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Abstract. An independent set in a graph G is a set of pairwise non-adjacent vertices. A tree
decomposition of G is a pair (T, χ) where T is a tree and χ : V (T ) → 2V (G) is a function satisfying
the following two axioms: for every edge uv ∈ V (G) there is a x ∈ V (T ) such that {u, v} ⊆ χ(x),
and for every vertex u ∈ V (G) the set {x ∈ V (T ) : u ∈ χ(X)} induces a non-empty and connected
subtree of T . The sets χ(x) for x ∈ V (T ) are called the bags of the tree decomposition. The
tree-independence number of G is the minimum taken over all tree decompositions of G of the size
of the maximum independent set of the graph induced by a bag of the tree decomposition.

The study of graph classes with bounded tree-independence number has attracted much attention
in recent years, in part due its improtant algorithmic implications. A conjecture of Dallard, Milanič
and Storgel, connecting tree-independence number to the classical notion of treewidth, was one of
the motivating problems in the area. This conjecture was recently disproved, but here we prove
a slight variant of it, that retains much of the algorithmic significance. As part of the proof we
introduce the notion of independence-containers, which can be viewed as a generalization of the set
of all maximal cliques of a graph, and is of independent interest.
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1. Introduction

Tree decompositions are a key tool in structural graph theory and graph algorithms. For a graph
G = (V (G), E(G)), a tree decomposition (T, χ) ofG consists of a tree T and a map χ : V (T ) → 2V (G)

with the following properties: (i) For every v1v2 ∈ E(G), there exists t ∈ V (T ) with {v1, v2} ⊆ χ(t),
(ii) For every v ∈ V (G), the subgraph of T induced by {t ∈ V (T ) | v ∈ χ(t)} is non-empty and
connected. The width of a tree decomposition (T, χ), denoted by ω(T, χ), is maxt∈V (T ) |χ(t)| − 1.
The treewidth ofG, denoted by tw(G), is the minimum width of a tree decomposition ofG. Bounded
treewidth is a fundamental graph property from both a structural [4, 21] and an algorithmic [9]
perspective, for a recent survey see [17].

For a graph G and X ⊆ V (G) we denote by G[X] the subgraph of G induced by X, that is the
graph with vertex set X in which two vertices are adjacent if and only if they are adjacent in G. We
denote by G \X the graph G[V (G) \X]. A class of graphs is hereditary if it is closed under taking
induced subgraphs. Tree decompositions have traditionally been studied in the context of graph
minors, but in recent years their behavior in hereditary graph classes has come into the spotlight.
Additionally, more nuanced ways of measuring the complexity of a tree decompositions than just
its width have been considered (see e.g. [15]).

Tree-independence number, we which will define next, is one such complexity measure, which has
recently received substantial attention. An independent set in a graph G is a set of pairwise non-
adjacent vertices of G. The independence number α(G) of G is the maximum size of an independent
set in G. The independence number of a tree decomposition (T, χ) of G is maxt∈V (T ) α(G[χ(t)]).
The tree-independence number of G, denoted twα(G), is the minimum independence number of a
tree decomposition of G. Tree-independence was first defined by Yolov [25], and independently
re-discovered by Dallard et al. [10], who initiated the study of tree-indenepndence number in the
context of graphs whose treewidth is bounded by a function of their clique number. Both Yolov [25]
and Dallard et al. [10] observed that the Independent Set problem (given as input G, compute
α(G)), as well as a few other problems which are NP-hard on general graphs, can be solved in
polynomial time in graphs with bounded tree-independence number (even if a tree decomposition
of constant independence number is not explicitly given). Lima et al. [18] added a number of
even more general problems to this list. Tree-independence number also has connections to coarse
geometry [1, 13].

Motivated by these considerations, Dallard et al. [11] initiated the systematic study of graph
classes with bounded tree-independence number, namely graph classes C for which there exists a
universal constant c, such that every graph G ∈ C satisfies twα(G) ≤ c. A clique in a graph G is a
set of pairwise adjacent vertices. For a graph G we denote by ω(G) the largest size of a clique in G.
A hereditary class of graphs C is said to be (tw, ω)-bounded if there exists a function f such that
tw(G) ≤ f(ω(G) for every G ∈ C. Such a function f is called a (tw, ω)-bounding function for the
class C. We say that C is polynomially (tw, ω)-bounded if there is a polynomal (tw, ω)-bounding
function for C. By Ramsey’s theorem [20] graph classes of bounded tree-independence number are
polynomially (tw, ω)-bounded. It was conjectured in [11] that a converse implication holds as well.
This statement became know as ”Milanič’s Conjecture”.

Conjecture 1.1. Let C be a hereditary graph class. Then, if there exists a function f such that
for every G ∈ C it holds that tw(G) ≤ f(ω(G)), then C has bounded tree-independence number.

Conjecture 1.1 received a significant amount of attention in the graph theoretic community. It
was recently disproved by Chudnovsky and Trotignon [8] (even if f is a polynomial function).

For a function f : N → N, we say that f is poly-logarithmic if there exist positive integers c, d such
that f(n) ≤ c logd n for every n ≥ 3. We say that a hereditery graph class C has poly-logarithmic
tree-independence number if there exists a poly-logarithmic function f such that everyG ∈ C satisfies
twα(G) ≤ f(|V (G)|). A function f : N → N is quasi-polynomial if there exist positive integers c, d
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such that f(n) ≤ cnlogd n for every n. Several of the algorithms mentioned above [10, 18, 25], most
prominently for Independent Set, run in quasi-polynomial time when the input is restricted to a
graph class with poly-logarithmic tree-independence number. A quasi-polynomial time algorithm
for a problem, while not quite as efficient as a polynomial time algorithm, shows that the problem
is not NP-hard unless every problem in NP can be solved in quasi-polynomial time, a complexity
theoretic collapse that is viewed almost as unlikely as P=NP. We refer the reader to [7] for a
more detailed discussion of the algorithmic applications of poly-logarithmic bounds on the tree-
independence number.

Several graph classes have recently been shown to have poly-logarithic tree-independence number
([7], [6]), yielding the first quasi-polynomial time algorithms for Independent Set on these graph
classes. We remark that the existence of a polynomial time algorithm for Independent Set
for the graph class studied in [6] remains a prominent open problem in the field (see [6] and
references within). By now a number of graph classes with poly-logarithmic (but not bounded by a
constant) tree-independene number have been identified [24], [5]. This motivates a systematic study
of graph classes with poly-logarithmic tree-independence number. Our main result is in order to
determine if a graph class C has poly-logarithmic tree-independence number, it is enough to study
the dependence of treewidth on clique number in graphs in this class. We prove the following:

Theorem 1.1. Let C be a hereditary graph class. The following are equivalent:

(i) There exists a positive integer c1 such that for every G ∈ C on at least 3 vertices we have
twα(G) ≤ (log |V (G)|)c1.

(ii) There exists a postive integer c2 such that for every G ∈ C on at least 3 vertices we have
twα(G) ≤ (ω(G) log |V (G)|)c2.

(iii) There exists a positive integer c3 such that for every G ∈ C on at least 3 vertices we have
tw(G) ≤ (ω(G) log |V (G)|)c3.

A step in the proof of theorem 1.1 is the following result, which we believe to be of independent
interest. For two non-adjacent vertices a, b we say thatX ⊆ V (G) separates a and b if {a, b}∩X = ∅,
and no component of G \X contains both a and b. We prove:

Theorem 1.2. For every positive integer c there exists an integer d = d(c) with the following
property. If C is a hereditary graph class such that for every G ∈ C and for every two non-adjacent
vertices u, v ∈ V (G), there exists a set X ⊆ V (G) disjoint from {u, v} with |X| ≤ (ω(G) log |V (G)|)c
that separates u from v, then for every G ∈ C and for every two non-adjacent vertices u, v ∈ V (G),

there exists a set X ⊆ V (G) disjoint from {u, v}, with α(X) ≤ logd(|V (G)|), that separates u from
v.

We note that in Theorem 1.1, the implication (i) → (ii) is trivial, while (ii) → (iii) follows
directly from Erdös and Hajnal’s results [12] regarding the Ramsey numbers in graphs excluding
a complete bipartite graph (see Section 8). The majority of this paper deals with proving the
implication (iii) → (i), which can be viewed as a slightly weakened version of Conjecture 1.1.

The starting point for our work is a recent approximation algorithm for computing the frac-
tional hypertreewidth of an input hypergraph, due to Korchemna et al [16]. Korchemna et al. [16]
developed a toolbox to deal with separation problems in a graph G, when given a family F of
cliques in G, and the task is to find separators in G that are covered by few sets in F . We start by
generalizing their arguments to the case when the sets in F have bounded independence number,
as opposed to being cliques.

Our second contribution is to initiate the study of independence-containers, a combinatorial ob-
ject which naturally shows up in our arguments, and which we believe is worth further investigation
in its own right. Let G be a graph. A vertex set F covers a vertex set H if H ⊆ F . A family F of
vertex subsets of G covers a vertex set H if there exists an F ∈ F that covers H. Let a and b be
positive integers. Then F is a (b, a)-container family of G if α(F ) ≤ a for every F ∈ F and F covers
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every vertex set H in G such that α(H) ≤ b. Independence-containers are tangentially related to,
but should not be confused with, containers as used in the hypergraph container method [23, 3].

Independence-containers can be seen as a generalization of the family of all maximal cliques in
a graph G. (A clique C in a graph G is maximal if no proper superset of C is also a clique in G.)
It is easy to see that the unique inclusion minimal (1,1)-container family F in G is precisely the
set of all maximal cliques in G. The notion of (1, a)-container families generalizes the notion of
maximal cliques by allowing one to cover the cliques of G using sets of independence number at
most a. On the other hand (b, a)-container families require that every set H with independence
number at most b are covered, not only cliques. It is known that for every positive integer k there
exists an integer t such that if a graph G excludes the kK2 as an induced subgraph (see Section 2
for a definition of the graph kKω) then G has at most nt maximal cliques [2]. On the other hand,
the kK2 has 2k maximal cliques, and a (1, 2)-container family F of size 1, namely F = {V (kK2)}.
Thus, by relaxing which sets we can use to cover the cliques we (sometimes) can cover all the cliques
in G using many fewer sets. This raises the question of which classes of graphs have “efficient”
independence-containers in the sense that we would like |F| and the independence number a of the
sets in F to be as small as possible as a function of n and the independence b of the sets to be
covered. We characterize the hereditary classes of graphs that have independence-containers with
quasi-polynomial |F| and poly-logarithmic a: it is precisely the classes which exclude kKk for at
least one k. Specifically, we prove the following.

Theorem 1.3. Let C be a hereditary class of graphs, and b : N → N be a poly-logarithmic function.
Then the following are equivalent:

(i) There exist a poly-logarithmic function a and a quasi-polynomial function f such that for
every n-vertex graph G ∈ C, G has a (b(n), a(n))-container family F with |F| ≤ f(n).

(ii) There exists a positive integer k such that kKk /∈ C.

We leave it as an open problem if whether the bounds of Theorem 1.3 can be tightened when the
function b is upper bounded by a constant independent of n. In particular it would be interesting
to see whether it is possible in this case to improve the upper bound on a to a constant independent
of n, and the upper bound on the size of |F| to a polynomial in n. That said, such an improvement
would not have substantial implications for the bounds that we achieve for Theorem 1.1.

A class C of graphs is said to have polynomially many maximal cliques if there exists a constant
c such that every n-vertex graph G in C has at most nc different maximal cliques. A version of
Theorem 1.2 was proved (implicitly) in [6] for graph classes that have polynomually many maximal
cliques (it follows immediately from the proof of Theorem 3.1 in [6]). The proof of Theorem 1.2
uses a (1, a)-container family F instead of the set of all maximal cliques and applies our peviously
described results for separators covered by a family F of sets with bounded independence number.
The existence of a (1, a)-container family F with the desired parameters follows from Theorem 1.3
because every hereditary class C that satisfies the hypothesis of Theorem 1.2 excludes the complete
bipartite grpah K2,k for some k, and hence also excludes 2Kk.

The “only” difference between Theorem 1.2 and the implication (iii) → (i) of Theorem 1.1 is
that Theorem 1.2 deals with u-v separators, while Theorem 1.1 deals with balanced separators.
We take inspiration from the proof of Theorem 1.2, and proceed as follows. First we observe that
every hereditary graph class C that satisfies (iii) of Theorem 1.1 excludes 2Kt for some t, and
therefore also satisfies the assumption of Theorem 1.3. Let F be the (1, a)-container family with
quasi-polynomial size and poly-logarithmic bound a on the independence number of the sets in F
obtained by applying Theorem 1.3.

We aim to prove the implication (iii) → (i); to that end we prove the contrapositive. We start
with a graph G ∈ C with “too large” tree-independence number and prove that G then contains
an induced subgraph G′ with ω(G′) very small, and whose treewidth is large. Suppose now that
G ∈ C has large tree-independence number. By the argument from the 4-approximation algorithm
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for treewidth of Robertson and Seymour [22] applied to twα (see Lemma 8.3), G contains a large

independent set I such that for every set S with α(S) ≤ |I|
40 , there exists a component C of G− S

such that |I ∩ C| ≥ 95|I|
100 .

We consider a variation of the integer linear program of Korchemna et al. [16] for finding a
balanced separator S for I in G which is covered by few sets from F . If the optimum value of the
linear programming relaxation of this ILP is small, then the rounding procedure of Korchemna et al
(adapted to F with small independence number) yields that I has a balanced separator S covered
by few sets in F . Since each set in F has very small independence number this implies that the
independence number of S is also small compared to |I|, contradicting the separation properties of
I stated above. Thus we may assume that the optimum value of this LP relaxation is large; say at

least f where f ≥ |I|
logc n for an appropriately chosen integer c (we may assume that n ≥ 3).

We now consider a dual optimal solution to this LP, and re-interpret it as a probability distribu-
tion D on induced paths between vertices in I. We show that this distribution (essentially) satisfies
the following two properties: (i) for every set F ∈ F a path P sampled from D intersects F with

probability at most 1/f , and (ii) for every partition of I into (I1, I2) with max{|I1|, |I2|} ≤ 2|I|
3 ,

the probability that one end of P is in I1 and the other in I2 is at least 1
3 .

We sample about f ·log |F| paths P1, . . . , Pℓ from this distribution, and setG′ = G[I∪
⋃ℓ

i=1 V (Pi)].
With high probability I has no small balanced separator in G′ (so G′ has large treewidth), and no
set in F intersects more than 6ℓ

f paths in the sample, which is upper bounded by a poly-logarithmic

function of n because F has quasi-polynomial size. However, this implies that ω(G′) is small! In-
deed, consider a clique C in G′. We have that C ⊆ F for some F ∈ F , since F is a (1, a)-container
family. There number of paths Pi in the sample that intersect F (and therefore C) is upper-bounded
by a poly-logarithmic funcnction of n, and each such path intersects C in at most two vertices,
since the path is induced. Finally, |C ∩ I| ≤ 1 since C is a clique and I is an independent set, and
thus we obtain a poly-logarithmic bound on |C|. Thus we found an induced subgraph G′ of G with
large treewidth and small ω completing the proof of Theorem 1.1.

Overview of the paper. In Section 2 we set up definitions and notation. In Section 3 we
prove Theorem 1.3. We do not need the full power of Theorem 1.3 in the rest of the paper, so a
reader only interested in the proof of Theorems 1.1 and 1.2 can read Lemma 3.1 and proceed to the
next section. In Sections 4, 5 and 6 we prove the generalized versions of the results of Korchemna
et al [16] in the setting where F is a family of sets with bounded independence number rather than
cliques. The results proved in Sections 4 and 5 are used for the proof of Theorem 1.2, while the
results of Sections 4 and 6 are used as tools for the proof of Theorem 1.1. Section 7 contains the
sampling argument which is at the core of the proof of Theorem 1.1. In Section 8 we combine the
tools developed so far and prove Theorems 1.1 and 1.2. We conclude with some final remarks and
open problems in Section 9

2. Preliminaries

We denote by n the number of vertices of the considered graph G. For two set families F1 and
F2 we define F1 ⊗ F2 = {S1 ∪ S2 : S1 ∈ F1, S2 ∈ F2}. We use [k] to denote the set {1, 2, . . . , k}
for a positive integer k, and [x] to denote [⌈x⌉] for a positive real number x. Unless the base is
specified, logarithms are in base 2.

A clique in a graph G is a set of pairwise adjacent vertices. We use ω(G) to denote the size of
the largest clique in G. For a positive integer t, Kt denotes a clique on t vertices. An independent
set in a graph G is a set of pairwise non adjacent vertices. We use α(G) to denote the size of the
largest independent set in G. With slight abuse of notations, α(S) is used to denote α(G[S]), for
a vertex subset S. A walk in a graph is a sequence of vertices in which each vertex is adjacent to
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the next, while a path is a walk in which every vertex is distinct. An A–B walk (respectively, A–B
path) is a walk (respectively, path) in which the first vertex belongs to A and the last to B. For
two disjoint vertex subsets A and B in G, A and B are anticomplete if there is no edge in G with
one endpoint in A and the other in B. The complement of a graph G is denoted by G and is the
graph with vertex set V (G) and edge set {u, v ∈ V (G) : u ̸= v and uv /∈ E(G)}. For a graph
G and positive integer k the graph kG is the graph obtained by taking k disjoint copies of G and
making the copies anticomplete to each other. The graph Kt,t is defined as 2Kt.

When Z is a vertex subset of G, G−Z denotes the graph induced by V (G) \Z. We use N [Z] to
denote {u ∈ V (G) | u ∈ N [v], v ∈ Z}. When clear from context, we use Z ∩H to mean Z ∩ V (H),
where H is a subgraph of a graph G. For a positive real number ϕ, a (Z, ϕ)-balanced separator is a
vertex subset S such that every connected component of G−S contains at most ϕ · |Z| vertices from
Z. If A, B are vertex subsets, then an A–B separator is a vertex subset S such that every A–B path
in G contains at least one vertex from S. Let F be a family of vertex subsets of G. A fractional
(A,B)-separator using F in G is an assignment {xF }F∈F of non-negative real numbers to elements
of F such that

∑
F∈F

F∩P ̸=∅
xF is at least one for every A–B path P . A fractional cover of Z using F

is an assignment {xF }F∈F of non-negative real numbers to elements of F such that
∑

F∈F
v∈F

xF ≥ 1

for every v ∈ Z. The fractional cover number of Z with respect to F denoted fcovF (Z) is the
minimum of

∑
F∈F xF over all fractional covers {xF }F∈F of Z. The cover number of Z using F ,

denoted by covF (Z) is the size of the smallest subfamily F ′ of F such that every vertex of Z is
contained in some element of F ′. A family F of vertex subsets is a (b, a)-container family of G,
if α(F ) ≤ a for every element F in F and for every vertex subset Z satisfying α(G[Z]) ≤ b, there
exists some element F of F such that H ⊆ F .

A Bernoulli random variable with success probability p, is one which takes the value 1 with
probability p, and 0 with probability 1− p. We recall a version of the Chernoff bound. A stronger
version of this result, along with its full proof, is available in [19].

Proposition 2.1 ([14]; [19]). Let X1, X2, . . . , Xℓ be independent Bernoulli random variables, and
let X =

∑
i∈[ℓ]Xi. If R ≥ 6E[X], then

P[X ≥ R] ≤ 2−R.

3. Independence-Containers

A family F of vertex subsets in a graph G is an (b, a)-container family of G, if α(F ) ≤ a for
every element F in F and for every vertex subset H satisfying α(G[H]) ≤ b, there exists some
element F of F such that H ⊆ F . For a real ρ > 1 and non-negative real n we define logρ(n) to be
logρ(n) if n > 0 and 0 otherwise.

Lemma 3.1. There exists an integer c with the following property. There exists an algorithm that
takes as input (G,ω, k, b) where ω and k are positive integers, b ≤ ω is a non-negative integer, and

G is a kKω-free graph. The algorithm runs in time (n + 1)(2ω·log(n)+k+b)k+b+1 · nc and outputs a

(b, a)-container family F such that |F| ≤ (n+1)(2ω·log(n)+k+b)k+b+1
and a ≤ (2ω ·log(n)+k+b)k+b+1.

Proof. We begin by describing the algorithm. If b = 0 the algorithm outputs F = {∅}. If b ≥ 1
and α(G) ≤ ω the algorithm outputs F = {V (G)}. Suppose now that b ≥ 1 and α(G) > ω. Define
ρ = (1 − 1

2ω )
−1, and observe that 1 < ρ ≤ 2. The algorithm considers the set H of all vertices

in G of degree at least n/ρ. We first check by brute force in time nω+2 whether H contains an
independent set I of size ω.

Suppose first such a set I exists. Observe that k > 1, because otherwise I is an induced kKω in
G. Define Q =

⋂
v∈I N(v), and note that |Q| ≥ n−

∑
v∈I |V (G)−N(v)| ≥ n

2 because every vertex

in I has degree at least n(1− 1
2ω ). We have that G[Q] is (k − 1)Kω-free. Indeed, suppose that G[Q]
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contains a set Z inducing a (k − 1)Kω then Z ∪ I is an induced kKω in G, a contradiction. Thus,
the algorithm calls itself recursively on (G[Q], ω, k − 1, b) and obtains a family F1. It also calls
itself recursively on (G−Q, ω, k, b) and obtains a family F2. The algorithm returns F = F1 ⊗F2.

If no independent set I of size ω exists inH, then V (G)−H is non-empty since α(G) > ω > α(H).
The algorithm iterates through every vertex v /∈ H and calls itself recursively on (G[N(v)], ω, k,
b) and obtains a family F1

v . It also calls itself recursively on (G−N [v], ω, k, b− 1) and obtains a
family F2

v . The algorithm then returns

F = {H} ⊗

(⋃
v/∈H

{{v}} ⊗ Fv
1 ⊗Fv

2

)

This completes the description of the algorithm. Each recursive call of the algorithm is made on an
instance with strictly fewer vertices than G. Thus the algorithm always terminates and outputs a
non-empty family F . First we show that F covers every set with independence number at most b.

Claim 3.1.1. For every set S ⊆ V (G) such that α(S) ≤ b there exists an X ∈ F such that S ⊆ X.

Proof. We proceed by by induction on |V (G)|. If b = 0 then S = ∅ and the statement of (3.1.1)
holds. Similarly, if α(G) ≤ ω then F = {V (G)} so the statement of (3.1.1) holds in this case
as well. We now consider the case that b > 0 and α(G) > ω. Suppose first that there exists an
independent set I in H of size ω. By the inductive hypothesis F1 contains a set X1 that contains
S ∩Q and similarly F2 contains a set X2 that contains S −Q. But then X1 ∪X2 ∈ F contains S.

Suppose now that no such independent set I exists. Since every set in F contains H we may
assume that S−H is non-empty. Let v be a vertex in S−H. By the induction hypothesis we have
that Fv

1 contains a set X1 such that S ∩N(v) ⊆ X1. Further, since S−N [v] contains no neighbors
of v we have that α(S −N [v]) ≤ α(S)− 1 ≤ b− 1. Thus, by the induction hypothesis Fv

2 contains
a set X2 such that S −N [v] ⊆ X2. But then S ⊆ {v} ∪X1 ∪X2 and {v} ∪X1 ∪X2 ∈ F , proving
the claim. □

Next we upper bound the independence numbers of the sets in F .

Claim 3.1.2. For every X ∈ F we have that α(X) ≤ 2ω
(logρ(n)+k+b

k+b

)
− ω.

Proof. We proceed by induction on n. If b = 0 or α(G) ≤ ω then we have α(X) ≤ ω ≤
2ω
(logρ(n)+k+b

k+b

)
− ω. Suppose now that b ≥ 1 and α(G) > ω. Since ω ≥ 1 this implies that

n ≥ α(G) ≥ 2.
If H contains an independent set I of size ω then, by the induction hypothesis we have that for

every X1 ∈ F1 we have α(X1) ≤ 2ω
(logρ(n)+k−1+b

k−1+b

)
−ω. Similarly, by the induction hypothesis (and

using the fact that |Q| ≥ n
2 ) we have that for every X2 ∈ F2 we have α(X2) ≤ 2ω

(logρ(n)−1+k+b

k+b

)
−ω.

It follows that for every X ∈ F we have

α(X) ≤ 2ω

(
logρ(n) + k − 1 + b

k − 1 + b

)
− ω + 2ω

(
logρ(n)− 1 + k + b

k + b

)
− ω ≤ 2ω

(
logρ(n) + k + b

k + b

)
− ω

If H does not contain an independent set I of size ω then α(H) ≤ ω − 1. Further, by the
induction hypothesis (and using the fact that |N(v)| < n/ρ) we have that for every v /∈ H and

every set X1 ∈ Fv
1 we have α(X1) ≤ 2ω

(logρ(n)−1+k+b

k+b

)
−ω. Additionally, for every v /∈ H and every
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set X2 ∈ Fv
2 we have α(X2) ≤ 2ω

(logρ(n)+k+b−1

k+b−1

)
− ω. Thus, for every X ∈ F we have

α(X) ≤ ω − 1 + 1 + 2ω

(
logρ(n)− 1 + k + b

k + b

)
− ω + 2ω

(
logρ(n) + k + b− 1

k + b− 1

)
− ω

≤ 2ω

(
logρ(n) + k + b

k + b

)
− ω.

This concludes the proof of the claim. □

Finally, we upper bound the size of F .

Claim 3.1.3. |F| ≤ (n+ 1)
2(logρ(n)+k+b

k+b
)−1

.

Proof. The proof of this claim closely follows the proof of Claim 3.1.2. If b = 0 or α(G) ≤ ω then
we have |F| ≤ 1 ≤ n + 1. Suppose now that b ≥ 1 and α(G) > ω. Since ω ≥ 1 this implies that
n ≥ α(G) ≥ 2.

If H contains an independent set I of size ω then, by the induction hypothesis we have that

|F1| ≤ (n + 1)
2(logρ(n)+k−1+b

k−1+b
)−1

. Similarly, by the induction hypothesis (and using the fact that

|Q| ≥ n
2 ) we have that |F2| ≤ (n+ 1)

2(logρ(n)−1+k+b

k+b
)−1

. It follows that

|F| ≤ (n+ 1)
2(logρ(n)+k−1+b

k−1+b
)−1 · (n+ 1)

2(logρ(n)−1+k+b

k+b
)−1 ≤ (n+ 1)

2(logρ(n)+k+b

k+b
)−1

If H does not contain an independent set I of size ω, by the induction hypothesis (and using

the fact that |N(v)| < n/ρ) we have that for every v /∈ H we have |Fv
1 | ≤ (n+ 1)

2(logρ(n)−1+k+b

k+b
)−1

.

Additionally, for every v /∈ H we have |Fv
2 | ≤ (n+1)

2(logρ(n)+k+b−1

k+b−1
)−1

. Hence we may conclude that

|F| ≤ n · (n+ 1)
2(logρ(n)−1+k+b

k+b
)−1 · (n+ 1)

2(logρ(n)+k+b−1

k+b−1
)−1

≤ (n+ 1)
2(logρ(n)+k+b

k+b
)−1

.

This proves the claim. □

Since 1
log(ρ) ≤ 2ω, Claim 3.1.3 implies the claimed size bound on F , while Claim 3.1.2 implies the

claimed bound on the independence number of every set X in F . The upper bound of Claim 3.1.3
would even apply if duplicates of the same set in F are counted as many times as they are gen-
erated by the algorithm. Since the algorithm only spends polynomial time per set in F (counting
duplicates), the running time bound follows. □

Lemma 3.1 gives a quasi-polynomial size container family for constant size independent sets. We
want to also have quasi-polynomial size container families even for poly-logarithmic size independent
sets. The next lemma achieves this.

Lemma 3.2. There exists an algorithm that takes as input a four-tuple (G,ω, k, b) where ω and
k are positive integers, b is a non-negative integer, and G is a kKω-free graph. The algorithm

runs in time (n + 1)(3ω·log(n)+k)k+ω+1·b2ωk · nO(1) and outputs a (b, a) container family F such that

|F| ≤ (n+ 1)(3ω·log(n)+k)k+ω+1·b2ωk
and a ≤ (3ω · log(n) + k)k+ω+1 · 2k · bωk

Proof. Let p be the upper bound on the size of the maximum α(X) for sets X in the family F
obtained by the algorithm of Lemma 3.1 on (G,ω, k, ω). In particular p ≤ (3ω · log(n) + k)k+ω+1.
Similarly let q be the upper bound on the size of the family F obtained by the algorithm of

Lemma 3.1 on (G,ω, k, ω). In particular q ≤ (n+ 1)(3ω·log(n)+k)k+ω+1
.

We begin by describing the algorithm. If b ≤ ω then the algorithm outputs the family F of
Lemma 3.1. The bounds p and q on the independence number and size of the family F respectively
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are below the claimed upper bounds. Throughout the rest of the algorithm we assume that b > ω, as
the algorithm never changes b in its recursive calls. If α(G) ≤ b, the algorithm outputs F = {V (G)}.
Suppose now that α(G) > b > ω. Observe that in this case, since G is kKω-free, we have that
k ≥ 2.

The algorithm iterates over every independent set I of G of size at most b. For each such
independent set I, the algorithm proceeds as follows. First the algorithm iterates over every non-
empty subset Z of I of size at most ω − 1. Let V I

Z be the subset of vertices v in V (G) such that
N(v) ∩ I = Z. The algorithm obtains a family FI

Z by running the algorithm of Lemma 3.1 on
(G[V I

Z ], ω, k, ω). Next the algorithm iterates over every subset Z of I of size exactly ω. Let V I
⊇Z be

the set of vertices v in V (G) such that N(v)∩ I ⊇ Z. Observe that Z together with a (k − 1)Kω in

G[V I
⊇Z ] would yield a kKω in G. Hence G[V I

⊇Z ] is (k − 1)Kω-free. The algorithm obtains a family

FI
Z by running itself recursively on (G[V I

⊇Z ], ω, k − 1, b). Finally the algorithm outputs

F = {I} ⊗

⋃
I

⊗
∅⊂Z⊆I s.t.

|Z|≤ω

FI
Z


Here the union is taken over all non-empty independent sets I of size at most b. The algorithm
only makes recursive calls on instances with strictly smaller value of k, hence it always terminates
and outputs a family F . Next, we show that F covers every set of independence number at most
b

Claim 3.2.1. For every set S ⊆ V (G) such that α(S) ≤ b there exists an X ∈ F such that S ⊆ X.

Proof. We proceed by induction on k. If b ≤ ω then the statement of the claim holds by Lemma 3.1.
If α(G) ≤ b then F = {V (G)} and again the statement of the claim holds. Let S now be a vertex
set such that α(S) ≤ b. Let I be a maximum size independent set in S. For each non-empty subset
Z of I of size at most ω − 1 define SZ to be the set of vertices v in S such that N(v) ∩ I = Z. By
the maximality of I, α(SZ) ≤ |Z| ≤ ω. Thus, by Lemma 3.1 there exists a set XZ in FI

Z such that
SZ ⊆ XI

Z . For each subset Z of I of size exactly ω, let S⊇Z be the set of vertices v in S such that
N(v) ∩ I ⊇ Z. Note that S⊇Z ⊆ V I

⊇Z . Thus, by the induction hypothesis there exists a set XZ in

FI
Z such that S⊇Z ⊆ XI

Z . By the maximality of I every vertex in S − I has a neighbor in I. Thus
I ∪

⋃
Z XI

Z , where the union is taken over all non-empty subsets Z of I of size at most ω, contains
S and is an element of F . This proves the claim. □

Next we upper bound the independence number of every set in F

Claim 3.2.2. For every X ∈ F we have that α(X) ≤ p · 2k · bωk.

Proof. We proceed by induction on k. Let X be a set in F . If b ≤ ω, then α(X) ≤ p by Lemma
3.1, and so the claim holds. If α(G) ≤ b then α(X) ≤ b and the claim is true as well. Otherwise
X = I ∪

⋃
Z XZ , where I is an independent set in G of size at most b, the union is taken over all

non-empty subsets Z of I of size at most ω, and XZ ∈ FI
Z for each such Z. For each Z such that

|Z| < ω, Lemma 3.1 yields that α(XZ) ≤ p, which of course is at most p · 2k−1 · bω(k−1). For each

Z such that |Z| = ω, the induction hypothesis yields that α(XZ) ≤ p · 2k−1 · bω(k−1). Since there
are at most bω non-empty subsets Z of I of size at most ω, we obtain

α(X) ≤ b+ bω · p · 2k−1 · bω(k−1) ≤ p · 2k · bωk

This proves the claim. □

Finally we upper bound the size of F .

Claim 3.2.3. |F| ≤ qb
2ωk
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Proof. The proof is by induction on k. If b ≤ ω then |F| ≤ q by Lemma 3.1, and so the claim
holds. If α(G) ≤ b then |F| = 1 and so the claim is true as well. Otherwise F is the union over at
most nb products (one for each choice of I), where each family FI

Z in the product has size at most

q (by Lemma 3.1, if |Z| < ω) or at most qb
2ω(k−1)

(by the induction hypothesis, if |Z| = ω). Since
b > ω we have that b ≥ 2, and since α(G) ≥ b > ω and G is kKω-free we have that k ≥ 2. Hence

we have that q ≤ qb
2ω(k−1)

. Further, as there are at most bω choices for Z it follows that

|F| ≤ nb · (qb2ω(k−1)
)b

ω ≤ ((qb
2ω(k−1)

)b
ω
)2 ≤ qb

2ωk

This proves the claim. □

Putting everything together, Claim 3.2.3 implies the claimed size bound on F , while Claim 3.2.2
implies the bound on the independence number of every setX in F . The upper bound of Claim 3.2.3
would even apply if duplicates of the same set in F are counted as many times as they are gen-
erated by the algorithm. Since the algorithm only spends polynomial time per set in F (counting
duplicates), the running time bound follows. □

Lemma 3.2 immediately implies that for every hereditary class C, if there exists a positive integer
k such that kKk /∈ C, then for every every graph G ∈ C and every integer b which is polynomial
in log n, G contains a (b, a)-container family F of quasi-polynomial size, with a polynomial in
log n. We complete the section by showing that the restriction that C is kKk-free is necessary. In
particular, in every hereditary class C of graphs that contains kKk for every integer k ≥ 0, even
(1, a)-container families require size at least 2n/2a.

Lemma 3.3. Let a,b,k,ω be positive integers such that b ≤ a < ω and F be a (b, a)-container family

for kKω. Then |F| ≥
(
ω
b

)k
/
(
a
b

)k
.

Proof. Let V (kKω) = V1, . . . Vk where Vi is the vertex set of the i’th copy of Kω. Let Q be the

family of all subsets Q of V (kKω) such that |Q∩ Vi| = b for every i ≤ k. It follows that |Q| =
(
ω
b

)k
and that α(Q) = b for every Q ∈ Q. Let now F be a (b, a)-container family for kKω. For every

F ∈ F and every i ≤ k it holds that |F ∩ Vi| ≤ α(F ) ≤ a. Hence F covers at most
(
a
b

)k
sets in Q.

Thus |F| ≥
(
ω
b

)k
/
(
a
b

)k
, as claimed. □

We are now in position to prove Theorem 1.3.

Theorem 1.3. Let C be a hereditary class of graphs, and b : N → N be a poly-logarithmic function.
Then the following are equivalent:

(i) There exist a poly-logarithmic function a and a quasi-polynomial function f such that for
every n-vertex graph G ∈ C, G has a (b(n), a(n))-container family F with |F| ≤ f(n).

(ii) There exists a positive integer k such that kKk /∈ C.

Proof. Let C be a hereditary class of graphs, and b : N → N be a function such that b(n) =

O((log n)O(1)).
Suppose first that there exists a positive integer k such that kKk /∈ C, and let a(n) = (6k ·

log(n))2k+1 · (b(n))k2 . Note that a(n) is a poly-logarithmic function. Let G be an arbitrary graph
in C, n = |V (G)|, and F be the (b(n), a(n))-container for G guaranteed by Lemma 3.2. Then F
has quasi-polynomial size. This concludes the proof of the implication (ii) → (i).

For the implication (i) → (ii), suppose for contradiction that there exists a poly-logarithmic
function a : N → N and a quasi-polynomial function q : N → N such that for every n-vertex graph
G ∈ C, G has a (b(n), a(n))-container F of size at most q(n), and that kKk /∈ C for every positive

integer k. Choose n sufficiently large such that 2a(n) ≤
√
n and q(n) < 2

√
n, and set k =

√
n. Let
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F be the (b(n), a(n)) container of kKk of size at most q(n). By Lemma 3.3 we have that

|F| ≥

(( k
b(n)

)(
a

b(n)

))k

≥ 2k = 2
√
n > q(n)

This contradicts that |F| ≤ q(n). □

4. A–B separators with Small Independence Number

In this section we prove the following theorem:

Theorem 4.1. Let G be a graph, a be a positive integer, F be a family of vertex subsets such
that α(F ) ≤ a for every F ∈ F , A,B ⊆ V (G) be vertex subsets and {xF }F∈F be a fractional
(A,B)-separator in G. Then, there exists an A–B separator S in G such that fcovF (S) is at most
12 · log 2n · a ·

∑
F∈F xF .

For this, we need the following lemmas.

Lemma 4.2. Let G be a graph, F be a family of vertex subsets, A,B ⊆ V (G) be vertex subsets and
{xF }F∈F be a fractional (A,B)-separator in G. Then, there exists a fractional (A,B)-separator
{yF }F∈F in G such that 1 ≥ yF ≥ 1

n for every F ∈ F with yF > 0, and
∑

F∈F yF ≤ 2 ·
∑

F∈F xF .

Proof. Define {yF }F∈F as follows,

yF :=

{
0 if xF < 1

2n ,

min{1, 2xF } otherwise.

and observe that
∑

F∈F yF ≤ 2 ·
∑

F∈F xF . Furthermore, by construction, we have 1 ≥ yF ≥ 1
n for

every F ∈ F with yF > 0. Finally, for every A-B path P we have

∑
F∈F

F∩P ̸=∅

yF ≥ min{1,
∑
F∈F

F∩P ̸=∅
xF≥ 1

2n

2xF } ≥ min{1, 2− 2 · n · 1

2n
} ≥ 1

where the second to last transition uses that P has at most n vertices. □

Lemma 4.3. Let G be a graph, a be a positive integer, F be a family of vertex subsets such that
α(F ) ≤ a for every F ∈ F , A,B ⊆ V (G) be vertex subsets and {yF }F∈F be a fractional (A,B)-
separator in G satisfying yF ≥ 1

n whenever yF > 0. Then, there exists an A–B separator S in G
such that fcovF (S) is at most 6 · log 2n · a ·

∑
F∈F yF .

Proof. For every vertex v ∈ V (G), let dv = min{
∑

F∈F
F∩P ̸=∅

yF |P is an A-v path}, let yv =
∑

F∈F
F∋v

yF ,

and let Iv = (dv − yv, dv]. Observe that dv ≤
∑

F∈F
F∩Q ̸=∅

yF for every A–v walk Q, since there exists

an A–v path in G[Q]. Hence, if (u, v) is an edge in G, then dv ≤ du + yv, since the A–v walk
obtained by appending v to the A–u path that realizes du satisfies

∑
F∈F

F∩Q ̸=∅
yF ≤ du + yv. This

implies that dv − yv ≤ du, and by a symmetric argument, du − yu ≤ dv. Consequently, we have
Iu ∩ Iv ̸= ∅ for every edge (u, v) ∈ E(G).

For every r ∈ [0, 1], we define Sr = {v ∈ V (G) | r ∈ Iv}.

Claim 4.3.1. Sr forms an A–B separator for every r ∈ (0, 1]
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Proof. Let r ∈ [0, 1] and P := (v1, v2, . . . , vp) be an A–B path in G. Let vi be the first vertex
on P such that dvi ≥ r. Such a vertex exists, since vp ∈ B and therefore dvp ≥ 1, as {yF }F∈F
is a fractional (A,B)–separator. If vi = v1, then since v1 ∈ A, we have dv1 = yv1 , and hence
[0, r] ⊆ Iv1 , which implies v1 ∈ Sr. Otherwise, let vi−1 denote its predecessor on P . Since dvi−1 < r
and (vi−1, vi) is an edge in G, we have dvi − yvi ≤ dvi−1 < r, which implies that r ∈ Ivi , and
consequently vi ∈ Sr. Therefore, Sr is an A–B separator. □

Claim 4.3.2. Er(fcovF (Sr)) ≤ 6 · log 2n · a ·
∑

F∈F yF

Proof. Let us define mr
F = 0 if F ∩ Sr = ∅ and max

(
{1} ∪ { 1

yv
| v ∈ F ∩ Sr}

)
otherwise. Also, let

ŷrF = yF ·mr
F . Note that if u ∈ Sr, then∑
F∈F
F∋u

ŷrF =
∑
F∈F
F∋u

yF ·max

{
1

yv

∣∣∣∣ v ∈ F ∩ Sr

}
≥ 1

yu
·
∑
F∈F
F∋u

yF = 1

Hence, for every r ∈ [0, 1] we have that {ŷrF | F ∈ F} forms a fractional cover of Sr. Therefore,

Er[fcovF (Sr)] ≤ Er

[∑
F∈F

ŷrF

]
=

∑
F∈F

yF · Er[m
r
F ]

≤
∑
F∈F

yF

[ ∞∑
i=0

2i+1 · Pr[2
i ≤ mr

F < 2i+1]

]

≤
∑
F∈F

yF

⌊logn⌋∑
i=0

2i+1 · Pr[2
i ≤ mr

F ]

(1)

Note that the last inequality holds because, mr
F is at most n for every F ∈ F and r ∈ [0, 1], since

yv ≥ 1
n for every v ∈ V (G).

Consider F ∈ F . For each 0 ≤ i ≤ ⌊log n⌋, let Fi = {v ∈ F | yv ≤ 2−i} and define Îiv =
[dv −yv −2−i, dv +2−i]∩ [0, 1] for every v ∈ Fi. Let I be a maximal independent set of Fi. Since I
is also an independent set in F , we have |I| ≤ a. Moreover, because I is maximal, for every v ∈ Fi

there exists some u ∈ I such that (u, v) ∈ E(G) and hence Iv ∩ Iu ̸= ∅. Since yv ≤ 2−i, it follows

that Iv ⊆ Îiu. Now, we have:

Pr[2
i ≤ mr

F ] = Pr [∃v ∈ Fi | r ∈ Iv] ≤ Pr

[
∃u ∈ I

∣∣∣ r ∈ Îiu

]
≤

∑
u∈I

∥Îiu∥ ≤ 3 · 2−i · a

where for an interval I = [z1, z2] ⊆ [0, 1], ∥I∥ denotes z2 − z1. Combining this with Equation 1, we
conclude that

Er[fcovF (Sr)] ≤
∑
F∈F

yF

⌊logn⌋∑
i=0

2i+1 · 3 · 2−i · a

 ≤ 6 · log 2n · a ·
∑
F∈F

yF

□

Now, as Er[fcovF (Sr)] ≤ 6 · log 2n · a ·
∑

F∈F yF by Claim 4.3.2, there exists some r0 ∈ [0, 1]
such that the fractional cover of Sr0 using sets from F has value at most 6 · log 2n · a ·

∑
F∈F yF .

Furthermore, Sr0 is an A–B separator by Claim 4.3.1, which concludes our proof. □

Now we are ready to prove Theorem 4.1

Theorem 4.1. Let G be a graph, a be a positive integer, F be a family of vertex subsets such
that α(F ) ≤ a for every F ∈ F , A,B ⊆ V (G) be vertex subsets and {xF }F∈F be a fractional
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(A,B)-separator in G. Then, there exists an A–B separator S in G such that fcovF (S) is at most
12 · log 2n · a ·

∑
F∈F xF .

Proof. We invoke Lemma 4.2 on the tuple (G,F , A,B, {xF }F∈F ) to obtain a fractional (A,B)-
separator {yF }F∈F satisfying yF ≥ 1

n whenever yF > 0, and
∑

F∈F yF ≤ 2 ·
∑

F∈F xF . Since
{yF }F∈F satisfies the requirements of Lemma 4.3, we are guaranteed the existence of an A–B
separator S in G such that fcovF (S) ≤ 6 · log 2n · a ·

∑
F∈F yF ≤ 12 · log 2n · a ·

∑
F∈F xF , which

proves the theorem. □

5. Obstructions to A–B Separators with Small Independence
Number

The main theorem that we prove in this section is the following:

Theorem 5.1. Let G be a graph, A,B ⊆ V (G) be vertex subsets, F be a family of vertex subsets,
and f be the minimum of

∑
F∈F xF over all fractional (A,B)-separators {xF }F∈F . Then, for every

ℓ ≥ log 2|F| there exists a multiset Q of induced A–B paths in G of cardinality at least f · ℓ, such
that for every F ∈ F , the number of paths in Q that have a non-empty intersection with F is at
most 6ℓ.

Proof. Let P denote the set of all induced paths A–B in G. We describe the A–B separator LP,
using non-negative real variables {xF }F∈F .

Minimize :
∑
F∈F

xF(2)

Subject To :
∑
F∈F

F∩P ̸=∅

xF ≥ 1 ∀P ∈ P

Observe that f equals the optimal value of the above LP. This is because, if the constraint∑
F∈F

F∩P ̸=∅

xF ≥ 1 holds for every induced A–B path P , then it also holds for every A–B path, since

for any such path P in G, there exists an induced A–B path contained within G[P ]. By strong
duality, the dual LP also has the same optimum value. We describe the dual using non-negative
real variables {yP }P∈P .

Maximize :
∑
P∈P

yP(3)

Subject To :
∑
P∈P

P∩F ̸=∅

yP ≤ 1 ∀F ∈ F

Let {yP }P∈P be the values assigned to the corresponding variables in the optimum solution of
the dual. Observe that D := { yP /f }P∈P is a probability distribution over P, as every yP take
non-negative values and satisfy

∑
P∈P yP = f . Let Q := {Qi}i∈[ f ·ℓ ] be f · ℓ independent samples

drawn from the distribution D over the set P. Let F ∈ F , and let χF denote the number of paths
in Q that intersect F . We define χF := max{χF |F ∈ F}. For every i ∈ [ f · ℓ ], we have that,

P
Qi∼D

[Qi ∩ F ̸= ∅ ] =
∑
P∈P

P∩F ̸=∅

P
Qi∼D

[Qi = P ] =
∑
P∈P

P∩F ̸=∅

yP
f

≤ 1

f

By linearity of expectation, it follows that the expected value of χF is at most ℓ. Applying union
bound over all F ∈ F and the Chernoff bound from Theorem 2.1 to χF for every F ∈ F , we get :

P [χF < 6 · ℓ ] ≥ 1 −
∑
F∈F

P [χF ≥ 6 · ℓ ] ≥ 1 − |F| · 2−6·ℓ ≥ 3

4
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Hence, with probability at least 3
4 , the sampled multiset has cardinality at least f · ℓ, consists of

induced A–B paths in G, and satisfies that for every F ∈ F , at most 6l of these paths intersect F .
Therefore, it follows that there exists some Q with these properties, which concludes the proof of
the theorem. □

6. Balanced Separators with Small Independence Number

We begin this section by defining the balanced separator LP. Let G be a graph, I ⊆ V (G) an
independent set, and F a family of vertex subsets of G. For each pair u, v ∈ I, let Pu,v denote the
set of all induced paths from u to v in G. We describe the balanced separator LP corresponding to
the instance (G, I,F), using non-negative real variables xF and du,v, defined for every F ∈ F and
u, v ∈ I.

Minimize:
∑
F∈F

xF(4)

Subject to:
∑
v∈I

du,v ≥ |I|
10

∀u ∈ I

du,v ≤
∑
F∈F

F∩P ̸=∅

xF ∀u, v ∈ I, P ∈ Pu,v

du,v ≤ 1 ∀u, v ∈ I

We are now ready to state the main theorem proved in this section:

Theorem 6.1. For every graph G, independent set I ⊆ V (G), positive integer a ≥ 2 and family of
vertex subsets F such that α(F ) ≤ a for every F ∈ F , there exists an (I, 95

100)-balanced separator S
in G such that

fcovF (S) ≤ 17000 · log 2n · a2 · log(a · LPopt) · LPopt,

where LPopt is the optimum value of balanced separator LP corresponding to (G, I,F).

For the remainder of this section, we fix a graph G, an independent set I ⊆ V (G), a positive
integer a ≥ 2, and a family of vertex subsets F such that α(F ) ≤ a for every F ∈ F . We also fix
an optimal solution to (LP 4) the balanced separator LP corresponding to (G, I,F). Let xF and
du,v, for every F ∈ F and u, v ∈ I, denote the values assigned to the corresponding variables in
this solution. Let LPopt denote the objective function value of this solution.

Let F ∈ F and X ⊆ V (G). We define µ(X) :=
∑

F∈F α(F ∩ X) · xF . Now, we make some
observations about the function µ.

Obervation 6.2. If A and B are subsets of V (G) such that A ⊆ B, then µ(A) ≤ µ(B).

Obervation 6.3. If A and B are disjoint and anti-complete subsets of V (G), then µ(A ∪ B) =
µ(A) + µ(B).

Observation 6.2 follows from the fact that for any F ∈ F and subsets A ⊆ B ⊆ V (G), we have
α(F∩A) ≤ α(F∩B). Similarly, Observation 6.3 follows from the fact that ifA andB are disjoint and
anti-complete subsets of V (G), then for every F ∈ F we have α(F ∩(A∪B)) = α(F ∩A)+α(F ∩B).

For every v ∈ V (G), define xv :=
∑

F∈F
F∋v

xF . Also, for every u, v ∈ V (G), we define d(u, v) :=

min{
∑

F∈F
F∩P ̸=∅

xF |P ∈ Pu,v}. Now, we make some observations about the function d.
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Obervation 6.4. If u, v ∈ I, then d(u, v) ≥ du,v

Obervation 6.5. If u, v, w ∈ V (G), then d(u,w) ≤ d(u, v)+d(v, w). In particular, if (v, w) ∈ E(G)
and u ∈ V (G), then d(u,w) ≤ d(u, v) + xw.

Observation 6.4 follows immediately from the LP constraint: du,v ≤
∑

F∈F
F∩P ̸=∅

xF for every

u, v ∈ I and P ∈ Pu,v. Furthermore, note that d(u, v) ≤
∑

F∈F
F∩Q̸=∅

xF for any u–v walk Q in

G, as we can always find an induced u–v path in G[Q]. Hence, Observation 6.5 follows from the
fact that if P1 and P2 are induced u–v and v–w paths realizing d(u, v) and d(v, w) respectively,
then appending P2 to P1 yields a u–w walk Q satisfying

∑
F∈F

F∩Q̸=∅
xF ≤ d(u, v) + d(v, w).

Let ϵ := 1
1300·log(a·LPopt)

, ℓmax = 2 · log(a · LPopt) + 12 and define ri := (4i − 2)ϵ, where i is a

positive integer. Let Z0 := {v ∈ V (G) | xv ≥ ϵ}. Furthermore, for every u ∈ V (G), C ⊆ V (G) and
positive real number r, define

BC(u, r) := {v ∈ C | d(u, v) ≤ r} and δC(u, r) := BC(u, r + 3ϵ) \BC(u, r + ϵ)

Lemma 6.6. Let Z ⊆ V (G) be a superset of Z0. Suppose that G − Z contains a connected

component C such that |C ∩ I| > 95|I|
100 , and let ū ∈ I ∩ C and ℓ ∈ [ ℓmax ]. Then we have,

|I \BC(ū, rℓ+1)| ≥
5|I|
100

Proof. Since ℓ ∈ [ ℓmax ], we have rℓ+1 ≤ rℓmax+1 = (8 · log(a · LPopt) + 50)ϵ ≤ 1
20 . Now assume, for

the sake of contradiction, that |I \BC(ū, rℓ+1)| < 5|I|
100 . Then we obtain:∑

v∈I
d(ū, v) =

∑
v∈I∩BC(ū,rℓ+1)

d(ū, v) +
∑

v∈I\BC(ū,rℓ+1)

d(ū, v) <
95|I|
100

· rℓ+1+
5|I|
100

· 1 <
|I|
10

But, Observation 6.4 implies the inequality
∑

v∈I d(ū, v) ≥
∑

v∈I dū,v which contradicts the con-

straint
∑

v∈I dū,v ≥ |I|
10 of LP 4. Thus, it follows that |I \BC(ū, rℓ+1)| ≥ 5|I|

100 . □

Lemma 6.7. Let Z ⊆ V (G) be a superset of Z0. Suppose that G − Z contains a connected

component C such that |C∩I| > 95|I|
100 , and let ū ∈ I∩C and ℓ ∈ [ ℓmax ]. Let A′ := N [BC(ū, rℓ)]∩C

and B′ := C \BC(ū, rℓ+1). Then the assignment {x′F }F∈F defined by

x′F :=

{
xF
ϵ if F ∩ δC(ū, rℓ) ̸= ∅,
0 otherwise

is an fractional (A′, B′)-separator using F in G[C].

Proof. Let P := (v1, . . . , vp) be an A′–B′ path in G[C]. Since v1 ∈ N [v0]∩C for some v0 ∈ BC(ū, rℓ),
by applying Observation 6.5 to {ū, v0, v1}, we get d(ū, v1) ≤ d(ū, v0) + xv1 ≤ rℓ + ϵ. Furthermore,
d(ū, vp) > rℓ + 4ϵ since vp ∈ B′. Let P ′ := (v′1, . . . , v

′
q) be the contiguous subpath of P with the

smallest number of vertices such that the predecessor of v′1 in P (denoted v′0) satisfies d(ū, v′0) ≤
rℓ+ϵ, and the successor of v′q in P (denoted v′q+1) satisfies d(ū, v

′
q+1) > rℓ+3ϵ. Note that P ′ is well-

defined, since the subpath obtained by removing the first and last vertices of P already satisfies the
required properties. Moreover, by definition, we have V (P ′) ⊆ δC(ū, rℓ). Finally, P

′ is non-empty;
otherwise, applying Observation 6.5 to {v′0, v′q+1, ū} yields d(ū, v′0) ≥ d(ū, v′q+1) − xv′q+1

> rℓ + 2ϵ,

which contradicts the assumption that d(ū, v′0) ≤ rℓ + ϵ. Hence:∑
F∈F

F∩P ̸=∅

x′F ≥
∑
F∈F

F∩{v′1,...,v′q}≠∅

x′F ≥ 1

ϵ
·d(v′1, v′q) ≥ 1

ϵ
·((d(ū, v′q+1)−xv′q+1

)−d(ū, v′1)) ≥ 1
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where the second-to-last inequality follows from applying Observation 6.5 to the triples {v1, v′q, ū}
and {ū, v′q, v′q+1}. Thus {x′F }F∈F is a fractional (A′, B′)-separator using F in G[C]. □

Lemma 6.8. Let Z ⊆ V (G) be a superset of Z0. Suppose that G − Z contains a connected

component C such that |C ∩ I| > 95|I|
100 , and let ū ∈ I ∩ C. Then there exists ℓ ∈ [ ℓmax ] such that

µ(δC(ū, rℓ)) ≤ µ(BC(ū, rℓ)).

Proof. For this, we need the following claims:

Claim 6.8.1. µ(BC(ū, r1)) ≥ ϵ

Proof. Consider a path P in G[C] from ū to a vertex w such that w ∈ I ∩ (C \ BC(ū, rℓmax+1)).
Note that such a vertex exists by Lemma 6.6. Let P ′ := (ū, v1, . . . , vp) be the subpath of P such
that the successor of vp (say vp+1) is the first vertex in P that does not belong to BC(ū, r1). P

′ is
well defined, since w does not belong to BC(ū, r1) and is non-empty since ū ∈ BC(ū, r1). Hence,
by Observation 6.5, we get:

µ(BC(ū, r1)) ≥
∑
F∈F

F∩BC(ū,r1) ̸=∅

xF ≥
∑
F∈F

F∩P ′ ̸=∅

xF ≥ d(ū, vp) ≥ d(ū, vp+1)− xvp+1 > ϵ

□

Claim 6.8.2. µ(BC(ū, rℓ+1)) ≥ µ(BC(ū, rℓ)) + µ(δC(ū, rℓ)) for every ℓ ∈ [ ℓmax ].

Proof. Let v1 ∈ BC(ū, rℓ) and v2 ∈ δC(ū, rℓ). Applying Observation 6.5 to {ū, v1, v2} implies that
v1 and v2 are non-adjacent and consequently BC(ū, rℓ) and δC(ū, rℓ) are anti-complete in G. Since
BC(ū, rℓ) and δC(ū, rℓ) are disjoint by definition, Observation 6.3 implies that µ (δC(ū, rℓ) ∪BC(ū, rℓ)) =
µ (BC(ū, rℓ)) + µ (δC(ū, rℓ)). Furthermore, by definition, δC(ū, rℓ) ∪ BC(ū, rℓ) ⊆ BC(ū, rℓ+1), and
hence the claim follows from Observation 6.2. □

Now, combining Claims 6.8.1 and 6.8.2, we conclude that if µ(δC(ū, rℓ)) > µ(BC(ū, rℓ)) for
every ℓ ∈ [ ℓmax ], then µ(BC(ū, rℓmax)) > 2ℓmax−1 · µ(BC(ū, r1)) > aLPopt, while µ(G) ≤ aLPopt,
which yields a contradiction. Hence we conclude that there exists some ℓ ∈ [ ℓmax ] for which
µ(δC(ū, rℓ)) ≤ µ(BC(ū, rℓ)), which proves Lemma 6.8. □

Lemma 6.9. Let Z ⊆ V (G) be a superset of Z0. If G−Z has a connected component C such that

|C ∩ I| > 95|I|
100 then there exists a partition A ∪ S ∪B of C such that:

(1) S is an A–B separator in G− Z.
(2) B ⊊ C

(3) |A ∩ I| ≤ 95|I|
100 .

(4) fcovF (S) ≤ 15600 · log 2n · a · log(aLPopt) · µ(C \N [B]).

Proof. Let ū ∈ C ∩ I. We apply Lemma 6.8 to the instance defined by (G, I,F , Z, ū, {xF }F∈F ), to
obtain some ℓ ∈ [ ℓmax ] such that µ(δC(ū, rℓ)) ≤ µ(BC(ū, rℓ)). Now, let A

′ := N [BC(ū, rℓ)]∩C and
B′ := C \BC(ū, rℓ+1). By Lemma 6.7 the assignment {x′F }F∈F defined as,

x′F :=

{
xF
ϵ if F ∩ δC(ū, rℓ) ̸= ∅,
0 otherwise

is a fractional (A′, B′)-separator in G[C]. Therefore, the tuple (G[C], A′, B′,F , {x′F }F∈F ) satisfies
all the requirements of Theorem 4.1. Let S be the A′–B′ separator in G[C] whose existence is
guaranteed by it. Define B to be the set of vertices in connected components of G[C \ S] that
have a non-empty intersection with B′, and let A := C \ (B ∪ S). Observe that, from definitions
it follows that S is an A–B′ separator and an A–B separator in G[C] and consequently in G− Z.
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So, we have |A ∩ I| ≤ |I| − |B′ ∩ I|. But by Lemma 6.6, |B′ ∩ I| is at least 5|I|
100 , implying that

|A ∩ I| ≤ 95|I|
100 .

We claim that BC(ū, rℓ) ∩ N [B] = ∅. Suppose not, and let u ∈ BC(ū, rℓ) ∩ N [B]. Then there
exists v ∈ B such that v ∈ N [u] which implies that v ∈ A′ ∩B. However, this contradicts the fact
that S is an A′–B separator in G[C]. Hence, we conclude that BC(ū, rℓ) ⊆ C \ N [B], which, in
particular, implies that B ⊊ C.

Now, we bound the fractional cover number of S using F as follows:

fcovF (S) ≤ 12 · log 2n · a ·
∑
F∈F

x′F

= 12 · log 2n · a ·
∑
F∈F

F∩δC(ū,rℓ )̸=∅

xF
ϵ

≤ 12 · log 2n · a · 1300 · log(aLPopt) · µ(δC(ū, rℓ))
≤ 15600 · log 2n · a · log(aLPopt) · µ(C \N [B])

where the last transition follows from the inequality µ(δC(ū, rℓ)) ≤ µ(BC(ū, rℓ)) and by applying
Observation 6.2 to the sets BC(ū, rℓ) and C \N [B].

□

Now we are ready to prove Theorem 6.1.

Theorem 6.1. For every graph G, independent set I ⊆ V (G), positive integer a ≥ 2 and family of
vertex subsets F such that α(F ) ≤ a for every F ∈ F , there exists an (I, 95

100)-balanced separator S
in G such that

fcovF (S) ≤ 17000 · log 2n · a2 · log(a · LPopt) · LPopt,

where LPopt is the optimum value of balanced separator LP corresponding to (G, I,F).

Proof. We prove the following claim:

Claim 6.9.1. Let Z ⊆ V (G) be a superset of Z0, and let C be the connected component of G− Z

such that |C ∩ I| > 95|I|
100 , or let C = ∅ if no such component exists. Then there exists an (I, 95

100)-
balanced separator S in G such that fcovF (S) ≤ fcovF (Z) + 15600 · log 2n · a · log(aLPopt) · µ(C).

Proof. We proceed by induction on |C|. Firstly, if C = ∅, then we can let S = Z and the lemma
holds true. Otherwise, let A′∪S′∪B′ be the partition of C whose existence is implied by Lemma 6.9
and consider the graph G − (Z ∪ S′). If there exists a component C ′ of G − (Z ∪ S′) such that

|C ′ ∩ I| > 95|I|
100 , then we observe that C ′ ⊆ B′, since S′ is an A′–B′ separator in G − Z and

|A′ ∩ I| ≤ 95|I|
100 . Hence, C ′ ⊊ C, as B′ ⊊ C. Otherwise, if no such component exists, we have

C ′ = ∅ and consequently C ′ ⊊ C. In either case, by applying the inductive hypothesis to the pair
(G,Z ∪ S′), we obtain an (I, 95

100)-balanced separator S in G such that:

fcovF (S) ≤ fcovF (Z ∪ S′) + 15600 · log 2n · a · log(a · LPopt) · µ(C ′)

≤ fcovF (Z) + fcovF (S
′) + 15600 · log 2n · a · log(a · LPopt) · µ(C ′)

≤ fcovF (Z) + 15600 · log 2n · a · log(a · LPopt) ·
(
µ(C \N [B′]) + µ(C ′)

)
≤ fcovF (Z) + 15600 · log 2n · a · log(a · LPopt) · µ(C)

where the last transition follows from applying Observations 6.3 and 6.2, using the facts that
C ′ ⊆ B′ and that C \N [B′] and B′ are disjoint and anti-complete in G. □

Now, we apply Claim 6.9.1 to the pair (G,Z0) and obtain an (I, 95
100)-balanced separator S

in G. Furthermore, we observe that,
{
xF
ϵ

}
F∈F is a fractional cover for Z0, and consequently
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fcovF (Z0) ≤ 1
ϵLPopt. Thus,

fcovF (S) ≤ fcovF (Z0) + 15600 · log 2n · a · log(a · LPopt) · µ(C)

≤ 1300 · log(a · LPopt) · LPopt + 15600 · log 2n · a · log(a · LPopt) · µ(G)

≤ 17000 · log 2n · a2 · log(a · LPopt) · LPopt

which concludes the proof of Theorem 6.1. □

7. Obstructions to Balanced Separators with Small Independence Number

Let G be a graph, I ⊆ V (G) an independent set, and F a family of vertex subsets. Let Pu,v

denote the set of all induced paths from u to v in G. We now describe the dual of the balanced
separator LP corresponding to the instance (G, I,F). It uses non-negative real variables ρu, ηu,v,
and γu,v,P , defined for every u, v ∈ I and path P ∈ Pu,v.

Maximize :
|I|
10

∑
u∈I

ρu −
∑
u,v∈I

ηu,v(5)

Subject To : ρu − ηu,v −
∑

P∈Pu,v

γu,v,P ≤ 0 ∀u, v ∈ I

∑
u,v∈I
P∈Pu,v

P∩F ̸=∅

γu,v,P ≤ 1 ∀F ∈ F

It is easy to verify that the above is indeed the dual of LP 4. Having established this, we are now
ready to state the main theorem proved in this section.

Theorem 7.1. For every graph G, independent set I ⊆ V (G), positive integers a, b and ℓ such
that ℓ ≥ 7 · (LPopt · log(4|F|) + |I| ), where F is a (b, a)-container family in G, there exists a
subgraph H ⊆ G with I ⊆ V (H) that satisfies the following properties:

• Every induced subgraph of H with independence number at most b, has at most 3·b·ℓ
LPopt

ver-

tices.
• For every (I, 12)-balanced separator S in H, we have that covF (S) ≥ LPopt.

whenever LPopt, which denotes the optimum value of the dual of the balanced separator LP corre-
sponding to (G, I,F), is positive.

For the remainder of this section, we fix a graph G, an independent set I ⊆ V (G), and a
(b, a)-container family F in G. We also fix an optimal solution to (LP 5) the dual of balanced
separator LP corresponding to (G, I,F). Let ρu, ηu,v and γu,v,P , for every u, v ∈ I and P ∈ Pu,v,
denote the values assigned to the corresponding variables in this solution. Let LPopt be the value
of the objective function in this solution. For every u, v ∈ I, define γu,v :=

∑
P∈Pu,v γu,v,P , and let

ρ :=
∑

u∈I ρu.

Lemma 7.2. The optimal solution has the following properties:

(1)
∑

v∈I ηu,v ≤ |I|
10ρu for every u ∈ I.

(2) 10LPopt ≤ ρ|I|.

Proof. Given any feasible solution to the LP, we can always obtain a new assignment by choosing
a u0 in I and setting ρu0 = 0 and ηu0,v = 0 for every v ∈ I. This preserves feasibility, since the
only constraints involving these variables are of the form ρu0 − ηu0,v − γu0,v ≤ 0, which remain
satisfied even in the new assignment. Furthermore, the value of the objective function decreases by



18 MARIA CHUDNOVSKY†, AJAYKRISHNAN E S‡, AND DANIEL LOKSHTANOV‡

|I|
10ρu0 −

∑
v∈I ηu0,v. But, if we start with the optimal solution, this modification should not strictly

increase the objective function value. Therefore we get
∑

v∈I ηu0,v ≤ |I|
10ρu0 . Furthermore,

10LPopt = 10

 |I|
10

∑
u∈I

ρu −
∑
u,v∈I

ηu,v

 ≤ 10

(
|I|
10

∑
u∈I

ρu

)
= ρ|I|

□

We define P =
⋃

u,v∈I Pu,v, and introduce a probability distribution D over the domain I ×
I × (P ∪ {∅}). The distribution D is defined using the following random process: Select a vertex
u ∈ I with probability ρu/ρ. Select a vertex v ∈ I uniformly at random. With probability
ηu,v/(ηu,v + γu,v), output the triple (u, v, ∅). Otherwise, choose a path P ∈ Pu,v with probability
γu,v,P /γu,v and output the triple (u, v, P ). This process is well defined since both { ρu/ρ }u∈I and
{ γu,v,P /γu,v }P∈Pu,v are probability distributions, as every ρu and γu,v,P take non-negative values
and satisfy ρ =

∑
u∈I ρu and γu,v =

∑
P∈Pu,v

γu,v,P .

Lemma 7.3. D satisfies P
(u,v,P )∼D

[P = ∅] ≤ 1

10
.

Proof. Using Lemma 7.2, together with the fact that the constraint ρu − ηu,v − γu,v ≤ 0 holds for
every u, v ∈ I, we obtain:

P
(u,v,P )∼D

[P = ∅] =
∑
u′∈I

∑
v′∈I

P
(u,v,P )∼D

[
P = ∅ | u = u′, v = v′

]
· P
(u,v,P )∼D

[
v = v′

]
· P
(u,v,P )∼D

[
u = u′

]
≤ 1

|I|
∑
u′∈I

ρu′

ρ

∑
v′∈I

ηu′,v′

ηu′,v′ + γu′,v′
≤ 1

|I|
∑
u′∈I

1

ρ
· |I|
10

ρu′ =
1

10

□

Lemma 7.4. If F ∈ F , then P
(u,v,P )∼D

[P ∩ F ̸= ∅] ≤ 1

10 · LPopt
.

Proof. Let u′, v′ ∈ I and P ′ ∈ Pu′,v′ . Using the fact that the constraint ρu − ηu,v − γu,v ≤ 0 holds
for every u, v ∈ I, we obtain:

P
(u,v,P )∼D

[
(u, v, P ) = (u′, v′, P ′)

]
= P

(u,v,P )∼D

[
P = P ′ | v = v′, u = u′

]
· P
(u,v,P )∼D

[
v = v′

]
· P
(u,v,P )∼D

[
u = u′

]
=

γu′,v′,P ′

γu′,v′
·

γu′,v′

γu′,v′ + ηu′,v′
· 1

|I|
· ρu

′

ρ
≤

γu′,v′,P ′

ρ|I|
Now, fix us fix F ∈ F and consider the probability that the sampled set P has a non-empty
intersection with F .

P
(u,v,P )∼D

[P ∩ F ̸= ∅ ] =
∑

u′,v′∈I

∑
P ′∈Pu′,v′
P ′∩F ̸=∅

P
(u,v,P )∼D

[
(u, v, P ) = (u′, v′, P ′)

]

≤ 1

ρ|I|
∑

u′,v′∈I
P ′∈Pu′,v′
P ′∩F ̸=∅

γu′,v′,P ′ ≤ 1

ρ|I|
≤ 1

10 · LPopt

Here, the last inequality follows from Lemma 7.2, and the second-to-last follows from the fact that
the constraint,

∑
u,v∈I
P∈Pu,v

P∩F ̸=∅

γu,v,P ≤ 1, holds for every F ∈ F . □
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Finally, we require the following lemma, which relates balanced separators of the set A to A1–A2

separators for a specific partition A1, A2 of A.

Lemma 7.5. Let G be a graph and A ⊆ V (G) be a vertex subset. If G has an (A, 12)-balanced

separator S, then there exists a partition A1, A2 of A such that max{|A1|, |A2|} ≤ 2|A|
3 and S is an

A1–A2 separator.

Proof. If S ∩ A contains at least |A|
2 elements, then selecting any subset A1 ⊆ S ∩ A of size |A|

2
and setting A2 := A \ A1 suffices to prove the lemma. Otherwise, let C1, . . . , Cr be connected
components of G−S that have a non-empty intersection with A. Let A′

i := A∩Ci for every i ∈ [r],
and let A′

r+1 := A∩ S. By relabeling the sets if necessary, assume that |A′
i| ≥ |A′

i+1| for all i ∈ [r].

Let q be the smallest integer in [r + 1] such that
∑q

i=1 |A′
i| ≥

|A|
3 . We claim that

∑q
i=1 |A′

i| ≤
2|A|
3 .

If q = 1, the claim holds trivially. Otherwise, observe that

q∑
i=1

|A′
i| = |A′

q| +

q−1∑
i=1

|A′
i| ≤ |A′

q−1| +

q−1∑
i=1

|A′
i| ≤ 2

q−1∑
i=1

|A′
i| ≤ 2|A|

3

Define A1 := ∪q
i=1A

′
i and A2 := A \A1. Since the sets in {A′

i}i∈[r+1] are pairwise disjoint, we have

that |A1| =
∑q

i=1 |A′
i|. Hence, |A1| ≤ 2|A|

3 and since |A1| ≥ |A|
3 , we have |A2| ≤ 2|A|

3 . Furthermore,
it follows from our construction of A1, A2 that S is an A1–A2 separator, which concludes the proof
of the lemma. □

Now we are ready to prove Theorem 7.1.

Theorem 7.1. For every graph G, independent set I ⊆ V (G), positive integers a, b and ℓ such
that ℓ ≥ 7 · (LPopt · log(4|F|) + |I| ), where F is a (b, a)-container family in G, there exists a
subgraph H ⊆ G with I ⊆ V (H) that satisfies the following properties:

• Every induced subgraph of H with independence number at most b, has at most 3·b·ℓ
LPopt

ver-

tices.
• For every (I, 12)-balanced separator S in H, we have that covF (S) ≥ LPopt.

whenever LPopt, which denotes the optimum value of the dual of the balanced separator LP corre-
sponding to (G, I,F), is positive.

Proof. Let {(ui, vi, Pi)}i∈[ ℓ ] be ℓ independent samples drawn from the distribution D over I × I ×
(P ∪ {∅}). Let H be the subgraph of G induced by the union of all sampled sets and I, that is,
H = G[I ∪

⋃
i∈[ℓ] Pi]. We claim that H has the desired properties with good probability.

Claim 7.5.1. With probability at least 3
4 , the following holds: every induced subgraph of H with

independence number at most b, has at most 3·b·ℓ
LPopt

vertices.

Proof. Let F ∈ F , and let χF denote the number of sets Pi, out of a total of ℓ samples, that
intersect F . We define χF := max{χF |F ∈ F} and show that with probability at least 3

4 , the good

event χF < 6 · ℓ
10LPopt

occurs.

Let F ∈ F , since the probability that a fixed set Pi intersects F is at most 1
10LPopt

, it follows

from linearity of expectations that the expected value of χF is at most ℓ
10LPopt

. Applying union

bound over all F ∈ F , the Chernoff bound from Theorem 2.1 to χF for every F ∈ F , and using
the lower bound on ℓ, we get:

P
[
χF < 6 · ℓ

10LPopt

]
≥ 1 −

∑
F∈F

P
[
χF ≥ 6 · ℓ

10LPopt

]
≥ 1 − |F| · 2−6· ℓ

10LPopt ≥ 3

4

Suppose that in our sampled subgraph H, the good event χF (H) < 6 · ℓ
10,LPopt

occurs. Let H ′ be

an induced subgraph of H with independence number at most b. Since the paths in P are induced,
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and the independence number of H ′ is at most b, we have |V (Pi) ∩H ′| ≤ 2b, for every i ∈ [ℓ]. As
H ′ can also be considered as an induced subgraph of G, and since F is a (b, a)-container family,
there exists some F ∈ F such that V (H ′) ⊆ F . Therefore, the number of sets in P1, . . . , Pℓ that
intersect H ′ is at most χF . Furthermore, since I is an independent set in G, we have |I ∩H ′| ≤ b.
Thus, V (H ′) ≤ |I ∩ V (H ′)|+

∑
i∈[ℓ] |V (Pi)∩H ′| < b+2b · χF . Therefore, with probability at least

3
4 , we have that every induced subgraph of H with independence number at most b, has at most
3·b·ℓ
LPopt

vertices.

□

Claim 7.5.2. With probability at least 3
4 , the following holds: for every subfamily F ′ ⊆ F of size

at most LPopt, and for every partition I1, I2 of I such that max{|I1|, |I2|} ≤ 2|I|
3 , there exists an

I1–I2 path in H that does not intersect any set in F ′.

Proof. We define an eligible triple to be a triple (F ′, I1, I2) such that F ′ ⊆ F is a subfamily of

size at most LPopt, and I1, I2 is a partition of I satisfying max{|I1|, |I2|} ≤ 2|I|
3 . An eligible triple

(F ′, I1, I2) is bad if every I1–I2 path in H intersects at least one set in F ′. Let χ be the event that
the conclusion of the claim is false, namely that there exists an eligible bad triple. To prove the
claim it suffices to show P[χ] ≤ 1

4 .
For every eligible triple (F ′, I1, I2), we define χ(F ′, I1, I2) to be the event that this triple is bad.

We will prove that for every eligible triple (F ′, I1, I2) we have P[χ(F ′, I1, I2)] ≤ ( 9
10)

ℓ, then P[χ] ≤ 1
4

follows by a simple union bound over all eligible triples. More concretely we have the following.

P [χ] ≤
(

9

10

)ℓ

· 2|I| ·
(
|F|
|F ′|

)
≤ 2|I| + |F ′| log |F| − ℓ log( 10

9 ) ≤ 1

4

To prove that P[χ(F ′, I1, I2)] ≤ ( 9
10)

ℓ we observe that the event χ(F ′, I1, I2) does not occur if
there exists an i ∈ [ℓ] such that Pi is an I1–I2 path in H that is disjoint from every set in F ′. For
every eligible triple (F ′, I1, I2) and every i ∈ [ℓ] we define the event χ(F ′, I1, I2, i) that Pi is an
I1–I2 path in H that is disjoint from every set in F ′. For every eligible triple (F ′, I1, I2) the events
in {χ(F ′, I1, I2, i) | i ∈ [ℓ]} are independent. Thus, to prove P[χ(F ′, I1, I2)] ≤ ( 9

10)
ℓ it suffices to

show that P[χ(F ′, I1, I2, i)] ≥ 1
10 for every i ∈ [ℓ].

To lower bound P[χ(F ′, I1, I2, i)] we observe that (ui, vi, Pi) is sampled according to the distribu-
tion D. The event χ(F ′, I1, I2, i) occurs unless |{ui, vi} ∩ I1| ≠ 1, or Pi = ∅, or there exists F ∈ F ′

such that Pi ∩ F ̸= ∅. Since vi is sampled uniformly from I we have that P[vi ∈ I1|ui ∈ I1] ≤ 2
3

and P[vi ∈ I2|ui ∈ I2] ≤ 2
3 . The law of conditional probability applied to the event ui ∈ I1 now

yields P[|{ui, vi} ∩ I1| ≠ 1] ≤ 2
3 . By Lemma 7.3 we have that P[Pi = ∅] ≤ 1

10 . For every F ∈ F ′, by

Lemma 7.4 we have that P[Pi ∩ F ̸= ∅] ≤ 1
10·LPopt

. A union bound over all F ∈ F ′ yields that the

probability that there exists F ∈ F ′ such that Pi ∩ F ̸= ∅ is at most |F ′|
10·LPopt

≤ 1
10 . We conclude

that P[χ(F ′, I1, I2, i)] ≥ 1− 2
3 − 1

10 − 1
10 ≥ 1

10 , giving the desired lower bound on P[χ(F ′, I1, I2, i)],
and completing the proof of the claim. □

Since the probability that the sampled subgraph satisfies both the properties stated in Claim 7.5.1
and Claim 7.5.2 is at least 1

2 , there exists an induced subgraph H ⊆ G that satisfies both. Let H be
such an induced subgraph. By Claim 7.5.1 every induced subgraph of H with independence number
at most b, has at most 3·b·ℓ

LPopt
vertices. Furthermore, combining Lemma 7.5 with Claim 7.5.2, we

conclude that H has no (I, 12)-balanced separator S with covF (S) ≤ LPopt, thereby completing the
proof of Theorem 7.1.

□
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8. Proofs of Main Theorems

Theorem 8.1. Let G be a graph, A,B ⊆ V (G) be vertex subsets, f , a be positive integers, and F
be a family of vertex subsets satisfying α(F ) ≤ a for every F ∈ F . Then, either there exists an
A–B separator S in G such that fcovF (S) ≤ 12 ·a · f · log 2n, or, for every ℓ ≥ log 2|F|, there exists
a multiset Q of induced A–B paths in G of cardinality at least f · ℓ, such that for every F ∈ F , the
number of paths in Q that have a non-empty intersection with F is at most 6ℓ.

Proof. Let P represent the set of induced A–B paths in G. We recall the A–B separator LP
corresponding to the instance (G,A,B,F), formulated using non-negative real variables {xF }F∈F .

Minimize :
∑
F∈F

xF

Subject To :
∑
F∈F

F∩P ̸=∅

xF ≥ 1 ∀P ∈ P

Let {xF }F∈F be an optimal solution to this LP. Observe that {xF }F∈F is a fractional (A,B)-
separator. This is because, if the constraint

∑
F∈F

F∩P ̸=∅

xF ≥ 1 holds for every induced A–B path P ,

then it also holds for every A–B path, since for any such path P in G, there exists an induced A–B
path contained within G[P ]. Hence, if

∑
F∈F xF ≤ f , then applying Theorem 4.1 to the instance

(G,A,B,F , {xF }F∈F ) guarantees the existence of an A–B separator S in G such that

fcovF (S) ≤ 12 · a · log 2n ·
∑
F∈F

xF ≤ 12 · a · f · log 2n

Otherwise, let f ′ denote the minimum value of
∑

F∈F xF over all fractional (A,B)-separators
{xF }F∈F , and note that f ′ > f . Applying Theorem 5.1 to the instance (G,A,B,F , f ′) guarantees
the existence of a multiset Q of induced A–B paths in G of cardinality at least f ′ · ℓ ≥ f · ℓ, such
that for every F ∈ F , the number of paths in Q intersecting F is at most 6ℓ. This concludes the
proof of the theorem. □

Now we relate the independence number of a set to its fractional cover number using families
whose elements have low independence number. This helps us transition between fractional cover
number using (b, a)-container families and independence number, in Theorem 1.2 and 8.4.

Lemma 8.2. Let G be a graph, S ⊆ V (G) be a vertex subset, a be a positive integer and F be a
family of vertex subsets of G such that α(F ) ≤ a for every F ∈ F . Then α(S) ≤ a · fcovF (S)

Proof. Let I be an independent set in G[S], such that α(S) = |I|. Let {xF }F∈F be a fractional
cover of S, satisfying

∑
F∈F xF = fcovF (S). We have that,

a ·
∑
F∈F

xF ≥ a ·
∑
F∈F

∑
v∈F∩I

xF
a

=
∑
v∈I

∑
F∈F
F∋v

xF ≥
∑
v∈I

1 ≥ |I|

where the first inequality uses the fact that α(F ) ≤ a for all F ∈ F . Hence, we conclude that
α(S) ≤ a · fcovF (S). □

Theorem 1.2. For every positive integer c there exists an integer d = d(c) with the following
property. If C is a hereditary graph class such that for every G ∈ C and for every two non-adjacent
vertices u, v ∈ V (G), there exists a set X ⊆ V (G) disjoint from {u, v} with |X| ≤ (ω(G) log |V (G)|)c
that separates u from v, then for every G ∈ C and for every two non-adjacent vertices u, v ∈ V (G),

there exists a set X ⊆ V (G) disjoint from {u, v}, with α(X) ≤ logd(|V (G)|), that separates u from
v.
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Proof. We may assume that |V (G)| ≥ 3 for otherwise the conclusion of the theorem holds taking
X = ∅. Let t be the smallest integer such that t > (2 log(2t))c. Consider the complete bipartite
graph Kt,t on 2t vertices, and let u, v be two vertices on the same side of the bipartition in Kt,t.
Observe that u and v are non-adjacent. Furthermore, any vertex subset X ⊆ V (Kt,t) \ u, v that
separates u from v has size at least t. Finally note that ω(Kt,t) = 2. Therefore, by the definition of
C and the choice of t, it follows that C does not contain Kt,t. Let G ∈ C. Since C is hereditary, G is

2Kt-free. Therefore, by Lemma 3.1, G has a (1, a)-container family F of size |V (G)|(2t log |V (G)|+3)4

for a ≤ (2t log |V (G)|+ 3)4.
Define A := N(u), B := N(v), G′ := G−{u, v}, and f := 6 · ⌈(12 ·a · ⌈log 2|F|⌉ · log |V (G)|)c+1⌉.

Note that since u and v are non-adjacent, we have A,B ⊆ V (G′). We apply Theorem 8.1 to the
tuple (G′, A,B, f, a,F) with the parameter ℓ = ⌈log 2|F|⌉, which leads to two possible cases.

Suppose there exists a multiset Q of induced A–B paths in G′ of cardinality at least f · ℓ, such
that for every F ∈ F , the number of paths in Q that have a non-empty intersection with F is at
most 6ℓ. Then let H := G[{u, v} ∪

⋃
P∈Q V (P )] and note that since u and v are non-adjacent, H

has at least three vertices. As F is a (1, a)-container family, every clique in G, and consequently
in the induced subgraph H, is contained in some F ∈ F . Furthermore, since the paths in Q are
induced and each F ∈ F has independence number at most a, we have |V (P ) ∩ F | ≤ 2a for every
P ∈ Q and F ∈ F . It follows that ω(H) ≤ maxF∈F{|F ∩ V (H)|} ≤ 12 · a · ℓ. Now, H belongs
to the family C, since C is hereditary and H is an induced subgraph of G. Since u and v are
non-adjacent in H, there is a set X ⊆ V (H) disjoint from {u, v} with |X| ≤ (12 · a · ℓ · log |V (H)|)c
that separates u from v in H. But, as |X| ≥ covF (X), we have a subfamily F ′ ⊆ F of cardinality

at most (12 · a · ℓ · log |V (H)|)c < f
6 such that

⋃
F∈F ′ F separates u from v in H. However, this

leads to a contradiction as |Q| ≥ f · ℓ and as the number of paths in Q that intersect F is at most

6ℓ for every F ∈ F , which implies that |F ′| is at least f
6 .

Therefore, G′ has an A–B separator X with fcovF (X) ≤ 12 · a · f · log(2|V (G′)|). But, X
is a set disjoint from {u, v} that separates u from v in G and, by Lemma 8.2, satisfies α(X) ≤
12 · a2 · f · log(2|V (G′)|). Hence, we define d(c) to be the smallest positive integer such that

logd(c)(4n) ≥ 12 · (2t log n+3)8 ·6 · ⌈(12 · (2t log n+3)4 · ⌈1+(2t log n+3)4 · log n⌉ · log n)c+1⌉ · log 2n

holds for every positive integer n, which completes the proof of the theorem. □

In order to prove Theorem 8.4, we need the following lemma. We remark that the proof of
Lemma 8.3 follows closely that of Lemma 7.1 in [7].

Lemma 8.3. Let G be a graph, and let a be a positive integer. If for every independent set
I ⊆ V (G) of size at least a, there exist disjoint subsets I1, I2 ⊆ I and an I1–I2 separator S such
that S ∩ (I1 ∪ I2) = ∅ and α(S) ≤ min{|I1|, |I2|}, then twα(G) ≤ 3

2 · a.

Proof. We will prove that for every set Z ⊆ V (G) with α(Z) = a there is a tree decomposition
(T, χ) of G such that α(χ(t)) ≤ 3

2 · a for every t ∈ T , and that there exists t ∈ T such that
Z ⊆ χ(t). The proof is by induction on |V (G)|. Observe that every induced subgraph of G satisfies
the assumption of the lemma.

Let Z ⊆ V (G) with α(Z) = a. Let I be an independent set of Z with |I| = α(Z). Let I1,
I2 ⊆ I be disjoint subsets of I and let S be an I1–I2 separator satisfying S ∪ (I1 ∩ I2) = ∅ and
α(S) ≤ min{|I1|, |I2|}. Let C1, . . . , Cr be the connected components of G−S and define Zi := Z∩Ci

for every i ∈ [r]. Consider Zi for some i ∈ [r] and observe that as S is an I1–I2 separator, Zi are
disjoint and anti-complete from either I1 or I2. Without loss of generality, assume Zi ∩ I1 = ∅.
Let I ′i be an independent set in Zi such that |I ′i| = α(Zi). If |I ′i| > max{|I1|, |I2|}, then I ′i ∪ I1
will be an independent set in Z of size strictly greater than I, which is a contradiction. Hence,
α(Zi) ≤ max{|I1|, |I2|} which combined with |I| ≤ |I1| + |I2|, implies that α(Zi ∪ S) ≤ |I| = a.
If α(Ci) < a then let (Ti, χi) be the trivial tree decomposition with T having a single node ti
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and χ(ti) := V (Ci). Otherwise, let Z ′
i ⊆ Ci be such that Zi ∪ S ⊆ Z ′

i and α(Z ′
i) = a and let

(Ti, χi) be the tree decomposition of G[Ci] obtained by applying our inductive assumption, with
Z ′
i ⊆ χi(ti) for some ti ∈ V (Ti). Now, let T be the tree obtained from the disjoint union of

T1, . . . , Tr by adding a new vertex t0 which is only adjacent to t1, . . . , tr. Define χ(t) = χi(t) for
every t ∈ Ti, and let χ(t0) = Z ∪ S. It can be verified that (T, χ) is a tree decomposition of G.
Since α(Z ∪ S) ≤ a +min{|I1|, |I2|} ≤ 3

2 · a and since Z ⊆ χ(t0), we have that (T, χ) satisfies the
conclusion of the lemma. □

Theorem 8.4. Let G be a graph, f , a, and b be positive integers with a ≥ 2, and let F be a
(b, a)-container family in G. If twα(G) > 1020000 · ⌈log 2n · a3 · log(f · a) · f⌉, then there exists an
induced subgraph G′ ⊆ G and an independent set I ⊆ V (G′) of size 680000 · ⌈log 2n ·a3 · log(f ·a) ·f⌉
that satisfies the following properties:

• Every induced subgraph H of G′ with α(H) ≤ b, satisfies

|V (H)| ≤ 21 · b · (⌈log 4|F|⌉+ 680000 · ⌈log 2n · a3 · log(f · a)⌉)
• For every (I, 12)-balanced separator S in H, we have that covF (S) ≥ f .

Proof. We begin with the following claim.

Claim 8.4.1. There exists an independent set I ⊆ V (G) in G, of size 680000·⌈log 2n·a3·log(f ·a)·f⌉
for which no (I, 95

100)-balanced separator S in G satisfies fcovF (S) ≤ 17000 · log 2n · a2 · log(f · a) · f .
Proof. Assume for contradiction that, for every independent set I ⊆ V (G) such that |I| = 680000 ·
⌈log 2n ·a3 · log(f ·a) ·f⌉, there exists an (I, 95

100)-balanced separator S in G with fcovF (S) ≤ 17000 ·
log 2n · a2 · log(f · a) · f . Fix such an independent set I and the corresponding separator S ⊆ V (G).
Observe that, by Lemma 8.2, we have α(S) ≤ a·fcovF (S) ≤ 17000·log 2n·a3 ·log(f ·a)· f = 1

40 |I|.
We will show that there exist disjoint subsets I1, I2 ⊆ I such that S is an I1–I2 separator with
S ∩ (I1 ∪ I2) = ∅ and min{|I1|, |I2|} ≥ 1

40 |I|. This suffices to prove the claim via Lemma 8.3, since

twα(G) > 1020000 · ⌈log 2n · a3 · log(f · a) · f⌉ = 3
2 |I|.

To this end, let C1, . . . , Cr be components of G − S that intersect I and define I ′i := Ci ∩ I
for every i ∈ [r]. By relabeling the sets if necessary, assume that |I ′i| ≥ |I ′i+1| for all i ∈ [r]. If

|I ′1| ≥
|I|
2 , then define I1 := I ′1 and I2 = (

⋃
i∈[r] I

′
i) \ I1. Here, we have |I2| ≥ |I| − |I1| − |S ∩ I| ≥

|I| − 95
100 |I| −

1
40 |I| =

1
40 |I|. Otherwise, Let q be the smallest integer in [r] such that

∑q
i=1 |I ′i| ≥

|I|
3 .

We claim that
∑q

i=1 |I ′i| ≤
2|I|
3 . If q = 1, the claim holds trivially. Else, observe that

q∑
i=1

|I ′i| = |I ′q| +

q−1∑
i=1

|I ′i| ≤ |I ′q−1| +

q−1∑
i=1

|I ′i| ≤ 2

q−1∑
i=1

|I ′i| ≤ 2|I|
3

Define I1 := ∪q
i=1I

′
i and I2 := I \ (I1 ∪ S). Since the sets in {I ′i}i∈[r] are pairwise disjoint, we have

that |I1| =
∑q

i=1 |I ′i|. Hence, |I1| ≥ |I|
3 and since |I1| ≤ 2|I|

3 , we have |I2| ≥ |I| − |I1| − |S ∩ I| ≥
|I| − 2

3 |I| −
1
40 |I| ≥

1
40 |I|. Hence, in either case, we obtain disjoint subsets I1, I2 of I such that S

is an I1–I2 separator and S ∩ (I1 ∪ I2) = ∅ and min{|I1|, |I2|} ≥ 1
40 |I|. This concludes the proof of

the claim. □

Let I be the independent set in G of whose existence is guaranteed by Claim 8.4.1. Namely, I
has size 680000 · ⌈log 2n · a3 · log(f · a) · f⌉, and every (I, 95

100)-balanced separator S in G satisfies

fcovF (S) > 17000 · log 2n · a2 · log(f · a) · f). Observe that the objective value of any optimal
solution to the balanced separator LP for the instance (G, I,F), as described in Section 6, is at
least f . Otherwise, by Theorem 6.1, the set I would admit a balanced separator S with fcovF (S) ≤
17000 · log 2n · a2 · log(f · a) · f , contradicting the definition of I.

By strong duality, the dual LP described in Section 7 also has an optimal objective value,
denoted by f ′, that is at least f . Now, applying Theorem 7.1 to the instance (G, I,F), with
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ℓ = 7 · (⌈f ′ · log 4|F|⌉+ 680000 · ⌈log 2n · a3 · log(f · a) · f⌉), guarantees the existence of a subgraph
G′ ⊆ G with I ⊆ V (G′) such that the following holds: every induced subgraph H of G′ with
α(H) ≤ b satisfies |V (H)| ≤ 3 · b · ℓ

f ′ ≤ 21 · b · (⌈log 4|F|⌉ + 680000 · ⌈log 2n · a3 · log(f · a)⌉), and
for every (I, 12)-balanced separator S in G′, we have covF (S) ≥ f . This concludes the proof of the
theorem.

□

For the proof of Theorem 1.1, we also need the following propositions.

Proposition 8.5 ([12]). For every positive integer t, there exist positive real numbers c(t) and ε(t)

such that, every Kt,t-free graph G on n vertices satisfies ω(G) ≥ c(t) · nε(t) or α(G) ≥ c(t) · nε(t).

Proposition 8.6 ([9]). Let G be a graph, and let k be a positive integer. If tw(G) ≤ k, then for
every set Z ⊆ V (G), there exists a (Z, 12)-balanced separator S, such that |S| ≤ k.

We remark that Proposition 8.5 is not explicitly stated as such by Erdős and Hajnal [12], but is
an immediate implication of Theorem 1.2 in [12].

Theorem 1.1. Let C be a hereditary graph class. The following are equivalent:

(i) There exists a positive integer c1 such that for every G ∈ C on at least 3 vertices we have
twα(G) ≤ (log |V (G)|)c1.

(ii) There exists a postive integer c2 such that for every G ∈ C on at least 3 vertices we have
twα(G) ≤ (ω(G) log |V (G)|)c2.

(iii) There exists a positive integer c3 such that for every G ∈ C on at least 3 vertices we have
tw(G) ≤ (ω(G) log |V (G)|)c3.

Proof. (i) =⇒ (ii) Trivially true.

(ii) =⇒ (iii) Let t be the smallest integer such that t > (2 log(2t))c2 . Consider the complete
bipartite graph Kt,t on 2t vertices. Since any tree decomposition (T, χ) of G has a node v ∈ V (T )
such that χ(v) contains one side of the bipartition, we have twα(G) ≥ t. Furthermore, ω(Kt,t) = 2.
Therefore, by the definition of C and the choice of t, it follows that C does not contain Kt,t.

Let G ∈ C. Since C is hereditary, G is 2Kt-free. Let (T, χ) be a tree decomposition of G such
that α(χ(v)) ≤ twα(G) for all v ∈ V (T ). Applying Proposition 8.5 to G[χ(v)], where v ∈ V (T ),

implies that |χ(v)| < 1
c(t)((ω(G) + 1) · (twα(G) + 1))

1
ε(t) for some positive constants c(t) and ε(t).

Therefore, defining c1 to be the smallest positive integer that satisfies

(ω(G) log |V (G)|)c3 ≥ 1

c(t)
((ω(G) + 1) · ((ω(G) log |V (G)|)c2 + 1))

1
ε(t)

suffices to prove the implication.

(iii) =⇒ (i) Let t be the smallest integer such that t > (2 log(2t))c3 . Consider the complete
bipartite graph Kt,t on 2t vertices. Since any tree decomposition (T, χ) of Kt,t has a node t ∈ V (T )
such that χ(t) contains one side of the bipartition, we have tw(G) ≥ t. Furthermore, ω(Kt,t) = 2.
Therefore, by the definition of C and the choice of t, it follows that C does not contain Kt,t.

Let G ∈ C, since C is hereditary, G is Kt,t-free (equivalently 2Kt-free). Therefore, by Lemma 3.1,

G has a (1, a)-container family F of size |V (G)|(2t log |V (G)|+3)4 for a ≤ (2t log |V (G)|+ 3)4. Choose
f to be the smallest positive integer satisfying

f > (21 · (⌈log 4|F|⌉+ 680000 · ⌈log 2|V (G)| · a3 · log(f · a)⌉)) · log |V (G)|)c3

We apply Theorem 8.4 to G, f and F , and observe that, if twα(G) > 1020000 · ⌈log 2|V (G)| ·
a3 · log(f · a) · f⌉ then there exists an induced subgraph G′ ⊆ G with the following properties:
ω(G′) ≤ 21 · (⌈log 4|F|⌉+ 680000 · ⌈log 2|V (G)| · a3 · log(f · a)⌉); and there exists a set I ⊆ V (G′)
such that every (I, 12)-balanced separator S in G′, satisfies |S| ≥ covF (S) ≥ f . By Proposition 8.6,
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we conclude that tw(G′) ≥ f . Also, since |V (G′)| is at least f ≥ 3, and since C is hereditary we
have G′ ∈ C. This leads to a contradiction due to our choice of f , as G′ now satisfies tw(G′) ≤
(ω(G′) log |V (G′)|)c3 < f . Thus we conclude that twα(G) ≤ 1020000 ·⌈log 2|V (G)| ·a3 · log(f ·a) ·f⌉.

Therefore, for every n ∈ N, if we let an := (2t log n+ 3)4 and let fn denote the smallest positive
integer such that,

fn > (21 · (⌈an log n+ 2⌉+ 680000 · ⌈log 2n · a3n · log(fn · an)⌉)) · log n)c3

then, defining c1 to be the smallest positive integer that satisfies

logc1 n ≥ 1020000 · ⌈log 2n · a3n · log(fn · an) · fn⌉
suffices to prove the implication and consequently the theorem. □

9. Conclusion

We have shown a “poly-logarithmic” variant of the recently disproved Milanič’s Conjecture (Con-
jecture 1.1). Our main result is that for every hereditary graph class C, every graph in C has poly-
logarithmic tree-independence number if and only if every graph in C has treewidth upper bounded
by a polynomial in log n and the size of its maximum clique. It remains to characterize the classes
C such that every graph in C has poly-logarithmic tree-independence number. The following con-
jecture, if true, would be sufficient to characterize all classes closed under induced minors (that is,
closed under vertex deletion and edge contraction).

Conjecture 9.1. For every positive integer t there exists an integer c such that every graph G on
at least 3 vertices either contains Kt,t or ⊞t as an induced minor, or satisfies twα(G) ≤ (log n)c.

Here, for every positive integer t the graph ⊞t is the t× t grid, defined as the graph with vertex
set [t]× [t] where every pair (i, j), (i′, j′) of vertices are adjacent if and only if |i− i′|+ |j − j′| = 1.

On the way to showing our main results we defined the notion of independence-containers, and
showed that every hereditary family excluding the kKk for some positive integer k admit container
families of quasi-polynomial size that cover all vertex sets with poly-logarithmic independence
number. We leave behind the following open problem,

Problem 9.2. For every pair of integers k and b, does there exists an integer a such that every
graph G which excludes kKk as an induced subgraph has a (b, a)-container family F of size at most
na.
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