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Abstract11

A class F of graphs is χ-bounded if there is a function f such that χ(H) ≤ f(ω(H))12

for all induced subgraphsH of a graph inF . If f can be chosen to be a polynomial, we say13

that F is polynomially χ-bounded. Esperet proposed a conjecture that every χ-bounded14

class of graphs is polynomially χ-bounded. This conjecture has been disproved; it has15

been shown that there are classes of graphs that are χ-bounded but not polynomially χ-16

bounded. Nevertheless, inspired by Esperet’s conjecture, we introduce Pollyanna classes17

of graphs. A class C of graphs is Pollyanna if C ∩ F is polynomially χ-bounded for every18

χ-bounded class F of graphs. We prove that several classes of graphs are Pollyanna and19

also present some proper classes of graphs that are not Pollyanna.20

1 Introduction21

The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors22

needed to color the vertices of G such that adjacent vertices always receive distinct colors. A23

clique of a graph is a set of pairwise adjacent vertices. We write ω(G) to denote the maximum24

size of a clique in a graph G. For a graphH , we say G isH-free if G has no induced subgraph25

isomorphic to H .26

Obviously χ(G) ≥ ω(G). In general, χ(G) is not bounded from above by any function of27

ω(G); there are constructions for triangle-free graphswith arbitrary largeχ(G) [Des47, Des54,28

Myc55, Zyk49]. The strong perfect graph theorem [CRST06] states that χ(H) = ω(H) for all29

induced subgraphsH of a graphG if and only ifG has no odd cycles or their complements as30

an induced subgraph. Such graphs are called perfect.31

Motivated by perfect graphs, Gyárfás [Gyá75] initiated the study of graph classes on which32

χ(G) is bounded from above by a function of ω(G). A class F of graphs is χ-bounded if there33
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(a) A (7, 5)-pineapple. (b) A 5-lollipop. (c) A bowtie. (d) A bull.

Figure 1: Forbidding any of these graphs makes a Pollyanna class of graphs.

exists a function f such that χ(H) ≤ f(ω(H)) for all induced subgraphs H of a graph in F .34

Such a function f is called a χ-bounding function for F . It is a well-known result of Erdős35

that for every g ≥ 3 there exist graphs arbitrarily large chromatic number and with no cycle36

of length less than g. Hence, if H contains a cycle, then the class of H-free graphs is not37

χ-bounded. (The converse is the well-known Gyárfás-Sumner conjecture [Gyá75, Sum81]).38

A class of graphs is polynomially χ-bounded if it has a polynomial χ-bounding function.39

Examples of polynomially χ-bounded classes of graphs includes, perfect graphs [CRST06],40

even-hole-free graphs [CS23], circle graphs [DM21, Dav22], rectangle intersection graphs41

[AG60, CW21], bounded twin-width graphs [BT23], and H-free graphs for certain small42

forestsH [SSS22a, SSS22b, CSSS23]. Note that for every graphH , if the class ofH-free graphs43

is polynomially χ-bounded, then H satisfies the celebrated Erdős-Hajnal conjecture [EH89],44

which is largely open (see also [Chu14]). A major open problem is whether the class of P5-45

free graphs is polynomially χ-bounded, since this would imply the smallest open case of the46

Erdős-Hajnal conjecture. The best known χ-bounding function for P5-free graphs is quasi-47

polynomial [SSS23].48

Esperet [Esp17] conjectured that every χ-bounded class of graphs is polynomially χ-49

bounded. Recently, this conjecture was disproved by Briański, Davies, and Walczak [BDW23]50

by extending ideas from a paper of Carbonero, Hompe, Moore, and Spirkl [CHMS23]. In par-51

ticular, Briański, Davies, and Walczak constructed classes of graphs that are χ-bounded but52

not polynomially χ-bounded. Nevertheless, inspired by Esperet’s conjecture, we consider its53

analog for proper classes of graphs. We say that a class C of graphs is Pollyanna if C ∩ F54

is polynomially χ-bounded for every χ-bounded class F of graphs. Note that every poly-55

nomially χ-bounded class of graphs is Pollyanna, so Pollyanna classes of graphs generalize56

polynomially χ-bounded classes.57

Here is our first main theorem. See Figure 1 for an illustration of forbidden graphs; precise58

definitions are given in each corresponding section.59

Theorem 1.1. Let m, k, t be positive integers. The following graph classes are all Pollyanna.60

(i) The class ofmKt-free graphs.61

(ii) The class of (t, k)-pineapple-free graphs.62

(iii) The class of t-lollipop-free graphs.63

(iv) The class of bowtie-free graphs.64

(v) The class of bull-free graphs.65

None of the classes mentioned in Theorem 1.1 are χ-bounded, because if a graph H con-66

tains a cycle, thenH-free graphs contain all graphs of large girth and therefore the chromatic67

number of H-free graphs is not bounded by the theorem of Erdős [Erd59].68

The most difficult case of Theorem 1.1 is showing that bull-free graphs are Pollyanna.69

Bull-free graphs are of particular interest because of their complex structure, which was char-70

acterized by Chudnovsky [Chu12b, Chu12a], and have been widely studied. Chudnovsky and71
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pentagram spider tall strider short strider

Figure 2: A pentagram spider, a tall strider, and a short strider are graphs obtained from the

above figure by adding any additional edges between two red hollow vertices.

Figure 3: Graphs P9,C7, F7, andW7. The class of (P9,C7, F7,W7)-free graphs is not Pollyanna.

Safra [CS08] showed that the bull satisfies the celebrated Erdős-Hajnal Conjecture. Bull-free72

graphs also have strong algorithmic properties [TTV17, CS18, FM04]. Thomassé, Trotignon,73

and Vušković [TTV17] showed that there is a function f such that every bull-free G satisfies74

χ(G) ≤ f(χT (G), ω(G)) where χT (G) is the maximum chromatic number of a triangle-free75

induced subgraph of G by using results of Chudnovsky [Chu12b, Chu12a]. Note that their76

function f is far from being polynomial in ω(G). Hence, our result that the class of bull-77

free graphs is a Pollyanna class is a strengthening of this result of Thomassé, Trotignon, and78

Vušković [TTV17].79

We will actually prove something stronger than the statement in Theorem 1.1. For an80

integer n, we say a class F of graphs is n-good if it is hereditary and there is some constantm81

such that every G ∈ F with ω(G) ≤ n satisfies χ(G) ≤ m. Note that n-goodness is a strictly82

weaker condition thanχ-boundedness [CHMS23, BDW23, GIP
+
23]. We say a class C of graphs83

is n-strongly Pollyanna if C∩F is polynomially χ-bounded for every n-good classF of graphs.84

We say that C is strongly Pollyanna if it is n-strongly Pollyanna for some integer n. Note that85

for each n ≤ 1, a class C of graphs is n-strongly Pollyanna if and only if it is polynomially86

χ-bounded. We will show the following:87

Theorem 1.2. Let m, k, t be positive integers. The following statements hold.88

(i) The class ofmKt-free graphs is (t− 1)-strongly Pollyanna.89

(ii) The class of (t, k)-pineapple-free graphs is (2t− 4)-strongly Pollyanna.90

(iii) The class of t-lollipop-free graphs is (3t− 6)-strongly Pollyanna.91

(iv) The class of bowtie-free graphs is 3-strongly Pollyanna.92

(v) The class of bull-free graphs is 4-strongly Pollyanna.93

Our second main theorem shows that a certain proper class of graphs is not Pollyanna,94

which generalizes the theorem of Briański, Davies, and Walczak [BDW23] that the class of95

all graphs is not Pollyanna. See Figures 2 and 3 for an illustration of pentagram spiders, tall96

striders, short striders, F7,W7, the complementP9 ofP9, and the complementC7 ofC7; precise97

definitions are given in Section 9.98

Theorem 1.3. Let F be the set of all pentagram spiders, all tall striders, all short striders, P9,99

Cn, Fn, and Wn for all n ≥ 7. Then the class of F-free graphs is not Pollyanna.100
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We will actually prove something significantly more general than Theorem 1.3 (see Theo-101

rems 8.2 and 8.9), where F can be any finite collection of graphs that are not willows. We will102

introduce willows in Section 8.103

The paper is organized as follows. Section 2 reviews basic definitions and properties. Sec-104

tions 3 to 7 each deal with the proof of a different case of Theorem 1.1 in order, and we remark105

that each of these sections can be read independently of each other. Sections 8 and 9 deal with106

the proof of Theorem 1.3. Section 10 ends the paper with a discussion of further work and107

several open problems.108

2 Preliminaries109

We denote the complement of a graphG byG. For a graphH , a graphG isH-free ifG has no110

induced subgraph isomorphic to H . For a set F of graphs, a graph G is F-free if G is H-free111

for everyH ∈ F . For a vertex v of a graphG, we writeNG(v) to denote the set of all neighbors112

of v. For a set S ⊆ V (G), we will denote ∪s∈SNG(s)\S byN(S). In situations where it is not113

ambiguous, we will denoteNG(v) byN(v) andNG(S) byN(S). For two disjoint setsA andB114

of vertices, we say that A is anti-complete to B if there are no edges between A and B, and115

complete toB if every vertex inA is adjacent to every vertex inB. IfA is neither complete nor116

anti-complete toB, then we sayA ismixed onB. We let Pt denote the path on t-vertices. The117

length of a path or a cycle is the number of its edges. For S, T ⊆ V (G) the distance between118

S and T is the length of a shortest path with one end in S and the other end in T .119

In the rest of this section, we detail further preliminaries that we require to show that the120

class of t-lollipop-free and the class of bull-free graphs are Pollyanna.121

A homogeneous set of a graph G is a set X of vertices such that 1 < |X| < |V (G)| and122

every vertex in V (G) \ X is either complete or anti-complete to X . Substituting a vertex v123

of a graph G by a graph H is an operation that creates a graph obtained from the disjoint124

union of H and G− v by adding an edge between every vertex of H and every neighbor of v125

in G. Notice that if |V (G)|, |V (H)| > 1, then V (H) is a homogeneous set in this new graph.126

We require a theorem of Chudnovsky, Penev, Scott, and Trotignon [CPST13] that substitution127

preservers polynomial χ-boundedness. Given a class C of graphs, we let C∗
denote the closure128

of C under substitutions and disjoint unions.129

Theorem 2.1 (Chudnovsky, Penev, Scott, and Trotignon [CPST13]). Let C be a class of graphs.130

If C is polynomially χ-bounded, then so is C∗.131

We further require some results on perfect graphs. A hole is an induced cycle of length at132

least four. The parity of a hole (or path) is the parity of its length. An induced subgraph A133

of a graph G is an antihole if V (A) induces a hole in G. A graph G is called perfect if every134

induced subgraph H of G satisfies ω(H) = χ(H). The “Strong Perfect Graph Theorem” of135

Chudnovsky, Robertson, Seymour, and Thomas [CRST06] states that a graph is perfect if and136

only if it does not contain an odd hole or an odd antihole.137

We do not require the full force of the strong perfect graph theorem and so, we will instead138

use the following three results. They are easy corollaries of the strong perfect graph theorem,139

but they were proven several years earlier and have much shorter proofs.140

Theorem 2.2 (Seinsche [Sei74]). Every P4-free graph is perfect.141

Theorem 2.3 (Chvátal and Sbihi [CS87]). A bull-free graph is perfect if and only if it does not142

contain an odd hole or odd antihole.143

Lemma 2.4 (Lovász [Lov72]). The class of perfect graphs is closed under taking substitutions.144
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3 Adding a clique145

We write H ∪ F to denote the disjoint union of two graphs H and F . We prove that if the146

class of H-free graphs is Pollyanna, then so is the class of (Kt ∪ H)-free graphs. Our proof147

is very similar to Wagon’s proof [Wag80] that the class of mK2-free graphs is polynomially148

χ-bounded for each positive integerm.149

Proposition 3.1. Let t ≥ 1 be an integer. If the class of H-free graphs is Pollyanna, then the150

class of (Kt ∪H)-free graphs is Pollyanna.151

Proof. Let C be the class of (Kt∪H)-free graphs. LetD be the class ofH-free graphs. LetF be152

a χ-bounded hereditary class of graphs with a χ-bounding function f . We may assume that153

f is an increasing function. Assume that F ∩D is χ-bounded by a χ-bounding polynomial g.154

We may also assume that g is an increasing function.155

Let G be a graph in F ∩ C. To prove that F ∩ C is χ-bounded, we claim that

χ(G) ≤
(
ω(G)

t− 1

)
f(t− 1) +

(
ω(G)

t

)
g(ω(G)). (1)

We may assume that ω(G) ≥ t because otherwise χ(G) ≤ f(t − 1). Let K be a clique of G156

with |K| = ω(G).157

Now, for each subsetM ofK with |M |= t−1, letAM be the set of all vertices in V (G)\K158

that are complete to K \ M . Since K \ M is complete to AM , we have that ω(G[AM ]) ≤159

ω(G)−ω(G[K\M ]) =ω(G)−(ω(G)−(t−1))= t−1. Therefore, χ(G[AM ])≤ f(ω(G[AM ]))≤160

f(t− 1).161

For each subset N of K with |N | = t, let A′
N be the set of all vertices in V (G) \ K that162

are anti-complete toN . Since G has no induced subgraph isomorphic toKt ∪H , G[A′
N ] ∈ D.163

This implies that χ(G[A′
N ]) ≤ g(ω(G)). Observe that every vertex in V (G) is inM ∪AM for164

some M ⊆ K with |M | = t− 1, or in A′
N for some N with |N | = t. Thus we deduce that (1)165

holds since there are

(
ω(G)

ω(G)−(t−1)

)
=

(
ω(G)
t−1

)
such choices forM , and

(
ω(G)
t

)
choices for N .166

We can use the almost same proof to prove the following.167

Proposition 3.2. If the class of H-free graphs is (t − 1)-strongly Pollyanna, then the class of168

Kt ∪H-free is (t− 1)-strongly Pollyanna.169

Since the class of Kt-free graphs is trivially (t − 1)-strongly Pollyanna, we deduce the170

following corollary.171

Corollary 3.3. The class ofmKt-free graphs is (t− 1)-strongly Pollyanna.172

Corollary 3.3 implies the aforementioned result of Wagon [Wag80] that the class ofmK2-173

free graphs is polynomially χ-bounded for each positive integerm.174

4 Pineapple-free graphs175

For positive integers t and k, a (t, k)-pineapple is a graph obtained by attaching k pendant176

edges to a vertex of a complete graph Kt, see Figure 1a. In this section, we will show that177

the class of (t, k)-pineapple-free graphs is Pollyanna. First, we need to introduce Ramsey’s178

theorem with some explicit bounds.179

5



A maximum cliqueK

S T

Non-neighbors of K

Figure 4: An illustration for the proof of Proposition 4.2.

For positive integers s and t, let R(s, t) be the minimum positive integer N such that180

every graph on N vertices contains a clique of size s or an independent of size t. Ramsey’s181

theorem [Ram30] states that R(s, t) exists. Erdős and Szekeres [ES35] proved the following182

upper bound.183

Proposition 4.1 (Erdős and Szekeres [ES35]). For positive integers s and t, we have R(s, t) ≤184 (
s+t−2
t−1

)
.185

Because of Proposition 4.1, if t is a fixed constant, then R(s, t) is bounded from above by186

a degree-(t− 1) polynomial in s.187

We are now ready to prove that the class of pineapple-free graphs is Pollyanna.188

Proposition 4.2. Let t, k be positive integers. The class of (t, k)-pineapple-free graphs is (2t−4)-189

strongly Pollyanna.190

Proof. We may assume that t > 2, because otherwise the class of (t, k)-pineapple-free graphs
is polynomially χ-bounded by Proposition 4.1. Let F be a hereditary class of graphs and let C
be a positive integer such that χ(G) ≤ C whenever G ∈ F and ω(G) ≤ 2t − 4. Let G be the

class of (t, k)-pineapple-free graphs. Let G ∈ F ∩ G. Let

m(x) = C
t−2∑
i=1

(
x

i

)
, g(x) =

(
t

(
x

t

)
+ 1

)
m(x)

(
x+ k − 3

k − 1

)
.

Let ω be a positive integer. We claim that if ω(G) ≤ ω, then χ(G) ≤ g(ω). We proceed by191

induction on |V (G)|. Wemay assume that ω(G)≥ 2t−3 because otherwise χ(G)≤C ≤ g(ω).192

Let K be a clique of size ω(G). For a nonempty subset M of K with |M | < t− 1, let AM

be the set of vertices in V (G) \K that are complete toK \M and anti-complete toM . Then

ω(G[AM ∪M ]) = |M | and therefore χ(G[AM ∪M ]) ≤ C . Let S be the union of all AM for

every choice of M ⊆ K satisfying 1 ≤ |M | < t− 1. Then,

χ(G[K ∪ S]) ≤
∑
v∈K

χ(G[A{v} ∪ {v}]) +
∑

M⊆K, 2≤|M |<t−1

χ(G[AM ])

≤ C
t−2∑
i=1

(
ω

i

)
= m(ω).

(2)

For a subsetN ofK with |N |= t−1 and a vertex v ofK\N , letA′
N,v be the set of vertices in193

N(v)\K that are anti-complete toN . Clearly, ω(A′
N,v)≤ ω−1. AsG is (t, k)-pineapple-free,194

G[A′
N,v] has no independent set of size k. Thus, by Ramsey’s theorem, |A′

N,v| < R(ω − 1, k).195

Note that, by definition, every vertex u ∈ N(K) with at least t− 1 non-neighbors inK is

in A′
N,v for some N ⊆ K \N(u) and v ∈ K with |N | = t− 1. Let T be the union of all A′

N,v

for every choice of N ⊆ K and v ∈ K \N such that |N | = t− 1. Then,

|T | < t

(
ω

t

)
R(ω − 1, k). (3)
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It follows from the definition of S and T that S is the set of all vertices in N(K) with196

fewer than t−1 non-neighbors inK and T is the set of all vertices inN(K)with at least t−1197

non-neighbors in K , see Figure 4. Hence, N(K) = S ∪ T .198

Since |K| ≥ 2t − 3, each vertex v ∈ S has at least t − 1 neighbors in K and therefore199

|N(v) \ (K ∪ N(K))| < R(ω − 1, k) because G is (t, k)-pineapple-free. Then by (3), each200

vertex v ∈ K ∪ S has fewer than α :=
(
t
(
ω
t

)
+ 1

)
R(ω − 1, k) neighbors in V (G) \ (K ∪ S).201

Let c1 : V (G \ (K ∪ S)) → {1, 2, . . . , g(ω)} be a coloring of G \ (K ∪ S) obtained by the202

induction hypothesis. By (2), there is a coloring c2 : K ∪ S → {1, 2, . . . ,m(ω)} of G[S]. We203

define a coloring c : V (G) → {1, 2, . . . , g(ω)} of G as follows. For v ∈ V (G \ (K ∪ S)),204

define c(v) := c1(v). Since every v ∈ K ∪ S has fewer than α neighbors in V (G) \ (K ∪ S),205

there is some choice of c(v) ∈ {α(c2(v) − 1) + 1, α(c2(v) − 1) + 2, . . . , αc2(v)} that is not206

present in N(v) \ S. Since c2 was a proper coloring of G[K ∪ S], it follows that c is a proper207

coloring for G with at most max(αm(ω), g(ω)) colors. Note that R(ω − 1, k) ≤
(
ω+k−3
k−1

)
by208

Proposition 4.1. This completes the proof.209

5 Lollipop-free graphs210

Let t ≥ 1 be a fixed integer. The t-lollipop is a graph obtained from the disjoint union of the211

complete graph Kt on t vertices and the path graph P2 on 2 vertices by adding an edge, see212

Figure 1b. Note that a t-lollipop is a (t, 1)-pineapple whose pendant edge is subdivided once.213

In this section, we aim to show that the class of t-lollipop-free graphs is Pollyanna.214

We say that a graph H is tidy if |V (H)| ≥ 2 and for any partition of V (H) into two215

nonempty subsetsM and N , one of the following holds.216

(U1) H[M ] contains a clique K of size t− 1 and N has a vertex anti-complete to K in H .217

(U2) H[N ] contains a cliqueK of size t−1 andH has adjacent vertices x ∈M and y ∈N \K218

such that both x and y are anti-complete to K in H .219

Lemma 5.1. Let t ≥ 3 be an integer. The disjoint union of two copies ofK2t−3 is tidy.220

Proof. Let S1, S2 be the two cliques of cardinality 2t− 3 and letH be the disjoint union of S1221

and S2. LetM , N be nonempty disjoint subsets of V (H) such thatM ∪N = V (H). We may222

assume (U1) does not hold forM,N .223

Claim 1. For each i ∈ {1, 2}, if Si ∩N ̸= ∅, then |S3−i ∩N | ≥ t− 1.224

Proof. Since (U1) does not hold for S3−i, we deduce that |S3−i∩M | < t−1. Therefore |S3−i∩225

N | ≥ t− 1. ■226

We may assume S1 ∩ N ̸= ∅. By Claim 1, we obtain |S2 ∩ N | ≥ t − 1. Since t ≥ 2, this227

implies S2 ∩N ̸= ∅ and therefore by Claim 1, we have |S1 ∩N | ≥ t− 1.228

Let x ∈ M . Then x ∈ Si for some i ∈ {1, 2}. By the previous paragraph, there is some229

y ∈ Si ∩ N and some subset K ⊆ S3−i ∩ N of cardinality t − 1. Now, K , x, and y satisfy230

(U2).231

A set S of vertices is a split if it has the property that for every v, u /∈ S where v is complete232

to S and u is mixed on S, the vertices u and v are adjacent. A set S of vertices of a graph G is233

fair if for every v ∈ N(S), either v is complete to S or ω(G[S \N(v)]) ≥ t− 1.234

Lemma 5.2. Let t≥ 3 be an integer. IfG is a t-lollipop-free graph andG[S] is tidy for S ⊆ V (G),235

then S is a fair split.236
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Proof. Let us first show that S is a split. Suppose that a vertex v ∈ V (G) \ S is complete to S,237

a vertex u ∈ V (G) \ S is mixed on S, and u is non-adjacent to v. Let N = NG(u) ∩ S and238

M = S \ N . As M,N ̸= ∅, (U1) or (U2) holds. If (U1) holds with the clique K ⊆ M and the239

vertex w ∈ N , thenG[K ∪{w, u, v}] induces a t-lollipop. If (U2) holds with the cliqueK ⊆ N240

and two adjacent vertices x ∈ M , y ∈ N , then G[K ∪ {x, y, u}] induces a t-lollipop. This241

proves that S is a split.242

Now let us show that S is fair. Suppose that v is not complete to S and ω(G[S \N(v)]) <243

t − 1. Let N = N(v) ∩ S and M = S \N . By the assumption on ω(G[S \N(v)]), (U1) does244

not hold and therefore (U2) holds with the clique K ⊆ N and two adjacent vertices x ∈ M ,245

y ∈ N \K . This implies that G[K ∪ {x, y, v}] induces a t-lollipop, a contradiction.246

The following lemma is an immediate consequence of Lemmas 5.1 and 5.2. For brevity, we247

will denote the disjoint union of two copies of K2t−3 by 2K2t−3.248

Lemma 5.3. Let t ≥ 3 be an integer. Let G be a t-lollipop-free graph and let S ⊆ V (G) induce249

a copy of 2K2t−3. Then S is a fair split.250

Next, we show that if some fair split is contained in the neighborhood of a vertex, then G251

has a homogeneous set.252

Lemma 5.4. Let t ≥ 3 be an integer. Let G be a t-lollipop-free graph and v be a vertex. If some253

S ⊆ N(v) is a fair split in G, then G has a homogeneous set.254

Proof. Let X be the set of all vertices in V (G) \ S complete to S. As v ∈ X , the set X is255

nonempty. Let Y be the set of all vertices in V (G) \ S mixed on S. Since S is a split, X is256

complete to Y .257

Let Z be the set of vertices in V (G) \ (S ∪ X ∪ Y ) that have a path to S in G \ X . We258

claim that Z is complete to X . Suppose not. Then there are x ∈ X and z ∈ Z such that x is259

non-adjacent to z. Let P be a path from z to S in G \ X . We choose x, z, and P such that260

the length of P is minimized. By such a choice, V (P ) \ {z} is complete to x and V (P ) ∩ Y261

has a unique vertex, say y. Because S is fair, ω(G[S \ N(y)]) ≥ t − 1. Let K be a clique of262

size t − 1 in G[S \ N(y)]. Let z′ be the vertex on P adjacent to z. Then z′ is anti-complete263

toK so G[K ∪ {x, z′, z}] is a t-lollipop, a contradiction. This proves that Z is complete toX .264

Since V (G) \ (S ∪X ∪ Y ∪ Z) is anti-complete to S ∪ Y ∪ Z in G, it follows that S ∪ Y ∪ Z265

is a homogeneous set in G.266

Let 2K∗
2t−3 be the graph obtained from 2K2t−3 by adding a new vertex adjacent to all other267

vertices. Before showing that the class of t-lollipop-free graphs is Pollyanna, as an intermedi-268

ate step, we first show that the class of (t-lollipop, 2K∗
2t−3)-free graphs is Pollyanna.269

Lemma 5.5. For every integer t ≥ 3, the class of (t-lollipop, 2K∗
2t−3)-free graphs is (3t − 6)-270

strongly Pollyanna.271

Proof. Let C be the class of t-lollipop-free 2K∗
2t−3-free graphs. Let F be a hereditary class of272

graphs and letm be a positive integer such that χ(G)≤mwheneverG∈F and ω(G)≤ 3t−6.273

Let G be a graph in F ∩ C. For every vertex v of G, G[N(v)] has no induced subgraph274

isomorphic to 2K2t−3 because G is 2K∗
2t−3-free. We may assume that ω(G) > 3t− 6 because275

otherwise χ(G) ≤ m. Let K be a clique of G with |K| = ω(G). Let A = N(K) and B =276

V (G) \ (K ∪N(K)).277

Claim 2. ω(G[B]) ≤ 3t− 6.278
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Proof. Suppose that G[B] has a clique L of size 3t − 5. Let P be a shortest path v0-v1- · · · -vℓ279

from K to L where v0 ∈ K and vℓ ∈ L. By definition, ℓ ≥ 2.280

If vℓ−1 has at least t − 1 non-neighbors in L, then the graph induced by (L \ N(vℓ−1)) ∪281

{vℓ, vℓ−1, vℓ−2} contains a t-lollipop, a contradiction. Therefore, vℓ−1 has at least 2t− 3 neigh-282

bors in L.283

If v1 has at least t − 1 non-neighbors in K , then the graph induced by (K \ N(v1)) ∪284

{v0, v1, v2} contains a t-lollipop, a contradiction. Therefore v1 has at least 2t − 3 neighbors285

in L. So, ℓ > 2 for otherwise, the graph on N(v1) contains an induced subgraph isomorphic286

to 2K2t−3.287

As t ≥ 3, we have 2t − 3 > t − 1. Then t − 1 neighbors of vℓ−1 in L with vℓ−1, vℓ−2, vℓ−3288

induce a a t-lollipop, a contradiction. ■289

For each subset M of K with |M | < 2t − 3, let AM denote the set of all vertices in A290

that are anti-complete to M and complete to K \M . Then, ω(G[AM ]) ≤ |M |, implying that291

χ(G[AM ]) ≤ m.292

For each subset N of K with |N | = 2t − 3 and each vertex v ∈ K \ N , let A′
N,v be the

set of all vertices in A that are anti-complete to N and are adjacent to v. Since G[N(v)] is
2K2t−3-free, ω(G[A′

N,v]) ≤ 2t − 4. This implies that χ(G[A′
N,v]) ≤ m. Observe that every

vertex of A is in AM or A′
N,v for some choice of M , N , v. By the definition and the claim,

χ(G) ≤ ω(G) + χ(A) + χ(B) ≤ ω(G) + χ(A) +m, so we obtain

χ(G) ≤ ω(G) +m
2t−4∑
i=1

(
ω(G)

i

)
+m

(
ω(G)

2t− 3

)
(ω(G)− (2t− 3)) +m, (4)

which is a polynomial in ω(G).293

We are now ready to show that the class of t-lollipop-free graphs is Pollyanna.294

Theorem 5.6. For every integer t ≥ 1, the class of t-lollipop-free graphs is (3t − 6)-strongly295

Pollyanna.296

Proof. By Theorem 2.2, we may assume t ≥ 3. Let C be the class of t-lollipop-free graphs.297

Let C ′
be the class of (t-lollipop, 2K∗

2t−3)-free graphs. Let F be a hereditary class of graphs298

and let m be a positive integer such that χ(G) ≤ m whenever G ∈ F and ω(G) ≤ 3t − 6.299

By Lemmas 5.3 and 5.4, every graph in C ∩ F is either 2K∗
2t−3-free or has a homogeneous300

set. Therefore, every graph in C ∩ F belongs to the closure of C ′ ∩ F under substitutions and301

disjoint unions. By Lemma 5.5, C ′ ∩ F is polynomially χ-bounded and therefore Theorem 2.1302

implies that C ∩ F is polynomially χ-bounded.303

6 Bowtie-free graphs304

A bowtie is the graph on five vertices obtained from two copies ofK2 by adding a new vertex v305

and making it adjacent to all other vertices, see Figure 1c. In this section, we will show that306

bowtie-free graphs are 3-strongly Pollyanna.307

Theorem 6.1. The class of bowtie-free graphs is 3-strongly Pollyanna.308

We do this by proving the following strengthening of Theorem 6.1.309
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Proposition 6.2. Every bowtie-free graph G admits a partition of its vertex set into at most310

f(ω(G)) = ⌈1
2
(ω(G) + 3

(
ω(G)
3

)
)⌉ + 1 = O(ω(G)3) sets such that one of the sets induces a K4-311

free graph and all other sets induce triangle-free graphs.312

One of the key observations for the proof is that if G is bowtie-free and has an edge e not313

in any triangle, then G \ e is also bowtie-free. We will show that if G is a counterexample to314

Proposition 6.2 minimizing |E(G)|, then every edge of G is in a triangle. The following two315

lemmas show that some induced subgraphs are forbidden in such graphs.316

Lemma 6.3. If a graph G has two disjoint cliques A and B of size 4 and 3 respectively with317

exactly one edge between A and B, then G either has a bowtie as an induced subgraph or has an318

edge that is not contained in a triangle.319

Proof. Suppose that every edge is contained in a triangle and that G is bowtie-free. Let a1, a2,320

a3, a4 be the vertices of A and b1, b2, b3 be the vertices of B. We may assume that e = a1b1 is321

the unique edge betweenA andB. Since e is contained in a triangle, there is a vertex x /∈A∪B322

adjacent to both a1 and b1. As {a1, x, b1, b2, b3} does not induce a bowtie, wemay assume that x323

is adjacent to b2. Similarly, as {b1, x, a1, ai, aj} does not induce a bowtie for all 2 ≤ i < j ≤ 4,324

we may assume that x is adjacent to a2 and a3. Then {x, a2, a3, b1, b2} induces a bowtie, a325

contradiction.326

Lemma 6.4. If a graph G has two disjoint and anti-complete cliques A and B of size 4 and 3327

respectively and a vertex v with at least one neighbor in each of A and B, then G either has a328

bowtie as an induced subgraph or has an edge that is not contained in a triangle.329

Proof. Suppose thatG is bowtie-free and that every edge is contained in a triangle and suppose330

there is some v ∈ V (G) with at least one neighbor in each of A and B.331

Claim 3. For every u ∈ V (G) with at least one neighbor in each of A and B, u has at most one332

neighbor in B.333

Proof. If u has at least two neighbors in B, then u has exactly one neighbor in A because G is334

bowtie-free. It follows thatA and {u}∪(N(u)∩B) are two cliques of size 4 and 3 respectively335

with exactly one edge between A and {u} ∪ (N(u) ∩B), contradicting Lemma 6.3. ■336

Hence, we may assume v has exactly one neighbor b ∈ B.337

Claim 4. |N(v) ∩ A| ≥ 2.338

Proof. Suppose that v has exactly one neighbor a1 in A. As there is a triangle containing a1v,339

there is a common neighbor x /∈ A ∪ B of a1 and v. Since G[A ∪ {x, v}] is bowtie-free, x340

is adjacent to at least three vertices a1, a2, a3 in A. Since G[{a2, a3, x} ∪ B] is bowtie-free, it341

follows that x has at most one neighbor in B. By Lemma 6.3, x is adjacent to no vertex in B.342

There is a common neighbor y /∈ A∪B of v and b and y is adjacent to at least two vertices343

in B. Hence y cannot be adjacent to two vertices of A for otherwise G[{y} ∪ N(y)] would344

contain a bowtie. By Lemma 6.3, y has no neighbor inA. Note that y ̸= x since x is not adjacent345

to b1.346

Since G[{v, a1, x, y, b}] is not a bowtie, x is adjacent to y. Then G has two cliques {x} ∪347

(N(x)∩A) and {y}∪ (N(y)∩B) of cardinality at least 4 and 3 respectively with exactly one348

edge xy between {x} ∪ (N(x) ∩ A) and {y} ∪ (N(y) ∩B), contradicting Lemma 6.3. ■349
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Now it remains to consider the case where v has at least two neighbors in A. Let y be a350

common neighbor of v and b. Since {v, y} ∪ B does not induce a bowtie, y has at least two351

neighbors in B. Then by Claim 3, y has no neighbor in A. But then the graph induced by352

A ∪ {v, y, b} contains a bowtie, a contradiction. This completes the proof.353

We are now ready to prove Proposition 6.2 (and thus Theorem 6.1).354

Proof of Proposition 6.2. We proceed by induction on |E(G)|. We may assume that G is con-355

nected. The statement is trivial if ω(G) < 4 and so we may assume that ω(G) ≥ 4.356

If there is an edge e that does not belong to any triangle, thenG\e is bowtie-free. Suppose357

there is some e ∈ E(G) such that e is not contained in any triangle. Let G′ = G \ e. Then,358

ω(G′) = ω(G). By the inductive hypothesis, V (G) admits a partition into setsX1,X2, . . .,Xk359

such that k ≤ f(ω(G)), ω(G′[X1]) ≤ 3, and G′[Xi] is triangle-free for all i ∈ {2, 3, . . . , k}.360

Since e is not in any triangle ofG, we deduce that ω(G[X1]) ≤ 3 andG[Xi] is triangle-free for361

all i ∈ {2, 3, . . . , k}. Therefore, we may assume that every edge is in a triangle.362

LetK be a maximum clique in G. Then |K| = ω(G) ≥ 4. Suppose that there is a vertex v363

such that the distance from v toK is 3. Let P be a shortest path v0-v1-v2-v3 fromK to v where364

v0 ∈ K and v3 = v. There is a common neighbor x of v2 and v3. Since the distance between365

K and v3 is equal to 3, the two cliquesK and {v2, v3, x} are disjoint and anti-complete. Then366

v1 has neighbors in bothK and {v2, v3, x}, contradicting Lemma 6.4, Therefore, every vertex367

of G is within distance 2 from K .368

LetA be the set of vertices of distance 1 fromK andB = V (G)\ (K ∪A). Note that every369

vertex in B has a neighbor in A and every vertex in A has at least one non-neighbor in K .370

By Lemma 6.4, G[B] is triangle-free. For each vertex x ∈ K , let Sx be the set of vertices in A371

complete to K \ {x}. Since K is a maximum clique, Sx ∪ {x} is independent. For distinct372

vertices x, y, z ∈K , let Tx,y,z = (A∩NG(z))\ (NG(x)∪NG(y)). SinceG is bowtie-free, Tx,y,z373

is independent.374

By definition, every a ∈Awith at least two non-neighbors inK is in Tx,y,z for some choice375

of x, y, z ∈ K and every a ∈ A with exactly one non-neighbor x ∈ K is in Sx. Therefore,376

we have a partition of V (G) into Sx ∪ {x} for x ∈ K , Tx,y,z for x, y, z ∈ K , and B. Note377

that every set except B in our partition is stable, so we can merge any other two sets in our378

partition to obtain another triangle-free set. So we obtain a partition of V (G) into at most379

⌈1
2
(ω(G) + 3

(
ω(G)
3

)
)⌉+ 1 sets.380

7 Bull-free graphs381

In this section, we will show that the class of bull-free graphs is Pollyanna. We will begin382

by reducing the problem of showing the class of bull-free graphs is Pollyanna to showing383

that a simpler subclass of bull-free graphs is Pollyanna using structural results about bull-free384

graphs by Chudnovsky and Safra [CS08]. We begin with some definitions. For a subgraph H385

of a graph G, we say v ∈ V (G) \ V (H) is a center for H if it is complete to V (H). If v is a386

center for H in G, we say v is an anticenter for H in G. We say a bull-free graph G is basic if387

neither G nor G contains an odd hole with both a center and an anticenter. We say a graph G388

is locally perfect if for every v ∈ V (G), the graph induced by NG(v) is perfect.389

We will show that if the class of locally perfect basic bull-free graphs is Pollyanna, then390

so is the class of bull-free graphs. We will require the following theorem by Chudnovsky and391

Safra [CS08], which also appears in a paper of Chudnovsky [Chu12a] in greater generality392

according to [CS08].393
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Theorem 7.1 (Chudnovsky and Safra [CS08, 1.4]). Every bull-free graph can be obtained via394

substitution from basic bull-free graphs.395

Theorem 7.2 (Chudnovsky and Safra [CS08, 4.3]). IfG is a basic bull-free graph, thenG[N(v)]396

or G \ (N(v) ∪ {v}) is perfect for every vertex v of G.397

Corollary 7.3. Let F be a hereditary class of graphs. If the class of locally perfect basic bull-free398

graphs in F is polynomially χ-bounded, then so is the class of bull-free graphs in F .399

Proof. Let C denote the class of basic bull-free graphs in F . Note that C is hereditary. By400

Theorems 7.1 and 2.1, it is enough to show that C is polynomially χ-bounded.401

Suppose that there is a polynomial f such that every locally perfect basic bull-free graphG402

in F satisfies χ(G) ≤ f(ω(G)). We may assume that f(n) ≥ n for all positive integers n.403

We claim that every G ∈ C satisfies χ(G) ≤
∑ω(G)

k=1 f(k). We proceed by the induction404

on ω(G). The statement is trivial if ω(G) ≤ 1 and so we assume that ω(G) > 1. We may405

assume thatG is not locally perfect because otherwise χ(G)≤ f(ω(G)). So there is a vertex v406

such that G[N(v)] is not perfect. By Theorem 7.2, G \ (N(v) ∪ {v}) is perfect and so is407

G \ N(v). Therefore, χ(G \ N(v)) ≤ ω(G) ≤ f(ω(G)). Since ω(G[N(v)]) < ω(G), by the408

induction hypothesis, χ(G[N(v)])≤
∑ω(G)−1

k=1 f(k). This completes the proof because χ(G)≤409

χ(G[N(v)]) + χ(G \N(v)).410

Hence, we only need to show that the class of locally perfect bull-free graphs is Pollyanna.411

We will do so by invoking results by Chudnovsky [Chu12a] about “elementary” and “non-412

elementary” bull-free graphs. A bull-free graph is elementary if it does not contain a path of413

length three with both a center and an anticenter. For a positive integer k, we say a graphG is414

k-perfect if V (G) can be partitioned into at most k sets each of which induces a perfect graph.415

We will first prove the following proposition on elementary locally perfect bull-free graphs.416

Proposition 7.4. For every 4-good classF of graphs, there is a positive integer γ such that every417

elementary locally perfect bull-free graph in F is γ-perfect.418

We then use Proposition 7.4 to prove the following for locally perfect bull-free graphs. Its419

proof uses trigraphs, which we will introduce in the next subsection.420

Proposition 7.5. For every 4-good class F of graphs, there is a positive integer cF such that421

every locally perfect bull-free graph is cF -perfect.422

It is now straightforward to prove that the class of bull-free graphs is Pollyanna if we423

assume Proposition 7.5. As we remarked in the introduction, we will actually prove that the424

class of bull-free graphs is 4-strongly Pollyanna which is a stronger statement.425

Theorem 7.6. The class of bull-free graphs is 4-strongly Pollyanna.426

Proof assuming Proposition 7.5. By Proposition 7.5, the class of locally perfect bull-free graphs427

is 4-strongly Pollyanna. Hence, we obtain that the class of bull-free graphs is 4-strongly428

Pollyanna by applying Corollary 7.3.429

7.1 Trigraphs430

To describe the necessary results from a paper of Chudnovsky [Chu12a], we will need to use a431

generalization of graphs called trigraphs. For a setX , let us write

(
X
2

)
to denote all 2-element432

subsets of X . A trigraph G is an object consisting of a finite set V (G), called the vertex set433
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Figure 5: A homogeneous pair.

ofG, and the adjacency function θ :
(
V (G)
2

)
→{−1, 0, 1}. Two distinct vertices u and v ofG are434

strongly adjacent if θ({u, v}) = 1 strongly anti-adjacent if θ({u, v}) = −1, and semi-adjacent435

if θ({u, v}) = 0. If u and v are semi-adjacent, we say the pair {u, v} is a switchable pair. We436

regard graphs as trigraphs without semi-adjacent pairs of vertices.437

Two vertices of a trigraph are adjacent if they are strongly adjacent or semi-adjacent. Sim-438

ilarly, two vertices of a trigraph are anti-adjacent if they are strongly anti-adjacent or semi-439

adjacent. For two disjoint subsets A and B of vertices of a trigraph, A is strongly complete440

to B if every vertex in A is strongly adjacent to every vertex in B, and strongly anti-complete441

if every vertex in A is strongly anti-adjacent to every vertex in B. If a vertex x is adjacent to442

a vertex y, then y is called a neighbor of x. We write NG(x) to denote the set of all neighbors443

of x. We sometimes omit the subscript if it is clear from the context.444

The complementG of a trigraphG= (V, θ) is a trigraph on the same vertex set V (G)with445

the adjacency function θ=−θ. For a setX of vertices, wewriteG[X] to denote the subtrigraph446

induced by X , which has the vertex set X and the adjacency function is the restriction of θ447

to

(
X
2

)
. We say that H is an induced subtrigraph of G if H = G[X] for some X ⊆ V (G). We448

writeG\X to denote the trigraphG[V (G)\X]. Isomorphisms between trigraphs are defined449

as usual.450

A set X of vertices of a trigraph is a strong clique if x and y are strongly adjacent for all451

distinct x, y ∈ X .452

For a trigraph G, let Ĝ be a graph on V (G) such that two vertices of Ĝ are adjacent if453

and only if they are adjacent in G. We call Ĝ the full realization of G. We say that G is454

connected if Ĝ is connected. A connected component of a trigraph is a maximal connected455

induced subtrigraph.456

A graph is a realization of a trigraph G if its vertex set is equal to V (G) and its edge set457

is the set of all strongly adjacent pairs and possibly some switchable pairs of G. A trigraph G458

contains a graph H if G has a realization containing an induced subgraph isomorphic to H .459

A homogeneous set of a trigraph G is a proper subsetX of V (G) with at least two vertices460

such that every vertex in V (G)\X is either strongly complete or strongly anti-complete toX .461

For a trigraphG, a pair (A,B) of disjoint nonempty subsets of V (G) is a homogeneous pair462

if V (G) \ (A∪B) can be partitioned into four (possibly empty) sets C ,D, E, and F such that463

• C is strongly complete to A and strongly anti-complete to B,464

• D is strongly complete to B and strongly anti-complete to A,465

• E is strongly complete to both A and B, and466

• F is strongly anti-complete to both A and B.467

We say the pair (A,B) is tame if468

• |V (G)| − 2 > |A|+ |B| > 2 and469

• A is not strongly complete to B and not strongly anti-complete to B.470
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A trigraph G admits a homogeneous pair decomposition if it has a tame homogeneous pair. We471

say that a homogeneous pair (A,B) is proper if it is tame and both C and D are nonempty.472

We say that a homogeneous pair (A,B) is small if it is tame and |A∪B| ≤ 6. See Figure 5 for473

an illustration of a homogeneous pair.474

We say a tame homogeneous pair (A,B) of a trigraphG is dominated if there exist (possibly475

identical) vertices v and w in V (G) \ (A ∪ B) such that v is strongly complete to A and w is476

strongly complete to B. In other words, E ̸= ∅ or both C and D are nonempty.477

For two homogeneous pairs (A1, B1) and (A2, B2) of a trigraph, we say (A2, B2) con-478

tains (A1, B1), denoted by (A2, B2) ⊆ (A1, B1), if A1 ⊆ A2 and B1 ⊆ B2. In addition, we479

say (A2, B2) contains (A1, B1) properly if (A2, B2) ⊆ (A1, B1) and (A2, B2) ̸= (A1, B1). A480

tame homogeneous pair of a trigraph is maximal if it is not properly contained by any tame481

homogeneous pair.482

We say a trigraph is monogamous if every vertex belongs to at most one switchable pair.483

Shrinking a tame homogeneous pair (A,B) in a trigraph is an operation to shrink A into a484

single vertex a, shrink B into a single vertex b, and make the pair {a, b} a switchable pair.485

7.2 The elementary locally-perfect case486

In this subsection, we will prove Proposition 7.4. The class T1 of trigraphs is defined in Chud-487

novsky [Chu12b]. Thomassé, Trotignon, and Vušković [TTV17, Subsection 2.2] observed the488

following.489

Observation 7.7. Every graphG in T1 has a partition (X,K1, K2, . . . , Kt) of its vertex set into490

sets for some t ≥ 0 such that G[X] does not contain a triangle and K1, . . . , Kt are cliques that491

are pairwise anti-complete.492

Hence, we immediately deduce the following.493

Observation 7.8. Every graph G in T1 admits a partition of its vertex set into two sets (X, Y )494

such that G[X] is triangle-free and G[Y ] is perfect.495

Lemma 7.9. If G is a graph with no homogeneous set and X is a proper subset of G that is not496

stable, then there is an induced path x1-x2-y such that x1, x2 ∈ X and y ∈ V (G) \X .497

Proof. Suppose not. Since X is not stable, G[X] contains a component C with at least two498

vertices. Since V (C) is not homogeneous, there is y ∈G\V (C) such that y is neither complete499

nor anti-complete to V (C). Clearly y /∈ X and since C is connected, there exist an edge x1x2500

of C such that y is adjacent to x2 and non-adjacent to x1.501

A gem is the 5-vertex graph obtained from the path of length 3 by adding a vertex adjacent502

to all other vertices. Note that every gem-free bull-free graph is elementary. We first aim to503

show Proposition 7.4 restricted to gem-free graphs.504

Here is an easy lemma based on Theorem 2.3.505

Lemma 7.10. LetG be a bull-free gem-free graph. ThenG is perfect if and only ifG has no odd506

hole.507

Lemma 7.11. LetG be a bull-free gem-free graph. Let (A,B) be a tame homogeneous pair ofG508

and let C , D, E, F be as in the definition of a homogeneous pair. If G has no homogeneous set,509

then the following hold.510

(i) If A is not stable, then C is anti-complete to F and complete to E.511
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Figure 6: An illustration of Lemma 7.11(i).

(ii) If B is not stable, then D is anti-complete to F and complete to E.512

(iii) If A is not a clique, then E is anti-complete to C and complete to D.513

(iv) If B is not a clique, then E is anti-complete to D and complete to C .514

(v) E is complete to C or D.515

We remark that 7.4 of [Chu12b] implies half of each of (i)–(iv).516

Proof. Suppose A is not stable. By Lemma 7.9 and the definition of homogeneous pairs, there517

exist a1, a2 ∈ A and b ∈ B such that b-a1-a2 is an induced path of G. Then, if there is some518

c ∈ C adjacent to some f ∈ F , the graph on {f, c, a1, b, a2} induces a bull, a contradiction. If519

there is some c ∈ C non-adjacent to some vertex x ∈ E, then c-a2-x-b is an induced path of520

length 3 with a center a1, a contradiction. See Figure 6. This proves (i). By symmetry, we also521

have (ii).522

Let us now prove (iii). Suppose A is not a clique. By applying Lemma 7.9 to G, we deduce523

that there exist a1, a2 ∈ A and b ∈ B such that b-a1-a2 is an induced path of G. If there is a524

vertex x ∈ E adjacent to a vertex c ∈ C , then a1-c-a2-b is an induced path with a center x,525

a contradiction. If some vertex x ∈ E is non-adjacent to some d ∈ D, then {a1, b, x, a2, d}526

induces a bull. See Figure 6. This proves (iii). By symmetry between A and B, we deduce (iv).527

Since (A,B) is tame, |A| > 1 or |B| > 1. Thus, it follows from (i), (ii), (iii), and (iv) that E528

is complete to C or D, proving (v).529

Based on papers of Chudnovsky [Chu12a, Chu12b], bull-free graphs admit the following530

decomposition, summarized by Thomassé, Trotignon, and Vušković [TTV17]. We state it for531

graphs instead of trigraphs.532

Theorem 7.12 (Chudnovsky [Chu12a, Chu12b]; see Thomassé, Trotignon, and533

Vušković [TTV17, Theorem 2.1]). Every bull-free graph G satisfies one of the following.534

(i) |V (G)| ≤ 8.535

(ii) G or G belongs to T1.536

(iii) G has a homogeneous set.537

(iv) G has a proper homogeneous pair.538

(v) G has a small homogeneous pair.539

Proposition 7.13. For every 4-good class F of graphs, there is a positive integer γ such that540

every bull-free gem-free graph in F is γ-perfect.541

Proof. By definition of 4-good, F is hereditary and there exists a positive integer τ such that542

every triangle-free graph in F is τ -colorable. Let γ = max{6, τ + 1}. Let G be a bull-free543

gem-free graph in F .544
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Suppose that G is not γ-perfect. We choose such a G with the minimum |V (G)|. Since
the disjoint union of perfect graphs is perfect, G is connected. Since G is gem-free and since

P4-free graphs are perfect, for every vertex v of G, G[NG(v) ∪ {v}] is perfect and therefore

G has no dominating set of at most γ vertices (5)

and G is locally perfect.545

Claim 5. G does not admit a homogeneous set.546

Proof. Suppose S ⊂ V (G) is a homogeneous set in G. Since G is connected, there is some547

v ∈ V (G) \S such that v is complete to S. Hence,G[S] is perfect becauseG is locally perfect.548

Let w ∈ S and G′ = G \ (S \ {w}). Since G′
is an induced subgraph of G, G′

is also bull-549

free and gem-free and therefore by the minimality of G, it follows that G′
is γ-perfect. Let550

(V1, V2, . . . , Vγ) be a partition of V (G′) such that G[Vi] is perfect for each i ∈ {1, 2, . . . , γ}.551

Without loss of generality, w ∈ V1. Then, since perfect graphs are closed under substitution by552

Lemma 2.4 andG[S] is perfect,G[V1∪S] is perfect. Hence,G is γ-perfect, a contradiction. ■553

By Observation 7.8, every graph in T1 is (τ +1)-perfect and so is every graph in T 1. Thus,554

neither G nor G is in T1. Since every graph on at most 4 vertices is perfect, every graph on at555

most 8 vertices is 2-perfect. Therefore, |V (G)| > 8.556

By Theorem 7.12, G admits a proper or small homogeneous pair (A,B). Let C , D, E, F557

be as in the definition of a homogeneous pair.558

Claim 6. F ̸= ∅.559

Proof. Suppose thatF = ∅. IfC∪D ̸= ∅ orE ̸= ∅, then there is a dominating set ofG consisting560

of at most 4 vertices made by choosing 1 vertex from each of A and B and choosing 1 vertex561

either from E or from each of C and D. Since γ ≥ 4, this contradicts (5). Therefore, E = ∅562

and C orD is empty. By the symmetry between A andB, we may assumeD = ∅. Then, since563

(A,B) is a tame homogeneous pair and F ∪ E ∪D = ∅, it follows that |C| ≥ 3. But then C564

is a homogeneous set, a contradiction. Therefore, we deduce that F ̸= ∅. ■565

Claim 7. If E = ∅, then (A,B) is proper.566

Proof. By the assumption, (A,B) is small. By symmetry, suppose that D = E = ∅. By the567

induction hypothesis, there exists a partition (V1, V2, . . . , Vγ) of A ∪ C ∪ F such that G[Vi]568

is perfect for all i ∈ {1, 2, . . . , γ}. We may assume that A ∩ Vi = ∅ for all i ≤ |B| because569

γ≥ |A∪B|. Letw1, w2, . . . , w|B| be the vertices inB. For i∈{1, 2, . . . , |B|}, let V ′
i := Vi∪{wi}.570

Sincewi is isolated inG[V ′
i ],G[V ′

i ] is perfect. For i > |B|, define V ′
i := Vi. ThenG[V ′

i ] is perfect571

for every i ∈ {1, 2, . . . , γ} and
⋃γ

i=1 V
′
i = V (G). Thus, G is γ-perfect, a contradiction. ■572

Claim 8. G[A] and G[B] are P4-free, so perfect.573

Proof. It is trivial if (A,B) is proper because G is gem-free. By Claim 7, we may assume that574

E ̸= ∅. This implies that G[A ∪B] is P4-free, because G is gem-free. ■575

Claim 9. If E = ∅, then A or B is stable.576

Proof. Suppose neitherA norB is stable. By (i) and (ii) of Lemma 7.11, C ∪D is anti-complete577

to F . However, by Claim 6, F ̸= ∅ and therefore G is disconnected, a contradiction. ■578
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By the definition of a tame homogeneous pair, there exist some a ∈ A and b ∈ B such that579

ab is an edge of G. Let G′
denote the graph obtained from G by deleting (A ∪ B) \ {a, b}.580

By the definition of a tame homogeneous pair, |V (G′)| < |V (G)|. By the choice of G, there581

is a list H1, H2, . . . , Hγ of perfect induced subgraphs of G′
that cover the vertex set of G′

.582

Let i, j ∈ {1, 2, . . . , γ} be such that a ∈ Hi and b ∈ Hj . If i ̸= j, then G[V (Hi) ∪ A] and583

G[V (Hj) ∪ B] are obtained from Hi and Hj respectively via substitution. So by Lemma 2.4584

and Claim 8, they are both perfect graphs. And therefore G is γ-perfect, a contradiction.585

Hence, i = j. Let H be the graph G[V (Hi) ∪ A ∪ B]. To get a contradiction, it is enough586

to show thatH is a perfect graph, because this would imply that G is γ-perfect. Suppose that587

H is not perfect. Then by Lemma 7.10, it contains an induced subgraphX that is an odd hole.588

Claim 10. X contains vertices a′ ∈ A and b′ ∈ B where a′ and b′ are not adjacent.589

Proof. Since bothH \A andH \B are perfect by Lemma 2.4, V (X)∩A and V (X)∩B are both590

nonempty. Note thatG[(V (X)\ (A∪B))∪{a, b}] is an induced subgraph ofHi and therefore591

perfect. Moreover, V (X)∩A and V (X)∩B are not complete to each other, for otherwiseX592

can be obtained from G[(V (X) \ (A∪B))∪ {a, b}] by substituting in G[V (X)∩A] for a and593

G[V (X) ∩ B] for b, and therefore X would be perfect by Lemma 2.4, a contradiction. Hence,594

X contains a vertex a′ ∈ A and a vertex b′ ∈ B such that a′ and b′ are not adjacent. ■595

Throughout the rest of this proof, we fix a′, b′ as in Claim 10.596

Claim 11. E ̸= ∅.597

Proof. SupposeE = ∅. By Claims 7 and 8, (A,B) is proper and bothG[A] andG[B] areP4-free.598

We claim that each component Q ofX induced by vertices in A is a subpath ofX of even599

length. Let Q be a component of the subgraph ofX induced by A. Suppose Q has odd length.600

Then since G[A] is P4-free, Q consists of a single edge. Let a1, a2 be the vertices in Q. Since601

N(A)⊆B∪C , it follows that then there are two vertices b1, b2 ∈B∩V (X) such that a1b1 and602

a2b2 are both edges. Then b1 and b2 are non-adjacent because X has length at least 5. Then,603

for every c ∈ C , the vertices c, a1, a2, b1, and b2 induce a bull, a contradiction since C ̸= ∅.604

Hence, every component of G[V (X)∩A] is a path of even length. By the symmetry between605

A and B, every component of G[V (X) ∩B] is a path of even length.606

SupposeX contains two non-adjacent vertices inA. Then since each component ofG[X∩607

V (A)] is an even-length path andX has odd length, we can choose two non-adjacent a1, a2 ∈608

V (X) ∩ A such that there exists an odd a1a2-subpath P of X whose internal vertices are609

not in A. We denote the neighbor of ai in P by bi for i ∈ {1, 2}. Since P is an odd path,610

V (P ) ∩ C = ∅ and b1, b2 are distinct vertices in B. Hence, P contains an odd induced b1b2-611

path P̂ . Then, P̂ cannot contain any vertex of A ∪ D, so P̂ is contained in G[B]. But P̂ is a612

component ofG[V (X)∩B], so it is a path of even length, a contradiction. (See Figure 7 for an613

illustration.) Hence, V (X)∩A is a clique and thus |V (X)∩A|= 1. By the symmetry between614

A and B, it follows that |V (X)∩B| = 1. So in particular, a′, b′ are the only vertices of A∪B615

in X .616

By Claim 10, a′ and b′ are not adjacent and therefore there is an a′b′-path P of X of even617

length inH with interior inH \ (A∪B). Then,H[V (P \ {a′, b′})∪ {a, b}] is an odd induced618

cycle of Hi. Hence, since Hi contains no odd hole, P has length two. But then a and b have a619

common neighbor in V (G) \ (A ∪B) contrary to the assumption that E = ∅. ■620
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a1

a2

b1

b2

d ∈ D

Figure 7: An illustration of the proof of Claim 11. Non-edges are drawn as dotted lines. The

wavy line between b1 and b2 indicates that b1 and b2 might be adjacent or they might be non-

adjacent. If b1 and b2 are non-adjacent, P contains some vertex d ∈ D, but then P is not an

induced odd path. If b1 and b2 are adjacent, G contains a bull.

Claim 12. One of A and B is a clique and the other is a stable set.621

Proof. By Claim 11, E is nonempty and therefore G[A ∪ B] is perfect. Since A ∪ B is not a622

homogeneous set, C ∪D is nonempty. It follows from (iii) and (iv) of Lemma 7.11 that A or B623

is a clique. Suppose bothG[A] andG[B] contain an edge. Then by (i) and (ii) of Lemma 7.11, F624

is anti-complete toC∪D andE is complete toC∪D. Hence,A∪B∪C∪D is a homogeneous625

set in G, a contradiction. ■626

Claim 13. |V (X) ∩ A| ≤ 1 and |V (X) ∩B| ≤ 1.627

Proof. SupposeX contains two distinct vertices a1, a2 ∈A. By Claim 10, |V (X)∩(A∪B)| ≥ 3628

and so V (X) ∩ E = ∅. Since the length of X is at least 5, we have |V (X) ∩ C| ≤ 1. Let Q be629

a subpath of X from a1 to a2 not containing any vertex of C . We choose a1, a2, and Q such630

that the length of Q is maximized.631

If X has a vertex in C , then |E(Q)| = |E(X)| − 2 ≥ 3. If X has no vertex in C , then632

|E(Q)| ≥ (|E(X)|+ 1)/2 ≥ 3. So, in both cases, Q has length at least 3.633

Let b1, b2 be the neighbors of a1, a2 in Q, respectively. By Claim 12, b1, b2 /∈ A and so634

b1, b2 ∈ B. Since Q is an induced path of G with length at least 3, b1 is non-adjacent to a2 and635

b2 is non-adjacent to a1. ThenG[{a1, a2, b1, b2}] is isomorphic to P4 by Claim 12, contradicting636

the assumptions thatG is gem-free andE ̸= ∅ by Claim 11. By the symmetry betweenA andB,637

this completes the proof. ■638

Let P be an a′b′-path of X . Since each of a′ and b′ has exactly one neighbor in V (P ),639

P does not contain more than one vertex of each of C , D, and E. Since X is not a hole of640

length 4, X contains no more than one vertex of E.641

Claim 14. V (X) ∩ E = ∅.642

Proof. Suppose X contains a vertex v ∈ E. Let P denote the path X \ v. Then no interior643

vertex of P is adjacent to v, so none of the interior vertices of P is complete to E. Hence, no644

interior vertex ofP is inA∪B. By definition,N(a′)⊆A∪B∪C∪E andN(b′)⊆A∪B∪C∪E645

and a′, b′ ∈ V (P ). It follows that P contains a vertex in C and a vertex in D. In particular,646

neither C nor D can be complete to E, contradicting Lemma 7.11(v). ■647

By Claims 13 and 14, both a′b′-paths ofX have length at least three. Since one of the a′b′-648

paths ofX has even length, there is an a′b′-path P ofX of length at least four and P contains649

some vertex c ∈ C and some vertex d ∈D by Claims 13 and 14. Now, (V (P )\{a′, b′})∪{a, b}650
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induces an odd hole inHi, a contradiction to the assumption thatHi is perfect. This completes651

the proof.652

Now we are ready to prove the main proposition of this subsection, which we restate here.653

654

Proposition 7.4. For every 4-good classF of graphs, there is a positive integer γ such that every655

elementary locally perfect bull-free graph in F is γ-perfect.656

Proof. Let γ be the constant given by Proposition 7.13 for F . Note that γ ≥ 4. Let G be an657

elementary bull-free locally perfect graph inF . By Proposition 7.13, ifG is gem-free, thenG is658

γ-perfect. Thus we may assume thatG has an induced subgraphH that is a gem. Let P be the659

path of length 3 in H . Then V (P ) is a dominating set of G because G is elementary. Since G660

is locally perfect, G[NG(v)∪ {v}] is perfect for each v ∈ V (P ). Therefore, G is 4-perfect.661

7.3 Completing the proof for bull-free graphs662

Previously, we defined elementary graphs, but for this subsection, we need to extend this663

notion to trigraphs. A trigraph G is elementary if it does not contain any path P of length 3664

such that some vertex c of V (G)\V (P ) is complete to V (P ) and some vertex a of V (G)\V (P )665

is anti-complete to V (P ). We say c is a center for P and a is an anti-center for P .666

A hole H of length 5 in a trigraphG is a subtrigraph ofG induced by 5 vertices, say h1, h2,667

h3, h4, h5 such that hi is adjacent to hi+1 and anti-adjacent to hi+2 for each i ∈ {1, 2, . . . , 5},668

assuming that h6 = h1, h7 = h2, h8 = h3, and h9 = h4. For each i ∈ {1, 2, . . . , 5},669

• let Li be the set of all vertices in V (G) \V (H) that are adjacent to hi and anti-complete670

to V (H) \ {hi},671

• let Si be the set of all vertices in V (G) \V (H) that are anti-adjacent to hi and complete672

to V (H) \ {hi}, and673

• let Ci be the set of all vertices in V (G) \ V (H) that are complete to {hi+1, hi+4} and674

anti-complete to {hi+2, hi+3}.675

A vertex in Li, Si, and Ci is called a leaf, a star, a clone, respectively, at hi. A leaf, a star, or a676

clone with respect toH is a leaf, a star, or a clone, respectively, at hi for some i ∈ {1, 2, . . . , 5}.677

In [Chu12a], T0 is a precisely defined set of trigraphs and T0 is one of the base classes of678

trigraphs in the decomposition theorem of Chudnovsky [Chu12b]. For our proof, we need679

only the following observation.680

Observation 7.14. Every trigraph in T0 contains at most 8 vertices.681

The following theorem is a direct consequence of the proof of [Chu12a, 5.2]. The actual682

statement of [Chu12a, 5.2] is weaker in the sense that instead of (ii), [Chu12a, 5.2] deduces that683

one ofG,G contains a “homogeneous pair of type zero.” It turns out that the only place in the684

proof deducing this consequence is the first sentence of the proof, which uses 4.1 of [Chu12a]685

to assume that there is no hole of length 5 with both a leaf and a star. Thus, by removing the686

first sentence of the proof of 5.2 in Chudnovsky [Chu12a], we deduce the following slightly687

stronger statement.688

Theorem 7.15 (Chudnovsky [Chu12a, 5.2]; strengthened form). Let G be a bull-free non-689

elementary trigraph. Then at least one of the following holds.690

(i) G or G belongs to T0.691

(ii) G has a homogeneous set.692

19



(iii) G has a hole of length 5 with both a leaf and a star.693

A trigraph is perfect if every realization is perfect. We say a trigraph is imperfect if it is not694

perfect. Here is a corollary of Lemma 2.4 for trigraphs.695

Lemma 7.16. Let A be a homogeneous set of a trigraphG and a ∈ A. If bothG \ (A \ {a}) and696

G[A] are perfect, then G is perfect.697

A trigraph is k-perfect if its vertex set can be partitioned into at most k sets, each inducing698

a perfect trigraph. We say a trigraphG is locally perfect ifG[N(v)] is perfect for every vertex v699

of G. Then we obtain the following consequence of Theorem 7.15.700

Lemma 7.17. Every locally perfect bull-free non-elementary graph is 2-perfect, unless it has a701

hole of length 5 with a leaf and a star.702

Proof. Suppose that G is a locally perfect bull-free non-elementary graph that has no hole703

of length 5 with a leaf and a star. We proceed by induction on |V (G)| to show that G is704

2-perfect. We may assume that G is connected and has more than 8 vertices because the705

disjoint union of two perfect graphs is perfect and every graph with at most four vertices is706

perfect. So by Theorem 7.15, G has a homogeneous set A ⊆ V (G). Moreover, there is some707

vertex v ∈ V (G) \A that is complete to A because G is connected. Since G is locally perfect,708

G[A] is perfect. Let a ∈ A and G′ = G \ (A \ {a}). By the induction hypothesis, there is a709

partition of V (G′) intoX , Y such that G′[X], G′[Y ] are both perfect. We may assume a ∈ X .710

Wemay assume thatX ̸= {a} because otherwiseG[A] andG\A=G[Y ] are perfect, implying711

that G is 2-perfect.712

LetX ′ =X∪A and letGX =G[X ′]. Note that bothGX \ (A\{a}) =G′[X] andGX [A] =713

G[A] are perfect and A is a homogeneous set of GX . By Lemma 2.4, GX is perfect. So (X ′, Y )714

is a partition of V (G) such that both G[X ′] and G[Y ] are perfect.715

The following theorem is a direct consequence of the proof of 4.3 in [Chu12a].716

Theorem 7.18 (Chudnovsky [Chu12a, 4.3]; weaker but more detailed form). Let G be a bull-717

free trigraph satisfying the following properties.718

• Neither G nor G belongs to T0.719

• G has a hole H of length 5 induced by 5 vertices h1, h2, h3, h4, h5 in this order and H has720

both a star at h1 and a leaf at h1.721

• G has no homogeneous set.722

ThenG has a tame homogeneous pair (A,B) with the following properties, where Ci denotes the723

set of clones at hi for all i ∈ {1, 2, . . . , 5}.724

(i) A = {h2, h5} ∪ C2 ∪ C5.725

(ii) B = {h3, h4} ∪ C3 ∪ C4.726

(iii) There is a vertex v ∈ V (G) \ (A ∪B) strongly complete to A ∪B.727

We say that a trigraph is austere if728

(a) it is monogamous,729

(b) no homogeneous set contains a switchable pair, and730

(c) for every dominated tame homogeneous pair (A,B),A∪B contains no switchable pair.731

Lemma 7.19. Let G be an austere trigraph. If A is a homogeneous set of G and a ∈ A, then732

G \ (A \ {a}) is also austere.733
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Proof. Let G′ = G \ (A \ {a}). Clearly, G′
satisfies (a).734

To prove (b), suppose that G′
has a homogeneous set X . If a /∈ X , then X is also a homo-735

geneous set of G and so X contains no switchable pair in G′
. If a ∈ X , then A ∪ (X \ {a}) is736

a homogeneous set of G and so A ∪ (X \ {a}) contains no switchable pair in G. This means737

that X contains no switchable pair in G′
. This proves (b).738

For (c), suppose thatG′
has a dominated tame homogeneous pair (X, Y ). If a /∈X∪Y , then739

(X, Y ) is a dominated tame homogeneous pair ofG and thereforeX∪Y has no switchable pair740

in both G and G′
. If a ∈ X ∪ Y , then we may assume a ∈ X . By definition of a homogeneous741

set, (A∪ (X \{a}), Y ) is a dominated tame homogeneous pair inG. Hence,A∪ (X \{a})∪Y742

contains no switchable pairs in G and so X ∪ Y contains no switchable pair in G′
.743

Lemma 7.20. Let G be an austere trigraph and (A,B) be a maximal dominated tame homoge-744

neous pair ofG. If A∪B is not a subset of any homogeneous set ofG, then the trigraph obtained745

by shrinking (A,B) is also austere.746

Proof. Let G′
be the trigraph obtained by shrinking (A,B) and let a, b be the vertices of G′

747

corresponding to A and B, respectively.748

By the definition of a homogeneous pair, the only switchable pair containing a or b in G′
749

is the pair {a, b}. Hence, G′
is monogamous because G is monogamous. This proves (a).750

For (b), suppose that G′
has a homogeneous set X that contains a switchable pair. Then751

since G is austere, X is not a homogeneous set in G. Hence, X contains a or b and so by the752

definition of a homogeneous set, X contains both a and b. But then A ∪B ∪ (X \ {a, b}) is a753

homogeneous set of G, contradicting our choice of (A,B). This proves (b).754

For (c), suppose that G′
has a dominated tame homogeneous pair (X, Y ) such thatX ∪ Y755

contains a switchable pair in G′
. Then, X ∪ Y contains a or b. Since {a, b} is a switchable756

pair, by definition of a homogeneous pair,X ∪Y contains both a and b. Then if both a, b ∈X ,757

the (A ∪ B ∪ (X \ {a, b}), Y ) is a dominated tame homogeneous pair of G and it properly758

contains (A,B), a contradiction. Hence, we may assume a ∈ X and b ∈ Y . Then, (A ∪ (X \759

{a}), B ∪ (Y \ {b})) is a dominated tame homogeneous pair of G and it properly contains760

(A,B), a contradiction. This proves (c).761

Proposition 7.21. For every 4-good class F of graphs, there exists an integer cF satisfying the762

following.763

For every locally perfect bull-free austere trigraphGwhose every induced subtrigraph with-764

out switchable pairs is inF , there exists a partition (X1, X2, . . . , Xk) of V (G)with k ≤ cF765

such that G[Xi] is a perfect subtrigraph with no switchable pair for all i ∈ {1, 2, . . . , k}.766

Proof. Let cF =2γ≥ 2where γ is defined in Proposition 7.4 forF . We proceed by the induction767

on |V (G)|. As every trigraph on at most 4 vertices is perfect, we may assume that |V (G)| > 8768

and therefore neither G nor G belongs to T0. Since the disjoint union of two perfect trigraphs769

is perfect, we may assume that G is connected.770

Since G is monogamous, there exists a partition (S, T ) of V (G) such that both G[S] and771

G[T ] have no switchable pairs. So bothG[S] andG[T ] are locally perfect bull-free elementary772

graphs. Suppose thatG is elementary. By applying Proposition 7.4 to bothG[S] andG[T ], we773

obtain a partition of V (G) into at most 2γ subsets, each inducing a perfect induced subtrigraph774

without switchable pairs. Therefore we may assume that G is not elementary.775

Suppose that G has a homogeneous set A. Let a ∈ A and G′ = G \ (A \ {a}). Then776

trivially, G′
is locally perfect and bull-free. By Lemma 7.19, G′

is austere. By the induction777

hypothesis,G′
admits a partition (X1, . . . , Xk) of V (G′)with k≤ cF such thatG′[Xi] is perfect778

and has no switchable pair for each i ∈ {1, 2, . . . , k}. We may assume that a ∈ X1. Since G is779
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connected andA is a homogeneous set ofG, there is a vertex v ∈ V (G) such that v is strongly780

complete to A. Since G is locally perfect, G[A] is perfect. By Lemma 7.16, G[X1 ∪ A] is still781

perfect. Furthermore, G[X1 ∪ A] has no switchable pair because both G[A] and G[X1] have782

no switchable pair. Then (X1 ∪ A,X2, . . . , Xk) is a desired partition of V (G). Thus, we may783

assume that G has no homogeneous set.784

By Theorem 7.15, G has a holeH of length 5 with both a star and a leaf. By Theorem 7.18,785

G has a dominated tame homogeneous pair. Thus, there exists a maximal dominated tame786

homogeneous pair (A,B). Since G is locally perfect and (A,B) is dominated, both G[A] and787

G[B] are perfect.788

LetG0 be the trigraph obtained fromG by shrinking (A,B). Observe that every realization789

of G0 is isomorphic to an induced subgraph of some realization of G. This implies that G0 is790

bull-free and locally perfect.791

Let a, b be the vertices of G0 corresponding to A, B, respectively. By the induction hy-792

pothesis,G0 admits a partition (X1, . . . , Xk) of V (G0)with k ≤ cF such thatG0[Xi] is perfect793

and has no switchable pair for each i ∈ {1, . . . , k}. We may assume that a ∈ X1 and b ∈ X2794

because no Xi contains switchable pairs.795

Let X ′
1 = (X1 \ {a}) ∪ A and X ′

2 = (X2 \ {b}) ∪ B. By Lemma 7.16, both G[X ′
1] and796

G[X ′
2] are perfect. Furthermore, both G[X ′

1] andG[X ′
2] have no switchable pairs becauseG is797

austere. Observe that for all i ∈ {3, . . . , k}, G[Xi] = G′[Xi]. Therefore (X
′
1, X

′
2, X3, . . . , Xk)798

is the desired partition of V (G).799

Since every graph is also an austere trigraph, we obtain Proposition 7.5 as a direct corol-800

lary to Proposition 7.21. Recall this implies the class of bull-free graphs is Pollyanna by Corol-801

lary 7.3. We restate Proposition 7.5 for the convenience of the reader.802

Proposition 7.5. For every 4-good class F of graphs, there is a positive integer cF such that803

every locally perfect bull-free graph is cF -perfect.804

8 Non-Pollyanna classes805

A oriented tree is an orientation of a tree. For a positive integer n, a graph G is an n-willow806

if there exists an oriented tree T with V (G) ⊆ V (T ) such that for every distinct pair u, v of807

vertices of G, the vertices u and v are adjacent if and only if T has a directed path from u to v808

or from v to uwhose length is not a multiple of n. In this case, we sayG is an n-willow defined809

by T . We will make extensive use of the following easy observation.810

Observation 8.1. Let n be a positive integer and let T be an oriented tree. If P is a directed path811

in T andG is an n-willow defined by T , thenG[V (P )∩V (G)] is a complete multipartite graph.812

A graph is a willow if it is an n-willow for some positive integer n. We remark that by813

subdividing certain edges of the associated oriented tree, one can show that if a graph is an814

n-willow, then it is also an n′
-willow for all n′ ≥ n. On the other hand, the clique number of815

an n-willow is at most n andKn is an n-willow, so for every positive integer n ≥ 2, there are816

n-willows that are not n′
-willows for any positive integer n′ < n.817

The main result of this section is the following theorem which relates willows and818

Pollyanna classes of graphs.819

Theorem 8.2. If F is a finite set of graphs, none of which is a willow, then the class of F-free820

graphs is not Pollyanna.821
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To construct χ-bounded hereditary classes of graphs that are not polynomially χ-bounded,822

Briański, Davies, and Walczak [BDW23] proved the following two lemmas.823

Lemma 8.3 (Briański, Davies, and Walczak [BDW23, Lemma 4]). Let k be a positive integer.824

Then, there is a graph G with an acyclic orientation of its edges satisfying the following.825

(A1) χ(G) = k.826

(A2) For every pair of vertices u and v, there is at most one directed path from u to v in G.827

(A3) There is a directed path in G on k vertices.828

(A4) There is a k-coloring ϕ ofG such that for every directed path inG of non-zero length, their829

ends u and v satisfy that ϕ(u) ̸= ϕ(v).830

Lemma 8.4 (Briański, Davies, and Walczak [BDW23, Lemmas 5 and 6]). Let p ≤ k be positive831

integers with p prime, and letG be a graph with an acyclic orientation of its edges satisfying (A1),832

(A2), (A3), and (A4) for k. Let Gp be the graph obtained from G by adding an edge uv whenever833

G has a directed path between u and v whose length is not divisible by p. Then, ω(Gp) = p and834

every induced subgraph of G with clique number m < p has chromatic number at most
(
m+2
3

)
.835

Graphs G as in Lemma 8.3 exist, and Briański, Davies, and Walczak [BDW23] showed836

specifically that the natural orientation of Tutte’s construction [Des47, Des54] has these prop-837

erties. Note that (A1) implies (A3) by the following well-known lemma due to Gallai [Gal68],838

Hasse [Has65], Roy [Roy67], and Vitaver [Vit62].839

Lemma 8.5 (Gallai, Hasse, Roy, and Vitaver [Gal68, Has65, Roy67, Vit62]). Let k be a positive840

integer. If a graph G has an orientation with no directed path of length k, then χ(G) ≤ k.841

Girão, Illingworth, Powierski, Savery, Scott, Tamitegama, and Tan [GIP
+
23] considered the842

construction of Nešetřil and Rödl [NR79], which is a large-girth variation of the construction843

of Tutte [Des47, Des54]. Using the same natural orientation, they obtained the following.844

Lemma 8.6 (Girão, Illingworth, Powierski, Savery, Scott, Tamitegama, and Tan [GIP
+
23,845

Lemma 10]). For every g ≥ 3 and k ≥ 2, there is a graph Y with an orientation of its edges846

such that χ(Y ) = k and every cycle in Y contains at least g changes of direction in the orienta-847

tion.848

The property (A4) also clearly holds for this construction, since the same natural orien-849

tation and coloring from the proof of Briański, Davies, and Walczak [BDW23] for the con-850

struction of Tutte [Des47, Des54] can be used. Note that the orientation of Y described in851

Lemma 8.6 is acyclic and satisfies (A2) because all of its cycles have at least three changes in852

direction in the orientation. By Lemma 8.5, (A3) holds for Y . Thus, we obtain the following853

strengthening of Lemma 8.3.854

Lemma 8.7. Let g, k be positive integers with g ≥ 3 and k ≥ 2. Then, there is a graph G with855

an orientation of its edges satisfying (A1), (A2), (A3), and (A4) for k and additionally:856

(B1) every cycle in G contains at least g changes of direction in the orientation.857

Lemma 8.8. Let g, k be positive integers with g ≥ 3 and k ≥ 2. Let p be a prime less than or858

equal to k. Let G be a graph with an orientation of its edges satisfying (A1), (A2), (A3), and (A4)859

for k and (B1) for g. LetG′ be the graph on V (G) such that two vertices u, v are adjacent inG′ if860

and only if there is a directed path between u and v whose length is not divisible by p. If g >
(
N
2

)
861

for an integer N , then every induced subgraph of G′ with at most N vertices is a p-willow.862
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Proof. Let X be a set of at most N vertices of G′
. We claim that G′[X] is a p-willow. Let T be863

the union of all directed paths of G between u and v whose length is not divisible by p for all864

edges uv of G′[X].865

By (A2), we added at most 1 directed path per every edge of G′[X] and therefore in total866

T consists of less than g directed paths. By (B1), every cycle in G contains at least g changes867

of direction and therefore T has no cycles. Let T ′
be a tree obtained from T by adding a new868

vertex with an out-edge to one vertex of each component of T . Then T ′
is a tree.869

Observe that for distinct vertices u and v inX , if T ′
has a directed path from u to v whose870

length is not a multiple of p, then so does G and therefore G′
contains the edge uv by the871

definition of G′
. Conversely, if G′[X] contains an edge uv, then G contains a directed path P872

between u and v whose length is not a multiple of p. By (A2), such a path P is unique and873

therefore T ′
contains P . This proves that G′[X] is a p-willow defined by T ′

.874

Now we can prove Theorem 8.2. We obtain a χ-bounded class that is not polynomially875

χ-bounded by combining Lemma 8.4 with Lemma 8.7 for some suitably large g instead of876

Lemma 8.3 as is done in [BDW23]. Then, it is just amatter of examining the induced subgraphs.877

Proof of Theorem 8.2. Let N be the set of positive integers. Let N be the maximum number of878

vertices of a graph in F and let g = max(
(
N
2

)
+ 1, 3). Choose a function f : N → N such that879

f(1) = 1, f(n) ≥
(
n+2
3

)
for all n ∈ N, and limn→∞

f(n)
nk = ∞ for every positive integer k. In880

other words, we choose f to be “superpolynomial”.881

Let us first construct a χ-bounded class Z of graphs that is not polynomially χ-bounded.882

For each prime p, let Yp be a graph with an orientation of its edges satisfying (A1)–(A4) for883

k := f(p) and (B1) for g, given by Lemma 8.7. For every prime p, we define Ep to be the set884

consisting of all pairs {u, v} where u, v ∈ V (Yp) and Yp contains a directed path from u to v885

or from v to u whose length is not divisible by p. Let Zp be the graph (V (Yp), Ep). Note that886

E(Yp) ⊆ Ep. In other words, Zp can be obtained from Yp by adding the elements of Ep to the887

edge set of Yp.888

By Lemma 8.4, we have that ω(Zp) = p and every induced subgraph Z of Zp with clique889

numberm< p has chromatic number at most

(
m+2
3

)
. By (A1) and (A4), χ(Zp) = k = f(p). Let890

Ẑ be the set of all graphsZp for each prime p and letZ be the closure of Ẑ under taking induced891

subgraphs. Then Z is χ-bounded by a χ-bounding function f . Since there are infinitely many892

primes and for every prime p there is a graph Z ∈ Z with clique number p and chromatic893

number f(p), Z is not polynomially χ-bounded by our choice of f .894

Now, suppose that the class C of F-free graphs is Pollyanna. Then Z ̸⊆ C because Z895

is not polynomially χ-bounded. Then there exist a prime p and a set X ⊆ V (Zp) such that896

Zp[X] is isomorphic to a graph F ∈ F . By Lemma 8.8, Zp[X] is a p-willow, contradicting the897

assumption that F contains no willows.898

We remark that by applying Lemmas 8.4, 8.7 and 8.8, one can also obtain the following.899

Theorem 8.9. If F is a finite set of graphs, none of which is a willow, then for every positive900

integer q, there is a class G of F-free graphs that is not χ-bounded, but such that every graph901

G ∈ G with ω(G) < q has chromatic number at most
(
q+1
3

)
.902

Proof. Let p be a prime such that q ≤ p ≤ 2q (such a prime exists by Bertrand’s postulate). Let903

N be the maximum number of vertices of a graph in F and let g = max(
(
N
2

)
+ 1, 3).904

For each integer k ≥ p, we are going to construct a graph Gk as follows. By Lemma 8.7,905

there is a graph Hk with an orientation of its edges satisfying (A1)–(A4) for k and (B1) for g.906

By Lemma 8.4, there is a graph Gk obtained from Hk by adding an edge uv whenever Hk907

24



has a directed path between u and v whose length is not divisible by p such that ω(Gk) = p908

and every induced subgraph of Gk with clique numberm < p has chromatic number at most909 (
m+2
3

)
. By (A1) and (A4), χ(Gk) = k. Let G be the class of all induced subgraphs of Gk for all910

k ≥ p. So, G is not χ-bounded but every graph in G with ω(G) =m< q has chromatic number911

at most

(
m+2
3

)
≤

(
q+1
3

)
.912

By Lemma 8.8, every graph in G with at most N vertices is a p-willow and therefore G is913

F-free.914

9 Forbidden induced subgraphs for willows915

In this section, we describe some forbidden induced subgraphs for the class of willows. We916

only aim to sample the forbidden induced subgraphs rather than to find an exhaustive list. We917

believe there are many more. Our main idea is to use Observation 8.1, which says that if G918

is an n-willow defined by an oriented tree T , then vertices on a directed path on T cannot919

induce K2 ∪K1 in G, because K2 ∪K1 is not a complete multipartite graph.920

A 10-vertex graphG is a pentagram spider if it has a perfect matchingM such thatG \M921

has a component isomorphic toK5. Note that vertices not in the component isomorphic toK5922

are allowed to be adjacent to each other. See Figure 2 for an illustration.923

Proposition 9.1. No pentagram spider is a willow.924

Proof. Let G be a pentagram spider andM be a perfect matching of G such that G \M has a925

cliqueA of size 5. Let T be an oriented tree and suppose thatG is a willow defined by T . Then926

by definition V (G)⊆ V (T ) and for every edge uv ∈ E(G), there is a directed path from u to v927

or from v to u in T . Since A is a clique of G, there is a directed path P in T which contains928

all vertices of A. Let x1, x2, x3, x4, x5 be the vertices of A in the order of their appearances929

in P . Let y1, y2, y3, y4, y5 be the vertices of G such that xiyi ∈ M for all i = 1, 2, . . . , 5. Since930

x3y3 ∈E(G), there is some directed pathP ′
inT from y3 to x3 or from x3 to y3. By reversing the931

orientation of all edges of G and T and switching the labels of x1, x2 with x5, x4 if necessary,932

we may assume that P ′
is a directed path from y3 to x3. Then, there is a directed path P ′′

in T933

containing y3, x3, x4, x5 in order. Then G[{y3, x4, x5}] is not a complete multipartite graph,934

contradicting Observation 8.1.935

A 12-vertex graph is a tall strider if it has a clique C = {x1, x2, x3} of size 3 such that936

N(x1) \C , N(x2) \C , and N(x3) \C are disjoint cliques of size 3. We remark that there can937

be edges between N(xi) \ C and N(xj) \ C for distinct i, j. See Figure 2 for an illustration.938

Proposition 9.2. No tall strider is a willow.939

Proof. Let G be a tall strider with a clique C of size 3 such that N(v) \ C for all v ∈ C are940

disjoint cliques of size 3. Let T be an oriented tree and suppose that G is a willow defined by941

T . Since C is a clique of G, there is a directed path P in T that contains all vertices of C . Let942

x1, x2, x3 be the vertices in C such that P is a directed path from x1 to x3. Similarly, since943

(N(x2) \C)∪{x2} is a clique, there exists a directed path P ′
in T that contains all vertices of944

(N(x2)\C)∪{x2}. If two vertices, say a, b ofN(x2)\C come after x2 in P
′
, then T contains a945

directed path containing x1, x2, a, and b. However,G[{x1, a, b}] is not a complete multipartite946

graph, contradicting Observation 8.1. Thus two vertices, say a, b of N(x2) \ C come before947

x2 in P ′
. Then T contains a directed path containing a, b, x2, x3. Again, G[{a, b, x3}] is not a948

complete multipartite graph, contradicting Observation 8.1.949
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Figure 8: The complement P8 of P8 is an n-willow for every integer n ≥ 5. Vertices v1, v2, . . .,
v8 represent vertices of P8 in the order. The dashed arc with an integer k means a directed

path of length k.

A 10-vertex graph is a short strider if it has a clique C = {x1, x2, x3, x4} of size 4 such that950

N(x1) \C , N(x2) \C , and N(x3) \C are disjoint cliques of size 2. We remark that there can951

be edges between N(xi) \ C and N(xj) \ C for distinct i, j. See Figure 2 for an illustration.952

Proposition 9.3. No short strider is a willow.953

Proof. LetG be a short strider. Let T be an oriented tree and suppose thatG is a willow defined954

by T . Let C = {x1, x2, x3, x4} be a clique ofG such thatN(x1)\C ,N(x2)\C , andN(x3)\C955

are disjoint cliques of size 2.956

Since C is a clique of G, we may assume without loss of generality that T has a directed957

path P that contains all vertices in C . By reversing the direction of all edges in T if necessary,958

we may assume x4 is not the first two vertices of C in P . By the symmetry among x1, x2,959

and x3, we may assume that x1 is the first vertex of C appearing on P and x2 is the second960

vertex of C appearing on P . Since (N(x2) \ C) ∪ {x2} is a clique of G, there is a directed961

path P ′
in T that contains all vertices in (N(x2) \ C) ∪ {x2}.962

If some x ∈ N(x2) \C appears before x2 on P ′
, then T has a directed path P ′′

containing963

x, x2, x3, and x4. However, G[{x, x3, x4}] is not a complete multipartite graph, contradict-964

ing Observation 8.1.965

We may therefore assume that two vertices in N(x2) \ C appear after x1 on P ′
. But then,966

T has a directed path P ∗
containing x1, x2 and two vertices in N(x2) \ C . Then G[{x1} ∪967

(N(x2) \ C)] is not a complete multipartite graph, contradicting Observation 8.1.968

Now we present a lemma on willows, which we will use in later propositions.969

Lemma 9.4. LetG be a graph whose complementG is a willow defined by an oriented tree T . If970

G has an induced path u-v-w of length 2, then T has no directed path between u and v or T has971

no directed path between v and w.972

Proof. Suppose not. Then, without loss of generality, we may assume that there exists a di-973

rected path P between u and v in T . By reversing all edges of T if necessary, we may assume974

P is a directed path from u to v. Observe that G[{u, v, w}] is isomorphic to K2 ∪ K1. Since975

K2 ∪ K1 is not a complete multipartite graph by Observation 8.1, it follows that there is no976

directed path from v to w. Therefore, there exists a directed path from w to v in T . Since T is977

a tree, it now follows that T has no directed path between u and w, contradicting the fact that978

uw ∈ E(G).979

We remark that P8 is a willow, see Figure 8. Next, we show that P9 is not a willow. This980

clearly follows from the following more general proposition.981

Proposition 9.5. Let G be a graph. If G has three vertex-disjoint induced paths Q1, Q2, Q3 of982

length 2 such that their interior vertices have degree 2 in G, then the complement G of G is not a983

willow.984
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Figure 9: BothC5 andC6 are aren-willows for every integern≥ 5. Vertices v1, v2, . . . represent
vertices of the antihole in the cyclic order. The dashed arc with an integer k means a directed

path of length k.

Proof. Suppose that G is a willow defined by some oriented tree T . Let x1, x2, x3 be the985

interior vertices of Q1, Q2, and Q3, respectively. As {x1, x2, x3} is a clique in G, we may986

assume without loss of generality that T has a directed path P from x1 to x3 whose interior987

contains x2. By Lemma 9.4, there is an end y2 ofQ2 such that there is no directed path between988

x2 and y2 in T .989

Since x1y2 ∈ E(G), there exists a directed path R1 in T between x1 and y2. There is no990

directed path from y2 to x2 in T and thereforeR1 is directed from x1 to y2. Similarly, there is a991

directed path R2 in T from y2 to x3. Let R = R1 ∪R2. Then, both P and R are directed paths992

of T from x1 to x3. Since T is a tree, we deduce that P = R, contradicting the assumption that993

there is no directed path between x2 and y2.994

The previous proposition also shows that Cn is not a willow for n≥ 9. It is easy to see that995

both C5 and C6 are willows, see Figure 9. Lastly, we prove that neither C7 nor C8 is a willow.996

We remark that all cycles are willows, see Figure 10.997

Proposition 9.6. The complement Cn of Cn is not a willow for all integers n ≥ 7.998

Proof. Let v1, v2, . . ., vn be the vertices of Cn in cyclic order. Suppose that Cn is a willow999

defined by some oriented tree T . Let F be the set of all edges uv of G such that there is a1000

directed path from u to v or from v to u in T .1001

Suppose that F = ∅. Then for some j ∈ {1, 2, . . . , n}, there is no directed path from vj to1002

vi in T for all i ∈ {1, 2, 3, . . . , n} \ {j}. By symmetry, we may assume that j = 1.1003

Since {v1, v3, v6} is a clique ofG, there is a directed path P in T containing all of v1, v3, and1004

v6. Let (i, j, k) be the permutation of {1, 3, 6} such that P contains vi, vj, vk in order. Then1005

i = 1 by the assumption on v1. Let ℓ ∈ {j − 1, j + 1} ∩ {4, 5}. Then {v1, vℓ, vk} is a clique in1006

G and therefore there is a path Q containing v1, vℓ, and vk. Since T is a tree, vj is in V (Q),1007

contradicting the assumption that vjvℓ /∈ F .1008

Therefore F ̸= ∅. By symmetry, we may assume that v2v3 ∈ F . Since T contains directed1009

paths between v2 and v6 and between v2 and v3, it follows that T contains a directed path P1010

containing v2, v3, and v6. Let (i, j, k) be a permutation of {2, 3, 6} such that P is a directed1011

path containing vi, vj, vk, in order. By Lemma 9.4, vj−1vj /∈ F or vjvj+1 /∈ F . Thus, there is an1012

ℓ ∈ {j − 1, j + 1} ∩ {1, 4, 5, 7} such that vℓvj /∈ F . Since vℓ is complete to {vi, vk}, there is a1013

directed path Q of T containing vi, vk, and vℓ. As T is a tree, we conclude that Q contains P1014

and therefore vj , contradicting the assumption that vjvℓ /∈ F .1015

Nowwe are going to prove that large enough “fans” and “complete wheels” are not willows.1016

We define fans as follows. Let n ≥ 3 be an integer. Let Fn be the (n + 1)-vertex graph with1017

a specified vertex c called the center such that Fn \ c is the path Pn. A complete wheel on1018

(n+1)-vertices is the graphWn obtained from Fn by adding an edge between the two degree-1019

1 vertices of Fn \ c. Hence, Wn \ c is the cycle Cn. We will show that Wn and Cn are not1020

willows for each n ≥ 7. First, we present a useful lemma.1021
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Figure 10: These oriented trees certify that cycles of length 18 and 19 are n-willows for every
integer n ≥ 4 and can be easily modified to show that all cycles are n-willows. Vertices v1, v2,
. . . represent vertices in the cyclic order. The dashed arc with an integer k means a directed

path of length k.

Lemma 9.7. LetG be a copy of F4 with center c. Let v1 be a vertex of degree one inG\c. IfG is a1022

willow defined by an oriented tree T and T has a directed path from v to c for every v ∈ V (G\c),1023

then the directed path from v1 to c in T contains at least one vertex in V (G) \ {v1, c}.1024

Proof. NoteG\c= P4. Let v1, v2, v3, v4 be the vertices of P4, in order. For each i ∈ {1, 2, 3, 4},
let Ri denote the directed path from vi to c in T . We may assume that

V (Rj) ̸⊆ V (R1) for each j ∈ {2, 3, 4}. (6)

Since {v1, v2, c} is a clique there is a directed path P of T containing v1, v2, c. Since T is a tree,

R1 ∪R2 = P . Hence, V (R1) ⊆ V (R2). For i ∈ {2, 4}, the set {vi, v3, c} is a clique. Hence,

For every i ∈ {2, 4}, V (Ri) ⊆ V (R3) or V (Ri) ⊆ V (R2). (7)

Since G[{v1, v2, v4}] is isomorphic to K2 ∪K1, by Observation 8.1,

V (R4) ̸⊆ V (R2) and V (R2) ̸⊆ V (R4). (8)

Suppose that V (R2) ⊆ V (R3). By (7) and (8), V (R4) ⊆ V (R3) and therefore V (R3) con-1025

tains both V (R1) and V (R4). This means that R3 contains v1, v3, v4, contradicting Observa-1026

tion 8.1.1027

Thus, V (R3)⊆ V (R2). Since V (R1)⊆ V (R2) andR1, R2, R3 are all directed paths ending1028

at c, it follows from (6) that V (R1) ⊆ V (R3) ⊆ V (R2). By (7) and (8), V (R3) ⊆ V (R4). So R41029

is a directed path containing each of v1, v3, v4 contrary to Observation 8.1.1030

Note that F6 is a willow, see Figure 11. We prove that Fn is not a willow if n ≥ 7.1031

Proposition 9.8. For every integer n ≥ 7, Fn is not a willow.1032
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Figure 11: Both F6 andW6 are 5-willows. Vertices v1, v2, . . . represent vertices in the order in

F6 \ c or W6 \ c. The dashed arc with an integer k means a directed path of length k.

Proof. LetG := Fn. Suppose thatG is anm-willow defined by an oriented tree T for a positive1033

integer m. Let A be the vertices of G from which T has a directed path to c. Let B be the1034

vertices of G to which T has a directed path from c. Since c is complete to V (G) \ {c},1035

A∪B = V (G) \ {c}. Let v1, v2, . . ., vn be the vertices ofG \ c in the order defined by the path1036

G \ c.1037

Claim 15. Either A is an independent set of G or B is empty.1038

Proof. Suppose thatA contains an edge vivi+1. There is a directed path of T from vi or vi+1 to c1039

containing all of vi, vi+1, and c. LetM = (NG(x)∪NG(y))\{c}. Then by definition,M contains1040

at most two vertices ofG\c, namely vi−1 if i > 1 and vi+2 if i < n. LetX = V (G)\ (M ∪{c}).1041

For each vertex z ∈ X , G[{x, y, z}] induces a graph isomorphic to K2 ∪ K1 and therefore1042

z /∈ B by Observation 8.1. So, X ⊆ A. Since n ≥ 7, v1, v2 ∈ X or vn−1, vn ∈ X . We deduce1043

that {v1, v2, vn−1, vn} ⊆ A by Observation 8.1 because each of its 3-vertex subsets induces a1044

subgraph of G isomorphic to K2 ∪ K1. For every vertex w ∈ V (G) \ (X ∪ {c}), there are1045

distinct vertices u, v ∈ {v1, v2, vn−1, vn} such that uv is an edge ofG and w is non-adjacent to1046

both u and v. Again by Observation 8.1, w ∈ A. Hence, B = ∅. ■1047

Suppose that B = ∅. Choose a vertex v in A such that dT (v, c) is minimized. Then G \ c1048

has a 4-vertex induced path starting at v because n ≥ 7. By Lemma 9.7, the directed path from1049

v to c contains at least one vertex of V (G) \ {c, v}, contradicting the choice of v. Therefore1050

we may assume thatB ̸= ∅. By symmetry, A ̸= ∅. By Claim 15, bothA andB are independent1051

sets of G.1052

We may assume that A contains vi for each even i ∈ {1, 2, . . . , n} and B contains vj for1053

every odd j ∈ {1, 2, . . . , n}. For each i ∈ {1, 2, . . . , n − 5}, dT (vi, c) ≡ dT (vi+2, c) (mod m)1054

because vi+5 is non-adjacent to both vi and vi+2. Similarly, for each i ∈ {6, 7, . . . , n},1055

dT (vi−2, c) ≡ dT (vi, c) (mod m) because vi−5 is non-adjacent to both vi and vi−2.1056

So, there are integers a and b such that dT (vi, c)≡ a (mod m) for all even i ∈ {1, 2, . . . , n}1057

and dT (vi, c) ≡ b (mod m) for all odd i ∈ {1, 2, . . . , n}. This implies that A is complete or1058

anti-complete to B, a contradiction.1059

Since Fn is an induced subgraph of Wn+1, by Proposition 9.8, Wn is not a willow for all1060

n ≥ 8. However, it is easy to see that Wn is a willow for every n < 7, see Figure 11. We now1061

show thatW7 is not a willow.1062

Proposition 9.9. For every integer n ≥ 7,Wn is not a willow.1063

Proof. LetG :=Wn. Suppose thatG is anm-willow defined by an oriented tree T for a positive1064

integer m. Let A be the vertices of G from which T has a directed path to c. Let B be the1065

vertices of G to which T has a directed path from c. Since c is complete to V (G) \ {c},1066

A ∪B = V (G) \ {c}.1067
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Claim 16. Either A is an independent set of G or B is empty.1068

Proof. Suppose that A contains an edge xy. There is a directed path of T from x or y to c1069

containing all of x, y, and c. LetX = V (G) \ (NG(x)∪NG(y)∪ {c}). For each vertex z ∈ X ,1070

G[{x, y, z}] induces a graph isomorphic to K2 ∪K1 and therefore z /∈ B by Observation 8.1.1071

Since n ≥ 7, |X| ≥ 3 and X ⊆ A. Then for every vertex w ∈ V (G) \ (X ∪ {c}), there are1072

distinct vertices u, v ∈ X such that uv is an edge of G and w is non-adjacent to both u and v.1073

Again by Observation 8.1, w ∈ A. Hence, B = ∅. ■1074

Suppose thatB = ∅. Choose a vertex v inA such that dT (v, c) is minimized. By Lemma 9.7,1075

the directed path from v to c contains at least one vertex of V (G) \ {c, v}, contradicting the1076

choice of v. Therefore we may assume that B ̸= ∅. By symmetry, A ̸= ∅. By Claim 16, both A1077

and B are independent sets of G, so n is even.1078

Let v1, v2, . . ., vn be the vertices ofG\c in the cyclic order. We assume that vn+k = vk for all1079

k ∈ {1, 2, . . . , n}. Wemay assume that v1, v3, . . . , vn−1 ∈A and v2, v4, . . . , vn ∈B by swapping1080

A and B if necessary. For each i ∈ {2, 4, . . . , n}, dT (vi, c) ≡ dT (vi+2, c) (mod m) because1081

vi+5 ∈ A is non-adjacent to both vi and vi+2. So, there is an integer a such that dT (vi, c) ≡1082

a (mod m) for all i ∈ {2, 4, . . . , n}. Similarly, there is an integer b such that dT (c, vj) ≡ b1083

(mod m) for all j ∈ {1, 3, . . . , n− 1}. This implies that A is complete or anti-complete to B,1084

a contradiction.1085

Now Theorem 1.3 follows from Theorem 8.2 and the propositions in this section.1086

10 Further work1087

We believe that Pollyanna classes of graphs provide a fruitful framework to study the struc-1088

tural distinctions between polynomially χ-bounded classes and χ-bounded classes that are not1089

polynomially χ-bounded. We conclude our paper by outlining some open problems.1090

We remark that every Pollyanna graph class discussed in this paper is also strongly1091

Pollyanna, which begs the following question:1092

Problem 10.1. Are there Pollyanna graph classes that are not strongly Pollyanna?1093

Resolving Problem 10.1would likely require a better understanding of k-good graph classes1094

which are not χ-bounded, which have only recently been proven to exist [CHMS23]. Theo-1095

rem 8.9 gives more examples of k-good graph classes which are not χ-bounded.1096

In a recent paper, Bourneuf and Thomassé [BT23] introduce an operation called “delayed-1097

extension” which preserves polynomial χ-boundedness on a class of graphs. We comment1098

that the delayed-extension of a (strongly) Pollyanna class is also (strongly) Pollyanna, which1099

gives us a slight improvement of Theorem 1.2. In [BT23], Bourneuf and Thomassé suggest that1100

better understanding the classes which can be obtained from simple graph classes by applying1101

delayed-extension a finite number of times should be helpful in understanding (polynomial)1102

χ-boundedness. We also point out that this may be a good approach to better understanding1103

Pollyana graph classes.1104

A wheel is a graph consisting of an induced cycle of length at least four and a single addi-1105

tional vertex with at least three neighbors on the cycle. The class of graphs with no induced1106

wheel is notχ-bounded [Dav23, Pou20, PT24], however, it maywell be Pollyanna. The fact that1107

the class of (wheel,theta)-free graphs is linearly χ-bounded [RTV20] provides some limited ev-1108

idence that the class of wheel-free graphs might be Pollyanna. We remark that we showed in1109

Proposition 9.9 that for every finite set F of complete wheels of length at least seven, the class1110
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(a) A (6, 4)-bowtie. (b) A (7, 5)-dumbbell. (c) A tripod.

Figure 12: Graphs appearing in the problems.

of F-free graphs is not Pollyanna. However, in our opinion this does not provide evidence1111

that the class of wheel-free graphs is not Pollyanna.1112

Problem 10.2. Is the class of wheel-free graphs Pollyanna?1113

We note that even though Esperet’s conjecture was disproved, it is still open whether the1114

Gyárfás-Sumner Conjecture holds in the following stronger sense:1115

Problem 10.3 (Polynomial Gyárfás-Sumner). Is it true that for every forest F the class of F -free1116

graphs is polynomially χ-bounded?1117

We say a graph H is Pollyanna-binding if the class of H-free graphs is Pollyanna. In this1118

language, Problem 10.3 asks if every forest is Pollyanna-binding. An even more ambitious1119

open problem is to characterize the class of Pollyanna-binding graphs. While we gave some1120

results in this direction, we are quite far from a full characterization. We ask about some1121

special cases we believe may be more tractable.1122

We call a graph an (s, t)-bowtie if it can be obtained from the disjoint union ofKs andKt by1123

adding a new vertex complete to everything else, see Figure 12a. In this language, Theorem 6.11124

states that the (2, 2)-bowtie is Pollyanna-binding.1125

Problem 10.4. Is the class of (s, t)-bowtie-free graphs Pollyanna for each s ≥ 3 and t ≥ 2?1126

We call a graph an (s, t)-dumbbell if it can be obtained from the disjoint union of Ks and1127

Kt by adding a single additional edge between a vertex of the Ks and a vertex of the Kt, see1128

Figure 12b. Note that a t-lollipop is a (2, t)-dumbbell, so Theorem 5.6 states that the class of1129

(2, t)-dumbbell-free graphs is Pollyanna.1130

Problem 10.5. Is the class of (s, t)-dumbbell-free graphs Pollyanna for each s ≥ 3 and t ≥ 3?1131

Bulls are induced subgraphs of certain pentagram spiders. While the class of bull-free1132

graphs is Pollyanna by Theorem 7.6, the class of pentagram spider-free graphs is not by Theo-1133

rem 8.2 and Proposition 9.1. The next natural case to consider would be tripod-free graphs. A1134

tripod is the graph obtained from K3 by adding one pendant vertex to each vertex of the K3,1135

see Figure 12c.1136

Problem 10.6. Is the class of tripod-free graphs Pollyanna?1137

Scott and Seymour [SS16] proved that the class of odd hole-free graphs isχ-bounded. Their1138

χ-bounding function is doubly exponential and it remains open whether the class of odd-hole-1139

free graphs is polynomially χ-bounded (and so Pollyanna). We propose the analogous problem1140

for odd antihole-free graphs.1141

Problem 10.7. Is the class of odd antihole-free graphs Pollyanna?1142
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Proposition 9.6 shows that no antihole of length at least 7 is a willow. However, small an-1143

tiholes such as C5 and C6 are. It may well be true that the class of C5-free graphs is Pollyanna.1144

Antihole-free graphs are polynomially χ-bounded since C4 = 2K2 [Wag80]. So, as a starting1145

point, we propose the following problem.1146

Problem 10.8. Is the class of graphs without any antihole of length at least 5 Pollyanna?1147

The simplest willows are those whose underlying oriented tree is a directed path between1148

two vertices. These graphs are exactly the complete multipartite graphs, thus it is natural to1149

consider if a class of graphs with a forbidden complete multipartite graph is Pollyanna. In this1150

direction, the first step would be to determine whether the class of graphs without an induced1151

square K2,2 = C4 or an induced diamond K2,1,1 = K4 \ e is Pollyanna.1152

Problem 10.9. Is the class of {C4, K4 \ e}-free graphs Pollyanna?1153

In Section 9, we described some forbidden induced subgraphs for willows but did not have1154

a complete list of forbidden induced subgraphs for willows.1155

Problem 10.10. Characterize willows by their minimal forbidden induced subgraphs.1156

In Section 8, we showed that all Pollyanna-binding graphs are willows. Based on this, we1157

can end our paper with the following extremely optimistic conjecture.1158

Conjecture 10.11 (Pollyanna’s Conjecture). A graph is Pollyanna-binding if and only if it is a1159

willow.1160

If Pollyanna’s conjecture is disproved, then Pollyanna [Por13] would almost certainly im-1161

mediately make a new conjecture.1162
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