3

1 **1 Reuniting** χ **-boundedness with** α ² polynomial χ -boundedness

Maria Chudnovsky^{∗1}, Linda Cook^{†2}, James Davies³, and Sang-il Oum^{†2,4}

1 ⁴ Department of Mathematics, Princeton University, Princeton, USA

2 ⁵ Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, South Korea

6 ³Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, UK

4 ⁷ Department of Mathematical Sciences, KAIST, Daejeon, South Korea

8 Email addresses: mchudnov@math.princeton.edu, lindacook@ibs.re.kr, jgd37@cam.ac.uk,

sangil@ibs.re.kr

10 **October 19, 2023**

¹¹ Abstract

12 A class F of graphs is x-bounded if there is a function f such that $\chi(H) \le f(\omega(H))$ 13 for all induced subgraphs H of a graph in $\mathcal F$. If f can be chosen to be a polynomial, we say that F is polynomially χ -bounded. Esperet proposed a conjecture that every χ -bounded ¹⁵ class of graphs is polynomially χ -bounded. This conjecture has been disproved; it has 16 been shown that there are classes of graphs that are χ -bounded but not polynomially χ -¹⁷ bounded. Nevertheless, inspired by Esperet's conjecture, we introduce Pollyanna classes 18 of graphs. A class C of graphs is Pollyanna if $C \cap \mathcal{F}$ is polynomially χ -bounded for every γ -bounded class F of graphs. We prove that several classes of graphs are Pollyanna and ²⁰ also present some proper classes of graphs that are not Pollyanna.

21 1 Introduction

22 The chromatic number of a graph G, denoted by $\chi(G)$, is the minimum number of colors 23 needed to color the vertices of G such that adjacent vertices always receive distinct colors. A ²⁴ clique of a graph is a set of pairwise adjacent vertices. We write $\omega(G)$ to denote the maximum 25 size of a clique in a graph G. For a graph H, we say G is H-free if G has no induced subgraph $_{26}$ isomorphic to H .

27 Obviously $\chi(G) \ge \omega(G)$. In general, $\chi(G)$ is not bounded from above by any function of 28 $ω(G)$; there are constructions for triangle-free graphs with arbitrary large $χ(G)$ [\[Des47,](#page-32-0) [Des54,](#page-32-1) 29 [Myc55,](#page-33-0) [Zyk49\]](#page-34-0). The strong perfect graph theorem [\[CRST06\]](#page-32-2) states that $\chi(H) = \omega(H)$ for all 30 induced subgraphs H of a graph G if and only if G has no odd cycles or their complements as 31 an induced subgraph. Such graphs are called perfect.

³² Motivated by perfect graphs, Gyárfás [\[Gyá75\]](#page-33-1) initiated the study of graph classes on which 33 $\chi(G)$ is bounded from above by a function of $\omega(G)$. A class F of graphs is *χ*-bounded if there

[∗]Supported by NSF-EPSRC Grant DMS-2120644 and by AFOSR grant FA9550-22-1-0083.

[†]Supported by the Institute for Basic Science (IBS-R029-C1).

Figure 1: Forbidding any of these graphs makes a Pollyanna class of graphs.

34 exists a function f such that $\chi(H) \leq f(\omega(H))$ for all induced subgraphs H of a graph in F. 35 Such a function f is called a *χ*-bounding function for F. It is a well-known result of Erdős ³⁶ that for every $g \geq 3$ there exist graphs arbitrarily large chromatic number and with no cycle 37 of length less than g. Hence, if H contains a cycle, then the class of H-free graphs is not $38 \times \gamma$ -bounded. (The converse is the well-known Gyárfás-Sumner conjecture [\[Gyá75,](#page-33-1) [Sum81\]](#page-34-1)). 39 A class of graphs is *polynomially* χ *-bounded* if it has a polynomial χ -bounding function. 40 Examples of polynomially χ -bounded classes of graphs includes, perfect graphs [\[CRST06\]](#page-32-2), ⁴¹ even-hole-free graphs [\[CS23\]](#page-32-3), circle graphs [\[DM21,](#page-32-4) [Dav22\]](#page-32-5), rectangle intersection graphs 42 [\[AG60,](#page-31-0) [CW21\]](#page-32-6), bounded twin-width graphs [\[BT23\]](#page-31-1), and H-free graphs for certain small 43 forests H [\[SSS22a,](#page-34-2) [SSS22b,](#page-34-3) [CSSS23\]](#page-32-7). Note that for every graph H , if the class of H -free graphs 44 is polynomially χ -bounded, then H satisfies the celebrated Erdős-Hajnal conjecture [\[EH89\]](#page-32-8), 45 which is largely open (see also [\[Chu14\]](#page-32-9)). A major open problem is whether the class of P_5 -⁴⁶ free graphs is polynomially χ -bounded, since this would imply the smallest open case of the 47 Erdős-Hajnal conjecture. The best known χ -bounding function for P_5 -free graphs is quasi-⁴⁸ polynomial [\[SSS23\]](#page-34-4). 49 Esperet [\[Esp17\]](#page-33-2) conjectured that every χ -bounded class of graphs is polynomially χ -⁵⁰ bounded. Recently, this conjecture was disproved by Briański, Davies, and Walczak [\[BDW23\]](#page-31-2) ⁵¹ by extending ideas from a paper of Carbonero, Hompe, Moore, and Spirkl [\[CHMS23\]](#page-31-3). In par- 52 ticular, Briański, Davies, and Walczak constructed classes of graphs that are χ -bounded but 53 not polynomially χ -bounded. Nevertheless, inspired by Esperet's conjecture, we consider its 54 analog for proper classes of graphs. We say that a class C of graphs is Pollyanna if $\mathcal{C} \cap \mathcal{F}$ ⁵⁵ is polynomially χ -bounded for every χ -bounded class $\mathcal F$ of graphs. Note that every poly- 56 nomially χ -bounded class of graphs is Pollyanna, so Pollyanna classes of graphs generalize 57 polynomially χ -bounded classes. ⁵⁸ Here is our first main theorem. See [Figure 1](#page-1-0) for an illustration of forbidden graphs; precise

⁵⁹ definitions are given in each corresponding section.

60 Theorem 1.1. Let m, k, t be positive integers. The following graph classes are all Pollyanna.

- 61 (i) The class of mK_t -free graphs.
- 62 (ii) The class of (t, k) -pineapple-free graphs.
- 63 (iii) The class of t-lollipop-free graphs.
- 64 (iv) The class of bowtie-free graphs.
- 65 (v) The class of bull-free graphs.

66 None of the classes mentioned in [Theorem 1.1](#page-1-1) are χ -bounded, because if a graph H con- ϵ_0 tains a cycle, then H-free graphs contain all graphs of large girth and therefore the chromatic 68 number of H-free graphs is not bounded by the theorem of Erdős [\[Erd59\]](#page-32-10).

⁶⁹ The most difficult case of [Theorem 1.1](#page-1-1) is showing that bull-free graphs are Pollyanna.

⁷⁰ Bull-free graphs are of particular interest because of their complex structure, which was char-

⁷¹ acterized by Chudnovsky [\[Chu12b,](#page-32-11) [Chu12a\]](#page-32-12), and have been widely studied. Chudnovsky and

Figure 2: A pentagram spider, a tall strider, and a short strider are graphs obtained from the above figure by adding any additional edges between two red hollow vertices.

Figure 3: Graphs $\overline{P_9}, \overline{C_7}, F_7$, and W_7 . The class of $(\overline{P_9}, \overline{C_7}, F_7, W_7)$ -free graphs is not Pollyanna.

- ⁷² Safra [\[CS08\]](#page-32-13) showed that the bull satisfies the celebrated Erdős-Hajnal Conjecture. Bull-free
- ⁷³ graphs also have strong algorithmic properties [\[TTV17,](#page-34-5) [CS18,](#page-32-14) [FM04\]](#page-33-3). Thomassé, Trotignon,
- ⁷⁴ and Vušković [\[TTV17\]](#page-34-5) showed that there is a function f such that every bull-free G satisfies
- τ_5 $\chi(G) \le f(\chi_T(G), \omega(G))$ where $\chi_T(G)$ is the maximum chromatic number of a triangle-free

 76 induced subgraph of G by using results of Chudnovsky [\[Chu12b,](#page-32-11) [Chu12a\]](#page-32-12). Note that their

 π function f is far from being polynomial in $\omega(G)$. Hence, our result that the class of bull-

⁷⁸ free graphs is a Pollyanna class is a strengthening of this result of Thomassé, Trotignon, and

⁷⁹ Vušković [\[TTV17\]](#page-34-5).

⁸⁰ We will actually prove something stronger than the statement in [Theorem 1.1.](#page-1-1) For an 81 integer n, we say a class $\mathcal F$ of graphs is n-good if it is hereditary and there is some constant m s2 such that every $G \in \mathcal{F}$ with $\omega(G) \leq n$ satisfies $\chi(G) \leq m$. Note that n-goodness is a strictly ⁸³ weaker condition than *χ*-boundedness [\[CHMS23,](#page-31-3) [BDW23,](#page-31-2) [GIP](#page-33-4)⁺23]. We say a class *C* of graphs 84 is n-strongly Pollyanna if $C \cap \mathcal{F}$ is polynomially χ -bounded for every n-good class $\mathcal F$ of graphs. ⁸⁵ We say that C is *strongly Pollyanna* if it is *n*-strongly Pollyanna for some integer *n*. Note that 86 for each $n \leq 1$, a class C of graphs is *n*-strongly Pollyanna if and only if it is polynomially $87 \times$ -bounded. We will show the following:

88 Theorem 1.2. Let m, k, t be positive integers. The following statements hold.

- 89 (i) The class of mK_t -free graphs is $(t-1)$ -strongly Pollyanna.
- 90 (ii) The class of (t, k) -pineapple-free graphs is $(2t 4)$ -strongly Pollyanna.
- 91 (iii) The class of t-lollipop-free graphs is $(3t 6)$ -strongly Pollyanna.
- 92 (iv) The class of bowtie-free graphs is 3-strongly Pollyanna.
- 93 (v) The class of bull-free graphs is 4-strongly Pollyanna.

⁹⁴ Our second main theorem shows that a certain proper class of graphs is not Pollyanna, ⁹⁵ which generalizes the theorem of Briański, Davies, and Walczak [\[BDW23\]](#page-31-2) that the class of ⁹⁶ all graphs is not Pollyanna. See [Figures 2](#page-2-0) and [3](#page-2-1) for an illustration of pentagram spiders, tall 97 striders, short striders, F_7 , W_7 , the complement $\overline{P_9}$ of P_9 , and the complement $\overline{C_7}$ of C_7 ; precise ⁹⁸ definitions are given in [Section 9.](#page-24-0)

99 Theorem 1.3. Let F be the set of all pentagram spiders, all tall striders, all short striders, $\overline{P_9}$, $\overline{C_n}$, F_n , and W_n for all $n \ge 7$. Then the class of $\mathcal F$ -free graphs is not Pollyanna.

¹⁰¹ We will actually prove something significantly more general than [Theorem 1.3](#page-2-2) (see [Theo-](#page-21-0) 102 [rems 8.2](#page-21-0) and [8.9\)](#page-23-0), where F can be any finite collection of graphs that are not willows. We will 103 introduce willows in [Section 8.](#page-21-1)

 The paper is organized as follows. [Section 2](#page-3-0) reviews basic definitions and properties. [Sec-](#page-4-0) [tions 3](#page-4-0) to [7](#page-10-0) each deal with the proof of a different case of [Theorem 1.1](#page-1-1) in order, and we remark that each of these sections can be read independently of each other. [Sections 8](#page-21-1) and [9](#page-24-0) deal with 107 the proof of [Theorem 1.3.](#page-2-2) [Section 10](#page-29-0) ends the paper with a discussion of further work and several open problems.

¹⁰⁹ 2 Preliminaries

110 We denote the complement of a graph G by \overline{G} . For a graph H, a graph G is H-free if G has no 111 induced subgraph isomorphic to H. For a set F of graphs, a graph G is F-free if G is H-free 112 for every $H \in \mathcal{F}$. For a vertex v of a graph G, we write $N_G(v)$ to denote the set of all neighbors 113 of v. For a set $S \subseteq V(G)$, we will denote $\cup_{s \in S} N_G(s) \setminus S$ by $N(S)$. In situations where it is not 114 ambiguous, we will denote $N_G(v)$ by $N(v)$ and $N_G(S)$ by $N(S)$. For two disjoint sets A and B $_{115}$ of vertices, we say that A is *anti-complete* to B if there are no edges between A and B, and $_{116}$ complete to B if every vertex in A is adjacent to every vertex in B. If A is neither complete nor 117 anti-complete to B, then we say A is mixed on B. We let P_t denote the path on t-vertices. The 118 length of a path or a cycle is the number of its edges. For $S, T \subseteq V(G)$ the distance between 119 S and T is the length of a shortest path with one end in S and the other end in T.

¹²⁰ In the rest of this section, we detail further preliminaries that we require to show that the 121 class of t-lollipop-free and the class of bull-free graphs are Pollyanna.

122 A homogeneous set of a graph G is a set X of vertices such that $1 < |X| < |V(G)|$ and 123 every vertex in $V(G) \setminus X$ is either complete or anti-complete to X. Substituting a vertex v 124 of a graph G by a graph H is an operation that creates a graph obtained from the disjoint 125 union of H and $G - v$ by adding an edge between every vertex of H and every neighbor of v 126 in G. Notice that if $|V(G)|, |V(H)| > 1$, then $V(H)$ is a homogeneous set in this new graph. 127 We require a theorem of Chudnovsky, Penev, Scott, and Trotignon [\[CPST13\]](#page-32-15) that substitution ¹²⁸ preservers polynomial χ -boundedness. Given a class $\mathcal C$ of graphs, we let $\mathcal C^*$ denote the closure 129 of C under substitutions and disjoint unions.

130 Theorem 2.1 (Chudnovsky, Penev, Scott, and Trotignon [\[CPST13\]](#page-32-15)). Let C be a class of graphs. 131 If C is polynomially χ -bounded, then so is \mathcal{C}^* .

¹³² We further require some results on perfect graphs. A *hole* is an induced cycle of length at 133 least four. The *parity* of a hole (or path) is the parity of its length. An induced subgraph A 134 of a graph G is an *antihole* if $V(A)$ induces a hole in \overline{G} . A graph G is called *perfect* if every 135 induced subgraph H of G satisfies $\omega(H) = \chi(H)$. The "Strong Perfect Graph Theorem" of ¹³⁶ Chudnovsky, Robertson, Seymour, and Thomas [\[CRST06\]](#page-32-2) states that a graph is perfect if and 137 only if it does not contain an odd hole or an odd antihole.

¹³⁸ We do not require the full force of the strong perfect graph theorem and so, we will instead ¹³⁹ use the following three results. They are easy corollaries of the strong perfect graph theorem, ¹⁴⁰ but they were proven several years earlier and have much shorter proofs.

141 **Theorem 2.2** (Seinsche [\[Sei74\]](#page-33-5)). Every P_4 -free graph is perfect.

142 Theorem 2.3 (Chvátal and Sbihi [\[CS87\]](#page-32-16)). A bull-free graph is perfect if and only if it does not ¹⁴³ contain an odd hole or odd antihole.

144 Lemma 2.4 (Lovász [\[Lov72\]](#page-33-6)). The class of perfect graphs is closed under taking substitutions.

145 3 Adding a clique

146 We write $H \cup F$ to denote the disjoint union of two graphs H and F. We prove that if the 147 class of H-free graphs is Pollyanna, then so is the class of $(K_t \cup H)$ -free graphs. Our proof

¹⁴⁸ is very similar to Wagon's proof [\[Wag80\]](#page-34-6) that the class of mK_2 -free graphs is polynomially

 149 *χ*-bounded for each positive integer *m*.

150 **Proposition 3.1.** Let $t > 1$ be an integer. If the class of H-free graphs is Pollyanna, then the 151 class of $(K_t \cup H)$ -free graphs is Pollyanna.

- 152 Proof. Let C be the class of $(K_t \cup H)$ -free graphs. Let D be the class of H-free graphs. Let F be
- 153 a χ -bounded hereditary class of graphs with a χ -bounding function f. We may assume that
- 154 f is an increasing function. Assume that $\mathcal{F} \cap \mathcal{D}$ is χ -bounded by a χ -bounding polynomial g.
- 155 We may also assume that g is an increasing function.

Let G be a graph in $\mathcal{F} \cap \mathcal{C}$. To prove that $\mathcal{F} \cap \mathcal{C}$ is χ -bounded, we claim that

$$
\chi(G) \le {\omega(G) \choose t-1} f(t-1) + {\omega(G) \choose t} g(\omega(G)).
$$
\n(1)

¹⁵⁶ We may assume that $\omega(G) \geq t$ because otherwise $\chi(G) \leq f(t-1)$. Let K be a clique of G $_{157}$ with $|K| = \omega(G)$.

158 Now, for each subset M of K with $|M| = t-1$, let A_M be the set of all vertices in $V(G) \setminus K$ ¹⁵⁹ that are complete to $K \setminus M$. Since $K \setminus M$ is complete to A_M , we have that $\omega(G[A_M]) \leq$ 160 $\omega(G)-\omega(G[K\setminus M])=\omega(G)-(\omega(G)-(t-1))=t-1$. Therefore, $\chi(G[A_M])\leq f(\omega(G[A_M]))\leq$ $f(t-1)$.

For each subset N of K with $|N| = t$, let A'_{N} be the set of all vertices in $V(G) \setminus K$ that α_{163} are anti-complete to $N.$ Since G has no induced subgraph isomorphic to $K_t\cup H,$ $G[A'_N]\in \mathcal{D}.$ ¹⁶⁴ This implies that $\chi(G[A'_N]) \leq g(\omega(G))$. Observe that every vertex in $V(G)$ is in $M \cup A_M$ for ¹⁶⁵ some $M \subseteq K$ with $|M| = t - 1$, or in A'_{N} for some N with $|N| = t$. Thus we deduce that [\(1\)](#page-4-1) holds since there are $\binom{\omega(G)}{\omega(G)-(t-1)}=\binom{\omega(G)}{t-1}$ $\binom{\omega(G)}{t-1}$ such choices for M , and $\binom{\omega(G)}{t}$ $_{^{166}}$ holds since there are ${{\omega(G)}\choose{{\omega(G)- (t-1)}}} = {{\omega(G)}\choose{t-1}}$ such choices for $M,$ and ${{\omega(G)}\choose{t}}$ choices for $N.$

¹⁶⁷ We can use the almost same proof to prove the following.

 168 Proposition 3.2. If the class of H-free graphs is $(t-1)$ -strongly Pollyanna, then the class of $_{169}$ K_t ∪ H-free is $(t-1)$ -strongly Pollyanna. \Box

170 Since the class of K_t -free graphs is trivially $(t - 1)$ -strongly Pollyanna, we deduce the 171 following corollary.

172 **Corollary 3.3.** The class of mK_t -free graphs is $(t - 1)$ -strongly Pollyanna. \Box

¹⁷³ [Corollary 3.3](#page-4-2) implies the aforementioned result of Wagon [\[Wag80\]](#page-34-6) that the class of $mK₂$ - 174 free graphs is polynomially χ -bounded for each positive integer m.

175 4 Pineapple-free graphs

¹⁷⁶ For positive integers t and k, a (t, k) -pineapple is a graph obtained by attaching k pendant 177 edges to a vertex of a complete graph K_t , see [Figure 1a.](#page-1-0) In this section, we will show that 178 the class of (t, k) -pineapple-free graphs is Pollyanna. First, we need to introduce Ramsey's 179 theorem with some explicit bounds.

Figure 4: An illustration for the proof of [Proposition 4.2.](#page-5-0)

¹⁸⁰ For positive integers s and t, let $R(s, t)$ be the minimum positive integer N such that 181 every graph on N vertices contains a clique of size s or an independent of size t. Ramsey's ¹⁸² theorem [\[Ram30\]](#page-33-7) states that $R(s, t)$ exists. Erdős and Szekeres [\[ES35\]](#page-33-8) proved the following ¹⁸³ upper bound.

¹⁸⁴ Proposition 4.1 (Erdős and Szekeres [\[ES35\]](#page-33-8)). For positive integers s and t, we have $R(s,t)$ < $\binom{s+t-2}{t-1}$ 185 $\binom{s+t-2}{t-1}$.

¹⁸⁶ Because of [Proposition 4.1,](#page-5-1) if t is a fixed constant, then $R(s, t)$ is bounded from above by $_{187}$ a degree- $(t-1)$ polynomial in s.

¹⁸⁸ We are now ready to prove that the class of pineapple-free graphs is Pollyanna.

189 **Proposition 4.2.** Let t, k be positive integers. The class of (t, k) -pineapple-free graphs is $(2t-4)$ -¹⁹⁰ strongly Pollyanna.

Proof. We may assume that $t > 2$, because otherwise the class of (t, k) -pineapple-free graphs is polynomially χ -bounded by [Proposition 4.1.](#page-5-1) Let $\mathcal F$ be a hereditary class of graphs and let C be a positive integer such that $\chi(G) \leq C$ whenever $G \in \mathcal{F}$ and $\omega(G) \leq 2t - 4$. Let $\mathcal G$ be the class of (t, k) -pineapple-free graphs. Let $G \in \mathcal{F} \cap \mathcal{G}$. Let

$$
m(x) = C \sum_{i=1}^{t-2} {x \choose i}, \quad g(x) = \left(t {x \choose t} + 1\right) m(x) {x + k - 3 \choose k - 1}.
$$

191 Let ω be a positive integer. We claim that if $\omega(G) \leq \omega$, then $\chi(G) \leq g(\omega)$. We proceed by 192 induction on $|V(G)|$. We may assume that $\omega(G) \geq 2t-3$ because otherwise $\chi(G) \leq C \leq g(\omega)$.

Let K be a clique of size $\omega(G)$. For a nonempty subset M of K with $|M| < t - 1$, let A_M be the set of vertices in $V(G) \setminus K$ that are complete to $K \setminus M$ and anti-complete to M. Then $\omega(G[A_M \cup M]) = |M|$ and therefore $\chi(G[A_M \cup M]) \leq C$. Let S be the union of all A_M for every choice of $M \subseteq K$ satisfying $1 \leq |M| < t - 1$. Then,

$$
\chi(G[K \cup S]) \le \sum_{v \in K} \chi(G[A_{\{v\}} \cup \{v\}]) + \sum_{M \subseteq K, 2 \le |M| < t-1} \chi(G[A_M])
$$
\n
$$
\le C \sum_{i=1}^{t-2} {\omega \choose i} = m(\omega). \tag{2}
$$

For a subset N of K with $|N| = t-1$ and a vertex v of $K \setminus N$, let $A'_{N,v}$ be the set of vertices in $N(v)\setminus K$ that are anti-complete to $N.$ Clearly, $\omega(A'_{N,v})\leq \omega-1.$ As \widetilde{G} is (t,k) -pineapple-free, ¹⁹⁵ $G[A'_{N,v}]$ has no independent set of size k. Thus, by Ramsey's theorem, $|A'_{N,v}| < R(\omega - 1, k)$.

Note that, by definition, every vertex $u \in N(K)$ with at least $t - 1$ non-neighbors in K is in $A'_{N,v}$ for some $N \subseteq K \setminus N(u)$ and $v \in K$ with $|N| = t - 1$. Let T be the union of all $A'_{N,v}$ for every choice of $N \subseteq K$ and $v \in K \setminus N$ such that $|N| = t - 1$. Then,

$$
|T| < t \binom{\omega}{t} R(\omega - 1, k). \tag{3}
$$

¹⁹⁶ It follows from the definition of S and T that S is the set of all vertices in $N(K)$ with 197 fewer than $t-1$ non-neighbors in K and T is the set of all vertices in $N(K)$ with at least $t-1$ 198 non-neighbors in K, see [Figure 4.](#page-5-2) Hence, $N(K) = S \cup T$.

199 Since $|K| \geq 2t - 3$, each vertex $v \in S$ has at least $t - 1$ neighbors in K and therefore 200 $|N(v) \setminus (K \cup N(K))| < R(\omega - 1, k)$ because G is (t, k) -pineapple-free. Then by [\(3\)](#page-5-3), each vertex $v \in K \cup S$ has fewer than $\alpha := (t \binom{\omega}{t})$ t + 1 ²⁰¹ R(ω − 1, k) neighbors in V (G) \ (K ∪ S). 202 Let $c_1 : V(G \setminus (K \cup S)) \to \{1, 2, \ldots, g(\omega)\}\$ be a coloring of $G \setminus (K \cup S)$ obtained by the 203 induction hypothesis. By [\(2\)](#page-5-4), there is a coloring $c_2 : K \cup S \to \{1, 2, \ldots, m(\omega)\}\$ of G[S]. We 204 define a coloring $c: V(G) \to \{1, 2, \ldots, g(\omega)\}\$ of G as follows. For $v \in V(G \setminus (K \cup S))$, 205 define $c(v) := c_1(v)$. Since every $v \in K \cup S$ has fewer than α neighbors in $V(G) \setminus (K \cup S)$, 206 there is some choice of $c(v) \in \{ \alpha(c_2(v) - 1) + 1, \alpha(c_2(v) - 1) + 2, \ldots, \alpha c_2(v) \}$ that is not ²⁰⁷ present in $N(v) \setminus S$. Since c_2 was a proper coloring of $G[K \cup S]$, it follows that c is a proper coloring for G with at most $\max(\alpha m(\omega), g(\omega))$ colors. Note that $R(\omega - 1, k) \leq {\omega + k-3 \choose k-1}$ coloring for G with at most $\max(\alpha m(\omega), g(\omega))$ colors. Note that $R(\omega - 1, k) \leq {\omega + k-3 \choose k-1}$ by ²⁰⁹ [Proposition 4.1.](#page-5-1) This completes the proof.

210 5 Lollipop-free graphs

211 Let $t \geq 1$ be a fixed integer. The t-lollipop is a graph obtained from the disjoint union of the ²¹² complete graph K_t on t vertices and the path graph P_2 on 2 vertices by adding an edge, see $_{213}$ [Figure 1b.](#page-1-0) Note that a t-lollipop is a $(t, 1)$ -pineapple whose pendant edge is subdivided once. 214 In this section, we aim to show that the class of t-lollipop-free graphs is Pollyanna.

²¹⁵ We say that a graph H is tidy if $|V(H)| \geq 2$ and for any partition of $V(H)$ into two 216 nonempty subsets M and N , one of the following holds.

217 (U1) $H[M]$ contains a clique K of size $t-1$ and N has a vertex anti-complete to K in H.

218 (U2) H[N] contains a clique K of size $t-1$ and H has adjacent vertices $x \in M$ and $y \in N \setminus K$ 219 such that both x and y are anti-complete to K in H.

220 Lemma 5.1. Let $t \geq 3$ be an integer. The disjoint union of two copies of K_{2t-3} is tidy.

221 Proof. Let S_1 , S_2 be the two cliques of cardinality $2t - 3$ and let H be the disjoint union of S_1 222 and S_2 . Let M, N be nonempty disjoint subsets of $V(H)$ such that $M \cup N = V(H)$. We may 223 assume [\(U1\)](#page-6-0) does not hold for M, N .

224 Claim 1. For each $i \in \{1,2\}$, if $S_i \cap N \neq \emptyset$, then $|S_{3-i} \cap N| \geq t-1$.

225 Proof. Since [\(U1\)](#page-6-0) does not hold for S_{3-i} , we deduce that $|S_{3-i} \cap M| < t-1$. Therefore $|S_{3-i} \cap M|$ $226 \quad N|\geq t-1.$

227 We may assume $S_1 \cap N \neq \emptyset$. By [Claim 1,](#page-6-1) we obtain $|S_2 \cap N| \geq t - 1$. Since $t \geq 2$, this ²²⁸ implies $S_2 \cap N \neq \emptyset$ and therefore by [Claim 1,](#page-6-1) we have $|S_1 \cap N| \geq t - 1$.

229 Let $x \in M$. Then $x \in S_i$ for some $i \in \{1,2\}$. By the previous paragraph, there is some 230 $y \in S_i \cap N$ and some subset $K \subseteq S_{3-i} \cap N$ of cardinality $t-1$. Now, K, x, and y satisfy 231 [\(U2\).](#page-6-2) \Box

232 A set S of vertices is a *split* if it has the property that for every $v, u \notin S$ where v is complete 233 to S and u is mixed on S, the vertices u and v are adjacent. A set S of vertices of a graph G is ²³⁴ fair if for every $v \in N(S)$, either v is complete to S or $\omega(G[S \setminus N(v)]) \geq t - 1$.

235 Lemma 5.2. Let $t > 3$ be an integer. If G is a t-lollipop-free graph and $G[S]$ is tidy for $S \subset V(G)$, 236 then S is a fair split.

237 Proof. Let us first show that S is a split. Suppose that a vertex $v \in V(G) \setminus S$ is complete to S, 238 a vertex $u \in V(G) \setminus S$ is mixed on S, and u is non-adjacent to v. Let $N = N_G(u) \cap S$ and 239 $M = S \setminus N$. As $M, N \neq \emptyset$, [\(U1\)](#page-6-0) or [\(U2\)](#page-6-2) holds. If (U1) holds with the clique $K \subseteq M$ and the 240 vertex $w \in N$, then $G[K \cup \{w, u, v\}]$ induces a t-lollipop. If [\(U2\)](#page-6-2) holds with the clique $K \subseteq N$ 241 and two adjacent vertices $x \in M$, $y \in N$, then $G[K \cup \{x, y, u\}]$ induces a t-lollipop. This 242 proves that S is a split.

243 Now let us show that S is fair. Suppose that v is not complete to S and $\omega(G[S \setminus N(v)])$ ²⁴⁴ t − 1. Let $N = N(v) \cap S$ and $M = S \setminus N$. By the assumption on $\omega(G[S \setminus N(v)])$, [\(U1\)](#page-6-0) does 245 not hold and therefore [\(U2\)](#page-6-2) holds with the clique $K \subseteq N$ and two adjacent vertices $x \in M$, 246 $y \in N \setminus K$. This implies that $G[K \cup \{x, y, v\}]$ induces a t-lollipop, a contradiction. \Box

²⁴⁷ The following lemma is an immediate consequence of [Lemmas 5.1](#page-6-3) and [5.2.](#page-6-4) For brevity, we ²⁴⁸ will denote the disjoint union of two copies of K_{2t-3} by $2K_{2t-3}$.

249 Lemma 5.3. Let $t \geq 3$ be an integer. Let G be a t-lollipop-free graph and let $S \subseteq V(G)$ induce ²⁵⁰ a copy of $2K_{2t-3}$. Then S is a fair split. \Box

 251 Next, we show that if some fair split is contained in the neighborhood of a vertex, then G ²⁵² has a homogeneous set.

253 Lemma 5.4. Let $t \geq 3$ be an integer. Let G be a t-lollipop-free graph and v be a vertex. If some $254 \text{ } S \subseteq N(v)$ is a fair split in G, then G has a homogeneous set.

²⁵⁵ Proof. Let X be the set of all vertices in $V(G) \setminus S$ complete to S. As $v \in X$, the set X is 256 nonempty. Let Y be the set of all vertices in $V(G) \setminus S$ mixed on S. Since S is a split, X is 257 complete to Y.

258 Let Z be the set of vertices in $V(G) \setminus (S \cup X \cup Y)$ that have a path to S in $G \setminus X$. We ²⁵⁹ claim that Z is complete to X. Suppose not. Then there are $x \in X$ and $z \in Z$ such that x is 260 non-adjacent to z. Let P be a path from z to S in $G \setminus X$. We choose x, z, and P such that ²⁶¹ the length of P is minimized. By such a choice, $V(P) \setminus \{z\}$ is complete to x and $V(P) \cap Y$ ²⁶² has a unique vertex, say y. Because S is fair, $\omega(G[S \setminus N(y)]) \ge t - 1$. Let K be a clique of 263 size $t-1$ in $G[S \setminus N(y)]$. Let z' be the vertex on P adjacent to z. Then z' is anti-complete to K so $G[K \cup \{x, z', z\}]$ is a t-lollipop, a contradiction. This proves that Z is complete to X. 265 Since $V(G) \setminus (S \cup X \cup Y \cup Z)$ is anti-complete to $S \cup Y \cup Z$ in G, it follows that $S \cup Y \cup Z$ 266 is a homogeneous set in G . \Box

 $\det 2K_{2t-3}^*$ be the graph obtained from $2K_{2t-3}$ by adding a new vertex adjacent to all other $_{268}$ vertices. Before showing that the class of t-lollipop-free graphs is Pollyanna, as an intermedi- $_{^{\textrm{269}}}$ ate step, we first show that the class of (t -lollipop, $2K_{2t-3}^*$)-free graphs is Pollyanna.

270 Lemma 5.5. For every integer $t \geq 3$, the class of (t-lollipop, $2K_{2t-3}^*$)-free graphs is $(3t-6)^{-1}$ ²⁷¹ strongly Pollyanna.

272 Proof. Let C be the class of t-lollipop-free $2K_{2t-3}^*$ -free graphs. Let F be a hereditary class of 273 graphs and let m be a positive integer such that $\chi(G) \le m$ whenever $G \in \mathcal{F}$ and $\omega(G) \le 3t-6$. 274 Let G be a graph in $\mathcal{F} \cap \mathcal{C}$. For every vertex v of G, $G[N(v)]$ has no induced subgraph $_{^{275}}$ $\,$ isomorphic to $2K_{2t-3}$ because G is $2K_{2t-3}^*$ -free. We may assume that $ω(G) > 3t-6$ because 276 otherwise $\chi(G) \leq m$. Let K be a clique of G with $|K| = \omega(G)$. Let $A = N(K)$ and $B =$ 277 $V(G) \setminus (K \cup N(K)).$

278 **Claim 2.**
$$
\omega(G[B]) \leq 3t - 6
$$
.

Proof. Suppose that $G[B]$ has a clique L of size $3t - 5$. Let P be a shortest path $v_0-v_1-\cdots-v_\ell$ 279 ²⁸⁰ from K to L where $v_0 \in K$ and $v_\ell \in L$. By definition, $\ell \geq 2$.

281 If $v_{\ell-1}$ has at least $t-1$ non-neighbors in L, then the graph induced by $(L \setminus N(v_{\ell-1})) \cup$ ²⁸² { $v_{\ell}, v_{\ell-1}, v_{\ell-2}$ } contains a t-lollipop, a contradiction. Therefore, $v_{\ell-1}$ has at least 2t – 3 neigh- 283 bors in L.

284 If v_1 has at least $t-1$ non-neighbors in K, then the graph induced by $(K \setminus N(v_1)) \cup$

²⁸⁵ $\{v_0, v_1, v_2\}$ contains a t-lollipop, a contradiction. Therefore v_1 has at least $2t - 3$ neighbors ²⁸⁶ in L. So, $\ell > 2$ for otherwise, the graph on $N(v_1)$ contains an induced subgraph isomorphic 287 to $2K_{2t-3}$.

288 As $t \geq 3$, we have $2t - 3 > t - 1$. Then $t - 1$ neighbors of $v_{\ell-1}$ in L with $v_{\ell-1}, v_{\ell-2}, v_{\ell-3}$ 289 induce a a t-lollipop, a contradiction. \blacksquare

290 For each subset M of K with $|M| < 2t - 3$, let A_M denote the set of all vertices in A ²⁹¹ that are anti-complete to M and complete to $K \setminus M$. Then, $\omega(G[A_M]) \leq |M|$, implying that $_{292}$ $\chi(G[A_M]) \leq m$.

For each subset N of K with $|N| = 2t - 3$ and each vertex $v \in K \setminus N$, let $A'_{N,v}$ be the set of all vertices in A that are anti-complete to N and are adjacent to v. Since $G[N(v)]$ is 2K_{2t−3}-free, $\omega(G[A'_{N,v}]) \leq 2t - 4$. This implies that $\chi(G[A'_{N,v}]) \leq m$. Observe that every vertex of A is in A_M or $A'_{N,v}$ for some choice of M, N, v. By the definition and the claim, $\chi(G) \leq \omega(G) + \chi(A) + \chi(B) \leq \omega(G) + \chi(A) + m$, so we obtain

$$
\chi(G) \le \omega(G) + m \sum_{i=1}^{2t-4} {\omega(G) \choose i} + m {\omega(G) \choose 2t-3} (\omega(G) - (2t-3)) + m,
$$
 (4)

²⁹³ which is a polynomial in $\omega(G)$.

²⁹⁴ We are now ready to show that the class of t -lollipop-free graphs is Pollyanna.

295 Theorem 5.6. For every integer $t \geq 1$, the class of t-lollipop-free graphs is $(3t - 6)$ -strongly ²⁹⁶ Pollyanna.

297 Proof. By [Theorem 2.2,](#page-3-1) we may assume $t \geq 3$. Let C be the class of t-lollipop-free graphs. 298 Let \mathcal{C}' be the class of (t-lollipop, $2K_{2t-3}^*$)-free graphs. Let $\mathcal F$ be a hereditary class of graphs 299 and let m be a positive integer such that $\chi(G) \leq m$ whenever $G \in \mathcal{F}$ and $\omega(G) \leq 3t - 6$. 300 By [Lemmas 5.3](#page-7-0) and [5.4,](#page-7-1) every graph in $\mathcal{C} \cap \mathcal{F}$ is either $2K_{2t-3}^*$ -free or has a homogeneous 301 ⊂set. Therefore, every graph in $\mathcal{C} \cap \mathcal{F}$ belongs to the closure of $\mathcal{C}' \cap \mathcal{F}$ under substitutions and 302 disjoint unions. By [Lemma 5.5,](#page-7-2) $\mathcal{C}' \cap \mathcal{F}$ is polynomially χ -bounded and therefore [Theorem 2.1](#page-3-2) 303 implies that $\mathcal{C} \cap \mathcal{F}$ is polynomially χ -bounded. \Box

304 **6 Bowtie-free graphs**

305 A bowtie is the graph on five vertices obtained from two copies of K_2 by adding a new vertex v ³⁰⁶ and making it adjacent to all other vertices, see [Figure 1c.](#page-1-0) In this section, we will show that ³⁰⁷ bowtie-free graphs are 3-strongly Pollyanna.

308 Theorem 6.1. The class of bowtie-free graphs is 3-strongly Pollyanna.

³⁰⁹ We do this by proving the following strengthening of [Theorem 6.1.](#page-8-0)

 \Box

 310 **Proposition 6.2.** Every bowtie-free graph G admits a partition of its vertex set into at most $f(\omega(G)) = \lceil \frac{1}{2} \rceil$ $\frac{1}{2}(\omega(G)+3\binom{\omega(G)}{3}$ $_3$ 11 $f(\omega(G))=\lceil \frac{1}{2}(\omega(G)+3\binom{\omega(G)}{3})\rceil+1=\mathcal{O}(\omega(G)^3)$ sets such that one of the sets induces a K_4 - 312 free graph and all other sets induce triangle-free graphs.

 313 One of the key observations for the proof is that if G is bowtie-free and has an edge e not 314 in any triangle, then $G \setminus e$ is also bowtie-free. We will show that if G is a counterexample to 315 [Proposition 6.2](#page-8-1) minimizing $|E(G)|$, then every edge of G is in a triangle. The following two 316 lemmas show that some induced subgraphs are forbidden in such graphs.

 317 Lemma 6.3. If a graph G has two disjoint cliques A and B of size 4 and 3 respectively with 318 exactly one edge between A and B, then G either has a bowtie as an induced subgraph or has an 319 edge that is not contained in a triangle.

320 Proof. Suppose that every edge is contained in a triangle and that G is bowtie-free. Let a_1, a_2 , a_3 , a_4 be the vertices of A and b_1 , b_2 , b_3 be the vertices of B. We may assume that $e = a_1b_1$ is 322 the unique edge between A and B. Since e is contained in a triangle, there is a vertex $x \notin A \cup B$ 323 adjacent to both a_1 and b_1 . As $\{a_1, x, b_1, b_2, b_3\}$ does not induce a bowtie, we may assume that x i is adjacent to $b_2.$ Similarly, as $\{b_1, x, a_1, a_i, a_j\}$ does not induce a bowtie for all $2\leq i < j \leq 4,$ 325 we may assume that x is adjacent to a_2 and a_3 . Then $\{x, a_2, a_3, b_1, b_2\}$ induces a bowtie, a ³²⁶ contradiction. \Box

 327 Lemma 6.4. If a graph G has two disjoint and anti-complete cliques A and B of size 4 and 3

 328 respectively and a vertex v with at least one neighbor in each of A and B, then G either has a 329 bowtie as an induced subgraph or has an edge that is not contained in a triangle.

 330 Proof. Suppose that G is bowtie-free and that every edge is contained in a triangle and suppose 331 there is some $v \in V(G)$ with at least one neighbor in each of A and B.

332 Claim 3. For every $u \in V(G)$ with at least one neighbor in each of A and B, u has at most one 333 neighbor in B.

 334 Proof. If u has at least two neighbors in B, then u has exactly one neighbor in A because G is

335 bowtie-free. It follows that A and $\{u\} \cup (N(u) \cap B)$ are two cliques of size 4 and 3 respectively 336 with exactly one edge between A and $\{u\} \cup (N(u) \cap B)$, contradicting [Lemma 6.3.](#page-9-0)

337 Hence, we may assume v has exactly one neighbor $b \in B$.

338 **Claim 4.** $|N(v) \cap A| > 2$.

339 Proof. Suppose that v has exactly one neighbor a_1 in A. As there is a triangle containing a_1v , 340 there is a common neighbor $x \notin A \cup B$ of a_1 and v. Since $G[A \cup \{x, v\}]$ is bowtie-free, x 341 is adjacent to at least three vertices a_1, a_2, a_3 in A. Since $G[\{a_2, a_3, x\} \cup B]$ is bowtie-free, it 342 follows that x has at most one neighbor in B. By [Lemma 6.3,](#page-9-0) x is adjacent to no vertex in B. 343 There is a common neighbor $y \notin A \cup B$ of v and b and y is adjacent to at least two vertices 344 in B. Hence y cannot be adjacent to two vertices of A for otherwise $G[{y} \cup N(y)]$ would 345 contain a bowtie. By [Lemma 6.3,](#page-9-0) y has no neighbor in A. Note that $y \neq x$ since x is not adjacent

 346 to b_1 .

 $\text{Since } G[\{v, a_1, x, y, b\}]$ is not a bowtie, x is adjacent to y. Then G has two cliques $\{x\} \cup$ 348 $(N(x) \cap A)$ and $\{y\} \cup (N(y) \cap B)$ of cardinality at least 4 and 3 respectively with exactly one 349 edge xy between $\{x\} \cup (N(x) \cap A)$ and $\{y\} \cup (N(y) \cap B)$, contradicting [Lemma 6.3.](#page-9-0)

350 Now it remains to consider the case where v has at least two neighbors in A. Let y be a 351 common neighbor of v and b. Since $\{v, y\} \cup B$ does not induce a bowtie, y has at least two 352 neighbors in B. Then by [Claim 3,](#page-9-1) y has no neighbor in A. But then the graph induced by 353 $A \cup \{v, y, b\}$ contains a bowtie, a contradiction. This completes the proof. \Box

³⁵⁴ We are now ready to prove [Proposition 6.2](#page-8-1) (and thus [Theorem 6.1\)](#page-8-0).

355 Proof of [Proposition 6.2.](#page-8-1) We proceed by induction on $|E(G)|$. We may assume that G is con-356 nected. The statement is trivial if $\omega(G) < 4$ and so we may assume that $\omega(G) \geq 4$.

357 If there is an edge e that does not belong to any triangle, then $G \backslash e$ is bowtie-free. Suppose 358 there is some $e \in E(G)$ such that e is not contained in any triangle. Let $G' = G \setminus e$. Then, 359 $\omega(G') = \omega(G)$. By the inductive hypothesis, $V(G)$ admits a partition into sets X_1, X_2, \ldots, X_k sso such that $k \leq f(\omega(G)), \enspace \omega(G'[X_1]) \leq 3,$ and $G'[X_i]$ is triangle-free for all $i \in \{2,3,\ldots,k\}.$ S_{361} Since e is not in any triangle of G , we deduce that $\omega(G[X_1])\leq 3$ and $G[X_i]$ is triangle-free for 362 all $i \in \{2, 3, \ldots, k\}$. Therefore, we may assume that every edge is in a triangle.

363 Let K be a maximum clique in G. Then $|K| = \omega(G) \geq 4$. Suppose that there is a vertex v 364 such that the distance from v to K is 3. Let P be a shortest path $v_0-v_1-v_2-v_3$ from K to v where 365 $v_0 \in K$ and $v_3 = v$. There is a common neighbor x of v_2 and v_3 . Since the distance between 366 K and v_3 is equal to 3, the two cliques K and $\{v_2, v_3, x\}$ are disjoint and anti-complete. Then 367 v₁ has neighbors in both K and $\{v_2, v_3, x\}$, contradicting [Lemma 6.4,](#page-9-2) Therefore, every vertex 368 of G is within distance 2 from K.

369 Let A be the set of vertices of distance 1 from K and $B = V(G) \setminus (K \cup A)$. Note that every 370 vertex in B has a neighbor in A and every vertex in A has at least one non-neighbor in K. 371 By [Lemma 6.4,](#page-9-2) $G[B]$ is triangle-free. For each vertex $x \in K$, let S_x be the set of vertices in A 372 complete to $K \setminus \{x\}$. Since K is a maximum clique, $S_x \cup \{x\}$ is independent. For distinct 373 vertices $x,y,z\in K$, let $T_{x,y,z}=(A\cap N_G(z))\setminus (N_G(x)\cup N_G(y)).$ Since G is bowtie-free, $T_{x,y,z}$ 374 is independent.

375 By definition, every $a \in A$ with at least two non-neighbors in K is in $T_{x,y,z}$ for some choice 376 of $x, y, z \in K$ and every $a \in A$ with exactly one non-neighbor $x \in K$ is in S_x . Therefore, 377 we have a partition of $V(G)$ into $S_x \cup \{x\}$ for $x \in K$, $T_{x,y,z}$ for $x,y,z \in K$, and B. Note 378 that every set except B in our partition is stable, so we can merge any other two sets in our 379 partition to obtain another triangle-free set. So we obtain a partition of $V(G)$ into at most $_{{\rm 380}}$, $\lceil \frac{1}{2}(\omega(G)+3\binom{\omega(G)}{3}) \rceil + 1$ sets. $\frac{1}{2}(\omega(G)+3\binom{\omega(G)}{3}$ $\lceil \frac{1}{2} \rceil$ \Box

381 7 Bull-free graphs

³⁸² In this section, we will show that the class of bull-free graphs is Pollyanna. We will begin ³⁸³ by reducing the problem of showing the class of bull-free graphs is Pollyanna to showing ³⁸⁴ that a simpler subclass of bull-free graphs is Pollyanna using structural results about bull-free 385 graphs by Chudnovsky and Safra [\[CS08\]](#page-32-13). We begin with some definitions. For a subgraph H 386 of a graph G, we say $v \in V(G) \setminus V(H)$ is a center for H if it is complete to $V(H)$. If v is a 387 center for H in \overline{G} , we say v is an anticenter for H in G. We say a bull-free graph G is basic if 388 neither G nor \overline{G} contains an odd hole with both a center and an anticenter. We say a graph G 389 is locally perfect if for every $v \in V(G)$, the graph induced by $N_G(v)$ is perfect.

³⁹⁰ We will show that if the class of locally perfect basic bull-free graphs is Pollyanna, then 391 so is the class of bull-free graphs. We will require the following theorem by Chudnovsky and ³⁹² Safra [\[CS08\]](#page-32-13), which also appears in a paper of Chudnovsky [\[Chu12a\]](#page-32-12) in greater generality 393 according to [\[CS08\]](#page-32-13).

394 **Theorem 7.1** (Chudnovsky and Safra [\[CS08,](#page-32-13) 1.4]). Every bull-free graph can be obtained via ³⁹⁵ substitution from basic bull-free graphs.

396 Theorem 7.2 (Chudnovsky and Safra [\[CS08,](#page-32-13) 4.3]). If G is a basic bull-free graph, then $G[N(v)]$ 397 or $G \setminus (N(v) \cup \{v\})$ is perfect for every vertex v of G .

398 Corollary 7.3. Let F be a hereditary class of graphs. If the class of locally perfect basic bull-free 399 graphs in F is polynomially x-bounded, then so is the class of bull-free graphs in F.

400 Proof. Let C denote the class of basic bull-free graphs in $\mathcal F$. Note that C is hereditary. By 401 [Theorems 7.1](#page-10-1) and [2.1,](#page-3-2) it is enough to show that C is polynomially χ -bounded.

⁴⁰² Suppose that there is a polynomial f such that every locally perfect basic bull-free graph G 403 in F satisfies $\chi(G) \leq f(\omega(G))$. We may assume that $f(n) \geq n$ for all positive integers n.

We claim that every $G \in \mathcal{C}$ satisfies $\chi(G) \leq \sum_{k=1}^{\omega(G)} f(k)$. We proceed by the induction 405 on $\omega(G)$. The statement is trivial if $\omega(G) \leq 1$ and so we assume that $\omega(G) > 1$. We may 406 assume that G is not locally perfect because otherwise $\chi(G) \leq f(\omega(G))$. So there is a vertex v 407 such that $G[N(v)]$ is not perfect. By [Theorem 7.2,](#page-11-0) $G \setminus (N(v) \cup \{v\})$ is perfect and so is 408 $G \setminus N(v)$. Therefore, $\chi(G \setminus N(v)) \leq \omega(G) \leq f(\omega(G))$. Since $\omega(G[N(v)]) \leq \omega(G)$, by the ao induction hypothesis, $\chi(G[N(v)])\leq \sum_{k=1}^{\omega(G)-1}f(k).$ This completes the proof because $\chi(G)\leq$ 410 $\chi(G[N(v)]) + \chi(G \setminus N(v)).$

⁴¹¹ Hence, we only need to show that the class of locally perfect bull-free graphs is Pollyanna. ⁴¹² We will do so by invoking results by Chudnovsky [\[Chu12a\]](#page-32-12) about "elementary" and "non- $_{413}$ elementary" bull-free graphs. A bull-free graph is *elementary* if it does not contain a path of $_{414}$ length three with both a center and an anticenter. For a positive integer k, we say a graph G is 415 k-perfect if $V(G)$ can be partitioned into at most k sets each of which induces a perfect graph. ⁴¹⁶ We will first prove the following proposition on elementary locally perfect bull-free graphs.

417 **Proposition 7.4.** For every 4-good class F of graphs, there is a positive integer γ such that every 418 elementary locally perfect bull-free graph in F is γ -perfect.

⁴¹⁹ We then use [Proposition 7.4](#page-11-1) to prove the following for locally perfect bull-free graphs. Its 420 proof uses trigraphs, which we will introduce in the next subsection.

421 **Proposition 7.5.** For every 4-good class F of graphs, there is a positive integer c_F such that 422 every locally perfect bull-free graph is $c_{\mathcal{F}}$ -perfect.

⁴²³ It is now straightforward to prove that the class of bull-free graphs is Pollyanna if we ⁴²⁴ assume [Proposition 7.5.](#page-11-2) As we remarked in the introduction, we will actually prove that the ⁴²⁵ class of bull-free graphs is 4-strongly Pollyanna which is a stronger statement.

426 Theorem 7.6. The class of bull-free graphs is 4-strongly Pollyanna.

 427 Proof assuming [Proposition 7.5.](#page-11-2) By [Proposition 7.5,](#page-11-2) the class of locally perfect bull-free graphs 428 is 4-strongly Pollyanna. Hence, we obtain that the class of bull-free graphs is 4-strongly ⁴²⁹ Pollyanna by applying [Corollary 7.3.](#page-11-3) \Box

⁴³⁰ 7.1 Trigraphs

431 To describe the necessary results from a paper of Chudnovsky [\[Chu12a\]](#page-32-12), we will need to use a $_{{\bf 432}}$ generalization of graphs called *trigraphs*. For a set X , let us write $\binom{X}{2}$ to denote all 2-element 433 subsets of X. A trigraph G is an object consisting of a finite set $V(G)$, called the vertex set

Figure 5: A homogeneous pair.

of G, and the *adjacency function* θ : $\binom{V(G)}{2}$ $_4$ 34 $\;$ of G , and the *adjacency function* $\theta: \binom{V(G)}{2} \to \{-1,0,1\}.$ Two distinct vertices u and v of G are 435 strongly adjacent if $\theta({u, v}) = 1$ strongly anti-adjacent if $\theta({u, v}) = -1$, and semi-adjacent ⁴³⁶ if $\theta({u, v}) = 0$. If u and v are semi-adjacent, we say the pair ${u, v}$ is a switchable pair. We ⁴³⁷ regard graphs as trigraphs without semi-adjacent pairs of vertices.

⁴³⁸ Two vertices of a trigraph are *adjacent* if they are strongly adjacent or semi-adjacent. Sim-439 ilarly, two vertices of a trigraph are *anti-adjacent* if they are strongly anti-adjacent or semiadjacent. For two disjoint subsets A and B of vertices of a trigraph, A is strongly complete 441 to B if every vertex in A is strongly adjacent to every vertex in B, and strongly anti-complete ⁴⁴² if every vertex in A is strongly anti-adjacent to every vertex in B. If a vertex x is adjacent to 443 a vertex y, then y is called a neighbor of x. We write $N_G(x)$ to denote the set of all neighbors 444 of x. We sometimes omit the subscript if it is clear from the context.

⁴⁴⁵ The complement G of a trigraph $G = (V, \theta)$ is a trigraph on the same vertex set $V(G)$ with 446 the adjacency function $\bar{\theta} = -\theta$. For a set X of vertices, we write $G[X]$ to denote the subtrigraph 447 induced by X, which has the vertex set X and the adjacency function is the restriction of θ $_4$ 48 $\;$ to ${X \choose 2}.$ We say that H is an induced subtrigraph of G if $H = G[X]$ for some $X \subseteq V(G).$ We 449 write $G\setminus X$ to denote the trigraph $G[V(G)\setminus X]$. Isomorphisms between trigraphs are defined ⁴⁵⁰ as usual.

 451 A set X of vertices of a trigraph is a strong clique if x and y are strongly adjacent for all 452 distinct $x, y \in X$.

For a trigraph G, let G be a graph on $V(G)$ such that two vertices of G are adjacent if 454 and only if they are adjacent in G. We call \tilde{G} the full realization of G. We say that G is 455 connected if \tilde{G} is connected. A connected component of a trigraph is a maximal connected ⁴⁵⁶ induced subtrigraph.

 457 A graph is a *realization* of a trigraph G if its vertex set is equal to $V(G)$ and its edge set 458 is the set of all strongly adjacent pairs and possibly some switchable pairs of G . A trigraph G 459 contains a graph H if G has a realization containing an induced subgraph isomorphic to H.

460 A homogeneous set of a trigraph G is a proper subset X of $V(G)$ with at least two vertices 461 such that every vertex in $V(G) \setminus X$ is either strongly complete or strongly anti-complete to X. ⁴⁶² For a trigraph G, a pair (A, B) of disjoint nonempty subsets of $V(G)$ is a homogeneous pair ⁴⁶³ if $V(G) \setminus (A \cup B)$ can be partitioned into four (possibly empty) sets C, D, E, and F such that

⁴⁶⁴ • C is strongly complete to A and strongly anti-complete to B,

 \bullet *D* is strongly complete to *B* and strongly anti-complete to *A*,

- \bullet *E* is strongly complete to both *A* and *B*, and
- \bullet F is strongly anti-complete to both A and B.
- 468 We say the pair (A, B) is tame if
- \bullet $|V(G)| 2 > |A| + |B| > 2$ and
- \bullet A is not strongly complete to B and not strongly anti-complete to B.
- 471 A trigraph G admits a homogeneous pair decomposition if it has a tame homogeneous pair. We 472 say that a homogeneous pair (A, B) is proper if it is tame and both C and D are nonempty. 473 We say that a homogeneous pair (A, B) is small if it is tame and $|A \cup B| \leq 6$. See [Figure 5](#page-12-0) for ⁴⁷⁴ an illustration of a homogeneous pair.
- ⁴⁷⁵ We say a tame homogeneous pair (A, B) of a trigraph G is *dominated* if there exist (possibly 476 identical) vertices v and w in $V(G) \setminus (A \cup B)$ such that v is strongly complete to A and w is 477 strongly complete to B. In other words, $E \neq \emptyset$ or both C and D are nonempty.
- ⁴⁷⁸ For two homogeneous pairs (A_1, B_1) and (A_2, B_2) of a trigraph, we say (A_2, B_2) con-479 tains (A_1, B_1) , denoted by $(A_2, B_2) \subseteq (A_1, B_1)$, if $A_1 \subseteq A_2$ and $B_1 \subseteq B_2$. In addition, we 480 say (A_2, B_2) contains (A_1, B_1) properly if $(A_2, B_2) \subseteq (A_1, B_1)$ and $(A_2, B_2) \neq (A_1, B_1)$. A ⁴⁸¹ tame homogeneous pair of a trigraph is *maximal* if it is not properly contained by any tame ⁴⁸² homogeneous pair.
- ⁴⁸³ We say a trigraph is *monogamous* if every vertex belongs to at most one switchable pair. ⁴⁸⁴ Shrinking a tame homogeneous pair (A, B) in a trigraph is an operation to shrink A into a 485 single vertex a, shrink B into a single vertex b, and make the pair $\{a, b\}$ a switchable pair.

486 7.2 The elementary locally-perfect case

⁴⁸⁷ In this subsection, we will prove [Proposition 7.4.](#page-11-1) The class \mathcal{T}_1 of trigraphs is defined in Chud-

⁴⁸⁸ novsky [\[Chu12b\]](#page-32-11). Thomassé, Trotignon, and Vušković [\[TTV17,](#page-34-5) Subsection 2.2] observed the

⁴⁸⁹ following.

490 **Observation 7.7.** Every graph G in \mathcal{T}_1 has a partition $(X, K_1, K_2, \ldots, K_t)$ of its vertex set into 491 sets for some $t \geq 0$ such that $G[X]$ does not contain a triangle and K_1, \ldots, K_t are cliques that ⁴⁹² are pairwise anti-complete.

- ⁴⁹³ Hence, we immediately deduce the following.
- 494 **Observation 7.8.** Every graph G in \mathcal{T}_1 admits a partition of its vertex set into two sets (X, Y) 495 such that $G[X]$ is triangle-free and $G[Y]$ is perfect.
- 496 Lemma 7.9. If G is a graph with no homogeneous set and X is a proper subset of G that is not 497 stable, then there is an induced path x_1-x_2 -y such that $x_1, x_2 \in X$ and $y \in V(G) \setminus X$.
- 498 Proof. Suppose not. Since X is not stable, $G[X]$ contains a component C with at least two 499 vertices. Since $V(C)$ is not homogeneous, there is $y \in G\backslash V(C)$ such that y is neither complete 500 nor anti-complete to $V(C)$. Clearly $y \notin X$ and since C is connected, there exist an edge x_1x_2 501 of C such that y is adjacent to x_2 and non-adjacent to x_1 . \Box
- 502 A gem is the 5-vertex graph obtained from the path of length 3 by adding a vertex adjacent ⁵⁰³ to all other vertices. Note that every gem-free bull-free graph is elementary. We first aim to ⁵⁰⁴ show [Proposition 7.4](#page-11-1) restricted to gem-free graphs.
- ⁵⁰⁵ Here is an easy lemma based on [Theorem 2.3.](#page-3-3)
- $_{506}$ Lemma 7.10. Let G be a bull-free gem-free graph. Then G is perfect if and only if G has no odd 507 hole. \Box
- $_{508}$ Lemma 7.11. Let G be a bull-free gem-free graph. Let (A, B) be a tame homogeneous pair of G
- 509 and let C, D, E, F be as in the definition of a homogeneous pair. If G has no homogeneous set, ⁵¹⁰ then the following hold.
- 511 (i) If A is not stable, then C is anti-complete to F and complete to E.

Figure 6: An illustration of [Lemma 7.11](#page-13-0)[\(i\).](#page-13-1)

- $_{512}$ (ii) If B is not stable, then D is anti-complete to F and complete to E.
- $_{513}$ (iii) If A is not a clique, then E is anti-complete to C and complete to D.
- $_{514}$ (iv) If B is not a clique, then E is anti-complete to D and complete to C.
- 515 (v) E is complete to C or D.

⁵¹⁶ We remark that 7.4 of [\[Chu12b\]](#page-32-11) implies half of each of [\(i\)](#page-13-1)[–\(iv\).](#page-14-0)

 Proof. Suppose A is not stable. By [Lemma 7.9](#page-13-2) and the definition of homogeneous pairs, there 518 exist $a_1, a_2 \in A$ and $b \in B$ such that $b-a_1-a_2$ is an induced path of G. Then, if there is some $c \in C$ adjacent to some $f \in F$, the graph on $\{f, c, a_1, b, a_2\}$ induces a bull, a contradiction. If 520 there is some $c \in C$ non-adjacent to some vertex $x \in E$, then $c-a_2$ -x-b is an induced path of length 3 with a center a_1 , a contradiction. See [Figure 6.](#page-14-1) This proves [\(i\).](#page-13-1) By symmetry, we also have [\(ii\).](#page-14-2)

 523 Let us now prove [\(iii\).](#page-14-3) Suppose A is not a clique. By applying [Lemma 7.9](#page-13-2) to \overline{G} , we deduce 524 that there exist $a_1, a_2 \in A$ and $b \in B$ such that $b-a_1-a_2$ is an induced path of \overline{G} . If there is a 525 vertex $x \in E$ adjacent to a vertex $c \in C$, then a_1 -c- a_2 -b is an induced path with a center x, 526 a contradiction. If some vertex $x \in E$ is non-adjacent to some $d \in D$, then $\{a_1, b, x, a_2, d\}$ 527 induces a bull. See [Figure 6.](#page-14-1) This proves [\(iii\).](#page-14-3) By symmetry between A and B, we deduce [\(iv\).](#page-14-0) 528 Since (A, B) is tame, $|A| > 1$ or $|B| > 1$. Thus, it follows from [\(i\),](#page-13-1) [\(ii\),](#page-14-2) [\(iii\),](#page-14-3) and [\(iv\)](#page-14-0) that E $_{529}$ is complete to C or D, proving [\(v\).](#page-14-4) \Box

⁵³⁰ Based on papers of Chudnovsky [\[Chu12a,](#page-32-12) [Chu12b\]](#page-32-11), bull-free graphs admit the following ⁵³¹ decomposition, summarized by Thomassé, Trotignon, and Vušković [\[TTV17\]](#page-34-5). We state it for ⁵³² graphs instead of trigraphs.

⁵³³ Theorem 7.12 (Chudnovsky [\[Chu12a,](#page-32-12) [Chu12b\]](#page-32-11); see Thomassé, Trotignon, and $_{534}$ Vušković [\[TTV17,](#page-34-5) Theorem 2.1]). Every bull-free graph G satisfies one of the following.

- 535 (i) $|V(G)| \leq 8$.
- $_{536}$ (ii) G or \overline{G} belongs to \mathcal{T}_1 .
- 537 (iii) G has a homogeneous set.
- 538 (iv) G has a proper homogeneous pair.
- $_{539}$ (v) G has a small homogeneous pair.

540 **Proposition 7.13.** For every 4-good class F of graphs, there is a positive integer γ such that 541 every bull-free gem-free graph in F is γ -perfect.

 542 Proof. By definition of 4-good, F is hereditary and there exists a positive integer τ such that 543 every triangle-free graph in F is τ -colorable. Let $\gamma = \max\{6, \tau + 1\}$. Let G be a bull-free $_{544}$ gem-free graph in \mathcal{F} .

Suppose that G is not γ -perfect. We choose such a G with the minimum $|V(G)|$. Since the disjoint union of perfect graphs is perfect, G is connected. Since G is gem-free and since P_4 -free graphs are perfect, for every vertex v of G, $G[N_G(v) \cup \{v\}]$ is perfect and therefore

G has no dominating set of at most γ vertices (5)

 $_{545}$ and G is locally perfect.

 546 Claim 5. G does not admit a homogeneous set.

 547 Proof. Suppose $S \subset V(G)$ is a homogeneous set in G. Since G is connected, there is some $548 \quad v \in V(G) \setminus S$ such that v is complete to S. Hence, $G[S]$ is perfect because G is locally perfect. Let $w \in S$ and $G' = G \setminus (S \setminus \{w\})$. Since G' is an induced subgraph of G, G' is also bull- 550 free and gem-free and therefore by the minimality of G, it follows that G' is γ -perfect. Let $V_1,V_2,\ldots,V_{\gamma})$ be a partition of $V(G')$ such that $G[V_i]$ is perfect for each $i\in\{1,2,\ldots,\gamma\}.$ 552 Without loss of generality, $w \in V_1$. Then, since perfect graphs are closed under substitution by 553 [Lemma 2.4](#page-3-4) and $G[S]$ is perfect, $G[V_1 \cup S]$ is perfect. Hence, G is γ -perfect, a contradiction.

554 By [Observation 7.8,](#page-13-3) every graph in \mathcal{T}_1 is $(\tau + 1)$ -perfect and so is every graph in $\overline{\mathcal{T}}_1$. Thus, 555 neither G nor \overline{G} is in \mathcal{T}_1 . Since every graph on at most 4 vertices is perfect, every graph on at 556 most 8 vertices is 2-perfect. Therefore, $|V(G)| > 8$.

 557 By [Theorem 7.12,](#page-14-5) G admits a proper or small homogeneous pair (A, B) . Let C, D, E, F ⁵⁵⁸ be as in the definition of a homogeneous pair.

559 Claim 6. $F \neq \emptyset$.

560 Proof. Suppose that $F = \emptyset$. If $C \cup D \neq \emptyset$ or $E \neq \emptyset$, then there is a dominating set of G consisting 561 of at most 4 vertices made by choosing 1 vertex from each of A and B and choosing 1 vertex 562 either from E or from each of C and D. Since $\gamma \geq 4$, this contradicts [\(5\)](#page-15-0). Therefore, $E = \emptyset$ 563 and C or D is empty. By the symmetry between A and B, we may assume $D = \emptyset$. Then, since 564 (A, B) is a tame homogeneous pair and $F \cup E \cup D = \emptyset$, it follows that $|C| \geq 3$. But then C 565 is a homogeneous set, a contradiction. Therefore, we deduce that $F \neq \emptyset$.

566 Claim 7. If $E = \emptyset$, then (A, B) is proper.

567 Proof. By the assumption, (A, B) is small. By symmetry, suppose that $D = E = \emptyset$. By the $_{568}$ induction hypothesis, there exists a partition $(V_1,V_2,\ldots,V_{\gamma})$ of $A\cup C\cup F$ such that $G[V_i]$ 569 is perfect for all $i \in \{1, 2, \ldots, \gamma\}$. We may assume that $A \cap V_i = \emptyset$ for all $i \leq |B|$ because $\gamma \geq |A\cup B|$. Let $w_1, w_2, \ldots, w_{|B|}$ be the vertices in B . For $i\in \{1,2,\ldots,|B|\}$, let $V_i':=V_i\cup \{w_i\}.$ $_{571}$ $\;$ Since w_i is isolated in $G[V'_i]$, $G[V'_i]$ is perfect. For $i>|B|$, define $V'_i:=V_i.$ Then $G[V'_i]$ is perfect for every $i \in \{1, 2, ..., \gamma\}$ and $\bigcup_{i=1}^{\gamma} V_i' = V(G)$. Thus, G is γ -perfect, a contradiction.

- 573 Claim 8. $G[A]$ and $G[B]$ are P_4 -free, so perfect.
- 574 Proof. It is trivial if (A, B) is proper because G is gem-free. By [Claim 7,](#page-15-1) we may assume that
- 575 $E \neq \emptyset$. This implies that $G[A \cup B]$ is P_4 -free, because G is gem-free.
- 576 Claim 9. If $E = \emptyset$, then A or B is stable.
- 577 Proof. Suppose neither A nor B is stable. By [\(i\)](#page-13-1) and [\(ii\)](#page-14-2) of [Lemma 7.11,](#page-13-0) $C \cup D$ is anti-complete
- 578 to F. However, by [Claim 6,](#page-15-2) $F \neq \emptyset$ and therefore G is disconnected, a contradiction.

579 By the definition of a tame homogeneous pair, there exist some $a \in A$ and $b \in B$ such that s_{80} ab is an edge of G. Let G' denote the graph obtained from G by deleting $(A \cup B) \setminus \{a, b\}.$ B_{S31} By the definition of a tame homogeneous pair, $|V(G')| < |V(G)|$. By the choice of G, there ⁵⁸² is a list $H_1, H_2, \ldots, H_{\gamma}$ of perfect induced subgraphs of G' that cover the vertex set of G' . 583 Let $i, j \in \{1, 2, \ldots, \gamma\}$ be such that $a \in H_i$ and $b \in H_j$. If $i \neq j$, then $G[V(H_i) \cup A]$ and $_{584}$ $G[V(H_i) \cup B]$ are obtained from H_i and H_j respectively via substitution. So by [Lemma 2.4](#page-3-4)

585 and [Claim 8,](#page-15-3) they are both perfect graphs. And therefore G is γ -perfect, a contradiction.

586 Hence, $i = j$. Let H be the graph $G[V(H_i) \cup A \cup B]$. To get a contradiction, it is enough 587 to show that H is a perfect graph, because this would imply that G is γ -perfect. Suppose that 588 H is not perfect. Then by [Lemma 7.10,](#page-13-4) it contains an induced subgraph X that is an odd hole.

589 Claim 10. X contains vertices $a' \in A$ and $b' \in B$ where a' and b' are not adjacent.

590 Proof. Since both $H \setminus A$ and $H \setminus B$ are perfect by [Lemma 2.4,](#page-3-4) $V(X) \cap A$ and $V(X) \cap B$ are both 591 nonempty. Note that $G[(V(X)\setminus (A\cup B))\cup \{a, b\}]$ is an induced subgraph of H_i and therefore

592 perfect. Moreover, $V(X) \cap A$ and $V(X) \cap B$ are not complete to each other, for otherwise X

593 can be obtained from $G[(V(X) \setminus (A \cup B)) \cup \{a, b\}]$ by substituting in $G[V(X) \cap A]$ for a and

 $594 \text{ } G[V(X) \cap B]$ for b, and therefore X would be perfect by [Lemma 2.4,](#page-3-4) a contradiction. Hence,

595 X contains a vertex $a' \in A$ and a vertex $b' \in B$ such that a' and b' are not adjacent.

Throughout the rest of this proof, we fix a', b' as in [Claim 10.](#page-16-0)

597 Claim 11.
$$
E \neq \emptyset
$$
.

598 Proof. Suppose $E = \emptyset$. By [Claims 7](#page-15-1) and [8,](#page-15-3) (A, B) is proper and both $G[A]$ and $G[B]$ are P_4 -free. 599 We claim that each component Q of X induced by vertices in A is a subpath of X of even 600 length. Let Q be a component of the subgraph of X induced by A. Suppose Q has odd length.

601 Then since $G[A]$ is P_4 -free, Q consists of a single edge. Let a_1, a_2 be the vertices in Q. Since 602 $N(A) \subseteq B \cup C$, it follows that then there are two vertices $b_1, b_2 \in B \cap V(X)$ such that a_1b_1 and 603 a_2b_2 are both edges. Then b_1 and b_2 are non-adjacent because X has length at least 5. Then, 604 for every $c \in C$, the vertices c, a_1, a_2, b_1 , and b_2 induce a bull, a contradiction since $C \neq \emptyset$. 605 Hence, every component of $G[V(X) \cap A]$ is a path of even length. By the symmetry between 606 A and B, every component of $G[V(X) \cap B]$ is a path of even length.

607 Suppose X contains two non-adjacent vertices in A. Then since each component of $G[X \cap$ 608 V(A)] is an even-length path and X has odd length, we can choose two non-adjacent $a_1, a_2 \in$ 609 $V(X) \cap A$ such that there exists an odd a_1a_2 -subpath P of X whose internal vertices are 610 not in A. We denote the neighbor of a_i in P by b_i for $i \in \{1,2\}$. Since P is an odd path, 611 $V(P) \cap C = \emptyset$ and b_1, b_2 are distinct vertices in B. Hence, P contains an odd induced b_1b_2 612 path \hat{P} . Then, \hat{P} cannot contain any vertex of $A \cup D$, so \hat{P} is contained in $G[B]$. But P is a 613 component of $G[V(X) \cap B]$, so it is a path of even length, a contradiction. (See [Figure 7](#page-17-0) for an 614 illustration.) Hence, $V(X) \cap A$ is a clique and thus $|V(X) \cap A| = 1$. By the symmetry between 615 A and B, it follows that $|V(X) \cap B| = 1$. So in particular, a', b' are the only vertices of $A \cup B$ 616 in X.

 ϵ ⁶¹⁷ By [Claim 10,](#page-16-0) a' and b' are not adjacent and therefore there is an a'b'-path P of X of even 618 length in H with interior in $H \setminus (A \cup B)$. Then, $H[V(P \setminus \{a',b'\}) \cup \{a,b\}]$ is an odd induced 619 cycle of H_i . Hence, since H_i contains no odd hole, P has length two. But then a and b have a 620 common neighbor in $V(G) \setminus (A \cup B)$ contrary to the assumption that $E = \emptyset$.

Figure 7: An illustration of the proof of [Claim 11.](#page-16-1) Non-edges are drawn as dotted lines. The wavy line between b_1 and b_2 indicates that b_1 and b_2 might be adjacent or they might be nonadjacent. If b_1 and b_2 are non-adjacent, P contains some vertex $d \in D$, but then P is not an induced odd path. If b_1 and b_2 are adjacent, G contains a bull.

621 Claim 12. One of A and B is a clique and the other is a stable set.

622 Proof. By [Claim 11,](#page-16-1) E is nonempty and therefore $G[A \cup B]$ is perfect. Since $A \cup B$ is not a 623 homogeneous set, $C \cup D$ is nonempty. It follows from [\(iii\)](#page-14-3) and [\(iv\)](#page-14-0) of [Lemma 7.11](#page-13-0) that A or B 624 is a clique. Suppose both $G[A]$ and $G[B]$ contain an edge. Then by [\(i\)](#page-13-1) and [\(ii\)](#page-14-2) of [Lemma 7.11,](#page-13-0) F 625 is anti-complete to $C \cup D$ and E is complete to $C \cup D$. Hence, $A \cup B \cup C \cup D$ is a homogeneous 626 set in G , a contradiction.

627 Claim 13. $|V(X) \cap A| \leq 1$ and $|V(X) \cap B| \leq 1$.

628 Proof. Suppose X contains two distinct vertices $a_1, a_2 \in A$. By [Claim 10,](#page-16-0) $|V(X) \cap (A \cup B)| \geq 3$ 629 and so $V(X) \cap E = \emptyset$. Since the length of X is at least 5, we have $|V(X) \cap C| \leq 1$. Let Q be 630 a subpath of X from a_1 to a_2 not containing any vertex of C. We choose a_1, a_2 , and Q such 631 that the length of Q is maximized.

632 If X has a vertex in C, then $|E(Q)| = |E(X)| - 2 \ge 3$. If X has no vertex in C, then 633 $|E(Q)| \geq (|E(X)|+1)/2 \geq 3$. So, in both cases, Q has length at least 3.

634 Let b_1 , b_2 be the neighbors of a_1 , a_2 in Q, respectively. By [Claim 12,](#page-17-1) b_1 , $b_2 \notin A$ and so 635 $b_1, b_2 \in B$. Since Q is an induced path of G with length at least 3, b_1 is non-adjacent to a_2 and 636 b₂ is non-adjacent to a_1 . Then $G[\{a_1, a_2, b_1, b_2\}]$ is isomorphic to P_4 by [Claim 12,](#page-17-1) contradicting 637 the assumptions that G is gem-free and $E \neq \emptyset$ by [Claim 11.](#page-16-1) By the symmetry between A and B, 638 this completes the proof.

 ϵ_{639} Let P be an a'b'-path of X. Since each of a' and b' has exactly one neighbor in $V(P)$, 640 P does not contain more than one vertex of each of C, D, and E. Since X is not a hole of 641 length 4, X contains no more than one vertex of E.

642 Claim 14. $V(X) \cap E = \emptyset$.

643 Proof. Suppose X contains a vertex $v \in E$. Let P denote the path $X \setminus v$. Then no interior 644 vertex of P is adjacent to v, so none of the interior vertices of P is complete to E. Hence, no 645 $\;$ interior vertex of P is in $A\cup B.$ By definition, $N(a')\subseteq A\cup B\cup C\cup E$ and $\overline{N}(b')\subseteq A\cup B\cup C\cup E$ ⁶⁴⁶ and $a', b' \in V(P)$. It follows that P contains a vertex in C and a vertex in D. In particular, 647 neither C nor D can be complete to E, contradicting [Lemma 7.11](#page-13-0)[\(v\).](#page-14-4)

⁶⁴⁸ By [Claims 13](#page-17-2) and [14,](#page-17-3) both $a'b'$ -paths of X have length at least three. Since one of the $a'b'$ -649 paths of X has even length, there is an $a'b'$ -path P of \overline{X} of length at least four and P contains Some vertex $c \in C$ and some vertex $d \in D$ by [Claims 13](#page-17-2) and [14.](#page-17-3) Now, $(V(P) \setminus \{a', b'\}) \cup \{a, b\}$

- $\epsilon_{\rm 651}$ induces an odd hole in H_i , a contradiction to the assumption that H_i is perfect. This completes ⁶⁵² the proof. \Box
- ⁶⁵³ Now we are ready to prove the main proposition of this subsection, which we restate here. 654

655 Proposition 7.4. For every 4-good class F of graphs, there is a positive integer γ such that every 656 elementary locally perfect bull-free graph in $\mathcal F$ is γ -perfect.

657 Proof. Let γ be the constant given by [Proposition 7.13](#page-14-6) for F. Note that $\gamma \geq 4$. Let G be an 658 elementary bull-free locally perfect graph in $\mathcal F$. By [Proposition 7.13,](#page-14-6) if G is gem-free, then G is 659 γ-perfect. Thus we may assume that G has an induced subgraph H that is a gem. Let P be the 660 path of length 3 in H. Then $V(P)$ is a dominating set of G because G is elementary. Since G 661 is locally perfect, $G[N_G(v) \cup \{v\}]$ is perfect for each $v \in V(P)$. Therefore, G is 4-perfect. \Box

662 7.3 Completing the proof for bull-free graphs

⁶⁶³ Previously, we defined elementary graphs, but for this subsection, we need to extend this 664 notion to trigraphs. A trigraph G is elementary if it does not contain any path P of length 3 665 such that some vertex c of $V(G)\backslash V(P)$ is complete to $V(P)$ and some vertex a of $V(G)\backslash V(P)$ 666 is anti-complete to $V(P)$. We say c is a center for P and a is an anti-center for P.

667 A hole H of length 5 in a trigraph G is a subtrigraph of G induced by 5 vertices, say h_1 , h_2 , ⁶⁶⁸ h₃, h₄, h₅ such that h_i is adjacent to h_{i+1} and anti-adjacent to h_{i+2} for each $i \in \{1, 2, ..., 5\}$, 669 assuming that $h_6 = h_1$, $h_7 = h_2$, $h_8 = h_3$, and $h_9 = h_4$. For each $i \in \{1, 2, ..., 5\}$,

 \bullet let L_i be the set of all vertices in $V(G) \setminus V(H)$ that are adjacent to h_i and anti-complete $\mathfrak{so} V(H) \setminus \{h_i\},\$

⁶⁷² • let S_i be the set of all vertices in $V(G) \setminus V(H)$ that are anti-adjacent to h_i and complete ⁶⁷³ to $V(H) \setminus \{h_i\}$, and

 \bullet let C_i be the set of all vertices in $V(G) \setminus V(H)$ that are complete to $\{h_{i+1}, h_{i+4}\}$ and ⁶⁷⁵ anti-complete to $\{h_{i+2}, h_{i+3}\}.$

676 $\,$ A vertex in L_i , S_i , and C_i is called a *leaf*, a *star*, a *clone*, respectively, at h_i . A *leaf*, a *star*, or a 677 clone with respect to H is a leaf, a star, or a clone, respectively, at h_i for some $i \in \{1, 2, \ldots, 5\}$. ⁶⁷⁸ In [\[Chu12a\]](#page-32-12), \mathcal{T}_0 is a precisely defined set of trigraphs and \mathcal{T}_0 is one of the base classes of trigraphs in the decomposition theorem of Chudnovsky [\[Chu12b\]](#page-32-11). For our proof, we need ⁶⁸⁰ only the following observation.

Observation 7.14. Every trigraph in \mathcal{T}_0 contains at most 8 vertices.

 The following theorem is a direct consequence of the proof of [\[Chu12a,](#page-32-12) 5.2]. The actual statement of [\[Chu12a,](#page-32-12) 5.2] is weaker in the sense that instead of (ii), [\[Chu12a,](#page-32-12) 5.2] deduces that 684 one of G, \overline{G} contains a "homogeneous pair of type zero." It turns out that the only place in the ⁶⁸⁵ proof deducing this consequence is the first sentence of the proof, which uses 4.1 of [\[Chu12a\]](#page-32-12) to assume that there is no hole of length 5 with both a leaf and a star. Thus, by removing the first sentence of the proof of 5.2 in Chudnovsky [\[Chu12a\]](#page-32-12), we deduce the following slightly stronger statement.

689 Theorem 7.15 (Chudnovsky [\[Chu12a,](#page-32-12) 5.2]; strengthened form). Let G be a bull-free non-⁶⁹⁰ elementary trigraph. Then at least one of the following holds.

- 691 (i) G or \overline{G} belongs to \mathcal{T}_0 .
- 692 (ii) G has a homogeneous set.

 693 (iii) G has a hole of length 5 with both a leaf and a star.

⁶⁹⁴ A trigraph is perfect if every realization is perfect. We say a trigraph is imperfect if it is not ⁶⁹⁵ perfect. Here is a corollary of [Lemma 2.4](#page-3-4) for trigraphs.

696 Lemma 7.16. Let A be a homogeneous set of a trigraph G and $a \in A$. If both $G \setminus (A \setminus \{a\})$ and $_{697}$ G[A] are perfect, then G is perfect. \Box

698 A trigraph is k-perfect if its vertex set can be partitioned into at most k sets, each inducing 699 a perfect trigraph. We say a trigraph G is locally perfect if $G[N(v)]$ is perfect for every vertex v 700 of G. Then we obtain the following consequence of [Theorem 7.15.](#page-18-0)

 701 Lemma 7.17. Every locally perfect bull-free non-elementary graph is 2-perfect, unless it has a ⁷⁰² hole of length 5 with a leaf and a star.

 703 Proof. Suppose that G is a locally perfect bull-free non-elementary graph that has no hole 704 of length 5 with a leaf and a star. We proceed by induction on $|V(G)|$ to show that G is 705 2-perfect. We may assume that G is connected and has more than 8 vertices because the ⁷⁰⁶ disjoint union of two perfect graphs is perfect and every graph with at most four vertices is 707 perfect. So by [Theorem 7.15,](#page-18-0) G has a homogeneous set $A \subseteq V(G)$. Moreover, there is some τ_{708} vertex $v \in V(G) \setminus A$ that is complete to A because G is connected. Since G is locally perfect, $G[A]$ is perfect. Let $a \in A$ and $G' = G \setminus (A \setminus \{a\})$. By the induction hypothesis, there is a ⁷¹⁰ partition of $V(G')$ into X, Y such that $G'[X], G'[Y]$ are both perfect. We may assume $a \in X$. 711 We may assume that $X \neq \{a\}$ because otherwise $G[A]$ and $G \setminus A = G[Y]$ are perfect, implying 712 that G is 2-perfect. Let $X'=X\cup A$ and let $G_X=G[X']$. Note that both $G_X\setminus (A\setminus\{a\})=G'[X]$ and $G_X[A]=\emptyset$ $G[A]$ are perfect and A is a homogeneous set of G_X . By [Lemma 2.4,](#page-3-4) \tilde{G}_X is perfect. So (X',Y)

⁷¹⁵ is a partition of $V(G)$ such that both $G[X']$ and $G[Y]$ are perfect.

⁷¹⁶ The following theorem is a direct consequence of the proof of 4.3 in [\[Chu12a\]](#page-32-12).

717 Theorem 7.18 (Chudnovsky [\[Chu12a,](#page-32-12) 4.3]; weaker but more detailed form). Let G be a bull-⁷¹⁸ free trigraph satisfying the following properties.

 \Box

- ⁷¹⁹ Neither G nor \overline{G} belongs to \mathcal{T}_0 .
- ⁷²⁰ G has a hole H of length 5 induced by 5 vertices h_1, h_2, h_3, h_4, h_5 in this order and H has $_{721}$ both a star at h_1 and a leaf at h_1 .
- T_{722} G has no homogeneous set.

 T_{723} Then G has a tame homogeneous pair (A, B) with the following properties, where C_i denotes the \mathcal{T}_{724} set of clones at h_i for all $i \in \{1, 2, \ldots, 5\}.$

725 (i) $A = \{h_2, h_5\} \cup C_2 \cup C_5$.

- 726 (ii) $B = \{h_3, h_4\} \cup C_3 \cup C_4$.
- T_{727} (iii) There is a vertex $v \in V(G) \setminus (A \cup B)$ strongly complete to $A \cup B$.
- ⁷²⁸ We say that a trigraph is austere if
- ⁷²⁹ (a) it is monogamous,
- ⁷³⁰ (b) no homogeneous set contains a switchable pair, and
- 731 (c) for every dominated tame homogeneous pair (A, B) , $A \cup B$ contains no switchable pair.

732 Lemma 7.19. Let G be an austere trigraph. If A is a homogeneous set of G and $a \in A$, then $G \setminus (A \setminus \{a\})$ is also austere.

⁷³⁴ Proof. Let $G' = G \setminus (A \setminus \{a\})$. Clearly, G' satisfies [\(a\).](#page-19-0)

To prove [\(b\),](#page-19-1) suppose that G' has a homogeneous set X. If $a \notin X$, then X is also a homo-736 geneous set of G and so X contains no switchable pair in G'. If $a \in X$, then $A \cup (X \setminus \{a\})$ is

 737 a homogeneous set of G and so $A \cup (X \setminus \{a\})$ contains no switchable pair in G. This means $_{738}$ that X contains no switchable pair in G' . This proves [\(b\).](#page-19-1)

For [\(c\),](#page-19-2) suppose that G' has a dominated tame homogeneous pair (X, Y) . If $a \notin X \cup Y$, then 740 (X, Y) is a dominated tame homogeneous pair of G and therefore $X\cup Y$ has no switchable pair σ_{741} in both G and G'. If $a \in X \cup Y$, then we may assume $a \in X$. By definition of a homogeneous ⁷⁴² set, $(A\cup (X\setminus\{a\}), Y)$ is a dominated tame homogeneous pair in G. Hence, $A\cup (X\setminus\{a\})\cup Y$ σ ₇₄₃ contains no switchable pairs in G and so $X \cup Y$ contains no switchable pair in G'. \Box

 $_{744}$ Lemma 7.20. Let G be an austere trigraph and (A, B) be a maximal dominated tame homoge- $_{745}$ neous pair of G. If $A \cup B$ is not a subset of any homogeneous set of G, then the trigraph obtained $_{746}$ by shrinking (A, B) is also austere.

Proof. Let G' be the trigraph obtained by shrinking (A, B) and let a, b be the vertices of G' 747 748 corresponding to A and B, respectively.

By the definition of a homogeneous pair, the only switchable pair containing a or b in G' 749 ⁷⁵⁰ is the pair $\{a, b\}$. Hence, G' is monogamous because G is monogamous. This proves [\(a\).](#page-19-0)

For [\(b\),](#page-19-1) suppose that G' has a homogeneous set X that contains a switchable pair. Then 752 since G is austere, X is not a homogeneous set in G. Hence, X contains a or b and so by the 753 definition of a homogeneous set, X contains both a and b. But then $A \cup B \cup (X \setminus \{a, b\})$ is a $_{754}$ homogeneous set of G, contradicting our choice of (A, B) . This proves [\(b\).](#page-19-1)

 F ₇₅₅ For [\(c\),](#page-19-2) suppose that G' has a dominated tame homogeneous pair (X, Y) such that $X \cup Y$ 756 contains a switchable pair in G'. Then, $X \cup Y$ contains a or b. Since $\{a, b\}$ is a switchable 757 pair, by definition of a homogeneous pair, $X \cup Y$ contains both a and b. Then if both $a, b \in X$, T_{758} the $(A \cup B \cup (X \setminus \{a, b\}), Y)$ is a dominated tame homogeneous pair of G and it properly ⁷⁵⁹ contains (A, B) , a contradiction. Hence, we may assume $a \in X$ and $b \in Y$. Then, $(A \cup (X \setminus B))$ $\{a\}, B \cup (Y \setminus \{b\})$ is a dominated tame homogeneous pair of G and it properly contains $761 \quad (A, B)$, a contradiction. This proves [\(c\).](#page-19-2) \Box

 762 **Proposition 7.21.** For every 4-good class F of graphs, there exists an integer c_F satisfying the ⁷⁶³ following.

 $F₇₆₄$ For every locally perfect bull-free austere trigraph G whose every induced subtrigraph with-⁷⁶⁵ out switchable pairs is in F, there exists a partition (X_1, X_2, \ldots, X_k) of $V(G)$ with $k \leq c$ \mathcal{F} σ_{566} such that $G[X_i]$ is a perfect subtrigraph with no switchable pair for all $i\in\{1,2,\ldots,k\}.$

767 Proof. Let $c_{\mathcal{F}} = 2\gamma \geq 2$ where γ is defined in [Proposition 7.4](#page-11-1) for F. We proceed by the induction $_{768}$ on $|V(G)|$. As every trigraph on at most 4 vertices is perfect, we may assume that $|V(G)| > 8$ ⁷⁶⁹ and therefore neither G nor \overline{G} belongs to \mathcal{T}_0 . Since the disjoint union of two perfect trigraphs 770 is perfect, we may assume that G is connected.

 Since G is monogamous, there exists a partition (S, T) of $V(G)$ such that both $G[S]$ and $_{772}$ G[T] have no switchable pairs. So both G[S] and G[T] are locally perfect bull-free elementary graphs. Suppose that G is elementary. By applying [Proposition 7.4](#page-11-1) to both $G[S]$ and $G[T]$, we obtain a partition of $V(G)$ into at most 2γ subsets, each inducing a perfect induced subtrigraph without switchable pairs. Therefore we may assume that G is not elementary.

776 Suppose that G has a homogeneous set A. Let $a \in A$ and $G' = G \setminus (A \setminus \{a\})$. Then τ trivially, G' is locally perfect and bull-free. By [Lemma 7.19,](#page-19-3) G' is austere. By the induction π_{78} hypothesis, G' admits a partition (X_1,\ldots,X_k) of $V(G')$ with $k\leq c_{\mathcal{F}}$ such that $G'[X_i]$ is perfect 779 and has no switchable pair for each $i \in \{1, 2, ..., k\}$. We may assume that $a \in X_1$. Since G is 780 connected and A is a homogeneous set of G, there is a vertex $v \in V(G)$ such that v is strongly 781 complete to A. Since G is locally perfect, G[A] is perfect. By [Lemma 7.16,](#page-19-4) G[X₁ ∪ A] is still ⁷⁸² perfect. Furthermore, $G[X_1 \cup A]$ has no switchable pair because both $G[A]$ and $G[X_1]$ have 783 no switchable pair. Then $(X_1 \cup A, X_2, \ldots, X_k)$ is a desired partition of $V(G)$. Thus, we may 784 assume that G has no homogeneous set.

 By [Theorem 7.15,](#page-18-0) G has a hole H of length 5 with both a star and a leaf. By [Theorem 7.18,](#page-19-5) G has a dominated tame homogeneous pair. Thus, there exists a maximal dominated tame homogeneous pair (A, B) . Since G is locally perfect and (A, B) is dominated, both $G[A]$ and G[B] are perfect.

 T_{789} Let G_0 be the trigraph obtained from G by shrinking (A, B) . Observe that every realization 790 of G_0 is isomorphic to an induced subgraph of some realization of G. This implies that G_0 is ⁷⁹¹ bull-free and locally perfect.

 792 Let a, b be the vertices of G_0 corresponding to A, B, respectively. By the induction hy- F pothesis, G_0 admits a partition (X_1,\ldots,X_k) of $V(G_0)$ with $k\leq c_\mathcal{F}$ such that $G_0[X_i]$ is perfect ⁷⁹⁴ and has no switchable pair for each $i \in \{1, \ldots, k\}$. We may assume that $a \in X_1$ and $b \in X_2$ 795 because no X_i contains switchable pairs.

 L et $X'_1 = (X_1 \setminus \{a\}) \cup A$ and $X'_2 = (X_2 \setminus \{b\}) \cup B$. By [Lemma 7.16,](#page-19-4) both $G[X'_1]$ and $G[X'_2]$ are perfect. Furthermore, both $G[X'_1]$ and $G[X'_2]$ have no switchable pairs because G is ⁷⁹⁸ austere. Observe that for all $i \in \{3, \ldots, k\}$, $G[X_i] = G'[X_i]$. Therefore $(X'_1, X'_2, X_3, \ldots, X_k)$ 799 is the desired partition of $V(G)$. \Box

⁸⁰⁰ Since every graph is also an austere trigraph, we obtain [Proposition 7.5](#page-11-2) as a direct corol-⁸⁰¹ [l](#page-11-3)ary to [Proposition 7.21.](#page-20-0) Recall this implies the class of bull-free graphs is Pollyanna by [Corol](#page-11-3)802 [lary 7.3.](#page-11-3) We restate [Proposition 7.5](#page-11-2) for the convenience of the reader.

803 Proposition 7.5. For every 4-good class F of graphs, there is a positive integer $c_{\mathcal{F}}$ such that 804 every locally perfect bull-free graph is $c_{\mathcal{F}}$ -perfect.

8 Non-Pollyanna classes

806 A oriented tree is an orientation of a tree. For a positive integer n, a graph G is an n-willow 807 if there exists an oriented tree T with $V(G) \subseteq V(T)$ such that for every distinct pair u, v of 808 vertices of G, the vertices u and v are adjacent if and only if T has a directed path from u to v 809 or from v to u whose length is not a multiple of n. In this case, we say G is an n-willow defined 810 by T. We will make extensive use of the following easy observation.

 81811 Observation 8.1. Let n be a positive integer and let T be an oriented tree. If P is a directed path 812 in T and G is an n-willow defined by T, then $G[V(P) \cap V(G)]$ is a complete multipartite graph.

813 A graph is a willow if it is an *n*-willow for some positive integer *n*. We remark that by ⁸¹⁴ subdividing certain edges of the associated oriented tree, one can show that if a graph is an ⁸¹⁵ *n*-willow, then it is also an *n'*-willow for all $n' \ge n$. On the other hand, the clique number of 816 an *n*-willow is at most *n* and K_n is an *n*-willow, so for every positive integer $n \geq 2$, there are $\begin{array}{ll} n\cdot \text{willows that are not n'-willows for any positive integer n' < n$.} \end{array}$

⁸¹⁸ The main result of this section is the following theorem which relates willows and 819 Pollyanna classes of graphs.

820 Theorem 8.2. If F is a finite set of graphs, none of which is a willow, then the class of F-free 821 graphs is not Pollyanna.

822 To construct χ -bounded hereditary classes of graphs that are not polynomially χ -bounded, 823 Briański, Davies, and Walczak [\[BDW23\]](#page-31-2) proved the following two lemmas.

824 Lemma 8.3 (Briański, Davies, and Walczak [\[BDW23,](#page-31-2) Lemma 4]). Let k be a positive integer.

 825 Then, there is a graph G with an acyclic orientation of its edges satisfying the following.

826 (A1) $\chi(G) = k$.

827 (A2) For every pair of vertices u and v, there is at most one directed path from u to v in G.

828 (A3) There is a directed path in G on k vertices.

829 (A4) There is a k-coloring ϕ of G such that for every directed path in G of non-zero length, their 830 ends u and v satisfy that $\phi(u) \neq \phi(v)$.

831 Lemma 8.4 (Briański, Davies, and Walczak [\[BDW23,](#page-31-2) Lemmas 5 and 6]). Let $p \leq k$ be positive 832 integers with p prime, and let G be a graph with an acyclic orientation of its edges satisfying [\(A1\)](#page-22-0), 833 [\(A2\)](#page-22-1), [\(A3\)](#page-22-2), and [\(A4\)](#page-22-3) for k. Let G_p be the graph obtained from G by adding an edge uv whenever ⁸³⁴ G has a directed path between u and v whose length is not divisible by p. Then, $\omega(G_p) = p$ and $_{\rm sss}\;$ every induced subgraph of G with clique number $m < p$ has chromatic number at most $\binom{m+2}{3}.$

 836 Graphs G as in [Lemma 8.3](#page-22-4) exist, and Briański, Davies, and Walczak [\[BDW23\]](#page-31-2) showed 837 specifically that the natural orientation of Tutte's construction [\[Des47,](#page-32-0) [Des54\]](#page-32-1) has these prop-838 erties. Note that [\(A1\)](#page-22-0) implies [\(A3\)](#page-22-2) by the following well-known lemma due to Gallai [\[Gal68\]](#page-33-9), 839 Hasse [\[Has65\]](#page-33-10), Roy [\[Roy67\]](#page-33-11), and Vitaver [\[Vit62\]](#page-34-7).

840 Lemma 8.5 (Gallai, Hasse, Roy, and Vitaver [\[Gal68,](#page-33-9) [Has65,](#page-33-10) [Roy67,](#page-33-11) [Vit62\]](#page-34-7)). Let k be a positive 841 integer. If a graph G has an orientation with no directed path of length k, then $\chi(G) \leq k$.

 $Girão, Illinois, Powierski, Savery, Scott, Tamitegama, and Tan [GIP⁺23] considered the$ $Girão, Illinois, Powierski, Savery, Scott, Tamitegama, and Tan [GIP⁺23] considered the$ $Girão, Illinois, Powierski, Savery, Scott, Tamitegama, and Tan [GIP⁺23] considered the$ 843 construction of Nešetřil and Rödl [\[NR79\]](#page-33-12), which is a large-girth variation of the construction 844 of Tutte [\[Des47,](#page-32-0) [Des54\]](#page-32-1). Using the same natural orientation, they obtained the following.

 μ_{gas} Lemma 8.6 (Girão, Illingworth, Powierski, Savery, Scott, Tamitegama, and Tan [\[GIP](#page-33-4)+23, 846 Lemma 10]). For every $q > 3$ and $k > 2$, there is a graph Y with an orientation of its edges 847 such that $\chi(Y) = k$ and every cycle in Y contains at least q changes of direction in the orienta-⁸⁴⁸ tion.

⁸⁴⁹ The property [\(A4\)](#page-22-3) also clearly holds for this construction, since the same natural orien- tation and coloring from the proof of Briański, Davies, and Walczak [\[BDW23\]](#page-31-2) for the con-851 struction of Tutte [\[Des47,](#page-32-0) [Des54\]](#page-32-1) can be used. Note that the orientation of Y described in [Lemma 8.6](#page-22-5) is acyclic and satisfies [\(A2\)](#page-22-1) because all of its cycles have at least three changes in direction in the orientation. By [Lemma 8.5,](#page-22-6) [\(A3\)](#page-22-2) holds for Y. Thus, we obtain the following strengthening of [Lemma 8.3.](#page-22-4)

855 Lemma 8.7. Let q, k be positive integers with $q > 3$ and $k > 2$. Then, there is a graph G with 856 an orientation of its edges satisfying $(A1)$, $(A2)$, $(A3)$, and $(A4)$ for k and additionally:

 \Box

 857 (B1) every cycle in G contains at least q changes of direction in the orientation.

858 Lemma 8.8. Let q, k be positive integers with $q > 3$ and $k > 2$. Let p be a prime less than or 859 equal to k. Let G be a graph with an orientation of its edges satisfying [\(A1\)](#page-22-0), [\(A2\)](#page-22-1), [\(A3\)](#page-22-2), and [\(A4\)](#page-22-3) $_{\rm iso}$ for k and [\(B1\)](#page-22-7) for g. Let G' be the graph on $V(G)$ such that two vertices u,v are adjacent in G' if and only if there is a directed path between u and v whose length is not divisible by $p.$ If $g > {N \choose 2}$ 861

 $_{\tiny \text{862}}$ for an integer N , then every induced subgraph of G' with at most N vertices is a p-willow.

 $\mathcal{E}_{\text{ss}3}$ - $\mathit{Proof.}$ Let X be a set of at most N vertices of $G'.$ We claim that $G'[X]$ is a $p\text{-willow.}$ Let T be 864 the union of all directed paths of G between u and v whose length is not divisible by p for all ⁸⁶⁵ edges uv of $G'[X]$.

By [\(A2\),](#page-22-1) we added at most 1 directed path per every edge of $G'[X]$ and therefore in total ⁸⁶⁷ T consists of less than q directed paths. By [\(B1\),](#page-22-7) every cycle in G contains at least q changes $\epsilon_{\rm{668}}$ of direction and therefore T has no cycles. Let T' be a tree obtained from T by adding a new \mathcal{S}_{869} vertex with an out-edge to one vertex of each component of $T.$ Then T' is a tree.

Booston Upserve that for distinct vertices u and v in X, if T' has a directed path from u to v whose \mathbb{R}^{371} length is not a multiple of p, then so does G and therefore G' contains the edge uv by the ⁸⁷² definition of G'. Conversely, if $G'[X]$ contains an edge uv , then G contains a directed path F 873 between u and v whose length is not a multiple of p. By [\(A2\),](#page-22-1) such a path P is unique and ⁸⁷⁴ therefore T' contains P . This proves that $G'[X]$ is a p-willow defined by $T'.$ \Box

 $\frac{875}{100}$ Now we can prove [Theorem 8.2.](#page-21-0) We obtain a *χ*-bounded class that is not polynomially 876 χ -bounded by combining [Lemma 8.4](#page-22-8) with [Lemma 8.7](#page-22-9) for some suitably large g instead of 877 [Lemma 8.3](#page-22-4) as is done in [\[BDW23\]](#page-31-2). Then, it is just a matter of examining the induced subgraphs.

878 Proof of Theorem [8.2.](#page-21-0) Let N be the set of positive integers. Let N be the maximum number of $_{\text{379}}$ vertices of a graph in ${\cal F}$ and let $g=\max(\binom{N}{2}+1,3).$ Choose a function $f:{\mathbb N}\to{\mathbb N}$ such that $f(1) = 1, f(n) \geq {n+2 \choose 3}$ $\binom{+2}{3}$ for all $n \in \mathbb{N}$, and $\lim_{n\to\infty} \frac{f(n)}{n^k} = \infty$ for every positive integer k . In 880 881 other words, we choose f to be "superpolynomial".

882 Let us first construct a χ -bounded class $\mathcal Z$ of graphs that is not polynomially χ -bounded. 883 For each prime p, let Y_p be a graph with an orientation of its edges satisfying [\(A1\)](#page-22-0)[–\(A4\)](#page-22-3) for ⁸⁸⁴ $k := f(p)$ and [\(B1\)](#page-22-7) for g, given by [Lemma 8.7.](#page-22-9) For every prime p, we define E_p to be the set 885 consisting of all pairs $\{u, v\}$ where $u, v \in V(Y_p)$ and Y_p contains a directed path from u to v 886 or from v to u whose length is not divisible by p. Let Z_p be the graph $(V(Y_p), E_p)$. Note that 887 $E(Y_p) \subseteq E_p$. In other words, Z_p can be obtained from Y_p by adding the elements of E_p to the 888 edge set of Y_p .

By [Lemma 8.4,](#page-22-8) we have that $\omega(Z_p) = p$ and every induced subgraph Z of Z_p with clique $_{\textbf{1}}$ s90 $\;$ number $m < p$ has chromatic number at most $\binom{m+2}{3}$. By [\(A1\)](#page-22-0) and [\(A4\),](#page-22-3) $\chi(Z_p) = k = f(p).$ Let \hat{Z} be the set of all graphs Z_p for each prime p and let $\mathcal Z$ be the closure of $\hat{\mathcal Z}$ under taking induced 892 subgraphs. Then $\mathcal Z$ is χ -bounded by a χ -bounding function f. Since there are infinitely many 893 primes and for every prime p there is a graph $Z \in \mathcal{Z}$ with clique number p and chromatic 894 number $f(p)$, $\mathcal Z$ is not polynomially χ -bounded by our choice of f.

895 Now, suppose that the class C of F-free graphs is Pollyanna. Then $\mathcal{Z} \not\subseteq \mathcal{C}$ because \mathcal{Z} 896 is not polynomially χ -bounded. Then there exist a prime p and a set $X \subseteq V(Z_p)$ such that $Z_p[X]$ is isomorphic to a graph $F \in \mathcal{F}$. By [Lemma 8.8,](#page-22-10) $Z_p[X]$ is a p-willow, contradicting the 898 assumption that $\mathcal F$ contains no willows. \Box

899 We remark that by applying [Lemmas 8.4,](#page-22-8) [8.7](#page-22-9) and [8.8,](#page-22-10) one can also obtain the following.

900 Theorem 8.9. If F is a finite set of graphs, none of which is a willow, then for every positive 901 integer q, there is a class G of F-free graphs that is not χ -bounded, but such that every graph $G \in \mathcal{G}$ with $\omega(G) < q$ has chromatic number at most $\binom{q+1}{3}$ $_{{}^{{}_{902}}}$ $\;$ $G\in {\cal G} \;$ with $\omega(G)< q$ has chromatic number at most ${{q+1}\choose{3}}.$

903 Proof. Let p be a prime such that $q \leq p \leq 2q$ (such a prime exists by Bertrand's postulate). Let N be the maximum number of vertices of a graph in ${\cal F}$ and let $g = \max(\binom{N}{2} + 1, 3).$

905 For each integer $k \geq p$, we are going to construct a graph G_k as follows. By [Lemma 8.7,](#page-22-9) 906 there is a graph H_k with an orientation of its edges satisfying [\(A1\)](#page-22-0)[–\(A4\)](#page-22-3) for k and [\(B1\)](#page-22-7) for g.

907 By [Lemma 8.4,](#page-22-8) there is a graph G_k obtained from H_k by adding an edge uv whenever H_k

908 has a directed path between u and v whose length is not divisible by p such that $\omega(G_k) = p$ 909 and every induced subgraph of G_k with clique number $m < p$ has chromatic number at most $_{910}$ $\binom{m+2}{3}.$ By [\(A1\)](#page-22-0) and [\(A4\),](#page-22-3) $\chi(G_k)=k.$ Let ${\cal G}$ be the class of all induced subgraphs of G_k for all 911 $k \geq p$. So, G is not χ -bounded but every graph in G with $\omega(G) = m < q$ has chromatic number at most $\binom{m+2}{3} \leq \binom{q+1}{3}$ 912 **at most** $\binom{m+2}{3} \leq \binom{q+1}{3}$.

913 By [Lemma 8.8,](#page-22-10) every graph in G with at most N vertices is a p-willow and therefore G is 914 F-free. \Box

9 Forbidden induced subgraphs for willows

916 In this section, we describe some forbidden induced subgraphs for the class of willows. We 917 only aim to sample the forbidden induced subgraphs rather than to find an exhaustive list. We 918 believe there are many more. Our main idea is to use [Observation 8.1,](#page-21-2) which says that if G 919 is an *n*-willow defined by an oriented tree T, then vertices on a directed path on T cannot 920 induce $K_2 \cup K_1$ in G, because $K_2 \cup K_1$ is not a complete multipartite graph.

921 A 10-vertex graph G is a pentagram spider if it has a perfect matching M such that $G \setminus M$ ϵ_{922} has a component isomorphic to K_5 . Note that vertices not in the component isomorphic to K_5 923 are allowed to be adjacent to each other. See [Figure 2](#page-2-0) for an illustration.

 924 **Proposition 9.1.** No pentagram spider is a willow.

925 Proof. Let G be a pentagram spider and M be a perfect matching of G such that $G \setminus M$ has a \mathcal{P}_{926} clique A of size 5. Let T be an oriented tree and suppose that G is a willow defined by T. Then 927 by definition $V(G) \subseteq V(T)$ and for every edge $uv \in E(G)$, there is a directed path from u to v 928 or from v to u in T. Since A is a clique of G, there is a directed path P in T which contains 929 all vertices of A. Let x_1, x_2, x_3, x_4, x_5 be the vertices of A in the order of their appearances 930 in P. Let y_1, y_2, y_3, y_4, y_5 be the vertices of G such that $x_iy_i \in M$ for all $i = 1, 2, \ldots, 5$. Since $x_3y_3\in E(G)$, there is some directed path P' in T from y_3 to x_3 or from x_3 to y_3 . By reversing the 932 orientation of all edges of G and T and switching the labels of x_1, x_2 with x_5, x_4 if necessary, 933 we may assume that P' is a directed path from y_3 to x_3 . Then, there is a directed path P'' in \overline{T} 934 containing y_3, x_3, x_4, x_5 in order. Then $G[\{y_3, x_4, x_5\}]$ is not a complete multipartite graph, 935 contradicting [Observation 8.1.](#page-21-2) \Box

936 A 12-vertex graph is a *tall strider* if it has a clique $C = \{x_1, x_2, x_3\}$ of size 3 such that \mathbb{P}_{937} $N(x_1) \setminus C$, $N(x_2) \setminus C$, and $N(x_3) \setminus C$ are disjoint cliques of size 3. We remark that there can 938 be edges between $N(x_i) \setminus C$ and $N(x_j) \setminus C$ for distinct i, j. See [Figure 2](#page-2-0) for an illustration.

939 Proposition 9.2. No tall strider is a willow.

940 Proof. Let G be a tall strider with a clique C of size 3 such that $N(v) \setminus C$ for all $v \in C$ are 941 disjoint cliques of size 3. Let T be an oriented tree and suppose that G is a willow defined by 942 T. Since C is a clique of G, there is a directed path P in T that contains all vertices of C. Let 943 x₁, x₂, x₃ be the vertices in C such that P is a directed path from x_1 to x_3 . Similarly, since $_2$ 44 $\hskip 3mm (N(x_2) \setminus C) \cup \{x_2\}$ is a clique, there exists a directed path P' in T that contains all vertices of $(N(x_2)\backslash C)\cup\{x_2\}.$ If two vertices, say a,b of $N(x_2)\backslash\overline{C}$ come after x_2 in P' , then T contains a 946 directed path containing x_1, x_2, a , and b. However, $G[\{x_1, a, b\}]$ is not a complete multipartite 947 graph, contradicting [Observation 8.1.](#page-21-2) Thus two vertices, say a, b of $N(x_2) \setminus C$ come before $\begin{equation} \begin{aligned} x_2 \ \text{ in } P'. \ \text{Then } T \text{ contains a directed path containing } a, b, x_2, x_3. \ \text{Again, } G[\{a, b, x_3\}] \text{ is not a} \end{aligned} \end{equation}$ 949 complete multipartite graph, contradicting [Observation 8.1.](#page-21-2) \Box

Figure 8: The complement $\overline{P_8}$ of P_8 is an *n*-willow for every integer $n \geq 5$. Vertices v_1, v_2, \ldots v_8 represent vertices of $\overline{P_8}$ in the order. The dashed arc with an integer k means a directed path of length k .

950 A 10-vertex graph is a short strider if it has a clique $C = \{x_1, x_2, x_3, x_4\}$ of size 4 such that ⁹⁵¹ $N(x_1) \setminus C$, $N(x_2) \setminus C$, and $N(x_3) \setminus C$ are disjoint cliques of size 2. We remark that there can ⁹⁵² be edges between $N(x_i) \setminus C$ and $N(x_j) \setminus C$ for distinct i, j. See [Figure 2](#page-2-0) for an illustration.

953 Proposition 9.3. No short strider is a willow.

 954 Proof. Let G be a short strider. Let T be an oriented tree and suppose that G is a willow defined ⁹⁵⁵ by T. Let $C = \{x_1, x_2, x_3, x_4\}$ be a clique of G such that $N(x_1) \setminus C$, $N(x_2) \setminus C$, and $N(x_3) \setminus C$ ⁹⁵⁶ are disjoint cliques of size 2.

 \mathcal{S}_{957} Since C is a clique of G, we may assume without loss of generality that T has a directed 958 path P that contains all vertices in C. By reversing the direction of all edges in T if necessary, 959 we may assume x_4 is not the first two vertices of C in P. By the symmetry among x_1, x_2 , 960 and x_3 , we may assume that x_1 is the first vertex of C appearing on P and x_2 is the second 961 vertex of C appearing on P. Since $(N(x_2) \setminus C) \cup \{x_2\}$ is a clique of G, there is a directed $\begin{array}{ll} \mathbb{P}^2 \quad \text{path } P' \text{ in } T \text{ that contains all vertices in } (N(x_2) \setminus C) \cup \{x_2\}. \end{array}$

If some $x \in N(x_2) \setminus C$ appears before x_2 on P' , then T has a directed path P'' containing x, x₂, x₃, and x₄. However, $G[\{x, x_3, x_4\}]$ is not a complete multipartite graph, contradict-965 ing [Observation 8.1.](#page-21-2)

We may therefore assume that two vertices in $N(x_2) \setminus C$ appear after x_1 on P' . But then, F has a directed path P^* containing x_1, x_2 and two vertices in $N(x_2) \setminus C$. Then $G[\{x_1\} \cup$ 968 $(N(x_2) \setminus C)$ is not a complete multipartite graph, contradicting [Observation 8.1.](#page-21-2) \Box

969 Now we present a lemma on willows, which we will use in later propositions.

970 Lemma 9.4. Let G be a graph whose complement \overline{G} is a willow defined by an oriented tree T. If 971 G has an induced path u -v-w of length 2, then T has no directed path between u and v or T has 972 no directed path between v and w.

 Proof. Suppose not. Then, without loss of generality, we may assume that there exists a di- rected path P between u and v in T. By reversing all edges of T if necessary, we may assume 975 P is a directed path from u to v. Observe that $G[\{u, v, w\}]$ is isomorphic to $K_2 \cup K_1$. Since $K_2 \cup K_1$ is not a complete multipartite graph by [Observation 8.1,](#page-21-2) it follows that there is no directed path from v to w. Therefore, there exists a directed path from w to v in T. Since T is 978 a tree, it now follows that T has no directed path between u and w, contradicting the fact that $uw \in E(\overline{G}).$ \Box

980 We remark that $\overline{P_8}$ is a willow, see [Figure 8.](#page-25-0) Next, we show that $\overline{P_9}$ is not a willow. This 981 clearly follows from the following more general proposition.

982 Proposition 9.5. Let G be a graph. If G has three vertex-disjoint induced paths Q_1, Q_2, Q_3 of 983 length 2 such that their interior vertices have degree 2 in G, then the complement \overline{G} of G is not a ⁹⁸⁴ willow.

$$
v_5 \leftrightarrow v_3
$$
\n
$$
v_1 \rightarrow v_2
$$
\n
$$
v_3 \rightarrow v_4
$$
\n
$$
v_4 \rightarrow v_5
$$
\n
$$
v_5 \rightarrow v_1
$$
\n
$$
v_5 \rightarrow v_1
$$
\n
$$
v_2 \rightarrow v_2
$$
\n
$$
v_3 \rightarrow v_5
$$
\n
$$
v_5 \rightarrow v_1
$$
\n
$$
v_2 \rightarrow v_2
$$
\n
$$
v_3 \rightarrow v_5
$$

Figure 9: Both $\overline{C_5}$ and $\overline{C_6}$ are are *n*-willows for every integer $n \geq 5$. Vertices v_1, v_2, \ldots represent vertices of the antihole in the cyclic order. The dashed arc with an integer k means a directed path of length k .

985 Proof. Suppose that \overline{G} is a willow defined by some oriented tree T. Let x_1, x_2, x_3 be the 986 interior vertices of Q_1 , Q_2 , and Q_3 , respectively. As $\{x_1, x_2, x_3\}$ is a clique in G, we may 987 assume without loss of generality that T has a directed path P from x_1 to x_3 whose interior contains x_2 . By [Lemma 9.4,](#page-25-1) there is an end y_2 of Q_2 such that there is no directed path between x_2 and y_2 in T.

990 Since $x_1y_2 \in E(\overline{G})$, there exists a directed path R_1 in T between x_1 and y_2 . There is no 991 directed path from y_2 to x_2 in T and therefore R_1 is directed from x_1 to y_2 . Similarly, there is a 992 directed path R_2 in T from y_2 to x_3 . Let $R = R_1 \cup R_2$. Then, both P and R are directed paths 993 of T from x_1 to x_3 . Since T is a tree, we deduce that $P = R$, contradicting the assumption that there is no directed path between x_2 and y_2 . \Box

995 The previous proposition also shows that $\overline{C_n}$ is not a willow for $n \geq 9$. It is easy to see that 996 both $\overline{C_5}$ and $\overline{C_6}$ are willows, see [Figure 9.](#page-26-0) Lastly, we prove that neither $\overline{C_7}$ nor $\overline{C_8}$ is a willow.

997 We remark that all cycles are willows, see [Figure 10.](#page-27-0)

998 Proposition 9.6. The complement $\overline{C_n}$ of C_n is not a willow for all integers $n \ge 7$.

999 Proof. Let $v_1, v_2, ..., v_n$ be the vertices of $\overline{C_n}$ in cyclic order. Suppose that $\overline{C_n}$ is a willow 1000 defined by some oriented tree T. Let F be the set of all edges uv of G such that there is a $_{1001}$ directed path from u to v or from v to u in T.

1002 Suppose that $F = \emptyset$. Then for some $j \in \{1, 2, ..., n\}$, there is no directed path from v_j to 1003 *v_i* in T for all $i \in \{1, 2, 3, \ldots, n\} \setminus \{j\}$. By symmetry, we may assume that $j = 1$.

¹⁰⁰⁴ Since $\{v_1, v_3, v_6\}$ is a clique of G, there is a directed path P in T containing all of v_1, v_3 , and v_6 . Let (i, j, k) be the permutation of $\{1, 3, 6\}$ such that P contains v_i, v_j, v_k in order. Then $\begin{array}{c} i = 1 \text{ by the assumption on } v_1. \text{ Let } \ell \in \{j-1, j+1\} \cap \{4, 5\}. \text{ Then } \{v_1, v_\ell, v_k\} \text{ is a clique in } \end{array}$ 1007 G and therefore there is a path Q containing v_1 , v_ℓ , and v_k . Since T is a tree, v_j is in $\tilde{V}(Q)$, 1008 contradicting the assumption that $v_i v_\ell \notin F$.

1009 Therefore $F \neq \emptyset$. By symmetry, we may assume that $v_2v_3 \in F$. Since T contains directed 1010 paths between v_2 and v_6 and between v_2 and v_3 , it follows that T contains a directed path P 1011 containing v_2 , v_3 , and v_6 . Let (i, j, k) be a permutation of $\{2, 3, 6\}$ such that P is a directed 1012 path containing v_i, v_j, v_k , in order. By [Lemma 9.4,](#page-25-1) $v_{j-1}v_j \notin F$ or $v_jv_{j+1} \notin F$. Thus, there is an ¹⁰¹³ $\ell \in \{j-1, j+1\} \cap \{1, 4, 5, 7\}$ such that $v_{\ell}v_j \notin F$. Since v_{ℓ} is complete to $\{v_i, v_k\}$, there is a 1014 directed path Q of T containing v_i , v_k , and v_ℓ . As T is a tree, we conclude that Q contains F ¹⁰¹⁵ and therefore v_j , contradicting the assumption that $v_jv_\ell \notin F$. $\overline{}$

1016 Now we are going to prove that large enough "fans" and "complete wheels" are not willows. 1017 We define fans as follows. Let $n \geq 3$ be an integer. Let F_n be the $(n + 1)$ -vertex graph with 1018 a specified vertex c called the center such that $F_n \setminus c$ is the path P_n . A complete wheel on 1019 ($n+1$)-vertices is the graph W_n obtained from F_n by adding an edge between the two degree-¹⁰²⁰ 1 vertices of $F_n \setminus c$. Hence, $W_n \setminus c$ is the cycle C_n . We will show that W_n and C_n are not 1021 willows for each $n \geq 7$. First, we present a useful lemma.

Figure 10: These oriented trees certify that cycles of length 18 and 19 are n -willows for every integer $n \geq 4$ and can be easily modified to show that all cycles are *n*-willows. Vertices v_1, v_2 , \dots represent vertices in the cyclic order. The dashed arc with an integer k means a directed path of length k .

 1022 Lemma 9.7. Let G be a copy of F_4 with center c. Let v_1 be a vertex of degree one in $G \backslash c$. If G is a 1023 willow defined by an oriented tree T and T has a directed path from v to c for every $v \in V(G \setminus c)$, 1024 then the directed path from v_1 to c in T contains at least one vertex in $V(G) \setminus \{v_1, c\}$.

Proof. Note $G \backslash c = P_4$. Let v_1, v_2, v_3, v_4 be the vertices of P_4 , in order. For each $i \in \{1, 2, 3, 4\}$, let R_i denote the directed path from v_i to c in T. We may assume that

$$
V(R_j) \nsubseteq V(R_1) \text{ for each } j \in \{2, 3, 4\}. \tag{6}
$$

Since $\{v_1, v_2, c\}$ is a clique there is a directed path P of T containing v_1, v_2, c . Since T is a tree, $R_1 \cup \overline{R}_2 = P$. Hence, $\overline{V(R_1)} \subseteq V(R_2)$. For $i \in \{2, 4\}$, the set $\{v_i, v_3, c\}$ is a clique. Hence,

For every
$$
i \in \{2, 4\}
$$
, $V(R_i) \subseteq V(R_3)$ or $V(R_i) \subseteq V(R_2)$. (7)

Since $G[\{v_1, v_2, v_4\}]$ is isomorphic to $K_2 \cup K_1$, by [Observation 8.1,](#page-21-2)

$$
V(R_4) \nsubseteq V(R_2) \text{ and } V(R_2) \nsubseteq V(R_4). \tag{8}
$$

1025 Suppose that $V(R_2) \subseteq V(R_3)$. By [\(7\)](#page-27-1) and [\(8\)](#page-27-2), $V(R_4) \subseteq V(R_3)$ and therefore $V(R_3)$ con1026 [t](#page-21-2)ains both $V(R_1)$ and $V(R_4)$. This means that R_3 contains v_1, v_3, v_4 , contradicting [Observa](#page-21-2)1027 [tion 8.1.](#page-21-2)

1028 Thus, $V(R_3) \subseteq V(R_2)$. Since $V(R_1) \subseteq V(R_2)$ and R_1, R_2, R_3 are all directed paths ending 1029 at c, it follows from [\(6\)](#page-27-3) that $V(R_1) \subseteq V(R_3) \subseteq V(R_2)$. By [\(7\)](#page-27-1) and [\(8\)](#page-27-2), $V(R_3) \subseteq V(R_4)$. So R_4 1030 is a directed path containing each of v_1, v_3, v_4 contrary to [Observation 8.1.](#page-21-2) \Box

- 1031 Note that F_6 is a willow, see [Figure 11.](#page-28-0) We prove that F_n is not a willow if $n \ge 7$.
- 1032 **Proposition 9.8.** For every integer $n \geq 7$, F_n is not a willow.

Figure 11: Both F_6 and W_6 are 5-willows. Vertices v_1, v_2, \ldots represent vertices in the order in $F_6 \setminus c$ or $W_6 \setminus c$. The dashed arc with an integer k means a directed path of length k.

¹⁰³³ Proof. Let $G := F_n$. Suppose that G is an m-willow defined by an oriented tree T for a positive 1034 integer m. Let A be the vertices of G from which T has a directed path to c. Let B be the 1035 vertices of G to which T has a directed path from c. Since c is complete to $V(G) \setminus \{c\},$ 1036 $A \cup B = V(G) \setminus \{c\}$. Let v_1, v_2, \ldots, v_n be the vertices of $G \setminus c$ in the order defined by the path $_{1037}$ $G \setminus c$.

 $_{1038}$ Claim 15. Either A is an independent set of G or B is empty.

1039 Proof. Suppose that A contains an edge $v_i v_{i+1}$. There is a directed path of T from v_i or v_{i+1} to c 1040 containing all of v_i , v_{i+1} , and c . Let $M = (N_G(x) \cup N_G(y)) \setminus \{c\}$. Then by definition, M contains 1041 at most two vertices of $G\backslash c$, namely v_{i-1} if $i>1$ and v_{i+2} if $i< n$. Let $X=V(G)\backslash (M\cup\{c\})$. 1042 For each vertex $z \in X$, $G[\{x, y, z\}]$ induces a graph isomorphic to $K_2 \cup K_1$ and therefore 1043 $z \notin B$ by [Observation 8.1.](#page-21-2) So, $X \subseteq A$. Since $n \geq 7$, $v_1, v_2 \in X$ or $v_{n-1}, v_n \in X$. We deduce 1044 that $\{v_1, v_2, v_{n-1}, v_n\}$ ⊆ A by [Observation 8.1](#page-21-2) because each of its 3-vertex subsets induces a 1045 subgraph of G isomorphic to $K_2 \cup K_1$. For every vertex $w \in V(G) \setminus (X \cup \{c\})$, there are 1046 distinct vertices $u, v \in \{v_1, v_2, v_{n-1}, v_n\}$ such that uv is an edge of G and w is non-adjacent to 1047 both u and v. Again by [Observation 8.1,](#page-21-2) $w \in A$. Hence, $B = \emptyset$.

1048 Suppose that $B = \emptyset$. Choose a vertex v in A such that $d_T(v, c)$ is minimized. Then $G \setminus c$ 1049 has a 4-vertex induced path starting at v because $n \geq 7$. By [Lemma 9.7,](#page-26-1) the directed path from 1050 v to c contains at least one vertex of $V(G) \setminus \{c, v\}$, contradicting the choice of v. Therefore 1051 we may assume that $B \neq \emptyset$. By symmetry, $A \neq \emptyset$. By [Claim 15,](#page-28-1) both A and B are independent 1052 sets of G .

¹⁰⁵³ We may assume that A contains v_i for each even $i \in \{1, 2, \ldots, n\}$ and B contains v_j for 1054 every odd $j \in \{1, 2, ..., n\}$. For each $i \in \{1, 2, ..., n-5\}$, $d_T(v_i, c) \equiv d_T(v_{i+2}, c) \pmod{m}$ 1055 because v_{i+5} is non-adjacent to both v_i and v_{i+2} . Similarly, for each $i \in \{6, 7, \ldots, n\}$, $d_T(v_{i-2}, c) \equiv d_T(v_i, c) \pmod{m}$ because v_{i-5} is non-adjacent to both v_i and v_{i-2} .

1057 So, there are integers a and b such that $d_T(v_i, c) \equiv a \pmod{m}$ for all even $i \in \{1, 2, ..., n\}$ 1058 and $d_T(v_i, c) \equiv b \pmod{m}$ for all odd $i \in \{1, 2, \ldots, n\}$. This implies that A is complete or 1059 anti-complete to B , a contradiction. \Box

¹⁰⁶⁰ Since F_n is an induced subgraph of W_{n+1} , by [Proposition 9.8,](#page-27-4) W_n is not a willow for all 1061 $n \geq 8$. However, it is easy to see that W_n is a willow for every $n < 7$, see [Figure 11.](#page-28-0) We now $_{1062}$ show that W_7 is not a willow.

1063 **Proposition 9.9.** For every integer $n \geq 7$, W_n is not a willow.

 1064 Proof. Let $G := W_n$. Suppose that G is an m-willow defined by an oriented tree T for a positive 1065 integer m. Let A be the vertices of G from which T has a directed path to c. Let B be the 1066 vertices of G to which T has a directed path from c. Since c is complete to $V(G) \setminus \{c\}$, $_{1067} A \cup B = V(G) \setminus \{c\}.$

$_{1068}$ Claim 16. Either A is an independent set of G or B is empty.

1069 Proof. Suppose that A contains an edge xy. There is a directed path of T from x or y to c 1070 containing all of x, y, and c. Let $X = V(G) \setminus (N_G(x) \cup N_G(y) \cup \{c\})$. For each vertex $z \in X$, $[G[\{x, y, z\}]$ induces a graph isomorphic to $K_2 \cup K_1$ and therefore $z \notin B$ by [Observation 8.1.](#page-21-2) 1072 Since $n \geq 7$, $|X| \geq 3$ and $X \subseteq A$. Then for every vertex $w \in V(G) \setminus (X \cup \{c\})$, there are 1073 distinct vertices $u, v \in X$ such that uv is an edge of G and w is non-adjacent to both u and v. $_{1074}$ Again by [Observation 8.1,](#page-21-2) $w \in A$. Hence, $B = \emptyset$.

1075 Suppose that $B = \emptyset$. Choose a vertex v in A such that $d_T(v, c)$ is minimized. By [Lemma 9.7,](#page-26-1) 1076 the directed path from v to c contains at least one vertex of $V(G) \setminus \{c, v\}$, contradicting the 1077 choice of v. Therefore we may assume that $B \neq \emptyset$. By symmetry, $A \neq \emptyset$. By [Claim 16,](#page-28-2) both A 1078 and B are independent sets of G , so n is even.

1079 Let v_1, v_2, \ldots, v_n be the vertices of $G \backslash c$ in the cyclic order. We assume that $v_{n+k} = v_k$ for all ¹⁰⁸⁰ $k \in \{1, 2, \ldots, n\}$. We may assume that $v_1, v_3, \ldots, v_{n-1} \in A$ and $v_2, v_4, \ldots, v_n \in B$ by swapping 1081 A and B if necessary. For each $i \in \{2, 4, \ldots, n\}$, $d_T(v_i, c) \equiv d_T(v_{i+2}, c) \pmod{m}$ because ¹⁰⁸² $v_{i+5} \in A$ is non-adjacent to both v_i and v_{i+2} . So, there is an integer a such that $d_T(v_i, c) \equiv$ 1083 a (mod m) for all $i \in \{2, 4, \ldots, n\}$. Similarly, there is an integer b such that $d_T(c, v_i) \equiv b$ 1084 (mod m) for all $j \in \{1, 3, \ldots, n-1\}$. This implies that A is complete or anti-complete to B, ¹⁰⁸⁵ a contradiction. \Box

¹⁰⁸⁶ Now [Theorem 1.3](#page-2-2) follows from [Theorem 8.2](#page-21-0) and the propositions in this section.

1087 **10 Further work**

1088 We believe that Pollyanna classes of graphs provide a fruitful framework to study the struc-1089 tural distinctions between polynomially χ -bounded classes and χ -bounded classes that are not $_{1090}$ polynomially χ -bounded. We conclude our paper by outlining some open problems.

1091 We remark that every Pollyanna graph class discussed in this paper is also strongly ¹⁰⁹² Pollyanna, which begs the following question:

 1093 Problem 10.1. Are there Pollyanna graph classes that are not strongly Pollyanna?

 1094 Resolving Problem [10.1](#page-29-1) would likely require a better understanding of k -good graph classes 1095 [w](#page-23-0)hich are not χ -bounded, which have only recently been proven to exist [\[CHMS23\]](#page-31-3). [Theo](#page-23-0)1096 [rem 8.9](#page-23-0) gives more examples of k-good graph classes which are not χ -bounded.

1097 In a recent paper, Bourneuf and Thomassé [\[BT23\]](#page-31-1) introduce an operation called "delayed-1098 extension" which preserves polynomial χ -boundedness on a class of graphs. We comment that the delayed-extension of a (strongly) Pollyanna class is also (strongly) Pollyanna, which gives us a slight improvement of [Theorem 1.2.](#page-2-3) In [\[BT23\]](#page-31-1), Bourneuf and Thomassé suggest that better understanding the classes which can be obtained from simple graph classes by applying delayed-extension a finite number of times should be helpful in understanding (polynomial) γ -boundedness. We also point out that this may be a good approach to better understanding Pollyana graph classes.

¹¹⁰⁵ A wheel is a graph consisting of an induced cycle of length at least four and a single addi-¹¹⁰⁶ tional vertex with at least three neighbors on the cycle. The class of graphs with no induced 1107 wheel is not χ -bounded [\[Dav23,](#page-32-17) [Pou20,](#page-33-13) [PT24\]](#page-33-14), however, it may well be Pollyanna. The fact that 1108 the class of (wheel, theta)-free graphs is linearly χ -bounded [\[RTV20\]](#page-33-15) provides some limited ev-1109 idence that the class of wheel-free graphs might be Pollyanna. We remark that we showed in 1110 [Proposition 9.9](#page-28-3) that for every finite set $\mathcal F$ of complete wheels of length at least seven, the class

Figure 12: Graphs appearing in the problems.

 1111 of $\mathcal F$ -free graphs is *not* Pollyanna. However, in our opinion this does not provide evidence 1112 that the class of wheel-free graphs is not Pollyanna.

1113 **Problem 10.2.** Is the class of wheel-free graphs Pollyanna?

¹¹¹⁴ We note that even though Esperet's conjecture was disproved, it is still open whether the ¹¹¹⁵ Gyárfás-Sumner Conjecture holds in the following stronger sense:

1116 Problem 10.3 (Polynomial Gyárfás-Sumner). Is it true that for every forest F the class of F -free 1117 graphs is polynomially *χ*-bounded?

¹¹¹⁸ We say a graph H is Pollyanna-binding if the class of H-free graphs is Pollyanna. In this ¹¹¹⁹ language, Problem [10.3](#page-30-0) asks if every forest is Pollyanna-binding. An even more ambitious ¹¹²⁰ open problem is to characterize the class of Pollyanna-binding graphs. While we gave some ¹¹²¹ results in this direction, we are quite far from a full characterization. We ask about some 1122 special cases we believe may be more tractable.

¹¹²³ We call a graph an (s, t) -bowtie if it can be obtained from the disjoint union of K_s and K_t by 1124 adding a new vertex complete to everything else, see [Figure 12a.](#page-30-1) In this language, [Theorem 6.1](#page-8-0) 1125 states that the $(2, 2)$ -bowtie is Pollyanna-binding.

1126 **Problem 10.4.** Is the class of (s, t) -bowtie-free graphs Pollyanna for each $s > 3$ and $t > 2$?

¹¹²⁷ We call a graph an (s, t) -dumbbell if it can be obtained from the disjoint union of K_s and ¹¹²⁸ K_t by adding a single additional edge between a vertex of the K_s and a vertex of the K_t , see 1129 [Figure 12b.](#page-30-1) Note that a t-lollipop is a $(2, t)$ -dumbbell, so [Theorem 5.6](#page-8-2) states that the class of 1130 $(2, t)$ -dumbbell-free graphs is Pollyanna.

1131 **Problem 10.5.** Is the class of (s, t) -dumbbell-free graphs Pollyanna for each $s \geq 3$ and $t \geq 3$?

 Bulls are induced subgraphs of certain pentagram spiders. While the class of bull-free 1133 graphs is Pollyanna by [Theorem 7.6,](#page-11-4) the class of pentagram spider-free graphs is not by [Theo](#page-21-0)[rem 8.2](#page-21-0) and [Proposition 9.1.](#page-24-1) The next natural case to consider would be tripod-free graphs. A tripod is the graph obtained from K_3 by adding one pendant vertex to each vertex of the K_3 , see [Figure 12c.](#page-30-1)

1137 Problem 10.6. Is the class of tripod-free graphs Pollyanna?

1138 Scott and Seymour [\[SS16\]](#page-34-8) proved that the class of odd hole-free graphs is χ -bounded. Their γ -bounding function is doubly exponential and it remains open whether the class of odd-hole- $_{1140}$ free graphs is polynomially χ -bounded (and so Pollyanna). We propose the analogous problem ¹¹⁴¹ for odd antihole-free graphs.

1142 **Problem 10.7.** Is the class of odd antihole-free graphs Pollyanna?

¹¹⁴³ [Proposition 9.6](#page-26-2) shows that no antihole of length at least 7 is a willow. However, small an- $_{1144}$ tiholes such as C_5 and C_6 are. It may well be true that the class of C_5 -free graphs is Pollyanna. 1145 Antihole-free graphs are polynomially χ -bounded since $\overline{C_4} = 2K_2$ [\[Wag80\]](#page-34-6). So, as a starting ¹¹⁴⁶ point, we propose the following problem.

1147 Problem 10.8. Is the class of graphs without any antihole of length at least 5 Pollyanna?

¹¹⁴⁸ The simplest willows are those whose underlying oriented tree is a directed path between ¹¹⁴⁹ two vertices. These graphs are exactly the complete multipartite graphs, thus it is natural to ¹¹⁵⁰ consider if a class of graphs with a forbidden complete multipartite graph is Pollyanna. In this 1151 direction, the first step would be to determine whether the class of graphs without an induced ¹¹⁵² square $K_{2,2} = C_4$ or an induced diamond $K_{2,1,1} = K_4 \setminus e$ is Pollyanna.

1153 **Problem 10.9.** Is the class of $\{C_4, K_4 \setminus e\}$ -free graphs Pollyanna?

1154 In [Section 9,](#page-24-0) we described some forbidden induced subgraphs for willows but did not have ¹¹⁵⁵ a complete list of forbidden induced subgraphs for willows.

 1156 Problem 10.10. Characterize willows by their minimal forbidden induced subgraphs.

1157 In [Section 8,](#page-21-1) we showed that all Pollyanna-binding graphs are willows. Based on this, we 1158 can end our paper with the following extremely optimistic conjecture.

1159 Conjecture 10.11 (Pollyanna's Conjecture). A graph is Pollyanna-binding if and only if it is a ¹¹⁶⁰ willow.

¹¹⁶¹ If Pollyanna's conjecture is disproved, then Pollyanna [\[Por13\]](#page-33-16) would almost certainly im-1162 mediately make a new conjecture.

1163 Acknowledgements

 The initial idea for this paper was developed at the MATRIX-IBS Workshop: Structural Graph Theory Downunder III. Much of this work was done while James Davies and Maria Chud- novsky were visiting the Institute for Basic Science (IBS). We are grateful for the generous 1167 support from MATRIX and IBS for making this project possible. We would like to thank Fred-die Illingworth, Robert Hickingbotham, and Günter Rote for their helpful discussions.

¹¹⁶⁹ References

