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Abstract

For a graph 𝐻, we say that 𝐻 has the Erdős-Pósa property for subdivisions with function
𝑓 , if for every graph 𝐺, either 𝐺 contains (as a subgraph) 𝑘 + 1 pairwise disjoint subdivisions
of 𝐻 or there exists a set 𝑋 ⊆ 𝐺 such that 𝐺 \ 𝑋 contains no 𝐻-subdivision and |𝑋 | ≤ 𝑓 (𝑘).
We show that every 𝐻 that has the Erdős-Pósa property for subdivision also satisfies a localized
version of the Erdős-Pósa property, as follows. Let 𝐻 be an 𝑛-vertex graph with 𝑚 ≥ 1 edges
that has the Erdős-Pósa property for subdivisions with function 𝑓 , and let 𝐺 be a graph that
does not contain 𝑘 + 1 disjoint subdivisions of 𝐻. We demonstrate the existence of a set of at
most 𝑘 vertex disjoint subdivisions of 𝐻 in 𝐺 such that in their union, we can find a set 𝑋 with
the property that 𝐺 \ 𝑋 contains no 𝐻-subdivision and |𝑋 | ≤ 2 𝑓 (𝑘 )𝑚𝑘 + 𝑘 (𝑚 − 𝑛).

1 Introduction
All graphs in this paper are finite and simple. For graphs 𝐺, 𝐻, we say that 𝐺 contains 𝐻 if there
exists a subgraph of 𝐺 that is isomorphic to 𝐻. Whenever a different notion of containment is used,
it will be stated explicitly.

The interplay between packing and covering in combinatorial structures forms one of the richest
areas of modern graph theory. Among the fundamental results in this domain, the Erdős-Pósa
theorem [3] stands as a cornerstone, establishing a profound relationship between the maximum
number of disjoint cycles in a graph and the minimum size of a feedback vertex set. Originally
proved by Paul Erdős and Lajos Pósa in 1965, the theorem states the following:

Theorem 1 (Erdős-Pósa, 1965). There exists a function 𝑓 : N → R+ such that for every integer
𝑘 ≥ 1 and for any graph 𝐺, at least one of the following holds:

1. 𝐺 contains 𝑘 vertex-disjoint cycles, or

2. There exists a subset 𝑋 ⊆ 𝑉 (𝐺) with |𝑋 | ≤ 𝑓 (𝑘) such that 𝐺 \ 𝑋 is a forest.
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Figure 1: Tree 𝑇 for the counter example of Question 1

Additionally, Erdős and Pósa showed that the optimal asymptotic bound for this function is
𝑓 (𝑘) = 𝑂 (𝑘 log 𝑘). A natural question is whether this theorem concerning cycles can be extended
to other structures. A graph 𝐻 is a minor of a graph 𝐺 if 𝐻 can be obtained from 𝐺 by a sequence
of edge contractions, vertex deletions, and edge deletions. G contains 𝐻 as a minor if there is a
minor of 𝐺 isomorphic to 𝐻. An 𝐻-minor in 𝐺 is a subgraph of 𝐺 that contains 𝐻 as a minor.
Robertson and Seymour [5] proved the following generalization of Theorem 1.

Theorem 2 (Robertson, Seymour, 1986). For every planar graph 𝐻, there exists a function 𝑓𝐻 (𝑘)
such that every graph 𝐺 contains either 𝑘 vertex-disjoint subgraphs each containing an 𝐻-minor,
or a set 𝑋 of at most 𝑓𝐻 (𝑘) vertices such that 𝐺 \ 𝑋 does not contain any 𝐻-minor.

In this paper, we study variants of Theorem 2 where the set 𝑋 is ”localized” in a certain subgraph
of 𝐺. First, we ask if it is possible to localize 𝑋 in any given copy of an 𝐻-minor.

Question 1. Does there exist, for every planar graph 𝐻, a constant 𝑐(𝐻) with the following property:
If 𝐺 is a graph with no two pairwise disjoint 𝐻-minors, then for every 𝐻-minor 𝐻′ of 𝐺, there exists
𝑋 ⊆ 𝑉 (𝐻′) such that 𝐺 \ 𝑋 has no 𝐻-minor and |𝑋 | ≤ 𝑐(𝐻)?

The answer to this question is negative. We present a counterexample here, due to Seymour [6].
Consider 𝐻 as the tree 𝑇 illustrated in Fig. 1, and consider 𝐺 in Fig. 2. We leave it to the reader
to verify that this construction indeed serves as a counterexample to Question 1. In light of this
counterexample, we ask:

Question 2. Does there exist, for every planar graph 𝐻, a constant 𝑐(𝐻) with the following property:
If 𝐺 is a graph with at least a 𝐻-minor, but no two pairwise disjoint 𝐻-minors, then there exists a
𝐻-minor 𝐻′ in 𝐺 and 𝑋 ⊆ 𝑉 (𝐻′) such that 𝐺 \ 𝑋 has no 𝐻-minor and |𝑋 | ≤ 𝑐(𝐻)?

However, one quickly observes that by simply taking 𝐻′ = 𝐺, this conjecture would reduce to
the original Erdős-Pósa property for planar graphs and fails to capture any notion of localization.
To formulate a more meaningful and structurally rich conjecture, we focus on subdivisions.
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Figure 2: Graph 𝐺 for the counter example of Question 1

Definition 1 (Subdivisions). Let 𝐻 be a graph. A subdivision of 𝐻 consists of a graph 𝐻 together
with a mapping 𝜙 : 𝑉 (𝐻) ∪ 𝐸 (𝐻) −→ 𝑉 (𝐻) ∪ {paths in 𝐻} such that:

1. for each vertex 𝑣 ∈ 𝑉 (𝐻), 𝜙(𝑣) is a vertex of 𝐻;

2. for each edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸 (𝐻), 𝜙(𝑒) is a path in 𝐻 with endpoints 𝜙(𝑢) and 𝜙(𝑣);

3. for every 𝑒, 𝑓 ∈ 𝐸 (𝐻), 𝜙(𝑒) and 𝜙( 𝑓 ) are vertex disjoint except at the endpoints; and

4. 𝐻 is exactly the union of all the images 𝜙(𝑣) and 𝜙(𝑒).
The vertices 𝜙(𝑉 (𝐻)) are called the branch vertices. We say that a graph 𝐺 contains a subdivision
of 𝐻 (or an 𝐻-subdivision) if 𝐺 contains a subgraph isomorphic to such a 𝐻. When referring to an
𝐻-subdivision in 𝐺 in this paper, we will suppress the dependence on the specific mapping 𝜙 from
the notation.

We say that 𝐻 has the Erdős-Pósa property for subdivisions if there exists a function 𝑓𝐻 (𝑘) such
that every graph 𝐺 contains either 𝑘 vertex-disjoint 𝐻-subdivisions, or a set 𝑍 of at most 𝑓𝐻 (𝑘)
vertices such that 𝐺 \𝑍 does not contain any 𝐻-subdivision. We call 𝑓𝐻 the Erdős-Pósa subdivision
bound for 𝐻. We prove

Theorem 3. For every 𝑛-vertex graph 𝐻 with 𝑚 ≥ 1 edges that has the Erdős-Pósa property for
subdivisions with 𝑓𝐻 as its Erdős-Pósa subdivision bound, the following holds. If a graph 𝐺 does
not contain 𝑘 + 1 pairwise disjoint subdivisions of 𝐻, then there exists 𝑙 with 0 ≤ 𝑙 ≤ 𝑘 , such that
we can find 𝐻1, 𝐻2, . . . , 𝐻𝑙 pairwise disjoint subdivisions of 𝐻 in 𝐺 and a set

𝑋 ⊆
𝑙⋃

𝑖=1
𝑉 (𝐻𝑖),

with |𝑋 | ≤ 2 𝑓 (𝑘)𝑚𝑘 + 𝑘 (𝑚 − 𝑛), and such that 𝐺 \ 𝑋 is 𝐻-subdivision-free.
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Qualitatively, Theorem 3 can be interpreted as an equivalence between graphs that have the
Erdős-Pósa property for subdivisions and the ”local” Erdős-Pósa property for subdivisions (where
the set intersecting all the subdivisions is itself contained in the union of a few subdivisions).

This theorem can be specialized to families for which it is known that the Erdős-Pósa property
for subdivisions holds. It is a well-known result that

Lemma 1 (from [1]). Let 𝐻 be a subcubic graph. A graph 𝐺 contains 𝐻 as a minor if and only if
𝐺 contains 𝐻 as a subdivision.

Therefore, by combining Theorem 3 with Lemma 1 and Theorem 2, we get

Corollary 1. For every 𝑛-vertex subcubic graph 𝐻 with 𝑚 ≥ 1 edges. Let 𝑓𝐻 (𝑘) be the bounding
function as defined in Theorem 2. Then, if a graph 𝐺 does not contain 𝑘 + 1 pairwise disjoint
subdivisions of 𝐻, then there exists 𝑙 with 0 ≤ 𝑙 ≤ 𝑘 , such that we can find 𝐻1, 𝐻2, . . . , 𝐻𝑙 pairwise
disjoint subdivisions of 𝐻 in 𝐺 and a set

𝑋 ⊆
𝑙⋃

𝑖=1
𝑉 (𝐻𝑖),

with
|𝑋 | ≤ 2 𝑓𝐻 (𝑘)𝑚𝑘 + 𝑘 (𝑚 − 𝑛),

and such that 𝐺 \ 𝑋 is 𝐻-subdivision-free.

The bounding function from Theorem 2 is quite large as it depends on the grid minor theorem
[5]. For the family of subcubic trees, a more refined bound is known.

Theorem 4 (Dujmović, Joret, Micek, Morin, 2024 [2]). Let 𝐹 be a forest on 𝑡 vertices and let 𝑡′ be
the maximum number of vertices in a component of 𝐹. For every positive integer 𝑘 and every graph
𝐺, either 𝐺 contains 𝑘 pairwise vertex-disjoint subgraphs each having an 𝐹-minor, or there exists
a set 𝑍 of at most 𝑡𝑘 − 𝑡′ vertices of 𝐺 such that 𝐺 − 𝑍 has no 𝐹-minor.

Corollary 2. For every subcubic tree 𝑇 with |𝑉 (𝑇) | = 𝑛 > 1, if a graph 𝐺 does not contain 𝑘 + 1
pairwise disjoint subdivisions of 𝑇 , then there exists 𝑙 with 0 ≤ 𝑙 ≤ 𝑘 , such that we can find
𝐻1, 𝐻2, . . . , 𝐻𝑙 pairwise disjoint subdivisions of 𝑇 in 𝐺 and a set

𝑋 ⊆
𝑙⋃

𝑖=1
𝑉 (𝐻𝑖),

with
|𝑋 | ≤ 2𝑛𝑘 (𝑛 − 2)𝑘,

and such that 𝐺 \ 𝑋 is 𝑇-subdivision-free.

We note that the maximum degree bound in Corollary 2 is tight. It was proven in [7] (Theorem
4.2), that there exist trees with maximum degree 5 for which the Erdős-Pósa property for subdivision
does not hold. Their construction can easily be modified to obtain trees with maximum degree 4.
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2 The proof
We say that 𝑃 = 𝑝1- . . . -𝑝𝑧 is a path in a graph 𝐺 if 𝑝𝑎𝑝𝑏 ∈ 𝐸 (𝐺) for every 𝑎, 𝑏 ∈ {1, . . . , 𝑧} where
|𝑏− 𝑎 | = 1. The interior of 𝑃, denoted by 𝑃∗, is the set 𝑃 \ {𝑝1, 𝑝𝑧}. A vertex 𝑣 is an internal vertex
of 𝑃 if 𝑣 ∈ 𝑃∗.

Let 𝐻 be a graph with |𝐸 (𝐻) | = 𝑚 and let 𝑘 be an integer. Let 𝐺 be a graph, and let 𝑆 be
a subgraph of 𝐺 that is the disjoint union of 𝑘 pairwise disjoint subdivisions of 𝐻. Let 𝑉 (𝐺) =

{𝑣1, . . . , 𝑣 |𝑉 (𝐺) |} and order 𝑉 (𝐺) as 𝑣1 < . . . < 𝑣 |𝑉 (𝐺) |. Let 𝑋 ⊆ 𝑆 and 𝑌 = {𝑦1, . . . , 𝑦 |𝑌 |} ⊆ 𝐺 \ 𝑆
where 𝑦1 < 𝑦2 < . . . < 𝑦 |𝑌 |. We say that the triple (𝑆, 𝑋,𝑌 ) is a (𝑘, 𝐻)-hitting triple if

• 𝑋 contains all the branch vertices of 𝑆, and

• 𝐺 \ (𝑋 ∪ 𝑌 ) is 𝐻-subdivision free.

We say that a vertex 𝑣 is dangerous for 𝑦𝑖 ∈ 𝑌 if 𝑣 ∉ 𝑆 and there exists a 𝐻-subdivision containing
𝑣 and 𝑦𝑖 but which does not intersect 𝑋 . We say that a path 𝑃 is dangerous for 𝑦𝑖 if 𝑝𝑧 = 𝑦𝑖 and
every internal vertex of 𝑃 is dangerous for 𝑦𝑖. Note that the property of being dangerous depends
on 𝑋: as we vary 𝑋 in the course of the proof, the set of dangerous vertices may change.

Let us partition 𝑆 into paths whose endpoints are the vertices of 𝑋 . We denote this set of paths
by P(𝑆, 𝑋,𝑌 ). We say that a path 𝑃 ∈ P(𝑆, 𝑋,𝑌 ) is active for 𝑦𝑖 if there is a path dangerous for 𝑦𝑖
from 𝑃∗ to 𝑦𝑖. Let 𝑁𝑖 (𝑆, 𝑋,𝑌 ) be the number of active paths for 𝑦𝑖.

Let us say that a (𝑘, 𝐻)-hitting triple (𝑆, 𝑋,𝑌 ) is acceptable if

|P(𝑆, 𝑋,𝑌 ) | ≤ 2 𝑓𝐻 (𝑘)−|𝑌 |𝑚𝑘.

Let
𝐶 = 2 𝑓𝐻 (𝑘)𝑚𝑘.

We define the score of a (𝑘, 𝐻)-hitting triple (𝑆, 𝑋,𝑌 ) by

𝑠𝑐𝑜𝑟𝑒(𝑆, 𝑋,𝑌 ) =
|𝑌 |∑︁
𝑖=1

𝐶𝑖𝑁𝑖 (𝑆, 𝑋,𝑌 ).

Our strategy to prove Theorem 3 will be to show that there exists an acceptable (𝑘, 𝐻)-hitting
triple with a score of 0. To do so, we will show that, first, an acceptable (𝑘, 𝐻)-hitting triple
exists and, second, that it is possible to lower the score of an acceptable (𝑘, 𝐻)-hitting triple with a
non-zero score.

We will need the following:

Theorem 5 (Menger’s Theorem [4]). Let 𝐺′ be a graph. Let 𝑦 ∈ 𝑉 (𝐺′) and 𝐴 ⊂ 𝑉 (𝐺′) with 𝑦 ∉ 𝐴;
and let 𝑗 ≥ 0 be an integer. Then exactly one of the following holds:

• there are 𝑗 paths in 𝐺′ from 𝑦 to 𝐴, pairwise disjoint except for 𝑦

• there is a separation (𝑀, 𝑁) of 𝐺′ with |𝑀 ∩ 𝑁 | < 𝑗 and such that 𝑦 ∈ 𝑀 \ 𝑁 and 𝐴 ⊆ 𝑁 .

5



Proof of Theorem 3. The proof is by induction on 𝑘 . The base case of 𝑘 = 0 is trivial, and we take
an empty set to be set 𝑋 . We assume the result to be true for all integers up to and including 𝑘 .
Therefore, we can assume that 𝐺 contains 𝑘 pairwise disjoint 𝐻-subdivisions. Let 𝑛 = |𝑉 (𝐻) | and
𝑚 = |𝐸 (𝐻) |.

(1) For any (𝑘, 𝐻)-hitting triple (𝑆, 𝑋,𝑌 ), we have that |P(𝑆, 𝑋,𝑌 ) | = |𝑋 | + 𝑘 (𝑚 − 𝑛).

We add the vertices while keeping track of the number of paths created. There are 𝑘𝑛 branch
vertices, which create 𝑚𝑘 paths. Every subsequent vertex subdivides an existing path into two.
Therefore, |P(𝑆, 𝑋,𝑌 ) | = 𝑘𝑚 + (|𝑋 | − 𝑘𝑛) = |𝑋 | + 𝑘 (𝑚 − 𝑛) which proves (1).

(2) There exists an acceptable (𝑘, 𝐻)-hitting triple.

Since 𝐻 has the Erdős-Pósa property for subdivisions, there exists a set 𝑍 ⊆ 𝑉 (𝐺) of at most
𝑓𝐻 (𝑘) vertices such that 𝐺 \ 𝑍 does not contain any 𝐻−subdivision. Let 𝑆0 be a subgraph of
𝐺 that is the disjoint union of 𝑘 pairwise vertex-disjoint 𝐻-subdivisions in 𝐺. Let 𝑋0 = {𝑣 :
𝑣 ∈ 𝑆0 ∩ 𝑍 or 𝑣 is a branch vertex in 𝑆0} and 𝑌0 = 𝑍 \ 𝑆0. We check that the triple (𝑆0, 𝑋0, 𝑌0) is
acceptable. By (1), we have

|P(𝑆, 𝑋,𝑌 ) | = |𝑋0 | + 𝑘 (𝑚 − 𝑛)
≤ 𝑓𝐻 (𝑘) − |𝑌0 | + 𝑛𝑘 + 𝑘 (𝑚 − 𝑛)
= 𝑓𝐻 (𝑘) − |𝑌0 | + 𝑚𝑘

≤ 2 𝑓𝐻 (𝑘)−|𝑌0 |𝑚𝑘.

Here, the last inequality used the fact that 𝑚 ≥ 1. This proves (2).

Among all acceptable (𝑘, 𝐻)-hitting triple, let (𝑆, 𝑋,𝑌 ) be chosen with minimal score and
subject to that with 𝑌 inclusion-wise minimal (that is, if 𝑌 ′ ⊂ 𝑌 , then (𝑆, 𝑋,𝑌 ′) is not a (𝑘, 𝐻)-
hitting triple). Until stated otherwise, we will assume that 𝑠𝑐𝑜𝑟𝑒(𝑆, 𝑋,𝑌 ) > 0 and so |𝑌 | > 0. Let
𝑑 = |𝑌 | and 𝑌 = {𝑦1, · · · , 𝑦𝑑} where 𝑦1 < 𝑦2 < . . . < 𝑦𝑑 . By the minimality of 𝑌 , 𝑁𝑑 (𝑆, 𝑋,𝑌 ) > 0.

We define three types of active paths for 𝑦𝑑 .

(i) A path 𝑃 for which there exist two vertex-disjoint (except at 𝑦𝑑) dangerous paths for 𝑦𝑑 each
with an end in 𝑃∗.

(ii) A path 𝑃 for which there exists 𝑥 ∈ 𝑃∗ such that there is no dangerous path for 𝑦𝑑 with an end
in 𝑃∗ \ 𝑥.

(iii) A path 𝑃 which is not of type (ii) for which there exists 𝑣 ∈ 𝑉 (𝐺) dangerous for 𝑦𝑑 such that
there is no dangerous path in 𝐺 \ 𝑣 for 𝑦𝑑 with an end in 𝑃∗.
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Note that, by Theorem 5, every active path for 𝑦𝑑 is of exactly one of the types (i), (ii), and (iii).

(3) If there exists a path of type (i), there exist 𝑆′, 𝑋′ and 𝑌 ′ such that (𝑆′, 𝑋′, 𝑌 ′) is a (𝑘, 𝐻)-hitting
triple, |𝑋′| = |𝑋 | + 1, and |𝑌 ′| = |𝑌 | − 1.

𝑃

𝑃𝑎

𝑃𝑏

𝑎

𝑏

𝑆 :

𝑦𝑑

𝑎

𝑏

𝑦𝑑𝑃𝑎

𝑃𝑏

𝑆′ :

Figure 3: Operation for active paths of type (iii).

Let 𝑎, 𝑏 ∈ 𝑃∗ such that there exist two vertex-disjoint (except at 𝑦𝑑) paths 𝑃𝑎 and 𝑃𝑏 from {𝑎, 𝑏}
to 𝑦𝑑 which are dangerous for 𝑦𝑑 .

See Fig. 3 for an illustration. Setting 𝑋′ = 𝑋∪{𝑦𝑑},𝑌 ′ = 𝑌\{𝑦𝑑}, and 𝑆′ = (𝑆\𝑎-𝑃-𝑏)∪(𝑃𝑎∪𝑃𝑏)
with the same branch-vertices as 𝑆 gives (3).

(4) If there exists a path of type (ii), there exists 𝑋′ such that (𝑆, 𝑋′, 𝑌 ) is a (𝑘, 𝐻)-hitting triple,
|𝑋′| = |𝑋 | + 1 and 𝑁𝑑 (𝑆, 𝑋′, 𝑌 ) ≤ 𝑁𝑑 (𝑆, 𝑋,𝑌 ) − 1.

Setting 𝑋′ = 𝑋∪{𝑥} subdivides 𝑃 into two paths 𝑃𝑎 and 𝑃𝑏. We claim that neither of 𝑃𝑎 and 𝑃𝑏

is active for 𝑦𝑑 . Suppose that 𝑃𝑎 is active for 𝑦𝑑 . Then there exists a path 𝑄 dangerous for 𝑦𝑑 (with
respect to 𝑋′) from 𝑃∗

𝑎 to 𝑦𝑑 . Then 𝑥 ∉ 𝑄, and every vertex of 𝑄 is also dangerous with respect to
𝑋 . But now 𝑄 is a dangerous path from 𝑦𝑑 to 𝑃∗ and 𝑥 ∉ 𝑄, a contradiction. This proves (4).

(5) If there exists a path of type (iii), there exist 𝑋′ and 𝑆′ such that (𝑆′, 𝑋′, 𝑌 ) is a (𝑘, 𝐻)-hitting
triple, |𝑋′| = |𝑋 | + 1 and 𝑁𝑑 (𝑆′, 𝑋′, 𝑌 ) ≤ 𝑁𝑑 (𝑆, 𝑋,𝑌 ) − 1.

We apply Theorem 5 with 𝑦 = 𝑦𝑑 , 𝐴 = 𝑃∗, 𝑗 = 2 and 𝐺′ as the subgraph of 𝐺 induced by 𝑃∗ and
the dangerous vertices for 𝑦𝑑 . As a result, there exists a separation (𝑀, 𝑁) with |𝑀 ∩ 𝑁 | = 1 such
that 𝑦𝑑 ∈ 𝑀 and 𝑃∗ ⊆ 𝑁 . Among all such separations, we select (𝑀, 𝑁) with 𝑀 inclusion-wise
maximal. Let 𝑀 ∩ 𝑁 = {𝑥}. We claim that there exist two vertex-disjoint paths 𝑃𝑎, 𝑃𝑏 from 𝑥

to some 𝑎, 𝑏 ∈ 𝑃∗. Assume otherwise. Then, again by Theorem 5, we would find a separation
(𝑀′, 𝑁′) of 𝑁 with |𝑀′ ∩ 𝑁′| = 1 such that 𝑥 ∈ 𝑀′ \ 𝑁′ and 𝑃∗ ⊆ 𝑁′. (𝑀 ∪ 𝑀′, 𝑁′) is now also a
separation in 𝐺′ with | (𝑀 ∪𝑀′) ∩𝑁′) | = 1 and with |𝑀 ∪𝑀′| > |𝑀 |, contradicting the maximality
of 𝑀 . This proves the claim. We set 𝑆′ = (𝑆 \ 𝑎-𝑃-𝑏) ∪ (𝑃𝑎 ∪ 𝑃𝑏), and 𝑋′ = 𝑋 ∪ {𝑥}. See Fig. 4
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for an illustration. Since all the dangerous paths for 𝑦𝑑 with an end in 𝑃∗ go through 𝑥, neither of
the new paths is active for 𝑦𝑑 . This proves (5).

𝑃𝑎

𝑃𝑏
𝑃∗ 𝑎

𝑏

𝑆 : 𝑥

𝑦𝑑

M

N

𝑎

𝑏

𝑥𝑃𝑎

𝑃𝑏

𝑆′ :

Figure 4: Rerouting from separation.

By applying repeatedly (3), (4) and (5), until there is no active path for 𝑦𝑑 , we obtain (𝑆∗, 𝑋∗, 𝑌 ∗).

(6) (𝑆∗, 𝑋∗, 𝑌 ∗) is acceptable.

By (1), and since (𝑆, 𝑋,𝑌 ) is acceptable, we have

|P(𝑆∗, 𝑋∗, 𝑌 ∗) | = |𝑋∗ | + 𝑘 (𝑚 − 𝑛)
≤ 𝑁𝑑 (𝑆, 𝑋,𝑌 ) + |𝑋 | + 𝑘 (𝑚 − 𝑛)
= 𝑁𝑑 (𝑆, 𝑋,𝑌 ) + |P(𝑆, 𝑋,𝑌 ) |
≤ 2|P(𝑆, 𝑋,𝑌 ) |
≤ 2 𝑓𝐻 (𝑘)−(|𝑌 |−1)

≤ 2 𝑓𝐻 (𝑘)−|𝑌 ∗ | .

This proves (6).
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Finally, let us bound the change in the score from (𝑆, 𝑋,𝑌 ) to (𝑆∗, 𝑋∗, 𝑌 ∗).

𝑠𝑐𝑜𝑟𝑒(𝑆, 𝑋,𝑌 ) − 𝑠𝑐𝑜𝑟𝑒(𝑆∗, 𝑋∗, 𝑌 ∗) =
|𝑌 |∑︁
𝑖=1

𝐶𝑖𝑁𝑖 (𝑆, 𝑋,𝑌 ) −
|𝑌 ∗ |∑︁
𝑖=1

𝐶𝑖𝑁𝑖 (𝑆∗, 𝑋∗, 𝑌 ∗)

≥
|𝑌 |∑︁
𝑖=1

𝐶𝑖 −
|𝑌 ∗ |∑︁
𝑖=1

𝐶𝑖 |P(𝑆∗, 𝑋∗, 𝑌 ∗) |

≥
|𝑌 |∑︁
𝑖=1

𝐶𝑖 −
|𝑌 ∗ |∑︁
𝑖=1

𝐶𝑖+1

= 𝐶 +
|𝑌 |∑︁
𝑖=2

𝐶𝑖 −
|𝑌 ∗ |+1∑︁
𝑖=2

𝐶𝑖

≥ 𝐶

This contradicts the minimality of the score of (𝑆, 𝑋,𝑌 ). Therefore, 𝑠𝑐𝑜𝑟𝑒(𝑆, 𝑋,𝑌 ) = 0, which
implies that𝑌 = ∅ as any vertex with no active paths in𝑌 can be removed to obtain an inclusion-wise
smaller (𝑘, 𝐻)-hitting triple.

Therefore, by (1) and (6),

|𝑋 | = |P(𝑆, 𝑋,𝑌 ) | − 𝑘 (𝑚 − 𝑛)
≤ 2 𝑓𝐻 (𝑘)𝑚𝑘 − 𝑘 (𝑚 − 𝑛)

Thus, 𝑆 and 𝑋 satisfy the conclusion of the theorem. □

Remark 1. While Theorem 3 does not allow for the explicit specification of a set 𝑆 of pairwise
disjoint subdivisions in which the hitting set is localized, the proof nevertheless guarantees the
existence of a hitting set contained in a family of subdivisions 𝑆′ sharing the same branch vertices as
𝑆. Hence, a nontrivial degree of control over where the localization occurs is preserved. On the other
hand, specifying a set 𝑆 a priori for the localization is impossible, as one can modify the construction
in Fig. 1 by splitting 𝑟 into two vertices, and the graph in Fig. 2 remains a counterexample with
subdivisions instead of minors.
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