy of H such that v ∈ η(xy, x), or
• there exists an edge xy of H such that y is a special neighbor of x, and v ∈ η(xy, x).

Let Safe(G) denote the set of all safe vertices of G. We observe:

Lemma 4.5. Let G be a Kt,t-free graph, and let X1, . . . , Xk ⊆ V (G) be disjoint and pairwise
complete, then either

• α (⋃n
i=1 Xi) < t, or

• there exists i∗ such that α(Xi∗) ≥ t and α
(⋃

i ̸=i∗ Xi

)
< t

Consequently, every vertex of H has at most one special neighbor.

Proof. Notice that any stable set in ⋃
i ̸=i Xi is a subset of one of the Xi. Therefore, the first case

holds if there is no i∗ such that α(Xi) ≥ t. So we can assume that such an i∗ exists. Since G is Kt,t-
free, i∗ is unique. Moreover, since Xi∗ is complete to ⋃

i ̸=i∗ Xi, we have that α
(⋃

i ̸=i∗ Xi

)
< t. ■

For a vertex x ∈ V (H), let Em(x) = ⋃
η(xy, x) where the union is taken over all neighbors y of x

that are not special. We call Em(x) the set emulating x in G. Observe that Em(x)∩Safe(G) = ∅.
It follows immediately from Lemma 4.5 that α(Em(x)) < t for every x ∈ V (H).

We are now ready to prove Theorem 4.1.

Proof. Let c = 4t + 6 and suppose that v ∈ V (G) violates the conclusion of Theorem 4.1.
Let A be an atom of η. If A = η(x) is a vertex atom, we say that A points to an edge e of H if

e = xy and y is a special neighbor of x. If A = η(x1x2x3) is a triangle atom, we say that A points
to an edge e of H if e = xixj for some i, j ∈ {1, 2, 3} and xi is a special neighbor of xj, and xj is
a special neighbor of xi.

(13) Every vertex atom and every triangle atom points to at most one edge.

Suppose first that A = η(x) is a vertex atom. Then A only points to edges incident with x. Let
y ∈ V (H) be such that A points to the edge xy. Then y is a special neighbor of x, and therefore
xy is unique by Lemma 4.5.

Thus, we may assume that A = η(x1x2x3) is a triangle atom. We may assume that A points
to the edge x1x2. Then x2 is a special neighbor of x1, and x1 is a special neighbor of x2. By
Lemma 4.5 x3 is not a special neighbor of x1, and x3 is not a special neighbor of x2. Consequently,
A does not point at x1x3, and A does not point at x2x3. This proves (13).

Let A = η(x) be a vertex atom of η. If A does not point to any edge, let A = A and let ∆(A) =
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Em(x). If A points to an edge xy (which is unique by (13)), let A be the union of η(xy)∩Safe(G)
with all the vertex and triangle atoms that point to xy, and let ∆(A) = Em(x) ∪ Em(y).

(14) If A is a vertex atom, then α(∆(A)) < 2t, and ∆(A) separates A from V (G) \ (A ∪ ∆(A)).

Since ∆(A) is contained in the union of at most two sets emulating a vertex of H, it follows
that α(∆(A)) < 2t. The second statement of (14) follows from the definition of a strip structure.
This proves (14).

(15) There is no x ∈ V (H) such that v ∈ η(x).

Suppose v ∈ A = η(x) for some x ∈ V (H). Let X = ∆(A) ∪ (A ∩ Z). Since there is at most
one edge e of H such that A meets the set η(e), it follows that |A ∩ Z| ≤ 2, and so α(X) < 2t + 2.
Since by (14) X meets every leaf path ending at v that does not start in A, (15) follows.

Let A = η(x1x2x3) be a triangle atom of η. If A does not point to any edge, let A = A and
let ∆(A) = Em(x1) ∪ Em(x2) ∪ Em(x3). If A points to an edge xixj (which is unique by (13)),
let A be the union of η(xixj) ∩ Safe(G) with all the vertex and triangle atoms that point to xixj,
and let ∆(A) = Em(xi) ∪ Em(xj).

(16) If A is a triangle atom, then α(∆(A)) < 3t, and ∆(A) separates A from V (G) \ (A ∪ ∆(A)).

Since ∆(A) is contained in the union of at most three sets emulating a vertex of H, it follows
that α(∆(A)) < 3t. The second statement of (16) follows from the definition of a strip structure.
This proves (16).

(17) There is no triangle x1x2x3 of H such that v ∈ η(x1x2x3).

Suppose v ∈ A = η(x1x2x3) for some triangle x1x2x3 of H. Let X = ∆(A) ∪ (A ∩ Z). Since
there is at most one edge e of H such that A meets the set η(e), it follows that |A ∩ Z| ≤ 2, and
so α(X) < 2t + 2. Since by (16) X meets every leaf path ending at v that does not start in A,
(17) follows.

(18) v ̸∈ Safe(G).

Suppose that v ∈ Safe(G). By (15) and (17), v ∈ η(xy) ∩ Safe(G) for some edge xy of H. Let
X = Em(x)∪Em(y)∪ (η(xy)∩Z). Then v ̸∈ X. Since |η(xy)∩Z| ≤ 2, we deduce α(X) < 2t+2.
It follows from the defintion of a strip structure that Em(x)∪Em(y) meets every leaf path ending
at v that does not start in η(xy) ∩ Safe(G), and (18) follows.

By (18), there exists an edge xy of H such that y is not a special neighbor of x and v ∈ η(xy, x).
Moreover, if v ∈ η(xy, y), then x is not a special neighbor of y. Let x′ be the special neighbor
of x (if one exists), and let y′ be the special neighbor of y (if one exists). Note that x′ ̸= y, but
possibly y′ = x. Suppose first that either

• x = y′, or
• x ̸= y′ and v ∈ η(xy, y).

Let A be the union of the following sets

• {v},
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• η(xy) ∩ Safe(G),
• η(xx′) ∩ Safe(G) (if x′ is defined),
• η(yy′) ∩ Safe(G) (if y′ is defined),
• all vertex and triangle atoms that point to xx′ (if x′ is defined),
• all vertex and triangle atoms that point to yy′ (if y′ is defined),
• η(x),
• all triangle atoms η(xyw) with w ∈ V (H) \ {x, y}.

Let ∆ be the union of the following sets
• Em(x) \ {v},
• Em(y) \ {v},
• Em(x′) (if x′ is defined),
• Em(y′) (if y′ is defined).

Now assume that x ̸= y′ and v ̸∈ η(xy, y). Let A be the union of the following sets
• {v},
• η(xy) ∩ Safe(G),
• η(xx′) ∩ Safe(G) (if x′ is defined),
• all vertex and triangle atoms that point to xx′ (if x′ is defined),
• η(x),
• all triangle atoms η(xyw) with w ∈ V (H) \ {x, y}.

Let ∆ be the union of the following sets
• Em(x) \ {v},
• Em(y) \ {v},
• Em(x′) (if x′ is defined).

Since ∆ is contained in the union of at most four sets emulating a vertex of H, it follows that
α(∆) < 4t. It follows from the definition of a strip structure that ∆ separates A from V (G) \
(A ∪ ∆), and therefore ∆ meets every leaf path ending at v that does not start in A. Let
X = ∆ ∪ (A ∩ Z). Since there are at most three edges e of H such that A meets the set η(e), it
follows that |A ∩ Z| ≤ 6. We deduce that α(X) < 4t + 6, and X meets every leaf path that ends
at v, a contradiction. ■

5. Cooperative sets

In this section, we introduce the notion of cooperative sets, which will be central to the rest
of the proof. Cooperative sets are used to prove Theorem 1.4: instead of trying to separate
two vertices directly, we will construct a “cooperative set” starting with one of them and use its
properties to separate it from the other vertex. In this section, we develop the necessary properties
of cooperative sets, culminating with Theorem 5.9. The main tools are Corollary 5.2 (Theorem
4.4 from [6]) and Theorem 5.8 (The Matroid Intersection Theorem [18]). The use of cooperative
sets is explained in Section 6.

We start with two results from the literature.

Lemma 5.1 (Lemma 2 from [24]). For all positive integers a and b, there is a positive integer
C = C(a, b) such that if a graph G contains a collection of C pairwise disjoint subsets of vertices,
each of size at most a and with at least one edge between every two of them, then G contains a
Kb,b-subgraph
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Corollary 5.2 (immediate corollary of Theorem 4.4 from [6] ). There exists a polynomial q, such
that the average degree of every theta-free graph G is at most q(ω(G)).

Let G be a graph. A matching M ⊆ E(G) is a set of disjoint edges. We denote by V (M) the set
of all endpoints of the edges of M . We say that a vertex x is matched by M (or that M matches
x) if there exists an edge in M such that v is one of its endpoints. Let X, Y ⊆ V (G). A matching
from X to Y is a matching each of whose edges has one end in X and the other end in Y . We say
that X matches into Y if there exists a matching from X to Y and that matches every vertex in
X. A matching is said to be induced if E(G[V (M)]) = M . We denote V (M) the set of all vertices
matched by the matching M .

In the following, by a polynomial in two variables x and y, we mean a finite sum of terms of the
form aijx

iyj, where aij are real non-zero coefficients, and i, j are non-negative integers. We show:

Lemma 5.3. There exists a polynomial p(x, y) for which the following holds. Let k ∈ N, G be a
theta-free graph, and M = {(xi, yi)}p(ω(G),k)

i=1 a matching (not necessarily induced) in G then there
exist M ′ ⊆ M such that |M ′| ≥ k and M ′ is an induced matching.

Proof. Let C(a, b) be defined as in Lemma 5.1, let q be the polynomial from Corollary 5.2 and let
p(x, k) = kC(2,3)(q(x) + 1)2 . Let

X =
{
xi|i ∈ 1, . . . , kC(2,3)(q(x) + 1)2

}
and

Y =
{
yi|i ∈ 1, . . . , kC(2,3)(q(x) + 1)2

}
.

By Corollary 5.2, G is q(ω(G)) degenerate and therefore q(ω(G)) + 1 colorable. It follows that
we can find a subset I ⊆ {1, . . . , p(ω(G))} such that such that |I| = kC(2,3) and X ′ = {xi}i∈I

and Y ′ = {yi}i∈I are stable sets. Let H be the graph with the vertex set {(xi, yi)|i ∈ I} and
where (a, b) is adjacent to (b, d) if {a, b} and {c, d} are not anticomplete. Since, by Theorem 4.3,
|I| ≥ R(k, C(2, 3)) , H contains either a clique of size C(2, 3) or a stable set of size k. If H
contains a stable set of size k, we are done since this corresponds to an induced matching of size
k. Therefore, we can assume that H contains a clique of size C(2, 3). This implies that we have a
set of C(2, 3) sets of two vertices (the edges) with an edge between every two of them. Therefore,
by Lemma 5.1, G[Y ′ ∪ X ′] contains K3,3 as a (non necessarily induced) subgraph. Finally, since
both X ′ and Y ′ are independent sets, this K3,3 is actually induced, which is a contradiction as G
is theta-free. ■

Let G be a graph, and X ⊆ V (G) be connected. We define the boundary of X in G, which we
denote by δG(X) = δG

1 (X), to be the set of vertices in X having at least a neighbor in G \ X. Let
δG

i (X) = δG(X \ ⋃
k<i δG

k (X)).
We say that X is cooperative in G if the following three conditions hold

• every vertex in δG
1 (X) has a neighbor in X \ δG

1 (X)
• every vertex in δG

2 (X) has a neighbor in X \ (δG
1 (X) ∪ δG

2 (X))
• X \ (δG

1 (X) ∪ δG
2 (X)) is connected

See Fig. 4.
When the graph G is clear from the context, we may omit it from the notation.

Lemma 5.4. Let G be a graph and X be a cooperative set in G. Let D1, . . . , Dk be the connected
components of G \ N [X]. Then for all 1 ≤ i ≤ k, X ∪ NG(Di) is a cooperative set in X ∪ N [Di].
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δ2(X)

δ1(X)

X \ (δ1(X) ∪ δ2(X))

G \ X

Figure 4. Visualization of a cooperative set

Proof. Let us fix an i arbitrarily and let G′ = X ∪ NG[Di] and X ′ = X ∪ NG(Di) = NG′ [X]. We
have that δG′

1 (X ′) = NG(Di) = NG′(Di) and δG′
2 (X ′) = NG′(NG′(Di)) ∩ X ′. See Fig. 5.

δ2(X)

δ1(X)

X \ (δ1(X) ∪ δ2(X))

N(X)

D1 D2 D3

G′

Figure 5. Visualization for Lemma 5.4
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Let us now verify that the three conditions to be a cooperative set hold.

(19) The first condition holds

We have that
NG′(X ′ \ δG′

1 (X ′)) = NG′(X) = NG′(Di) = δG′

1 (X ′).
This proves (19).

(20) The second condition holds

Moreover, we have that

NG′(X ′ \ (δG′

1 (X ′) ∪ δG′

2 (X ′))) = NG′ ((X ∪ NG′(Di)) \ (NG′(Di) ∪ (NG′(NG′(Di)) ∩ X ′)))
= NG′(X \ NG′(NG′(Di)))
= δG′

2 (X ′)

This proves (20).

(21) The third condition holds

Notice that δG′
2 (X ′) ⊆ δG

1 (X). Therefore, X ′ \ (δG′
1 (X ′) ∪ δG′

2 (X ′)) = (X \ δG
1 (X)) ∪ Y for some

Y ⊆ δG
1 (X). Since X is cooperative in G, X \ δG

1 (X) is connected and every vertex in δG
1 (X) has a

neighbor in δG
2 (X) and thus, every vertex in Y has a neighbor in X \ δG

1 (X). This proves (21). ■

Lemma 5.5. Let G be a graph, X be a cooperative set in G, and C ⊆ (G \ X) ∪ δG
1 (X). Let

D be a connected component of G \ (X ∪ C) which is not anticomplete to X \ C. Then X ′ =(
(X \ δG

1 (X)) ∪ N(D)
)

∩ (X \ C) is cooperative in G′ = (N [D] \ C) ∪ X ′.

Proof. We have that δG′
1 (X ′) = NG′(D). Since X ′ \ δG′

1 (X ′) = X \ δG
1 (X) the first condition of

being cooperative holds. We also have that δG′
2 (X ′) ⊆ δG

2 (X) and that X ′ \ (δG′
1 (X ′) ∪ δG′

2 (X ′)) ⊇
X \(δG

1 (X)∪δG
2 (X)) so the second condition holds. Finally, we have that X ′\(δG′

1 (X ′)∪δG′
2 (X ′)) =

(X \ (δG
1 (X)) ∪ δG

2 (X)) ∪ Y for some Y ⊆ δG
2 (X). Since X \ (δG

1 (X) ∪ δG
2 (X)) is connected and

every vertex in Y has a neighbor in this set, X ′ \ (δG′
1 (X ′) ∪ δG′

2 (X ′)) is connected, and the third
condition of being cooperative holds. ■

In the remainder of this section, we will assume familiarity with basic matroid theory (see [27]
for an introduction to the subject). Let X ⊆ V (G) be a cooperative set of G and let b be a vertex
anticomplete to X. Let M1

X,b on G be the pair (N(X), I1) where I1 is the set of subsets of N(X)
that are matched into δ(X).

Let M2
X,b on G be the pair (N(X), I2) where I2 is the set of subsets Y of N(X) for which they

are |Y | vertex-disjoint paths (except at b) from Y to b that are internally disjoint from N [X].

Lemma 5.6. Both M1
X,b and M2

X,b on G are matroids.

Proof. For M1
X,b, consider the bipartite graph G1 that is built from G[δ(X) ∪ N(X)] by removing

the internal edges in both δ(X) and N(X). Then M1
X,b is the transversal matroid on G1 (see

Theorem 1.61 of [27]). For M2
X,b, consider the digraph G2 with vertex set V (G) \ X and where

(x, y) ∈ E(G2) if {x, y} ∈ E(G) and y /∈ N(X). Let G′
2 be the digraph made from G2 by adding

|V (G) \ N(X)| copies of b along with its incident edges. Then, M2
X,b is the gammoid on G′

2 made
with the pairwise vertex disjoint paths from NG(X) to copies of b in G′

2 (see [25]). ■
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Lemma 5.7. Let G be a (theta, pyramid)-free graph, X be a cooperative set in G, and b ∈ V (G)
be anticomplete to X. There exists a polynomial p for which the size of the largest common
independent set of M1

X,b and M2
X,b on G is strictly smaller than p(ω(G)).

Proof. Since G is theta-free, it follows that G is K3,3-free. Let c = c(3) given by Theorem 4.2 and
let p(ω(G)) = q(ω(G), 2q(ω(G), ω(G)c + 1)) where q is given by Lemma 5.3. Suppose the state-
ment is false for this choice of p for some G, X, and b. Let I be an independent set of both M1

X,b

and M2
X,b of size p(ω(G)). By Lemma 5.3, there exists I ′ ⊆ I such that |I ′| = 2q(ω(G), ωc + 1)

and there is an induced matching M1 that matches I ′ into δ1(X). Let Y be the vertices of δ1(X)
matched by M1.

(22) No vertex in δ2(X) is adjacent to more than 2 vertices of Y

Suppose not and let x1, x2, x3 ∈ Y and v in δ2(X) such that {x1, x2, x3} ⊆ N(v). Let
m1, m2, m3 be the vertices in N(X) matched to respectively x1, x2, x3 by M1. Let us now consider
G′ = G \ N [X] ∪ {x1, x2, x3, m1, m2, m3}. Since the set {m1, m2, m3} is independent in M2

X,b,
x1, x2, x3 are in the same connected component of G′. Let H be a minimal connected subgraph
of G′ such that {x1, x2, x3} ⊆ N(H). We apply Lemma 3.4 to analyze the structure of H. Since
x1, x2, x3 each have a unique neighbor in H and {m1, m2, m3} is a stable set, the first outcome of
Lemma 3.4 cannot happen. If the second outcome happens, then {v}∪⋃

i≤3 Pi forms a theta, which
is a contradiction. Therefore, the last outcome of Lemma 3.4 happens, but then {v} ∪ ⋃

i≤3 Pi

forms a pyramid, which is also a contradiction. This proves (22).

Since every vertex of δ1(X) has a neighbor in δ2(X) and by (22), we can find a (non-induced)
matching of size q(ω(G), ω(G)c + 1) that matches Y into δ2(X). Therefore, by Lemma 5.3, there
exists Y ′ ⊆ Y with |Y ′| = ω(G)c + 1 and an induced matching M2 that matches Y ′ into to δ2(X).
Using the edges incident with Y ′ in both M1 and M2, we get a set of ω(G)c + 1 pairwise anticom-
plete paths P 1, . . . , P ω(G)c+1 of length 3 from N(X) to δ2(X). Let Z ⊆ I ′ be the set of the ends
of these paths in N(X).

(23) Z is a constricted set in (G \ N [X]) ∪ Z.

Suppose not; let x1, x2, x3 ∈ Z and let T be an induced subgraph of G such that T is a tree and
x1, x2, x3 ∈ T . We may assume that T is chosen to be minimal with these properties. Then either
T is a path with ends in {x1, x2, x3}, or T is a subdivision of the bipartite graph K1,3 and x1, x2, x3
are the leaves of T . We may assume that xi is the end of the path P i for every i ∈ {1, 2, 3}.

Let G′ = X \ (δ1(X) ∪ δ2(X)) ∪ P 1 ∪ P 2 ∪ P 3, and let H be a minimal connected subgraph of
G′ such that {x1, x2, x3} ⊆ N(H). As before, we apply Lemma 3.4 to analyze the structure of H.
Since x1, x2, x3 each have a unique neighbor in H and since these neighbors are distinct and form
a stable set, the first outcome of Lemma 3.4 cannot happen. If the second outcome happens, then
T ∪ ⋃

i≤3 Pi forms a theta, which is a contradiction. Therefore, the last outcome of Lemma 3.4
happens, but then T ∪ ⋃

i≤3 Pi forms a pyramid, which is also a contradiction. This proves (23).

By Theorem 4.2, there are at most ω(G)c vertex disjoint paths from Z to b in G \ X, which
contradicts the fact that I ′ is an independent set of M2

X,b. ■

We remind the reader of the celebrated Matroid Intersection Theorem [18].
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Theorem 5.8 (Matroid Intersection Theorem [18]). Let M1 = (U, I1) and M2 = (U, I2) be two
matroids with the same ground set U . Then

max { |I| : I ∈ I1 ∩ I2 } = min { rankM1(A) + rankM2(U \ A)
∣∣∣A ⊆ U }.

From Lemma 5.7 and Theorem 5.8, we deduce:

Theorem 5.9. There exists a polynomial q such that the following holds. Let G be a (theta,
pyramid)-free graph, X be a cooperative set in G, and b ∈ V (G) anticomplete to X. Then there
exists a partition (A, N(X) \ A) of N(X) such that:

• the maximum matching from A to δ(X1) is of size at most q(ω(G)) and
• there are a most q(ω(G)) vertex-disjoint paths (except at b) from N(X) \ A to b that are

internally disjoint from N [X].

6. Cooperative pairs and degenerate partitions

In this section, we prove Theorem 6.6 and deduce from it our first main result Theorem 1.4.
Let G be a graph, and let X ⊆ G be connected and C ⊆ G be such that C ∩ X = ∅. We call a

pair (X, C) a cooperative pair in G if X is cooperative in the connected component of G \ C that
contains X. Let G′ ⊆ G and let a and b be distinct vertices of G. We say that a cooperative pair
(X, C) in G′ separates a from b in G if the following conditions hold:

• a ∈ X \ δG′(X), and
• b ∈ G \ (X ∪ C), and
• δG′(X) ∪ C separates a from b in G.

In order to prove Theorem 6.6 we start by defining a cooperative set X0 = N2
G(a), and create

an improving sequence of pairs (Xi, Ci) and subgraphs Gi such that (Xi, Ci) is a cooperative pair
in Gi that separates a from b in G. To make the notion of improvement precise, we define the
“value” of a cooperative pair. To do so, we make use of a vertex partition for theta-free graphs
first introduced in [3]. This allows us to bound the number of improvement steps, and as a result,
bound the size of the separator. We now explain this in detail.

Following the proof of Theorem 7.1 of [3] and using Theorem 4.4 of [6] we deduce:

Theorem 6.1. There exists a polynomial p such that the following holds: let G be theta-free with
|V (G)| = n and clique number ω. Then, there exists a partition (S1, . . . , Sk) of V (G) with the
following properties:

(1) k ≤ p(ω) log n.
(2) Si is a stable set for every i ∈ {1, . . . , k}.
(3) For every i ∈ {1, . . . , k} and v ∈ Si,

we have degG\
⋃

j<i
Sj

(v) ≤ p(ω).

Let Π = (S1, . . . , Sk) be a partition of V (G) as in Theorem 6.1 and let and v ∈ V (G). We define
the value of v in G denoted valG

Π(v) as the index i such that v ∈ Si. For a set X ⊆ V (G), we define
its value in G, denoted valG

Π(X) as follows. If X ̸= ∅, then valG
Π(X) = max

{
valG

Π(v)
∣∣∣v ∈ δG(X)

}
and if X = ∅, then valG

Π(X) = 0. Similarly, we define the value of the cooperative pair in G as
valG

Π(X, C) = val
G\C
Π (X).

Lemma 6.2. There exists a polynomial p for which the following holds. Let G be a (theta,
pyramid)-free graph, let X be a cooperative set in G, and let b ∈ N(X). Then |N(b)∩X| ≤ p(ω(G)).
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Proof. Suppose not and let p(x) = x3p(x, 3) > R(3, x+1)p(x, 3) (by Theorem 4.3) where p(x, y) is
defined as in Lemma 5.3. Since no vertex in δ2(X) has more than R(3, ω(G)+1) common neighbour
with b (as it would create a theta), and since every vertex in δ1(X) has a neighbour in δ2(X),
there exist a matching from N(b) ∩ X to δ2(X) of size p(ω(G), 3). By Lemma 5.3, there exists an
induced matching M from N(b) to δ2(X) such that |M | = 3. Write M = {x1y1, x2y2, x3y3} where
x1, x2, x3 ∈ δ1(X) and y1, y2, y3 ∈ δ2(X). Let G′ = X \ (δ1(X) ∪ δ2(X)) ∪ {x1, x2, x3, y1, y2, y3}
and let H be a minimal connected subgraph of G′ such that {x1, x2, x3} ⊆ N(H). We apply
Lemma 3.4 to analyze the structure of H. Since each of x1, x2, x3 has a unique neighbor in H,
and since {y1, y2, y3} forms a stable set, the first outcome of Lemma 3.4 cannot happen. If the
second outcome happens, then {b} ∪ ⋃

i≤3 Pi forms a theta, which is a contradiction. Therefore,
the last outcome of Lemma 3.4 happens, but then {b} ∪ ⋃

i≤3 Pi forms a pyramid, which is also a
contradiction. ■

We will need two classical results in graph theory:

Theorem 6.3 (Menger’s Theorem (Vertex Version)[26]). For any two nonadjacent sets of vertices
X and Y in a finite graph G, the size of the smallest set of vertices whose removal separates X
from Y is equal to the maximum number of pairwise internally vertex-disjoint paths between X
and Y .

Theorem 6.4 (Kőnig’s Theorem [22]). In any bipartite graph G = (U, V, E), the size of a maxi-
mum matching is equal to the size of a minimum vertex cover.

The next lemma explains how to make one improvement step in the construction of a sequence
of cooperative pairs.

Lemma 6.5. There exists a polynomial p for which the following holds. Let G be a (theta,
pyramid)-free graph, and let a, b ∈ V (G). Let Π be a partition of V (G) with the properties given
by Theorem 6.1. Let (X, C) be a cooperative pair separating a and b in G such that valΠ(X, C) > 1.
Then, there exists either

• G′ ⊆ G and a cooperative pair (X ′, C ′) in G′ separating a and b in G such that |C ′| ≤
|C| + p(ω(G)) and valG′

Π (X ′, C ′) < valG
Π(X, C), or

• C ′ ⊆ V (G) such that C ′ separates a from b in G and |C ′| ≤ |C| + p(ω(G)).

Proof. Let p1, p2 and p3 be the polynomials given by Lemma 6.2, Theorem 5.9 and Theorem 6.1,
respectively, and let p(x) = p1(x) + 2p2(x) + p2(x)p3(x). Let C1 = C ∪ (N(b) ∩ X). If C1
separates a from b in G we are done, so we may assume that there is a connected component
J of G \ (X ∪ C1) such that J is not anticomplete to X \ C1 and such that b ∈ J . Let X1 =
(X \ δ

G\C
1 (X)) ∪ NG\C(J) ∩ (X \ C1) and let G1 = N [J ] \ C1 ∪ X1. It follows from Lemma 5.5 that

(X1, C1) is a cooperative pair in G1.
Let M1

X,b and M2
X,b on G1 \ C1 be defined as before. By Theorem 5.9, there exists a partition

(A, B) of NG1(X1) for which
• the maximum matching from A to δ(X1) is of size at most p2(ω(G)) and
• there are a most p2(ω(G)) vertex-disjoint paths (except at b) from B to b that are internally

disjoint from N [X].
By Theorem 6.3, there exists a set K ⊆ G1 \ (X1 ∪ C1) such that |K| ≤ p2(ω(G)) and every path
from B to b in G1 \ (X1 ∪ C1 ∪ K) intersects A. Let C2 = C1 ∪ K. By Theorem 6.4, there exists a
set F ⊆ NG1(X1) ∪ δG1(X1) such that |F | ≤ q2(ω(G)) and A \ F is anticomplete to δG1(X1) \ F .
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Let F1 = F ∩ δG1(X1) and F2 = F ∩ A . Let C3 = C2 ∪ F2. Let

H =
⋃

u∈F1

{v|v ∈ N(u) such that valΠ(u) < valΠ(v)} .

Let C ′ = C3 ∪ (H ∩ N(X)). By the third property of the partition Π, we have that

|C ′| ≤ |C3| + |F1|p3(ω(G)) ≤ |C| + p1(ω(G)) + 2p2(ω(G)) + p2(ω(G))p3(ω(G)) = |C| + p(ω(G)).

If C ′ separates a from b in G, we are done. Therefore, we may assume that the connected
component D in G \ (C ′ ∪ X1) containing b is not anticomplete to δG1(X1) \ C ′. Let

X ′′ = X1 \ δG1(X1) ∪ (NG\(C′∪X1)(D) ∩ X1 \ C ′)

and G′′ = X ′′ ∪ NG\(C′∪X1)[D] \ C ′. It follows from Lemma 5.5 that (X ′′, C ′) is a cooperative pair
in G′′.

Let Γ be the connected component of G′′ \ NG′′ [X ′′] containing b and let X ′ = X ′′ ∪ NG′′(Γ). By
Lemma 5.4, we have that (X ′, C ′) is a cooperative pair in G′ = X ′′ ∪ NG′′ [Γ]. Moreover, we have
that δG′

1 (X ′) ∪ C ′ separates a from b in G since NG\C′(Γ) = δG′
1 (X ′). To conclude that (X ′, C ′)

and the subgraph G′ satisfy the first bullet in the statement of the theorem, it remains to show
that valG′(X ′, C ′) < valG(X, C). This follows since δG′(X ′) ⊆ NG(X) \ H and so every vertex in
δG′(X ′) has a lower value than valG(X, C). ■

We can now prove the main result of this section.

Theorem 6.6. There exists a polynomial p for which the following holds. Let G be an n-vertex
(theta, pyramid)-free graph, and a, b be non-adjacent vertices in G. Then, there exist and (a, b)-
separator C ⊆ V (G) such that |C| ≤ p(ω(G)) log n.

Proof. Let p1 and p2 be defined as in Theorem 6.1 and Lemma 6.5, respectively. Let p(x) =
x6 + (p1(x) + 1)p2(x) . Let C0 = N(a) ∩ N(b), G0 = G \ C0, and X0 = N2

G0(a). Then (X0, C0) is
a cooperative pair separating a from b in G. Now let us recursively define a sequence (Xi, Ci)k

i=0
where (Xi, Ci) are the sets obtained by applying Lemma 6.5 to (Xi−1, Ci−1) and G as long as the
first outcome of that lemma happens. Since the value of the cooperative pairs in this sequence is
strictly decreasing, Theorem 6.1 implies that k ≤ p1(ω(G)) log(n). Applying Lemma 6.5 one more
time gives us C such that C separates a from b in G and |C| ≤ |C0| + (k + 1) p2(ω(G)).

(24) |C0| ≤ R(3, ω(G) + 1).

Suppose not, then N(a) ∩ N(b) contains an independent set of size 3, which together with a and
b forms a theta. This proves (24).

Therefore, using Theorem 4.3, we have that |C| ≤ ω(G)6 + (k + 1) p2(ω(G)) ≤ p(ω(G)) as
required. ■

From Theorem 6.6, we deduce Theorem 1.4, which we now restate.

Theorem 1.4. For every integer t ≥ 2, there exists a positive integer c such that every n-vertex
graph in Ht is tc log n-pairwise separable.

Proof. Let G ∈ Ht and let p be the polynomial from Theorem 6.6. Then, by Theorem 6.6, G is
p(ω(G)) log n-pairwise separable. Since p(ω(G)) ≤ p(t) ≤ tc for a large enough c, the theorem
follows. ■
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7. Proofs of the main results

We have already proved Theorem 1.4; we prove Theorem 1.5 next. We make use of the following
result from [11]:
Theorem 7.1 (Theorem 1.4 from [11]). For every positive integer c there exists an integer d = d(c)
with the following property. If C is a hereditary graph class that is (ω(G) log |V (G)|)c-pairwise
separable, then for every G ∈ C on at least 3 vertices and for every two non-adjacent vertices
u, v ∈ V (G), there exists a set X ⊆ V (G) disjoint from {u, v}, with α(X) ≤ logd(|V (G)|), that
separates u from v.
Proof of Theorem 1.5. It follows from Theorem 7.1 and Theorem 6.6. ■

Next, we prove Theorem 1.1. The structure of the proof is similar to [8]. We use the following:
Lemma 7.2 (Lemma 8 of [20]). Let G be a graph. If for every weight function w, there exists a
w−balanced separator X such that |X| ≤ d, then tw(G) ≤ 2d.
Theorem 7.3 (Corollary of Theorem 9.2 from [8]). Let d, L ∈ N. Let G be L−pairwise separable
and let w be a weight function on G. If G is d-breakable then there exists a w-balanced separator
X in G such that |X| ≤ 3Ld.

We are now ready to prove Theorem 1.1.
Proof. Every graph G is Kω(G)+1−free. Let c′ be such that p(x + 1) ≤ xc′ where p is defined as in
Theorem 6.6, and let d = d(t) be defined as in Theorem 1.6. By Theorem 1.4, G is ω(G)c′ log n-
pairwise separable. By Theorem 1.6, G is d-breakable. Therefore, by Theorem 7.3, for every
weight function µ there exist a mu-balanced separator X of G such that |X| ≤ 3dω(G)c′ log n. By
Lemma 7.2 this implies that tw(G) ≤ 6dω(G)c′ log n. Taking c large completes the proof (in fact,
c = c′ + log(6d) is enough). ■

Finally, we prove Theorem 1.2. We use the following result from [11]:
Theorem 7.4 (Theorem 1.1 from [11]). Let C be a hereditary graph class. The following are
equivalent:

(i) There exists an integer c1 > 0 such that for every G ∈ C on at least 3 vertices we have
tree-α(G) ≤ (log |V (G)|)c1

(ii) There exists an integer c3 > 0 such that for every G ∈ C on at least 3 vertices we have
tw(G) ≤ (ω(G) log |V (G)|)c3

Proof of Theorem 1.2. It follows from Theorem 1.1 and Theorem 7.4. ■

8. Acknowledgment

We are grateful to Paweł Rzążewski for allowing us to use Fig. 1. We also thank Sepehr Hajebi
and Sophie Spirkl for many helpful discussions.

References
[1] T. Abrishami, M. Chudnovsky, C. Dibek, and K. Vušković. Submodular functions and perfect graphs. to appear

in Mathematics of Operations Research.
[2] T. Abrishami, M. Chudnovsky, S. Hajebi, and S. Spirkl. Induced subgraphs and tree decompositions III.

Three-path-configurations and logarithmic treewidth. Adv. Comb., pages Paper No. 6, 29, 2022.
[3] T. Abrishami, M. Chudnovsky, S. Hajebi, and S. Spirkl. Induced subgraphs and tree decompositions III.

Three-path-configurations and logarithmic treewidth. Advances in Combinatorics, sep 9 2022.



26 TREE-INDEPENDENCE NUMBER VI. THETAS AND PYRAMIDS.

[4] C. Berge. Some classes of perfect graphs. In Combinatorial Mathematics and its Applications (Proc. Conf.,
Univ. North Carolina, Chapel Hill, N.C., 1967), volume No. 4 of University of North Carolina Monograph
Series in Probability and Statistics, pages 539–552. Univ. North Carolina Press, Chapel Hill, NC, 1969.

[5] H. L. Bodlaender. Dynamic programming on graphs with bounded treewidth. In Automata, languages and
programming (Tampere, 1988), volume 317 of Lecture Notes in Comput. Sci., pages 105–118. Springer, Berlin,
1988.

[6] R. Bourneuf, M. Bucić, L. Cook, and J. Davies. On polynomial degree-boundedness. Advances in Combina-
torics, oct 9 2024.

[7] M. Chudnovsky, J. Codsi, D. Lokshtanov, M. Milanič, and V. Sivashankar. Tree independence number v. walls
and claws. preprint available at https: // arxiv. org/ abs/ 2501. 14658 , 2025.

[8] M. Chudnovsky, P. Gartland, S. Hajebi, D. Lokshtanov, and S. Spirkl. Induced subgraphs and tree decompo-
sitions XV. Even-hole-free graphs have logarithmic treewidth. Preprint available at https://arxiv.org/abs/
2402.14211, 2024.

[9] M. Chudnovsky, S. Hajebi, D. Lokshtanov, and S. Spirkl. Tree independence number II. Three-path-
configurations. Preprint available at https://arxiv.org/abs/2405.00265, 2024.

[10] M. Chudnovsky, M. Pilipczuk, M. Pilipczuk, and S. Thomassé. Quasi-polynomial time approximation schemes
for the maximum weight independent set problem in H-free graphs. SIAM Journal on Computing, 53(1):47–86,
2024.

[11] M. Chudnovsky, A. E. S, and D. Lokshtanov. Logarithmic Milanič conjecture. in preparation, 2025.
[12] M. Chudnovsky and P. Seymour. The three-in-a-tree problem. Combinatorica, 30:387–417, 2010.
[13] B. Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Information and

Computation, 85(1):12–75, 1990.
[14] C. Dallard, F. V. Fomin, P. A. Golovach, T. Korhonen, and M. Milanič. Computing tree decompositions

with small independence number. In K. Bringmann, M. Grohe, G. Puppis, and O. Svensson, editors, 51st
International Colloquium on Automata, Languages, and Programming, ICALP 2024, July 8-12, 2024, Tallinn,
Estonia, volume 297 of LIPIcs, pages 51:1–51:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

[15] C. Dallard, M. Krnc, O. joung Kwon, M. Milanič, A. Munaro, K. Štorgel, and S. Wiederrecht. Treewidth
versus clique number. iv. tree-independence number of graphs excluding an induced star, 2024.

[16] C. Dallard, M. Milanič, and K. Štorgel. Treewidth versus clique number. II. Tree-independence number. J.
Combin. Theory Ser. B, 164:404–442, 2024.

[17] C. Dallard, M. Milanič, and K. Štorgel. Treewidth versus clique number. III. Tree-independence number of
graphs with a forbidden structure. J. Combin. Theory Ser. B, 167:338–391, 2024.

[18] J. Edmonds. Submodular functions, matroids, and certain polyhedra. In R. Guy, H. Hanam, N. Sauer, and
J. Schonheim, editors, Proceedings of the 1969 Calgary Conference on Combinatorial Structures and their
Applications, pages 69–87. Gordon and Breach, 1970.

[19] M. R. Garey and D. S. Johnson. “Strong” NP-completeness results: motivation, examples, and implications.
J. Assoc. Comput. Mach., 25(3):499–508, 1978.

[20] D. J. Harvey and D. R. Wood. Parameters tied to treewidth. J. Graph Theory, 84(4):364–385, 2017.
[21] C. Hilaire, M. Milanič, and Ðorđe Vasić. Treewidth versus clique number. v. further connections with tree-

independence number, 2025.
[22] D. König. Gráfok és mátrixok. Matematikai és Fizikai Lapok, 38:116–119, 1931.
[23] P. T. Lima, M. Milanič, P. Muršič, K. Okrasa, P. Rzążewski, and K. Štorgel. Tree decompositions meet induced

matchings: Beyond max weight independent set. In T. M. Chan, J. Fischer, J. Iacono, and G. Herman, editors,
32nd Annual European Symposium on Algorithms, ESA 2024, September 2-4, 2024, Royal Holloway, London,
United Kingdom, volume 308 of LIPIcs, pages 85:1–85:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2024.

[24] V. Lozin and I. Razgon. Tree-width dichotomy. European Journal of Combinatorics, 103:103517, 2022.
[25] J. H. Mason. On a class of matroids arising from paths in graphs. Proceedings of the London Mathematical

Society, s3-25(1):55–74, 07 1972.
[26] K. Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10:96–115, 1927.
[27] J. Oxley. Matroid Theory. Oxford University Press, 02 2011.
[28] F. P. Ramsey. On a Problem of Formal Logic. Proc. London Math. Soc. (2), 30(4):264–286, 1929.
[29] N. Robertson and P. D. Seymour. Graph minors. XVI. Excluding a non-planar graph. J. Combin. Theory Ser.

B, 89(1):43–76, 2003.

https://arxiv.org/abs/2501.14658
https://arxiv.org/abs/2402.14211 
https://arxiv.org/abs/2402.14211 
https://arxiv.org/abs/2405.00265


TREE-INDEPENDENCE NUMBER VI. THETAS AND PYRAMIDS. 27

[30] N. L. D. Sintiari and N. Trotignon. (Theta, triangle)-free and (even hole, K4)-free graphs—part 1: Layered
wheels. J. Graph Theory, 97(4):475–509, 2021.


	1. Introduction
	1.1. Proof outline and organization

	2. Constricted sets and extended strip decompositions
	3. Dominated Balanced Separators in Mt
	4. Constricted sets in Kt,t-free graphs
	5. Cooperative sets
	6. Cooperative pairs and degenerate partitions
	7. Proofs of the main results
	8. Acknowledgment
	References

