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Abstract

Let s and t be positive integers. We use Pt to denote the path with t vertices and K1,s to
denote the complete bipartite graph with parts of size 1 and s respectively. The one-subdivision
of K1,s is obtained by replacing every edge {u, v} of K1,s by two edges {u,w} and {v, w} with a
new vertex w. In this paper, we give a polynomial-time algorithm for the list 3-coloring problem
restricted to the class of Pt-free graph with no induced 1-subdivision of K1,s.

1 Introduction

All graphs in this paper are finite and simple. We use [k] to denote the set {1, . . . , k}. Let G be
a graph. A k-coloring of G is a function f : V (G) → [k] such that for every edge uv ∈ E(G),
f(u) 6= f(v), and G is k-colorable if G has a k-coloring. The k-coloring problem is the problem
of deciding, given a graph G, if G is k-colorable. This problem is well-known to be NP -hard for
all k ≥ 3.

A function L : V (G) → 2[k] that assigns a subset of [k] to each vertex of a graph G is a k-list
assignment for G. For a k-list assignment L, a function f : V (G)→ [k] is a coloring of (G,L) if f
is a k-coloring of G and f(v) ∈ L(v) for all v ∈ V (G). We say that a graph G is L-colorable, and
that the pair (G,L) is colorable, if (G,L) has a coloring. The list k-coloring problem is the
problem of deciding, given a graph G and a k-list assignment L, if (G,L) is colorable. Since this
generalizes the k-coloring problem, it is also NP -hard for all k ≥ 3.

We denote by Pt the path with t vertices and we use Kr,s to denote the complete bipartite graph
with parts of size r and s respectively. The one-subdivision of K1,s is obtained by replacing every
edge {u, v} of K1,s by two edges {u,w} and {v, w} with a new vertex w. For a set H of graphs,
a graph G is H-free if no element of H is an induced subgraph of G. If H = {H}, we say that
G is H-free. In this paper, we use the terms “polynomial time” and “polynomial size” to mean
“polynomial in |V (G)|”, where G is the input graph. Since the k-coloring problem and the
list-k coloring problem are NP -hard for k ≥ 3, their restrictions to H-free graphs, for various
H, have been extensively studied. In particular, the following is known:

Theorem 1 ([7]). Let H be a (fixed) graph, and let k > 2. Assume that P 6= NP . If the k-
coloring problem can be solved in polynomial time when restricted to the class of H-free graphs,
then every connected component of H is a path.
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Thus if we assume that H is connected, then the question of determining the complexity of k-
coloring H-free graph is reduced to studying the complexity of coloring graphs with certain induced
paths excluded, and a significant body of work has been produced on this topic. Below we list a
few such results.

Theorem 2 ([1]). The 3-coloring problem can be solved in polynomial time for the class of
P7-free graphs.

Theorem 3 ([2]). The 4-coloring problem can be solved in polynomial time for the class of
P6-free graphs.

Theorem 4 ([4]). The k-coloring problem can be solved in polynomial time for the class of
P5-free graphs.

Theorem 5 ([5]). The 4-coloring problem is NP -complete for the class of P7-free graphs.

Theorem 6 ([5]). For all k ≥ 5, the k-coloring problem is NP -complete for the class of P6-free
graphs.

The only case for which the complexity of k-coloring Pt-free graphs is not known k = 3, t ≥ 8.
Then it is natural to consider forbidding another induced subgraph besides the path. The following
are two known results when the other forbidden induced subgraph is a clique or a cycle.

Theorem 7 ([8]). For all k, r, s, t ≥ 1, the list k-coloring problem can be solved in polynomial
time for the class of (Kr,s, Pt)-free graphs.

Theorem 8 ([6]). The k-coloring problem for the class of (Cs, Pt)-free graphs can be solved in
polynomial time if k ≥ 5, s = 3 and t ≤ k + 2, and is NP -complete if

1. k = 4, s = 3 and t ≥ 22

2. k = 4, s = 5 or 6 and t ≥ 7

3. k = 4, s = 7 and t ≥ 9

4. k = 4, s ≥ 8 and t ≥ 7

5. k ≥ 5, s = 3 and t ≥ tk where tk is a constant only depends on k

6. k ≥ 5, s = 5 and t ≥ 7

7. k ≥ 5, s ≥ 6 and t ≥ 6.

In this paper, we consider the list 3-coloring problem for Pt-free graphs with no induced
1-subdivision of K1,s. We use SDKs to denote the one-subdivision of K1,s. The main result is the
following:

Theorem 9. For all positive integers s and t, the list 3-coloring problem can be solved in
polynomial time for the class of (SDKs, Pt)-free graphs.
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2 Preliminaries

We need two theorems: the first one is the famous Ramsey Theorem [9], and the second is a result
of Edwards [3]:

Theorem 10 ([9]). For each pair of positive integers k and l, there exists an integer R(k, l) such that
every graph with at least R(k, l) vertices contains a clique with at least k vertices or an independent
set with at least l vertices.

Theorem 11 ([3]). Let G be a graph, and let L be a list assignment for G such that |L(v)| ≤ 2 for
all v ∈ V (G). Then a coloring of (G,L), or a determination that none exists, can be obtained in
time O(|V (G)|+ |E(G)|).

Let G be a graph with list assignment L. For X ⊆ V (G) we denote by G|X the subgraph
induced by G on X, by G \X the graph G|(V (G) \X) and by (G|X,L) the list coloring problem
where we restrict the domain of the list assignment L to X. For v ∈ V (G) we write NG(v) (or N(v)
when there is no danger of confusion) to mean the set of vertices of G that are adjacent to v. For
X ⊆ V (G) we write NG(X) (or N(X) when there is no danger of confusion) to mean

⋃
v∈X N(v).

We say that D ⊆ V (G) is a dominating set of G if for every vertex v ∈ G \D, N(v) ∩D 6= ∅. By
Theorem 11, the following corollary immediately follows.

Corollary 12. Let G be a graph, L be a 3-list assignment for G and let D be a dominating set of
G. Then a coloring of (G,L), or a determination that (G,L) is not colorable, can be obtained in
time O(3|D|(|V (G)|+ |E(G)|)).

Proof. For every coloring c of (G|D,L), in time O(|E(G)|) we can define a list assignment Lc

of G as follows: if v ∈ D we set Lc(v) = {c(v)} and if v /∈ D we can pick u ∈ N(v) ∩ D by
the definition of a dominating set and set Lc(v) = L(v) \ c(u). Let L ={Lc : c is a coloring of
(G|D,L)}, then clearly |L| ≤ 3|D| and (G,L) is colorable if and only if there exists a Lc ∈ L such
that (G,Lc) is colorable. For every Lc ∈ L, by construction |Lc(v)| ≤ 2 for every v ∈ G and hence
by Theorem 11, a coloring of (G,Lc), or a determination that none exists, can be obtained in time
O(|V (G)|+ |E(G)|). Therefore a coloring of (G,L), or a determination that (G,L) is not colorable,
can be obtained in time O(3|D|(|V (G)|+ |E(G)|)).

3 The Algorithm

Let s and t be positive integers, and let G = (V,E) be a connected (Pt, SDKs,K4)-free graph. Pick
an arbitrary vertex a ∈ V and let S1 = {a}. For v ∈ V , let d(v) be the distance from v to a. For
i = 1, 2, . . . , t− 2, we define the set Si+1 as follows:

• Let Bi = N(Si),Wi = V \ (Bi ∪ Si).

• Write Si = {v1, v2, . . . , v|Si|} and define

Bj
i =

{
v ∈

(
Bi \

j−1⋃
k=1

Bk
i

)
: v is adjacent to vj

}

for j = 1, 2, . . . |Si|. Then Bi =
⋃|Si|

j=1B
j
i .

• For j = 1, 2, . . . , |Si|, let Xj
i ⊆ Bj

i be a minimal vertex set such that for every w ∈ Wi, if

N(w) ∩Bj
i 6= ∅, then N(w) ∩Xj

i 6= ∅. Let Xi =
⋃|Si|

j=1X
j
i .
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• Let Si+1 = Si ∪Xi.

It is clear that we can compute St−1 in O(t|V |2) time. Next, we prove some properties of this
construction.

Lemma 13. For i = 1, 2, . . . , t− 2, |Si+1| ≤ |Si|(1 + R(4, R(4, s))).

Proof. It is sufficient to show that for each ` = 1, 2, . . . , |Si|, |X`
i | ≤ R(4, R(4, s)). Suppose not,

|X`
i | = K > R(4, R(4, s)) for some ` ∈ {1, 2 . . . , |Si|}. Let X`

i = {x1, x2, . . . , xK}. By the minimality
of X`

i , for j = 1, 2, . . . ,K, there exists yj ∈ Wi such that N(yj) ∩ X`
i = {xj}. Since G is K4-

free, by Theorem 10, there exists an independent set X ′ ⊆ X`
i of size R(4, s). We may assume

X ′ = {x1, x2, . . . , xR(4,s)}. Let Y ′ = {y1, y2, . . . , yR(4,s)}. Again by Theorem 10, there exists
an independent set Y ′′ ⊆ Y ′ of size s. We may assume Y ′′ = {y1, y2, . . . , ys} and let X ′′ =
{x1, x2, . . . , xs}. Then G[{v`} ∪X ′′ ∪ Y ′′] is isomorphic to SDKs, a contradiction.

For convenience, we set S0 = ∅, B0 = {a} and Bt−1 = N(St−1). Then by construction it is
clear that Si ⊆

⋃i−1
k=0Bk for every 1 ≤ i ≤ t− 1. Moreover, the following property holds.

Lemma 14. For i = 0, 1, . . . , t− 2, Bi+1 \ (Bi ∪ Si) = {v : d(v) = i + 1}

Proof. We use induction to prove this lemma. It is clear that for i = 0, B1 = N(a) = {v : d(v) = 1}.
Now suppose this lemma holds for i < k, where k ∈ {1, 2 . . . , t − 2}. First we show that for

every v ∈ Bk+1 \ (Bk ∪ Sk), d(v) = k + 1. By construction v ∈ Wk, hence d(v) > k by induction.
Since v ∈ Bk+1 \Bk, v has a neighbor w in Sk+1 \ Sk ⊆ Bk; and thus d(v) ≤ d(w) + 1 ≤ k + 1.

Now let v ∈ V with d(v) = k + 1. It follows that v 6∈ (Bk ∪ Sk), and v ∈ Bk+1 ∪Wk+1, and
v has a neighbor w ∈ V with d(w) = k. By induction, it follows that v ∈ Wk and w ∈ Bk. Let
j ∈ N such that w ∈ Bj

k. Since v ∈ Wk and N(w) ∩ Bj
k 6= ∅, it follows that v has a neighbor in

Xj
k ⊆ Xk ⊆ Sk+1, and therefore v ∈ Bk+1, as required. This finishes the proof of Lemma 14.

By applying Lemma 13 and Lemma 14, we deduce the following properties of St−1.

Lemma 15. 1. There exists a constant Ms,t which only depends on s and t such that |St−1| ≤
Ms,t.

2. Wt−1 = V \ (St−1 ∪N(St−1)) = ∅.

Proof. Since we start with |S1| = 1, by applying Lemma 13 t − 2 times, it follows that |St−1| ≤
(1 + R(4, R(4, s)))t−2. Let Ms,t = (1 + R(4, R(4, s)))t−2, then the first claim holds.

Suppose the second claim does not hold. From Lemma 14, it follows that {v : d(v) ≤ t− 1} ⊆
St−1 ∪N(St−1). But if w ∈ V satisfies d(w) ≥ t, then a shortest w-a-path is an induced path of at
least t vertices, a contradiction. Thus the second claim holds.

We are now ready to prove our main result, which we rephrase here:

Theorem 16. Let Ms,t = (1 + R(4, R(4, s)))t−2. There exists an algorithm with running time
O(|V (G)|4 + t|V (G)|2 + 3Ms,t(V (G) + E(G))) with the following specification.

Input: A (SDKs, Pt)-free graph G and a 3-list assignment L for G.

Output: A coloring of (G,L), or a determination that (G,L) is not colorable.
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Proof. We may assume that G is connected, since otherwise we can run the algorithm for each
component of G independently. In time O(|V (G)|4) we can determine that either (G,L) is not
colorable, or G is K4-free. If G is K4-free, we can construct St−1 in O(tn2) time as stated above.
Then by Lemma 15, St−1 is a dominating set of G and |St−1| ≤ Ms,t. Now the theorem follows
from Corollary 12.
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