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Abstract Let C be a class of graphs closed under taking induced subgraphs.
We say that C has the clique-stable set separation property if there exists c∈N
such that for every graph G ∈ C there is a collection P of partitions (X,Y )
of the vertex set of G with |P| ≤ |V (G)|c and with the following property: if
K is a clique of G, and S is a stable set of G, and K ∩S = ∅, then there is
(X,Y ) ∈ P with K ⊆X and S ⊆ Y . In 1991 M. Yannakakis conjectured that
the class of all graphs has the clique-stable set separation property, but this
conjecture was disproved by M. Göös in 2014. Therefore it is now of interest
to understand for which classes of graphs such a constant c exists. In this
paper we define two infinite families S,K of graphs and show that for every
S ∈ S and K ∈ K, the class of graphs with no induced subgraph isomorphic
to S or K has the clique-stable set separation property.

1 Introduction

All graphs in this paper are finite and simple. Let G be a graph. A clique in
G is a set of pairwise adjacent vertices, and a stable set is a set of pairwise
non-adjacent vertices. Let C be a class of graphs closed under taking induced
subgraphs. We say that C has the clique-stable set separation property if there
exists c∈N such that for every graph G∈C there is a collection P of partitions
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(X,Y ) of the vertex set of G with |P| ≤ |V (G)|c and with the following
property: if K is a clique of G, and S is a stable set of G, and K∩S = ∅, then
there is (X,Y )∈P with K ⊆X and S ⊆ Y . This property plays an important
role in a large variety of fields: communication complexity, combinatorial
optimization, constraint satisfaction and others (for a comprehensive survey
of these connections see [3]).

In 1991 Mihalis Yannakakis conjectured that the class of all graphs has the
clique-stable set separation property [5], but this conjecture was disproved
by Mika Göös in 2014 [2]. Therefore it is now of interest to understand for
which classes of graphs such a constant c exists; our main result falls into
that category.

Let G be a graph and let X,Y be disjoint subsets of V (G). We denote
by G[X] the subgraph of G induced by X, by N(X) the set of all vertices
of V (G)\X with a neighbor in X, and by N [X] the set N(X)∪X. We say
that X is complete to Y if every vertex of X is adjacent to every vertex of
Y , and that X is anticomplete to Y if every vertex of X is non-adjacent to
every vertex of Y . We say that X and Y are matched if every vertex of X has
exactly one neighbor in Y , and every vertex of Y has exactly one neighbor
in X (and therefore |X|= |Y |). For a graph H, we say that G is H-free if no
induced subgraph of G is isomorphic to H.

Next we define two types of graphs. Let p,q ∈N. We define the graph F p,q
S

as follows:

• V (F p,q
S ) = K ∪S1∪S2∪S3 where K is a clique, S1,S2,S3 are stable sets,

and the sets K,S1,S2,S3 are pairwise disjoint;
• |K|= |S1|= p, and K and S1 are matched;
• |S2|= |S3|= q, and S2 and S3 are matched;
• K is complete to S2;
• there are no other edges in F p,q

S .

The graph F p,q
K is obtained from F p,q

S by making all pairs of vertices of S3
adjacent.

S1

K

S2

S3

Fig. 1 The graphs F 3,3
S and F 3,3

K
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Let Fp,q be the class of all graphs that are both F p,q
S -free and F p,q

K -free.
We can now state our main result:

Theorem 1. For all p,q > 0 the class Fp,q has the clique-stable set separation
property.

Since the clique-stable set separation property is preserved under taking com-
plements, we immediately deduce:

Theorem 2. For all p,q > 0 the class of graphs whose complements are in
Fp,q has the clique-stable set separation property.

2 The Proof

In this section we prove 1. The idea of the proof comes from [1]. Let
G ∈ Fp,q. Define P1 to be the set of all partitions (N [X],V (G)\N [X]) and
(N(X),V (G) \N(X)) where X is a subset of V (G) with |X| < p. Clearly
|P1| ≤ 2|V (G)|p.

Write R = R(q,q) to mean the smallest positive integer R such that ev-
ery 2-coloring of the edges of the complete graph on R vertices contains a
monochromatic complete graph on q vertices. Ramsey’s Theorem [4] implies:

Theorem 3. R(q,q)≤ 22q.

For a,b ∈ N let the graph Fa,b be defined as follows:

• V (Fa,b) = K1 ∪S1 ∪S2 ∪W where K1 is a clique, S1,S2 are stable sets,
and the sets K1,S1,S2,W are pairwise disjoint;

• |K1|= |S1|= a, and K1 and S1 are matched;
• |S2|= |W |= b, and S2 and W are matched;
• K1 is complete to S2;
• there is no restriction on the adjacency of pairs of vertices of W ;
• there are no other edges in Fa,b.

From the definition of R we immediately deduce:

Theorem 4. G is Fp,R-free.

For every triple X = (K1,S1,S2) of pairwise disjoint non-emtpy subsets of
V (G) such that |K1| = |S1| = p and |S2| < R we define the partition PX of
V (G) as follows. Let Z be the set of all vertices of G that are anticomplete
to K1∪S1. Let AX be the set of all vertices v of G such that

• either v ∈K1, or v is complete to K1, and
• either v has a neighbor in S1, or v has a neighbor in Z \N(S2).



4 Maria Chudnovsky and Paul Seymour

Note that, since S1 is a stable set and Z is anticomplete to S1, AX is disjoint
from S1∪Z. Define PX = (AX ,V (G)\AX), and let P2 be the set of all such
partitions PX . Since |K1∪S1∪S2| ≤ 2p + R−1, and since by 3 R ≤ 22q, we
deduce that |P2|< |V (G)|2p+22q .

In order to complete the proof of 1 we will prove the following:

Theorem 5. For every clique K and stable set S of G such that K ∩S = ∅,
there exists (X,Y ) ∈ P1∪P2 with K ⊆X and S ⊆ Y .

Proof. Let K and S be as in the statement of 5.

(1) We may assume that K is a maximal clique of G, and S is a
maximal stable set of G.

Let K′ be a maximal clique of G with K ⊆K′, and let S′ be a maximal
stable set of G with S ⊆ S′. If K′∩S′ = ∅, then the existence of the desired
partition for K,S follows from the existence of such a partition for K′,S′;
thus we may assume that K′∩S′ 6= ∅. Since K′ is a clique and S′ is a stable
set, it follows that |K′ ∩S′| = 1, say K′ ∩S′ = {v}. But now the partitions
(N [{v}],V (G)\N [{v}]) and (N({v}),V (G)\N({v}]) are both in P1, and at
least one of them has the desired property. This proves (1).

In view of (1) from now on we assume that K is a maximal clique of G,
and S is a maximal stable set of G. Consequently every vertex of K has a
neighbor in S. Let S′1 ⊆ S be a minimal subset of S such that every vertex
of K has a neighbor in S′1. It follows from the minimality of S′1 that there
is a subset K′1 of K such that S′1 and K′1 are matched. If |S′1|< p, then the
partition (N(S′1),V (G) \N(S′1)) ∈ P1 has the desired property, so we may
assume that |S′1| ≥ p.

Let S1 be a subset of S′1 with |S1|= p, and let K1 = N(S1)∩K′1. Then S1
and K1 are matched, and so |K1|= p. Let Z be the set of vertices of G that
are anticomplete to S1 ∪K1. Then S′1 \S1 ⊆ Z ∩S, and in particular every
vertex of K has a neighbor either in S1 or in Z ∩S. Let S′ be the subset of
vertices of S \S1 that are complete to K1. Note that S′ ∩Z = ∅. Let S2 be
a minimal subset of S′ such that N(S2)∩Z = N(S′)∩Z. It follows from the
minimality of S2 that there is a subset W ⊆ Z ∩N(S′) such that W and S2
are matched. Observe that G[K1∪S1∪S2∪W ] is isomorphic to Fp,|S2| (with
K1,S1,S2,W as in the definition of Fa,b). It follows from 4 that |S2|< R.

Let X = (K1,S1,S2). We claim that the partition PX ∈P2 has the desired
property for the pair K,S. Recall that PX = (AX ,V (G)\AX), where AX is
the set of all vertices v of G such that

• either v ∈K1, or v is complete to K1, and
• either v has a neighbor in S1, or v has a neighbor in Z \N(S2).

We need to show that K ⊆AX , and S∩AX = ∅.
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(2) K ⊆AX .

Let k ∈K. Clearly either k ∈K1 or k is complete to K1. Moreover, k has
a neighbor in S′1, and S′1 ⊆ S1∪(Z∩S). Since S is a stable set, it follows that
Z ∩S ⊆ Z \N(S2), and thus k has a neighbor either in S1, or in Z \N(S2).
This proves (2).

(3) S∩AX = ∅.

Suppose that s ∈ S ∩AX . Then s 6∈ K1; therefore s is complete to K1,
and so s ∈ S′. Since S is a stable set, it follows that s is anticomplete to S1,
and therefore s has a neighbor in Z \N(S2). But N(S′)∩Z = N(S2)∩Z, a
contradiction. This proves (3).

Now 5 follows from (2) and (3). ut

This completes the proof of 1.
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