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Abstract

We prove that the tree independence number of every even-hole-free graph is at most
polylogarithmic in its number of vertices. More explicitly, we prove that there exists a
constant c > 0 such that for every integer n > 1 every n-vertex even-hole-free graph has a
tree decomposition where each bag has stability (independence) number at most c log10 n.
This implies that the Maximum Weight Independent Set problem, as well as several
other natural algorithmic problems that are known to be NP-hard in general, can be solved in
quasi-polynomial time if the input graph is even-hole-free. The quasi-polynomial complexity
will remain the same even if the exponent of the logarithm is reduced to 1 (which would be
asymptotically best possible).

1 Introduction
A graph G is even-hole-free if G does not contain a cycle of even length as an induced subgraph.
Here an induced subgraph of a graph G is a graph that can be obtained from G by deleting
vertices (and all edges incident to the deleted vertices), the length of a cycle (or path) is the
number of edges in it, and a hole in G in an induced subgraph that is a cycle of length at
least four. The class of even-hole-free graphs has attracted much attention due to its somewhat
tractable, yet quite rich structure [17, 20, 46]. In particular the structure of even-hole-free graphs
has some similarities [46] with the structure of perfect graphs, which by the strong perfect graph
theorem [16] are precisely the graphs that are odd-hole-free and whose complement is odd-hole-
free. In addition to their structure, much effort was put into designing efficient algorithms for
even-hole-free graphs (to solve problems that are NP-hard in general). This is discussed in the
survey [46], while [1, 12, 19, 38] provide examples of more recent work. We now consider some
of the problems that have received the most attention on even-hole free graphs.

A vertex set S of a graph G is stable (or independent) if no two vertices of S have an edge
between them. A clique is a set S of vertices such that every pair of vertices of S has an
edge between them. A proper k-coloring of G is a partition of the vertex set of G into (at
most) k independent sets. In the Maximum Weight Independent Set (Maximum Weight
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Clique) problem, the input is a graph G and a weight function that assigns to each vertex
an integer weight. The task is to find a stable set (clique) S in G of maximum weight. In
the k-Coloring problem, the input is a graph G, the task is to determine whether G has a
proper k-coloring. Finally, in the Coloring problem, the input is a graph G and the task is
to determine the minimum k such that G has a proper k-coloring. All of the above mentioned
problems are known to be NP-hard [32, 36]. On even-hole-free graphs, Maximum Weight
Clique is known to be polynomial-time solvable [46]. The questions of whether or not there
exist polynomial time algorithms for Maximum Weight Independent Set and Coloring
remain open. This is in stark contrast to perfect graphs, for which polynomial time algorithms
for these problems have been known since 1981 [34].

This discrepancy is somewhat surprising, to explain why (and to state our main result)
we need to define tree decompositions and treewidth. For a graph G = (V (G), E(G)), a tree
decomposition (T, χ) of G consists of a tree T and a map χ : V (T ) → 2V (G) with the following
properties:

• For every v1v2 ∈ E(G), there exists t ∈ V (T ) with v1, v2 ∈ χ(t).
• For every v ∈ V (G), the subgraph of T induced by {t ∈ V (T ) | v ∈ χ(t)} is non-empty

and connected.

The width of a tree decomposition (T, χ), denoted by width(T, χ), is maxt∈V (T ) |χ(t)| − 1.
The treewidth of G, denoted by tw(G), is the minimum width of a tree decomposition of G.
Bounded treewidth is a useful graph property from both a structural [41] and an algorithmic
[10] perspective. For example Maximum Weight Independent Set, Maximum Weight
Clique, k-Coloring (for every fixed k) and a host of other problems are known to admit
O(ctn) time algorithms on graphs of treewidth at most t [21, 28, 31], while Coloring is known
to admit O(tt+O(1)n) time algorithms on graphs of treewidth at most t.

From the perspective of tree decompositions and treewidth, perfect graphs appear much
more intractable than even-hole-free graphs. On one hand there exist triangle-free (a triangle is
a clique on 3 vertices) perfect graphs whose treewidth is linear in the number of vertices in the
graph: the complete bipartite graph Kt,t, consisting of two stable sets L and R of size t with an
edge connecting every vertex in L with every vertex in R, is an example. On the other hand,
triangle-free even-hole-free graphs have constant treewidth [12]. Sintiari and Trotignon [44] give
a construction of arbitrarily large K4-free (Kt is the clique on t vertices) even-hole-free graphs
whose treewidth is logaritmic in the number of vertices. This led Sintiari and Trotignon [44] to
conjecture that for every t there exists a constant ct such that every n-vertex Kt-free and even-
hole-free graph has treewidth at most ct log n. This conjecture was very recently confirmed by
Chudnovsky et al. [13]. The logarithmic treewidth bound of Chudnovsky et al. [13] immediately
implies that k-Coloring can be solved in polynomial time for every fixed k on even-hole-free
graphs (here we do not need to assume a bound on the clique number).

An early step of the proof of Chudnovsky et al. [13] is to prove that even-hole-free graphs
admit “dominated balanced separators”. More precisely they show that there exists a constant
c such that every even-hole-free graph contains a vertex set S of size at most c such that
every connected component of G − N [S] has at most n/2 vertices. Here N [S] is the closed
neighborhood of S, namely the set of all vertices in S and all vertices with at least one neighbor
in S. A fairly direct consequence of this result (based on an argument of Chudnovsky et
al. [15]) is that for every ϵ > 0 there exists a (1 + ϵ)-approximation algorithm for Maximum
Weight Independent Set which runs in quasi-polynomial time. Here an algorithm runs in
quasi-polynomial time if the running time is upper bounded by 2O(logc n) for some constant c.
Nevertheless, this is fully consistent with Maximum Weight Independent Set on even-hole-
free graphs being NP-hard, and so the complexity of Maximum Weight Independent Set
and Coloring on even-hole-free graphs remain open.
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Our results. We prove a structural result which implies that Maximum Weight Indepen-
dent Set, as well as a host of other problems, admit quasi-polynomial time algorithms on
even-hole-free graphs. To state our main result we need one more notion, that of tree inde-
pendence number. This is a relatively new width parameter, defined by Dallard, Milanič and
Štorgel [25], in the second of a series of papers [22, 23, 24, 25, 26] aiming to identify graphs
whose large treewidth can be completely explained by the presence of a large clique. The tree
independence number of a tree decomposition (T, χ) is the maximum over all t ∈ V (T ) of the
maximum stable set size of the subgraph G[χ(t)] of G induced by χ(t). The tree independence
number of a graph G is the minimum tree independence number of a tree decomposition of G.
We are now ready to state our main result.

Theorem 1.1. There exists a constant c such that for every integer n > 1 every n-vertex
even-hole-free graph has tree independence number at most c log10 n.

Since the only construction of even-hole-free graphs with large treewidth known to date is
the construction of [44], where all graphs have clique number at most four and have treewidth
logarithmic in the number of vertices, we do not know if the bound of Theorem 1.1 is asymp-
totically tight, or whether the exponent of log n can be reduced. Dallard et al. [22] gave an
algorithm that takes as input a graph G and integer k, runs in time 2O(k2)nO(k) and either
outputs a tree decomposition of G with tree independence number at most 8k, or determines
that the tree independence number of G is larger than k. Using this algorithm, Theorem 1.1
can be made constructive in the sense that there exists an algorithm which takes as input an
even-hole-gree graph, runs in time 2O(log20 n) and computes a tree decomposition of G with tree
independence O(log10 n).

Theorem 1.1 implies the main result of [13] with a O(log10 n) instead of logarithmic bound on
the treewidth. Indeed, let G be a Kt-free even-hole free graph, and let (T, χ) be the tree decom-
position obtained from Theorem 1.1. We claim that this decomposition has width O(log10 n).
This follows from the fact that every even-hole-free graph on at least 2αt vertices either has a
clique of size at least t or a stable set of size at least α [17]. Thus every bag of the decomposition
must have size at most c log10 n · 2t.

A number of problems can be solved efficiently when a tree decomposition of the input
graph of low independence number is given as input. This is discussed in more detail in [14]
and [39]. We will not repeat the discussion here, but only list some of the problems that can be
solved in quasi-polynomial time in the class of even-hole-free graphs as a direct consequence of
Theorem 1.1, the above mentioned approximation algorithm of Dallard et al. [22], and existing
algorithms when a tree decomposition of the input graph of low independence number (or low
width) is given as input.

Theorem 1.2. For every integer k ≥ 0, the following problems admit quasi-polynomial time
time algorithms on even-hole free graphs:

• Maximum Weight Independent Set,
• Weighted Feedback Vertex Set,
• Weighted Odd cycle transversal,
• Maximum Weight Induced Path,
• Maximum Weight Induced Matching,
• Maximum Weight Induced Subgraph of Treewidth at most k,
• k-coloring.

Resolving the complexity status of Maximum Weight Independent Set on even-hole-
free graphs has been stated as an open problem a number of times [2, 12, 19, 35, 38], and
the complexity of Feedback Vertex Set on even-hole-free graphs has been posed at least
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once [45]. Even though Theorem 1.2 does not fully resolve these open problems, it offers a
partial resolution in the following sense. If an NP-hard problem has a quasi-polynomial-time
algorithm then every problem in NP has a quasi-polynomial-time algorithm. Thus Theorem 1.2
implies that, unless a highly unexpected complexity theoretic collapse occurs, none of the above
problems are NP-hard in even-hole-free graphs. It remains an intriguing and challenging open
problem to design polynomial time algorithms for the problems in Theorem 1.2 (with the ex-
ception of k-coloring, for which a polynomial time algorithm was recently found [13]) on
even-hole-free graphs. Polynomial time algorithms for these problems would require significant
new ideas. Indeed, even if the exponent of log n in Theorem 1.1 were reduced to 1, the resulting
algorithms would still take quasi-polynomial (rather than polynomial) time.

It is worth noting that Feedback Vertex Set, Maximum Weight Induced Path, and
Maximum Weight Induced Matching are all NP-hard on bipartite graphs, and therefore
on perfect graphs. This partially confirms the intuition that even-hole-free graphs should be
more algorithmically tractable than perfect graphs.

All of the results of Theorem 1.2 (except for k-Coloring) can be derived from the following
theorem. The theorem uses Counting Monadic Second Order Logic (CMSO2), which is a useful
formalism to express properties of graphs and vertex and edge sets [11, 39]. We refer the reader
to Lima et al. [39] for an introduction to CMSO2 logic.

Theorem 1.3. There is a function f : N → N such that for every integer ℓ and CMSO2 formula
ϕ, there exists an algorithm that takes as input an even-hole-free graph G and a weight function
w : V (G) → N, runs in time (f(ϕ, ℓ)n)O(ℓ log10 n) and outputs a maximum weight vertex subset
S such that G[S] has treewidth at most ℓ and G[S] |= ϕ.

Theorem 1.3 is obtained from Theorem 1.1 in (exactly) the same way as Chudnovsky et
al. [14] obtain their algorithmic consequences (Theorem 8.2 of [14]) from their bound on the
tree independence number (Theorem 1.2 of [14]) of 3PC-free graphs. The algorithm for Odd
Cycle Transversal in Theorem 1.2 follows from Theorem 1.3 because on even-hole-free
graphs, Odd Cycle Transversal and Feedback Vertex Set are the same problem.

The quasi-polynomial time algorithm of Theorem 1.2 for k-Coloring follows from the fact
that Kk+1 is not k-colorable, the O(kt+O(1)n) time algorithm for k-Coloring on graphs of
treewidth t [21], and the O(log10 n) treewidth bound on Kt-free even-hole free graphs which
follows from Theorem 1.1)

The list of problems in Theorem 1.2 for which Theorem 1.3 implies a quasi-polynomial-time
algorithm is by no means exhaustive. For an example Theorem 1.3 also yields a quasi-polynomial
time algorithm to recognize even-hole-free graphs (since we can encode in CMSO2 that G[S] is
a cycle of even length). We refer the reader to [14] and [39].
Comparison with the Algorithmic Consequences of [13]: It is worth comparing the
algorithmic consequences of Theorem 1.1 with those of the logarithmic treewidth bound for Kt-
free graphs in [13]. The logarithmic treewidth bound for Kt-free even-hole-free graphs in [13]
typically leads to polynomial time algorithms for problems on Kt-free even-hole-free graphs.
With the exception of k-Coloring, for which this leads to a polynomial time algorithm on
even-hole-free graphs, for other problems of Theorem 1.2 the results on Kt-free even-hole-free
graphs only lead to polynomial (or quasi-polynomial) time approximation schemes on even-
hole-free graphs. On the other hand, Theorem 1.1 readily leads to quasi-polynomial time exact
algorithms on even-hole-free graphs (and hence shows that the considered problems are unlikely
to be NP-hard), but does not appear to give any meaningful polynomial time algorithms (neither
exact nor approximation).
Organization of the paper. In Section 2 we define the notation and basic definitions used
in the paper. In Section 3 we give a brief outline of the proof of Theorem 1.1. The remainder
of the paper concerns the proof of Theorem 1.1.
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2 Preliminaries
All graphs in this paper are finite and simple and all logarithms are base 2. We begin with some
standard definitions (see, for example, [13]). Let G = (V (G), E(G)) be a graph. In this paper,
we use induced subgraphs and their vertex sets interchangeably. For a graph G and vertex set
S, the graph G \ S is the graph obtained from G by deleting all vertices in S and all edges
incident to at least one vertex in S. The subgraph of G induced by S is denoted by G[S] and
defined as G[S] = G\ (V (G)\S). For graphs G, H we say that G contains H if H is isomorphic
to an induced subgraph of G. We say that G is H-free if G does not contain H. For a set H of
graphs, G is H-free if G is H-free for every H ∈ H.

Let v ∈ V (G). Let X ⊆ V (G). We denote by NG(X) the set of all vertices in V (G) \ X
with at least one neighbor in X. We also define NG[X] = NG(X) ∪ X. When X = {v},
we write NG(v) for NG({v}) and NG[v] for NG[{v}]. If there is no danger of confusion, we
omit the subscript G. If H is an induced subgraph of G, then NH(X) = N(X) ∩ H and
NH [X] = NH(X) ∪ X. Let Y ⊆ V (G) be disjoint from X. We say X is complete to Y if every
vertex in X is adjacent to every vertex in Y in G, and X is anticomplete to Y if there are no
edges between X and Y .

A path in a graph is an induced subgraph that is a path. Given a path P with ends a, b, the
interior of P , denoted by P ∗, is the set P \ {a, b}. The length of a path or a hole is the number
of edges in it. A hole is even if its length is even. A graph is even-hole-free it contains no even
holes.

The stability (or independence) number α(G) of G is the maximum size of a stable set in
G. A related parameter, the clique cover number κ(G) of G, is the smallest number of cliques
whose union equals V (G).

Next, we define a slight generalization of even-hole-free graphs; we need the following defi-
nitions (see, for example, [13]). A theta is a graph consisting of three internally vertex-disjoint
paths P1 = a- · · · -b, P2 = a- · · · -b, and P3 = a- · · · -b, each of length at least 2, such that
P ∗

1 , P ∗
2 , P ∗

3 are pairwise anticomplete. We call a and b the ends of the theta and P1, P2, P3
the paths of the theta. A near-prism is a graph consisting of two triangles {a1, a2, a3} and
{b1, b2, b3}, and three paths Pi from ai to bi for 1 ≤ i ≤ 3, and such that Pi ∪ Pj is a hole for
all distinct i, j ∈ {1, 2, 3}. It follows that P ∗

1 , P ∗
2 , P ∗

3 are pairwise disjoint and anticomplete to
each other, |{a1, a2, a3} ∩ {b1, b2, b3}| ≤ 1, and if |{a1, a2, a3} ∩ {b1, b2, b3}| = 1, then two of the
paths have length at least 2. Moreover, the only edges between Pi and Pj are aiaj and bibj . A
prism is a near-prism whose triangles are disjoint. A wheel in G is a pair (H, x) where H is a
hole and x is a vertex with at least three neighbors in H. The vertex x is called the center of
the wheel (H, x). A wheel (H, x) is even if x has an even number of neighbors on H. Let C
be the class of (C4, theta, prism, even wheel)-free graphs (these are sometimes called “C4-free
odd-signable graphs”). Every even-hole-free graph belongs to C. For every integer t ≥ 1, let Ct

be the class of all graphs in C with no clique of size t.
A wheel (H, x) is a universal wheel if x is complete to H. A wheel (H, x) is a twin wheel if

N(x) ∩ H induces a path of length two. A wheel (H, x) is a short pyramid if |N(x) ∩ H| = 3
and x has exactly two adjacent neighbors in H. A wheel is proper if it is neither a twin wheel
nor a short pyramid.

A pyramid is a graph consisting of a vertex a and a triangle {b1, b2, b3}, and three paths Pi

from a to bi for 1 ≤ i ≤ 3, such that Pi ∪ Pj is a hole for all distinct i, j ∈ {1, 2, 3}. It follows
that P1 \ a, P2 \ a, P3 \ a are pairwise disjoint, and the only edges between them are of the form
bibj . It also follows that at most one of P1, P2, P3 has length exactly 1. We say that a is the
apex of the pyramid and that b1b2b3 is the base of the pyramid.
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3 Proof Outline
We give here the main ideas of the proof. We will not concern ourselves with the exponent of
log n in our bound and simply show that the tree independence number of G is polylogarithmic
in n. The high level scaffolding of the proof is quite similar to the proof of [13] that Kt-free even-
hole-free graphs have logarithmic treewidth. However most of the individual high level pieces
of the proof differ substantially from the corresponding step in [13] and require significant new
ideas.

The proof of [13] that every Kt-free graph has treewidth O(log n) goes as follows: first it is
proved that even-hole-free graphs admit “dominated balanced separators”. In particular there
exists a constant c such that every even-hole-free graph contains a vertex set S of size at most
c such that every connected component of G − N [S] has at most n/2 vertices. This fact is then
used to show that, in order to obtain the treewidth bound, it is sufficient to show that every
pair of non-adjacent vertices a, b in a Kt-free even-hole free graph can be separated from each
other by a set of size at most ct log n for a constant ct depending only on t. The most technical
part of the argument is then to show the existence of such small a-b separators.

The first step of the proof of [13], that even-hole-free graphs admit dominated balanced
separators, does not use the assumption that G is Kt-free and hence we can use it here. Using
the dominated balanced separator bound we then show an analog of the second step of [13]
tailored to tree independence number rather than treewidth: we show that in order to obtain the
tree independence number bound, it is sufficient to prove that every pair of non-adjacent vertices
a, b in an even-hole-free graph can be separated from each other by a set with independence
number O(logO(1) n). Here we cannot re-use the proof from [13] because that proof crucially
uses the assumption that G is Kt-free. However we can directly apply a similar step from [14].
Thus, “all” that remains is to prove the following statement:

Theorem 3.1. There exists a constant c with the following property. Let G be an even-hole-
free graph with |V (G)| = n, and let a, b ∈ V (G) be non-adjacent. Then there is a set X ⊆
V (G) \ {a, b} with κ(X) ≤ c log8 n and such that every component of G \ X contains at most
one of a, b.

In Theorem 3.1, the clique cover number κ of the separator X is bounded rather than the
independence number α because that is what naturally comes out of the proof. Obtaining a
separator X with polylogarithmic independence number would also have been sufficient. Let
us now not worry too much about the exponent 8 in the statement of Theorem 3.1, and simply
aim for a polylogarithmic bound on κ.

Towards this goal we employ a recent tool of Korchemna et al. [37], who provide a “max
flow-min cut” like theorem for clique separators. Applying this theorem to even-hole-free graphs
(and using that even-hole-free graphs are K2,2-free and therefore have only polynomially many
maximal cliques [30]) we get one of two outcomes. Either we get an a-b separator X with a
polylogaritmic upper bound on κ(X), this is the desired outcome, or we get a set of f paths
P1, . . . , Pf from a to b such that no clique of G − {a, b} intersects more than O(log n) of the
paths. Here f can be chosen to be an arbitrarily large polylogarithmic function of n (and the
larger we choose f , the worse bound we get on κ(X)).

Observe that the graph G′ induced by all of these a-b paths P1, . . . , Pf is Kt-free, where
t = Ω(log n). Indeed, every vertex of a clique K in G′ must be on some a-b path (by the
definition of G′), and no path can contain more than 2 vertices of K (since the path is induced),
so K must intersect at least |K|/2 paths. It follows that G′ is Kt-free where t = Ω(log n).

If only the constant ct in the ct log n bound on the size of an a-b separator from [13] depended
polynomially on t we would be done! Indeed, we could then have chosen f to be so large that
f ≥ (ct · log n) · log2 n, and get an a-b separator X in G′ of size at most ct · log n. But then some
vertex of X belongs to at least log2 n of the paths, contradicting that no clique meets more than
O(log n) of them.
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Unfortunately the constant ct in the proof of [13] does not depend polynomially on t, and
it does not look like an easy task to improve the dependence to a polynomial in t. However,
the argument above works just fine even if ct is not a constant but rather a polynomial in t
and log n. Hence, in order to prove Theorem 3.1 it is sufficient to prove that, for every Kt-free
graph, every pair a, b of vertices can be separated by a set X of size polynomial in t and log n.
This is precisely the approach that we take, proving Theorem 13.1. This is the most involved
part of our arguments.

Separating Two Vertices We now sketch the main ideas of the proof of Theorem 13.1:
that for every Kt-free graph every pair a and b of vertices can be separated by a set X of size
polynomial in t and log n. We start by sketching how we would have liked the proof to work,
point to where this approach breaks, and then outline how the proof actually works.

We wish to separate a from b. We will concentrate on the neighborhood N(a) of a. Let D
be the component of G − N [a] that contains b, we can safely ignore the vertices in N(a) \ N(D)
and focus on the vertices in N(D). As long as N(D) contains a clique that covers at least 0.1%
of N(D) we can add this clique to X since we only can do this step O(log n) many times. After
this step, “many” (i.e., at least 99%) of vertex triples x1, x2, x3 in N(a) ∩ N(D) are stable (this
follows from, e.g., [17]).

For a stable triple x1, x2, x3 let D′ be an inclusion minimal connected subset of D that
contains neighbors of x1, x2 and x3, and let H = {a, x1, x2, x3} ∪ D′. A simple case analysis
shows that {a, x1, x2, x3} ∪ D′ is either a pyramid or a wheel. We show in Section 4 that if
H is a pyramid, then either there is a clique K in D that separates at least two vertices of
{x1, x2, x3} from b in ({x1, x2, x3} ∪ D), or there is a clique K in D that has an “almost as
good” separation effect (the precise formulation of this “almost as good” effect is cumbersome,
and we skip it here). Additionally there are two exceptional cases for which we are not able to
obtain this outcome: H could grow to a loaded pyramid or an extended near-prism (see Section 4
for definitions).

Suppose that at least 1% of the stable triples x1, x2, x3 in N(a) ∩ N(D) there is a clique
Kx1,x2,x3 that separates at least two of them from b in ({x1, x2, x3} ∪ D) (or does the morally
equivalent job). One of the main structural insights in this paper is that in this case we can
conclude that there is a single set K in D such that κ(K) is constant and no component of
D −K sees more than 99% of N(D). This kind of local-to-global transition is usually very hard
to force when one works with families of graphs defined by forbidden induced subgraphs. Our
arguments here only rely on G being C4-free, so we expect for this technique to be applicable
in other contexts in the future.

Whenever we get a K as above we win – we can just add it to our separator X, and again
we will only do this O(log n) many times before |N(D)| drops to 0 and a is separated from b. A
similar outcome can be derived using structural arguments from [17] when H is a pyramid that
grows to an extended near-prism for a sufficiently large proportion of stable triples in N(D).

The problem with this approach is that it gets stuck whenever 99% of the stable triples
{x1, x2, x3} satisfy that H is a wheel or grows to a loaded pyramid. When this problem occurs
a large fraction of the vertices of N(D) are hubs. We say that a vertex v of G is a hub if v is
the center of a proper wheel, or the “corner” of a loaded pyramid (again, see Section 4) and
we denote by Hub(G) the set of all hubs of G. We remark that our definition of hubs is not
precisely the same as the definition of hubs in [13], although the role hubs play in [13] and here
are similar. When none of the vertices in N(a) (and therefore N(D)) are hubs an argument
quite similar to the one outlined above works, and we are able to obtain an a-b separator X
with polylogarithmic κ. We call this the “hub-free” case.

The remainder of the proof then consists of reducing the general case to the hub-free case.
The reduction is based on the “central bag” method, developed in [7] and [6] and also used in
[13]. Since G is C4-free it follows that N(a) ∩ N(b) is a clique, and we may add N(a) ∩ N(b)
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to X at the cost of increasing |X| by t (recall that G is Kt-free). From now on we assume that
N(a) ∩ N(b) is empty.

Since every even-hole-free graph has a vertex whose neighborhood is the union of two cliques,
it follows that every induced subgraph of G has average degree upper bounded by O(t). Thus,
the set Hub(G) contains a stable set S1 of size at least Ω( | Hub(G)|

t ) such that the degree of each
vertex in S1 in G[Hub(G)] is at most O(t). We show that for every hub v in a graph in C,
G−N [v] is disconnected. When v is a wheel center this was already known, for loaded pyramid
corners we prove it in Section 6 (we skip this proof in the overview).

For each v ∈ S1, since v /∈ N(a) ∩ N(b) there is a component Dv of G \ N [v] that contains
at least one of {a, b}. We claim that N [Dv] must contain both {a, b} or we are already done!
Indeed, suppose N [Dv] contains b but not a. Then a set X that separates v from b also separates
a from b, but v only has O(t) hubs in its neighborhood. So adding these t hubs to X leaves us
with the task of separating v from b, but now v has no hubs in its neighborhood and we are in
the hub-free case (and therefore done).

Thus, if we are not done yet, then for every vertex v in S1 there is a component Dv such that
{a, b} ⊆ N [Dv]. We define the central bag to be β = ⋂

v∈S1(N [Dv] ∪ {v}) (the actual definition
of the central bag is subtly different). Observe that both a and b are in the central bag β.

There are now two key observations behind the central bag method. The first (and easy) one
is that no vertex v ∈ S1 can be a hub in β. Indeed v cannot be a hub in N [Dv] since N [Dv] −
N(v) = Dv is connected, contradicting that the neighborhood of every hub is a separator. Since
β ⊆ Dv it follows that v cannot be a hub in β either. When the more nuanced definition is
used, the proof is slightly more involved.

This observation means that the number of hubs in β is smaller by a linear fraction than
the number of hubs in G. Thus, by induction on log(| Hub(G)|), we can find an a-b separator
Y in the central bag β of polylogarithmic size. If we can grow Y to an a-b separator X in G
incurring an additive polylogarithmic cost, then the induction goes through and we are able
to upper bound the total size of X by (log n)O(1). In particular the depth of the induction is
logaritmic in n, so if |X| grows by an additive term of (log n)O(1) in each inductive step this is
ok, but if X grows by a factor 1.01 in each step then |X| ends up being polynomial in n.

The second (and more involved) component of the central bag method is to show that Y
can indeed be grown to X as prescribed above. This incurs a cost which is proportional to
(essentially) |Y ∩ S1|, because for each vertex s in |Y ∩ S1| we add all of its O(t) hub neighbors
to X and then separate s from either a or b using the hub-free case.

Unfortunately the inductive step which gives us Y does not give us any guarantees on the
size of |Y ∩ S1|, so in the worst case Y ∩ S1 could be almost as big as Y itself. Then the cost
of turning Y into a separator X in G would incur at least a constant multiplicative cost, which
would be too expensive. We therefore apply an additional “pivot” step where Y is changed so
that |Y ∩ S1| is small. This pivot step again relies on the hub-free case as well as a second
application of the local-global transition mentioned above. This concludes the proof outline.

We note that most of the results are proved for the slightly more general class of graphs C,
rather than even-hole-free graphs. However, Section 7 deals with even-hole-free graphs only. It
is very likely that the proofs there do in fact work in the more general setting, but we did not
verify the details. Theorem 13.2 is another fact we need that has only been proved for even-
hole-free graphs (and not for C4-free odd-signable graphs); once again it is likely to generalize,
but we have not checked it carefully. These are the two reasons for the fact that our main
theorem applies to even-hole-free graphs only.

3.1 Organization of the Proof

The pieces of the proof appear in a different order than in the outline. Specifically each piece
is proved before it is used. In Section 4 we prove Theorem 4.3, which allows us to generate
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clique separators from pyramids that do not grow to an extended near-prisms. In Sections 5
and 6 we define hubs and prove Theorem 6.5, that every for every hub v, N [v] separates the
graph (in a particular way). In Section 7 we prove Theorem 7.2 which allows us to decompose
graphs that contain pyramids that do grow to an extended near-prisms. In Section 8 we prove
Theorem 8.3: that if we have sufficiently many clique separators of the type that are the output
of Theorem 4.3, then there is a bounded κ size set whose removal substantially separates the
graph. In Section 9 we prove Theorem 9.1 which shows how to deal with the case where we have
a vertex a, and many of the stable triples x1, x2, x3 in the neighborhood of the component D of
G − N(a) that contains b are contained in a pyramid that grows to an extended near-prism. In
Section 10 we handle the hub-free case and prove Theorem 10.1, that if a does not have any hub
neighbors, then a and b can be separated with O(log n) cliques. Section 11 contains all of the
elements needed for the central bag method, with the exception of the “pivot” step where the
separator Y is changed to (mostly) avoid S1. In Section 12 we prove Theorem 12.1, which does
the aforementioned pivot step. In Section 13 we apply the central bag method, putting together
the results from Sections 10, 11 and 12 to prove Theorem 13.1, that every pair of non-adjacent
vertices in a Kt-free even-hole-free graph can be separated by (t log n)O(1) cliques. In Section 14
we prove Theorem 14, that every pair of non-adjacent vertices in an even-hole-free graph can be
separated by (log n)O(1) cliques. Finally, in Section 15 we use Theorem 14 to prove Theorem 1.1.

4 Jumps on pyramids
The goal of this section is to prove Theorem 4.3, which asserts the existence of well-structured
cutsets that separate the neighbors of the apex of a pyramid. Theorem 4.3 is then used to
produce the “local cutsets” in Theorem 8.3.

We start with some definitions. Let G ∈ C and let Σ be a pyramid in G with apex a, base
b1b2b3 and paths P1, P2, P3. We say that X ⊆ Σ is local (in Σ) if X ⊆ Pi for some i ∈ {1, 2, 3},
or X ⊆ {b1, b2, b3}. Let P = p1- · · · -pk be a path with P ∩ Σ = ∅. P is a corner path for b1 if
p1 is adjacent to b2, b3, pk has a neighbor in P1 \ b1, and there are no other edges from Σ \ b1
to P . A corner path for b2 and b3 is defined similarly. We say that P is a corner path for Σ if
P is a corner path for b1, b2 or b3. If v ∈ G \ Σ, and v is not a corner path for Σ, and NΣ(v) is
not local, we say that v is major (for Σ).

A loaded pyramid in a graph G is a pair Π = (Σ, P ) where Σ is pyramid with apex a, base
b1b2b3 and paths P1, P2, P3, a is adjacent to b2 (hence |P2| = 2), and P = p1- · · · -pk is a path
such that

• P ∩ Σ = ∅;

• p1 is adjacent to b2;

• pk has a neighbor in P ∗
1 ;

• P3 is anticomplete to P (and in particular a is anticomplete to P );

• b2 is anticomplete to P \ p1; and

• P1 \ b1 is anticomplete to P \ pk.

In this case, we say b2 is a loaded pyramid corner, and denote the loaded pyramid as a pair
(Π, b2). We also use the notation Π to denote the vertex set P ∪ Σ.

Recall that a wheel (H, x) in G is a pair where H is a hole and x is a vertex with at least
three neighbors in H; the vertex x is called the center of the wheel. A wheel (H, x) is proper if
it is neither a twin wheel nor a short pyramid. We say that a vertex v of G is a hub if v is a
proper wheel center or a loaded pyramid corner, and we denote by Hub(G) the set of all hubs
of G.
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An extended near-prism, defined in [17], is a graph obtained from a near-prism by adding
one extra edge, as follows. Let P1, P2, P3 be as in the definition of a near-prism, and let a ∈ P ∗

1
and b ∈ P ∗

2 ; and add an edge ab. (It is important that a, b do not belong to the triangles.) If
the two triangles of the extended near-prism are disjoint, we also call it an extended prism. We
call ab the cross-edge of the extended near-prism (or of the extended prism). We start with two
lemmas:

Theorem 4.1. Let G ∈ C. Let Σ be a pyramid in G with apex a, base b1b2b3 and paths
P1, P2, P3. Let p be a major vertex for Σ. Then one of the following holds:

1. p is adjacent to a and at least two of the neighbors of a in Σ;

2. p is adjacent to a, and p is a hub;

3. Σ ∪ p is an extended prism whose cross-edge contains a; or

4. (Σ, p) is a loaded pyramid, and so one of b1, b2, b3 is a loaded pyramid corner.

Proof. We may assume that the last three outcomes of Theorem 4.1 do not hold. First we prove
that p is adjacent to a. Suppose not. Assume first that p has a neighbor in each of P1, P2, P3.
Since p is not a corner path for Σ and NΣ(p) is not local, it follows that p has neighbors in
the interiors of at least two of P1, P2, P3. Consequently, there is a theta with ends a and p the
interiors of whose paths are subpaths of P1, P2, P3, a contradiction. Thus we may assume that
p is anticomplete to at least one of P1, P2, P3, say p is anticomplete to P3.

(1) If p is non-adjacent to a, then for i = 1, 2, we have NPi(p) ̸= {bi}.

Suppose NP1(p) = {b1}. Since p is major, p has a neighbor in P2 \b2. Since p is non-adjacent
to a, and Σ ∪ p is not a loaded pyramid, it follows that b1 is non-adjacent to a. But now we
get a theta with ends b1, a and paths b1-P1-a, b1-p-P2-a and b1-b3-P3-a, a contradiction. This
proves (1).

By (1) and since p is major and we have assumed that p is non-adjacent to a, p has both
a neighbor in P1 \ b1, and a neighbor in P2 \ b2. Let H be the hole formed by P1 and P2.

(2) If p is non-adjacent to a, then p has exactly three neighbors in H, and two of them are
consecutive.

Suppose that p has two non-adjacent neighbors in P1. Then there exists a path P ′
1 from p

to a, and a path P ′′
1 from p to b1, both with interior in P1 and such that P ′

1 \ p is anticomplete
to P ′′

1 \ p. Now we get a theta with ends p, a and paths p-P ′
1-a, p-P ′′

1 -b1-b3-P3-a and a path
from p to a with interior in P2 \ b2, a contradiction. This proves that p has either one or two
consecutive neighbors in P1, and the same for P2. Since (H, p) is not an even wheel, and H ∪ p
is not a theta, (2) follows.

We may assume that NP1(p) = {t}, NP2(p) = {q, r}, where P2 traverses a, q, r, b2 is this order.
By (1), t ̸= b1. It follows from (2) that q is adjacent to r. Since Σ ∪ p is not an extended prism,
it follows that t is non-adjacent to a. But now there is a theta with ends t, a and paths t-P1-a,
t-p-q-P2-a and t-P1-b1-b3-P3-a, a contradiction. This proves that p is adjacent to a.

To complete to proof of 4.1, assume that p is anticomplete to NP1∪P2(a). Since p is major,
p has a neighbor in H \ a. Since p ̸∈ Hub(G) and H ∪ p is not a theta, it follows that p has
exactly two neighbors in H \ a, and they are adjacent. Since p is not a corner path for b3, it
follows that NH(p) ̸= {a, b1, b2}, and so we may assume that NH(p) ⊆ P1. Since p is major, we
deduce that p has a neighbor in P3 \ a. Let H ′ be the hole P1 ∪ P3. Since p ̸∈ Hub(G), it follows
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that (H ′, p) is not a proper wheel. Consequently, NP3(p) = {a} ∪ NP3(a). But now (H ′, p) is an
even wheel, a contradiction. ■

Theorem 4.2. Let G ∈ C. Let Σ be a pyramid in G with apex a, base b1b2b3 and paths
P1, P2, P3. Assume that NG(a) ⊆ Σ. Let P be a path in G \ Σ. Then one of the following holds.

1. NΣ(P ) is local in Σ;

2. P contains a major vertex for Σ;

3. P contains a corner path for Σ;

4. There exist distinct i, j ∈ {1, 2, 3} and a subpath Q = q1- · · · -qm of P such that

• NΣ(q1) ⊆ Pi;
• q1 has a unique neighbor in Pi and NPi(q1) = NPi(a);
• NΣ(qm) ⊆ Pj;
• qm has exactly two neighbors x, y in Pj; x is adjacent to y, and a ̸∈ {x, y}; and
• there are no other edges between Σ and Q;

In particular, a is contained in the cross-edge of an extended prism.

5. There is an i ∈ {1, 2, 3} and a subpath Q = q1- · · · -qm of P such that (Σ, P ) is a loaded
pyramid with loaded pyramid corner bi.

Proof. Let P = p1- · · · -pk. Suppose for a contradiction that none of the outcomes hold. We
may assume that NΣ(P ) is not local, and that NΣ(X) is local for every proper subpath X of
P . Since no vertex of P is major, and no subpath of P is a corner path, it follows that k ≥ 2.

Since NΣ(P ) ̸⊆ {b1, b2, b3}, by symmetry, we may assume that

• NΣ(p1) ⊆ P1 and p1 has a neighbor in P1 \ b1;

• pk has a neighbor in P2 \ a, and either NΣ(pk) ⊆ P2, or NΣ(pk) ⊆ {b1, b2, b3}; and

• Σ \ b1 is anticomplete to P ∗.

We first show:

(3) We have NΣ(pk) ⊆ P2 ∪ {b1}.

Suppose not. Then NΣ(pk) ⊆ {b1, b2, b3}. Since pk has a neighbor in P2 \ a, it follows that
pk is adjacent to b2. Since P ∪ (P1 \ b1) contains a path from pk to a, and since P does not
contain a corner path for b1, it follows that pk is non-adjacent to b3. This proves (3).

(4) NP2(pk) ̸= {b2}.

Suppose that NP2(pk) = {b2}. By (3) pk is non-adjacent to b3. If b2 is non-adjacent to a,
then there is a theta in G with ends b2, a and paths P2, b2-b3-P3-a and b2-pk-P -p1-P1-a, a con-
tradiction; so b2 is adjacent to a. Now since a has no neighbor in P , (Σ, P ) is a loaded pyramid
with base b1b2b3, apex a, and paths P1, P2, P3, and the fifth outcome holds, a contradiction.
This proves (4).
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(5) There is no edge from b1 to P \ p1.

Suppose for a contradiction that b1 has a neighbor in P \ p1. Since NΣ(P \ p1) is local, it
follows from (3) that NΣ(pk) ⊆ {b1, b2}, contrary to (4), and (5) follows.

By (5), it follows that Σ is anticomplete to P ∗ and that NΣ(pk) ⊆ P2. Traversing P1 from
b1 to a, let x1 be the first neighbor of p1. Traversing P2 from b2 to a, let x2 be the first neighbor
of pk. Then H = p1-P -pk-x2-P2-b2-b1-P1-x1-p1 is a hole in G (since it contains at least the
four distinct vertices b1, b2, p1, pk). For i = 1, 2, let zi be the neighbor of xi in P (and thus
zi ∈ {p1, pk}).

(6) For i = 1, 2, either there is a vertex yi in Pi with xi adjacent to yi and N(zi) ∩ Pi = {xi, yi};
or xi is the only neighbor of zi in Pi and xi is adjacent to a.

Since p1 has a neighbor in P1 \ b1, and since by (3) and (4) pk has a neighbor in P2 \ b2, it
follows that for i = 1, 2, there is a path from every vertex of P to a with interior in (P ∪ Pi) \ bi.

If xi is the only neighbor of zi in Pi, and xi is non-adjacent to a, then we find a theta with
ends xi, a in G and paths xi-Pi-a, xi-Pi-bi-b3-P3-a, and a path whose interior is contained in
(P ∪ P3−i) \ b3−i given by the claim of the previous paragraph applied to z3−i, a contradiction.

Thus we may assume that zi has two non-adjacent neighbors in Pi. Let yi be the neighbor
of zi along Pi closest to a. Since yi ̸= a, there is a theta with ends zi, a and paths zi-yi-Pi-a,
zi-xi-bi-b3-P3-a, and a path whose interior is contained in (P ∪ P3−i) \ b3−i given by the claim
of the first paragraph applied to z3−i, a contradiction. Now (6) follows.

If the first outcome of (6) holds for both i = 1 and i = 2, we get a prism with triangles
x1y1z1 and x2y2z2 and paths y1-P1-a-P2-y2, P and x1-P1-b1-b2-P2-x2, a contradiction. If the
second outcome of (6) holds for both i = 1 and i = 2, then we get a theta with ends x1, x2
and paths x1-P1-a-P2-x2, P and x1-P1-b1-b2-P2-x2, a contradiction. Thus we may assume that
the first outcome holds for i = 1 and the third outcome holds for i = 2. But now the fourth
outcome of Theorem 4.2 holds, a contradiction. ■

We need an additional definition: given a graph G, x, y ∈ V (G), a path P from x to y, and
a non-empty set A ⊆ P , we define the (P, y)-last vertex of A to be the vertex a ∈ A such that
a is the unique vertex of A in the subpath of P from a to y.

We now prove the main result of this section.

Theorem 4.3. Let G ∈ C. Let Σ be a pyramid in G with apex a, base b1b2b3 and paths
P1, P2, P3. For each i, let Qi be a subpath of Pi, with ends a and xi, such that all internal
vertices of Qi have degree two in G. Let b ∈ V (G) \ (Q1 ∪ Q2 ∪ Q3). Assume that

• NG(a) = NΣ(a);

• {x1, x2, x3} is a stable set;

• b is non-adjacent to x1, x2, x3;

• a does not belong to a cross-edge of an extended near-prism in G; and

• Hub(G) ∩ {x1, x2, x3} = ∅.

Let D = G \ (Q1 ∪ Q2 ∪ Q3). Then there is a clique K ⊆ D and distinct i, j ∈ {1, 2, 3} such that
one of the following holds: (For i ∈ {1, 2, 3} let Di be the union of components of D \ K such
that N(xi) ∩ Di ̸= ∅.)
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1. b ̸∈ K ∪ Di ∪ Dj; or

2. We have b ̸∈ N [Di]. Moreover, there is a set D′
j = D′

j(x1x2x3) of vertices such that:

• D′
j is not a clique;

• D′
j is complete to K;

• There is a vertex q = q(x1x2x3) with the following property. Either b ∈ K and q = b;
or there exists k ∈ {1, 2, 3} \ {i} such that xk is complete to K ∪ D′

j and q = xk;
• For every v ∈ D′

j, there is a path P in D ∪ {xj} from b to xj such that P ∩ N(q) ̸= ∅
and the (P, xj)-last vertex in P ∩ N(q) is v; and

• For every path P in D∪{xj} from b to xj, we have P ∩N(q) ̸= ∅, and the (P, xj)-last
vertex of P ∩ N(q) is complete to K.

Proof. Let B1, C1, B2, C2, B3, C3 be pairwise disjoint subsets of G \ a with the following prop-
erties:

• the sets B1, B2, B3 are all pairwise complete to each other;

• the sets C1, C2, C3 are pairwise anticomplete to each other;

• for distinct i, j ∈ {1, 2, 3}, the set Bi is anticomplete to Cj :

• for every i, every vertex of Bi is an end of a path to xi with interior in Ci;

• for every i, one of the following holds:

– xi ∈ Ci and every vertex of Ci \ Qi is in the interior of a path from some vertex of
Bi to xi; or

– xi = bi, and Bi = {xi}, and Ci = Q∗
i .

• For every i, we have bi ∈ Bi and Pi \ {bi, a} ⊆ Ci.

Subject to these properties, we choose the sets with W = {a} ∪
⋃3

i=1(Bi ∪ Ci) maximal.

(7) Let D be a component of G \ W . Then either N(D) ⊆ B1 ∪ B2 ∪ B3, or there exists i such
that N(D) ⊆ Bi ∪ Ci.

Suppose not and let D be a component of G \ W violating the statement. Then there exist
i ∈ {1, 2, 3} and a path P = p1- · · · -pk in D such that p1 has a neighbor in Ci and pk has a
neighbor in W \ (Bi ∪ Ci ∪ {a}). We may assume that P is chosen with k as small as possible
and that i = 1. Let c1 ∈ C1 be a neighbor of p1. Let P ′

1 be a path from b′
1 ∈ B1 to a with

interior in C1 and such that c1 ∈ P ′
1. Let c2 ∈ B2 ∪ C2 ∪ B3 ∪ C3 be a neighbor of pk; choose

c2 ̸∈ B2 ∪ B3 if possible. We may assume that c2 ∈ B2 ∪ C2. Let P ′
2 be a path from b′

2 ∈ B2
to a with interior in C2 and such that c2 ∈ P ′

2. Let P ′
3 = P3. Now Σ′ = P ′

1 ∪ P ′
2 ∪ P ′

3 ∪ {a}
is a pyramid with apex a an base b′

1b′
2b3. We apply Theorem 4.2 to Σ′ and P . Since P is not

local for Σ′ and NG(a) = NΣ(a) and NG(a) ∩ Hub(G) = ∅ (because each neighbor of a ethre
has degree 2 in G or is in {x1, x2, x3}), and a is not contained in a cross-edge of an extended
near-prism in G, it follows that one of the following holds:

• P contains a major vertex for Σ′; or

• P contains a corner path for Σ′;
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Theorem 4.1 implies that P does not contain a major vertex for Σ′, and therefore P contains a
corner path for Σ′. By the minimality of k, it follows that P is a corner path for Σ′; consequently
NΣ′\{b′

1}(pk) = {b′
2, b3}, NΣ′\{b′

1}(p1) ⊆ B1 ∪ C1, and there are no other edges between P and
Σ′ \ b′

1. In particular, p1 has a neighbor in C1, and so x1 ∈ C1.
We claim that P is anticomplete to C2 ∪ C3 and P \ pk is anticomplete to B2 ∪ B3. By the

minimality of k, it follows that P \ pk is anticomplete to C2 ∪ C3 ∪ B2 ∪ B3. From the choice of
c2, it follows that pk is anticomplete to C2 ∪ C3. This proves the claim.

Now let i ∈ {2, 3} and let Σ′′ be obtained for Σ′ by replacing the path P ′
i by an arbitrary path

from some b′′
i ∈ Bi to a with interior in Ci. Then P is not local for Σ′′. Applying Theorems 4.2

and 4.1 to Σ′′ and P , we deduce that P is a corner path for Σ′′. It follows that pk is adjacent to
b′′

i . Since b′′
i was chosen arbitrarily, we conclude that pk is complete to B2 ∪B3. But now, we can

replace B1 by B1∪pk and C1 by C1∪(P \pk), contradicting the maximality of W . This proves (7).

Let F be the union of the components D of G\W with N(D) ⊆ B1∪B2∪B3. Let Fi be the union
of the components D of G\(W ∪F ) such that N(D) ⊆ Bi ∪Ci. By (7), G\W = F1 ∪F2 ∪F3 ∪F
and the sets F1, F2, F3, F are pairwise disjoint and anticomplete to each other. We may assume
that b ∈ B3 ∪ C3 ∪ F3 ∪ F . If K = B1 ∪ B2 is a clique and x1, x2 ̸∈ B1 ∪ B2, then for i ∈ {1, 2},
we have Di = (Ci ∪ Fi) \ Qi and outcome (2)(a) holds. Thus we may assume that either B2 is
not a clique or B2 = {x2}.

(8) We may assume that B2 = {x2} or B3 = {x3}.

Suppose not; by symmetry, we may assume also that B1 ̸= {x1}. Then B2 is not a clique.
Since G is C4-free, it follows that B1 ∪B3 is a clique. Let K = B1 ∪B3. Now D1 = (C1 ∪F1)\Q1
and D2 ⊆ (C2 ∪ F2 ∪ B2 ∪ F ) \ Q2 and D3 = (C3 ∪ F3) \ Q3.

If b ∈ C3 ∪ F3, then outcome (2)(a) of the theorem holds with i = 1 and j = 2, and if b ∈ F ,
then outcome (2)(a) of the theorem holds with i = 1 and j = 3. Thus we may assume that
b ∈ B3. Let i = 1 and j = 2. Then b is anticomplete to D1. Since every path from b to x2 with
interior in D contains exactly one vertex of B2 and exactly one vertex in N(b), and B2 is not a
clique, and for every vertex v in B2 there is a path from v to x2 with interior in C2, it follows
that outcome (2)(b) holds with D′

j = B2 and q = b. This proves (8).

Since b is non-adjacent to a, it follows that if B3 = {x3}, then C3 = Q∗
3 and F3 = ∅, and so

b ∈ F and in particular, b ∈ B2 ∪ C2 ∪ F2 ∪ F ; so there is symmetry between 2 and 3 in this
case.

Therefore, we may assume that B2 = {x2}. Since {x1, x2, x3} is a stable set, it follows that
x1, x3 ̸∈ B1 ∪ B3. Since b is non-adjacent to x2, it follows that b ∈ C3 ∪ F3 ∪ F .

(9) B1 ∪ B3 is not a clique.

Suppose that B1 ∪ B3 is a clique, and let K = B1 ∪ B3. Then D1 = (C1 ∪ F1) \ Q1 and D3 =
(C3∪F3)\Q3 and D2 ⊆ F . If b ∈ F , then outcome (1) of the theorem holds with i = 1 and j = 3.
If b ∈ C3 ∪ F3, then outcome (1) of the theorem holds with i = 1 and j = 2. This proves (9).

(10) B1 is a clique.

Suppose not. It follows that B3 is a clique. Let K = B3. Then D3 = (C3 ∪ F3) \ Q3 and
D1, D2 ⊆ (C1 ∪ B1 ∪ F2 ∪ F ) \ (Q1 ∪ Q2). If b ∈ C3 ∪ F3, then outcome (1) of the theorem holds
with i = 1 and j = 2. It follows that b ∈ F . Let R be the component of F containing b. Let
M = N(R) ∩ B1. If M is a clique, then outcome (1) of the theorem holds with K = B3 ∪ M
and i = 1 and j = 3.

It follows that M is not a clique. Now outcome (2) of the theorem holds with i = 3 and
j = 1 as well as K = B3 and D′

1 = M and q = x2. We show that the last two bullets of (2)
hold:
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• Let v ∈ M . Let P be a path from b to v in R ∪ {v}. Let Q be a path from v to x1 with
Q∗ ⊆ C1. Then P ′ = b-P -v-Q-x1 is a path from b to x1 in D ∪ {x1}. Then, v is the
(P ′, x1)-last vertex in P ′ ∩ N(q), and the second-to-last bullet of (2) holds.

• Let P be a path from b to x1 in D ∪ {x1}. Traversing P from b to x1, let v be the last
vertex of P which is not in C1 ∪ F1. It follows that v ∈ B1, and so v is complete to K,
and the last bullet holds.

(11) B3 is a clique.

Suppose not. It follows that B1 is a clique. Let K = B1. Then D1 = (C1 ∪ F1) \ Q1 and
D2, D3 ⊆ (C3 ∪ B3 ∪ F2 ∪ F ) \ (Q2 ∪ Q3). Suppose first that b ∈ F . Then there is symmetry
between 1 and 3, and the result follows from (10). It follows that b ∈ F3 ∪ C3. Let R be the
component of (F3 ∪ C3) \ Q3 containing b. Then M = ND(R) ⊆ B3. If M is a clique, then
outcome (2)(a) holds with K = B1 ∪ M and i = 1 and j = 2. So we may assume that M is not
a clique. Now we let i = 1, j = 2, q = x2, and D′

2 = M . It follows that outcome (2) holds. This
proves (11).

Since B1 is complete to B3, together, (9), (10), and (11) yield a contradiction; this concludes
the proof. ■

5 Star cutsets from wheels
The following well-known definitions appear, for example, in [7]. A cutset C ⊆ V (G) of G is a
set of vertices such that G \ C is disconnected. A star cutset in a graph G is a cutset S ⊆ V (G)
such that either S = ∅ or for some x ∈ S, S ⊆ N [x].

Let G be a graph and let X, Y, Z ⊆ V (G). We say that X separates Y from Z if no
component of G \ X meets both Y and Z. Recall that a wheel (H, x) of G consists of a hole
H and a vertex x that has at least three neighbors in H, and a wheel is proper if t is neither a
twin wheel nor a short pyramid. A sector of (H, x) is a path P of H whose ends are distinct
and adjacent to x, and such that x is anticomplete to P ∗. A sector P is a long sector if P ∗

is non-empty. A wheel (H, x) is a universal wheel if x is complete to H. The following result
was observed in [7] based on results of [8, 42, 43] and stated in this form in [13]; it shows that
proper wheels force star cutsets in graphs in C.

Theorem 5.1 (Abrishami, Chudnovsky, Vušković [7]; see also [13]). Let G ∈ C and let (H, v)
be a proper wheel in G. Then there is no component D of G \ N [v] such that H ⊆ N [D].

In particular, we need the following:

Theorem 5.2 (Addario-Berry, Chudnovsky, Havet, Reed, Seymour [8], da Silva, Vušković [42]).
Let G ∈ C and let (H, x) be a proper wheel in G that is not a universal wheel. Let x1 and x2 be
the endpoints of a long sector Q of (H, x). Let W be the set of all vertices h in H ∩ N(x) such
that the subpath of H \ {x1} from x2 to h contains an even number of neighbors of x, and let
Z = H \ (Q ∪ N(x)). Let N ′ = N(x) \ W . Then, N ′ ∪ {x} is a cutset of G that separates Q∗

from W ∪ Z.

6 Star cutsets from loaded pyramids
The main theorem of this section is the following.

Theorem 6.1. Let G ∈ C. Suppose that G contains a loaded pyramid Π = (Σ, P ) with
a, b1, b2, b3, P1, P2, P3 as in the definition. Then there is no connected component D of G \ N [b2]
with Π ⊆ N [D].
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In order to prove Theorem 6.1, we first prove the following:

Theorem 6.2. Let G ∈ C. Suppose that G contains a loaded pyramid Π = (Σ, P ) with
a, b1, b2, b3, P1, P2, P3 as in the definition. Moreover, assume that D is a connected compo-
nent of G \ N [b2] such that neither N [D] ∩ (Π \ P3) nor N [D] ∩ (P3 \ {a}) is empty. Then one
of the following holds.

• We have N [D] ∩ (Π \ P3) = {b1} and N [D] ∩ (P3 \ {a}) = {b3}; or

• There is a proper wheel (H, b2) in G with two long sectors Γ1 and Γ3 such that Γ∗
1 contains

the neighbor of a in P1 and Γ3 = P3.

In order to prove Theorem 6.2, first we need to verify its assertion for two special types of
loaded pyramids, as follows. For a loaded pyramid (Σ, P ) in a graph G, we say (Σ, P ) is of type
1 if NP1(pk) ⊆ NP1 [b1]. We say that (Σ, P ) is of type 2 if b1 is anticomplete to P and pk has
exactly two neighbors x, y ∈ P1, and x is adjacent to y.

Theorem 6.3. Let G ∈ C. Suppose that G contains a loaded pyramid Π = (Σ, P ) of type
1 with a, b1, b2, b3, P1, P2, P3, P as in the definition. Moreover, assume that D is a connected
component of G \ N [b2] such that neither N [D] ∩ (Π \ P3) nor N [D] ∩ (P3 \ {a}) is empty. Then
one of the following holds.

• We have N [D] ∩ (Π \ P3) = {b1} and N [D] ∩ (P3 \ {a}) = {b3}; or

• There is a proper wheel (H, b2) in G with two long sectors Γ1 and Γ3 such that Γ∗
1 contains

the neighbor of a in P1 and Γ3 = P3.

Proof. Suppose not. Then since the first bullet of Theorem 6.3 does not hold, there exists a
shortest path Q = q1- · · · -qt in G \ N [b2] with t ≥ 1 where

• q1 has a neighbor in P3 \ {a};

• qt has a neighbor in Π \ P3; and

• either q1 has a neighbor in P ∗
3 or qt has a neighbor in P ∗

1 ∪ P .

From the minimality of Q, it follows that Q∗ is anticomplete to (Σ ∪ P ) \ {a, b1, b3}. Let c be
the neighbor of b1 in P1. Then c ̸= a, and since G is C4-free, c is non-adjacent to a.

(12) N(q1) ∩ P ∗
3 ̸= ∅.

For otherwise we have N(q1) ∩ (P3 \ {a}) = {b3}. Consequently qt has a neighbor in P ∗
1 ∪ P ,

and so by the minimality of Q, Q \ {q1} is anticomplete to P3 \ {a}. Traversing Q starting at
q1, let q be the the first vertex with a neighbor in P ′ = (P1 \ b1) ∪ P , and traversing the path
P ′ starting at a, let x be the first vertex adjacent to q. Then H = a-P ′-x-q-Q-q1-b3-P3 is a hole
in G. Note that {a, b3} ⊆ N(b2) ∩ H ⊆ {a, b3, p1}. Since H ∪ {b2} is not a theta in G, it follows
that N(b2) ∩ H = {a, b3, p1}. But then (H, b2) is a wheel in G satisfying the second bullet of
Theorem 6.3, a contradiction. This proves (12).

(13) N(b1) ∩ (Q \ qt) = ∅, and qt has a neighbor in P ∗
1 ∪ P .

Suppose not. Traversing Q starting at qt, let q be the last vertex adjacent to b1. Since (13)
does not hold, it follows that q has no neighbor in P ∗

1 ∪ P . Note that by (12), q-Q-q1 ∪ (P3 \ b3)
is connected, and so contains an induced path R from q to a. But then P1 ∪ R ∪ {b2} is a theta
with ends a, b1 in G, which is impossible. This proves (13).
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(14) N(Q) ∩ (P ∪ {b1}) ̸= ∅.

Suppose not. Then qt has a neighbor in P1 \b1. Traversing P1 \b1 starting at a, let x be the last
vertex with a neighbor in Q. It follows that x ̸= a. By (13) x is adjacent to qt and anticomplete
to Q \ qt. Traversing P3 starting at a, let y be the last vertex adjacent to q1; hence y ̸= a. Then
both H1 = (P1 \ b1) ∪ P and H2 = c-P1-x-qt-Q-q1-y-P3-b3-b2-p1-P -pk-c are holes in G. Note
that b1 has at least two non-adjacent neighbors in H1 and N(b1) ∩ H2 = (N(b1) ∩ H1) ∪ {b3}.
So one of (H1, b1) and (H2, b1) is an even wheel in G, a contradiction. This proves (14).

(15) N(qt) ∩ P ̸= ∅.

Suppose for a contradiction that qt is anticomplete to P . Recall that by the minimality of
t, Q \ qt is also anticomplete to P . Thus, Q is anticomplete to P , and so by (14), we have
N(b1) ∩ Q ̸= ∅. This, together with (13), implies that qt is adjacent to b1. Since qt-b1-b2-a-qt

is not a C4 in G, qt is nonadjacent to a. Moreover, note that by (13), it follows that qt has a
neighbor in P ∗

1 . Traversing P1 \ b1 starting at c, let x be the last vertex adjacent to qt. Also, by
(12), (P3 \ b3) ∪ Q is connected, and so contains a path R from qt to a (note that R has more
than one edge, as qt is not adjacent to a). Now, if x ̸= c, then we get a theta with ends a, qt

and paths a-P1-x-qt, R and qt-b1-b2-a, a contradiction. Therefore, we have x = c. But now we
get a theta with ends c, a and paths c-P1-a, c-pk-P -p1-b2-a and c-qt-R-a, again a contradiction.
This proves (15).

In particular, (15) implies that b3 is anticomplete to Q \ q1. Henceforth, we denote the hole
(P1 \ b1) ∪ P in G by K. Also, in view of (15), let i ∈ {1, . . . , k} be minimum such that qt is
adjacent to pi. Denote the neighbor of a in P1 by w. Then w ̸= c.

(16) |N(qt) ∩ K| ≥ 2.

Suppose not. Then pi is the unique neighbor of qt in K. By (12), (P3 \ b3) ∪ Q is connected,
and so contains a path R from qt to a. But now K ∪ R is a theta with ends a, pi in G, which is
impossible. This proves (16).

(17) qt has a neighbor in K \ (N [a] ∪ {p1}).

Suppose not. Then i = 1. Since qt-p1-b2-a-qt is not a C4 in G, it follows that qt is non-
adjacent to a. Now NK(qt) = {p1, w} and so K ∪qt is a theta, a contradiction. This proves (17).

In view of (17) there is a path P ′ from qt to b1 with interior in K \ {b2, a, p1, w}. It fol-
lows from (13) and the minimality of t that qt is the only vertex of P ′∗ with a neighbor in Q\qt.

(18) N(a) ∩ Q = ∅.

Suppose not. By (12), (P3 \ a) ∪ {q1} is connected, and so contains an induced path R from
b3 to q1. Now H1 = Q ∪ P ′ ∪ R and H2 = Q ∪ b2-p1-P -pi ∪ R are holes in G. Also, we have
N(a) ∩ H1 = N(a) ∩ (Q ∪ R) and N(a) ∩ H2 = (N(a) ∩ H1) ∪ {b2}. If |N(a) ∩ (Q ∪ R)| ≥ 3, then
either (H1, a) or (H2, a) is an even wheel in G, which is impossible. Also, if |N(a)∩(Q∪R)| = 1,
then H2 ∪ {a} is a theta in G, which is impossible. It follows that |N(a) ∩ (Q ∪ R)| = 2. Since
H1 ∪ {a} is not a theta in G, the two neighbors of a in H1 are adjacent and contained in
(Q ∪ R) \ {b3}. But now H1 ∪ {a, b2} is a prism in G, which is impossible. This proves (18).
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If q1 has exactly one neighbor x in P3, then by (12), x ∈ P ∗
3 and, using (18) we get a theta

with ends x, b2 and paths x-P3-a-b2, x-q1-Q-qt-pi-P -b2, and x-P3-b3-b2, a contradiction. Thus,
traversing P3 starting at b3, we may assume y and z to be the first and the last neighbor of q1
in P3, respectively, and y ̸= z. If z is non-adjacent to y, using (18) we get a theta with ends
b2, q1 and paths q1-z-P3-a-b2, q1-Q-qt-pi-P -b2, and q1-y-P3-b3-b2, a contradiction. So z and y are
adjacent. But now, again using (18), we get a near-prism with triangles b1b2b3 and q1zy and
paths b1-P ′-qt-Q-q1, b2-a-P3-z and b3-P3-y, a contradiction. ■

Theorem 6.4. Let G ∈ C. Suppose that G contains a loaded pyramid Π = (Σ, P ) of type
2 with a, b1, b2, b3, P1, P2, P3, P as in the definition. Moreover, assume that D is a connected
component of G \ N [b2] such that neither N [D] ∩ (Π \ P3) nor N [D] ∩ (P3 \ {a}) is empty. Then
one of the following holds.

• We have N [D] ∩ (Π \ P3) = {b1} and N [D] ∩ (P3 \ {a}) = {b3}; or

• There is a proper wheel (H, b2) in G with two long sectors Γ1 and Γ3 such that Γ∗
1 contains

the neighbor of a in P1 and Γ3 = P3.

Proof. Suppose not. Assume that P1 traverses b1, x, y, a in this order, where x and y are the two
neighbors of qt in P1. Then b1 ̸= x. Let P ′

1 = b1-P1-x, P ′′
1 = y-P1-a. We write P = p1- · · · -pk

where p1 is adjacent to b2, and pk has a neighbor in P ∗
1 .

Since the first bullet of Theorem 6.4 does not hold, there exists a shortest path Q = q1- · · · -qt

in G \ N [b2] with t ≥ 1 where

• q1 has a neighbor in P3 \ {a};

• qt has a neighbor in Π \ P3; and

• either q1 has a neighbor in P ∗
3 or qt has a neighbor in P ∗

1 ∪ P .

From the minimality of Q, it follows that Q∗ is anticomplete to (Σ ∪ P ) \ {a, b1, b3}. Let c be
the neighbor of b1 in P1. Then c ̸= a, and since G is C4-free, c is non-adjacent to a.

(19) qt has a neighbor in P ∪ P ′
1.

Suppose not. Then NP1(qt) ⊆ P ′′
1 , and there is a path R from y to b3 with R ⊆ P ′′

1 ∪ Q ∪ P3.
Now we get a prism with triangles pkxy and b1b2b3 and paths P , P ′

1 and R, a contradiction.
This proves (19).

(20) q1 has a neighbor in P ∗
3 .

Suppose not. Then NP3(q1) ⊆ {b3, a}. Suppose first that either a has a neighbor in Q,
or qt has a neighbor in (P1 \ b1) ∪ (P \ p1). Then there is a path R from q1 to a with R∗ ⊆
Q ∪ (P1 \ b1) ∪ (P \ p1). Now we get a theta with ends b3, a and paths P3, b3-b2-a and b3-q1-R-a,
a contradiction.

It follows that a is anticomplete to Q, and NP1∪P (qt) ⊆ {p1, b1}. From the choice of Q, and
since G is C4-free, it follows that NP1∪P (qt) = {p1}. Now H = b3-Q-p1-P -y-P ′′

1 -a-P3-b is a hole,
and so (H, b2) is a proper wheel satisfying the second outcome of the theorem. This proves (20).

It follows from (20) and the minimality of t that b1 is anticomplete to Q \ qt. Let v be the
neighbor of q1 in P3 closest to b3. Let v′ be the neighbor of q1 in P3 closest to a.
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(21) qt has a neighbor in P ∗
1 ∪ P .

Suppose not. Then NP1∪P (qt) ⊆ {b1, a}. By (20) there is a path R from qt to a with
R∗ ⊆ Q ∪ (P3 \ b3). Now we get a theta with ends b1, a and paths P1, b1-b2-a and b1-qt-R-a, a
contradiction. This proves (21).

It follows from (21) and the minimality of t that b3 is anticomplete to Q \ q1.

(22) a is anticomplete to Q.

Suppose not. Let R1 be a path from q1 to b1 with R∗
1 ⊆ Q ∪ P ′

1 ∪ P . If possible, choose
R1 so that p1 ̸∈ R1. Observe that Q ⊆ R1 and a is anticomplete to R1 \ Q. Let H1 be the
hole b1-R1-q1-v-P3-b3-b1. By (21) there is a path R2 from b2 to q1 with R∗

2 ⊆ Q ∪ P ∪ (P ′
1 \ b1).

Observe that Q ⊆ R2 and a is anticomplete to R2 \ Q. Let H2 be the hole b2-R2-q1-v-P3-b3-b2.
Now NH2(a) = NH1(a) ∪ {b2}. Since neither of (H1, a), (H2, a) is a theta or an even wheel in
G, it follows that a has exactly two neighbors uw in Q, and u is adjacent to w. We may assume
that Q traverses q1, u, w, qt in this order. If p1 ̸∈ R1, we get a prism with triangles auw and
b1b2b3 and paths ab2, u-Q-q1-v-P3-b3 and w-R1-b1, a contradiction. This proves that p1 ∈ R1,
and therefore NP ∪P ′

1
(qt) = {p1}. Now let H3 be the hole b1-P ′

1-x-pk-P -p1-qt-Q-w-a-P3-b3-b1.
Then NH3(b2) = {b1, b3, p1, a} and so (H3, b2) is an even wheel, a contradiction. This proves
(22).

(23) N(qt) ∩ (P1 ∪ P ) is a clique of size at least 2.

Suppose not. Since G is C4-free, qt is non-adjacent to at least one of b1 and the neighbor p1 of
b2 in P . Suppose that there are two paths R1, R2 from qt to a, both with interior in P1 ∪ P ∪ b2
and such that R∗

1 is anticomplete to R∗
2. Then we get a theta with ends qt, a and paths R1, R2

and qt-Q-v′-P3-a, a contradiction. It follows that qt has a unique neighbor w in P1 ∪ P ∪ b2.
By (19), w is non-adjacent to a. Now there are two path R1, R2 from w to a with interior in
P1 ∪P ∪b2 and such that R∗

1 is anticomplete to R∗
2, and we get a theta with ends w, a and paths

R1, R2 and w-qt-Q-v′-P3-a, a contradiction. This proves (23).

If follows from (19) and (23) that NP ′′
1

(qt) ⊆ {y}.

(24) qt is adjacent to y.

Suppose not. Let NP1∪P (qt) = {u, w}, and we may assume that P ′
1 ∪ P traverses b1, u, w, p1

in this order. Then there is a prism with triangles uwqt and b1b2b3, two of whose paths have
interior in P ′

1 ∪ P , and the third one is qt-Q-q1-v-P3-b3, a contradiction. This proves (24).

(25) qt is non-adjacent to x.

Suppose qt is adjacent to x. Since we do not get a prism with triangles xyqt and b1b2b3 and
paths x-P1-b1, y-P1-a-b2 ad qt-Q-q1-v-P3-b3, it follows that v = v′ is adjacent to a. But now
we get a theta with ends b2, v and paths b2-a-v, b2-p1-P -pk-x-qt-Q-q1-v (x is omitted if pk is
adjacent to qt) and b2-b3-P3-v. This proves (25).

By (23), (24), and (25), we deduce that NP ∪P1(qt) = {y, pk}.
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Suppose that y is non-adjacent to a. Then G contains a theta with ends a, y and paths P ′′
1 ,

y-P ′
1-b1-b2-a, and y-qt-Q-q1-v′-P3-a, a contradiction. This proves that y is adjacent to a. Since

G is C4-free, it follows that pk is non-adjacent to b2. Now, since by (20) v′ ̸= b3, there is a theta
with ends pk, b2 and paths pk-x-P ′

1-b1-b2, pk-P -p1-b2 and pk-qt-Q-q1-v′-P3-a-b2. ■

Having proved Theorems 6.3 and 6.4, we can give a proof of Theorem 6.2, below.

Proof of Theorem 6.2. Suppose for a contradiction that there exists a loaded pyramid Π =
(Σ, P ) in G with a, b1, b2, b3, P1, P2, P3, P as in the definition, and a connected component D of
G \ N [b2] for which neither N [D] ∩ (Π \ P3) nor N [D] ∩ (P3 \ {a}) is empty, such that neither
of the two bullets of Theorem 6.2 hold. Also, let a′ be the neighbor of a in P1, and subject to
the above properties and a′ being the neighbor of a in P1, let |P1| be minimal. We claim:

(26) We have N(pk) ∩ P1 is a clique.

Suppose not. Traversing P1 from b1 to a, let x and y be the first and the last neighbor of pk

in P1, respectively. Then x and y are distinct and non-adjacent, and we have y ̸= a. If k = 1,
then H = b1-P1-x-pk-y-P1-a-P3-b3-b1 is a hole in G and b2 has exactly four neighbors in H,
namely a, b1, b3 and pk. But then (H, b2) is an even wheel in G, which is impossible. So k > 1
and consequently b2 is not adjacent to pk. Now, replacing the path P1 in the pyramid Σ by the
path P ′

1 = b1-P1-x-pk-y-P1-a we obtain a pyramid Σ′ in G, where Π′ = (Σ′, P \ pk) is a loaded
pyramid in G with |P ′

1| < |P1| and D is a connected component of G \ N [b2] for which neither
N [D] ∩ (Π′ \ P3) nor N [D] ∩ (P3 \ {a}) is empty, such that neither of the two bullets of Theorem
6.2 hold. This violates the choice of Π, and hence proves (26).

(27) The vertex b1 is anticomplete to P .

Suppose not. Let i be maximum such that b1 is adjacent to pi. Also, traversing P1 from b1
to a, let y be the last neighbor of pk in P1. Then we have y ∈ P1 \ {a, b1}. If y is adjacent to
b1, then NP1(pk) ⊆ NP1(b1) and Π is a loaded pyramid of type 1, which together with Theorem
6.3 implies that the one of the two bullets of Theorem 6.2 holds, a contradiction. Thus, y is not
adjacent to b1. Suppose that i = 1. Then H = b1-p1-P -y-P1-a-P3-b3-b1 is a hole in G and b2 has
exactly four neighbors in H, namely a, b1, b3 and p1. But then (H, b2) is an even wheel, which
is impossible. So i > 1, and consequently b2 is not adjacent to pi. Now, replacing the path
P1 in the pyramid Σ by the path P ′

1 = b1-pi-P -pk-y-P1-a we obtain a pyramid Σ′ in G, where
Π′ = (Σ′, p1-P -pi−1) is a loaded pyramid in G with |P ′

1| < |P1|, and D is a connected component
of G \ N [b2] for which neither N [D] ∩ (Π′ \ P3) nor N [D] ∩ (P3 \ {a}) is empty, such that nei-
ther of the two bullets of Theorem 6.2 hold. This violates the choice of Π, and hence proves (27).

Now, if pk has exactly one neighbor x in P1, then x ̸= b1 and so by (27), P1 ∪ P ∪ {b2} is
a theta with ends b2, x in G, a contradiction. Therefore, by (26), pk has exactly two neighbors
in P1, which are adjacent. Also, by (27), b1 is anticomplete to P , and in particular b1 is not
adjacent to pk. Therefore, we may assume that N(pk) ∩ P1 = {x, y} ⊆ P1 \ {a, b1} where P1
traverses b1, x, y, a in this order. But now Π is loaded pyramid of type 2, which along with
Theorem 6.4 implies that the one of the two bullet of Theorem 6.2 holds, a contradiction. This
completes the proof of Theorem 6.2. ■

We now prove Theorem 6.1.

Proof. Suppose not, and let D be a component of G\N [b2] such that Π ⊆ N [D]. By Theorem 6.2
we deduce that there is a proper wheel (H, b2) in G with two long sectors Γ1 and Γ3 such
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that Γ∗
1 contains the neighbor of a in P1 and Γ3 = P3. But now we get a contradiction to

Theorem 5.2. ■

From Theorem 5.1 and Theorem 6.1 we deduce:

Theorem 6.5. Let G ∈ C and let (H, v) be a proper wheel or a loaded pyramid in G. Then
there is no component D of G \ N [v] such that H ⊆ N [D].

7 Tree strip systems
In this section we summarize results from [17] that allow us to deal with cross-edges of near-
prisms in an even-hole-free graph. Recall that an extended near-prism is a graph obtained from
a near-prism by adding one extra edge, as follows. Let P1, P2, P3 be as in the definition of a
near-prism, and let a ∈ P ∗

1 and b ∈ P ∗
2 ; and add an edge ab. We call ab the cross-edge of

the extended near-prism. Next we explain a theorem from [17] that describes the structure of
graphs with an extended near prism. We start with several definitions from [17].

Let T be a tree with at least 3 leaves. A leaf of T is a vertex of degree exactly one, and a
leaf-edge is an edge incident with a leaf. Let (A′, B′) be a bipartition of T , and assume that
for every v ∈ V (T ), there is at most one component C of T \ v such that A′ ∩ C = ∅, and at
most one such that B′ ∩ C = ∅. (Note that every component C of T \ v contains a leaf of T and
therefore meets at least one of A′, B′.) Since |V (T )| ≥ 3, each leaf-edge is incident with only
one leaf; let A be the set of leaf-edges incident with a leaf in A′, and define B similarly. Let
L(T ) be the line-graph of T , that is the vertex set of L(T ) is the edge set of T , and two edges
of T are adjacent in L(T ) if they share an end in T . Add to L(T ) two more vertices a, b and
the edge ab, and make a complete to A and b complete to B, forming a graph H(T ) with vertex
set E(T ) ∪ {a, b}. We say that H(T ) is an extended tree line-graph, and ab is its cross-edge.

Every extended near-prism is an extended tree line-graph, where the corresponding tree has
four leaves and exactly two vertices of degree three.

A branch-vertex of a tree is a vertex of degree different from two (thus, leaves are branch-
vertices). A branch of a tree T is a path P of T with distinct ends u, v, both branch-vertices,
such that every vertex of P ∗ has degree two in T . Every edge of T belongs to a unique branch.

Let T be a tree, and let U be the set of branch-vertices of T ; and make a new tree J with
vertex set U by making u, v ∈ U adjacent in J if there is a branch of T with ends u, v. We call
J the shape of T . Thus J has no vertices of degree two; and T is obtained from J by replacing
each edge by a path of positive length.

Let A, B, C be subsets of V (G), with A, B ̸= ∅ and disjoint from C, and let S = (A, B, C).
A rung of S, or an S-rung, is a path p1- · · · -pk of G[A ∪ B ∪ C] such that p1 ∈ A, pk ∈ B and
p2, . . . , pk−1 ∈ C, and if k > 1 then p1 /∈ B and pk /∈ A. (If A ∩ B ̸= ∅, then k = 1 is possible.)
If every vertex in A ∪ B ∪ C belongs to an S-rung, we call S a strip.

Let J be a tree with at least three vertices. M is a J-strip system in a graph G consists of:

• for each edge e = uv of J , a subset Muv = Mvu = Me of V (G); and

• for each v ∈ V (J), a subset Mv of V (G)

satisfying the following conditions:

• the sets Me (e ∈ E(J)) are pairwise disjoint;

• for each u ∈ V (J), Mu ⊆
⋃

v∈NJ (u) Muv;

• for each uv ∈ E(J), (Muv ∩ Mu, Muv ∩ Mv, Muv \ (Mu ∪ Mv)) is a strip;

• if uv, wx ∈ E(J) with u, v, w, x all distinct, then there are no edges between Muv and
Mwx;
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• if uv, uw ∈ E(J) with v ̸= w, then Mu ∩ Muv is complete to Mu ∩ Muw, and there are no
other edges between Muv and Muw.

A rung of the strip (Muv ∩Mu, Muv ∩Mv, Muv \ (Mu ∪Mv)) will be called an e-rung or uv-rung.
(the dependence on M and J is left implicit, for the sake of brevity.) Let V (M) denote the
union of the sets Me (e ∈ E(J)).

Let J be a tree, let M be a J-strip system in G, and let (α, β) be a partition of the set of
leaves of J . We say an edge ab of G is a cross-edge for M with partition (α, β) if:

• J has no vertex of degree two, and at least three vertices;

• for every vertex s ∈ V (J), s has at most one neighbor in α, and at most one in β;

• a, b ̸∈ V (M); and

• a is complete to ⋃
u∈α Mu, and a has no other neighbors in V (M); b is complete to⋃

u∈β Mu, and b has no other neighbors in V (M).

Under these circumstances, a leaf v ∈ α is called and a-leaf, and a leaf v ∈ β is a b-leaf.
Let M be a J-strip system in G with cross-edge ab and partition (α, β). We say X ⊆

V (M) ∪ {a, b} is local if either:

• X ⊆ Me for some e ∈ E(J);

• X ⊆ Mu for some u ∈ V (J); or

• X contains a and not b, and X \ {a} ⊆ Mu for some leaf u ∈ α; or X contains b and not
a, and X \ {a} ⊆ Mu for some leaf u ∈ β.

Next we describe two maximizations:

• We start with an even-hole-free graph G, and an edge ab of G, such that there is an
extended tree line-graph H(T ) that is an induced subgraph of G, with cross-edge ab.
Subject to this we choose T with as many branches as possible, that is, such that its
shape J has |E(J)| maximum.

• Then we choose a J-strip system M in G with the same cross-edge ab, with V (M) maximal.

In these circumstances (J, M) is said to be optimal for ab.
We will need the following special case of Theorem 4.2 of [17] (here we have corrected a typo

that occurred in the statement in [17]):

Theorem 7.1 (Chudnovsky, Seymour [17]). Let ab be an edge of an even-hole-free graph G,
and let (J, M) be optimal for ab. Assume that no vertex of G is adjacent to both a and b. Then
for every connected induced subgraph F of G \ (M ∪ {a, b}):

• if not both a, b have neighbors in V (F ), then the set of vertices in V (M) ∪ {a, b} with a
neighbor in V (F ) is local;

• if both a, b have neighbors in V (F ), then there exists a leaf t of J such that every vertex
of V (M) with a neighbor in V (F ) belongs to Mt.

Theorem 7.1 assumes that G is even-hole-free, rather than G ∈ C. It is likely that the proof
works under the more general assumption, we but we have not verified the details. The last
result of this section is a slight strengthening of Theorem 7.1:

Theorem 7.2. Let ab be an edge of an even-hole-free graph G, and let (J, M) be optimal for
ab. Let (α, β) be the partition such that ab is a cross-edge for M with partition (α, β). Assume
that
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• |β| ≥ 2;

• no vertex of G is adjacent to both a and b;

• a, b ̸∈ Hub(G); and

• G \ N [a] is connected.

Let F ⊆ G \ (M ∪ {a, b}) be connected. Then a is anticomplete to F , and the set of vertices in
M ∪ {b} with a neighbor in F is local.

Proof. Let F be a component of G \ (M ∪ {a, b}); notice that it suffices to prove Theorem 7.2
for such F . If a is anticomplete to F , the result follows from Theorem 7.1. Thus suppose that
a has a neighbor in F . By Theorem 7.1 there exists a leaf t of J such that N(F ) ⊆ Mt ∪ {a, b}.
Since G \ N [a] is connected, it follows that t is a b-leaf and N(F ) ∩ Mt ̸= ∅. Let P be a path
from a to a vertex of x ∈ Mt with P ∗ ⊆ F . Let Q be a path of J from t to an a-leaf t′.
Concatenating rungs corresponding to edges of Q in M , we obtain a path R from x to a vertex
y ∈ M ′

t . Let H be the hole x-R-y-a-P -x. Since H ∪ b is not a theta, it follows that b has a
neighbor in P ∗. Since (H, b) is not a proper wheel and N(a) ∩ N(b) = ∅, it follows that b has
a unique neighbor x′ ∈ P ∗ and x′ is adjacent to x and non-adjacent to a. Let t′′ be a b-leaf in
J such that t′′ ̸= t, and let S be a shortest path in J from t′′ to Q. Since t is a leaf, it follows
that t ̸∈ S. Concatenating rungs corresponding to edges of S in M , we obtain a path T from
x′′ ∈ Mt′′ to a vertex with two (consecutive) neighbors in R. But now H ∪ T ∪ {b} is a loaded
pyramid with loaded corner b and apex a, contrary to the fact that b ̸∈ Hub(G). This proves
Theorem 7.2. ■

8 From local to global separators
In this section we prove a theorem that is the heart of the proof of our main result. Qualitatively,
the content of this theorem is the following. We have a graph G whose vertex set is partitioned
into two subsets D and X where D is connected, and X = N(D). We also have a dstinguished
vertex b ∈ D. We are given a collection of clique cutsets separating individual vertices of X
from b (and with additional properties). The theorem asserts that there is one cutset, whose
clique cover number is bounded from above by an absolute constant, that separates a positive
proportion of the vertices of X from b.

Let us now delve into the details. Let D be graph and let b ∈ D. Our first goal is to
associate to each clique of D a canonical separation. First we handle cliques that do not
contain b; in this case the definition is similar in spirit to other papers in the series. For every
clique K ⊆ D \{b} let B(K) be the component of D \K with b ∈ B(K). Let C(K) = N(B(K))
and A(K) = D \ (C(K) ∪ B(K)). We call (A(K), C(K), B(K)) the b-canonical separation for
K.

Now we extend the definition of a b-canonical separation to all cliques of D. Thus let
K ⊆ D be a clique such that b ∈ K. Let B(K) be the union of the components D′ of D \ K
such that b ∈ N [D′]. Let C(K) = N(B(K)) and let A(K) = D \ (B(K) ∪ C(K)). Note that
(A(K), C(K), B(K)) = (A(K \ b), C(K \ b) ∪ {b}, B(K \ b) \ {b}).

Let K be the set of all cliques of D with A(K) maximal. Let β(D, b) = ⋂
K∈K(B(K)∪C(K)).

(Some readers may recognize β(D, b) as the “central bag” for a collection of separations defined
in [7].) For every v ∈ D \ β(D, b), let F (v) be the component of D \ β(D, b) such that v ∈ F (v).
The next two lemmas describe some of the properties of β(D, b).

Lemma 8.1. We have b ∈ β(D, b). For every component F of D \ β(D, b) there exists K ∈ K
such that F ⊆ A(K). In particular, N(F (v)) is a clique for every v ∈ D \ β(D, b).
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Figure 1: Proof of Lemma 8.1.

Proof. We prove the first assertion of the lemma first.

(28) b ∈ β(D, b).

Let K ∈ K. Then b ∈ C(K) ∪ B(K), and therefore (28) follows.

(29) Let K1, K2 ∈ K. Then C(K1) ∩ A(K2) = C(K2) ∩ A(K1) = ∅.

Let (Ai, Ci, Bi) be the canonical separation associated with Ki. Suppose that there exists
v ∈ C1 ∩ A2. Then C1 ∩ B2 = ∅.

First we show that b ̸∈ C1 ∩ C2. Suppose it is; then b ∈ K2, and b has a neighbor in A2,
namely v, contrary to the definition of a canonical separation. This proves that b ̸∈ C1 ∩ C2.
Since C1 ⊆ C2 ∪ A2, and b ∈ β(D, b) by (28), it follows that b ̸∈ C1. By (28), b ∈ B1; see Figure
1 (left).

Since b ∈ B1, and {b}∪B2 is connected, and ({b}∪B2)∩C1 = ∅, it follows that B2 ⊆ B1; see
Figure 1 (right). But C2 = N(B2) ⊆ B1 ∪ C1, and so A1 ⊆ A2 \ {v}, contrary to the definition
of K. This proves (29).

Now let F be a component of D \ β(D, b). Let K ∈ K be such that F ∩ A(K) ̸= ∅. By
(29), F ∩ C(K) = ∅. But now F ⊆ A(K), as required. Since N(F ) ⊆ N(A(K)) ⊆ K, the
second assertion follows. ■

Lemma 8.2. If K is a clique cutset in the graph β(D, b), then b ∈ K.

Proof. Suppose that K is a clique cutset of β(D, b) and b ̸∈ K. Let D1 be the component of
β(D, b) \ K, with b ∈ D1, and let D2 = β(D, b) \ (K ∪ D1). Since by Lemma 8.1, N(F ) is a
clique for every component F of D \ β(D, b), it follows that K is a clique cutset in D and no
component of D \ K meets both D1 and D2. But then D2 ∩ A(K) ̸= ∅. It follows that there
exists K ′ ∈ K such that D2 ∩ A(K ′) ̸= ∅, contrary to the definition of β(D, b). ■

Next we define a breaker in a graph. Let G be a graph. Let X ⊆ V (G) and let X1, X2, X3 be
subsets of X such that |X1| = |X2| = |X3| and X1, X2, X3 are pairwise disjoint and anticomplete
to each other. Write D = G \ X and let b ∈ D \ N [X]. Assume that N(D) = X.

For x1, x2, x3 ∈ X let us say that x1x2x3 is partitioned if xi ∈ Xi for every i ∈ {1, 2, 3}. For
a partitioned triple x1x2x3 we say that it is b-separated and (i, j)-active if b is non-adjacent to
x1, x2, x3 and there is a clique K ⊆ D such that one of the following holds (For i ∈ {1, 2, 3}, let
Di be the union of components of D \ K such that N(xi) ∩ Di ̸= ∅.)
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• b ̸∈ K ∪ Di ∪ Dj ; or

• We have b ̸∈ N [Di]. Moreover, there is a set D′
j = D′

j(x1x2x3) of vertices such that:

– D′
j is not a clique;

– D′
j is complete to K;

– There is a vertex q = q(x1x2x3) with the following property. Either b ∈ K and q = b;
or there exists k ∈ {1, 2, 3} \ {i} such that xk is complete to K ∪ D′

j and q = xk;
– For every v ∈ D′

j , there is a path P in D ∪ {xj} from b to xj such that P ∩ N(q) ̸= ∅
and the (P, xj)-last vertex in P ∩ N(q) is v; and

– For every path P in D∪{xj} from b to xj , we have P ∩N(q) ̸= ∅, and the (P, xj)-last
vertex of P ∩ N(q) is complete to K.

Under these circumstances we say that K is a witness for x1x2x3. We say that x1x2x3 is
of type 1 if the first bullet of (8) holds; otherwise, we say that x1x2x3 is of type 2. We say an
(i, j)-active triple x1x2x3 is of type 2a if q(x1x2x3) = b; it is of type 2b if q(x1x2x3) = xj ; and it
is of type 2c if q(x1x2x3) ̸= b, xj . A triple is b-separated if it is b-separated and (i, j)-active for
some distinct i, j ∈ {1, 2, 3}. Let δ ∈ (0, 1]. We say that X is a (δ, b)-breaker in G if there exist
at least δ|X|3 partitioned b-separated triples.

The main result of this section is the following:

Theorem 8.3. Let δ ∈ (0, 1] and let ϵ ≤ δ2

48×192 . Let G be a C4-free graph, and let X be a
(δ, b)-breaker in G. Then there exists S ⊆ D \ {b} with κ(S) ≤ (96/δ)2 such that the component
D(b) of D \ S with b ∈ D(b) is disjoint from N(x) for at least ϵ|X| vertices x ∈ X.

Proof. We first show:(⌈96
δ

⌉
+ 1

2

)
=
(⌈96

δ

⌉)(⌈96
δ

⌉
+ 1

)
/2

≤ (96/δ + 1)(96/δ + 2)/2
= (96/δ)2 + 3 · 96/(2δ) + 1 − (96/δ)2/2
≤ (96/δ)2 + 3 · 96/(2δ) + 1 − 48 · 96/δ

≤ (96/δ)2.

Now suppose that the statement is false. For every clique K ⊆ D, let (A(K), C(K), B(K)) be
the b-canonical separation for K.

Let x1x2x3 be a b-separated triple. We fix a witness K(x1, x2, x3) for x1x2x3, where
K(x1, x2, x3) is chosen such that x1x2x3 is of type 1 if possible. Let F be the set of com-
ponents of D \ β(D, b). For every x ∈ X, let F(x) be the set of elements of F for which
N(x) ∩ F ̸= ∅.

(30) Let x1x2x3 be a b-separated triple; write K = K(x1, x2, x3). Assume that the component
D(b) of D \ (K \ b) with b ∈ D(b) is anticomplete to x1. Then x1 is anticomplete to β(D, b) \ K.
Moreover, let F ∈ F(x1). Then either K ∩ F ̸= ∅, or N(F ) ⊆ K.

Since β(D, b) ⊆ D(b) ∪ K, it follows that x1 is anticomplete to β(D, b) \ K. Next, suppose
that F ∩ K = ∅ and that there is a vertex p ∈ N(F ) \ K. By Lemma 8.2, b ∈ β(D, b) and
β(D, b) \ (K \ b) is connected. Let P be a path from p to b with P ∗ ⊆ β(D, b). Let Q be a
path from N(x1) to p with interior in F . Then R = Q-p-P -p is a path from N(x1) to b with
R∗ ∩ K = ∅, a contradiction. This proves (30).
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It follows from (30) that:

(31) If x1x2x3 is a (1, 2)-active triple, then x1 is anticomplete to β(D, b) \ K(x1, x2, x3). More-
over, if x1x2x3 is of type 1, then x2 is anticomplete to β(D, b) \ K(x1, x2, x3).

Let x ∈ X. We define the projection of x, denoted by Proj(x), to be Nβ(D,b)(x)∪
⋃

F ∈F(x) N(F ).
Note that since b is non-adjacent to x1, x2, x3 for b-seperated triples x1x2x3, and since b is an-
ticomplete to A(K) for every K ∈ K, it follows that b ̸∈ Proj(x) whenever x is in a b-separated
triple.

(32) Let x1x2x3 be a (1, 2)-active triple; write K = K(x1, x2, x3). If x1x2x3 is of type 1, then
Proj(x1) ∪ Proj(x2) is a clique.

For i ∈ {1, 2}, let Fi = ⋃
F ∈F(xi) F . Suppose first that K ∩ Fi = ∅ for all i ∈ {1, 2}; then by

(30) N(Fi) ⊆ K for i ∈ {1, 2}. Since by (31), Nβ(D,b)(xi) ⊆ K for i ∈ {1, 2}, (32) holds. Thus
we may assume that there exists F ∈ F(x1) such that K ∩ F ̸= ∅. Let F ′ ∈ (F1 ∪ F2) \ F . Since
K is a clique, it follows that F ′ ∩ K = ∅, and by (30), N(F ′) ⊆ K.

Since K ∩ F ̸= ∅, we have that K ∩ β(D, b) ⊆ N(F ), and so N(F ′) ⊆ N(F ). Moreover, by
(31), for i ∈ {1, 2}, we have Nβ(D,b)(xi) ⊆ K, and so Nβ(D,b)(xi) ⊆ N(F ). N(F ) is a clique by
Lemma 8.1, and (32) follows.

(33) Let x1x2x3 be a (1, 2)-active triple which is of type 2; write K = K(x1, x2, x3). Then
Proj(x1) ⊆ K.

By (31), we have Nβ(D,b)(x1) ⊆ K. By (30), we either have N(F ) ⊆ K or K ∩ F ̸= ∅ for
every F ∈ F(x1). If the former holds for all F ∈ F(x1), then (33) holds; so we may assume that
there exists F ∈ F(x1) with K ∩ F ̸= ∅. By Lemma 8.1, it follows that N(F ) is a clique K ′.
From the definition of β(D, b), it follows that b ̸∈ K ′. We claim that K ′ is a witness for x1x2x3
that makes x1x2x3 be of type 1 (and therefore contradicts the choice of K = K(x1x2x3)).
Suppose not; let P be a path from b to xi for some i ∈ {1, 2} such that P ∗ ∩ K ′ = ∅. From
the definition of a b-separated (1, 2)-active triple, it follows that P ∗ ∩ (K ∪ D′

2(x1x2x3)) ̸= ∅.
Since D′

2(x1x2x3) is complete to K, it follows that (K ∪ D′
2(x1x2x3)) \ K ′ ⊆ F . Therefore,

P ∗ ∩ F ̸= ∅. Since P ∗ ∩ N(F ) = ∅, it follows that P ⊆ N [F ] ∪ {xi}, contrary to the fact that
b ̸∈ N [F ] ∪ {xi}. This is a contradiction, and proves (33).

By permuting the indices if necessary, we may assume that δ
6 |X|3 separated triples are

(1, 2)-active. Now, for one of the four possible types (1, 2a, 2b, 2c), there exist δ
24 |X|3 distinct

(1, 2)-active triples x1x2x3 of this type with respect to K(x1x2x3). Let l be the first entry of
the list (1, 2a, 2b, 2c) for which this is the case; let us say that a triple x1x2x3 is manageable if
it is (1, 2)-active of type l.

Let Z1 ⊆ X1 be the set of all vertices y1 ∈ X1 such that

|{(y2, y3) ∈ X2 × X3 : y1y2y3 is a manageable triple}| ≥ δ

48 |X|2.

(34) |Z1| ≥ δ
48 |X|.

Suppose not. Each vertex y1 ∈ X1\Z1 is in fewer than δ
48 |X|2 manageable triples. Therefore,

the total number of manageable triples is less than

|Z1||X|2 + |X1 \ Z1| δ

48 |X|2 <
δ

48 |X|3 + δ

48 |X|3 = δ

24 |X|3,
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a contradiction. This proves (34).

Recall that by (32), Proj(w) is a clique for every w ∈ Z1. Since |Z1| > ϵ|X|, we have
α(⋃w∈Z1 Proj(w)) > 96

δ .
Let W1 be a minimal subset of Z1 such that α(⋃w∈W1 Proj(w)) ≥ 96

δ . Then α(⋃w∈W1 Proj(w)) =⌈
96
δ

⌉
. Let S = ⋃

w∈W1 Proj(w). By a theorem of [47] (using that the complements of even-hole-

free graphs contain no induced two-edge matching), we have κ(S) ≤
(α(S)+1

2
)

≤
(⌈ 96

δ ⌉+1
2

)
.

Let J be a stable set of size
⌈

96
δ

⌉
in S. For every j ∈ J , let x(j) ∈ W1 be such that

j ∈ Proj(x(j)). Since J is a stable set, the elements x(j) are pairwise distinct.
Let H be the bipartite graph with bipartition ({x(j)}j∈J , X2 × X3), such that x(j) is adja-

cent to (y2, y3) ∈ X2 × X3 if x(j)y2y3 is a manageable triple.

(35) There exist distinct j1, j2 ∈ J such that |NH(x(j1)) ∩ NH(x(j2))| ≥ δ2

48×192 |X|2.

Suppose not. Let j ∈ J . Since x(j) ∈ Z1, it follows that x(j) has at least δ
48 |X|2 neighbors

in H. For every j ∈ J , let M(j) be the set of vertices y ∈ Y2 such that y is adjacent to x(j) in H,
and y is not adjacent in H to any other vertex x(j′) for j′ ̸= j. Since |NH(x(j1))∩NH(x(j2))| <

δ2

48×192 |X|2 for all distinct j1, j2 ∈ J , and since each x(j) has at least δ
48 |X|2 neighbors in H, it

follows that
|M(j)| >

δ

48 |X|2 −
(⌈96

δ

⌉
− 1

)
δ2

48 × 192 |X|2 >
δ

96 |X|2

for each j ∈ J . But now ⋃
j∈J |M(j)| > |J | δ

96 |X|2 ≥ |X|2, a contradiction. This proves (35).

Suppose that l = 1. Let j1, j2 be as in (35), and let

Z2 = {y2 : (y2, y3) ∈ NH(x(j1)) ∩ NH(x(j2)) for some y3 ∈ X3}.

Then |Z2| ≥ δ2

48×192 |X|. Since |Z2| ≥ ϵ|X|, we deduce that κ(⋃y∈Z2 Proj(y)) >
(⌈ 96

δ ⌉+1
2

)
> 4.

Therefore we can choose non-adjacent k1, k2 ∈ (⋃y∈Z2 Proj(y))\ (Proj(x(j1))∪Proj(x(j2))). For
i ∈ {1, 2}, let y(ki) ∈ Z2 be such ki ∈ Proj(yi). It follows that for every p, q ∈ {1, 2} there
exists y3(p, q) ∈ Y3 such that x(jp), y(kq), y3(p, q) is a manageable triple. Now applying (32)
to x(jp)y(kq)y3(p, q), we deduce that jp is adjacent to kq; consequently {j1, j2} is complete to
{k1, k2}. But then j1-k1-j2-k2-j1 is a C4 in G, a contradiction.

This proves that l is one of 2a, 2b, 2c. Let j1, j2 be as in (35) and let (y2, y3) ∈ NH(x(j1)) ∩
NH(x(j2)). Note that since x(j1)y2y3 and x(j2)y2y3 are both (1, 2)-active and of the same
type in 2a, 2b, 2c, we have q(x(j1)y2y3) = q(x(j2)y2y3). Let us define q = q(x(j1)y2y3). For
i ∈ {1, 2}, let Ki = K(x(ji)y2y3). By (33) we have Proj(x(j1)) ⊆ K1 and so j1 ∈ K1; likewise,
j2 ∈ K2.

Let p1, p2 ∈ D′
2(x(j1)y2y3) be non-adjacent. For i ∈ {1, 2}, let Pi be a path from b to y2 in

D ∪ {y2} such that the (Pi, y2)-last vertex in Pi ∩ N(q) is pi. It follows that p1, p2 are complete
to K1, K2. But now j1-p1-j2-p2 is a C4 in G, a contradiction. ■

9 Handling dangerous triples
Let G be a graph, let a ∈ G and write X = N(a) and D = G \ N [a]. Let X be partitioned into
three equal-size subsets X1, X2, X3 pairwise anticomplete to each other. We say that the triple
x1x2x3 with xi ∈ Xi is dangerous with center x2 if the edge ax2 is a cross-edge of an extended
near-prism in the graph D ∪ {x1, x2, x3, a}.
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The goal of this section is to prove that if G contains many dangerous triples with a fixed
center, then we can bypass the main argument of Section 10 and obtain the desired conclusion
directly. The details of this are explained in Section 10.

We need the following definition: Let G = D ∪ X ∪ {a} be a graph where D is connected, a
is complete to X and anticomplete to D, and N(D) = X. Let b ∈ D. Let us say that X ′ ⊆ X
is pure if there does not exist a hole H ⊆ D ∪ X ′ ∪ {a} such that a, b ∈ H.

Theorem 9.1. Let δ ∈ (0, 1] and let ϵ ≤ 1
8δ. Let G = D ∪ X ∪ {a} be a graph where D

is connected, a is complete to X and anticomplete to D, and N(D) = X. Assume that X ∩
Hub(G) = ∅. Assume that X is partitioned into three pairwise anticomplete sets X1, X2, X3 of
equal size. Suppose that some x2 ∈ X2 is a center of δ|X|2 dangerous triples. Assume also that
there is no clique of size ϵ|X| in X. Let b ∈ D. Then one of the following holds:

• there exists S ⊆ D \ {b} with κ(S) ≤ 4 such that the component D(b) of D \ S with
b ∈ D(b) is disjoint from N(x) for at least ϵ|X| vertices x ∈ X; or

• X is not pure and there exists X ′ ⊆ X with |X ′| ≥ 1−4ϵ
2 |X| such that X ′ is pure.

Proof. Suppose not. Let x2 ∈ X2. For i = 1, 3 let Yi ⊆ Xi be the set of all y ∈ Xi such that
there exist at least 1

2δ|X| elements z ∈ X4−i for which yx2z is a dangerous triple with center
x2.

(36) For i = 1, 3, |Yi| ≥ 1
2δ|X|.

Suppose that |Y1| < 1
2δ|X|. The number of dangerous triples with center x2 and using an

element of Y1 is at most |Y1||X| ≤ 1
2δ|X|2. The number of dangerous triples with center x2 and

not using an element of Y1 is less than |X1 \ Y1| × 1
2δ|X| ≤ 1

2δ|X|2. It follows that the number
of dangerous triples with center x2 is less than δ|X|2, a contradiction. This proves (36).

Let G′ = D ∪ X1 ∪ X3 ∪ {a, x2}. Then ax2 is a cross-edge of an extended near-prism in
G′ and no vertex of G′ is adjacent to both a and x2. Since N(D) = X, it follows from Theo-
rem 6.5 that a ̸∈ Hub(G). Applying Theorem 7.2 to ax2 and G′, we obtain a J-strip system M
with cross-edge ax2 such that for every connected induced subgraph F of G′ \ (M ∪ {a, x2}), we
have that a is anticomplete to F , and the set of vertices in M ∪{x2} with a neighbor in F is local.

(37) For every x ∈ X1 ∪ X3, there exists an a-leaf t such that x ∈ Mt.

Since X1 ∪ X3 ⊆ N(a), Theorem 7.2 implies that X1 ∪ X3 ⊆ V (M). Now (37) follows from
the fact that ax2 is a cross-edge for M .

Let v ∈ V (J). Let e be an edge of J incident with v. We say that e is special for v if ei-
ther v is a leaf, or the set Mv ∩ Me is not a clique. Since G′ is C4-free and Mv ∩ Me is complete
to Mv ∩ Me′ for distinct edges e, e′ incident with v, it follows that for every v ∈ V (J), there is
at most one special edge for v.

For v ∈ V (J), let Fv be, the union of components F of G′ \ (M ∪ {a, x2}) such that
N(F ) ∩ M ⊆ Mv. For e ∈ E(J) with ends u, v let Fe be the union of components F of
G′ \ (M ∪ {a, x2}) such that N(F ) ∩ M ⊆ Me, and such that N(F ) ̸⊆ Mu and N(F ) ̸⊆ Mv.
Since D is connected and disjoint from N(a), it follows that Ft = ∅ for every a-leaf t.

Let e = uv be an edge of J . Define µ(e) as follows. If e is not special for either u or v, let
µ(e) = Fe ∪ Me \ (Mu ∪ Mv). If e is special for u and not for v, let µ(e) = Fe ∪ (Me \ Mv) ∪ Fu.
If e is special for v and not for u, let µ(e) = Fe ∪ (Me \ Mu) ∪ Fv. If e is special for both u
and v, let µ(e) = Me ∪ Fe ∪ Fu ∪ Fv. In all cases let ν(e) = ∅. Next, let v ∈ V (J). If there
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is a special edge e for v, let µ(v) = Mv \ Me and ν(v) = ∅. If no edge is special for v, let
µ(v) = Mv and ν(v) = Fv. It follows that µ(v) is a clique for every v ∈ V (J). Note that each
vertex of V (G′) \ {x2, a} is in at least one set in {µ(x), ν(x)}x∈V (J)∪E(J); the only vertices of
V (G′) \ {x2, a} that are in two such sets are vertices in Mu ∩ Mv where uv is not special for u
and not special for v; they are in both µ(v) and µ(u).

(38) If e is an edge of J with ends u, v and b ∈ µ(e), then |(X1∪X3)\(µ(e)∪µ(v)∪µ(u))| ≤ ϵ|X|.

Suppose x ∈ (X1 ∪ X3) \ (µ(e) ∪ µ(v) ∪ µ(u)). Then N(x) ∩ µ(e) = ∅. Since L = µ(v) ∪ µ(u)
separates µ(e) from D \ (µ(e) ∪ L) in D, it follows that the component of D \ L that contains b
is disjoint from N(x). Since κ(L) ≤ 2, there are at most ϵ|X| such vertices x, and (38) follows.

(39) Suppose that v ∈ V (J) and b ∈ µ(v). Let e = vu ∈ E(J) such that b ∈ Me. Moreover:

• Define L1 and C1 as follows. Let f = vw be a special edge at v if one exists; in this case,
let L1 = µ(w) ∪ µ(f) and C1 = µ(w); otherwise, L1 = C1 = ∅.

• Define L2 and C2 as follows. If b ∈ Mu ∩ Mv and there is a special edge uz at u with
z ̸= v, let L2 = µ(uz) ∪ µ(z) and C2 = µ(z). If b ∈ Mu ∩ Mv and there is no special edge
at u except possibly uv, we let L2 = ν(u) and C2 = ∅. Finally, if b ̸∈ Mu, let L2 = C2 = ∅.

Then |(X1 ∪ X3) \ (µ(e) ∪ µ(v) ∪ L1 ∪ L2 ∪ µ(u) ∪ ν(v))| ≤ ϵ|X|.

Suppose that x ∈ (X1 ∪ X3) \ (µ(e) ∪ µ(v) ∪ L1 ∪ L2 ∪ µ(u) ∪ ν(v)). Let L = ((µ(v) ∪ µ(u) ∪
C1 ∪ C2) \ {b}) ∩ D. Then L separates ({b} ∪ µ(e) ∪ ν(v) ∪ (L1 \ C1) ∪ (L2 \ C2)) ∩ D from the
rest of D, and in particular, from D ∩ (N(x) \ L). Since κ(L) ≤ 4, there are at most ϵ|X| such
vertices x, and (39) follows.

(40) Suppose that v ∈ V (J) and b ∈ ν(v). Then |(X1 ∪ X3) \ (µ(v) ∪ ν(v))| ≤ ϵ|X|.

Suppose that x ∈ (X1 ∪ X3) \ (µ(v) ∪ ν(v)). Then N(x) ∩ ν(v) = ∅. Let L = µ(v). Then L
separates ν(v) from D \ (ν(v) ∪ µ(v)). We deduce that the component of D \ L that contains b
is disjoint from N(x). Since κ(L) = 1, there are at most ϵ|X| such vertices x, and (40) follows.

It follows from (37), (38), (39) and (40) that there is an a-leaf t with NJ(t) = {t′} such that
b ∈ µ(t′t)∪Mt′ ∪ν(t′). If b ∈ ν(t′), then by (37) and (40), it follows that |X ∩µ(t′)| ≥ (1−ϵ)|X|.
But µ(t′) is a clique, and ϵ ≤ 1/8, and X contains no clique of size ϵ|X|, a contradiction. It
follows that b ∈ µ(t′t) ∪ Mt′ .

From Theorem 7.2, it follows that:

(41) If x ∈ N(x2) ∩ M , then there is a b-leaf q such that x ∈ Mq ∪ Fq.

Next, we show:

(42) Let t be an a-leaf, and let t′ be the unique neighbor of t in J . Let Z = µ(tt′)∪ν(t′). Suppose
that y1 ∈ X1 ∩ Z and y3 ∈ X3 ∩ Z. Then y1x2y3 is not a dangerous triple.

Suppose not. Then, by the definition of a dangerous triple, there exists a path R from y1 to
y3 with x2 ∈ R and such that R \ {y1, x2, y3} ⊆ D. By (41), it follows that there exist b-leaves
q1, q3 such that the neighbor of x2 on the subpath of R from x2 to yi is in Mqi ∪Fqi for i ∈ {1, 3}.
Since µ(t′) separates Z from Fr ∪ Mr for all r ∈ V (J) \ {t, t′}, it follows that the interiors of
both the paths y1-R-x2 and x2-R-y3 meet µ(t′), contrary to the fact that µ(t′) is a clique. This
proves (42).
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(43) Let t be an a-leaf, and let t′ be the unique neighbor of t in J . Let t′′ be a neighbor of t with
t′′ ̸= t. Let Z = µ(tt′) ∪ µ(t′t′′) ∪ µ(t′) ∪ µ(t′′) ∪ ν(t′) ∪ ν(t′′). Then |X ∩ Z| < (1 − ϵ)|X|.

From the definition of a J-strip structure with cross-edge ax2, it follows that t′′ is not an
a-leaf.

Now, since X contains no clique of size ϵ|X|, it follows that |X ∩ µ(t′) ∪ µ(t′′)| ≤ 2ϵ|X|.
Furthermore, (37) implies that X ∩ ν(t′) = ∅, X ∩ ν(t′′) = ∅ and X ∩ µ(t′t′′) = ∅ (as t′′, t′ are
not a-leaves). Therefore, |(X1 ∪ X3) ∩ µ(tt′)| ≥ (1 − 3ϵ)|X|. Since ϵ < 1

8δ, it follows from (36)
that there exist y1 ∈ Y1 ∩ (Z \ µ(t′)) and y3 ∈ X3 ∩ (Z \ µ(t′)) such that y1x2y3 is a dangerous
triple, contrary to (42). This proves (43).

To finish the proof of Theorem 9.1, we consider three cases. Suppose first that either:

• b ∈ µ(tt′); or

• b ∈ Mtt′ ∩ Mt′ and no edge is special at t′ (except possibly tt′).

Let Z = µ(tt′) ∪ µ(t′) if b ∈ µ(tt′), and let Z = µ(tt′) ∪ µ(t′) ∪ ν(t′) otherwise. By (38) and (39)
and since µ(t) = ν(t) = ∅, it follows that |X ∩ Z| ≥ (1 − ϵ)|X|. This contradicts (43) (choosing
t′′ arbitrarily).

Now suppose that b ∈ (Mt′ ∩ Mtt′) \ µ(tt′). We may assume that we are not in the first case,
and so it follows that there is an edge t′t′′ with t′′ ̸= t which is special at t′. It follows that t′′ is
not an a-leaf. Let Z = µ(tt′) ∪ µ(t′) ∪ µ(t′t′′) ∪ µ(t′′) ∪ ν(t′). By (39) and since ν(t) = µ(t) = ∅,
it follows that |X ∩ Z| ≥ (1 − ϵ)|X|. This contradicts (43).

It follows that b ∈ Mt′ ∩ Mt′t′′ for some neighbor t′′ of t′ with t′′ ̸= t. Then t′′ is not an
a-leaf. Suppose first that either:

• b ̸∈ Mt′′ ; or

• b ∈ Mt′′ ∩ Mt′ and there is no special edge at t′′ except possibly t′′t′.

Let Z = µ(tt′) ∪ µ(t′t′′) ∪ µ(t′) ∪ µ(t′′) ∪ ν(t′) ∪ ν(t′′). Using (39) (with t′ = v; t = w; t′′ = u),
we conclude that |X ∩ Z| ≥ (1 − ϵ)|X|. Again, this contradicts (43).

It follows that b ∈ Mt′ ∩ Mt′′ , and there is a special edge t′′t′′′ at t′′ with t′′′ ̸= t′. Let
Z = µ(tt′) ∪ µ(t′t′′) ∪ µ(t′) ∪ µ(t′′) ∪ ν(t′) ∪ ν(t′′) ∪ µ(t′′t′′′) ∪ µ(t′′′). Using (39) (with t′ = v;
t = w; t′′ = u; t′′′ = z), we conclude that |X ∩ Z| ≥ (1 − ϵ)|X|. From (37), it follows
that X ∩ (ν(t′) ∪ ν(t′′)) = ∅. Since X contains no clique of size at least ϵ|X|, it follows that
|X ∩ (µ(t′) ∪ µ(t′′) ∪ µ(t′′′))| < 3ϵ|X|. Neither t′ nor t′′ is a leaf, and so X ∩ µ(t′t′′) = ∅ by (37).

It follows that |X ∩ (µ(tt′) ∪ µ(t′′t′′′))| > (1 − 4ϵ)|X|. If X ∩ µ(t′′t′′′) = ∅, then as before,
there exist y1 ∈ µ(tt′) ∩ Y1 and y3 ∈ µ(tt′) ∩ Y3 such that y1x2y3 is a dangerous triple, contrary
to (42). So X ∩ µ(t′′t′′′) ̸= ∅. It follows that t′′′ is an a-leaf. There is symmetry (switching
t, t′, t′′, t′′′ with t′′′, t′′, t′, t), and so X ∩ µ(tt′) ̸= ∅.

Let x ∈ X ∩ µ(tt′) and let x′ ∈ X ∩ µ(t′′t′′′). Then x ∈ Mt and x′ ∈ Mt′′′ by (37). Let R be
a tt′-rung containing x, and let R′ be a t′′t′′′-rung containing x′. Then x-R-b-R′-x′-a-x is a hole
in D ∪ X ∪ {a} containing a and b, and so X is not pure.

By symmetry, we may assume that |X ∩µ(tt′)| ≥ 1−4ϵ
2 |X|. Write X ′ = X ∩µ(tt′). We claim

that X ′ is pure (and so the second outcome of the theorem holds). Suppose not; let H be a
hole containing a and b with H \ a ⊆ X ′ ∪ D. Then H contains two internally disjoint paths
from b to a, say P1 and P2. Since Y = Mt′ ∩ Mtt′ separates b from X ′ \ Y in D ∪ X ′, it follows
that P ∗

1 and P ∗
2 each contain a vertex in Y (and in particular, tt′ is special at t′). Since µ(t′)

is complete to Y , it follows that H ∩ µ(t′) = {b}. Consequently, H \ b ⊆ µ(tt′). It follows that
R′ \ b is anticomplete to H \ b. But now H ∪ R′ is a theta in G with ends a, b, a contradiction.
This concludes the proof. ■
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10 Separating a pair of vertices: the hub-free case

In this section we set ϵ = 1
4×176×48×192 , γ = ϵ(1−4ϵ)

2 and C = 962 × 4 × 176 + 4. The goal of this
section is to prove the following:

Theorem 10.1. Let G ∈ C with |V (G)| = n, and let a, b ∈ V (G) be non-adjacent. Assume that
N(a) ∩ Hub(G) = ∅. Then there is a set Z ⊆ V (G) \ {a, b} with κ(Z) ≤ −C 1

log(1−γ) log n and
such that every component of G \ Z contains at most one of a, b.

We need the following result from [5].

Lemma 10.2 (Abrishami, Chudnovsky, Dibek, Vušković [5]). Let x1, x2, x3 be three distinct
vertices of a graph G. Assume that H is a connected induced subgraph of G \ {x1, x2, x3} such
that V (H) contains at least one neighbor of each of x1, x2, x3, and that V (H) is minimal subject
to inclusion. Then, one of the following holds:

(i) For some distinct i, j, k ∈ {1, 2, 3}, there exists P that is either a path from xi to xj or a
hole containing the edge xixj such that

• V (H) = V (P ) \ {xi, xj}; and
• either xk has two non-adjacent neighbors in H or xk has exactly two neighbors in H

and its neighbors in H are adjacent.

(ii) There exists a vertex a ∈ V (H) and three paths P1, P2, P3, where Pi is from a to xi, such
that

• V (H) = (V (P1) ∪ V (P2) ∪ V (P3)) \ {x1, x2, x3};
• the sets V (P1) \ {a}, V (P2) \ {a} and V (P3) \ {a} are pairwise disjoint; and
• for distinct i, j ∈ {1, 2, 3}, there are no edges between V (Pi) \ {a} and V (Pj) \ {a},

except possibly xixj.

(iii) There exists a triangle a1a2a3 in H and three paths P1, P2, P3, where Pi is from ai to xi,
such that

• V (H) = (V (P1) ∪ V (P2) ∪ V (P3)) \ {x1, x2, x3};
• the sets V (P1), V (P2) and V (P3) are pairwise disjoint; and
• for distinct i, j ∈ {1, 2, 3}, there are no edges between V (Pi) and V (Pj), except aiaj

and possibly xixj.

We also need the following; for a proof see, for example, [3]:

Theorem 10.3. Let (T, χ) be a tree decomposition of a graph G. Then there exist a vertex
t0 ∈ T such that |D| ≤ 1

2 |V (G)| for every component D of G \ χ(t0).

We start with a lemma.

Lemma 10.4. Let n be an integer. Let G be a chordal graph with n − ϵn vertices, and assume
that G has no clique of size ϵn. Then there is Z ⊆ V (G) such that

• κ(Z) ≤ 2, and

• there exist subsets X1, X2, X3 of V (G) \ Z, pairwise disjoint and anticomplete to each
other, and such that |Xi| =

⌈
1
17n

⌉
for every i ∈ {1, 2, 3}.
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Proof. Since G is chordal, there is a tree decomposition (T, χ) of G such that χ(t) is a clique
for every t ∈ T [33]. By Theorem 10.3, there exists a vertex t0 ∈ T such that |D| ≤ n

2 for
every component D of G \ χ(t0). Let X be a minimal set of components of G \ χ(t0) such that
|
⋃

D∈X D| ≥ (1
4 − 2ϵ)n.

(44) |G \ (⋃D∈X D ∪ χ(t0))| ≥ 1
4n.

Suppose not. Then |
⋃

D∈X D ∪ χ(t0)| > (3
4 − ϵ)n. Since χ(t0) is a clique, it follows

that |χ(t0)| < ϵn, and so |
⋃

D∈X D| ≥ (3
4 − 2ϵ)n. Let D0 ∈ X. Then |D0| ≤ 1

2n, and so
|
⋃

D∈X\{D0} D| ≥ (1
4 − 2ϵ)n, contrary to the minimality of X. This proves (44).

Let X1 = ⋃
D∈X D and let Z1 = χ(t0). Let Y be a subset of G \ (X1 ∪ Z1) with |Y | = 1

4n,
and let G′ = G[Y ]. By Theorem 10.3, there exists a vertex t′

0 ∈ T such that |D| ≤ n
8 for every

component D of G′ \ χ(t′
0). Let X ′ be a minimal set of components of G′ \ χ(t′

0) such that
|
⋃

D∈X′ D| ≥ ( 1
16 − 2ϵ)n. Write X2 = ⋃

D∈X′ D and Z2 = χ(t′
0). Let X3 = G′ \ (X2 ∪ Z2). By

(44), |X3| ≥ 1
16n. Let Z = Z1 ∪ Z2. Then κ(Z) = 2, the sets X1, X2, X3 are pairwise disjoint

and anticomplete to each other, and |Xi| ≥ ( 1
16 − 2ϵ)n = 1

17n. Now the conclusion of the lemma
follows. ■

Next we prove the following, which immediately implies Theorem 10.1.

Theorem 10.5. Let G ∈ C with |V (G)| = n, and let a, b ∈ V (G) be non-adjacent. Assume
that N(a) ∩ Hub(G) = ∅ and N(a) ̸= ∅. Then there is a set Z ⊆ V (G) \ {a, b} with κ(Z) ≤
−C 1

log(1−γ)(max(1, log |N(a)|)) and such that every component of G \ Z contains at most one
of a, b.

Proof. We may assume that |N(a)| > −C 1
log(1−γ) . Let D be the component of G \ N [a] such

that b ∈ D. We may assume that G = D ∪ N [a]. Write X = N(a). Our first goal is to show
the following:

(45) Assume that either X is pure, or there does not exist X ′ ⊆ X with |X ′| ≥ 1−4ϵ
2 |X| such

that X ′ is pure. Then there exists S ⊆ X ∪ (D \ b) with κ(S) ≤ C − 2 such the component D(b)
of D \ S with b ∈ D(b) meets N(x) for at most (1 − ϵ)|X| vertices x ∈ X \ S.

The proof proceeds in several steps.

(46) X is chordal.

Suppose that there is a hole H ⊆ X. Then (H, a) is a wheel. But D is connected and
H ⊆ N(D), contrary to Theorem 6.5. This proves (46).

(47) If there is a clique K of size ϵ|X| in X, then (45) holds. .

Suppose such a clique K exists. Now setting S = K, it follows that (45) holds. This
proves (47).

Let Z ′ = N(b) ∩ X ′. Since G is C4-free, it follows that Z ′ is a clique. By (47), we can
apply Lemma 10.4 to X \ Z ′; let Z, X1, X2, X3 ⊆ X \ Z ′ as in the conclusion of the lemma.

Let δ = 1
6×172 . A triple x1x2x3 is partitioned if xi ∈ Xi. We remind the reader that danger-

ous triples were defined in Section 9.
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(48) Under the assumptions in (45), if for some i ∈ {1, 2, 3}, some xi ∈ Xi is a center of δ|X|2
dangerous triples, then (45) holds.

Since ϵ < 1
8δ, it follows from (47) and Theorem 9.1 that there exists S′ ⊆ D\b with κ(X) ≤ 4

such that the component D(b) of D \ S′ with b ∈ D(b) is disjoint from N(x) for at least ϵ|X|
vertices x ∈ X. Setting S = S′ ∪ Z ′, (45) holds. This proves (48).

In view of (48), in order to prove (45) we may assume that for every i ∈ {1, 2, 3}, every
xi ∈ Xi is a center fewer that δ|X|2 dangerous triples.

(49) At least 1
2

⌈
1
17 |X|

⌉3
of the partitioned triples are not dangerous.

Since there are
⌈

1
17 |X|

⌉3
partitioned triples, it is enough to prove that at most

⌈
1
17 |X|

⌉3
/2

of the partitioned triples are dangerous. Let i ∈ {1, 2, 3}. By (48), the number of dangerous
triples with center in Xi is at most

|Xi| × δ|X|2 ≤=
⌈ 1

17 |X|
⌉

· 1
6 × 172 |X| ≤ 1

6

⌈ 1
17 |X|

⌉3
.

Since every dangerous triple has a center in one of the sets X1, X2, X3, it follows that the total
number of dangerous triples is at most

3 × 1
6

⌈ 1
17 |X|

⌉3
≤ 1

2

⌈ 1
17 |X|

⌉3
,

as required. This proves (49).

(50) Every partitioned triple that is not dangerous is b-separated.

Let x1x2x3 be a partitioned triple that is not dangerous. Let H = D ∪ {x1, x2, x3, a}. Let F
be a minimal connected subgraph of D such that each of x1, x2, x3 has a neighbor in F . Since
X ∩ Hub(G) = ∅, it follows from Lemma 10.2 that Σ = F ∪ {x1, x2, x3, a} is a pyramid with
apex a. For i ∈ {1, 2, 3}, let Qi = a-xi. Since x1x2x3 is not a dangerous triple, we deduce
that a is not contained in a cross-edge of an extended near-prism in H. Now by Theorem 4.3
applied to Σ, Q1, Q2, Q3, and H, it follows that the triple x1x2x3 is b-separated, and (50) follows.

(51) X is a ( 1
2×173 , b)-breaker in G.

By (49), at least 1
2

⌈
1
17 |X|

⌉3
of the partitioned triples are not dangerous. Now by (50) at

least 1
2

⌈
1
17 |X|

⌉3
≥ 1

2×173 |X|3 of the partitioned triples x1x2x3 are b-separated, and (51) follows.

By Theorem 8.3, there exist S′ ⊆ D \ b with κ(S) ≤ C − 4 such that the component D(b) of
D \ S with b ∈ D(b) is disjoint from N(x) for at least ϵ|X| vertices x ∈ X. Setting S = Z ′ ∪ S,
(45) follows.

We complete the proof of Theorem 10.5 by induction on |NG(a)|. If X is pure, let X0 = X.
If X is not pure and there does not exist X ′ ⊆ X with |X ′| ≥ 1−4ϵ

2 |X| such that X ′ is pure,
let X0 = X. If X is not pure and there exists X ′ ⊆ X with |X ′| ≥ 1−4ϵ

2 |X| such that X ′ is
pure, let X0 be a pure subset of X with |X0| ≥ 1−4ϵ

2 |X|. Let G0 = G \ (X \ X0). Note that
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X0 = NG0(a) = NG0(D). Apply (45) in G0 (and with X = X0). Let S be as in (45). Let
D1 be the component of D \ S with b ∈ D1, let X1 = NG0(D1) and let G1 = D1 ∪ X1 ∪ {a}.
By (45) |NG1(a)| ≤ (1 − ϵ)|NG0(a)| ≤ (1 − ϵ)|X0|. Let G2 = G[V (G1) ∪ (X \ X0)]. Since
NG2(a) = (X \ X0) ∪ NG1(a), it follows that

|NG2(a)| ≤ (1 − ϵ)|X0| + |X| − |X0| ≤ |X| − ϵ|X0| ≤ (1 − γ)|X|.

If |NG2(a)| ≤ 1, let Z1 = NG2(a). Otherwise, log |NG2(a)| ≥ 1 and inductively, there is a set
Z1 ⊆ V (G2) \ {a, b} with κ(Z) ≤ −C 1

log(1−γ)(log |NG2(a)|) and such that every component of
G2 \ Z1 contains at most one of a, b. In the latter case, κ(Z1) ≤ −C 1

log(1−γ) log(|NG(a)|) − C.
Since κ(S) ≤ C, the set Z1 ∪ S satisfies the conclusion of the theorem. In the former case,
|Z1 ∪ S| ≤ C and Z1 ∪ S satisfies this conclusion of the theorem. ■

11 Stable sets of safe hubs
As we discussed in Section 3, in the course of the proof of Theorem 13.1, we will repeatedly
decompose the graph by star cutsets arising from a stable set of appropriately chosen hubs
(using Theorem 6.5). In this section we prepare the tools for handling one such step: one stable
set of safe hubs.

Let d be an integer. In this section we again set ϵ = 1
4×176×48×192 , γ = ϵ(1−4ϵ)

2 and C =
962 × 4 × 176 + 4. Let a, b ∈ V (G) be non-adjacent and such that no subset Z of G with
κ(Z) ≤ −C 1

log(1−γ) log n + d separates a from b. Following [13], we say that a vertex v is d-safe
if |N(v) ∩ Hub(G)| ≤ d. As in [13], the goal of the next lemma is to classify d-safe vertices
into “good ones” and “bad ones”, and show that the bad ones are rare. A vertex v ∈ G is
ab-cooperative if there exists a component D of G \ N [v] such that a, b ∈ N [D].

Lemma 11.1. If v ∈ G is d-safe and not ab-cooperative, then v is adjacent to both a and b. In
particular, the set of vertices that are not ab-cooperative is a clique.

Proof. Suppose v is non-adjacent to b and v is not ab-cooperative. Let D be the component
of G \ N [v] such that b ∈ D. Let X = N(D) \ Hub(G). Let G′ = D ∪ X ∪ {v}. Then
a ̸∈ G′. We apply Theorem 10.1 to the vertices v, b in G′ to obtain a subset Z ⊆ G′ \ {v, b} with
κ(Z) ≤ −C 1

log(1−γ) log n and such that every component of G′ \ Z contains at most one of v, b.
We claim that Z ′ = Z ∪(N(v)∩Hub(G)) separates a from b in G. Suppose that P is a path from
a to b with P ∗ ∩ Z ′ = ∅. Since b ∈ D and a ̸∈ D, there is a vertex x ∈ P such that b-P -x ⊆ D
and x ̸∈ D. Then x ∈ X. But now b-P -x-v is a path from b to v in G′ \ Z, a contradiction.
This proves the claim that Z ′ separates a from b in G. But κ(Z ′) ≤ −C 1

log(1−γ) log n + d, a
contradiction. This proves Lemma 11.1. ■

Let S′ be a stable set of hubs of G with S′ ∩ {a, b} = ∅, and assume that every s ∈ S′

is d-safe. Let S′
bad = S′ ∩ N(a) ∩ N(b). Since G is C4-free, it follows that |S′

bad| ≤ 1. Let
S = S′ \ S′

bad. By Lemma 11.1, every vertex in S is ab-cooperative.
A separation of G is a triple (X, Y, Z) of pairwise disjoint subsets of G with X ∪ Y ∪ Z = G

such that X is anticomplete to Z. We are now ready to move on to star cutsets. As in other
papers on the subject, we associate a certain unique star separation to every vertex of S. The
choice of the separation is the same as in [13].

Let v ∈ S. Since v is ab-cooperative, there is a component D of G \ N [v] with a, b ∈ N [D].
Since v ̸∈ S′

bad, it follows that v is not complete to {a, b}; consequently D ∩ {a, b} ̸= ∅, and
so the component D is unique. Let B(v) = D, let C(v) = N(B(v)) ∪ {v}, and let A(v) =
G \ (B(v) ∪ C(v)). Then (A(v), C(v), B(v)) is the canonical star separation of G corresponding
to v.

As in [13], we observe:

34



Lemma 11.2. The vertex v is not a hub of G \ A(v).

Proof. Suppose that (H, v) is a proper wheel or a loaded pyramid in G \ A(v). Then H ⊆
N [B(v)], contrary to Theorem 6.5. ■

Let O be a linear order on S ∩Hub(G). Following [4], we say that two vertices of S ∩Hub(G)
are star twins if B(u) = B(v), C(u) \ {u} = C(v) \ {v}, and A(u) ∪ {u} = A(v) ∪ {v}.

Let ≤A be a relation on S ∩ Hub(G) defined as follows:

x ≤A y if


x = y, or
x and y are star twins and O(x) < O(y), or
x and y are not star twins and y ∈ A(x).

Note that if x ≤A y, then either x = y, or y ∈ A(x).
The following two results were proved in [13] with a slightly different setup: The set of hubs

is defined differently. However, the proofs do not use the definition of the set of hubs.

Lemma 11.3 (Chudnovsky, Gartland, Hajebi, Lokshtanov, Spirkl [13], Lemma 4.8). ≤A is a
partial order on S ∩ Hub(G).

Let Core(S′) be a the set of all ≤A-minimal elements of S ∩ Hub(G).

Lemma 11.4 (Chudnovsky, Gartland, Hajebi, Lokshtanov, Spirkl [13], Lemma 4.9). Let u, v ∈
Core(S′). Then A(u) ∩ C(v) = C(u) ∩ A(v) = ∅.

As in [13], we define the central bag

βA(S′) =

 ⋂
v∈Core(S′)

(B(v) ∪ C(v))

 \ S′
bad.

The next result describes important properties of βA(S′).

Theorem 11.5. The following hold:

1. For every v ∈ Core(S′), we have C(v) ⊆ βA(S′).

2. For every component D of G \ (βA(S′) ∪ S′
bad), there exists v ∈ Core(S′) such that D ⊆

A(v). Further, if D is a component of G \ (βA(S′) ∪ S′
bad) and v ∈ Core(S′) such that

D ⊆ A(v), then N(D) ⊆ C(v) ∪ S′
bad.

3. S′ ∩ Hub(βA(S′)) = ∅.

Proof. (1) is immediate from Lemma 11.4.
Next we prove (2). Let D be a component of G\ (βA(S′)∪S′

bad). Since G\ (βA(S′)∪S′
bad) =⋃

v∈Core(S′) A(v), there exists v ∈ Core(S′) such that D ∩ A(v) ̸= ∅. If D \ A(v) ̸= ∅, then, since
D is connected, it follows that D ∩ N(A(v)) ̸= ∅; but then D ∩ C(v) ̸= ∅, contrary to (1). Since
N(D) ⊆ βA(S′) ∪ S′

bad and N(D) ⊆ A(v) ∪ C(v) ∪ S′
bad, it follows that N(D) ⊆ C(v) ∪ S′

bad.
This proves (2).

To prove (3), let u ∈ S′ ∩ Hub(βA(S′)). Since βA(S′) ∩ S′
bad = ∅, we deduce that u ̸∈ S′

bad,
and so u ∈ S ∩ Hub(G). By Lemma 11.2, it follows that βA(S′) ̸⊆ B(u) ∪ C(u), and therefore
u ̸∈ Core(S′). But then u ∈ A(v) for some v ∈ Core(S′), and so u ̸∈ βA(S′), a contradiction.
This proves (3) and completes the proof of Theorem 11.5. ■

In the course of the proof of Theorem 13.1, we will inductively obtain a small cutset separat-
ing a from b in βA(S′), using that the vertices in S′ are not hubs in βA(S′). The next theorem
lets us lift this cutset into a cutest that separates a from b in G.
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Theorem 11.6. Let (X, Y, Z) be a separation of βA(S′) such that a ∈ X and b ∈ Z. Then
there exists a set Y ′ ⊆ V (G) such that

1. Y ′ separates a from b in G, and

2. κ(Y ′) ≤ κ(Y ) + |Y ∩ Core(S′)|(−C 1
log(1−γ) log n + d) + 1.

Proof. Let s ∈ Y ∩ Core(S′). Let X = C(s) \ Hub(G). Let G′ = B(s) ∪ X ∪ {s}. Suppose first
that s is non-adjacent to b. We apply Theorem 10.1 to the vertices s, b in G′ to obtain a subset
Z(s) ⊆ G′ \ {s, b} with κ(Z) ≤ −C 1

log(1−γ) log n and such that every component of G′ \ Z(s)
contains at most one of s, b. Now suppose that s is adjacent to b. Since s is cooperative, it fol-
lows that s is non-adjacent to a. Now we apply Theorem 10.1 to the vertices s, a in G′ to obtain
a subset Z(s) ⊆ G′ \ {s, a} with κ(Z(s)) ≤ −C 1

log(1−γ) log n and such that every component of
G′ \ Z(s) contains at most one of s, a. We deduce:

(52) For every s ∈ Core(S′), Z(s) separates s from at least one of a, b.

Now let
Y ′ = Y ∪

⋃
s∈Y ∩Core(S′)

Z(s) ∪
⋃

s∈Y ∩Core(S′)
(N(s) ∩ Hub(G)) ∪ S′

bad.

Since every vertex of S′ is safe, we have that κ(Y ′) ≤ κ(Y )+|Y ∩Core(S′)|(−C 1
log(1−γ) log n+d).

We show that Y ′ separates a from b in G. Suppose not. Let Db be the component of
βA(S′) \ Y such that b ∈ Db, an let Da be the component of βA(S′) \ Y such that a ∈ Da.
Let D′

b = Db ∪
⋃

s∈Db∩Core(S′) A(s), and let D′
a = Da ∪

⋃
s∈Da∩Core(S′) A(s). Let P be a path

from b to a in G \ Y ′. Since b ∈ D′
b and a ̸∈ D′

b, there is x ∈ P such that b-P -x ⊆ D′
b and the

neighbor y of x in the path x-P -a does not belong to D′
b. Since for every s ∈ Db ∩ Core(S′),

NG(A(s)) ∩ βA(S′) ⊆ C(s) ⊆ Db ∪ Y , and since Y ⊆ Y ′, it follows that y ̸∈ βA(S′). Let D′

be the component of G \ (βA(S′) ∪ S′
bad) such that y ∈ D′. By Theorem 11.5(2) there is an

s ∈ Core(S′) such that D′ ⊆ A(s) and N(D′) ⊆ C ∪ S′
bad; consequently by Theorem 11.5(1),

N(D′) ⊆ NβA(S′)(s) ∪ S′
bad. In particular, x ∈ NβA(S′)(s). Since y ̸∈ D′

b, it follows that s ̸∈ Db.
Since NβA(S′)(s) ∩ Db ̸= ∅ and s ̸∈ Db, it follows that s ∈ Y . Consequently, P ∩ Z(s) = ∅. Since
y ∈ A(s) and a ∈ βA(S′) ⊆ B(s) ∪ C(s), there exists x′ ∈ y-P -a such that x′ ∈ C(s) and s has
no other neighbors in the path x′-P -a. Now b-P -x-s and a-P -x′-s are paths from b to s and
from a to s, respectively, and both are disjoint from Z(s), contrary to (52). ■

12 Bounding the number of non-hubs
For X ⊆ V (G), a component D of G \ X is full for X if N(D) = X. X ⊆ V (G) is a minimal
separator in G if there exist two distinct full components for X. In this section we again set
ϵ = 1

4×176×48×192 , γ = ϵ(1−4ϵ)
2 and C = 962×4×176+4, and let D = −C 1

log(1−γ) . Let a, b ∈ V (G)
be non-adjacent. The goal of this section is to start with a minimal separator in G separating a
from b, and turn it into a separator that interfaces well with Theorem 11.6. Let d be an integer
and let S1 ⊆ V (G) \ Hub(G) be a stable set of d-safe vertices. For a set U ⊆ V (G) we denote
by µd(U) the set U ∩ S1. We will prove the following:

Theorem 12.1. Let d be an integer. Let G be an even-hole-free graph and let a, b ∈ V (G) be
non-adjacent. Let |V (G)| = n. Let Y be a minimal separator in G such that a and b belong to
different components of G \ Y . Then there exists a set Y ′ ⊆ V (G) \ {a, b} such that

• Y ′ separates a from b;
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• |κ(Y ′ \ Y )| ≤ D(D log n + d) log n; and

• |µd(Y ′)| ≤ D(D log n + d) log n.

The main ingredient of the proof is the following:

Lemma 12.2. Let d be an integer and let G be an even-hole-free graph where G = D1 ∪D2 ∪X,
X is a minimal separator in G, and D1, D2 are full components for X. Let a ∈ D1 and b ∈ D2.
Assume that X is a stable set, X ∩ Hub(G) = ∅, and that every vertex of X is d-safe. Then
there exists Z ⊆ V (G) \ {a, b} with κ(Z) ≤ D log n + d such that either

• the component D(b) of D2 \Z with b ∈ D(b) contains a neighbor of x for at most (1−ϵ)|X|
vertices x ∈ X \ Z, or

• the component D(a) of D1\Z with a ∈ D(a) contains a neighbor of x for at most (1−ϵ)|X|
vertices x ∈ X \ Z.

Proof. We may assume that |X| > D log n + d.

(53) If some v ∈ D1 has ϵ|X| neighbors in X, then the theorem holds.

Suppose such v exists. Let G′ = D2 ∪ NG[v]. Apply Theorem 10.1 to v, b in G′ (where
v plays the role of a) to obtain a set Z as in the conclusion of the theorem. Let D(b) be the
component of D2 \Z with b ∈ D(b). Then NG′ [v]\Z is anticomplete to D(b) in G′ and therefore
in G. Since |NG′(v)| ≥ ϵ|X|, (53) follows.

In view of (53) (using the symmetry between a and b) from now on we assume that no v ∈ D1∪D2
has ϵ|X| neighbors in X.

(54) If for some x ∈ X \ N(a) at least ϵ|X| vertices of X are anticomplete to the component
D(a) of D1 \ N(x) with a ∈ D(a), then the theorem holds.

Suppose that such a vertex x exists. Let D′ = D(a), let X ′ = (N(x)∩N(D(a))\Hub(G) and
let G′ = D′∪X ′∪{x}. Apply Theorem 10.1 to x, a in G′ (where x plays the role of a, and a plays
the role of b) to obtain a set Z as in the conclusion of the theorem. Let Z ′ = Z∪(N(x)∩Hub(G)).
Since x is d-safe, it follows that κ(Z ′) ≤ D log n + d. Let D′(a) be the component of D1 \ Z ′

with a ∈ D′(a). Since Z separates x from a in G′, it follows that N [x] \ Z ′ is anticomplete to
D(a) \ Z ′, and therefore D′(a) ⊆ D(a).

Consequently, if x′ ∈ X is anticomplete to D(a), then x′ is anticomplete to D′(a). Since
least ϵ|X| vertices of X are anticomplete to D(a), (54) follows.

In view of (54), from now on we assume that for every x ∈ X \ N(a) fewer than ϵ|X| ver-
tices of X are anticomplete to the component D(a) of D1 \ N(x) with a ∈ D(a), and for
every x ∈ X \ N(b) fewer than ϵ|X| vertices of X are anticomplete to the component D(b)
of D2 \ N(x) with b ∈ D(b). Let X ′ = X \ (N(a) ∪ N(b)). Then |X ′| ≥ (1 − 2ϵ)|X|. Since
X is a stable set, we can choose disjoint and anticomplete subsets X1, X2, X3 of X ′ such that
|X1| = |X2| = |X3| =

⌈
1
4 |X|

⌉
.

Let us say that a partitioned triple x1x2x3 is b-triangular if there is a minimal connected
subgraph H of D2 containing neighbors of x1, x2, x3 such that either

• H satisfies the third outcome to Lemma 10.2, or

• (possibly with the roles of x1, x2, x3 exchanged) H is the interior of a path from x1 to x3,
and x2 has exactly two neighbors in H and they are adjacent.
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We define a-triangular triples similarly.

(55) Every partitioned triple is either a-triangular or b-triangular.

Let x1x2x3 be a partitioned triple, and suppose that it is neither b-triangular nor a-triangular.
For i ∈ {1, 2}, let Hi be a minimal connected induced subgraph of Di such that each of x1, x2, x3
has a neighbor in Hi. We apply Lemma 10.2 to H1 and H2. If the second outcome of the lemma
holds for both H1 and H2, then H1 ∪ H2 ∪ {x1, x2, x3} is a theta, a contradiction. Thus we
may assume that H1 is the interior of a path from x1 to x3 and x2 has at least two non-
adjacent neighbors in H1. If H2 is the interior of a path from x1 to x3 and x2 has a neighbor
in H2, then (H1 ∪ H2, x2) is a wheel in G, contrary to the fact that x2 ̸∈ Hub(G). Thus H2
is not the interior of a path from x1 to x3 such that x2 has a neighbor in H2. Next suppose
that the second outcome of Lemma 10.2 holds for H2. Let P1, P2, P3 be as in the the second
outcome of Lemma 10.2, and let a2 = P1 ∩ P2 ∩ P3. Then x2 is non-adjacent to a2, and so
H1 ∪H2 ∪{x1, x2, x3} contains a theta with ends a2, x2, a contradiction. It follows that the first
outcome of Lemma 10.2 holds for H2, and, by symmetry between x1 and x3, we may assume
that H2 is the interior of a path from x1 to x2, and x3 has two non-adjacent neighbors in H2.
Now we get a theta with ends x2, x3 and paths x2-H1-x3, x2-H2-x3, and x2-H1-x1-H2-x3, again
a contradiction. This proves (55).

In view of (55), by switching the roles of D1 and D2 if necessary, we may assume that at
least 1

2

⌈
1
4 |X|

⌉3
of the partitioned triples are b-triangular.

Let us say that the triple x1x2x3 is acceptable if it is partitioned and for every {i, j, k} = {1, 2, 3}
there is path Pij from xi to xj with interior in D1 \ N(xk).

(56) At most 6ϵ
⌈

1
4 |X|

⌉2
|X| partitioned triples are not acceptable.

Let x1 ∈ X1 and let D(a) be the component of D1 \ N(x1) such that a ∈ D(a). If x1x2x3
is a partitioned triple such that there is no path from x2 to x3 in D1 \ N(x1), then at least
one of x2, x3 is anticomplete to D(a). By the assumption following (54), there are fewer than
2ϵ|X| ×

⌈
1
4 |X|

⌉
such pairs x2x3, and therefore at most

(
2ϵ|X| ×

⌈1
4 |X|

⌉)
×
⌈1

4 |X|
⌉

≤ 2ϵ

⌈1
4 |X|

⌉2
|X|

such triples. Repeating this argument with x2 and x3 playing the role of x1, we get that there
are at most 6ϵ

⌈
1
4 |X|

⌉2
|X| partitioned triples that are not acceptable, and (56) follows.

Let G′ = D2 ∪ X. Our next goal is to show the following:

(57) X is a ( 1
256 , b)-breaker in G′.

By (56), there are fewer than 6ϵ
⌈

1
4 |X|

⌉2
|X| partitioned triples that are not acceptable.

Since the total number of b-triangular triples at least 1
2

⌈
1
4 |X|

⌉3
, we deduce that there are at

least
(

1
2 − 24ϵ

) ⌈
1
4 |X|

⌉3
triples that are both acceptable and b-triangular.

Let x1x2x3 be a b-triangular acceptable triple. Let H be a minimal connected subgraph of
D2 as in the definition of b-triangular. Then there exists a triangle h1h2h3 in H ∪ {x1, x2, x3}
and three paths P1, P2, P3, where Pi is a path from hi to xi (possibly of length zero), such that:
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• V (H) = (V (P1) ∪ V (P2) ∪ V (P3)) \ {x1, x2, x3};

• the sets V (P1), V (P2) and V (P3) are pairwise disjoint; and

• for distinct i, j ∈ {1, 2, 3}, there are no edges between V (Pi) and V (Pj), except hihj .

If the path Pi has even length, let qi = 2, and if the path Pi has odd length, let qi = 3. Let G′′

be the graph obtained from D2 ∪ {x1, x2, x3} by adding a new vertex v and paths Qi from v to
xi such that

• Qi has length qi.

• (Q1 ∪ Q2 ∪ Q3) \ {x1, x2, x3} is anticomplete to D2.

• Q1 \ v, Q2 \ v , Q3 \ v are pairwise disjoint and anticomplete to each other.

(58) G′′ is even-hole-free.

Suppose not, and let H be an even hole in G′′. Since H is not an even hole in G, and
since all internal vertices of each Qi have degree two, we may assume that Q1 ∪ Q2 ⊆ H. Then
H \ (Q∗

1 ∪ Q∗
2) is a path from x1 to x2 with interior in D2 ∪ {x3} and whose length has the same

parity as q1 + q2. Since the triple x1x2x3 is acceptable, there is a path R from x1 to x2 with
R∗ ⊆ D1 \ N(x3). Since (H \ (Q1 ∪ Q2)) ∪ R is not an even hole in G, it follows that the length
of R has the same parity as q1 + q2 + 1. But now x1-P1-h1-h2-P2-x2-R-x1 is an even hole in G,
a contradiction. This proves (58).

By (58) and since X ∩ Hub(G) = ∅, the assumptions of Theorem 4.3 are satisfied. Now Theo-
rem 4.3 applied in G′′ implies that the triple x1x2x3 is b-separated in G′.

Since there are at least
(

1
2 − 24ϵ

) ⌈
1
4 |X|

⌉3
acceptable b-triangular triples, and since ϵ ≤ 1/96,

(57) follows.

By Theorem 8.3 applied in G′, there exists Z ⊆ D2 \ b with κ(Z) ≤ 962 · 2562 ≤ C − 4
such the component D(b) of D \ S with b ∈ D(b) is disjoint from N(x) for at least ϵ|X| vertices
x ∈ X. This completes the proof. ■

Next we prove the following, which immediately implies Theorem 12.1.

Theorem 12.3. Let d be an integer. Let G be an even-hole-free graph and let a, b ∈ V (G) be
non-adjacent. Let |V (G) = n. Let Y be a minimal separator in G such that a and b belong to
different full components D1 and D2 of G \ Y . Assume that µd(Y ) ̸= ∅. Then there exists a set
Y ′ ⊆ V (G) \ {a, b} such that

• Y ′ separates a from b;

• κ(Y ′ \ Y ) ≤ D(D log n + d) max(1, log |µd(Y )|); and

• |µd(Y ′)| ≤ D(D log n + d) max(1, log |µd(Y )|).

Proof. We may assume that |µd(Y )| ≥ D(D log n + d). By Lemma 12.2 applied to the graph
D1 ∪ D2 ∪ µd(Y ) with X = µd(Y ), we may assume that there exists Z ⊆ V (G) \ {a, b} with
κ(Z) ≤ D log n + d such that the component D(b) of D2 \ Z with b ∈ D(b) meets N(x) for at
most (1− ϵ)|X| vertices x ∈ X \Z. Let G′ = G\Z. Let Y1 = NG′(D(b)). Then Y1 ⊆ Y \Z, and
µd(Y1) ⊆ X\Z; consequently |µd(Y1)| ≤ (1−ϵ)µd(Y ). Let D(a) be the component of G′\Y1 such
that a ∈ D(a). Let Y2 = NG′(D(a)). Then Y2 ⊆ Y1, and therefore |µd(Y2)| ≤ (1 − ϵ)|µd(Y )|.
Let G′′ = D(a) ∪ D(b) ∪ Y2. Then Y2 is a minimal separator in G′′ where D(a) and D(b) are
full components for Y2. If |Y2| ≤ 1, let Y ′′ = Y2. Now assume that |Y2| > 1. Inductively, there
is a set Y ′′ ⊆ V (G′′) \ {a, b} such that
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• Y ′′ separates a from b;

• |κ(Y ′′ \ Y2)| ≤ D(D log n + d) log |µd(Y2)|; and

• |µd(Y ′′)| ≤ D(D log n + d) log |µd(Y2)|

In both cases, let Y ′ = Y ′′ ∪Z. Then Y ′ \Y ⊆ (Y ′′ \Y2)∪Z and µd(Y ′) ⊆ µd(Y ′′)∪Z. Since
|µd(Y2)| ≤ (1 − ϵ)|µd(Y )| and κ(Z) ≤ D log n + d, it follows that |Y ′| satisfies the conclusion of
the theorem. ■

13 Separating a pair of vertices: a bound using clique size
We can now prove our first main result. We follow the outline of the proof of Theorem 1.3
from [3], using bounds from earlier sections of the present paper. As in the earlier sections, let
ϵ = 1

4×176×48×192 , γ = ϵ(1−4ϵ)
2 and C = 962 × 4 × 176 + 4, and let D = −C 1

log(1−γ) .

Theorem 13.1. Let t be an integer. Let G be an even-hole-free graph with |V (G)| = n and with
no clique of size t+1, and let a, b ∈ V (G) be non-adjacent. Then there is a set Z ⊆ V (G)\{a, b}
with

κ(Z) ≤ D log n + 2D(D log n + 8t)22t log2 n

and such that every component of G \ Z contains at most one of a, b.

We will need the main result of [17].

Theorem 13.2 (Chudnovsky, Seymour [17]). Every even-hole-free graph has a vertex v such
that κ(N(v)) ≤ 2.

Following the proof of Theorem 7.1 of [6], using Theorem 13.2 we deduce:

Theorem 13.3. Let t ∈ N, and let G be an even-hole-free graph with no clique of size t + 1 and
with |V (G)| = n. There exist a partition (S1, . . . , Sk) of V (G) with the following properties:

1. k ≤ 2t log n.

2. Si is a stable set for every i ∈ {1, . . . , k}.

3. For every i ∈ {1, . . . , k} and v ∈ Si we have degG\
⋃

j<i
Sj

(v) ≤ 8t.

For the remainder of this section, let us fix t ∈ N. Let G be an even-hole-free graph with no
clique of size t + 1, and let a, b ∈ V (G). A hub-partition with respect to ab of G is a partition
S1, . . . , Sk of Hub(G) \ {a, b} as in Theorem 13.3; we call k the order of the partition. We call
the hub-dimension of (G, ab) (denoting it by hdim(G, ab)) the smallest k such that G has a
hub-partition of order k with respect to ab.

Since, in view of Theorem 13.3, we have hdim(G, ab) ≤ 2t log n for every a, b ∈ V (G),
Theorem 13.1 follows immediately from the next result:

Theorem 13.4. Let G be an even-hole-free graph with |V (G)| = n and with no clique of size
t + 1, and let a, b ∈ V (G) be non-adjacent. Then there is a set Z ⊆ V (G) \ {a, b} with

κ(Z) ≤ D log n + 2D(D log n + 8t)2 hdim(G, ab) log n

and such that every component of G \ Z contains at most one of a, b.
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Proof. Let a, b ∈ G be non-adjacent and suppose that no such set Z exists. We will get a
contradiction by induction on hdim(G, ab). Suppose that hdim(G, ab) = 0. Then Hub(G) ⊆
{a, b} and by Theorem 10.1, there is a set Z ⊆ V (G) \ {a, b} with κ(Z) ≤ D log n and such that
every component of G \ Z contains at most one of a, b. Thus we may assume hdim(G, ab) > 0.

Let S1, . . . , Sk be a hub-partition of G with respect to ab and with k = hdim(G, ab). We now
use notation and terminology from Section 11. Write d = 8t. It follows from the definition of S1
that every vertex in S1 is d-safe. Let βA(S1) be as in Section 11; then a, b ∈ βA(S1). By Theorem
11.5(3), we have that S1 ∩ Hub(βA(S1)) = ∅ and S2 ∩ Hub(βA(S1)), . . . , Sk ∩ Hub(βA(S1)) is a
hub-partition of βA(S1) with respect to ab. It follows that hdim(βA(S1), ab) ≤ k−1. Inductively
there exists a set Y1 ⊆ βA(S1) \ {a, b} with

κ(Y1) ≤ D log n + 2D(D log n + d)2(k − 1) log n

and such that every component of βA(S1) \ Y1 contains at most one of a, b. Let D(b) be the
component of G \ Y1 such that b ∈ D, and let D(a) be the component of βA(S1) \ N(D(b)) with
a ∈ D(a). Write NβA(S1)(D(a)) = Y2. Then Y2 ⊆ Y1 and Y2 is a minimal separator in βA(S1)
where D(a) and the component of βA(S1) \ Y2 containing D(b) are two distinct full components
for Y2. By Theorem 12.1 applied in βA(S1) and using S1 to define µd(Y2), there exists a set
Y ⊆ βA(S1) \ {a, b} such that

• Y separates a from b in βA(S1), and

• |κ(Y \ Y2)| ≤ D(D log n + d) log n, and

• |µd(Y )| ≤ D(D log n + d) log n.

It follows that

κ(Y ) ≤ D log n + 2D(D log n + d)2(k − 1) log n + D(D log n + d) log n

≤ D(log n)(1 + 2(D log n + d)2(k − 1) + D log n + d).

Since Core(S1) ∩ Y ⊆ µd(Y ), we deduce that | Core(S1) ∩ Y | ≤ D(D log n + d) log n. Now
applying Theorem 11.6 to Y we obtain a set Y ′ such that

• Y ′ separates a from b in G; and

• κ(Y ′) ≤ κ(Y ) + |Y ∩ Core(S′)|(D log n + d) + 1.

Consequently,

κ(Y ′) ≤ κ(Y ) + |Y ∩ Core(S′)|(D log n + d) + 1
≤ D(log n)(1 + 2(D log n + d)2(k − 1) + D log n + d) + |Y ∩ Core(S′)|(D log n + d) + 1
≤ D(log n)(1 + 2(D log n + d)2(k − 1/2) + D log n + d) + 1
≤ D(log n)(1 + 2(D log n + d)2k).

as required. ■

14 The proof of Theorem 3.1
We can finally prove Theorem 3.1. We will need a theorem from [37].

Theorem 14.1 (Korchemna, Lokshtanov, Saurabh, Surianarayanan, Xue [37]). Let G be a
graph with |V (G)| = n, A, B ⊆ V (G), F a family of cliques of G, and f an integer. Then one
of the following holds:
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• There exists S ⊆ V (G) such that S separates A from B and κ(S) ≤ f log2 n.

• There exist an integer t ≤ 2 log(|F|) and t × f paths P1, . . . , Pt×f from A to B such that
for every K ∈ F , K ∩ Pi ̸= ∅ for fewer than 4t values of i.

We also need the following result of [9] and [30]:

Theorem 14.2 (Alekseev [9], Farber [30]). An n-vertex C4-free graphs has at most n2 maximal
cliques.

We now prove Theorem 3.1.

Proof. Let D be as in Section 12 and let c = 16×256D3. Let a, b ∈ G and let G′ = G\{a, b}. Let
A = NG(a) and B = NG(b). Let F be the set of all maximal cliques in G′. By Theorem 14.2, we
have |F| ≤ n2. Let f = c log6 n. We apply Theorem 14.1 to G′, A, B, F and f . We may assume
that the statement of the first bullet does not hold, and so there exists an integer t ≤ 2 log(|F|)
and t × f paths P1, . . . , Pt×f from A to B such that for every K ∈ F , K ∩ Pi ̸= ∅ for at most 4t

values of i. We may assume that the paths P1, . . . , Pt×f are induced. Let G′′ = ⋃t×f
i=1 Pi ∪{a, b}.

Since every clique of G′′ \ {a, b} is contained in an element of F , we deduce that G′′ does not
have a clique of size 8t+1 ≤ 1+16 log n. By Theorem 13.1 there exists a set Z ⊆ V (G′′)\{a, b}
with

κ(Z) ≤ D log n + 2D(D log n + 8 × 16 log n)22 × 16 log n log2 n

< 256D3 log5 n.

and such that every component of G′′ \ Z contains at most one of a, b. Since for every K ∈ F ,
K ∩Pi ̸= ∅ for at most 4t values of i, it follows that the number of values of i for which Z ∩Pi ̸= ∅
is less than 4tκ(Z) ≤ c log6 n. But this contradicts the fact that Z separates a from b in G′′. ■

15 From pairs of vertices to tree decompositions.
In this section we prove our main result, following the outline of the last few sections of [14].
We need a theorem from [13]:

Theorem 15.1 (Chudnovsky, Gartland, Hajebi, Lokshtanov, Spirkl [13]). There is an integer
d with the following property. Let G ∈ C and let w be a normal weight function on G. Then
there exists Y ⊆ V (G) such that

• |Y | ≤ d, and

• N [Y ] is a w-balanced separator in G.

We also need some terminology and two results from [14]. Let L, d, r be integers. We say
that an n-vertex graph G is (L, d, r)-breakable if

1. for every two disjoint and anticomplete cliques H1, H2 of G with |H1| ≤ r and |H2| ≤ r,
there is a set X ⊆ G \ (H1 ∪ H2) with α(X) ≤ L separating H1 from H2, and

2. for every normal weight function w on G and for every induced subgraph G′ of G there
exists a set Y ⊆ V (G′) with |Y | ≤ d such that for every component D of G′ \ N [Y ],
w(D) ≤ 1

2 .

Theorem 15.2 (Chudnovsky, Hajebi, Lokshtanov, Spirkl [14]). For every integer d > 0 there is
an integer C(d) with the following property. Let L, n, r > 0 be integers such that r ≤ d(2+log n)
and let G be an n-vertex (L, d, r)-breakable theta-free graph. Then there exists a w-balanced
separator Y in G such that α(Y ) ≤ C(d)⌈d(2+log n)

r ⌉(2 + log n)L.
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Lemma 15.3 (Chudnovsky, Hajebi, Lokshtanov, Spirkl [14]). Let G be a graph, let c ∈ [1
2 , 1),

and let d be a positive integer. If for every normal weight function w on G, there is a (c, w)-
balanced separator Xw with α(Xw) ≤ d, then the tree independence number of G is at most
3−c
1−cd.

We now prove:

Theorem 15.4. There exists an integer M with the following property. Let G be an even-hole-
free graph with n vertices and let w be a normal function on G. Then there exists a w-balanced
separator Y in G such that α(Y ) ≤ M log10 n.

Proof. Let d be as in Theorem 15.1 and let c be as in Theorem 3.1. By Theorem 15.1 and
Theorem 3.1, it follows that G is (c log8 n, d, 1)-breakable. Now the result follows from Theo-
rem 15.2. ■

Theorem 1.1 now follows immediately from Theorem 15.4 and Lemma 15.3.

References
[1] P. Aboulker, I. Adler, E. J. Kim, N. L. D. Sintiari, and N. Trotignon. “On the tree-width

of even-hole-free graphs.” https://arxiv.org/abs/2008.05504

[2] I. Adler, N. K. Le, H. Müller, M. Radovanović, N. Trotignon and K. Vušković. “On rank-
width of even-hole-free graphs.” Discrete Mathematics & Theoretical Computer Science
19(1) (2017) https://doi.org/10.23638/DMTCS-19-1-24

[3] T. Abrishami, B. Alecu, M. Chudnovsky, S. Hajebi and S. Spirkl. “Induced subgraphs and
tree decompositions X. Towards logarithmic treewidth in even hole free graphs.” https:
//arxiv.org/abs/2307.13684

[4] T. Abrishami, M. Chudnovsky, C. Dibek, S. Hajebi, P. Rzążewski, S. Spirkl, and K.
Vušković. “Induced subgraphs and tree decompositions II. Toward walls and their line
graphs in graphs of bounded degree.” J. Comb. Theory Ser. B, 124(1) (2024), 371–403.

[5] T. Abrishami, M. Chudnovsky, C. Dibek and K. Vušković, “Submodular functions and
perfect graphs”, to appear in Mathematics of Operations Research.

[6] T. Abrishami, M. Chudnovsky, S. Hajebi and S. Spirkl “Induced subgraphs and tree decom-
positions III. Three paths configurations and logarithmic tree-width”. Advances in Combi-
natorics (2022).

[7] T. Abrishami, M. Chudnovsky, and K. Vušković. “Induced subgraphs and tree decompo-
sitions I. Even-hole-free graphs of bounded degree.” J. Comb. Theory Ser. B, 157 (2022),
144–175.

[8] L. Addario-Berry, M. Chudnovsky, F. Havet, B. Reed, and P. Seymour. “Bisimplicial ver-
tices in even-hole-free graphs.” J. Comb. Theory Ser. B, 98(6) (2008), 1119–1164.

[9] V.E. Alekseev. “On the number of maximal independent sets in graphs from hereditary
classes” Combinatorial-Algebraic Methods in Discrete Optimization, University of Nizhny
Novgorod, 1991, 5–8 (in Russian).

[10] H. L. Bodlaender. “Dynamic programming on graphs with bounded treewidth.” Springer,
Berlin, Heidelberg, (1988), 105–118.

43

https://arxiv.org/abs/2008.05504
https://doi.org/10.23638/DMTCS-19-1-24
https://arxiv.org/abs/2307.13684
https://arxiv.org/abs/2307.13684


[11] R. B. Borie, R. G. Parker and C. A. Tovey. “Automatic generation of linear-time algorithms
from predicate calculus descriptions of problems on recursively constructed graph families.”
Algorithmica 7, (1992), 555-–581.

[12] K. Cameron, M. V. G. da Silva, S. Huang, and K. Vušković. “Structure and algorithms for
(cap, even hole)-free graphs.” Discrete Mathematics 341 (2018), 463–473.

[13] M. Chudnovsky, P. Gartland, S. Hajebi, D. Lokshtanov and S. Spirkl. “Induced subgraphs
and tree decompositions XV. Even-hole-free graphs have logarithmic treewidth.” https:
//arxiv.org/abs/2402.14211

[14] M. Chudnovsky, S. Hajebi, D. Lokshtanov and S. Spirkl. “Tree independence number II.
Three-path-configurations.” https://arxiv.org/abs/2405.00265

[15] M. Chudnovsky, M. Pilipczuk, M. Pilipczuk and Stéphan Thomassé. “Quasi-Polynomial
Time Approximation Schemes for the Maximum Weight Independent Set Problem in {H}-
Free Graphs.” SIAM Journal on Computing 53(1) (2024), 47–86.

[16] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. T “The strong perfect graph
theorem.” Annals of mathematics (2006), 51–229.

[17] M. Chudnovsky and P. Seymour. “Even-hole-free graphs still have bisimiplicial vertices.”
J. of Comb. Theory Ser. B 161 (2023), 331–381.

[18] M. Chudnovsky, S. Thomassé, N. Trotignon and K. Vuskovic. “Maximum independent sets
in (pyramid, even hole)-free graphs.” https://arxiv.org/abs/1912.11246

[19] M. Conforti, B. Gerards and K. Pashkovich. “Stable sets and graphs with no even holes.”
Mathematical Programming: Series A and B, 153 (2015), 13–39.

[20] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković “Even-hole-free graphs part I:
Decomposition theorem.” Journal of Graph Theory, 39(1) (2002), 6–49.

[21] M. Cygan, F. V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer-Verlag (2015)

[22] C. Dallard, F. Fomin, P. Golovach, T. Korhonen and M. Milanič. “Computing Tree De-
compositions with Small Independence Number.” https://arxiv.org/abs/2207.09993

[23] C. Dallard, M. Krnc, O. Kwon, M. Milanič, A. Munaro, K. Štorgel and S. Wiederrecht.
“Treewidth versus clique number. IV. Tree-independence number of graphs excluding an
induced star” https://arxiv.org/abs/2402.11222

[24] C. Dallard, M. Milanič and K. Štorgel. “Treewidth versus Clique Number. I. Graph Classes
with a Forbidden Structure”. SIAM Journal on Discrete Mathematics 35(4) (2021), 2618–
2646.

[25] C. Dallard, M. Milanič and K. Štorgel. “Treewidth versus clique number. II. Tree-
independence number.” https://arxiv.org/abs/2111.04543

[26] C. Dallard, M. Milanič and K. Štorgel. “Treewidth versus clique number. III. Tree-
independence number of graphs with a forbidden structure.” https://arxiv.org/abs/
2206.15092

[27] R. Diestel. Graph Theory. Springer-Verlag, Electronic Edition, (2005).

[28] R. G. Downey, and M. R. Fellows. Fundamentals of parameterized complexity. Springer-
Verlag, (2013)

44

https://arxiv.org/abs/2402.14211
https://arxiv.org/abs/2402.14211
https://arxiv.org/abs/2405.00265
https://arxiv.org/abs/1912.11246
https://arxiv.org/abs/2207.09993
https://arxiv.org/abs/2402.11222
https://arxiv.org/abs/2111.04543
https://arxiv.org/abs/2206.15092
https://arxiv.org/abs/2206.15092


[29] P. Erdős and G. Szekeres. “A combinatorial problem in geometry.” Compositio Math 2
(1935), 463–470.

[30] M. Farber. “On diameters and radii of bridged graphs.” Discrete Math. 73 (1989) 249–260.

[31] J. Flum and M. Grohe . Parameterized Complexity Theory. Springer-Verlag (2006)

[32] M. R. Garey and D. S. Johnson. Computers and intractability. Freeman (1979)

[33] F. Gavril. “The intersection graphs of subtrees in trees are exactly the chordal graphs.” J.
Comb. Theory Ser. B 16 (1) (1974), 47–56.

[34] M. Grötschel, L. Lovász, and A. Schrijver , “The ellipsoid method and its consequences in
combinatorial optimization.” Combinatorica, (1981), 169—197.

[35] E. Husic, S. Thomassé and N. Trotignon. “The Independent Set Problem Is FPT for Even-
Hole-Free Graphs.” Proceedings of IPEC (2019) 21:1–21:12

[36] R. M. Karp. “Reducibility Among Combinatorial Problems” Complexity of Computer Com-
putations, (1972), 85–103.

[37] V. Korchemna, D. Lokshtanov, S. Saurabh, V. Surianarayanan and J. Xue, “ Efficient
Approximation of Hypertree Width”, manuscript to appear in Proceedings of FOCS (2024)

[38] N.K. Le. “Coloring even-hole-free graphs with no star cutset.” https://arxiv.org/abs/
1805.01948

[39] P. T. Lima, M. Milanič, P. Muršič, K. Okrasa, P. Rzążewski and K. Štorgel. “Tree de-
compositions meet induced matchings: beyond Max Weight Independent Set.” https:
//arxiv.org/abs/2402.15834.

[40] N. Robertson and P.D. Seymour. “Graph minors. V. Excluding a planar graph.” J. Comb.
Theory Ser. B, 41 (1) (1996), 92-–114.

[41] N. Robertson and P.D. Seymour. “Graph minors. XVI. Excluding a non-planar graph.” J.
Combin. Theory, Ser. B, 89 (2003), 43–76.

[42] M.V.G. da Silva and and K. Vušković. “Decomposition of even-hole-free graphs with star
cutsets and 2-joins”, J. Comb. Theory Ser. B, 103 (2013), 144–183.

[43] M.V.G. da Silva and and K. Vušković. “Triangulated neighborhoods in even-hole-free
graphs”, Discrete Math. 307 (2007), 1065–1073.

[44] N.L.D. Sintiari and N. Trotignon. “(Theta, triangle)-free and (even-hole, K4)-free graphs.
Part 1: Layered wheels”, J. Graph Theory 97 (4) (2021), 475-509.

[45] Y. Tamura, T. Ito, and X. Zhou. “Deterministic Algorithms for the Independent Feedback
Vertex Set Problem.” Proceedings of IWOCA (2014), 351–363.

[46] K. Vušković. “Even-hole-free graphs: A survey.” Applicable Analysis and Discrete Mathe-
matics, (2010), 219–240.

[47] S. Wagon. “A bound on the chromatic number of graphs without certain induced sub-
graphs.” J. Combin. Theory Ser. B 29(3) (1980), 345–346.

45

https://arxiv.org/abs/1805.01948
https://arxiv.org/abs/1805.01948
https://arxiv.org/abs/2402.15834
https://arxiv.org/abs/2402.15834

	Introduction
	Preliminaries
	Proof Outline
	Organization of the Proof

	Jumps on pyramids
	Star cutsets from wheels
	Star cutsets from loaded pyramids
	Tree strip systems
	From local to global separators
	Handling dangerous triples
	Separating a pair of vertices: the hub-free case
	Stable sets of safe hubs
	Bounding the number of non-hubs
	Separating a pair of vertices: a bound using clique size
	The proof of Theorem 3.1
	From pairs of vertices to tree decompositions.

