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Abstract

We prove that if a graph contains the complete bipartite graph
K134,12 as an induced minor, then it contains a cycle of length at
most 12 or a theta as an induced subgraph. With a longer and more
technical proof, we prove that if a graph contains K3,4 as an induced
minor, then it contains a triangle or a theta as an induced subgraph.
Here, a theta is a graph made of three internally vertex-disjoint chord-
less paths P1 = a . . . b, P2 = a . . . b, P3 = a . . . b, each of length at least
two, such that no edges exist between the paths except the three edges
incident to a and the three edges incident to b.

A consequence is that excluding a grid and a complete bipartite
graph as induced minors is not enough to guarantee a bounded tree-
independence number, or even that the treewidth is bounded by a
function of the size of the maximum clique, because the existence of
graphs with large treewidth that contain no triangles or thetas as in-
duced subgraphs is already known (the so-called layered wheels).

1 Introduction

Graphs in this paper are finite and simple. A graphH is an induced subgraph
of a graph G if H can be obtained from G be repeatedly deleting vertices. It
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is an induced minor of G if H can be obtained from G be repeatedly deleting
vertices and contracting edges. It is a minor of G if H can be obtained from
G be repeatedly deleting vertices, deleting edges and contracting edges. We
denote by Kt the complete graph on t vertices and by Ka,b the complete
bipartite graph with sides of size a and b. The (k × k)-grid is the graph
whose vertices are the pairs (i, j) of integers such that 1 ≤ i, j ≤ k and
where (i, j) is adjacent to (i′, j′) if and only if |i− i′|+ |j − j′| = 1.

The tree-independence number was introduced in [3]. It is defined via
tree-decompositions similarly to treewidth, except that the number associ-
ated to each bag of a tree-decomposition is the maximum size of an indepen-
dent set of the graph induced by the bag, instead of its number of vertices
(we omit the full definition for the sake of brevity). It attracted some at-
tention lately, in particular because for each class of graphs with bounded
tree-independence number, there exists polynomial time algorithms for max-
imum independent set and other related problems [3, 5, 6, 11].

The celebrated grid minor theorem of Robertson and Seymour [7] states
that there exists a function f : N→ N so that any graph with treewidth at
least f(k) contains a (k × k)-grid as a minor. The motivation for our work
is the quest for a similar theorem with “tree-independence number” instead
of “treewidth”.

Here, the natural containment relation should be “induced minor” in-
stead of “minor”, since the tree-independence number is monotone under
taking induced minors but not under taking minors. The list of unavoid-
able graphs arising from a large tree-independence number should contain
at least large grids and large complete bipartite graphs, which are known to
have unbounded independence-tree number. Our main result is that this list
is not complete. Indeed, we prove that a construction called layered wheel,
first defined in [8], contains no (5×5)-grid and no K3,4 as an induced minor,
while having arbitrarily large tree-independence number.

Outline of the proof

We do not need to define layered wheels, which is good since the definition
is a bit long. We just need some of their properties and some preliminary
definitions to state them. A theta is a graph made of three internally vertex-
disjoint chordless paths P1 = a . . . b, P2 = a . . . b, P3 = a . . . b, each of length
at least two, such that no edges exist between the paths except the three
edges incident to a and the three edges incident to b. A graph is theta-free if
it does contain a theta as an induced subgraph, and more generally, a graph
is H-free whenever it does not contain H (when H is a graph) or any graph
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in H (when H is a class of graphs, such as thetas) as an induced subgraph.
The only property of layered wheels that we need is the following theorem
that states their existence.

Theorem 1.1 (see [8]). For all integers t ≥ 1 and k ≥ 3, there exists a
theta-free graph of girth k that contains Kt as a minor.

Since containing Kt as a minor implies having treewidth at least t, lay-
ered wheels provide theta-free graphs of arbitrarily large girth and treewidth.
Their tree-independence number is also arbitrarily large, since the treewidth
of a triangle-free graph with tree-independence number at most t is at most
R(3, t + 1) − 2 where R(a, b) denotes the classical Ramsey number, see [3].
To fulfill our goal, it therefore remains to prove that layered wheels do not
contain large grids or complete bipartite graphs as induced minors. As far
as we can see, this is non-trivial because even if layered wheels are precisely
defined, checking directly that they do not contain some (k×k)-grid or Kr,s

as an induced minor seems to be tedious, at least according to our several at-
tempts. An indication of this is that some layered wheels do contain K3,3 as
an induced minor, which is not obvious, see Fig. 1 (this figure is meaningful
only with the precise definition of a layered wheel).

Figure 1: A K3,3 induced minor in a layered wheel.

Our approach is therefore less direct: we study what induced subgraphs
are forced by the presence of a large grid or complete bipartite graph as an
induced minor as we explain now.
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Complete bipartite graphs

The list of induced subgraphs forced by the presence of K2,3 as an induced
minor is already known and not very difficult to obtain, see [4]. But this is
not enough for our purpose since containing K2,3 as an induced minor does
not imply anything we can use. By a short argument, we first prove the
following.

Theorem 1.2. If a graph G contains K134,12 as an induced minor, then G
contains a cycle of length at most 12 or a theta as an induced subgraph.

The advantage of Theorem 1.2 is its short proof. But its statement is far
from being optimal, as shown by the following, that we obtain by a more
careful structural study.

Theorem 1.3. If a graph G contains K3,4 as an induced minor, then G
contains a triangle or a theta as an induced subgraph.

Once Theorem 1.2 (or 1.3) is proved, checking that layered wheels contain
no K134,12 (or no K3,4) as an induced minor becomes trivial since by Theo-
rem 1.1, they do not contain short cycles and thetas as induced subgraphs.
Our results therefore avoid some tedious checking, but we also believe that
they are of independent interest.

Note that Theorem 1.3 is best possible in several ways. First, thetas
need to be excluded because the subdivisions of K3,4 provide triangle-free
graphs that obviously contain K3,4 as an induced minor. Triangles must
be excluded because of line graphs of subdivisions of K3,4. A less obvious
construction is represented in Fig. 2, showing that K3,4 cannot be replaced
by K3,3 in Theorem 1.3.

In fact, we prove a more general result than Theorem 1.3. Before stating
it, we need some definitions.

A prism is a graph made of three vertex-disjoint chordless paths P1 =
a1 . . . b1, P2 = a2 . . . b2, P3 = a3 . . . b3, such that {a1, a2, a3} and {b1, b2, b3}
are triangles and no edges exist between the paths except those of the two
triangles and either:

• P1, P2 and P3 all have length at least 1, or

• one of P1, P2, P3 has length 0 and each of the other two has length at
least 2.

Note that allowing a path of length zero in prisms (for instance if a1 =
b1) is not standard, but natural in our context. A prism with a path of
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Figure 2: A (triangle, theta)-free graph containing K3,3 as an induced minor

length zero is sometimes referred to as a line wheel, but we do not use this
terminology here.

prism line wheel pyramid theta

Figure 3: The different 3-path configurations.

A pyramid is a graph made of three chordless paths P1 = a . . . b1, P2 =
a . . . b2, P3 = a . . . b3, each of length at least one, and two of them with
length at least two, vertex-disjoint except at a, and such that {b1, b2, b3} is
a triangle and no edges exist between the paths except those of the triangle
and the three edges incident to a.

A hole in a graph is a chordless cycle of length at least 4. A graph that
is either a theta, a prism or a pyramid is called a 3-paths configuration,
or 3PC for short. Observe that a graph G is a 3PC if and only if there
exist three pairwise internally vertex disjoint paths P1, P2, P3 such that
V (G) = V (P1)∪V (P2)∪V (P3) and for every i ̸= j ∈ {1, 2, 3}, V (Pi)∪V (Pj)
induces a hole.

Theorem 1.4. If a graph G contains K3,4 as an induced minor, then G
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contains a 3-path configuration as an induced subgraph.

Theorem 1.4 clearly implies Theorem 1.3 because a 3PC that is not a
theta contains a triangle. Proving Theorem 1.4 is just slightly longer than
Theorem 1.3, but is also interesting in its own right for the following rea-
son. A hole is even if it has an even number of vertices. Computing the
maximum independent set of an even-hole-free graph in polynomial time is
a well known open question. Hence, understanding the tree-independence
number of even-hole-free graphs would be interesting. Moreover, Theo-
rem 1.4 implies directly the existence of even-hole-free graphs of large tree-
independence number that contain no large grids and no K3,4 as induced
minors. Indeed, [8] not only provides the layered wheels that we already
mentioned, but a variant, called even-hole-free layered wheels, whose exis-
tence is stated in the next theorem.

Theorem 1.5 (see [8]). For all integers t ≥ 1, there exists a (K4, even hole,
3PC)-free graph that contains Kt as a minor.

So, the simple counter-part of the Robertson and Seymour grid theorem,
that would state that graphs with large tree-independence number should
contain a large grid or a large complete bipartite graph as an induced minor
is false, even when we restrict ourselves to even-hole-free graphs. Even-
hole-free layered wheels provide a counter-example (note that being K4-free
ensures that the high treewidth implies a high tree-independence number,
see [3]).

Theorem 1.4 is best possible in some sense since we cannot get rid of
thetas in the statement, which are needed because of subdivisions of K3,4

that are easily seen to contain thetas. Also prisms are needed because the
line graph of a theta is a prism, so line graphs of subdivisions of K3,4 contain
prisms. Observe that we have to allow a path of length zero in a prism
because of the graph depicted in Fig. 4 that contains K3,4 as an induced
minor while the only 3PC in it is a prism with a path of length zero. Maybe
pyramids are are not needed in the statement, but we need them in the
proof for reasons that we now explain.

The proof of Theorem 1.4 relies on a precise description of how K3,3 can
be contained as an induced minor in a 3PC-free graph, see Lemma 5.2. The
description is too long to be stated in the introduction, but Fig. 5 provides
representations of the different possible situations.

Observe that excluding pyramids is necessary in Lemma 5.2, because of
the graph presented in Fig. 6, that contains K3,3 as induced minor, while
the only 3PC in it is a pyramid.
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Figure 4: K3,4 as an induced minor while all 3PC’s are prisms with a path
of length zero

Figure 5: K3,3 as an induced minor in 3PC-free graphs

7



Figure 6: K3,3 as an induced minor in a (theta, prism)-free graph

Grids

Grids are easier to handle than complete bipartite graphs as shown by the
next lemma whose proof is less involved than the proofs of Theorems 1.2,
1.3 or 1.4. We do not know if a (4× 4)-grid as an induced minor is enough
to guarantee the presence of a 3PC as an induced subgraph.

Lemma 1.6. If a graph G contains a (5×5)-grid as an induced minor, then
G contains a 3-path configuration as an induced subgraph.

Checking that layered wheels (and their even-hole-free variant) contain
no (5× 5)-grid as an induced minor is then easy by Theorem 1.1 and The-
orem 1.5.

Outline of the paper

In Section 2, we prove some technical lemmas about how a connected induced
subgraph of some graph G sees the rest of G. These lemmas are more or less
known already. We reprove them for the sake of completeness and because
we could not find them with the precise statement that we need. Note that
they are needed for all the other results. In Section 3, we prove Lemma 1.6.
In Section 4, we prove Theorem 1.2. In Section 5, we prove Theorem 1.4.
We conclude the paper by Section 6 that presents several open questions.

Notation

Let G be a graph and X and Y be disjoint sets of vertices of G. We say
that X is complete to Y if every vertex of X is adjacent to every vertex of
Y , X is anticomplete to Y if every no vertex of X is adjacent to a vertex
of Y . We say that X sees Y if there exist x ∈ X and y ∈ Y such that
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xy ∈ E(G). Note that the empty set is complete (and anticomplete) to
every set of vertices of G.

By path we mean a sequence of vertices p1 . . . pk such that for all 1 ≤
i < j ≤ k, pipj ∈ E(G) if and only if j = i+1. Therefore, what we call path
for the sake of brevity is sometimes referred to as chordless path or induced
path in a more standard notation. We use the notation aPb to denote the
subpath of P from a to b (possibly a = b since a path may consist of a single
vertex).

When we deal with a theta with two vertices of degree 3 u and v, we
say that the theta is from u to v. We use similar terminology for prisms
and pyramids that are, respectively, from a triangle to a triangle and from
a vertex to a triangle.

To avoid too heavy notation, we allow some abuse. Typically, we do not
distinguish between a set of vertices in graph G and the subgraph of G that
it induces. For instance, when P is a path and v is a vertex in a graph G, we
denote by P \ v either V (P ) \ {v} or G[V (P ) \ {v}]. Also, we may say that
a set of vertices C of G is connected when the correct statement should be
that G[C] is connected. We hope that this improves the readability without
causing any confusion.

2 Types

Let A, X, Y and Z be four disjoint sets of vertices in a graph G. We distin-
guish three different types the set A can have, see Fig. 7 for an illustration.

We say that A is of type path centered at Y with respect to X, Y and Z
if there exists a path P = x . . . z in A such that x sees X, z sees Z, P sees
Y , P \ x is anticomplete to X and P \ z is anticomplete to Z.

Similarly we define A being of type path centered at X and being of type
path centered at Z. We say that A is of type path with respect to X, Y and
Z if it is of type path centered at either X, Y or Z. Additionally, if A is of
type path centered at a set W , we call W a center for A.

Observe that when A is of type path centered at Y and a unique vertex
of P sees Y , and moreover this vertex is x, then A is also centered at X. In
particular, if x = z, then A is centered at X, Y and Z.

We say that A is of type claw with respect to X, Y and Z if there exists
in A a vertex a and three paths P = a . . . x, Q = a . . . y and R = a . . . z
such that V (P ) ∩ V (Q) ∩ V (R) = {a}, P \ a, Q \ a and R \ a are pairwise
anticomplete, x sees X, y sees Y , z sees Z, (P ∪Q ∪R) \ x is anticomplete
to X, (P ∪Q∪R)\y is anticomplete to Y and (P ∪Q∪R)\z is anticomplete
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X
Y

Z

x
y

z

type path

A

X

Y

Z

a

x

y

z

type claw

A

X

Y

Z

x

y

z

x′

y′

z′

type triangle

A

X Y Z

x y = z

type claw and type path

Figure 7: We illustrate the three types and a degenerate case in which
type path and type claw overlap. For the three types we by way of example
illustrate how X is not connected to anything in A but x. For the degenerate
it is depicted that Y and Z are not connected to anything in A but the vertex
y = z.

to Z.
Observe that possibly a = x, a = y or a = z (in fact, possibly two or

three of these equalities hold). Observe that if a = x, then A is not only
of type claw, but also of type path centered at X, this case is additionally
depicted in Fig. 7.

We say thatA is of type triangle with respect toX, Y and Z if there exists
in A three vertex-disjoint paths P = x . . . x′, Q = y . . . y′ and R = z . . . z′

such that the only edges between P , Q and R are xy, yz and yz, x′ sees X,
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y′ sees Y , z′ sees Z, (P ∪Q ∪ R) \ x is anticomplete to X, (P ∪Q ∪ R) \ y
is anticomplete to Y and (P ∪Q ∪R) \ z is anticomplete to Z.

Observe that each of P , Q and R is possibly of length 0.

Lemma 2.1. Let G be a graph and A, X, Y and Z be disjoint sets of
vertices of G. If A is connected and A sees X, Y and Z, then A is of type
path, of type claw, or of type triangle with respect to X, Y and Z.

Proof. Suppose that A is not of type path. Let P = x . . . z be a path in
A such that x sees X, z sees Z, P \ x is anticomplete to X and P \ z is
anticomplete to Z. Note that such a path exists (consider for instance a
shortest path from the vertices that see X to the vertices that see Z). Since
A is not of type path centered at Y , P is anticomplete to Y . Let Q = y . . . y′

be path in A disjoint from P and such that y sees Y , y′ sees P , Q \ y is
anticomplete to Y and Q \ y′ is anticomplete to P . Note again that such a
path exists (consider for instance a shortest path from the vertices that see
Y to the vertices that see P ). We suppose that P and Q are chosen subject
to the minimality of V (P ) ∪ V (Q).

Let a be the neighbor of y′ in P closest to x along P and a′ be the
neighbor of y′ in P closest to z along P (possibly a = a′ or aa′ ∈ E(G)).

If Q sees both X and Z, then consider vertex u in Q such that yQu sees
both X and Z, and choose u closest to y along Q. The path yQu shows that
A is of type path (centered at X or Z, possibly both, possibly also centered
at Y if u = y), a contradiction. Hence, we may assume up to symmetry that
Q is anticomplete to Z. If Q sees X, then the path yQy′a′Pz shows that
A is of type path centered at X, a contradiction. Hence, Q is anticomplete
to X and Z.

If a ̸= a′ and aa′ /∈ E(G), then consider the path P ′ = xPay′a′Pz. If y =
y′, then because of P ′, A is of type path centered at Y , a contradiction. So,
y ̸= y′ and the paths P ′ and Q\y′ contradict the minimality of V (P )∪V (Q).

Hence a = a′ or aa′ ∈ E(G). If a = a′, then the three paths aPx,
ay′Qy and aPz show that A is of type claw with respect to X, Y and Z. If
aa′ ∈ E(G), then the three paths aPx, Q and a′Pz show that A is of type
triangle with respect to X, Y and Z.

The next lemma is implicitly about the presence of K2,3 as an induced
minor in a graph. In [4], it is proved along similar lines that a graph contains
K2,3 as an induced minor if and only if it contains some configuration from
a restricted list as an induced subgraph (the so-called thetas, pyramids, long
prisms and broken wheels, not worth defining here).
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Lemma 2.2. Let G be a 3PC-free graph and A, B, X, Y and Z be disjoint
connected subsets of V (G). If X, Y and Z are pairwise anticomplete, A and
B are anticomplete to each other, and each of A and B sees each of X, Y
and Z, then A and B are of type path with respect to X, Y and Z.

Proof. Suppose for a contradiction that A (the argument for B is the same
by symmetry) is not of type path with respect to X, Y and Z. Hence, by
Lemma 2.1, A we may consider the two cases below.
Case 1: A is of type claw (and not of type path). So, there exists a vertex
a ∈ A and three paths P = a . . . x, Q = a . . . y and R = a . . . z like in the
definition of type claw. Moreover, a ̸= x, a ̸= y and a ̸= z for otherwise, A
would be of type path.

If B is of type claw, then there exist a vertex b ∈ B and three paths
P ′ = b . . . x′, Q′ = b . . . y′ and R = b . . . z′ like in the definition of type
claw. Consider a shortest path P ′′ from x to x′ with interior in X, and let
Q′′ = y . . . y′ and R′′ = z . . . z′ be defined similarly through Y and Z. The
nine paths P , Q, R, P ′, Q′, R′, P ′′, Q′′ and R′′ form a theta from a to b, a
contradiction.

If B is of type triangle, a similar contradiction is found because of the
existence of a pyramid in G.

So B is not of type claw or triangle. By Lemma 2.1, B is of type path,
and up to symmetry we suppose that it is centered at Y . Let P ′ = x′ . . . z′

be a path like in the definition of type path. Consider a shortest path P ′′

from x to x′ with interior in X, and let R′′ = z . . . z′ be defined similarly
through Z. Let Q′′ = b . . . b′ be a shortest path in Y such that by ∈ E(G)
and b′ sees P ′. Let a′ be the neighbor of b′ in P ′ closest to x′ along P ′. Let
a′′ be the neighbor of b′ in P ′ closest to z′ along P ′. If a′ = a′′, then B is of
type claw, a contradiction. If a′a′′ ∈ E(G), then the seven paths P , Q, R,
P ′, P ′′, Q′′ and R′′ form a pyramid from a to b′a′a′′, a contradiction. Hence
a ̸= a′ and aa′ /∈ E(G). So the paths P , Q, R, x′P ′a′, a′′P ′z′, P ′′, Q′′ and
R′′ form a theta from a to b′, a contradiction.
Case 2: A is of type triangle.

The proof is almost the same as in Case 1, so we just sketch it. If B is
of type claw, then G contains a pyramid. If B is of type triangle, then G
contains a prism. And if B is of type path, then G contains a prism or a
pyramid.

Let G and H be two graphs. An induced minor model of H in G is a
collection of pairwise disjoint sets {Xv}v∈V (H), called the branch sets of the
model, such that
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• Xv ⊆ V (G) for all v ∈ V (H),

• Xv induces a connected subgraph of G for every v ∈ V (H), and

• Xu sees Xv (in G) if and only if uv ∈ E(H).

It is well known and easy to check that G contains a graph isomorphic
to H as an induced minor if and only if there exists an induced minor model
of H in G. We identify an induced minor model {Xv}v∈V (H) of H in G
with the graph H ′ := G[

⋃
v∈V (H)Xv]. Please note that the definition of the

branch sets is not uniquely determined by H ′.
An induced minor model H ′ ⊆ G of H is minimal if H ′ \ a does not

contain an induced minor isomorphic to H for all a ∈ V (H ′).
We denote by K∗

2,3 the graph obtained from K2,3 by subdividing every
edge once, i.e., K∗

2,3 is the graph with two degree-3 vertices and three paths
of length four between them.

Lemma 2.3. If a graph contains K∗
2,3 as an induced minor, then it contains

a 3PC.

Proof. Suppose for a contradiction that a 3PC-free graph G contains H =
K∗

2,3 as an induced minor. Denote by a and b the degree-3 vertices and let
ap1p2p3b, aq1q2q3b and ar1r2r3b be the three paths ofH. Consider a minimal
induced minor model {Xv}v∈V (H) of H in G. For all v ∈ V (H)\{a, b}, v has
two neighbors u and w in H and by minimality, Xv is a path P = v′ . . . v′′

such that v′ see Xu, v
′′ sees Xw, P \ v′ is anticomplete to Xu and P \ v′′ is

anticomplete to Xw. It follows that if we set A = Xa ∪Xp1 ∪Xp2 ∪Xq1 ∪
Xq2 ∪Xr1 ∪Xr2 , X = Xp3 , Y = Xq3 , Z = Xr3 and B = Xb, A cannot be of
type path with respect to X, Y and Z. Indeed, since Xp1 ∪Xp2 , Xq1 ∪Xq2

and Xr1 ∪Xr2 all induce paths of length at least 1 in G, A cannot contain a
path with vertices seeing X, Y and Z. Hence, A, B, X, Y and Z contradict
Lemma 2.2.

3 Proof of Lemma 1.6

We here prove Lemma 1.6 that we restate.

Lemma 1.6. If a graph G contains a (5×5)-grid as an induced minor, then
G contains a 3-path configuration as an induced subgraph.

Proof. If a graph contains a (5×5)-grid as an induced minor, then it contains
K∗

2,3 as an induced minor, because the (5 × 5)-grid contains K∗
2,3 as an

induced subgraph. The result therefore follows from Lemma 2.3.
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4 Proof of Theorem 1.2

Lemma 4.1. Let G and H be graphs and {Xv}v∈V (H) a minimal induced
minor model of H in G. For every v ∈ V (H), the graph G[Xv] does not
contain cycles longer than the degree of v.

Proof. First, for every neighbor u of v in H, let us mark a single vertex in Xv

that is adjacent to a vertex in Xu. If there exists a connected induced proper
subgraph of G[Xv] that contains all of the marked vertices, we contradict
the minimality of the induced minor model.

Suppose that G[Xv] contains a cycle of length longer than the degree of
v, and let C ⊆ Xv be the vertices of this cycle. We say that a vertex w ∈ C
is necessary if either w is marked or there exists a connected component Y of
G[Xv \C] that contains a marked vertex and whose only neighbor in C is the
vertex w. Because |C| is larger than the number of marked vertices, there
exists a vertex in C that is not necessary, let w ∈ C be such a vertex. We
remove from Xv the vertex w and every component of G[Xv \C] whose only
neighbor in C is w. All of the remaining vertices in Xv are still connected
to C \ {w} and contain all of the marked vertices, so we get a connected
induced proper subgraph of G[Xv] that contains all of the marked vertices,
which is a contradiction.

Lemma 4.1 is useful for asserting that G[Xv] is a tree, which in turn is
useful for obtaining degree-1 vertices in G[Xv]. We make use of degree-1
vertices with the following lemma.

Lemma 4.2. Let {Xv}v∈V (H) be a minimal induced minor model of a graph
H in a graph G, and let v ∈ V (H). For every vertex w ∈ Xv whose degree
is one in G[Xv], there exists u ∈ V (H) \ {v} so that w is the only neighbor
of Xu in Xv.

Proof. Otherwise, we could remove w fromXv and contradict the minimality
of {Xv}v∈V (H).

We say that such a branch set Xu is private to the vertex w. We may
now prove Theorem 1.2 which we restate below.

Theorem 1.2. If a graph G contains K134,12 as an induced minor, then G
contains a cycle of length at most 12 or a theta as an induced subgraph.

Proof. Let p = 12 and t = 2
(
p
2

)
+ 2 = 134. Let G be a graph with girth

at least p + 1, and let {Xv}v∈V (Kt,p) be a minimal induced minor model of
Kt,p in G. We denote the branch sets corresponding to vertices of Kt,p on
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the side with t vertices by A1, . . . , At and on the other side by B1, . . . , Bp.
Note that G is triangle-free.

First suppose that there are two branch sets Ai, Aj of size |Ai|, |Aj | ≤ 2.
In this case, there must be a vertex v ∈ Ai that is adjacent to at least p/2
different branch sets on the other side, and a vertex u ∈ Aj that is adjacent
to at least p/4 = 3 different branch sets on the other side that v is also
adjacent to. Fix three different branch sets Ba, Bb, Bc that both v and u
are adjacent to. Now, by selecting in each branch set Ba, Bb, Bc a shortest
path from a neighbor of v to a neighbor of u, we obtain a theta from u to v.

We may therefore assume that at least t−1 of the branch sets A1, . . . , At

contain at least three vertices. By Lemma 4.1 and because G has girth at
least p + 1, for all branch sets A1, . . . , At the induced subgraph G[Ai] is a
tree, and for all such sets with |Ai| ≥ 3, the tree must have two non-adjacent
leaves v and u. By Lemma 4.2, both v and u have a private branch set on
the other side, so we can label each branch set Ai with |Ai| ≥ 3 with an
unordered pair {Bj , Bk} so that Bj is private to v and Bk is private to u.

Now, because t − 1 = 2
(
p
2

)
+ 1, there must exist three branch sets Aa,

Ab, and Ac that are labeled with the same pair {Bj , Bk}. By contracting
both Bj and Bk into a single vertex and taking the paths in Aa, Ab, and Ac

between the corresponding leaves, we obtain K∗
2,3 as an induced minor. By

Lemma 2.3, G must contain a theta since the theta is the only triangle-free
3PC.

5 Proof of Theorem 1.4

We start with an improvement of Lemma 2.2.

Lemma 5.1. Let G be a 3PC-free graph and k ≥ 2 be an integer. Suppose
that X, Y , Z and A1, . . . , Ak are disjoint connected subsets of V (G), X,
Y and Z are pairwise anticomplete, A1, . . . , Ak are pairwise anticomplete,
and for every i ∈ {1, . . . , k}, Ai sees X, Y and Z.

Then the Ai’s are all of type path with respect to X, Y and Z and
furthermore, one of X, Y and Z is a center for all of them.

Proof. By Lemma 2.2 applied to A = Ai, B = Aj for some j ̸= i and X, Y
and Z, we see that all Ai’s are of type path with respect to X, Y and Z. It
remains to prove that they all share a common center.

We denote by τ(Ai) the sets of all elements U ∈ {X,Y, Z} such that
Ai is centered at U . Note that for all i ∈ {1, . . . , k}, τ(Ai) is nonempty.
It is enough to prove that for all i, j ∈ {1, . . . , k}, either τ(Ai) ⊆ τ(Aj)
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or τ(Aj) ⊆ τ(Ai). Indeed, this implies that the sets τ(Ai) are linearly
ordered by the inclusion, so that ∩i∈{1,...,k}τ(Ai) is non-empty and contains
the common center that we are looking for.

So suppose for a contradiction that A = Ai and B = Aj are such that
τ(Ai) and τ(Aj) are inclusion-wise incomparable. So, up to symmetry, A is
centered at X and not at Y while B is centered at Y and not at X.

Since A is centered at X, there exists P = u . . . u′ in A such that u sees
Y , u′ sees Z, P sees X, P \u is anticomplete to Y and P \u′ is anticomplete
to Z. Since B is centered at Y , there exists Q = v . . . v′ in B such that v sees
X, v′ sees Z, Q sees Y , Q\v is anticomplete to X and Q\v′ is anticomplete
to Z.

Let R = z . . . z′ be a shortest path in Z such that u′z ∈ E(G) and
z′v′ ∈ E(G). Let S = y . . . y′ be a shortest path in Y such that y sees Q and
y′u ∈ E(G). Let T = x . . . x′ be a shortest path in X such that x sees P
and x′v ∈ E(G). Observe that each of P , Q, R, S and T can be of length 0.

Let a be the neighbor of x in P closest to u along P . Let a′ be the
neighbor of x in P closest to u′ along P . Let b be the neighbor of y in Q
closest to v along Q. Let b′ be the neighbor of y in Q closest to v′ along Q.
See Figure 8.

zz′ R
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x′

T
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y′

S

v

b

b′

v′

u

a

a′

u′

Z

X Y

Q P

Figure 8: Paths P , Q, R, S and T in the proof of Lemma 5.1

Suppose first that a = a′. Observe that a = a′ ̸= u for otherwise A would
be centered at Y , contrary to our assumption. Hence, ay /∈ E(G). If b = b′,
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then P , Q, R, S and T form a theta from a to b, so b ̸= b′. If bb′ ∈ E(G),
then P , Q, R, S and T form a pyramid from a to ybb′. If bb′ /∈ E(G), then
P , vQb, b′Qv′, R, S and T form a theta from a to y (because ay /∈ E(G) as
already noted). Hence a ̸= a′, and symmetrically we can prove that b ̸= b′.

Suppose now aa′ ∈ E(G). If bb′ ∈ E(G), then P , Q, R, S and T form
a prism from xaa′ to ybb′. If bb′ /∈ E(G), then P , vQb, b′Qv′, R, S and T
form a pyramid from y to xaa′. Hence aa′ /∈ E(G), and symmetrically we
can prove that bb′ /∈ E(G).

We are left with the case where a ̸= a′, aa′ /∈ E(G), b ̸= b′ and bb′ /∈
E(G). Then uPa, a′Pu′, vQb, b′Qv′, R, S and T form a theta from x
to y.

The following lemma describes what happens when K3,3 is an induced
minor of some 3PC-free graph. It is worth noting that it has a true converse
that we do not need to state formally. More precisely, if in any graph six
paths A, B, C, P , Q and R satisfy all the properties described in Lemma 5.2,
then they form a model for a K3,3 induced minor, and moreover the graph
that they induce can be checked to be 3PC-free, see Fig. 5.

Note that the statement of Lemma 5.2 is not completely symmetric.
Namely, A, B and C are assumed to be minimal while X, Y and Z are not.
This yields a slightly stronger statement which is needed for the application
in the proof of Theorem 1.4.

Lemma 5.2. Let G be a 3PC-free graph and A, B, C, X, Y and Z be
connected disjoint subsets of V (G) such that X, Y and Z are pairwise
anticomplete, A, B and C are pairwise anticomplete and each of A, B and
C sees each of X, Y and Z. Suppose that no connected proper subset
of A (resp. B and C) sees each of X, Y and Z. Then, there exist six
vertex-disjoint paths A′ = a . . . a′, B′ = b . . . b′, C ′ = c . . . c′, P = p . . . p′,
Q = q . . . q′ and R = r . . . r′ in G such that:

• Each of A′, B′ and C ′ is equal to exactly one of A, B or C.

• Each of X, Y and Z contains exactly one of P , Q or R.

• H = aA′a′rRr′c′C ′cp′Ppa is a hole.

• B′ \ b (resp. B′ \ b′, Q \ q, Q \ q′) is anticomplete to P (resp. R, A′,
C ′).

• B′ and Q both have length at most 1 (so they each contain at most
two vertices).
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• b (resp. b′, q, q′) has at least three neighbors in P (resp. R, A′, C ′).
In particular, each of P , R, A′ and C ′ contains at least three vertices.

• B′ is complete to Q, or G[B′ ∪Q] has four vertices and five edges.

Proof. By Lemma 5.1, A, B and C are of type path with respect toX, Y and
Z, centered at some Y ′ ∈ {X,Y, Z}. By Lemma 5.1, X, Y and Z are of type
path with respect to A, B and C, centered at some B′ ∈ {A,B,C}. We let
X ′, Z ′, A′ and C ′ be such that {A′, B′, C ′} = {A,B,C} and {X ′, Y ′, Z ′} =
{X,Y, Z}.

So, A′ contains some path that sees X ′, Y ′ and Z ′ as in the definition
of type path centered at Y ′, but by the assumption about the minimality
of A, B or C, we see that this path is in fact A′ itself. So A′ is equal to
exactly one of A, B or C. The arguments works also with B and C, so that
A′ = a . . . a′, B′ = b . . . b′, C ′ = c . . . c′, each of a, b and c sees X ′, each of
a′, b′ and c′ sees Z ′, each of A′, B′ and C ′ sees Y ′, each of A′ \ a, B′ \ b
and C ′ \ c is anticomplete to X ′ and each of A′ \ a′, B′ \ b′ is and C ′ \ c′ is
anticomplete to Z ′.

Also X ′ contains a path P = p . . . p′ such that p sees A′, p′ sees C ′, P \ p
is anticomplete to A′, P \ p′ is anticomplete to C ′ and P sees B′. Note
that we cannot claim that X ′ = P , since we made no assumption about
the minimality of X. But since A′ \ a is anticomplete to X ′ and P \ p is
anticomplete to A′, the only possible edge between P and A′ is pa. Similarly,
p′c is the only edge between P and C ′. Moreover, P sees B′, and since B \ b
is anticomplete to X ′, we know that b sees P (and not only X ′).

Similarly, Z ′ contains a path R = r . . . r′ with ra′ ∈ E(G), r′c′ ∈ E(G),
R \ r is anticomplete to A′, R \ r′ is anticomplete to C ′ and such that b′

sees R. Observe that A′, P , C ′ and R form a hole H.
Also Y ′ is of type path with respect to A, B and C and centered at B′.

So, Y ′ contains a path Q = q . . . q′ such that q sees A′, q′ sees C ′, Q \ q is
anticomplete to A′, Q \ q′ is anticomplete to C ′ and Q sees B′.

Let α be the neighbor of q in A′ closest to a along A′. Let α′ be the
neighbor of q in A′ closest to a′ along A. Let β be the neighbor of b in P
closest to p along P . Let β′ be the neighbor of b in P closest to p′ along
P . Let γ be the neighbor of q′ in C ′ closest to c along C ′. Let γ′ be the
neighbor of q′ in C ′ closest to c′ along C ′. Let δ be the neighbor of b′ in R
closest to r along R. Let δ′ be the neighbor of b′ in R closest to r′ along R.
See Fig. 9.

Suppose that B′ has length at least 2. Then B and H contains a theta,
a prism or a pyramid, namely from β (if β = β′) or bββ′ (if ββ′ ∈ E(G))
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Figure 9: Paths A′, B′, C ′, P , Q and R in the proof of Lemma 5.2

or b (otherwise), to δ (if δ = δ′) or b′δδ′ (if δδ′ ∈ E(G)) or b′ (otherwise).
Hence B′ has length at most 1, meaning that either b = b′ or bb′ ∈ E(G).
Similarly, Q has length at most 1 and q = q′ or qq′ ∈ E(G).

Suppose that β = β′. Then b = b′ for otherwise B and H contain a
theta (if δ = δ′), or a pyramid from β to b′δδ′ (if δδ′ ∈ E(G)), or a theta
from β to b′ (otherwise). Since B′ sees Q, b has a neighbor in Q. If b has a
unique neighbor in Q, say q up to symmetry (so either q = q′, or q ̸= q′ and
bq′ /∈ E(G)), then the three paths βbq, βPpaA′αq and βPp′cC ′γq′q form a
theta from β to q. So, b has two neighbors in Q. Hence, the three paths βb,
βPpaA′αq and βPp′cC ′γq′ form a pyramid from β to bqq′. We proved that
β ̸= β′.

Suppose that ββ′ ∈ E(G). Then b = b′ for otherwise B and H contains a
pyramid from δ to bββ′ (if δ = δ′), a prism from bββ′ to b′δδ′ (if δδ′ ∈ E(G))
or a pyramid from b′ to bββ′ (otherwise). Since B′ sees Q, b has a neighbor
in Q. If b has a unique neighbor in Q, say q up to symmetry (so either
q = q′, or q ̸= q′ and bq′ /∈ E(G)), then the three paths qb, qαA′apPβ and
qq′γC ′cp′Pβ′ form a pyramid from q to bββ′. So, b has two neighbors in
Q. Hence, the three paths b, qαA′apPβ and q′γC ′cp′Pβ′ form a prism from
bqq′ to bββ′. We proved that ββ′ /∈ E(G). This implies that b has at least
three neighbors in P for otherwise H and b would form a theta from β to β′.

We proved b has at least three neighbors in P . By a symmetric argument,
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we can prove that b′ (resp. q, q′) has at least three neighbors in R (resp. A′,
C ′). It remains to prove that B′ is complete to Q, or B′∪Q induces a graph
with four vertices and five edges. So suppose that B′ is not complete to Q.

Since B′ sees Q and B′ is not complete to Q, there is at least one edge
and at least one non-edge with ends in B and Q. So, there must be a vertex,
either in B or Q, that is incident to such an edge and such a non-edge. Up
to symmetry, we assume that this vertex is b and bq ∈ E(G) (so bq′ /∈ E(G)
and q ̸= q′). If b = b′, or if b ̸= b′ and G[B′∪Q] has only three edges (namely
bb′, qq′ and bq), then bqq′, bβ′Pp′cC ′γq′ and bb′δ′Rr′c′C ′γ′q′ form a theta
from b to q′. We proved that b ̸= b′ and G[B′ ∪ Q] has at least four edges.
So, G[B′ ∪ Q] has four vertices and it remains to prove that it has exactly
five edges. So suppose for a contradiction that G[B′ ∪ Q] has exactly four
edges.

If b′q′ ∈ E(G) (and therefore b′q /∈ E(G)), then bqq′, bb′q′ and
bβ′Pp′cC ′γq′ form a theta from b to q′. If b′q ∈ E(G) (and therefore
b′q′ /∈ E(G)), then q′q, q′γC ′cp′Pβ′b and q′γ′C ′c′r′Rδ′b′ form a pyramid
from q′ to bb′q.

Lemma 5.3. Let G be a 3PC-free graph and A, B, C, X, Y and Z be
connected disjoint subsets of V (G) such that X, Y and Z are pairwise
anticomplete, A, B and C are pairwise anticomplete, and each of A, B and
C sees each of X, Y and Z. Suppose that no connected proper subset of A
(resp. B and C) sees each of X, Y and Z. Then exactly one of A, B and C
contains at most 2 vertices.

Proof. Follows directly from Lemma 5.2.

We may now prove Theorem 1.4 that we restate.

Theorem 1.4. If a graph G contains K3,4 as an induced minor, then G
contains a 3-path configuration as an induced subgraph.

Proof. Suppose for a contradiction that a 3PC-free graph G contains K3,4

has an induced minor. So, G contains seven disjoint connected sets X, Y ,
Z, A, B, C and D such that X, Y and Z are pairwise anticomplete, A,
B, C and D are pairwise anticomplete, and each of X, Y and Z sees each
of A, B, C and D. We suppose that these sets are chosen subject to the
minimality of A ∪B ∪C ∪D. It follows that no proper connected subset of
A (resp. B, C, D) sees X, Y and Z (note that it is important here that no
assumption is made about the minimality of X, Y and Z).

By Lemma 5.3 applied to A, B, C, X, Y and Z, exactly one of A, B
and C has size at most 2, say |A| ≤ 2, |B| > 2 and |C| > 2. Hence, by
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Lemma 5.3 applied to B, C, D, X, Y and Z, we have |D| ≤ 2. Hence, A,
B, D, X, Y and Z contradict Lemma 5.3.

6 Open questions

We need pyramids in Theorem 1.4 only for the sake of the precise descrip-
tion of Lemma 5.2, see Fig. 6. We therefore wonder whether pyramids in
Theorem 1.4 are really needed. More precisely, we do not know whether a
(theta, prism)-free graph that contains K3,4 as an induced minor exists.

A wheel is a graph made of a hole called the rim together with a vertex
called the center that has at least three neighbors on the rim. It is even if
the center has an even number of neighbors in the rim. It is well known (and
easy to check) that even-hole-free graphs contain no prisms, no thetas and no
even wheels as induced subgraphs, since each of these configurations implies
the presence of an even hole. Conversely, many theorems about even-hole-
free graphs suggest that (theta, prism, even wheel)-free graphs, that are
called odd signable graphs, capture the essentials structural properties of
even-hole-free graphs, see [9, 10]. We believe that the following is true.

Conjecture 6.1. If G is an odd signable graph (in particular if G is an
even-hole-free graph), then G does not contain K3,3 as an induced minor.

Observe that we do not know whether the even-hole-free layered wheels
contain K3,3 as an induced minor. Conjecture 6.1 would prove that they do
not. We also propose the following.

Conjecture 6.2. If G contains K6 as a minor, then G contains a triangle
(as a subgraph) or G contains K3,3 as an induced minor.

In [1], it is proved that triangle-free odd-signable graphs (in particular
(triangle, even-hole)-free graphs) have treewidth at most 5 and therefore
do not contain K6 as a minor. So, provided that Conjecture 6.1 is true,
Conjecture 6.2 is just a more precise statement.

Here are some remarks about Conjecture 6.2. It is false with a K5

assumption instead of a K6 assumption, see Fig. 10 where an (even hole,
triangle)-free graph with a K5 minor, first discovered in [2], is represented.
It is false with a “K3,4 as an induced minor or triangle” conclusion because
of the layered wheels. Provided that Conjecture 6.1 is true, it is false with a
“K3,3 as an induced minor or 3PC as an induced subgraph” conclusion, or
with a “K3,3 as an induced minor or K4 as subgraph” conclusion, because
of the even-hole-free layered wheels that are pyramid-free and K4-free by
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Theorem 1.5. Conjecture 6.2 would therefore provide a statement that is
best possible in many ways.

Figure 10: A K5 minor in an (even hole, triangle)-free graph. To see even
hole-freeness first note that no even hole can contain a fat red edge.

It might be interesting to study the implications of a K3,3 − e induced
minor in an even-hole free graph, where K3,3− e is the graph obtained from
K3,3 by removing one edge. In Fig. 11, an even-hole-free graph that contains
K3,3− e as an induced minor is represented, and we observe that this graph
plays an important role in the structural study of even-hole-free graphs,
see [9]. In Fig. 12, another example of a graph that contains K3,3 − e as an
induced minor is represented, and we observe that this graph contains an
even wheel.

Figure 11: A K3,3 − e induced minor in an (even hole, triangle)-free graph

More generally, we believe that studying implications between different
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Figure 12: AK3,3−e induced minor in a graph without triangles and without
thetas.

containment relations for different kinds of graphs might have more applica-
tions. For instance, this approach is used in [4] to design a polynomial time
algorithm that decides whether an input graph contains K2,3 as an induced
minor. We wonder what is the complexity of detecting K3,3 as an induced
minor.
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Kenny Storgel Pawel Rzazewski. Tree decompositions meet induced
matchings: beyond max weight independent set. arXiv:2402.15834,
2024.

[7] Neil Robertson and Paul Seymour. Graph minors. V. Excluding a pla-
nar graph. Journal of Combinatorial Theory, Series B, 41(1):92–114,
1986.

[8] Ni Luh Dewi Sintiari and Nicolas Trotignon. (Theta, triangle)-free and
(even hole, K4)-free graphs - Part 1: Layered wheels. Journal of Graph
Theory, 97(4):475–509, 2021.

24
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