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Abstract

A classical result of Robertson and Seymour (1986) states that the treewidth of a
graph is linearly tied to its separation number: the smallest integer k such that, for
every weighting of the vertices, the graph admits a balanced separator of size at most
k. Motivated by recent progress on coarse treewidth, Abrishami, Czyżewska, Kluk,
Pilipczuk, Pilipczuk, and Rzążewski (2025) conjectured a coarse analogue to this
result: every graph that has a balanced separator consisting of a bounded number
of balls of bounded radius is quasi-isometric to a graph with bounded treewidth. In
this paper, we confirm their conjecture for Kt,t-induced-subgraph-free graphs when
the separator consists of a bounded number of balls of radius 1. In doing so, we
bridge two important conjectures concerning the structure of graphs that exclude a
planar graph as an induced minor.

1 Introduction

Coarse graph theory is an emerging field that explores the global structure of graphs through
the lens of Gromov’s coarse geometry.1 Initiated by Georgakopoulos and Papasoglu [11],
this area seeks to understand the global structure of graphs by viewing them from afar.
In this paper, we continue this line of research by developing coarse analogues of two
fundamental concepts: balanced separators and tree-decompositions.

We begin with the definition of treewidth. A T -decomposition T = (T, β) of a graph G is
a pair where T is a tree and β : V (T ) → 2V (G) is a function such that:

• for every edge uv ∈ E(G), there exists a node x ∈ V (T ) with u, v ∈ β(x); and
• for every vertex v ∈ V (G), the set {x ∈ V (T ) : v ∈ β(x)} induces a non-empty

connected subtree of T .
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We call β(t) a bag of the T -decomposition. The width of (T, β) is max{|β(x)| : x ∈ V (T )} − 1.
The treewidth tw(G) of G is the minimum width of a T -decomposition of G for any tree
T . Treewidth is an important parameter in algorithmic and structural graph theory that
measures how similar a graph is to a tree; see the survey [12].

Recently, the second author [13] and Nguyen, Scott, and Seymour [14] independently
established the right notion of coarse treewidth (with optimal bounds obtained by [14]).
Let G be a graph, and k, r ∈ N. We say that a set S ⊆ V (G) is (k, r)-centred if S ⊆ N r

G[Ŝ]
for some set Ŝ ⊆ V (G) with |S| ⩽ k. Note that distances are measured in the underlying
graph G, not by the subgraph induced by S. A tree-decomposition of G is (k, r)-centred if
each bag of the tree-decomposition is (k, r)-centred.

Theorem 1 ([13, 14]). For all k, r ∈ N, there exists q ∈ N such that every graph that has
a (k, r)-centred tree-decomposition is q-quasi-isometric to a graph with treewidth at most k.

Quasi-isometry is a fundamental notion from metric geometry which captures when two
metric spaces share the same global structure. It is straightforward to show the converse to
Theorem 1 hold: that every graph quasi-isometric to a graph with treewidth at most k has
a (k + 1, r)-centred tree-decomposition (for an appropriate choice of r). Thus, Theorem 1
exactly characterises “coarse treewidth.” Given that we now have a robust measure of
coarse treewidth, it raises the question as to which properties of treewidth can be lifted to
this setting.

A classical result of Robertson and Seymour [15] ties treewidth to the existence of small
balanced separators. For a graph G and vertex-weight function µ : V (G) → R⩾0, we say
that a set S is a balanced separator for µ if, for every connected component C of G−S, the
total weight of vertices within C is at most half the total weight of vertices within G. If µ

is an indicator function for a set X ⊆ V (G), then we say that S is a balanced separator
for X. The separation number sep(G) of G is define to be the minimum k ∈ N such
that, for every µ : V (G) → R⩾0, there is a balanced separator S for µ with size at most
k. A standard argument shows that sep(G) ⩽ tw(G) + 1 for every graph G. Conversely,
Robertson and Seymour [15] proved that the treewidth of a graph is bounded from above
by a linear function of its separation number.

Theorem 2 ([15]). For every graph G, tw(G) ⩽ 4 sep(G).

Inspired by this, Abrishami, Czyżewska, Kluk, Pilipczuk, Pilipczuk, and Rzążewski [1]
conjectured that this characterisation of treewidth has a coarse analogue. We say that a
graph G admits (k, r)-balanced separators if, for every vertex-weight function µ : V (G) →
R⩾0, there is a (k, r)-centred set which is a balanced separator for µ.

Conjecture 3 ([1]). For all k, r ∈ N, there exist k′, r′ ∈ N such that every graph that
admits (k, r)-balanced separators has a (k′, r′)-centred tree decomposition.
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The same argument that shows sep(G) ⩽ tw(G) + 1 also implies that every graph that
has a (k, r)-centred tree decomposition admits (k, r)-balanced separators. Therefore,
this conjecture, if true, would provide a balanced separator characterisation for coarse
treewidth. Note that Dragan and Abu-Ata [7] previously considered the relationship
between (k, r)-centred tree-decomposition and (k, r)-balanced separators in the context of
designing collective additive tree spanners in graphs.

In this paper, we verify Conjecture 3 for hereditary Kt,t-induced-subgraph-free graph
classes in the r = 1 case. For a graph G, an independent set S ⊆ V (G) is a set of vertices
such that no two vertices in S are adjacent. The independence number α(G) of G is the
size of the largest independent set in G. For a set X ⊆ V (G), we may abuse notation and
write α(X) for α(G[X]).

Theorem 4. For all k, t ∈ N, there exists k′ ∈ N such that the following holds: Let G be
a Kt,t-free graph such that every induced subgraph of G admits (k, 1)-balanced separators.
Then G has a tree-decomposition (T, β) where each bag β(t) contains a subset β̂(t) such
that α(β̂(t)) ⩽ k′ and β(t) = NG[β̂(t)].

It is clear to see that such a tree-decomposition is (k′, 2)-centred. Together with Theorem 1,
this gives a natural sufficient condition for a graph to be quasi-isometric to a graph with
bounded treewidth.

Note that our proof for Theorem 4 gives the following stronger property: the radius-2
neighbourhoods can be taken with respect to the subgraph induced by the corresponding
bag of the tree-decomposition.

To further motivate Theorem 4, we place it in the broader context of recent developments
concerning induced minors. There has been growing interest in understanding which
hereditary graph classes admit (k, 1)-balanced separators [2–5, 9, 10]. This line of work is
driven by the goal of designing quasi-polynomial time algorithms for maximum independent
set, since the existence of such separators are useful for constructing such algorithms.

Note that if a graph has bounded maximum degree and admit (k, 1)-balanced separators,
then it has bounded separation number, and hence has bounded treewidth. Consequently,
a necessary condition for a hereditary graph class to admit (k, 1)-balanced is that it needs
to exclude a large grid as an induced minor. Gartland and Lokastov [8] conjecture that
this is, in fact, the only obstruction:

Conjecture 5 ([8]). For every planar graph H, there exists k ∈ N such that every
H-induced-minor-free graph G admits (k, 1)-balanced separator.

This conjecture has been confirmed in several cases: Pk-free graphs [2]; even-hole-free
graphs [4]; three-path-configuration-free graphs [5]; and graphs that exclude the line graph
of subdivisions of a wall and a subdivided claw as induced subgraphs [3].
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Related to Conjecture 5 is the Coarse Grid Minor Conjecture due to Georgakopoulos and
Papasoglu [11].2 This conjecture is one of the most important open problems in coarse
graph theory.

Conjecture 6 ([11]). For every planar graph H, there exist k, q ∈ N such that every
H-induced-minor-free is q-quasi-isometric to a graph with treewidth at most k.

Since excluding a graph as an induced minor is closed under taking induced subgraphs, a
consequence of Theorem 4 is that Conjecture 5 implies Conjecture 6 for Kt,t-free graphs.
Thus, our result provides a bridge between these two important conjectures concerning
the structure of graphs that exclude a planar graph as an induced minor.

2 Preliminaries

All graphs in this paper are simple and finite. Undefined terms and standard definitions
can be found in Diestel [6].

Let G and H be graphs. The 2-subdivision of H, denoted H(2), is the graph obtained from
H by replacing each edge with a path of length 3. We say that H is an induced subgraph
of G if H can be obtained from G by deleting vertices. We say that G is H-free if G does
not contain an induced subgraph isomorphic to H. A class of graphs G is hereditary if it
is closed under taking induced subgraphs.

For a set S ⊆ V (G), let G[S] denote the graph obtained by removing from G all the
vertices that are not in S. We write G − S as short-hand for G[V (G) \ S]. We say that
H is an induced minor of G if H is isomorphic to a graph that can be obtained from an
induced subgraph of G by contracting edges. We say that G is H-induced-minor-free if H

is not an induced-minor of G. Two sets X, Y ⊆ V (G) are anti-complete if they are disjoint
and there is no edge in G with one end-point in X and the other in Y .

The distance distG(u, v) between u and v in G is the length of the shortest path connecting
them, or infinite otherwise. For r ∈ N and set Ŝ ⊆ V (G), let N r[Ŝ] denote the set of
vertices in G at distance at most r from S. We may drop the subscript G when the graph
is clear from context, and we may write N [Ŝ] instead of N1[Ŝ].

For q ∈ N, a q-quasi-isometry of G into a graph H is a map ϕ : V (G) → V (H) such that,
for every u, v ∈ V (G),

q−1 · distG(u, v) − q ⩽ distH(ϕ(u), ϕ(v)) ⩽ q · distG(u, v) + q,

2Note that [11] states their conjecture in terms of forbidden fat-minors, which is more general than
forbidden induced minors.
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and, for every x ∈ V (H), there exists a vertex v ∈ V (G) such that distH(x, ϕ(v)) ⩽ q. If
such a map exists, then we say that G is q-quasi-isometric to H.

3 Proof

We make no attempt to optimise the constants in our bounds. We need the following
lemma from Chudnovsky et al. [3].

Lemma 7 ([3]). Let C, γ, t ∈ N be such that C, γ ⩾ 2, and let G be a {K(2)
γ , Kt,t}-free

graph. Let Y ⊆ V (G). Define

Z = {v ∈ V (G) : α(N [v] ∩ Y ) ⩾ α(Y )
C

}.

Then min{α(Y ), α(Z)} ⩽ (512C)γ2t.

By assumption, the graph G in Theorem 4 is Kt,t-free. The next lemma shows that G is
also K

(2)
2k+2-free, which will allow us to apply Lemma 7.

Lemma 8. For every k ∈ N, the graph K
(2)
2k+2 does not admit balanced (k, 1)-balanced

separators.

Proof. Let X be the set of high-degree vertices in K
(2)
2k+2. Then |X| = 2k + 2. Suppose,

for contradiction, that there is a set Ŝ of at most k vertices in K
(2)
2k+2 whose closed

neighbourhood S = N [Ŝ] is a balanced separator for X. Let X ′ = X − (X ∩ S). Since
no pair of vertices in X lie in a common ball of radius 1 in K

(2)
2k+2 (as they are pairwise

distance-3 apart), it follows that |X ′| ⩾ 2k + 2 − k = k + 2. Choose distinct x, y ∈ X ′ and
let (x, w1, w2, y) be the path of length 3 joining them in K

(2)
2k+2. If either w1 or w2 were in

S, then x or y would also be in S, contradicting their membership in X ′. Thus, x and y

are in the same component C of K
(2)
2k+2 − S. Since this argument holds for every pair of

vertices in X ′, it follows that X ′ ⊆ V (C) and so C contains at least k + 2 > |X|/2 vertices
from X, contradicting the assumption that S is a balanced separator for X.

The following is our main technical result, which immediately implies Theorem 4.

Lemma 9. Let k, t ∈ N and define d = (512 · 20k)(2k+2)2t

. Let G be a Kt,t-free graph
such that every induced subgraph of G admits (k, 1)-balanced separators. Then, for every
X ⊆ V (G) with α(X) ⩽ 10dk, there exists a tree-decomposition (T, β) of G where each
bag β(t) contains a subset β̂(t) such that α(β̂(t)) ⩽ 20dk and β(t) = NG[β̂(t)], and there
is a node tX ∈ V (T ) such that X ⊆ β̂(tX).
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Proof. We proceed by induction on α(G). Since every induced subgraph of G admits
balanced (k, 1)-separators, Lemma 8 implies that G is K

(2)
2k+2-free. If α(G) ⩽ 20dk, then

taking the tree-decomposition of G in which V (G) is in a single bag satisfies the statement.
Hence, we may assume that α(G) > 20dk.

If α(X) < 10dk, then enlarge X by adding vertices into it until α(X) = 10dk. Define

ZG = {v ∈ V (G) : α(N [v]) ⩾ 1
20k

α(V (G))}

and
ZX = {v ∈ V (G) : α(N [v] ∩ X) ⩾ 1

20k
α(X)}.

Let Z = ZG ∪ ZX . Since both α(X) and α(G) are greater than d, we may apply Lemma 7
to conclude that α(Z) ⩽ 2d.

Let G′ = G − Z and X ′ = V (G′) ∩ X. Then, for every vertex v ∈ V (G′), we have

α(NG′ [v]) <
1

20k
α(G) and α(NG′ [v] ∩ X ′) <

1
20k

α(X),

otherwise v would be in Z. Let IG be a maximum independent set of G′ and let IX be
a maximum independent set of X ′. Since α(Z) ⩽ 2d, it follows that |IG| ⩾ α(G) − 2d

and |IX | ⩾ α(X) − 2d. Since G′ is an induced subgraph of G, there exist ŜG, ŜX ⊆ V (G′)
with max{|ŜG|, |ŜG|} ⩽ k such that SG = NG′ [ŜG] is a balanced separator for IG and
SX = NG′ [ŜX ] is a balanced separator for IX . Define Ŝ = ŜG ∪ ŜX and S = SG ∪ SX .
Since every vertex in G′ is adjacent to fewer than 1

20k
(|IG| + 2d) vertices from IG (and

similarly for IX), it follows that

|IG ∩ S| ⩽ 1
20k

(|IG| + 2d) · 2k = 1
10(|IG| + 2d)

and
|IX ∩ S| ⩽ 1

20k
(|IX | + 2d) · 2k = 1

10(|IX | + 2d).

Let C be a component of G′ − S and define Ĉ = G′ − (S ∪ V (C)). By the balancing
properties of the separators,

|V (C) ∩ IG| ⩽ 1
2 |IG| and |V (C) ∩ IX | ⩽ 1

2 |IX |.

Therefore,
|V (Ĉ) ∩ IG| ⩾ |IG| − 1

2 |IG| − 1
10(|IG| + 2d) = 1

5(2|IG| − d)

and
|V (Ĉ) ∩ IX | ⩾ |IX | − 1

2 |IX | − 1
10(|IX | + 2d) = 1

5(2|IX | − d).
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Since V (C) and V (Ĉ) are anti-complete, we deduce that

α(C) ⩽ α(G)−α(Ĉ) ⩽ 1
5(3α(G)+d) and α(C∩X) ⩽ α(X)−α(Ĉ∩X) ⩽ 1

5(3α(X)+d).

Set C ′ = G[V (C) ∪ S ∪ Z] and XC = (V (C ∪ S) ∩ X) ∪ Ŝ ∪ Z. Then

α(C ′) ⩽ α(C) + α(S) + α(Z) ⩽ 1
5(3α(G) + d) + 1

10α(G) + 2d < α(G)

and similarly,

α(XC) ⩽ α(C ∩ X) + α(S ∩ X) + |Ŝ| + α(Z) ⩽ 1
5(3α(X) + d) + 1

10α(X) + 2k + 2d ⩽ 10dk.

By the inductive hypothesis, the graph C ′ has a tree-decomposition TC = (TC , βC) where
each bag βC(t) contains a subset β̂C(t) such that α(β̂C(t)) ⩽ 20dk and β(t) = NC′ [β̂C(t)],
and there is a node tX ∈ V (TC) such that XC ⊆ β̂C(tX). For each component C

of G′ − S, add a bag βC(ℓC) = NG[X ∪ Ŝ ∪ Z] with β̂C(ℓC) = X ∪ Ŝ ∪ Z to the
tree-decomposition and set ℓC to be adjacent to tC . Since NG[X] ∩ V (C ′) ⊆ NC′ [XC ],
this defines a tree-decomposition of G[V (C ′) ∪ NG[X]]. Since α(X) ⩽ 10dk, we have
α(X ∪ Ŝ ∪ Z) ⩽ 10dk + 2d + 2k. For each component of G′ − S, identify the new leaf
bags together to obtain a tree-decomposition of G. Since the other bags do not change, it
follows that the tree-decomposition satisfies the induction hypothesis, as required.

To conclude, one peculiar artefact of our proof is that we go from balanced separators
consisting of balls of radius 1 to bags in the tree-decomposition consisting of ball of radius
2. We do not believe that this increase in radius is necessary, and as such, we conjecture
that Theorem 4 can be strengthened so that the tree-decomposition is (k′, 1)-centred.
Proving this would be a step towards characterising graphs that have a (k, 1)-centred
tree-decompositions, which would be of independent interest.
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