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Abstract

A graph G is a quasi-line graph if for every vertex v ∈ V (G), the set of neighbors of v in G can
be expressed as the union of two cliques. The class of quasi-line graphs is a proper superset of
the class of line graphs. Hadwiger’s conjecture states that if a graph G is not t-colorable then it
contains Kt+1 as a minor. This conjecture has been proved for line graphs by Reed and Seymour
[10]. We extend their result to all quasi-line graphs.



1 Introduction

Let G be a finite graph. Denote the set of vertices of G by V (G) and the set of edges of G by E(G).
A k-coloring of G is a map c : V (G) → {1, . . . , k} such that for every pair of adjacent vertices
v,w ∈ V (G), c(v) 6= c(w). We may also refer to a k-coloring simply as a “coloring”. The chromatic
number of G, denoted by χ(G), is the smallest integer such that there is a χ(G)-coloring of G.

For v ∈ V (G), we denote the set of neighbors of v in G by NG(v), and for X ⊂ V (G) we define
NG(X) =

⋃

x∈X N(x). For X ⊂ V (G), let G|X denote the subgraph of G induced on X and let
G \ X denote the subgraph of G induced on V (G) \ X. For G1, G2 induced subgraphs of G, let
G1 ∪ G2 = G|(V (G1) ∪ V (G2)). We say that X ⊂ V (G) is a claw if G|X is isomorphic to the
complete bipartite graph K1,3. A graph G is then claw-free if no subset of V (G) is a claw. We
define a path P in G to be an induced connected subgraph of G such that either P is a one-vertex
graph, or two vertices of P have degree one and all the others have degree two. The complement
of G is the graph G, on the same vertex set as G, and such that two vertices are adjacent in G

if and only if they are non-adjacent in G. A hole in a graph G is an induced cycle with at least
four vertices. An antihole in G is a hole in G. A hole (antihole) is odd if it has an odd number
of vertices. A clique in G is a set of vertices of G that are all pairwise adjacent. A stable set in
G is a clique in the complement of G. The clique number of G, denoted by ω(G), is the size of
a maximum clique in G. The complete graph on t vertices, denoted by Kt, is a graph such that
|V (Kt)| = t and V (Kt) is a clique. A component is a maximal connected subgraph of G. A set
S ⊂ V (G) is a cutset if G \ S has more components than G. We say that S is a clique cutset if it
is both a clique and a cutset.

We say that two subgraphs S1, S2 of G are adjacent if there is an edge between V (S1) and
V (S2). A graph H is said to be a minor of a graph G if a copy of H can be obtained from G

by deleting and/or contracting edges. Let H be a graph with V (H) = {v1, . . . , vn}. Then H is a
minor of G if and only if there are |V (H)| non-null connected subgraphs A1, . . . , An of G, such that
V (Ai ∩ Aj) = ∅, and Ai and Aj are adjacent if vi is adjacent to vj. We say that a graph G has a
clique minor of size t if G has Kt as a minor.

In 1943, Hadwiger [7] conjectured that for every loopless graph G and every integer t ≥ 0,
either G is t-colorable, or G has a clique minor of size t+ 1. In the same paper, Hadwiger proved
his conjecture for t ≤ 3. Six years earlier, Wagner [12] proved that the case t = 4 is equivalent
to the four color theorem, which states that every planar graph admits a 4-coloring. The four
color theorem was proved by Appel and Haken [1], [2] in 1977. In 1993, Seymour, Robertson,
and Thomas [11] proved Hadwiger’s conjecture for t = 5 also using the four color theorem. Thus,
Hadwiger’s conjecture is known to be true for t ≤ 5 and remains unsolved for t > 5.

Hadwiger’s conjecture has also been proved for some special classes of graphs. The line graph
of a graph G, denoted by L(G), is a graph whose vertices are the edges of G, and if u, v ∈ E(G)
then uv ∈ E(L(G)) if u and v share a vertex in G. In a recent work, Reed and Seymour [10] proved
Hadwiger’s conjecture for line graphs. In this paper, we prove Hadwiger’s conjecture for a class
of graphs that is a proper superset of line graphs and a proper subset of claw-free graphs, the set
referred to as quasi-line graphs. A graph G is a quasi-line graph if for every vertex v, the set of
neighbors of v can be expressed as the union of two cliques. Note that this is a partition of the
vertex set of the neighborhood of v. The main result of this paper is the following:

Theorem 1.1. Let G be a quasi-line graph with chromatic number χ. Then G has a clique minor
of size χ.

Our proof of Theorem 1.1 uses a structure theorem for quasi-line graphs that appears in [3].
The structure theorem asserts that every quasi-line graph belongs to one of two classes: the first is
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the class of the so-called “fuzzy circular interval graphs,” and the second is “compositions of fuzzy
linear interval strips,” which is a generalization of line graphs. The word “fuzzy” in both cases
refers to the presence of a certain structure in a graph that is called a “non-trivial homogeneous
pair” (we give precise definitions in the next section). We also use the following result from [6]:

Theorem 1.2. Let G be a quasi-line graph. Then χ(G) ≤ 3
2ω(G).

The remainder of this paper is organized as follows. In Section 2, we state the structure
theorem for quasi-line graphs and all of the necessary definitions. In Section 3 and Section 4, we
prove Theorem 1.1 for circular interval graphs and compositions of linear interval strips, respectively
(these are precisely the quasi-line graphs that have no non-trivial homogeneous pairs). In Section 5,
we use the results of the two previous sections and deal with non-trivial homogeneous pairs, to
complete the proof of Theorem 1.1.

2 Structure theorem for quasi-line graphs

We start this section by introducing some definitions from [3] and [4] and then state the structure
theorem of [3].

Let Σ be a circle and let F1, . . . , Fk be subsets of Σ, each homeomorphic to the closed interval
[0, 1]. Let V be a finite subset of Σ, and let G be the graph with vertex set V in which v1, v2 ∈ V

are adjacent if and only if v1, v2 ∈ Fi for some i. Such a graph is called a circular interval graph.
Let F = {F1, . . . , Fk}. Then we call the pair (Σ,F) a representation of G. A subset S ⊂ V is a
block if S = Fi ∩ V for some Fi ∈ F. We then call S the block of Fi. A linear interval graph is
constructed in the same way as a circular interval graph except we take Σ to be a line instead of a
circle. It is easy to see that all linear interval graphs are also circular interval graphs.

The structure theorem that we use states that there are two types of quasi-line graphs. The
first subclass is a generalization of the class of circular interval graphs and we proceed to describe
it below. Once again, we start with a few definitions.

Let X,Y be two subsets of V (G) with X ∩ Y = ∅. We say that X and Y are complete to each
other if every vertex of X is adjacent to every vertex of Y , and we say that they are anticomplete
if no vertex of X is adjacent to a member of Y . Similarly, if A ⊆ V (G) and v ∈ V (G) \ A, then
v is A-complete if it is adjacent to every vertex in A, and A-anticomplete if it has no neighbor
in A. A pair (A,B) of disjoint subsets of V (G) is called a homogeneous pair in G if for every
vertex v ∈ V (G) \ (A ∪ B), v is either A-complete or A-anticomplete and either B-complete or
B-anticomplete.

Let G be a circular interval graph with V (G) = {v1, . . . , vn} in order clockwise. An edge joining
vj to vk with j < k is called a maximal edge if {vj , vj+1, . . . , vk} is a block. In this case the
following operation produces another quasi-line graph: replace vj and vk by two cliques A and B,
respectively, such that every member of A has the same neighbors as vj and every member of B
has the same neighbors as vk in V (G)\{vj , vk}, and the edges between A and B are arbitrary. The
pair (A,B) is then a homogeneous pair of cliques.

Let (A,B) be a homogeneous pair of cliques in a circular interval graph. We say that (A,B) is
non-trivial if there exists an induced 4-cycle in G with exactly two vertices in A and exactly two
vertices in B. It is easy to see that if a fuzzy circular interval graph is not a circular interval graph,
then it has a non-trivial homogeneous pair.

We proceed with the construction of graphs that belong to the second subclass of quasi-line
graphs. A vertex v ∈ V (G) is simplicial if the set of neighbors of v is a clique. A claw-free graph
S together with two distinguished simplicial vertices a, b is called a strip (S, a, b), with ends a and
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b. If S is a linear interval graph with V (S) = {v1, . . . , vn} in order and with n > 1, then v1, vn are
simplicial. If either

• NS(a1) ∩NS(an) = ∅, or

• NS(a1) = NS(an) = V (S) \ {a1, an},

then (S, v1, vn) is a strip, called a linear interval strip. Let us call a strip (S, a, b) with NS(a) =
NS(b) = V (S) \ {a, b} a line graph strip. Since linear interval graphs are also circular interval
graphs, we can define fuzzy linear interval strips by introducing homogeneous pairs of cliques in
the same manner as before; with the exception that edges incident with the two ends of the strip
cannot be replaced by homogeneous pairs.

Let (S, a, b) and (S′, a′, b′) be two strips. Then they can be composed as follows. Let A,B be
the set of neighbors of a, b in S respectively, and define A′, B′ analogously. Consider the disjoint
union of S \ {a, b} and S′ \ {a′, b′}, and make A complete to A′ and B complete to B′.

This method of composing two strips described above can be used as follows. Let S0 be a
graph which is the disjoint union of complete graphs with |V (S0)| = 2n. We arrange the vertices
into pairs (a1, b1), . . . , (an, bn), such that each pair meets two cliques of S0. For i = 1, . . . , n, let
(S′

i, a
′
i, b

′
i) be a strip, Let Si be the graph obtained by composing (Si−1, ai, bi) and (S′

i, a
′
i, b

′
i). The

resulting graph Sn is then called a composition of the strips (S′
i, a

′
i, b

′
i).

We are finally ready to state the structure theorem for quasi-line graphs [3] that we will use to
prove our main result.

Theorem 2.1. Let G be a connected, quasi-line graph. Then G is either a fuzzy circular interval
graph or a composition of fuzzy linear interval strips.

3 Circular Interval Graphs

We begin the proof of Theorem 1.1 by proving the result for circular interval graphs. Let G be a
circular interval graph with V (G) = {v1, . . . , vn} in order clockwise. Let vivj be an edge with i < j

such that vi, vi+1, . . . , vj are all contained in some block. Then we say that S = {vi, vi+1, . . . , vj}
is the set of vertices contained non-strictly underneath the edge vivj . The length of an edge is the
number of vertices non-strictly underneath it. We further say that vi has an edge of length |S| in
the clockwise direction and vj has an edge of length |S| in the counterclockwise direction.

Theorem 3.1. Let G be a circular interval graph with representation (Σ,F) where F = {F1, . . . , Fk}
and such that χ(G) = ω(G) + i. Then G has a clique minor of size ω(G) + i.

Proof. Let ω = ω(G), χ = χ(G), and n = |V (G)|. We proceed by induction on n.

(1) For all v ∈ V (G), we may assume deg(v) ≥ ω + i− 1.

Suppose there exists v ∈ V (G) such that deg(v) ≤ ω + i − 2. If χ(G \ {v}) = ω + i − 1 then
there is still a color left for v implying that χ(G) = ω + i− 1, which is a contradiction. Otherwise,
χ(G \ {v}) = ω + i and the theorem holds by induction. This proves (1).

(2) For every v ∈ V (G), there is an edge of length i+ 1 in each direction.

By (1), for every v ∈ V (G) the sum of the lengths of maximal edges in each direction is at least
ω+ i+ 1, and the maximum length in either direction is ω. Therefore, the length in each direction
must be at least i+ 1. This proves (2).
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(3) If there is no clique of size ω which is a block, then the theorem holds.

Suppose there is no clique of size ω which is a block. Let Ii be the block of Fi for 1 ≤ i ≤ m and
let I = {I1, . . . , Im}. Let Q be a clique of size ω. Then there exist a1, a2, a3 ∈ Q such that a1, a2, a3

are not all contained in the same block. Hence there exist I1, I2, I3 ∈ I such that a1, a2 ∈ I1,
a1, a3 ∈ I2, a2, a3 ∈ I3 and a3 6∈ I1, a2 6∈ I2, a1 6∈ I3. Then V (G) = I1 ∪ I2 ∪ I3.

Choose I1, I2, I3 such that

V (Q) ∩
⋃

1≤i<j≤3

(Ii ∩ Ij)

is maximal.
If possible, permute I1, I2, I3 so that Q ∩ (I1 \ (I2 ∪ I3)) 6= ∅.
Let {i, j, k} = {1, 2, 3}. Let Ji = Ii \ (Q ∪ Ij ∪ Ik), and let Jj and Jk be defined similarly.
Since V (G) \ J1 ⊆ N(a3), it follows that V (G) \ J1 is the union of two cliques, and hence by

[8] can be colored with ω colors. Since χ = ω + i, it follows that |J1| ≥ i. Analogously, |Jj | ≥ i for
j = 2, 3. Consider the graph induced on J1 ∪ J2 ∪ J3 and let H be that graph with all the edges
deleted except for those between the members of J1 and the members of J2 ∪ J3. Then H is a
bipartite graph with bipartition (J1, J2 ∪ J3).

Suppose first that H has a matching M of size i. We claim that the elements of M together
with the members of Q form ω + i disjoint connected subgraphs of G that are pairwise adjacent.
Since J1 ⊆ I1 is a clique, every two members if M are adjacent, and every member of M is adjacent
to every member of Q ∩ I1. Since Q is a clique, every two members of Q are adjacent. Suppose
some m ∈ M is non-adjacent to some q ∈ Q. We may assume that m is the edge vw with v ∈ J1

and w ∈ J2, q ∈ I3 \ (I1 ∪ I2), and q is anticomplete to {v,w}. But then, since G is a circular
interval graph, it follows that q is non-adjacent to a1, contrary to the fact that Q is a clique. This
proves the claim, and so we may assume that no such matching M exists.

Consequently, there exists v ∈ J1 such that |NH(v)| < i. Then v has at most ω− 2 neighbors in
I1, since |I1| < ω, and it has at most i−1 neighbors in J2∪J3. Furthermore, v has no other neighbors
in I2∩I3, since if it did, the structure of circular interval graphs would imply that either J2 ⊂ NG(v)
or J3 ⊂ NG(v). But |J2|, |J3| ≥ i and v has fewer than i neighbors in J2∪J3, a contradiction. Since
by (1), deg(v) ≥ ω+ i− 1, it follows that v has a neighbor in Q \ (I1 ∪ (I2 ∩ I3)), and, in particular,
Q\(I1∪(I2∩I3)) is non-empty. From the choice of I1, this implies that Q∩(I1\(I2∪I3)) 6= ∅. From
the symmetry, we may assume that following I1 \ (I2 ∪ I3) in the direction in which a2 precedes a3,
starting at v, we encounter a vertex q ∈ Q. Since v is anticomplete to I2 ∩ I3, it follows that for
some s ∈ {1, . . . ,m} \ {1, 2, 3}, (Q ∩ I3) ∪ {q} ⊆ Is. But then

V (Q) ∩ (
⋃

1≤i≤2

(Ii ∩ I3) ∪ {q}) ⊆ V (Q) ∩
⋃

1≤i≤2

(Ii ∩ Is)

contrary to the choice of I1, I2, I3. This proves (3).

So we may assume that there is a clique of size ω which is a block.

(4) For every v ∈ V (G), |V (G) \NG(v)| ≥ i+ 1.

Suppose there exists v ∈ V (G) such that |V (G) \ NG(v)| = j ≤ i. Let N = NG(v) ∪ {v} and
M = V (G) \ N . The graph H = G|N is the complement of a bipartite graph and so by König’s
theorem [8] we can color it with ω colors. Since |M | = j − 1, we can color M with j − 1 colors.
But now χ(G) ≤ ω + j − 1 < ω + i, which is a contradiction. This proves (4).
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(5) If n < ω + 2i, then the theorem holds.

Let v ∈ V (G). By (1), |NG(v)| ≥ ω + i− 1 and so |V (G) \NG(v)| ≤ i, contradicting (4). This
proves (5).

(6) If n = ω + 2i+ j with 0 ≤ j < i, then the theorem holds.

Let V (G) = {b1, . . . , bi, a1, . . . , aω, c1, . . . , ci, d1, . . . , dj} in order clockwise, such that {a1, . . . , aω}
is a clique.

(6.1) For k ≤ i, ak is non-adjacent to ck.

Suppose otherwise. We claim that ak is non-adjacent to one of c1, . . . , ck−1, for otherwise we
would get a clique of size greater than ω. It follows that ak is complete to the set {ck+1, . . . , ci, d1, . . . , dj , b1, . . . , bi}.
But then |V (G) \NG(v)| ≤ i, contradicting (4). This proves (6.1).

By symmetry, aω−k+1 is non-adjacent to bi−k+1. Define a coloring c : V (G) → {1, . . . , ω+ j} as
follows:

c(ak) = k

c(ck) = k

c(bk) = ω + k − i

c(dk) = ω + k.

Since i ≤ ω
2 by Theorem 1.2, it follows from (6.1) that this is a coloring of G. But now χ(G) ≤ ω+j

and j < i, which is a contradiction. This proves (6).

So we may assume that n = ω + mi + j where m ≥ 3 and 0 ≤ j ≤ i − 1. Let V (G) =
{a1, . . . , aω, b1, . . . , bk} in order clockwise, such that {a1, . . . , aω} is a clique. Let A = {a1, . . . , aω}
and B = {b1, . . . , bk}.

(7) If there exist i vertex disjoint paths S1, . . . , Si such that the ends of St are bt and b(m−1)i+j+t

for 1 ≤ t ≤ i, and
⋃i

j=1 V (Sj) ⊆ B, then the theorem holds.

By (2), bt is adjacent to bt′ for 1 ≤ t < t′ ≤ i and so S1, . . . , Si are pairwise adjacent. By (1),
for every 1 ≤ s ≤ ω and 1 ≤ t ≤ i, as is adjacent to at least one of bt and b(m−1)i+j+t. But now,
since A is a clique, A together with S1, . . . , Si form ω+ i vertex disjoint connected subgraphs of G
that are pairwise adjacent. This proves (7).

(8) If there is a clique of size 2i in B, then the theorem holds.

Let the clique be K = {bs+1, . . . , bs+2i}. Let I be a set of consecutive integers such that
I ⊆ {1, . . . , k} and |I| ≥ i. Let B′ = {bi : i ∈ I} and let G′ = G|B′. We claim that G′ is
i-connected. Suppose not. Then there exists X ⊂ B′ such that |X| < i, B′ \X = B1 ∪ B2, B1 is
anticomplete to B2, and both B1 and B2 are non-empty. But then there exists bs ∈ B1 and bt ∈ B2

such that |t − s| ≤ i. By symmetry, we may assume that t > s. But then bt is non-adjacent to
every bs′ with s′ ≤ s, contradicting (2). This proves the claim.

Now by Menger’s theorem [9] and the claim, there exist i vertex disjoint paths P1, . . . , Pi such
that the ends of Pt are bt and some vertex in {bs+1, . . . , bs+i}, and V (Pt) ⊆ {b1, . . . , bs+i}; and
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i vertex disjoint paths Q1, . . . , Qi such that the ends of Qt are b(m−1)i+j+t and some vertex of
{bs+i+1, . . . , bs+2i}, and V (Qt) ⊆ {bs+i+1, . . . , bk} (note that some of Pt or Qt may consist of just
a single vertex). Since K is a clique, for every 1 ≤ t ≤ i the end of Pt in K is adjacent to the end
of Qt in K. Hence, there exist i vertex disjoint paths S1, . . . , Si such that the vertex set of St is
V (Pt) + V (Qt). Therefore, the ends of St are bt and b(m−1)i+j+t, and V (St) ⊆ B. Now by (7), (8)
follows.

(9) If m is even, then the theorem holds.

Since m is even, it follows that m ≥ 4. Suppose first that for 2i+ 1 ≤ s ≤ 3i, bs is adjacent to
bs+i+j. By (2) and the assumption,

bq − bi+q − b2i+q − b3i+q+j − b4i+q+j − · · · − b(m−1)i+q+j

is a path for 1 ≤ q ≤ i. But now, by (7), the theorem holds. So we may assume that bsbs+i+j is not
an edge for some s ≥ 2i+ 1. Since by (8) bsbs−2i+1 is not an edge, and by (1) deg(bs) ≥ ω + i− 1,
it follows that (i + j − 1) + 2i − 1 ≥ ω + i − 1 and so 2i + j ≥ ω + 1. But now we can define a
coloring c : V (G) → {1, . . . , ω + j} as follows:

c(at) = t for 1 ≤ t ≤ ω

c(bt) =

{

t− si for s = 0, 2, . . . ,m− 2 and 1 + si ≤ t ≤ 2i+ si

ω + t−mi for mi+ 1 ≤ t ≤ mi+ j

We claim that c is a coloring of G. The only colors used on more than one vertex are the colors
1, . . . , 2i. Let 1 ≤ t ≤ 2i. Then the vertices v ∈ V (G) with c(v) = t are at and bt+is for
s = 0, 2, . . . ,m − 2. It suffices to check that each one of these vertices is non-adjacent to the next
one in clockwise order. By (8), bsi+t is non-adjacent to b(s+2)i+t. Next, since there is no edge of
length greater than ω at is non-adjacent to bt, and since 2i + j > ω it follows that b(m−2)i+t is
non-adjacent to at. Hence, c is a coloring of G with ω + j < ω + i colors, which is a contradiction.
This proves (9).

In view of (9), we may assume from now on that m is odd.

(10) If ω ≥ 3i and m ≥ 4, then the theorem holds.

We have ω+i−1 ≥ 4i−1 and so every vertex has an edge of length at least 2i in some direction.
For b2i this implies that there is a clique of size 2i in B and so the result holds by (6). This proves
(10).

(11) If ω ≥ 3i and m = 3, then the theorem holds.

Let c : V (G) → {1, . . . , ω + i− 1} be a coloring defined as follows:

c(at) = t for 1 ≤ t ≤ ω

c(bt) =







t for 1 ≤ t ≤ i+ j + 1
ω + t− i− j − 1 for i+ j + 2 ≤ t ≤ 2i+ j

ω + t− 3i− j for 2i+ j + 1 ≤ t ≤ 3i+ j

We claim that c is a coloring of G. The colors used on more than one vertex are 1, . . . , i+ j+1, ω−
i+1, . . . , ω. We note that since ω ≥ 3i, it follows that ω−i+1 > i+j+1. Let 1 ≤ t ≤ i+j+1. Then
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the vertices v ∈ V (G) with c(v) = t are at and bt. We check that these vertices are non-adjacent. In
the clockwise direction there is no edge between at and bt because there is no clique of size greater
than ω and in the counterclockwise direction there is no edge by (8). Now let ω − i + 1 ≤ t ≤ ω.
Then the vertices v ∈ V (G) with c(v) = t are at and bt+3i+j−ω. By symmetry with the previous case
these vertices are non-adjacent. Hence we can color G with fewer than ω colors, a contradiction.
This proves (11).

(12) If 3i > ω > 2i, then the theorem holds.

Let c : V (G) → {1, . . . , ω + i− 1} be a coloring defined as follows:

c(at) = t for 1 ≤ t ≤ ω

c(bt) =







ω + t for 1 ≤ t ≤ j

t− is− j for s = 0, 2, . . . ,m− 3 and 1 + is+ j ≤ t ≤ 2i+ is+ j

ω + t− (m− 1)i− j − 1 for (m− 1)i+ 1 + j ≤ t ≤ mi+ j

Once again, we claim that c is a coloring of G. The colors used on more than one vertex are
1, . . . , 2i, ω, . . . , ω + j. Let 1 ≤ t ≤ 2i. Then the vertices v ∈ V (G) with c(v) = t are at and bt+is+j

for s = 0, 2, . . . ,m − 3. Once again, it suffices to check that each one of these is non-adjacent
to the next one in clockwise order. By (8), bsi+t is non-adjacent to b(s+2)i+t. Next, b(m−3)i+j+t

is non-adjacent to at since 3i > ω and there is no edge of length greater than ω. Similarly, at

is non-adjacent to bt+j . Now let ω + 1 ≤ t ≤ ω + j. The vertices with color t are bt−ω and
bk+t−ω−i+1. Since in the clockwise direction from bt−ω there are more than 2i vertices between bt−ω

and bk+t−ω−i+1, there is no edge in that direction by (8). In the other direction, there are at least
ω− 1 vertices strictly between them, and therefore they are non-adjacent. Finally, the two vertices
with color ω are aω and bk−i+1. These two are non-adjacent for the same reasons as in the case
ω + 1 ≤ t ≤ ω + j. Hence c is a coloring of G with ω + i− 1 colors, which is a contradiction. This
proves (12).

Now by Theorem 1.2 we may assume that ω = 2i. (13) If j < i− 1 then the theorem holds.

Once again, we find a coloring of G with fewer than ω+ i colors, thus obtaining a contradiction.
Let c be a coloring defined as follows:

c(at) = t for 1 ≤ t ≤ ω

c(bt) =







ω + t for 1 ≤ t ≤ j + 1
t− is− j − 1 for s = 0, 2, . . . ,m− 3 and 2 + j + is ≤ t ≤ 2i+ j + 1 + is

ω + t− (m− 1)i− 1 − j for (m− 1)i+ j + 2 ≤ t ≤ mi+ j

We claim that c is a coloring of G. Since ω = 2i the colors used on more than one vertex are
1, . . . , ω + j + 1. Let 1 ≤ t ≤ ω = 2i. Then the vertices v ∈ V (G) with c(v) = t are at and
bt+is+j for s = 0, 2, . . . ,m − 3. It suffices to check that each of these is non-adjacent to the next
one in clockwise order. By (8), bsi+t is non-adjacent to b(s+2)i+t and b(m−3)i+j+t is non-adjacent
to at. Next, at is non-adjacent to bt+j since there is no edge of length greater than ω. Now let
ω+1 ≤ t ≤ ω+ j+1. The vertices with color t are bt−ω and bk+t−ω−i+1. Since ω = 2i, there are at
least ω− 1 vertices between bt−ω and bk+t−ω−i+1 in both directions, and so they are non-adjacent.
Hence, c is a coloring of G with ω+ j+1 < ω+ i colors, which is a contradiction. This proves (13).

In view of (13), we may assume j = i− 1. It follows that

n = ω + (m− 1)i+ 2i− 1.
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We define the coloring c as follows:

c(at) = t for 1 ≤ t ≤ ω

c(bt) =

{

t− is for s = 0, 2, . . . ,m− 3 and 1 + is ≤ t ≤ 2i+ is

t− (m− 1)i+ 1 for (m− 1)i + 1 ≤ t ≤ (m+ 1)i − 1

We verify that c is a coloring of G. Since ω = 2i, there are 2i colors in this coloring. Let 2 ≤ t ≤ 2i.
The vertices with color t are at, bt+is for s = 0, 2, . . . ,m − 3 and bt+(m−1)i−1. By (8), bsi+t is
non-adjacent to b(s+2)i+t for s = 0, 2, . . . ,m− 3 and bt+(m−3)i is non-adjacent to bt+(m−1)i−1. Since
ω = 2i, bt+(m−1)i−1 is non-adjacent to at and similarly at is non-adjacent to bt. The same argument
shows that the vertices colored 1 are also pairwise non-adjacent. Hence, c is a coloring of G with
ω colors, which is a contradiction. This completes the proof of Theorem 3.1.

4 Compositions of linear interval strips

In this section we prove the main theorem for compositions of linear interval strips (meaning that
every strip is a linear interval graph rather than a f uzzy linear interval graph). We begin with two
lemmas.

Lemma 4.1. Let G be a composition of linear interval strips each of which is a line-graph strip.
Then G is a line-graph.

Proof. Since G is a composition of line-graph strips, there exists a graph S0 which is the disjoint
union of complete graphs with |V (S0)| = 2n, and so that the vertices of S0 are arranged into pairs
(a1, b1), . . . , (an, bn), each meeting two cliques of S0; and a family of line-graph strips (S′

i, a
′
i, b

′
i)

where i ∈ {1, . . . , n}; and G = Sn, where Si is the graph obtained by composing (Si−1, ai, bi) and
(S′

i, a
′
i, b

′
i). Let H be the graph whose vertices are the complete subgraphs of S0, and such that two

vertices of H are adjacent if one of the pairs (a1, b1), . . . , (an, bn) meets both of them. Let ei be
the edge of H joining the two cliques of S0 that contain ai and bi. Let H ′ be obtained from H by
replacing ei with |V (Si)

′| − 2 parallel edges for all i ∈ {1, . . . , n}. Then G is the line graph of H ′.
This proves Lemma 4.1.

Lemma 4.2. Let G be a quasi-line graph which is a counterexample to Theorem 1.1 with |V (G)|
minimum and let K1,K2 be two cliques in G. Then there exist min(|K1|, |K2|) vertex disjoint paths
between K1 and K2.

Proof. Suppose not. Let S be a smallest cutset separating K1 and K2. Then Menger’s Theorem [9]
implies that |S| < min(|K1|, |K2|). It follows that there exists a partition (X1,X2) of V (G) \ V (S)
such that Ki ⊂ Xi ∪ S and there are no edges between X1 and X2. Let Gi be the graph obtained
from G|(Xi ∪ S) by adding an edge s1s2 for every pair of non-adjacent vertices s1, s2 ∈ S.

(1) max(χ(G1), χ(G2)) ≥ χ(G).

Suppose not. Then there exist colorings of G1, G2 with fewer than χ(G) colors. We can permute
the colors of these colorings so that they agree on S and from this obtain a coloring of G with fewer
than χ(G) colors, which is a contradiction. This proves (1).

(2) For all v ∈ S, v has a neighbor in X1 and in X2.
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Without loss of generality, suppose there exists v ∈ S with no neighbor in X1. Then if v 6∈ K1

we can add v to X2 and obtain a smaller cutset, S \ {v} separating K1 and K2, contradicting the
minimality of S. So K1 ⊆ S. But |S| < min(|K1|, |K2|), which is a contradiction. This proves (2).

(3) Gi is a quasi-line graph for i = 1, 2.

For v ∈ Xi, v has the same neighbors in Gi as in G and the edges between the neighbors in Gi

are a superset of those in G. Hence, the neighbors of v in Gi are still the union of two cliques. For
v ∈ S, we claim that the set of neighbors of v in Xi is a clique. For suppose v has two neighbors
x1, x

′
1 ∈ X1 that are non-adjacent to each other. By (2), v has a neighbor x2 ∈ X2. But now

x1, x
′
1, x2 are three pairwise non-adjacent vertices in the neighborhood of v in G, contrary to the

fact that G is a quasi-line graph. This proves (3).

Without loss of generality, let χ(G1) ≥ χ(G2). Let S = {s1, . . . , sn} and let P = {P1, . . . , Pn} be
|S| vertex disjoint paths between S and K2 in G2 such that si ∈ Pi. Such paths exist by Menger’s
Theorem [9] and the minimality of S. Let φ : S → P be a bijection defined by φ(si) = Pi.

By the minimality of |V (G)|, there exists a set S of χ(G1) connected disjoint subgraphs of G1

that are pairwise adjacent in G1. For H ∈ S define ψ(H) by

ψ(H) = (H \ S) ∪
⋃

s∈V (H)∩S

φ(S).

Then ψ(H) is a subgraph of G. Define Q = {ψ(H) : H ∈ S}. Then Q is a set of χ(G1) ≥ χ(G)
connected disjoint subgraphs of G. We claim that the members of Q are pairwise adjacent. Suppose
not. Choose Q1, Q2 ∈ Q that are not adjacent. For i = 1, 2, let Hi be the member of S such that
Qi = ψ(Hi). Since K2 is a clique in G, it follows that not both V (Q1) and V (Q2) contain a vertex
of K2, and therefore, not both V (H1) and V (H2) contain a vertex of S. Since H1 and H2 are
adjacent, we deduce that there exist h1 ∈ V (H1) and h2 ∈ V (H2) such that not both h1, h2 are in
S and h1h2 is an edge of G1. But now by the definition of ψ and G1, h1 ∈ V (Q1), h2 ∈ V (Q2) and
h1h2 is an edge of G, contrary to the fact that Q1 and Q2 are non-adjacent. This proves the claim.
Hence G has a clique minor of size χ(G), contrary to the fact that G is the minimal counterexample
to Theorem 1.1. This completes the proof of Lemma 4.2.

For two disjoint subsets U,W of V (G) and a coloring c of G, let mc(U,W ) denote the number
of repeated colors on U and W (the number of colors i such that i ∈ c(U) ∩ c(W )). We can now
prove the main result of this section.

Theorem 4.3. Let G be a connected, quasi-line graph with chromatic number χ and with no clique
minor of size χ, and subject to that with |V (G)| minimum. Then G is not a composition of linear
interval strips.

Proof. Suppose that G is a non-trivial composition of strips. Let r > 0 be an integer and let F be
a family of strips (Si, ai, bi) with 1 ≤ i ≤ r such that G is a composition of the members of F. Let
k be the number of members of F which are not line graph strips.

If k = 0, the result follows from [10] and Lemma 4.1. So we may assume k > 0 and (S1, a1, b1)
is not a line-graph strip. Let A1 = NS1

(a1), B1 = NS1
(b1), A2 = NG(A1) \ V (S1), and B2 =

NG(B1) \ V (S1). Let C1 = V (S1) \ (A1 ∪B1) and C2 = V (G) \ (V (S1) ∪ A2 ∪B2). Then V (G) =
A1 ∪ B1 ∪ C1 ∪ A2 ∪ B2 ∪ C2. Note that if C2 = ∅, and A2 = B2, then G is a circular interval
graph, and the theorem follows from Theorem 3.1. Therefore, we may assume that either C2 6= ∅,
or A2 6= B2.
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Let n be the maximum size of a clique minor in G. Then n < χ. Without loss of generality, we
may assume that |A1 ∪A2| ≤ |B1 ∪B2|. Then, by Lemma 4.2, there exist |A1 ∪A2| vertex disjoint
paths between A1∪A2 and B1 ∪B2 in G. From the definitions of A1, A2, B1, and B2 it follows that
for i = 1, 2, |Ai| ≤ |Bi| and that there exist |Ai| vertex disjoint paths from Ai to Bi in Gi.

Let G′
1 be the graph obtained from G|(A1 ∪B1 ∪C1 ∪A2) by making A2 complete to B1. Then

since there exist |A2| vertex disjoint paths between A2 and B2 in G2, it follows that G′
1 is a minor

of G. We claim that G′
1 is a quasi-line graph. For v ∈ C1, v has the same neighbors in G′

1 as in
G and the edges between those neighbors are likewise the same. For v ∈ A1, we claim that the
set of neighbors of v in B1 ∪ C1 is a clique. For suppose v has two neighbors v1, v2 ∈ B1 ∪ C1

that are non-adjacent to each other. Let v3 ∈ A2. Then v1, v2, v3 are three pairwise non-adjacent
vertices in the neighborhood of v in G, contrary to the fact that G is claw-free. This proves the
claim. Therefore, for v ∈ A1, the set of neighbors of v in G′

1 is the union of two cliques, namely
NG|(B1∪C1)(v) and (A1 ∪ A2) \ {v}. Similarly, for v ∈ B1 the set of neighbors of v in A1 ∪ C1 is a
clique and the set of neighbors of v in G′

1 is the union of two cliques. Finally, for v ∈ A2, the set
of neighbors of v is the union of two cliques, namely A1 ∪A2 \ {v} and B1. This proves the claim.

Similarly, let G′
2 be the graph obtained from G|(A2 ∪ B2 ∪ C2 ∪ A1) by making A1 complete

to B2. Then G′
2 is also a quasi-line graph and a minor of G. Since (S1, a1, b1) is not a line-

graph strip, it follows that |V (G′
2)| < |V (G)|; and since either C2 6= ∅, or A2 6= B2, it follows that

|V (G′
1)| < |V (G)|. Since G′

1 and G′
2 are minors of G, it follows that they contain no clique minors of

size greater than n and so by the minimality of |V (G)|, it follows that χ(G′
1), χ(G′

2) ≤ n. For i = 1, 2,
let c′i be an n-coloring of G′

i. Further, let mi = mc′
i
(Ai, Bi), ai = |Ai|−mi, and bi = |Bi|−mi. Then

m1+a1+b1+ |A2| = m1+a1+b1+m2+a2 ≤ n and m2+a2+b2+ |A1| = m2+a2+b2+m1+a1 ≤ n.
Suppose that b1 ≤ a2. Then since a1 ≤ b1 and a2 ≤ b2, it follows that a1 ≤ b2. Notice c′1 induces

an n-coloring c1 of G1 with mc1(A1, B1) = m1. Let T = {1, . . . , n}. Without loss of generality,
c1(V (G1)) ⊆ T . Construct the following coloring c of G. For v ∈ A1∪B1∪C1 let c(v) = c1(v). Next,
use m2 colors of T \c(A1∪B1) on both A2 and B2 (this is possible since |c(A1∪B1)| = a1 + b1 +m1

and a1 + b1 + m1 + m2 ≤ n). Next, use a2 colors of c(B1) \ c(A1) on the remaining vertices of
A2 and b2 colors of c(A1) \ c(B1) on the remaining vertices of B2 (this is possible because b1 ≤ a2

and a1 ≤ b2). Now since mc′
2
(A2, B2) = m2 it follows that the coloring constructed so far can be

extended to an n-coloring of G2 using the colors of T . We see that c(A2) is disjoint from c(A1) and
c(B2) is disjoint from c(B1). Thus c is an n-coloring of G, a contradiction.

Hence, b1 > a2 and from symmetry b2 > a1. Let T be as before. We construct the following
coloring c of G. We use |B1| + |B2| distinct colors of T on B1 ∪ B2 (this is possible since B1 ∪ B2

is a clique in G). Next, we use m1 colors of c(B1) and a1 colors of c(B2) to color A1. Then we
use m2 colors of c(B2) \ c(A1) and a2 colors of c(B1) \ c(A1) to color A2 (this is possible because
b2 > a1 and b1 > a2). Now since mc′

1
(A1, B1) = m1 we can extend c to an n-coloring of G1 using

the colors of T and since mc′
2
(A2, B2) = m2 we can extend c to an n-coloring of G2 using the colors

of T . Once again we see that c(A2) is disjoint from c(A1) and c(B2) is disjoint from c(B1). But
now c is an n-coloring of G, a contradiction. This proves Theorem 4.3.

5 Homogeneous Pairs

We start with a lemma, that appears in [3], but we include its proof here, for completeness.

Lemma 5.1. Let G be a quasi-line graph and let (A,B) be a homogeneous pair of cliques, such
that A is not complete and not anticomplete to B. Let H be a graph obtained from G by arbitrarily
changing the adjacency between some vertices of A and some vertices of B (all the other adjacencies
remain unchanged). Then H is a quasi-line graph.
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Proof. Let C be the set of vertices ofG that are A-complete and B-complete, D be the set of vertices
of G that are A-complete and B-anticomplete, E the set of vertices of G that are A-anticomplete
and B-complete, and F the set of vertices of G that are A-anticomplete and B-anticomplete. Let
v ∈ V (H). We need to show that the set NH(v) is the union of two cliques of H. We do so by
considering the following cases:

1. v ∈ D ∪ E ∪ F . In this case H|(NH(v)) = G|(NG(v)) and hence H|(NH(v)) is the union of
two cliques since G is a quasi-line graph.

2. v ∈ A ∪ B. From the symmetry, we may assume that v ∈ A. Let B(v) = NH(v) ∩ B.
Then NH(v) = A ∪ B(v) ∪ C ∪ D. Let a ∈ A be a vertex such that NG(a) ∩ B 6= ∅. Let
B(a) = NG(a) ∩ B. Then NG(a) = A ∪ B(a) ∪ C ∪D. Since G is a quasi-line graph, there
exist two cliques, X1,X2, of G, such that X1 ∪X2 = NG(a). Since B is anticomplete to D,
we may assume that D ⊆ X1, and B(a) ⊆ X2. This implies that C = (C ∩X1) ∪ (C ∩X2).
Let X ′

1 = A ∪D ∪ (C ∩X1) and X ′
2 = B(v) ∪ (C ∩X2). Then X ′

1,X
′
2 are both cliques of H,

and VH(v) = X ′
1 ∪X

′
2, as required.

3. v ∈ C. First, we note that v has no neighbors in F . Suppose v has a neighbor f ∈ F .
Since (A,B) is a non-trivial homogeneous pair in G, there exist a ∈ A and b ∈ B that are
non-adjacent. But then f, a, b are three pairwise non-adjacent vertices in NG(v), contrary to
the fact that G is a quasi-line graph. This implies that NH(v) ⊆ A ∪ B ∪ C ∪ D ∪ E. We
observe that NH(v) = NG(v). Let C(v) = C∩NH(v), D(v) = D∩NH(v), E(v) = E∩NH(v).
Since G is a quasi-line graph, it follows that there exist two cliques X1,X2 of G, such that
A ∪ B ∪ C(v) ∪ D(v) ∪ E(v) = X1 ∪ X2. Let a ∈ A and b ∈ B be non-adjacent in G. We
may assume that a ∈ X1 and b ∈ X2. Since X1,X2 are cliques, it follows that D(v) ⊆ X1

and E(v) ⊆ X2. Since NG(v) = X1 ∪X2, it follows that C(v) = (C(v) ∩X1) ∪ (C(v) ∩X2).
Let X ′

1 = A ∪D(v) ∪ (C(v) ∩X1) and X ′
2 = B ∪ E(v) ∪ (C(v) ∩X2). then X ′

1,X
′
2 are both

cliques of H, and NH(v) = X1 ∪X2, as required.

This proves 5.1.

Next we prove a lemma that allows us to handle non-trivial homogeneous pairs.

Lemma 5.2. Let G be a quasi-line graph. Assume that G admits a non-trivial homogeneous pair
of cliques. Then there exists a graph H with the following properties:

1. H is a quasi-line graph, and |E(H)| < |E(G)|.

2. For every coloring of H, there is a coloring of G with the same number of colors.

3. H is a minor of G.

Proof. Let (A,B) be a non-trivial homogeneous pair of cliques in G. Let C be the set of vertices
of G that are A-complete and B-complete, D be the set of vertices of G that are A-complete and
B-anticomplete, E the set of vertices of G that are A-anticomplete and B-complete, and F the
set of vertices of G that are A-anticomplete and B-anticomplete. We note that both D and E are
cliques. Let J = G|(A ∪ B). Then J is bipartite. Let M be a maximum matching in J and let
|M | = m. We claim that we can color J with |A|+ |B| −m colors. This follows from the fact that
we can color the vertices of M with m colors and |A ∪B \ V (M)| = |A| + |B| − 2m.

By König’s Theorem [8], |M | equals the minimum size of a vertex cover of J , that is, the
minimum number of vertices hitting all edges of J . Let X be a minimum vertex cover of J . Then
A \X is complete to B \X in G.
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Let A′ = A ∩X and B′ = B ∩X. Let H be the graph obtained from G by deleting the edges
between the members of A′ and the members of B and the edges between the members of B′ and
the members of A. Then |E(H)| < |E(G)|. Since (A,B) is a non-trivial homogeneous pair in G,
it follows that A is not complete and not anticomplete to B in G, and therefore, by 5.1, H is a
quasi-line graph, and thus the first assertion of the theorem holds.

To prove the second assertion of the lemma we need to show that every coloring of H can be
used to obtain a coloring of G using the same number of colors. Let cH be a coloring of H. Recall
that J = G|(A ∪B) can be colored using |A| + |B| −m colors. Now since (A \ A′) ∪ (B \B′) is a
clique in H and |A′ ∪B′| = m , it follows that every coloring of H|(A ∪ B), and in particular cH ,
uses at least |A|+ |B| −m colors. Hence, at most m colors appear on both A and B. We construct
a coloring of G as follows. We use each of the colors of cH that appears on both A and B to color
the vertices of V (M) and the rest of the colors of cH , which are all different, to color the remaining
vertices in A∪B. This yields a coloring of J . We keep the colors of the vertices of V (G) \ (A∪B)
unchanged. The coloring just defined is a proper coloring of G, and it uses the same number of
colors as cH . This proves the second assertion of the lemma.

Since H is a subgraph of G the third assertion of the lemma follows. This completes the proof
of Lemma 5.2.

We are now ready to prove the main result of this paper.

Proof of Theorem 1.1. Let G be a quasi-line graph. The proof is by induction on |E(G)|. We may
assume that G is connected. If G has no non-trivial homogeneous pairs, then by Theorem 2.1, G
is either a circular interval graph or a composition of linear interval strips, and the result follows
from Theorem 3.1 and Theorem 4.3. Otherwise, let (A,B) be a non-trivial homogeneous pair in
G. Let H be a graph as in Lemma 5.2. Inductively, since |E(H)| < |E(G)|, it follows that H has
a clique minor of size χ(H). By property (2) of Lemma 5.2, χ(H) ≥ χ(G) and by property (3) of
the same lemma, H is a minor of G, and so every clique minor of H is also a clique minor of G.
Hence, G has a clique minor of size χ(H) ≥ χ(G). This completes the proof of the theorem.
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Zürich, 88 (1943), 133-142.
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