List 3-coloring P_t -free graphs with no induced 1-subdivision of $K_{1,s}$

Maria Chudnovsky¹, Sophie Spirkl^{1,2}, and Mingxian Zhong³

¹Princeton University, Princeton, NJ 08544 ²Current address: University of Waterloo, Canada ³Lehman College and the Graduate Center, City University of New York, NY 10468

July 16, 2020

Abstract

Let s and t be positive integers. We use P_t to denote the path with t vertices and $K_{1,s}$ to denote the complete bipartite graph with parts of size 1 and s respectively. The one-subdivision of $K_{1,s}$ is obtained by replacing every edge $\{u, v\}$ of $K_{1,s}$ by two edges $\{u, w\}$ and $\{v, w\}$ with a new vertex w. In this paper, we give a polynomial-time algorithm for the list 3-coloring problem restricted to the class of P_t -free graph with no induced 1-subdivision of $K_{1,s}$.

1 Introduction

All graphs in this paper are finite and simple. We use [k] to denote the set $\{1, \ldots, k\}$. Let G be a graph. A *k*-coloring of G is a function $f : V(G) \to [k]$ such that for every edge $uv \in E(G)$, $f(u) \neq f(v)$, and G is *k*-colorable if G has a *k*-coloring. The *k*-COLORING PROBLEM is the problem of deciding, given a graph G, if G is *k*-colorable. This problem is well-known to be NP-hard for all $k \geq 3$.

A function $L: V(G) \to 2^{[k]}$ that assigns a subset of [k] to each vertex of a graph G is a k-list assignment for G. For a k-list assignment L, a function $f: V(G) \to [k]$ is a coloring of (G, L) if f is a k-coloring of G and $f(v) \in L(v)$ for all $v \in V(G)$. We say that a graph G is L-colorable, and that the pair (G, L) is colorable, if (G, L) has a coloring. The LIST k-COLORING PROBLEM is the problem of deciding, given a graph G and a k-list assignment L, if (G, L) is colorable. Since this generalizes the k-coloring problem, it is also NP-hard for all $k \geq 3$.

We denote by P_t the path with t vertices and we use $K_{r,s}$ to denote the complete bipartite graph with parts of size r and s respectively. The one-subdivision of $K_{1,s}$ is obtained by replacing every edge $\{u, v\}$ of $K_{1,s}$ by two edges $\{u, w\}$ and $\{v, w\}$ with a new vertex w. For a set \mathcal{H} of graphs, a graph G is \mathcal{H} -free if no element of \mathcal{H} is an induced subgraph of G. If $\mathcal{H} = \{H\}$, we say that G is H-free. In this paper, we use the terms "polynomial time" and "polynomial size" to mean "polynomial in |V(G)|", where G is the input graph. Since the k-COLORING PROBLEM and the LIST-k COLORING PROBLEM are NP-hard for $k \geq 3$, their restrictions to H-free graphs, for various H, have been extensively studied. In particular, the following is known:

Theorem 1 ([7]). Let H be a (fixed) graph, and let k > 2. Assume that $P \neq NP$. If the k-COLORING PROBLEM can be solved in polynomial time when restricted to the class of H-free graphs, then every connected component of H is a path.

Thus if we assume that H is connected, then the question of determining the complexity of kcoloring H-free graph is reduced to studying the complexity of coloring graphs with certain induced
paths excluded, and a significant body of work has been produced on this topic. Below we list a
few such results.

Theorem 2 ([1]). The 3-COLORING PROBLEM can be solved in polynomial time for the class of P_7 -free graphs.

Theorem 3 ([2]). The 4-COLORING PROBLEM can be solved in polynomial time for the class of P_6 -free graphs.

Theorem 4 ([4]). The k-COLORING PROBLEM can be solved in polynomial time for the class of P_5 -free graphs.

Theorem 5 ([5]). The 4-COLORING PROBLEM is NP-complete for the class of P_7 -free graphs.

Theorem 6 ([5]). For all $k \ge 5$, the k-COLORING PROBLEM is NP-complete for the class of P_6 -free graphs.

The only case for which the complexity of k-coloring P_t -free graphs is not known $k = 3, t \ge 8$. Then it is natural to consider forbidding another induced subgraph besides the path. The following are two known results when the other forbidden induced subgraph is a clique or a cycle.

Theorem 7 ([8]). For all $k, r, s, t \ge 1$, the LIST k-COLORING PROBLEM can be solved in polynomial time for the class of $(K_{r,s}, P_t)$ -free graphs.

Theorem 8 ([6]). The k-COLORING PROBLEM for the class of (C_s, P_t) -free graphs can be solved in polynomial time if $k \ge 5, s = 3$ and $t \le k + 2$, and is NP-complete if

- 1. k = 4, s = 3 and $t \ge 22$
- 2. $k = 4, s = 5 \text{ or } 6 \text{ and } t \ge 7$
- 3. k = 4, s = 7 and $t \ge 9$
- 4. $k = 4, s \ge 8$ and $t \ge 7$
- 5. $k \ge 5, s = 3$ and $t \ge t_k$ where t_k is a constant only depends on k
- 6. $k \ge 5, s = 5 \text{ and } t \ge 7$
- 7. $k \ge 5, s \ge 6$ and $t \ge 6$.

In this paper, we consider the LIST 3-COLORING PROBLEM for P_t -free graphs with no induced 1-subdivision of $K_{1,s}$. We use SDK_s to denote the one-subdivision of $K_{1,s}$. The main result is the following:

Theorem 9. For all positive integers s and t, the LIST 3-COLORING PROBLEM can be solved in polynomial time for the class of (SDK_s, P_t) -free graphs.

2 Preliminaries

We need two theorems: the first one is the famous Ramsey Theorem [9], and the second is a result of Edwards [3]:

Theorem 10 ([9]). For each pair of positive integers k and l, there exists an integer R(k, l) such that every graph with at least R(k, l) vertices contains a clique with at least k vertices or an independent set with at least l vertices.

Theorem 11 ([3]). Let G be a graph, and let L be a list assignment for G such that $|L(v)| \leq 2$ for all $v \in V(G)$. Then a coloring of (G, L), or a determination that none exists, can be obtained in time O(|V(G)| + |E(G)|).

Let G be a graph with list assignment L. For $X \subseteq V(G)$ we denote by G|X the subgraph induced by G on X, by $G \setminus X$ the graph $G|(V(G) \setminus X)$ and by (G|X, L) the list coloring problem where we restrict the domain of the list assignment L to X. For $v \in V(G)$ we write $N_G(v)$ (or N(v)when there is no danger of confusion) to mean the set of vertices of G that are adjacent to v. For $X \subseteq V(G)$ we write $N_G(X)$ (or N(X) when there is no danger of confusion) to mean $\bigcup_{v \in X} N(v)$. We say that $D \subseteq V(G)$ is a *dominating set* of G if for every vertex $v \in G \setminus D$, $N(v) \cap D \neq \emptyset$. By Theorem 11, the following corollary immediately follows.

Corollary 12. Let G be a graph, L be a 3-list assignment for G and let D be a dominating set of G. Then a coloring of (G, L), or a determination that (G, L) is not colorable, can be obtained in time $O(3^{|D|}(|V(G)| + |E(G)|))$.

Proof. For every coloring c of (G|D, L), in time O(|E(G)|) we can define a list assignment L_c of G as follows: if $v \in D$ we set $L_c(v) = \{c(v)\}$ and if $v \notin D$ we can pick $u \in N(v) \cap D$ by the definition of a dominating set and set $L_c(v) = L(v) \setminus c(u)$. Let $\mathcal{L} = \{L_c : c \text{ is a coloring of} (G|D,L)\}$, then clearly $|\mathcal{L}| \leq 3^{|D|}$ and (G,L) is colorable if and only if there exists a $L_c \in \mathcal{L}$ such that (G, L_c) is colorable. For every $L_c \in \mathcal{L}$, by construction $|L_c(v)| \leq 2$ for every $v \in G$ and hence by Theorem 11, a coloring of (G, L_c) , or a determination that none exists, can be obtained in time O(|V(G)| + |E(G)|). Therefore a coloring of (G, L), or a determination that (G, L) is not colorable, can be obtained in time $O(3^{|D|}(|V(G)| + |E(G)|))$.

3 The Algorithm

Let s and t be positive integers, and let G = (V, E) be a connected (P_t, SDK_s, K_4) -free graph. Pick an arbitrary vertex $a \in V$ and let $S_1 = \{a\}$. For $v \in V$, let d(v) be the distance from v to a. For $i = 1, 2, \ldots, t - 2$, we define the set S_{i+1} as follows:

- Let $B_i = N(S_i), W_i = V \setminus (B_i \cup S_i).$
- Write $S_i = \{v_1, v_2, \dots, v_{|S_i|}\}$ and define

$$B_i^j = \left\{ v \in \left(B_i \setminus \bigcup_{k=1}^{j-1} B_i^k \right) : v \text{ is adjacent to } v_j \right\}$$

for $j = 1, 2, ... |S_i|$. Then $B_i = \bigcup_{j=1}^{|S_i|} B_i^j$.

• For $j = 1, 2, ..., |S_i|$, let $X_i^j \subseteq B_i^j$ be a minimal vertex set such that for every $w \in W_i$, if $N(w) \cap B_i^j \neq \emptyset$, then $N(w) \cap X_i^j \neq \emptyset$. Let $X_i = \bigcup_{j=1}^{|S_i|} X_i^j$.

• Let $S_{i+1} = S_i \cup X_i$.

It is clear that we can compute S_{t-1} in $O(t|V|^2)$ time. Next, we prove some properties of this construction.

Lemma 13. For i = 1, 2, ..., t - 2, $|S_{i+1}| \le |S_i|(1 + R(4, R(4, s)))$.

Proof. It is sufficient to show that for each $\ell = 1, 2, \ldots, |S_i|, |X_i^{\ell}| \leq R(4, R(4, s))$. Suppose not, $|X_i^{\ell}| = K > R(4, R(4, s))$ for some $\ell \in \{1, 2, \ldots, |S_i|\}$. Let $X_i^{\ell} = \{x_1, x_2, \ldots, x_K\}$. By the minimality of X_i^{ℓ} , for $j = 1, 2, \ldots, K$, there exists $y_j \in W_i$ such that $N(y_j) \cap X_i^{\ell} = \{x_j\}$. Since G is K_4 free, by Theorem 10, there exists an independent set $X' \subseteq X_i^{\ell}$ of size R(4, s). We may assume $X' = \{x_1, x_2, \ldots, x_{R(4,s)}\}$. Let $Y' = \{y_1, y_2, \ldots, y_{R(4,s)}\}$. Again by Theorem 10, there exists an independent set $Y'' \subseteq Y'$ of size s. We may assume $Y'' = \{y_1, y_2, \ldots, y_s\}$ and let $X'' = \{x_1, x_2, \ldots, x_s\}$. Then $G[\{v_\ell\} \cup X'' \cup Y'']$ is isomorphic to SDK_s , a contradiction. \Box

For convenience, we set $S_0 = \emptyset$, $B_0 = \{a\}$ and $B_{t-1} = N(S_{t-1})$. Then by construction it is clear that $S_i \subseteq \bigcup_{k=0}^{i-1} B_k$ for every $1 \le i \le t-1$. Moreover, the following property holds.

Lemma 14. For i = 0, 1, ..., t - 2, $B_{i+1} \setminus (B_i \cup S_i) = \{v : d(v) = i + 1\}$

Proof. We use induction to prove this lemma. It is clear that for i = 0, $B_1 = N(a) = \{v : d(v) = 1\}$.

Now suppose this lemma holds for i < k, where $k \in \{1, 2, ..., t-2\}$. First we show that for every $v \in B_{k+1} \setminus (B_k \cup S_k)$, d(v) = k + 1. By construction $v \in W_k$, hence d(v) > k by induction. Since $v \in B_{k+1} \setminus B_k$, v has a neighbor w in $S_{k+1} \setminus S_k \subseteq B_k$; and thus $d(v) \le d(w) + 1 \le k + 1$.

Now let $v \in V$ with d(v) = k + 1. It follows that $v \notin (B_k \cup S_k)$, and $v \in B_{k+1} \cup W_{k+1}$, and v has a neighbor $w \in V$ with d(w) = k. By induction, it follows that $v \in W_k$ and $w \in B_k$. Let $j \in \mathbb{N}$ such that $w \in B_k^j$. Since $v \in W_k$ and $N(w) \cap B_k^j \neq \emptyset$, it follows that v has a neighbor in $X_k^j \subseteq X_k \subseteq S_{k+1}$, and therefore $v \in B_{k+1}$, as required. This finishes the proof of Lemma 14. \Box

By applying Lemma 13 and Lemma 14, we deduce the following properties of S_{t-1} .

Lemma 15. 1. There exists a constant $M_{s,t}$ which only depends on s and t such that $|S_{t-1}| \leq M_{s,t}$.

2. $W_{t-1} = V \setminus (S_{t-1} \cup N(S_{t-1})) = \emptyset$.

Proof. Since we start with $|S_1| = 1$, by applying Lemma 13 t - 2 times, it follows that $|S_{t-1}| \leq (1 + R(4, R(4, s)))^{t-2}$. Let $M_{s,t} = (1 + R(4, R(4, s)))^{t-2}$, then the first claim holds.

Suppose the second claim does not hold. From Lemma 14, it follows that $\{v : d(v) \le t - 1\} \subseteq S_{t-1} \cup N(S_{t-1})$. But if $w \in V$ satisfies $d(w) \ge t$, then a shortest w-a-path is an induced path of at least t vertices, a contradiction. Thus the second claim holds.

We are now ready to prove our main result, which we rephrase here:

Theorem 16. Let $M_{s,t} = (1 + R(4, R(4, s)))^{t-2}$. There exists an algorithm with running time $O(|V(G)|^4 + t|V(G)|^2 + 3^{M_{s,t}}(V(G) + E(G)))$ with the following specification.

Input: A (SDK_s, P_t) -free graph G and a 3-list assignment L for G.

Output: A coloring of (G, L), or a determination that (G, L) is not colorable.

Proof. We may assume that G is connected, since otherwise we can run the algorithm for each component of G independently. In time $O(|V(G)|^4)$ we can determine that either (G, L) is not colorable, or G is K_4 -free. If G is K_4 -free, we can construct S_{t-1} in $O(tn^2)$ time as stated above. Then by Lemma 15, S_{t-1} is a dominating set of G and $|S_{t-1}| \leq M_{s,t}$. Now the theorem follows from Corollary 12.

Acknowledgments

This paper is partially supported by NSF grant DMS-1763817, U.S. Army Research Office grant W911NF-16-1-0404 and PSC-CUNY Award 3407-00 51, and is based upon work supported by the National Science Foundation under Award No. DMS-1802201.

References

- Bonomo, F., M. Chudnovsky, P. Maceli, O. Schaudt, M. Stein, and M. Zhong. Three-coloring and list three-coloring graphs without induced paths on seven vertices. Combinatorica 38(4) (2018), 779–801.
- [2] Chudnovsky, M., S. Spirkl and M. Zhong, Four-coloring P₆-free graphs. In Proceedings of 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2019), 1239-1256.
- [3] Edwards, K. The complexity of colouring problems on dense graphs. Theoretical Computer Science 43 (1986): 337–343.
- [4] Hoàng, C. T., M. Kamiński, V. Lozin, J. Sawada, and X. Shu. Deciding k-colorability of P₅-free graphs in polynomial time. Algorithmica 57, no. 1 (2010): 74–81.
- [5] Huang, S.. Improved complexity results on k-coloring P_t -free graphs. European Journal of Combinatorics 51 (2016): 336–346.
- [6] Huang, S., M. Johnson and D. Paulusma. Improved complexity results on k-coloring P_t-free graphs. The Computer Journal 58 (2015) 3074-3088.
- [7] Golovach, P. A., D. Paulusma, and J. Song. *Closing complexity gaps for coloring problems on H-free graphs.* Information and Computation 237 (2014): 204–214.
- [8] Golovach, P. A., D. Paulusma, and J. Song. Coloring graphs without short cycles and long induced paths. Discrete Applied Mathematics 167 (2014) 107-120.
- [9] Ramsey, F.P. On a problem of formal logic. Proc. London Math. Soc. 2 (1930), no. 30, 264-286.