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Abstract

The bull is a graph consisting of a triangle and two vertex-disjoint
pendant edges. A graph is called bull-free if no induced subgraph of
it is a bull. A graph G is perfect if for every induced subgraph H of
G, the chromatic number of H equals the size of the largest complete
subgraph of H. This paper describes the structure of all bull-free
perfect graphs.

1 Introduction

Unless stated otherwise, all graphs in this paper are simple and finite. Given
a graph G, we denote by VG the vertex set of G, and by EG the edge set of G;
we sometimes write G = (VG, EG). A clique in G is a set of pairwise adjacent
vertices of G, and a stable set in G is a set of pairwise non-adjacent vertices
of G. The clique number of G, written ω(G), is the maximum number of
vertices in a clique in G. A coloring of G is a partition of VG into stable sets.
The chromatic number of a graph G, written χ(G), is the minimum number
of stable sets needed to partition VG. A graph G is said to be perfect if for
every induced subgraph H of G, χ(H) = ω(H).

Given a graph G, the complement of G, written G, is the graph on the
vertex set VG such that for all distinct u, v ∈ VG, u is adjacent to v in G if
and only if u is non-adjacent to v in G. A hole in G is an induced cycle of
length at least four in G. An anti-hole in G is an induced subgraph of G
whose complement is a hole in G. An odd hole (respectively: odd anti-hole)
is a hole (respectively: anti-hole) with an odd number of vertices. Berge
conjectured that a graph is perfect if and only if it contains neither odd
holes nor odd anti-holes [1]. This conjecture is known as the strong perfect
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graph conjecture; it was proven a few years ago [7], and it is now known as
the strong perfect graph theorem. Today, graphs that contain no odd holes
and no odd anti-holes are called Berge, and so the strong perfect graph the-
orem can be restated as saying that a graph is perfect if and only if it is
Berge. Other relevant results have been the polynomial time recognition
algorithm for Berge (and therefore, by the strong perfect graph theorem,
perfect) graphs [6], and a polynomial time coloring algorithm for perfect
graphs [12]. As the latter algorithm is based on the ellipsoid method, find-
ing a combinatorial polynomial time coloring algorithm for perfect graphs
remains an open problem.

The bull is a graph with vertex set {x1, x2, x3, y1, y2} and edge set {x1x2,
x2x3, x3x1, x1y1, x2y2}. A graph G is said to be bull-free if no induced sub-
graph of G is isomorphic to the bull.

Bull-free graphs were originally studied in the context of perfect graphs.
Many years before the strong perfect graph conjecture was proven [7], it
was shown that bull-free Berge graphs were perfect [8]. Similarly, a polyno-
mial time recognition algorithm for bull-free perfect graphs [15] was obtained
long before the recognition algorithm for perfect graphs [6]. Furthermore,
the class of bull-free perfect graphs is one of the subclasses of the class of per-
fect graphs for which a combinatorial polynomial time coloring algorithm has
been constructed [10] (in fact, [10] contains a weighted coloring algorithm
for bull-free perfect graphs; see also [11] and [13]). Recently, a structure
theorem for bull-free graphs was obtained [2, 3, 4, 5]; in the present paper,
we use the structure theorem from [2, 3, 4, 5] to derive a structure theorem
for bull-free Berge graphs; by the strong perfect graph theorem [7], this is in
fact a structure theorem for bull-free perfect graphs. While the structure of
bull-free perfect graphs has received some attention in the past (see [8] and
[11]), all previous results were “decomposition theorems”: they state that
every bull-free perfect graph either belongs to some well-understood “basic”
class or it can be “decomposed” into smaller bull-free perfect graphs in a
certain useful way. However, these decompositions cannot be turned into
operations that build larger graphs from smaller ones, while preserving the
property of being bull-free and perfect. In this sense, the structure theo-
rem from the present paper is stronger: it states that every bull-free perfect
graph either belongs to a basic class, or it can be built from smaller bull-free
perfect graph by an operation that preserves the property of being bull-free
and perfect.

We remark that elsewhere [14], the results of the present paper are used
to obtain a combinatorial polynomial time weighted coloring algorithm for
bull-free perfect graphs whose complexity is lower than that of the algorithm
in [10]. One might ask whether these results could also be used as a basis for
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a polynomial time recognition algorithm for bull-free perfect graphs. While
it is possible that such an algorithm could be found, it seems unlikely that
it would be faster than the recognition algorithm for bull-free perfect graphs
from [15]; this is because the running time of the algorithm from [15] is only
O(n5) (where n is the number of vertices of the input graph), and since
the bull contains five vertices, the obvious way to test whether a graph is
bull-free already takes O(n5) time.

Following [2, 3, 4, 5], we consider objects called “trigraphs” (defined in
section 2), which are a generalization of graphs. While in a graph, two dis-
tinct vertices can be either adjacent or non-adjacent, in a trigraph, there are
three options: a pair of distinct vertices can be adjacent, anti-adjacent, or
semi-adjacent; semi-adjacent pairs can conveniently be thought of as having
undecided adjacency. While we do not define such a thing as a “perfect
trigraph” (because we do not have a natural way to define a trigraph col-
oring), there is a natural way to define a “bull-free trigraph” and a “Berge
trigraph,” and we do this in section 2. Our main theorem (3.4) gives the
structure of all bull-free Berge trigraphs. Since graphs are simply trigraphs
with no semi-adjacent pairs, this theorem is implicitly a structure theorem
for bull-free Berge graphs, and therefore (by the strong perfect graph theo-
rem) it is a structure theorem for bull-free perfect graphs.

The rest of the paper is organized as follows. In section 3, we define “ele-
mentary trigraphs,” and we use a result from [2] to reduce our problem to
finding the structure of all elementary bull-free Berge trigraphs. We then
cite the structure theorem for elementary bull-free trigraphs from [5]; this
theorem states that every bull-free trigraph G is either obtained from smaller
bull-free trigraphs by “substitution” (this operation is defined in section 2),
or G or its complement is an “elementary expansion” (this is defined later,
in section 4) of a trigraph in one of two basic classes (classes T1 and T2). We
complete section 3 by stating our main theorem (3.4), the structure theorem
for all bull-free Berge trigraphs; however, we do not prove this theorem in
section 3 (we only do this in section 7), and we also postpone defining certain
terms used in the theorem. In section 4, we study “elementary expansions.”
Informally, an elementary expansion of a trigraph H is the trigraph obtained
by expanding some semi-adjacent pairs of H to “homogeneous pairs” of a
certain kind (general homogeneous pairs are defined in section 2, and the
two kinds that we need for elementary expansions are defined in section 4).
We show that if G is an elementary expansion of a trigraph H, then G is
Berge if and only if H is. In section 5, we give the definition of the class T1
from [5] and derive the class T ∗1 of all Berge trigraphs in T1. In section 6,
we define the class T2 from [5], and prove that every trigraph in T2 is Berge.
Finally, in section 7, we prove our main theorem.

3



2 Trigraphs

A trigraph G is an ordered pair (VG, θG) such that VG is a non-empty finite
set, called the vertex set of G, and θG : V 2

G → {−1, 0, 1} is a map, called the
adjacency function of G, satisfying the following:

• for all v ∈ VG, θG(v, v) = 0;

• for all u, v ∈ VG, θG(u, v) = θ(v, u);

• for all u ∈ VG, there exists at most one vertex v ∈ VG r {u} such that
θG(u, v) = 0.

Members of VG are called vertices of G. Let u, v ∈ VG be distinct. We say
that uv is a strongly adjacent pair, or that u and v are strongly adjacent, or
that u is strongly adjacent to v, or that u is a strong neighbor of v, provided
that θG(u, v) = 1. We say that uv is a strongly anti-adjacent pair, or that u
and v are strongly anti-adjacent, or that u is strongly anti-adjacent to v, or
that u is a strong anti-neighbor of v, provided that θG(u, v) = −1. We say
that uv is a semi-adjacent pair, or that u and v are semi-adjacent, or that u
is semi-adjacent to v, provided that θG(u, v) = 0. (Note that we do not say
that a vertex w ∈ VG is semi-adjacent to itself even though θG(w,w) = 0.)
If uv is a strongly adjacent pair or a semi-adjacent pair, then we say that
uv is an adjacent pair, or that u and v are adjacent, or that u is adjacent
to v, or that u is a neighbor of v. If uv is a strongly anti-adjacent pair or a
semi-adjacent pair, then we say that uv is an anti-adjacent pair, or that u
and v are anti-adjacent, or that u is anti-adjacent to v, or that u is an anti-
neighbor of v. Thus, if uv is a semi-adjacent pair, then uv is simultaneously
an adjacent pair and an anti-adjacent pair. The endpoints of the pair uv
(regardless of adjacency) are u and v. Given distinct vertices u and v of G,
we do not distinguish between pairs uv and vu. However, we will sometimes
need to maintain the asymmetry between the endpoints of a semi-adjacent
pair uv, and in those cases, we will use the ordered pair notation and write
(u, v) or (v, u), as appropriate, rather than uv.

Note that every (non-empty, finite, and simple) graph can be thought of
as a trigraph in a natural way: graphs are simply trigraphs with no semi-
adjacent pairs.

The complement of a trigraph G is the trigraph G such that VG = VG
and θG = −θG; we say that a class C of trigraphs is self-complementary
provided that for every trigraph G ∈ C, we have that G ∈ C. Given a tri-
graph G and a non-empty set X ⊆ VG, G[X] is the trigraph with vertex
set X and adjacency function θG � X2 (the restriction of θG to X2); we call
G[X] the subtrigraph of G induced by X. Isomorphism between trigraphs
is defined in the natural way; if trigraphs G1 and G2 are isomorphic, then
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we write G1
∼= G2. Given trigraphs G and H, we say that H is an induced

subtrigraph of G (or that G contains H as an induced subtrigraph) if there
exists some X ⊆ VG such that H = G[X]. (However, when convenient, we
relax this condition and say that H is an induced subtrigraph of G, or that
G contains H as an induced subtrigraph, if there exists some X ⊆ VG such
that H ∼= G[X].) Given a trigraph G and a set X ⊆ VG, we denote by GrX
the trigraph G[VGrX]; if X = {v}, then we sometimes write Gr v instead
of Gr {v}.

Given a trigraph G, a vertex a ∈ VG, and a set B ⊆ VG r {a}, we say that
a is strongly complete (respectively: strongly anti-complete, complete, anti-
complete) to B provided that a is strongly adjacent (respectively: strongly
anti-adjacent, adjacent, anti-adjacent) to every vertex in B; we say that
a is mixed on B provided that a is neither strongly complete nor strongly
anti-complete to B. Given disjoint A,B ⊆ VG, we say that A is strongly
complete (respectively: strongly anti-complete, complete, anti-complete) to B
provided that for every a ∈ A, a is strongly complete (respectively: strongly
anti-complete, complete, anti-complete) to B. Given X ⊆ VG, we say that
X is a (strong) clique in G provided that the vertices of X are all pairwise
(strongly) adjacent, and we say thatX is a (strongly) stable set inG provided
that the vertices of X are all pairwise (strongly) anti-adjacent. A (strong)
triangle is a (strong) clique consisting of three vertices, and a (strong) triad
is a (strongly) stable set consisting of three vertices.

A graph Ĝ is said to be a realization of a trigraph G = (VG, θG) provided
that the vertex set of Ĝ is VG, and for all distinct u, v ∈ VG, the following
hold:

• if u is adjacent to v in Ĝ, then u is adjacent to v in G;

• if u is non-adjacent to v in Ĝ, then u is anti-adjacent to v in G.

Thus, a realization of a trigraph is obtained by turning all strongly adjacent
pairs into edges, all strongly anti-adjacent pairs into non-edges, and semi-
adjacent pairs (independently of one another) into edges or non-edges.

A bull is a trigraph with vertex set {x1, x2, x3, y1, y2} such that {x1, x2, x3}
is a triangle, y1 is adjacent to x1 and anti-complete to {x2, x3, y2}, and y2
is adjacent to x2 and anti-complete to {x1, x3}. We say that a trigraph G
is bull-free provided that no induced subtrigraph of G is a bull.

We say that an induced subtrigraph P of a trigraph G is a path in G pro-
vided that the vertices of P can be ordered as p0, p1, ..., pk (for some integer
k ≥ 0) so that for all i, j ∈ {0, ..., k}, if |i − j| = 1 then pipj is an adjacent
pair, and if |i − j| > 1 then pipj is an anti-adjacent pair; we often denote
such a path P by p0 − p1 − ...− pk, and we say that P is a path from p0 to
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pk, or that P is a path between p0 and pk. The length of a path or anti-path
P is |VP | − 1, where (consistently with our notation) VP denotes the vertex
set of P . If P is a path of length k, then we also say that P is a k-edge path.
An odd path is a path of odd length.

We say that an induced subtrigraph H of a trigraph G is a hole (respec-
tively: anti-hole) in G provided that the vertices of H can be ordered as
h1, ..., hk (for some integer k ≥ 4) so that for all i, j ∈ {1, ..., k}, if |i− j| = 1
or |i− j| = k− 1 then hihj is an adjacent (respectively: anti-adjacent) pair,
and if 1 < |i − j| < k − 1 then hihj is an anti-adjacent (respectively: adja-
cent) pair. We often denote such a hole or anti-hole by h1−h2− ...−hk−h0.
(We observe that H is a hole in G if and only if H is an anti-hole in G.) The
length of a hole or anti-hole H is |VH |. If H is a hole (respectively: anti-hole)
of length k, then we also say that H is a k-hole (respectively: k-anti-hole).
We say that H is an odd hole (respectively: odd anti-hole) provided that H
is a hole (respectively: anti-hole) of length k for some odd integer k ≥ 5.
We say that a trigraph G is odd hole-free (respectively: odd anti-hole-free)
provided that no induced subtrigraph of G is an odd hole (respectively: odd
anti-hole). A trigraph G is Berge provided that G is both odd hole-free and
odd anti-hole-free.

We say that a trigraphG is bipartite provided that VG can be partitioned into
(possibly empty) strongly stable sets A and B; under such circumstances,
we say that G is bipartite with bipartition (A,B), and that (A,B) is a bipar-
tition of the bipartite trigraph G. We say that a trigraph G is complement-
bipartite provided thatG is bipartite. We say thatG is complement-bipartite
with bipartition (A,B), or that (A,B) is a bipartition of the complement-
bipartite trigraph G, provided that G is bipartite with bipartition (A,B).

We observe that a trigraph G is bull-free (respectively: odd hole-free, odd
anti-hole-free, Berge, bipartite, complement-bipartite) provided that every
realization of G is bull-free (respectively: odd hole-free, odd anti-hole-free,
Berge, bipartite, complement-bipartite).

We note that bipartite and complement bipartite trigraphs are Berge. This
follows from the fact that every realization of a bipartite (respectively:
complement-bipartite) trigraph is a bipartite (respectively: complement-
bipartite) graph, and it is a well known (and easy to check) fact that bipar-
tite and complement-bipartite graphs are Berge.

We now give an easy result that will be used throughout the paper.

2.1. Let G be a trigraph. Then G is bull-free if and only if G is bull-free,
and G is Berge if and only if G is Berge.

Proof. The first claim follows from the fact that the complement of a bull
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is again a bull. The second claim is immediate from the definition.

Let G be a trigraph, and let Ĝ be the realization of G that satisfies the
property that for all distinct u, v ∈ VG, u and v are adjacent in Ĝ if and
only if θG(u, v) ≥ 0. (Thus, Ĝ is the realization of G obtained by turning
all semi-adjacent pairs of G into edges.) We then say that G is connected
provided that Ĝ is connected. Let X ⊆ VG. We say that G[X] is a compo-
nent of G provided that Ĝ[X] is a component of Ĝ (i.e. provided that Ĝ[X]
is a maximal connected induced subgraph of Ĝ).

Let G be a trigraph, and let X be a proper, non-empty subset of VG. We
say that X is a homogeneous set in G provided that for every v ∈ VG rX,
v is either strongly complete to X or strongly anti-complete to X. We say
that X is a proper homogeneous set in G provided that X is a homogeneous
set in G and that |X| ≥ 2. We say that G admits a homogeneous set decom-
position provided that G contains a proper homogeneous set. We observe
that if X is a homogeneous set in G, and uv is a semi-adjacent pair in G,
then either u, v ∈ X or u, v ∈ VG rX.

Let G, G1, and G2 be trigraphs, and let v ∈ VG1 . Assume that VG1 and VG2

are disjoint, and that v is not an endpoint of any semi-adjacent pair in G1.
We then say that G is obtained by substituting G2 for v in G1 provided that
all of the following hold:

• VG = (VG1 ∪ VG2) r {v};

• G[VG1 r {v}] = G1 r v;

• G[VG2 ] = G2;

• for all v1 ∈ VG1 r {v} and v2 ∈ VG2 , v1v2 is a strongly adjacent pair
in G if v1v is a strongly adjacent pair in G1, and v1v2 is a strongly
anti-adjacent pair in G if v1v is a strongly anti-adjacent pair in G1.

We say that a trigraph G is obtained by substitution from smaller trigraphs
provided that there exist some trigraphs G1 and G2 with disjoint vertex sets
satisfying |VG1 | < |VG| and |VG2 | < |VG| (or equivalently: |VG1 | ≥ 2 and
|VG2 | ≥ 2) and some v ∈ VG1 that is not an endpoint of any semi-adjacent
pair in G1, such that G is obtained by substituting G2 for v in G1. We
observe that a trigraph G admits a homogeneous set decomposition if and
only if G is obtained from smaller trigraphs by substitution. We will use the
following result several times in this paper.

2.2. Let G,G1, G2 be trigraphs and let v ∈ VG1. Assume that VG1 and VG2

are disjoint and that v is not an endpoint of any semi-adjacent pair in G1.
Assume that G is obtained by substituting G2 for v in G1. Then all of the
following hold:
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• G is bull-free if and only if G1 and G2 are both bull-free;

• G is odd hole-free if and only if both G1 and G2 are odd hole-free;

• G is odd anti-hole-free if and only if both G1 and G2 are odd anti-hole-
free;

• G is Berge if and only if G1 and G2 are both Berge.

Proof. This is an easy consequence of the fact that bulls, holes of length at
least five, and anti-holes of length at least five do not admit a homogeneous
set decomposition.

Next, let G be a trigraph, and let A and B be non-empty, disjoint subsets
of VG. We say that (A,B) is a homogeneous pair in G provided that A is
a homogeneous set in G r B, and B is a homogeneous set in G r A. We
observe that if (A,B) is a homogeneous pair in G, and uv is a semi-adjacent
pair in G, then either u, v ∈ A ∪ B or u, v ∈ VG r (A ∪ B). If (A,B) is a
homogeneous pair in G, then the partition of G with respect to (or associated
with) the homogeneous pair (A,B) is the 6-tuple (A,B,C,D,E, F ), where C
is the set of all vertices in VGr (A∪B) that are strongly complete to A and
strongly anti-complete to B; D is the set of all vertices in VGr (A∪B) that
are strongly complete to B and strongly anti-complete to A; E is the set of
all vertices in VG r (A ∪ B) that are strongly complete to A ∪ B; and F is
the set of all vertices in VGr(A∪B) that are strongly anti-complete to A∪B.

We say that a homogeneous pair (A,B) in a trigraph G is good provided
that the following three conditions hold:

• neither G[A] nor G[B] contains a three-edge path;

• there does not exist a path v1 − v2 − v3 − v4 in G such that v1, v4 ∈ A
and v2, v3 ∈ B;

• there does not exist a path v1− v2− v3− v4 in G such that v1, v4 ∈ B
and v2, v3 ∈ A.

We observe that if (A,B) is a good homogeneous pair in a trigraph G, then
(A,B) is a good homogeneous pair in G as well; this follows from the fact
that the complement of a three-edge path is again a three-edge path. Good
homogeneous pairs will appear in sections 4 and 6 below. We end this section
with a useful result concerning good homogeneous pairs.

2.3. Let G be a trigraph, let (A,B) be a good homogeneous pair in G, and
let W be the vertex set of an odd hole or an odd anti-hole in G. Then
|W ∩A| ≤ 1 and |W ∩B| ≤ 1.
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Proof. First, by passing to G if necessary, we may assume that W is the
vertex set of an odd hole in G. Next, let Ĝ be a realization of G in which
W is the vertex set of an odd hole. Finally, let (A,B,C,D,E, F ) be the
partition of G with respect to (A,B).

We begin by proving that W 6⊆ A ∪ B. Suppose otherwise. Since the
number of edges in Ĝ[W ] with one endpoint in A and the other one in B
is even, exactly one of Ĝ[W ∩ A] and Ĝ[W ∩ B] contains an odd number
of edges; by symmetry, we may assume that Ĝ[B] contains an odd number
of edges. Since Ĝ[W ∩ B] contains no induced three-edge path, and since
Ĝ[W ] is a chordless cycle of length at least five, we know that Ĝ[W ∩ B]
contains an edge b1b2 that meets no other edges in Ĝ[W ∩ B]. Since Ĝ[W ]
is a chordless cycle of length at least five, there exist some a1, a2 ∈ W such
that a1 − b1 − b2 − a2 is an induced three-edge path in Ĝ[W ] (and therefore
in G[W ] as well). Since the edge b1b2 meets no other edges in Ĝ[W ∩B], we
know that a1, a2 ∈ A. But then the path a1 − b1 − b2 − a2 contradicts the
fact that (A,B) is good.

We next show that |W ∩ A| ≤ 2 and |W ∩ B| ≤ 2. Suppose otherwise.
By symmetry, we may assume that |W ∩ A| ≥ 3. Then W ∩ (C ∪ E) = ∅,
for otherwise, some vertex in Ĝ[W ] would be of degree at least three. Since
W 6⊆ A∪B, W intersects D ∪ F ; and since Ĝ[W ] is connected, W ∩D 6= ∅.
Now, fix some a ∈ W ∩ A and d ∈ W ∩D. Note that there are two paths
in Ĝ[W ] between a and d that meet only at their endpoints; both of these
paths pass through B, and so |W ∩ B| ≥ 2. Fix distinct b1, b2 ∈ W ∩ B.
Since B is complete to D in Ĝ, and since Ĝ[W ] is a chordless cycle of length
at least five, it follows that W ∩ B = {b1, b2} and W ∩ D = {d}. It then
easily follows that W r {d} ⊆ A ∪ B. Then Ĝ[W ∩ A] is an odd path, and
so since |W ∩ A| ≥ 3, we get that Ĝ[A] (and therefore G[A]) contains an
induced three-edge path, contrary to the fact that (A,B) is good. Thus,
|W ∩A| ≤ 2 and |W ∩B| ≤ 2.

Finally, suppose that |W ∩ A| = 2; set W ∩ A = {a1, a2}. Since Ĝ[W ] is a
chordless cycle of length at least five, there exist some b1, b2 ∈W r {a1, a2}
such that a1b1, a2b2 are edges, and a1b2, a2b1 are non-edges in Ĝ. Since b1
and b2 are both mixed on A, it follows that b1, b2 ∈ B; since |W∩B| ≤ 2, this
means that W ∩B = {b1, b2}. Since (A,B) is good, and since Ĝ[W ] contains
no cycles of length four, we know that both a1a2 and b1b2 are non-edges.
Note that W ∩E = ∅, for otherwise, some vertex in W would be of degree at
least four in Ĝ[W ]. Thus, all neighbors of a1 in Ĝ[W ] lie in C ∪ {b1}; since
a1 has at least two neighbors in W , this means that W ∩ C 6= ∅. Similarly,
W∩D 6= ∅. But if c ∈W∩C and d ∈W∩D, then c−a1−b1−d−b2−a2−c is
a (not necessarily induced) cycle of length six in Ĝ[W ], which is impossible.
Thus, |W ∩ A| ≤ 1. In an analogous way, we get that |W ∩ B| ≤ 1. This
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completes the argument.

3 Structure Theorem for Bull-Free Berge Trigraphs

Given a trigraph G, a set X ⊆ VG, and a vertex p ∈ VG rX, we say that p
is a center for X (or for G[X]) provided that p is adjacent to each vertex in
X, and we say that p is an anti-center for X (or for G[X]) provided that p is
anti-adjacent to each vertex in X. Following [2], we call a bull-free trigraph
G elementary provided that it contains no three-edge path P such that some
vertex of G is a center for P , and some vertex of G is an anti-center for P .
A bull-free trigraph that is not elementary is said to be non-elementary. We
now state a decomposition theorem from [2] (this is 3.3 from [2]; we remark
that not all terms from the statement of this theorem have been defined in
the present paper).

3.1. Let G be a non-elementary bull-free trigraph. Then at least one of the
following holds:

• G or G belongs to T0;

• G or G contains a homogeneous pair of type zero;

• G admits a homogeneous set decomposition.

We omit the definitions of T0 and of a homogeneous pair of type zero, and
instead refer the reader to [2]. What we need here is the fact (easy to
check) that every trigraph in T0 contains a hole of length five, as does every
trigraph that contains a homogeneous pair of type zero. Now 3.1 (i.e. 3.3
from [2]) implies that every non-elementary bull-free trigraph that does not
contain a hole of length five (and in particular, every non-elementary bull-
free Berge trigraph) admits a homogeneous set decomposition; we state this
result below for future reference.

3.2. Every non-elementary bull-free trigrpaph that does not contain a hole
of length five admits a homogeneous set decomposition. In particular, every
non-elementary bull-free Berge trigraph admits a homogeneous set decompo-
sition.

While the proof of 3.3 from [2] (stated as 3.1 above) is relatively involved,
if we restrict our attention to non-elementary bull-free trigraphs G that do
not contain a hole of length five, only a couple of pages are needed to prove
that G admits a homogeneous set decomposition (we refer the reader to the
proof of 5.2 from [2]). We also remark that for the case of graphs (rather
than trigraphs), a result analogous to 3.2 was originally proven in [11].

Recall that a trigraph G admits a homogeneous set decomposition if and
only if it can be obtained from smaller trigraphs by substitution. Since the
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class of bull-free Berge trigraphs is closed under substitution (by 2.2), we
need only consider bull-free Berge trigraphs that do not admit a homoge-
neous set decomposition, and by 3.2, all such trigraphs are elementary. Thus,
the rest of the paper deals with bull-free Berge trigraphs that are elementary.

We now state the structure theorem for elementary bull-free trigraphs. (We
note that some terms used in the statement of this theorem have not yet
been defined.) The following is an immediate consequence of 6.1 and 5.5
from [5].

3.3. Let G be an elementary bull-free trigraph that is not obtained from
smaller bull-free trigraphs by substitution. Then at least one of the following
holds:

• G or G is an elementary expansion of a member of T1;

• G is an elementary expansion of a member of T2.

Conversely, if H is a trigraph such that either one of H and H is an ele-
mentary expansion of a member of T1, or H is an elementary expansion of
a trigraph in T2, then H is an elementary bull-free trigraph.

We note that some trigraphs H that satisfy the hypotheses of 3.3 admit a
homogeneous set decomposition (that is, they can be obtained by substitu-
tion from smaller bull-free trigraphs).

The definitions of classes T1 and T2, as well as of elementary expansions,
are long and complicated, and we do not give them in this section. Instead,
we give the definition of an elementary expansion of a trigraph in section 4;
we prove there that if G is an elementary expansion of a trigraph H, then G
is Berge if and only if H is. In section 5, we give the definition of the class
T1, and we derive the class T ∗1 of all Berge trigraphs in T1. In section 6, we
give the definition of the class T2, and we prove that every trigraph in T2 is
Berge. In section 7 (the final section), we put all of this together to derive
the structure theorem for Berge bull-free trigraphs, which we state below.

3.4. Let G be a trigraph. Then G is bull-free and Berge if and only if at
least one of the following holds:

• G is obtained from smaller bull-free Berge trigraphs by substitution;

• G or G is an elementary expansion of a trigraph in T ∗1 ;

• G is an elementary expansion of a trigraph in T2.
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4 Elementary Expansions

Our goal in this section is to prove that if a trigraph G is an elementary
expansion of a trigraph H, then G is Berge if and only if H is Berge. Infor-
mally, a trigraph G is said to be an “elementary expansion” of a trigraph H
provided that G can be obtained by “expanding” some semi-adjacent pairs
of a certain kind to homogeneous pairs of a corresponding kind. We start by
defining the two kinds of semi-adjacent pair and the two kinds of homoge-
neous pair that we will need. After that, we define elementary expansions.

Semi-adjacent pairs of type one and two. Let G be a trigraph, let
(a, b) be a semi-adjacent pair in G, and let ({a}, {b}, C,D,E, F ) be the par-
tition of G with respect to the homogeneous pair ({a}, {b}).

We say that (a, b) is a semi-adjacent pair of type one provided all of the
following hold:

• C, D, and F are non-empty;

• E is empty;

• neither C nor D is strongly anti-complete to F .

We say that (a, b) is a semi-adjacent pair of type two provided all of the
following hold:

• C, D, and F are non-empty;

• E is empty;

• C is not strongly anti-complete to F ;

• D is strongly anti-complete to F .

Finally, a semi-adjacent pair (a, b) in a trigraph G is said to be of complement
type one or of complement type two in G provided that (a, b) is a semi-
adjacent pair of complement type one or two, respectively, in G.

Closures of rooted forests. We say that a trigraph T is a forest provided
that there are neither triangles nor holes in T . (Thus, for any two vertices
of T , there is at most one path between them.) A connected forest is called
a tree. A rooted forest is a (k + 1)-tuple T = (T, r1, ..., rk), where T is a
forest with components T1, ..., Tk such that ri ∈ VTi for all i ∈ {1, ..., k}.
Given distinct u, v ∈ VT , we say that u is a descendant of v, or that v is an
ancestor of u, provided that u, v ∈ VTi for some i ∈ {1, ..., k}, and that if
P is the (unique) path from u to ri then v ∈ VP . We say that u and v are
comparable in T provided that u is either an ancestor or a descendant of v.
We say that u is a child of v, or that v is the parent of u, provided that u
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and v are adjacent, and that u is a descendant of v. A vertex v ∈ VT is a
leaf in T provided that v has no descendants. We say that the rooted forest
T is good provided that for all semi-adjacent u, v ∈ VT , one of u and v is a
leaf in T. Finally, we say that the trigraph T ′ is the closure of the rooted
forest T = (T, r1, ..., rk) provided that:

• VT ′ = VT ;

• for all distinct u, v ∈ VT ′ , uv is an adjacent pair in T ′ if and only if u
and v are comparable in T;

• for all distinct u, v ∈ VT ′ , uv is a semi-adjacent pair in T ′ if and only
if uv is a semi-adjacent pair in T .

Homogeneous pairs of type one and two. A homogeneous pair (A,B)
in a trigraph G is said to be of type one in G provided that the associated
partition (A,B,C,D,E, F ) of G satisfies all of the following:

(1) A is neither strongly complete nor strongly anti-complete to B;

(2) 3 ≤ |A ∪B| ≤ |VG| − 3;

(3) A and B are strongly stable sets;

(4) C, D, and F are all non-empty;

(5) E is empty;

(6) neither C nor D is strongly anti-complete to F .

A homogeneous pair (A,B) in a trigraph G is said to be of type two in G
provided there exists a good rooted forest T = (T, r1, ..., rk) such that the
partition (A,B,C,D,E, F ) of G associated with (A,B) satisfies all of the
following:

(1) A is neither strongly complete nor strongly anti-complete to B;

(2) 3 ≤ |A ∪B| ≤ |VG| − 3;

(3) A is a strongly stable set;

(4) G[B] is the closure of T;

(5) if a ∈ A is adjacent to b ∈ B, then a is strongly adjacent to every
descendant of b in T;

(6) if all of the following hold:

– u, v ∈ B and u, v ∈ VTi for some i ∈ {1, ..., k},
– u is a child of v in T,
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– P is the (unique) path in Ti between ri and v,

– X is the component of Ti r (VP r {v}) that contains u and v,

– Y is the set of vertices of X that are semi-adjacent to v,

– a ∈ A is adjacent to u and anti-adjacent to v;

then a is strongly complete to Y and to B r (VX ∪ VP ), and strongly
anti-complete to VP r {v};

(7) C, D, and F are all non-empty;

(8) E is empty;

(9) C is not strongly anti-complete to F ;

(10) D is strongly anti-complete to F .

We will need the following result.

4.1. Let G be a trigraph, and let (A,B) be a homogeneous pair of type one
or two in one of G and G. Then (A,B) is a good homogeneous pair in G.

Proof. Recall that (A,B) is a good homogeneous pair in G if and only if
(A,B) is a good homogeneous pair in G. So we may assume that (A,B) is
a homogeneous pair of type one or two in G. Now, we need to prove the
following:

• neither G[A] nor G[B] contains a three-edge path;

• there does not exist a path v1 − v2 − v3 − v4 in G such that v1, v4 ∈ A
and v2, v3 ∈ B;

• there does not exist a path v1− v2− v3− v4 in G such that v1, v4 ∈ B
and v2, v3 ∈ A.

If (A,B) is a homogeneous pair of type one, then A and B are both stable,
and the result is immediate. So assume that (A,B) is a homogeneous pair
of type two. Then A is stable, and so G[A] contains no three-edge path.
Furthermore, there is no path v1 − v2 − v3 − v4 in G with v1, v4 ∈ B and
v2, v3 ∈ A. Let T = (T, r1, ..., rk) be a good rooted forest such that G[B] is
the closure of T, as in the definition of a homogeneous pair of type two.

Suppose that v1−v2−v3−v4 is a three-edge path in G[B]; then v1, v2, v3, v4 ∈
VTi for some component Ti of T . Since v1 − v2 − v3 is a path, v2 is com-
parable to both v1 and v3 in T, and either v1 and v3 are not comparable
in T or there exist distinct i, j ∈ {1, 2} such that vi is a leaf in T and vi
is a child of and is semi-adjacent to vj ; it then easily follows that v2 is an
ancestor of both v1 and v3. Similarly, since v2 − v3 − v4 is a path, v3 is an
ancestor of both v2 and v4. But then v2 is an ancestor of v3, and v3 is an
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ancestor of v2, which is impossible. Thus, G[B] contains no three-edge path.

Suppose now that v1− v2− v3− v4 is a three-edge path in G with v1, v4 ∈ A
and v2, v3 ∈ B. Then v2 and v3 are comparable in T; by symmetry, we may
assume that v3 is a descendant of v2. But then the fact that v1 is adjacent
to v2 implies that v1 is strongly adjacent to v3, which contradicts the fact
that v1 − v2 − v3 − v4 is a path.

We now give the definition of an elementary expansion of a trigraph, and
prove the main result of this section.

Elementary expansions. Let H and G be trigraphs. We say that G is
an elementary expansion of H provided that VG =

⋃
v∈VH

Xv, where the
Xv’s are non-empty and pairwise disjoint, and all of the following hold:

(1) if u, v ∈ VH are strongly adjacent, then Xu is strongly complete to Xv;

(2) if u, v ∈ VH are strongly anti-adjacent, then Xu is strongly anti-
complete to Xv;

(3) if v ∈ VH is not an endpoint of any semi-adjacent pair of type one or
two, or of complement type one or two, then |Xv| = 1;

(4) if u, v ∈ VH are semi-adjacent, and neither (u, v) nor (v, u) is a semi-
adjacent pair of type one or two, or of complement type one or two,
then the unique vertex of Xu is semi-adjacent to the unique vertex of
Xv;

(5) if (u, v) is a semi-adjacent pair of type one or two in H, then either
|Xu| = |Xv| = 1 and the unique vertex of Xu is semi-adjacent to the
unique vertex of Xv, or (Xu, Xv) is a homogeneous pair of type one or
two, respectively, in G;

(6) if (u, v) is a semi-adjacent pair of complement type one or two in H,
then either |Xu| = |Xv| = 1 and the unique vertex of Xu is semi-
adjacent to the unique vertex of Xv, or (Xu, Xv) is a homogeneous
pair of type one or two, respectively, in G;

Note that every trigraph is an elementary expansion of itself.

4.2. Let G and H be trigraphs, and assume that G is an elementary expan-
sion of H. Then G is Berge if and only if H is Berge.

Proof. The ‘only if’ part follows from the fact that every realization of H
is an induced subgraph of some realization of G. To prove the ‘if’ part, we
assume that H is Berge. Suppose that G is not Berge, and let W be the
vertex set of an odd hole or an odd anti-hole in G. By 4.1 and 2.3, we have
that |W ∩Xv| ≤ 1 for all v ∈ VH . But then {v ∈ VH | W ∩Xv 6= ∅} is the
vertex set of an odd hole or an odd anti-hole in H, which contradicts the
assumption that H is Berge.
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5 Class T1

In this section, we state the definition of the class T1 from [5], and we
derive the class T ∗1 of all Berge trigraphs in T1. The section is organized as
follows. We first define ‘clique connectors’ and ‘tulips.’ Clique connectors
can conveniently be thought of as the basic ‘building blocks’ of trigraphs in
T1 and T ∗1 . A clique connector consists of a bipartite trigraph and a strong
clique that ‘attaches’ to the bipartite trigraph in a certain specified way;
a tulip is a special kind of clique connector. We next introduce trigraphs
called ‘tulip beds,’ which consist of a bipartite trigraph and an unlimited
number of strong cliques that ‘attach’ to the bipartite trigraph as partially
overlapping tulips. We prove that each tulip bed is Berge (see 5.6). We then
define ‘melts’ (which are tulip beds and therefore Berge), and trigraphs that
‘admit an H-structure’ for some ‘usable’ graph H. The class T1 is defined
to be the collection of all melts and all trigraphs that admit an H-structure
for some usable graph H. Finally, we define the subclass T ∗1 of T1, and to
complete the section, we prove that every trigraph in T ∗1 is a tulip bed (and
therefore Berge), and that every Berge trigraph in T1 is in T ∗1 . (However,
we note that not every tulip bed is bull-free, and consequently, the class T ∗1
is only a proper subclass of the class of all tulip beds.)

Clique connectors. Let G be a trigraph such that VG = K∪A∪B∪C∪D,
where K, A, B, C, and D are pairwise disjoint. Assume that K = {k1, ..., kt}
is a strong clique, and that A, B, C, and D are strongly stable sets. Let
A =

⋃t
i=1Ai, B =

⋃t
i=1Bi, C =

⋃t
i=1Ci, and D =

⋃t
i=1Dt, and assume

that A1, ..., At, B1, ..., Bt, C1, ..., Ct, D1, ..., Dt are pairwise disjoint. Assume
that for all i ∈ {1, ..., t}, the following hold:

(1) Ai is strongly complete to {k1, ..., ki−1};

(2) Ai is complete to {ki};

(3) Ai is strongly anti-complete to {ki+1, ..., kt};

(4) Bi is strongly complete to {kt−i+2, ..., kt};

(5) Bi is complete to {kt−i+1};

(6) Bi is strongly anti-complete to {k1, ..., kt−i}.

For each i ∈ {1, ..., t}, let A′i be the set of all vertices in Ai that are semi-
adjacent to ki, and letB′i be the set of all vertices inBi that are semi-adjacent
to kt−i+1 (thus, |A′i| ≤ 1 and |B′i| ≤ 1). Next, assume that:

(7) if there exist some i, j ∈ {1, ..., t} such that i + j 6= t and Ai is not
strongly complete to Bj , then |K| = |A| = |B| = 1, and the unique
vertex of A is semi-adjacent to the unique vertex of B;
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(8) for all i ∈ {1, ..., t}, A′i is strongly complete to Bt−i, B
′
t−i is strongly

complete to Ai, and the adjacency between Ai r A′i and Bt−i r B′t−i
is arbitrary;

(9) A ∪ K is strongly anti-complete to D, and B ∪ K is strongly anti-
complete to C;

(10) for all i ∈ {1, ..., t}, Ci is strongly complete to
⋃i−1

j=1Aj and strongly

anti-complete to
⋃t

j=i+1Aj ;

(11) for all i ∈ {1, ..., t}, Ci is strongly complete to A′i, every vertex of Ci

has a neighbor in Ai, and otherwise the adjacency between Ci and
Ai rA′i is arbitrary;

(12) for all i ∈ {1, ..., t}, Di is strongly complete to
⋃i−1

j=1Bj and strongly

anti-complete to
⋃t

j=i+1Bj ;

(13) for all i ∈ {1, ..., t}, Di is strongly complete to B′i, every vertex of Di

has a neighbor in Bi, and otherwise the adjacency between Di and
Bi rB′i is arbitrary;

(14) for all i, j ∈ {1, ..., t}, if i + j > t then Ci is strongly complete to Dj ,
and otherwise the adjacency between Ci and Dj is arbitrary;

(15) At and Bt are both non-empty.

We then say that G is a (K,A,B,C,D)-clique connector. If for all i, j ∈
{1, ..., t} such that i+j 6= t we have that Ai is strongly complete to Bj , then
we say that G is a non-degenerate (K,A,B,C,D)-clique connector; other-
wise, we say that G is degenerate. If C and D are both empty, and for all
i, j ∈ {1, ..., t} such that i + j 6= t we have that Ai is strongly complete to
Bj , then we say that G is a (K,A,B)-tulip.

We say that a trigraph G is a clique connector provided that there exist
some K,A,B,C,D such that G is a (K,A,B,C,D)-clique connector; we
say that G is a degenerate (respectively: non-degenerate) clique connector
provided that there exist some K,A,B,C,D such that G is a degenerate (re-
spectively: non-degenerate) (K,A,B,C,D)-clique connector. We say that
G is a tulip if there exist some K,A,B such that G is a (K,A,B)-tulip.

We observe that G is a (K,A,B,C,D)-clique connector if and only if G
is a (K,B,A,D,C)-clique connector; similarly, G is a (K,A,B)-tulip if and
only if G is a (K,B,A)-tulip; we will exploit this symmetry throughout the
section. We also note that if G is a (K,A,B,C,D)-clique connector, then
G[A∪B∪C ∪D] is a bipartite trigraph with bipartition (A∪D,B∪C). Fi-
nally, we note that G is a (K,A,B)-tulip if and only if G is a non-degenerate
(K,A,B, ∅, ∅)-clique connector.

17



All non-degenerate clique connectors (and therefore, all tulips) are Berge,
as we will see in a slightly more general setting later in the section (see 5.6
and the comment after it). For now, we prove three results about clique
connectors and tulips. The first (5.1) gives a necessary and sufficient condi-
tion for a degenerate clique connector to be Berge; the second (5.2) states
that each Berge degenerate clique connector becomes non-degenerate after
relabeling; and the third (5.3) is a technical lemma about tulips that will be
used throughout this section.

5.1. Let G be a degenerate (K,A,B,C,D)-clique connector. Then G is
Berge if and only if at least one of C and D is empty.

Proof. Since G is degenerate, we can set K = {k1}, A = A1 = {a}, and
B = B1 = {b}, with a and b semi-adjacent. Furthermore, by axiom (14) from
the definition of a clique connector, we know that C is strongly complete
to D. Now, for the ‘only if’ part, we observe that if both C and D are
non-empty with some c ∈ C and d ∈ D, then k1 − a − c − d − b − k1 is an
odd hole in G, and so G is not Berge. For the ‘if’ part, suppose that at
least one of C and D is empty. If both C and D are empty, then |VG| = 3
and G is Berge. So suppose that exactly one of C and D is empty; by
symmetry, we may assume that C 6= ∅ and D = ∅. Now, we claim that C is
a homogeneous set in G. First, we know by axiom (11) from the definition
of a (K,A,B,C,D)-clique connector that every vertex in C has a neighbor
in A; since A = {a} and a is semi-adjacent to b /∈ C, it follows that C is
strongly complete to A. Second, by axiom (9), we know that C is strongly
anti-complete to K ∪ B. Thus, C is a homogeneous set in G, as claimed.
Since |K| = |A| = |B| = 1, and since D = ∅, it follows that G is obtained
by substituting the trigraph G[C] for a vertex in a 4-vertex trigraph. G[C]
is Berge because C is a strongly stable set in G, and clearly, every 4-vertex
trigraph is Berge. By 2.2 then, G is Berge.

5.2. If G is a degenerate (K,A,B,C, ∅)-clique connector, then G is a non-
degenerate (B,A,K,C, ∅)-clique connector, and if G is a degenerate (K,A,
B, ∅, D)-clique connector, then G is a non-degenerate (A,K,B, ∅, D)-clique
connector.

Proof. This is immediate from the definition.

5.3. Let G be a (K,A,B)-tulip, and let p1−p2−p3−p4 be a path in G such
that p2, p3 ∈ K. Then either p1 ∈ A and p4 ∈ B, or p1 ∈ B and p4 ∈ A.

Proof. Since K is a strong clique, we know that p1, p4 /∈ K; thus, p1, p4 ∈ A∪
B. Now, suppose that neither of the stated outcomes holds. By symmetry
then, we may assume that p1, p4 ∈ A. Set K = {k1, ..., kt} as in the definition
of a tulip, and set p2 = ki and p3 = kj ; by symmetry, we may assume that
i < j. Since p4 is adjacent to p3 = kj , we know that p4 is strongly complete
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to {k1, ..., kj−1}, and so in particular, p4 is strongly adjacent to p2 = ki,
which is a contradiction.

Tulip beds. We say that a trigraph G is a tulip bed provided that either G
is bipartite, or VG can be partitioned into (non-empty) sets F1, F2, Y1, ..., Ys
(for some integer s ≥ 1) such that all of the following hold:

(1) F1 and F2 are strongly stable sets;

(2) Y1, ..., Ys are strong cliques, pairwise strongly anti-complete to each
other;

(3) for all v ∈ F1 ∪ F2, v has neighbors in at most two of Y1, ..., Ys;

(4) for all adjacent v1 ∈ F1 and v2 ∈ F2, v1 and v2 have common neighbors
in at most one of Y1, ..., Ys;

(5) for all l ∈ {1, ..., s}, if Xl is the set of all vertices in F1 ∪ F2 with a
neighbor in Yl, then G[Yl ∪Xl] is a (Yl, Xl ∩ F1, Xl ∩ F2)-tulip.

As we stated at the beginning of this section, not all tulip beds are bull-free
(for example, a bull that contains no semi-adjacent pairs is easily seen to be
a tulip bed). However, all tulip beds are Berge, and we now turn to proving
this fact. We begin with some technical lemmas.

5.4. Let G be a tulip bed, and let F1, F2, Y1, ..., Ys, X1, ..., Xs be as in the
definition of a tulip bed. Let v1 ∈ F1, v2 ∈ F2, and l ∈ {1, ..., s}, and assume
that v1 and v2 have a common neighbor in Yl. Then both of the following
hold:

• v1v2 is a strongly adjacent pair;

• v1 and v2 have no common anti-neighbor in Yl.

Proof. Clearly, v1, v2 ∈ Xl. Set K = Yl, A = Xl∩F1, and B = Xl∩F2. Now
G[Yl ∪Xl] is a (K,A,B)-tulip, v1 ∈ A, v2 ∈ B, and v1 and v2 have a com-
mon neighbor in K. Set K = {k1, ..., kt}, A =

⋃t
i=1Ai, and B =

⋃t
i=1Bi

as in the definition of a (K,A,B)-tulip. Fix i ∈ {1, ..., t} such that ki is a
common neighbor of v1 and v2. Fix p, q ∈ {1, ..., t} such that v1 ∈ Ap and
v2 ∈ Bq. Since v1 ∈ Ap is adjacent to ki, we know by axioms (1), (2), and
(3) from the definition of a (K,A,B)-tulip that i ≤ p; and since v2 ∈ Bq

is adjacent to ki, we know by axioms (4), (5), and (6) that t − q + 1 ≤ i.
Thus, t − q + 1 ≤ p, and so p + q ≥ t + 1. In particular, p + q 6= t, and
so Ap is strongly complete to Bq (this follows from the fact that tulips are
non-degenerate clique connectors). Since v1 ∈ Ap and v2 ∈ Bq, it follows
that v1v2 is a strongly adjacent pair.

It remains to show that v1 and v2 do not have a common anti-neighbor
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in Yl. Suppose otherwise; fix j ∈ {1, ..., t} such that kj is anti-adjacent to
both v1 and v2. Since kj is anti-adjacent to v1 ∈ Ap, we know by axioms (1),
(2), and (3) from the definition of a (K,A,B)-tulip that p ≤ j; and since
kj is anti-adjacent to v2 ∈ Bq, we know by axioms (4), (5), and (6) that
j ≤ t− q+ 1. But now p ≤ t− q+ 1, and so p+ q ≤ t+ 1. We showed before
that p + q ≥ t + 1, and so it follows that p + q = t + 1, and consequently,
that j = p = t − q + 1. Since kj = kp is anti-adjacent to v1 ∈ Ap, axiom
(2) from the definition of a (K,A,B)-tulip implies that kj is semi-adjacent
to v1; similarly, since kj = kt−q+1 is anti-adjacent to v2 ∈ Bq, axiom (5)
implies that kj is semi-adjacent to v2. But now kj is semi-adjacent to both
v1 and v2, which is impossible by the definition of a trigraph.

We remark that a result very similar to 5.4 was proven in [3] (see the proof
of 3.1, statements (1) and (3), from [3]).

5.5. No tulip bed contains a three-edge path with a center.

Proof. Let G be a tulip bed, and suppose that p1 − p2 − p3 − p4 is a path
with a center pc in G. Since G contains a triangle, G is not bipartite. Then
let F1, F2, Y1, ..., Ys, X1, ..., Xs be as in the definition of a tulip bed.

Our first goal is to show that pc /∈ F1 ∪ F2. Suppose otherwise. Since
{pc, p2, p3} is a triangle, we know that p2 and p3 cannot both lie in F1 ∪F2;
by symmetry, we may assume that p2 /∈ F1 ∪ F2; thus, p2 ∈ Yl for some
l ∈ {1, ..., s}. We claim that p3 ∈ Yl. Suppose otherwise. Since p2p3 is an
adjacent pair and the strong cliques Y1, ..., Ys are strongly anti-complete to
each other, this means that p3 ∈ F1∪F2. Now, {pc, p3, p4} is a triangle, and
so p4 /∈ F1∪F2. Since pc, p3 ∈ F1∪F2 are adjacent with a common neighbor
p2 ∈ Yl, axiom (4) from the definition of a tulip bed implies that all common
neighbors of pc and p3 lie in Yl, and so p4 ∈ Yl. But then p2, p4 ∈ Yl, which
is impossible since p2p4 is an anti-adjacent pair and Yl is a strong clique.
Thus, p3 ∈ Yl. Now, p2, p3 ∈ Yl, Yl is a strong clique, and p1p3 and p2p4
are anti-adjacent pairs; thus, p1, p4 /∈ Yl, and therefore, p1, p4 ∈ F1 ∪ F2.
Clearly, pc, p1, p4 ∈ Xl; by symmetry, we may assume that pc ∈ Xl ∩ F1.
Since pc is complete to {p1, p4} and F1 is strongly stable, it follows that
p1, p4 ∈ Xl ∩ F2. But then the path p1 − p2 − p3 − p4 contradicts 5.3. This
proves that pc /∈ F1 ∪ F2.

Let l ∈ {1, ..., s} be such that pc ∈ Yl. Since pc ∈ Yl is complete to
{p1, p2, p3, p4}, we know that p1, p2, p3, p4 ∈ Yl ∪Xl. Since p1p4 is an anti-
adjacent pair, p1 and p4 cannot both lie in Yl; by symmetry, we may assume
that p1 ∈ Xl ∩ F1. Since p1p2 is an adjacent pair, there are two cases to
consider: when p2 ∈ Yl, and when p2 ∈ Xl ∩ F2. Suppose first that p2 ∈ Yl.
Since p2p4 is an anti-adjacent pair, this means that p4 /∈ Yl; since p1p4 is an
anti-adjacent pair with a common neighbor in Yl, and since p1 ∈ Xl ∩ F1,
5.4 implies that p4 ∈ Xl ∩ F1. Since p3p4 is an adjacent pair, we know that
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p3 /∈ Xl∩F1; and since p1 ∈ Xl∩F1 and p3 are anti-adjacent with a common
neighbor in Yl, we know by 5.4 that p3 /∈ Xl ∩ F2. Thus, p3 ∈ Yl. But then
the path p1−p2−p3−p4 contradicts 5.3. Thus, p2 ∈ Xl∩F2. The fact that
p1p4 is an anti-adjacent pair with a common neighbor pc ∈ Yl, together with
the fact that p1 ∈ Xl ∩ F1, implies (by 5.4) that p4 /∈ Xl ∩ F2. Similarly,
since p2p4 is an anti-adjacent pair with a common neighbor pc ∈ Yl, and
since p2 ∈ Xl ∩ F2, we have that p4 /∈ Xl ∩ F1. Finally, since p1 ∈ Xl ∩ F1

and p2 ∈ Xl∩F2 have a common neighbor pc ∈ Yl, 5.4 implies that p1 and p2
have no common anti-neighbor in Yl, and so p4 /∈ Yl. But then p4 /∈ Yl ∪Xl,
which is a contradiction.

5.6. Each tulip bed is Berge.

Proof. Let G be a tulip bed. Since every anti-hole of length at least seven
contains a three-edge path with a center, 5.5 implies that G contains no
anti-hole of length at least seven. Since each anti-hole of length five is also a
hole of length five, this reduces our problem to proving that G contains no
odd holes. If G is bipartite, then the result is immediate; so assume that G
is not bipartite. Now let F1, F2, Y1, ..., Ys, X1, ..., Xs be as in the definition
of a tulip bed.

Suppose that w0 − w1 − ... − w2k − w0 (with indices in Z2k+1 for some
integer k ≥ 2) is an odd hole in G, and set W = {w0, w1, ..., w2k}. We
will obtain a contradiction by showing that G[W ] is bipartite. Note that it
suffices to show that for all l ∈ {1, ..., s}, G[W ∩ (Yl ∪ F1 ∪ F2)] is bipartite
with some bipartition (F l

1, F
l
2) such that W ∩ F1 ⊆ F l

1 and W ∩ F2 ⊆ F l
2,

for then the fact that Y1, ..., Ys are pairwise strongly anti-complete to each
other will imply that G[W ] is bipartite with bipartition (

⋃s
l=1 F

l
1,
⋃s

l=1 F
l
2).

We begin by showing that for all l ∈ {1, ..., s} and i ∈ Z2k+1 such that
wi ∈ Yl, wi is strongly anti-complete to at least one of W ∩ F1 and W ∩ F2.
Suppose otherwise. Fix some l ∈ {1, ..., s} and i ∈ Z2k+1 such that wi ∈ Yl,
and wi has neighbors in both W ∩ F1 and W ∩ F2. First, note that wi is
anti-complete to at least one of W ∩ F1 and W ∩ F2; indeed if there ex-
isted some i1, i2 ∈ Z2k+1 such that wi1 ∈ W ∩ F1, wi2 ∈ W ∩ F2, and wi

is strongly adjacent to both wi1 and wi2 , then (by 5.4) wi1 and wi2 would
be strongly adjacent, and {wi, wi1 , wi2} would be a strong triangle in G[W ],
which is impossible. Now suppose that there exist some i1, i2 ∈ Z2k+1 such
that wi1 ∈ W ∩ F1, wi2 ∈ W ∩ F2, wi is adjacent to both wi1 and wi2 and
semi-adjacent to one of them. By symmetry, we may assume that wi is
strongly adjacent to wi1 and semi-adjacent to wi2 ; thus, wi is anti-complete
to W ∩ F2. Since wi1 ∈ F1 and wi2 ∈ F2 have a common neighbor wi ∈ Yl,
5.4 implies that wi1wi2 is a strongly adjacent pair. Since wiwi1 and wi1wi2

are strongly adjacent pairs, by symmetry, we may assume that wi1 = wi+1

and wi2 = wi+2. Since wiwi+2 is a semi-adjacent pair, wi−1wi is a strongly
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adjacent pair; as wi is anti-complete to W ∩ F2, it follows that wi−1 /∈ F2.
Next, the fact that wi+1 ∈ F1 and wi+2 ∈ F2 have a common neighbor in
Yl implies (by 5.4) that wi+1 and wi+2 do not have a common anti-neighbor
in Yl; thus, the fact that wi−1 is anti-adjacent to both wi+1 and wi+2 im-
plies that wi−1 /∈ Yl. It follows that wi−1 ∈ F1. Then since wi−1 ∈ F1 and
wi+2 ∈ F2 have a common neighbor wi ∈ Yl, we know (by 5.4) that wi−1wi+2

is a strongly adjacent pair, which is impossible. Thus, wi is strongly anti-
complete to at least one of W ∩ F1 and W ∩ F2.

Next, fix l ∈ {1, ..., s}. We need to show that G[W ∩ (Yl ∪F1 ∪F2)] is bipar-
tite with some bipartition (F l

1, F
l
2) such that W ∩F1 ⊆ F l

1 and W ∩F2 ⊆ F l
2.

Since Yl is a strong clique, we know that |W ∩ Yl| ≤ 2. If W ∩ Yl = ∅, then
G[W ∩ (Yl ∪ F1 ∪ F2)] is bipartite with bipartition (W ∩ F1,W ∩ F2), and
we are done. So assume that 1 ≤ |W ∩ Yl| ≤ 2.

Suppose first that |W ∩ Yl| = 1, say W ∩ Yl = {wi}. By the above, wi

is strongly anti-complete to at least one of W ∩F1 and W ∩F2. By symme-
try, we may assume that wi is strongly anti-complete to W ∩ F1. But then
G[W ∩ (Yl∪F1∪F2)] is bipartite with bipartition ((W ∩F1)∪{wi},W ∩F2).

Suppose now that |W ∩ Yl| = 2; since Yl is a strong clique, this means
that W ∩Yl = {wi, wi+1} for some i ∈ Z2k+1. Clearly then, wi−1, wi+2 ∈ Xl.
Now, wi−1 − wi − wi+1 − wi+2 is a three-edge path with wi, wi+1 ∈ Yl
and wi−1, wi+2 ∈ F1 ∪ F2; it then follows from 5.3 that either wi−1 ∈ F1

and wi+2 ∈ F2, or wi−1 ∈ F2 and wi+2 ∈ F1; by symmetry, we may as-
sume that the former holds. Then since each of wi and wi+1 is strongly
anti-complete to at least one of W ∩ F1 and W ∩ F2, it follows that wi

is strongly anti-complete to W ∩ F2, and wi+1 is strongly anti-complete
to W ∩ F1. Thus, F [W ∩ (Yl ∪ F1 ∪ F2)] is bipartite with bipartition
((W ∩ F1) ∪ {wi+1}, (W ∩ F2) ∪ {wi}). This completes the argument.

We observe that every tulip and every non-degenerate clique-connector is a
tulip bed and therefore Berge.

Melts. Let G be a trigraph. Assume that VG = K ∪M ∪ A ∪ B, where
K and M are strong cliques, A and B are strongly stable sets, and K, M ,
A, and B are pairwise disjoint. Assume that |A| ≥ 2 and |B| ≥ 2, and
that K = {k1, ..., km} and M = {m1, ...,mn}. Let A =

⋃m
i=0

⋃n
j=0Ai,j ,

where the Ai,j ’s are pairwise disjoint; and let B =
⋃m

i=0

⋃n
j=0Bi,j , where

the Bi,j ’s are pairwise disjoint. Assume that A0,0 = B0,0 = ∅. Assume

that for all i ∈ {1, ...,m}, Ai,0 =
⋃n

j=0A
j
i,0, where the Aj

i,0’s are pairwise

disjoint, and assume that for all j ∈ {1, ..., n}, A0,j =
⋃m

i=0A
i
0,j , where the

Ai
0,j ’s are pairwise disjoint. Similarly, assume that for all i ∈ {1, ...,m},

Bi,0 =
⋃n

j=0B
j
i,0, where the Bj

i,0’s are pairwise disjoint, and assume that for
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all j ∈ {1, ..., n}, B0,j =
⋃m

i=0B
i
0,j , where the Bi

0,j ’s are pairwise disjoint.
Assume also that:

(1) K is strongly anti-complete to M ;

(2) for all i ∈ {1, ...,m} and j ∈ {1, ..., n}, Ai,j is:

– strongly complete to {k1, ..., ki−1} ∪ {mn−j+2, ...,mn},
– complete to {ki,mn−j+1},
– strongly anti-complete to {ki+1, ..., km} ∪ {m1, ...,mn−j};

(3) for all i ∈ {1, ...,m} and j ∈ {1, ..., n}, Bi,j is:

– strongly complete to {km−i+2, ..., km} ∪ {m1, ...,mj−1},
– complete to {km−i+1,mj},
– strongly anti-complete to {k1, ..., km−i} ∪ {mj+1, ...,mn};

(4) for all i ∈ {1, ...,m}, Ai,0 is:

– strongly complete to {k1, ..., ki−1},
– complete to {ki},
– strongly anti-complete to {ki+1, ..., km} ∪M ;

(5) for all j ∈ {1, ..., n}, A0,j is:

– strongly complete to {mn−j+2, ...,mn},
– complete to {mn−j+1},
– strongly anti-complete to K ∪ {m1, ...,mn−j};

(6) for all i ∈ {1, ...,m}, Bi,0 is:

– strongly complete to {km−i+2, ..., km},
– complete to {km−i+1},
– strongly anti-complete to {k1, ..., km−i} ∪M ;

(7) for all j ∈ {1, ..., n}, B0,j is:

– strongly complete to {m1, ...,mj−1},
– complete to {mj},
– strongly anti-complete to K ∪ {mj+1, ...,mn};

(8) the sets
⋃n

j=0Am,j ,
⋃m

i=0Ai,n,
⋃n

j=0Bm,j , and
⋃m

i=0Bi,n are all non-
empty;

(9) for all i, i′ ∈ {0, ...,m} and j, j′ ∈ {0, ..., n} such that i < i′ and j < j′,
at least one of the sets Ai,j and Ai′,j′ is empty, and at least one of the
sets Bi,j and Bi′,j′ is empty;

23



(10) for all i ∈ {1, ...,m} and j ∈ {1, ..., n}, Ai,j is strongly complete to B,
and Bi,j is strongly complete to A;

(11) for all i, i′ ∈ {1, ...,m}, Ai,0 is strongly complete to Bi′,0;

(12) for all j, j′ ∈ {1, ..., n}, A0,j is strongly complete to B0,j′ ;

(13) for all i ∈ {1, ...,m}, A0
i,0 is strongly anti-complete to

⋃n
j=1B0,j , and

every vertex of A0
i,0 has a neighbor in

⋃m
i′=1

⋃n
j=1Bi′,j ;

(14) for all j ∈ {1, ..., n}, A0
0,j is strongly anti-complete to

⋃m
i=1Bi,0, and

every vertex of A0
0,j has a neighbor in

⋃m
i=1

⋃n
j′=1Bi,j′ ;

(15) for all i ∈ {1, ...,m}, B0
i,0 is strongly anti-complete to

⋃n
j=1A0,j , and

every vertex of B0
i,0 has a neighbor in

⋃m
i′=1

⋃n
j=1Ai′,j ;

(16) for all j ∈ {1, ..., n}, B0
0,j is strongly anti-complete to

⋃n
i=1Ai,0, and

every vertex of B0
0,j has a neighbor in

⋃m
i=1

⋃n
j′=1Ai,j′ ;

(17) for all i ∈ {1, ...,m} and j ∈ {1, ..., n}:

– every vertex of Ai
0,j has a neighbor in Bi,0,

– Ai
0,j is strongly complete to

⋃i−1
i′=1Bi′,0,

– Ai
0,j is strongly anti-complete to

⋃m
i′=i+1Bi′,0,

– every vertex of Aj
i,0 has a neighbor in B0,j ,

– Aj
i,0 is strongly complete to

⋃j−1
j′=1B0,j′ ,

– Aj
i,0 is strongly anti-complete to

⋃n
j′=j+1B0,j′ ,

– every vertex of Bi
0,j has a neighbor in Ai,0,

– Bi
0,j is strongly complete to

⋃i−1
i′=1Ai′,0,

– Bi
0,j is strongly anti-complete to

⋃m
i′=i+1Ai′,0,

– every vertex of Bj
i,0 has a neighbor in A0,j ,

– Bj
i,0 is strongly complete to

⋃j−1
j′=1A0,j′ ,

– Bj
i,0 is strongly anti-complete to

⋃n
j′=j+1A0,j′ .

For all i ∈ {1, ...,m} and j ∈ {1, ..., n}:

(18) let A′i,0 be the set of all vertices in Ai,0 that are semi-adjacent to ki;

(19) let A′0,j be the set of all vertices of A0,j that are semi-adjacent to
mn−j+1;
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(20) let B′i,0 be the set of all vertices of Bi,0 that are semi-adjacent to
km−i+1;

(21) let B′0,j be the set of all vertices of B0,j that are semi-adjacent to mj .

Assume that:

(22) for all i ∈ {1, ...,m}, A′i,0 is strongly complete to
⋃n

j=1B
i
0,j ;

(23) for all j ∈ {1, ..., n}, A′0,j is strongly complete to
⋃m

i=1B
j
i,0;

(24) for all i ∈ {1, ...,m}, B′i,0 is strongly complete to
⋃n

j=1A
i
0,j ;

(25) for all j ∈ {1, ..., n}, B′0,j is strongly complete to
⋃m

i=1A
j
i,0.

Finally, assume that:

(26) there exist some i ∈ {1, ...,m} and j ∈ {1, ..., n} such that at least one
of Ai,j and Bi,j is non-empty;

(27) for all i, i′ ∈ {1, ...,m} and j, j′ ∈ {1, ..., n}, if i + i′ ≥ m + 1 and
j + j′ ≥ n+ 1, then at least one of Ai,j and Bi′,j′ is empty.

Under these circumstances, we say that G is a melt. We say that G is an
A-melt if Bi,j = ∅ for all i ∈ {1, ...,m} and j ∈ {1, ..., n}. We say that G is
a B-melt if Ai,j = ∅ for all i ∈ {1, ...,m} and j ∈ {1, ..., n}. We say that G
is a double melt if there exist i, i′ ∈ {1, ...,m} and j, j′ ∈ {1, ..., n} such that
Ai,j 6= ∅ and Bi′,j′ 6= ∅.

5.7. Every melt is a tulip bed, and consequently, every melt is Berge.

Proof. Let G be a melt; we use the notation from the definition of a melt. Set
F1 = A, F2 = B, Y1 = K, and Y2 = M . Further, note that

⋃m
i=1

⋃n
j=0(Ai,j ∪

Bi,j) is the set of all vertices in F1 ∪F2 = A∪B with a neighbor in Y1 = K;
set X1 =

⋃m
i=1

⋃n
j=0(Ai,j ∪Bi,j). Similarly, note that

⋃m
i=0

⋃n
j=1(Ai,j ∪Bi,j)

is the set of all vertices in F1 ∪F2 = A∪B with a neighbor in Y2 = M , and
set X2 =

⋃m
i=0

⋃n
j=1(Ai,j ∪Bi,j). With this setup, it is easy to check that G

is a tulip bed, and we leave the details to the reader. Since each tulip bed
is Berge (by 5.6), this implies that G is Berge.

In fact, it is possible to get a slightly stronger result: if G is a melt, and
K, M , A, and B are as in the definition, then GrK and GrM are both
non-degenerate clique connectors, as the reader can check. However, 5.7 is
sufficiently strong for the purposes of this paper.
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The class T1. The degree of a vertex v of a graph H, denoted by degH(v),
is the number of edges of H that are incident with v; v is an isolated vertex
in H provided that degH(v) = 0. We say that a (possibly empty) graph
H is usable provided that H is loopless (possibly with parallel edges) and
triangle-free, and that no vertex in H is of degree greater than two.

Let H be a usable graph, and let G be a trigraph. Assume that there
exists some L ⊆ VG and a map

h : VH ∪ EH ∪ (EH × VH)→ 2VGrL

such that all of the following hold:

(1) for all distinct x, y ∈ VH ∪EH ∪ (EH×VH), h(x) and h(y) are disjoint;

(2) VG r L =
⋃
h[VH ∪ EH ∪ (EH × VH)];

(3) for every isolated vertex v ∈ VH , h(v) 6= ∅;

(4) for every e ∈ EH , h(e) 6= ∅;

(5) for every e ∈ EH and v ∈ VH , h(e, v) 6= ∅ if and only if e is incident
with v;

(6) for all distinct u, v ∈ VH , h(u) is strongly anti-complete to h(v);

(7) for all v ∈ VH , h(v) is a (possibly empty) strong clique;

(8) every vertex in L has a neighbor in at most one set h(v) with v ∈ VH ;

(9) G[L ∪
⋃

e∈EH
h(e)] is triangle-free;

(10) for every e ∈ EH and a ∈ L, a is either strongly complete or strongly
anti-complete to h(e);

(11) for all distinct e, f ∈ EH , h(e) is either strongly complete or strongly
anti-complete to h(f), and if e and f share an endpoint, then h(e) is
strongly complete to h(f);

(12) for every e ∈ EH and v ∈ VH , h(e) is strongly anti-complete to h(v);

(13) for every v ∈ VH , let Sv be the set of all vertices in L with a neighbor
in h(v), and let Tv be the set of all vertices in (L ∪

⋃
e∈EH

h(e)) r Sv
with a neighbor in Sv; then either:

– h(v) = ∅ (in which case Sv = Tv = ∅), and we set Av = Bv =
Cv = Dv = ∅, or

– there exist pairwise disjoint Av, Bv, Cv, Dv such that Sv = Av ∪
Bv, Tv = Cv∪Dv, and G[h(v)∪Sv∪Tv] is a (h(v), Av, Bv, Cv, Dv)-
clique connector;

26



(14) for every v ∈ VH , if degH(v) ≥ 1 and h(v) 6= ∅, then G[h(v) ∪ Sv ∪ Tv]
is a non-degenerate (h(v), Av, Bv, Cv, Dv)-clique connector;

(15) for all distinct e, f ∈ EH and v ∈ VH , h(e, v) is strongly complete to
h(f, v);

(16) for all (not necessarily distinct) e, f ∈ EH and distinct u, v ∈ VH ,
h(e, u) is strongly anti-complete to h(f, v).

(17) for all e ∈ EH and v ∈ VH , h(e, v) is strongly complete to h(v);

(18) for all e ∈ EH and distinct u, v ∈ VH , h(e, v) is strongly anti-complete
to h(u);

(19) for all distinct e, f ∈ EH and v ∈ VH , h(e, v) is strongly anti-complete
to h(f);

(20) for all e ∈ EH and v ∈ VH , h(e, v) can be partitioned into a (possibly
empty) strong clique hc(e, v) and a (possibly empty) strongly stable
set hs(e, v);

(21) for all e ∈ EH with (distinct) endpoints u, v ∈ VH , G[h(e) ∪ h(e, v) ∪
h(e, u)] is an h(e)-melt such that h(e) = A, hc(e, v) = K, hc(e, u) = M ,
and hs(e, v) ∪ hs(e, u) = B, with hs(e, v) =

⋃m
i=1Bi,0 and hs(e, u) =⋃n

j=1B0,j , where K, M , A, B, m, and n are as in the definition of an
A-melt;

(22) for all e ∈ EH with (distinct) endpoints u, v ∈ VH , either all of the
following hold, or they all hold with the roles of (Au, Av) and (Bu, Bv)
switched:

– h(e) is strongly complete to Bu ∪Bv,

– h(e, v) is strongly complete to Av and strongly anti-complete to
LrAv,

– every vertex of (L∪
⋃

f∈EHr{e} h(f))r (Au∪Av) with a neighbor
in Au ∪Av is strongly complete to h(e).

We then say that G admits an H-structure.

We define T1 to be the class of all trigraphs G such that either G is a
double melt or G admits an H-structure for some usable graph H. We
observe that all triangle-free trigraphs are in T1 (a triangle-free trigraph ad-
mits an H-structure for the empty graph H), as are all clique-connectors
(a clique connector admits an H-structure for the single-vertex graph H),
and all melts (double melts are in T1 by definition, and an A-melt admits
an H-structure for the complete graph H that consists of a single edge).

It is easy to see that not all trigraphs in T1 are Berge. First of all, if G admits
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an H-structure for some usable graph H, then G[L∪
⋃

e∈EH
h(e)] may con-

tain odd holes. Second, if v is an isolated vertex in H, then G[h(v)∪Sv∪Tv]
may be a degenerate clique connector, and as we saw in 5.1, not all degen-
erate clique connectors are Berge. It turns out that these two are the only
‘anomalies’ whose presence can prevent a trigraph in T1 from being Berge.
The definition of the class T ∗1 , to which we turn next, eliminates these
anomalies. In addition, we note that if a trigraph G admits an H-structure
for some usable graph H, and e, f ∈ EH are distinct edges, then h(e) and
h(f) are strongly complete to each other if e and f share an endpoint, but
the converse need not hold: h(e) and h(f) may be strongly complete to each
other even if e and f do not share an endpoint. In the definition of T ∗1 , we
use ‘usable 4-tuples,’ defined below, instead of usable graphs, in order to
‘encode’ the adjacency in L ∪

⋃
e∈EH

h(e) more precisely.

The class T ∗1 . Let H be a bipartite graph (possibly empty and possibly
with parallel edges), none of whose vertices are of degree greater than two.
Let L be a (possibly empty) set such that VH ∩L = ∅. Let H ′ be a bipartite
trigraph such that VH′ = EH ∪ L. Assume that for all distinct e, f ∈ EH

that share at least one endpoint, ef is a strongly adjacent pair in H ′; as-
sume also that every semi-adjacent pair in H ′ has both of its endpoints in
L. Let (E′1, E

′
2) be a bipartition of the bipartite trigraph H ′. Under these

circumstances, we say that (H,H ′, E′1, E
′
2) is a usable 4-tuple.

Let (H,H ′, E′1, E
′
2) be a usable 4-tuple, let L = VH′ r EH , let G be a

trigraph, and let E1, E2 ⊆ VG. We then say that (G,E1, E2) admits an
(H,H ′, E′1, E

′
2)-structure provided that L ⊆ VG, and that there exists a

map
h : VH ∪ EH ∪ (EH × VH)→ 2VGrL

such that all of the following hold:

(1) for all distinct x, y ∈ VH ∪EH ∪ (EH×VH), h(x) and h(y) are disjoint;

(2) VG = L ∪
⋃

v∈VH
h(v) ∪

⋃
e∈EH

h(e) ∪
⋃

(e,v)∈EH×VH
h(e, v);

(3) for all v ∈ VH , h(v) is a (possibly empty) clique;

(4) for all isolated vertices v ∈ VH , h(v) 6= ∅;

(5) for all e ∈ EH , h(e) is a (non-empty) strongly stable set;

(6) for all e ∈ EH and v ∈ VH , h(e, v) 6= ∅ if and only if e is incident with
v;

(7) for all e ∈ EH and v ∈ VH , h(e, v) can be partitioned into a (possibly
empty) strong clique hc(e, v) and a (possibly empty) strongly stable
set hs(e, v);
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(8) for all e ∈ EH and v ∈ VH , if e is incident with v then hc(e, v)
and hs(e, v) are both non-empty, and if e is not incident with v then
hc(e, v) = hs(e, v) = ∅;

(9) E1 ∪ E2 = L ∪
⋃

e∈EH
h(e) ∪

⋃
e∈EH

⋃
v∈VH

hs(e, v);

(10) E1 ∩ E2 = ∅;

(11) for all x ∈ L and i ∈ {1, 2}, if x ∈ E′i then x ∈ Ei;

(12) for all e ∈ EH and i ∈ {1, 2}, if e ∈ E′i then h(e) ⊆ Ei;

(13) for all e ∈ EH , v ∈ VH , and all distinct i, j ∈ {1, 2}, if e ∈ E′i then
hs(e, v) ⊆ Ej ;

(14) H ′[L] = G[L];

(15) for all x ∈ L and e ∈ EH , if xe is a strongly adjacent pair in H ′ then x
is strongly complete to h(e), and if xe is a strongly anti-adjacent pair
in H ′ then x is strongly anti-complete to h(e);

(16) for all distinct e, f ∈ EH , if ef is a strongly adjacent pair in H ′ then
h(e) is strongly complete to h(f), and if ef is a strongly anti-adjacent
pair in H ′ then h(e) is strongly anti-complete to h(f);

(17) for all v ∈ VH , if Sv is the set of all vertices in L that have a neighbor in
h(v), and Tv is the set of all vertices in (L∪

⋃
e∈EH

h(e))rSv that have
a neighbor in Sv, then either h(v) = ∅ (in which case Sv = Tv = ∅)
or G[h(v) ∪ Sv ∪ Tv] is a non-degenerate (h(v), Sv ∩ E1, Sv ∩ E2, Tv ∩
E2, Tv ∩ E1)-clique connector;

(18) for all distinct e, f ∈ EH and v ∈ VH , h(e, v) is strongly complete to
h(f, v);

(19) for all (not necessarily distinct) e, f ∈ EH and distinct u, v ∈ VH ,
h(e, u) is strongly anti-complete to h(f, v);

(20) for all e ∈ EH and v ∈ VH , h(e, v) is strongly complete to h(v);

(21) for all e ∈ EH and distinct u, v ∈ VH , h(e, v) is strongly anti-complete
to h(u);

(22) for all distinct e, f ∈ EH and v ∈ VH , h(e, v) is strongly anti-complete
to h(f);

(23) for all e ∈ EH with (distinct) endpoints u, v ∈ VH , G[h(v) ∪ h(e, v) ∪
h(e, u)] is an h(e)-melt such that h(e) = A, hc(e, v) = K, hc(e, u) = M ,
and hs(e, v) ∪ hs(e, u) = B, with hs(e, v) =

⋃m
i=1Bi,0 and hs(e, u) =⋃n

j=1B0,j , where K, M , A, B, m, and n are as in the definition of an
A-melt;
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(24) for all e ∈ EH with (distinct) endpoints u, v ∈ VH , and all distinct
i, j ∈ {1, 2} such that e ∈ E′i, all of the following hold:

– h(e) is strongly complete to (Su ∪ Sv) ∩ Ej ,

– h(e, v) is strongly complete to Sv ∩Ei and strongly anti-complete
to Lr (Sv ∩ Ei),

– every vertex of (L ∪
⋃

f∈EHr{e} h(f)) r ((Su ∪ Sv) ∩ Ei) with a
neighbor in (Su ∪ Sv) ∩ Ei is strongly complete to h(e).

We leave it to the reader to check that if (H,H ′, E′1, E
′
2) is a usable 4-

tuple and (G,E1, E2) admits an (H,H ′, E′1, E
′
2)-structure, then H is a us-

able graph, G admits an H-structure, and E1 and E2 are both (possibly
empty) strongly stable sets.

We say that a trigraph G belongs to the class T ∗1 provided that either G is a
double melt, or there exist E1, E2 ⊆ VG and a usable 4-tuple (H,H ′, E′1, E

′
2)

such that (G,E1, E2) admits an (H,H ′, E′1, E
′
2)-structure.

We observe that all bipartite trigraphs are in T ∗1 , as are all non-degenerate
clique connectors (and therefore all tulips), and all melts. Further, we re-
mind the reader that the class T1 consists of trigraphs G such that either
G is a double melt or there exists a usable graph H such that G admits an
H-structure. Thus, the class T ∗1 is a subclass of the class T1.

Our goal for the remainder of this section is to establish that each trigraph
in T ∗1 is a tulip bed and therefore Berge, and that each Berge trigraph in T1
is in T ∗1 .

5.8. Each trigraph in T ∗1 is a tulip bed. Consequently, each trigraph in T ∗1
is Berge.

Proof. By 5.6, it suffices to prove the first statement. Let G ∈ T ∗1 . If G is
a double melt, then we are done by 5.7. So assume that there exists some
usable 4-tuple (H,H ′, E′1, E

′
2) and some E1 and E2 such that (G,E1, E2)

admits an (H,H ′, E′1, E
′
2)-structure. If H is the empty graph, then G is

bipartite and therefore a tulip bed; so assume that H is not empty. We
use the notation from the definition of a triple (G,E1, E2) that admits an
(H,H ′, E′1, E

′
2)-structure. Set F1 = E1 and F2 = E2. We may assume that

the vertex set of H is {v1, ..., vs} for some integer s ≥ 1; then for each
l ∈ {1, ..., s}, set Yl = h(vl) ∪

⋃
e∈EH

hc(e, vl). We observe that Y1, ..., Ys
partition VG r (F1 ∪ F2) into non-empty strong cliques, pairwise strongly
anti-complete to each other. Next, for each l ∈ {1, ..., s} and e ∈ EH ,
let hl(e) be the set of all vertices in h(e) with a neighbor in hc(e, vl); then
Svl∪

⋃
e∈EH

hl(e)∪
⋃

e∈EH
hs(e, vl) is the set of all vertices in F1∪F2 = E1∪E2

with a neighbor in Yl, and so we set Xl = Svl∪
⋃

e∈EH
hl(e)∪

⋃
e∈EH

hs(e, vl).
With this setup, it is easy to see that G is a tulip bed.
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As with melts (see the comment after 5.7), it is possible to get a slightly
stronger result than the one that we stated in 5.8. The reader can check
that if (G,E1, E2) admits an (H,H ′, E′1, E

′
2)-structure for some usable 4-

tuple (H,H ′, E′1, E
′
2), and if Y1, ..., Ys and X1, ..., Xs are constructed as in

the proof above, then for each l ∈ {1, ..., s}, G[Yl ∪ Xl ∪ Zl] is a (Yl, Xl ∩
E1, Xl ∩ E2, Zl ∩ E2, Zl ∩ E1)-clique connector, where Zl is the set of all
vertices in (E1 ∪ E2) rXl with a neighbor in Xl. But we do not need this
stronger result, and so we omit the proof.

It remains to show that every Berge trigraph in T1 is in T ∗1 . We begin
with a technical lemma.

5.9. Let H be a usable graph, and let G be a Berge trigraph that admits
an H-structure. Then the set L and the function h from the definition of
a trigraph that admits an H-structure can be chosen so that for all isolated
vertices v ∈ VH , G[h(v)∪Sv∪Tv] is a non-degenerate (h(v), Av, Bv, Cv, Dv)-
clique connector (where Sv, Tv, Av, Bv, Cv, Dv are as in the definition).

Proof. Let L ⊆ VG and h : VH ∪ EH ∪ (EH × VH) → 2VGrL satisfy the
properties laid out in the definition of a trigraph that admits an H-structure.
Since G is Berge, by 5.1 we have that for all isolated vertices v ∈ VH such
that G[h(v)∪Sv∪Tv] is a degenerate (h(v), Av, Bv, Cv, Dv)-clique connector,
at least one of Cv and Dv is empty. After possibly relabeling, we may
assume that for all isolated vertices v ∈ VH such that G[h(v) ∪ Sv ∪ Tv] is
a degenerate (h(v), Av, Bv, Cv, Dv)-clique connector, we have that Dv = ∅.
Now, let V d

H be set of all isolated vertices in VH such that G[h(v)∪ Sv ∪ Tv]
is a degenerate (h(v), Av, Bv, Cv, ∅)-clique connector, and for all v ∈ V d

H ,

set Bv = {bv}. Set L̂ = (L r
⋃

v∈V d
H
{bv}) ∪

⋃
v∈V d

H
h(v). Next, we define

ĥ : VH ∪ EH ∪ (EH × VH) → 2VGrL̂ to be the map that satisfies all of the
following:

• for all v ∈ V d
H , ĥ(v) = {bv};

• for all v ∈ VH r V d
H , ĥ(v) = h(v);

• for all e ∈ EH , ĥ(e) = h(e);

• for all e ∈ EH and v ∈ VH , ĥ(e, v) = h(e, v).

Using 5.2, we easily get that L̂ and ĥ satisfy the requirements from the
statement of the theorem.

5.10. Let H be a usable graph, and let G be a Berge trigraph that admits an
H-structure. Then H is a bipartite graph. Furthermore, there exists a bipar-
tite trigraph H ′ such that for every bipartition (E′1, E

′
2) of H ′, (H,H ′, E′1, E

′
2)

is a usable 4-tuple, and there exist some E1, E2 ⊆ VG such that (G,E1, E2)
admits an (H,H ′, E′1, E

′
2)-structure.
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Proof. Let L and h be chosen as in 5.9. We construct H ′ as follows. The
vertex set of H ′ is EH ∪L. Set H ′[L] = G[L]. For all x ∈ L and e ∈ EH , we
let xe be a strongly adjacent pair in H ′ if x is strongly complete to h(e) in
G, and we let xe be a strongly anti-adjacent pair in H ′ if x is strongly anti-
complete to h(e) in G; since for all x ∈ L and e ∈ EH , x is either strongly
complete or strongly anti-complete to h(e) in G, this completely defines the
adjacency between L and EH in H ′. Finally, for all distinct e, f ∈ EH , we
let ef be a strongly adjacent pair in H ′ if h(e) is strongly complete to h(f),
and ef is a strongly anti-adjacent pair in H ′ if h(e) is strongly anti-complete
to h(f) in G; since for all distinct e, f ∈ EH , we have that h(e) is either
strongly complete or strongly anti-complete to h(f), this completely defines
adjacency in H ′[EH ]. We observe that if distinct e, f ∈ EH share an end-
point, then e and f are adjacent in H ′.

Note that H ′ contains no odd holes and no triangles, for otherwise, we would
immediately get an odd hole or a triangle, respectively, in G[L∪

⋃
e∈EH

EH ],
which is impossible. Since every realization of H ′ contains the line graph
of H as a (not necessarily induced) subgraph, this implies that H is bipar-
tite. Let (E′1, E

′
2) be any bipartition of the bipartite trigraph H ′. Clearly,

(H,H ′, E′1, E
′
2) is a usable 4-tuple.

Next, we set:

E1 = (L ∩ E′1) ∪
⋃

e∈EH∩E′1
h(e) ∪

⋃
(e,v)∈(EH∩E′2)×VH

hs(e, v);

E2 = (L ∩ E′2) ∪
⋃

e∈EH∩E′2
h(e) ∪

⋃
(e,v)∈(EH∩E′1)×VH

hs(e, v).

By construction, (E1, E2) is a partition of the set

L ∪
⋃

e∈EH
h(e) ∪

⋃
(e,v)∈EH×VH

hs(e, v).

To show that (G,E1, E2) admits an (H,H ′, E′1, E
′
2)-structure, it suffices to

show that for all v ∈ VH , either Av ∪ Dv ⊆ E1 and Bv ∪ Cv ⊆ E2, or
Av ∪Dv ⊆ E2 and Bv ∪ Cv ⊆ E1, for then the result will easily follow from
the appropriate definitions (together with the choice of L and h). So fix
v ∈ VH ; if h(v) = ∅, then we are done, and so assume that h(v) 6= ∅. Then
by the definition of a clique connector, there exist some a ∈ Av and b ∈ Bv

such that a is strongly complete to Bv and b is strongly complete to Av.
In particular, ab is an adjacent pair, and so a ∈ E′i and b ∈ E′j for some
distinct i, j ∈ {1, 2}. Since a is strongly complete to Bv, this implies that
Bv ⊆ E′j ; and similarly, Av ⊆ E′i. By the construction of E1 and E2 then,
we get that Av ⊆ Ei and Bv ⊆ Ej . It remains to show that Cv ⊆ Ej and
that Dv ⊆ Ei; by symmetry, it suffices to prove the former. By definition,
there exist some LCv ⊆ L and ECv ⊆ EH such that Cv = LCv ∪

⋃
e∈ECv

h(e).

Now, in H ′, each member of LCv ∪ ECv has a neighbor in Av ⊆ E′i, and so
LCv ∪ ECv ⊆ E′j . It then easily follows that Cv ⊆ Ej .
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We can now finally prove the main result of this section.

5.11. T ∗1 is the class of all Berge trigraphs in T1.

Proof. It is easy to check that T ∗1 ⊆ T1. By 5.8, every trigraph in T ∗1 is
Berge. Now, suppose that G is a Berge trigraph in T1. If G is a double
melt, then G ∈ T ∗1 by definition. So suppose that G admits an H-structure
for some usable graph H. Then by 5.10, there exist some E1, E2 ⊆ VG
and some usable 4-tuple (H,H ′, E′1, E

′
2) such that (G,E1, E2) admits an

(H,H ′, E′1, E
′
2)-structure, and consequently, G ∈ T ∗1 by the definition of the

class T ∗1 .

6 Class T2

In this section, we give the definition of the class T2 from [5], and we prove
that each trigraph in T2 is Berge. Prior to giving the definition of the class
T2, we note that, by 5.5 from [5], the class T2 is self-complementary; we state
this result below for future reference.

6.1. The class T2 is self-complementary, that is, for all G ∈ T2, we have
that G ∈ T2.

Thus, in order to show that each trigraph in T2 is Berge, it suffices to show
that each trigraph in T2 is odd hole-free.

Informally, trigraphs in the class T2 are obtained from some basic ‘building
blocks’ (namely, “1-thin trigraphs,” “2-thin trigraphs,” and bipartite and
complement-bipartite trigraphs of a certain kind; we define each of these
below) by “composing along doubly dominating semi-adjacent pairs” (this
operation is also defined below). We will show that if a trigraph G is ob-
tained from two trigraphs that do not contain any odd holes by composing
along doubly dominating semi-adjacent pairs, then G does not contain any
odd holes. We will then show that none of our basic ‘building blocks’ contain
an odd hole. This will prove that no trigraph in T2 contains an odd hole,
and therefore (by 6.1) that each trigraph in T2 is Berge.

We begin with some definitions. We say that a homogeneous pair (A,B)
in a trigraph G is doubly dominating provided that there exist non-empty
sets C,D ⊆ VG such that (A,B,C,D, ∅, ∅) is the partition of G associated
with (A,B). We say that a semi-adjacent pair ab in G is doubly dominat-
ing provided that ({a}, {b}) is a doubly dominating homogeneous pair in
G. Next, let G1 and G2 be trigraphs with disjoint vertex sets, and for each
i ∈ {1, 2}, let aibi be a doubly dominating semi-adjacent pair in Gi. For
each i ∈ {1, 2}, let ({ai}, {bi}, Ai, Bi, ∅, ∅) be the partition of G associated
with ({ai}, {bi}). We then say that a trigraph G is obtained from G1 and
G2 by composing along (a1, b1, a2, b2) provided all of the following hold:
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• VG = A1 ∪B1 ∪A2 ∪B2;

• for each i ∈ {1, 2}, G[Ai ∪Bi] = Gi[Ai ∪Bi];

• A1 is strongly complete to A2 and strongly anti-complete to B2;

• B1 is strongly complete to B2 and strongly anti-complete to A2.

6.2. Let G1 and G2 be odd hole-free trigraphs with disjoint vertex sets, and
for each i ∈ {1, 2}, let aibi be a doubly dominating semi-adjacent pair in Gi.
Let G be the trigraph obtained by composing G1 and G2 along (a1, b1, a2, b2).
Then G is odd hole-free.

Proof. Suppose otherwise. Let W be the vertex set of an odd hole in G,
and let Ĝ be a realization of G such that W is the vertex set of an odd hole
in Ĝ. First, note that G r A1 is obtained by substituting G1[B1] for the
vertex b2 in G2 r {a2}. Since neither G1 nor G2 contains an odd hole, by
2.2, this means that G r A1 contains no odd hole. Thus, W intersects A1.
In an analogous manner, we get that W intersects B1, A2, and B2 as well.
Next, since A1 is complete to A2 in Ĝ, and since Ĝ[W ] is a chordless cycle
of length at least five and therefore contains no vertices of degree greater
than two and no (not necessarily induced) cycles of length 4, we know that
|W∩(A1∪A2)| ≤ 3; similarly, |W∩(B1∪B2)| ≤ 3. Since |W | is odd, and since
W intersects each of A1, B1, A2, and B2, this means that we may assume
by symmetry that |W ∩A1| = 2 and |W ∩B1| = |W ∩A2| = |W ∩B2| = 1.
Set W ∩A1 = {â1, â′1}, W ∩B1 = {b̂1}, W ∩A2 = {â2}, and W ∩B2 = {b̂2}.
Since â2 is complete to {â1, â′1} in Ĝ, we know that â2 is non-adjacent to b̂2
in Ĝ. But then the only neighbor of b̂2 in Ĝ[W ] is â2, which is impossible
since Ĝ[W ] is a cycle.

We note that in [9], Cornuéjols and Cunningham proved a result similar to
6.2. They showed that a graph operation whose special case is very similar
to our operation of composing along doubly dominating semi-adjacent pairs
preserves perfection.

Triangle-patterns and triad-patterns. Given a graph H, we say that
a trigraph G is an H-pattern provided that VG can be partitioned into sets
{av | v ∈ VH} and {bv | v ∈ VH} such that all of the following hold:

• avbv is a semi-adjacent pair for all v ∈ VH ;

• if u, v ∈ VH are adjacent, then auav and bubv are strongly adjacent
pairs, and aubv and avbu are strongly anti-adjacent pairs;

• if u, v ∈ VH are non-adjacent, then auav and bubv are strongly anti-
adjacent pairs, and aubv and avbu are strongly adjacent pairs.
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We observe that avbv is a doubly dominating semi-adjacent pair in G for
all v ∈ VH . Let Kn denote the complete graph on n vertices. We say that
a trigraph G is a triangle-pattern provided that G is a K3-pattern, we say
that G is a triad-pattern provided that G is a K3-pattern.

We note that triangle-patterns are complement-bipartite and triad-patterns
are bipartite; thus, triangle-patterns and triad-patterns are Berge.

1-thin trigraphs. Let G be a trigraph, and let a, b ∈ VG be distinct.
Let A = {a1, ..., an} and B = {b1, ..., bm} be disjoint, non-empty subsets of
VG r {a, b} such that VG r {a, b} = A∪B. Assume that all of the following
hold:

(1) ab is a semi-adjacent pair;

(2) a is strongly complete to A and strongly anti-complete to B;

(3) b is strongly complete to B and strongly anti-complete to A;

(4) for all i, j ∈ {1, ..., n} such that i < j, if aiaj is an adjacent pair, then
ai is strongly complete to {ai+1, ..., aj−1}, and aj is strongly complete
to {a1, ..., ai−1};

(5) for all i, j ∈ {1, ...,m} such that i < j, if bibj is an adjacent pair, then
bi is strongly complete to {bi+1, ..., bj−1}, and bj is strongly complete
to {b1, ..., bi−1};

(6) for all p ∈ {1, ..., n} and q ∈ {1, ...,m}, if apbq is an adjacent pair, then
ap is strongly complete to {bq+1, ..., bm}, and bq is strongly complete
to {ap+1, ..., an}.

We then say that G is 1-thin with base (a, b), or simply that G is 1-thin.

Note that if a trigraph G is 1-thin with base (a, b), then ab is a doubly
dominating semi-adjacent pair in G. Note also that a trigraph G is 1-thin
with base (a, b) if and only if G is 1-thin with base (b, a). Further, the com-
plement of a 1-thin trigraph with base (a, b) is again 1-thin with base (b, a)
(or equivalently, with base (a, b)). Indeed if G is 1-thin, then setting a = b,
b = a, ai = an−i+1 for all i ∈ {1, ..., n}, and bi = bm−i+1 for all i ∈ {1, ...,m},
we immediately get that G is 1-thin with base (a, b), that is, with base (b, a).

6.3. Let G be a 1-thin trigraph. Then G is odd hole-free.

Proof. Let a, b, A = {a1, ..., an}, and B = {b1, ..., bm} be as in the definition
of a 1-thin trigraph. We begin by showing that (A,B) is a good homogeneous
pair in G. This means that we need to prove the following:

• neither G[A] nor G[B] contains a three-edge path;
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• there does not exist a path v1 − v2 − v3 − v4 in G such that v1, v4 ∈ A
and v2, v3 ∈ B;

• there does not exist a path v1− v2− v3− v4 in G such that v1, v4 ∈ B
and v2, v3 ∈ A.

We begin by proving the second claim. Suppose that i, l ∈ {1, ...,m} and
j, k ∈ {1, ..., n} are such that ai − bj − bk − al is a three-edge path in G.
Since aibj is an adjacent pair, while aibk is an anti-adjacent pair, we know
that k < j. But then since albk is an adjacent pair, albj must be a strongly
adjacent pair, which is a contradiction. An analogous argument establishes
that the third claim holds as well.

Before tackling the first claim, we establish an auxiliary result. Let i, j, k ∈
{1, ..., n} be such that ai − aj − ak is a path in G[A]; we claim that j <
min{i, k}. Suppose otherwise. By symmetry, we may assume that i < j.
Then if k < i < j, the fact that ajak is an adjacent pair implies that aiak is
a strongly adjacent pair; if i < k < j, then the fact that aiaj is an adjacent
pair implies that aiak is a strongly adjacent pair; and if i < j < k, then the
fact that ajak is an adjacent pair implies that aiak is a strongly adjacent
pair. But since ai− aj − ak is a path, aiak is an anti-adjacent pair, which is
a contradiction.

Now, suppose that i, j, k, l ∈ {1, ..., n} are such that ai − aj − ak − al is
a path in G. Then since ai − aj − ak is a path in G[A], we have by the
above that j < min{i, k}; similarly, since aj − ak − al is a path in G[A], we
have that k < min{j, l}. But it then follows that j < k and that k < j,
which is impossible. Thus, G[A] contains no three-edge paths. We get in an
analogous fashion that G[B] contains no three-edge paths, and so (A,B) is
a good homogeneous pair.

Now, suppose that G contains an odd hole, and let W be the vertex set
of an odd hole in G. By 2.3, we get that |W ∩ A| ≤ 1 and |W ∩ B| ≤ 1.
But since VG = {a, b}∪A∪B, this means that |W | ≤ 4, which is impossible
since an odd hole must have at least five vertices.

2-thin trigraphs. Let G be a trigraph. Let VG = A ∪ B ∪ K ∪ M ∪
{xAK , xAM , xBK , xBM}, where xAK , xAM , xBK , xBM are pairwise distinct
vertices, and A, B, K, M , and {xAK , xAM , xBK , xBM} are pairwise disjoint.
Let t, s ≥ 0, and let K = {k1, ..., kt} and M = {m1, ...,ms} (so if t = 0 then
K = ∅, and if s = 0 then M = ∅). Let A be the disjoint union of sets
Ai,j and let B be the disjoint union of the sets Bi,j , where i ∈ {0, ..., t} and
j ∈ {0, ..., s}. Assume that:

(1) A and B are (possibly empty) strongly stable sets;
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(2) K and M are (possibly empty) strong cliques;

(3) A is strongly complete to B;

(4) K is strongly anti-complete to M ;

(5) A is strongly complete to {xAK , xAM} and strongly anti-complete to
{xBK , xBM};

(6) B is strongly complete to {xBK , xBM} and strongly anti-complete to
{xAK , xAM};

(7) K is strongly complete to {xAK , xBK} and strongly anti-complete to
{xAM , xBM};

(8) M is strongly complete to {xAM , xBM} and strongly anti-complete to
{xAK , xBK};

(9) xAKxBM and xAMxBK are semi-adjacent pairs;

(10) xAKxBK and xAMxBM are strongly adjacent pairs;

(11) xAKxAM and xBKxBM are strongly anti-adjacent pairs;

(12) for all i, i′ ∈ {0, ..., t} and j, j′ ∈ {0, ..., s}, if i < i′ and j < j′, then at
least one of the sets Ai,j and Ai′,j′ is empty, and at least one of the
sets Bi,j and Bi′,j′ is empty;

(13) for all i ∈ {0, ..., t} and j ∈ {0, ..., s}, all of the following hold:

– Ai,j is strongly complete to {k1, ..., ki−1} ∪ {ms−j+2, ...,ms},
– Ai,j is complete to {ki,ms−j+1},
– Ai,j is strongly anti-complete to {ki+1, ..., kt} ∪ {m1, ...,ms−j},

– Bi,j is strongly complete to {kt−i+2, ..., kt} ∪ {m1, ...,mj−1},
– Bi,j is complete to {kt−i+1,mj},
– Bi,j is strongly anti-complete to {k1, ..., kt−i} ∪ {mj+1, ...,ms}.

Then we say that G is 2-thin with base (xAK , xBM , xBK , xAM ), or simply
that G is 2-thin. We call (A,B,K,M) the partition of G with respect to the
base (xAK , xBM , xBK , xAM ).

Suppose that G is a 2-thin trigraph with base (xAK , xBM , xBK , xAM ). It is
then easy to see that G is 2-thin with base (xBK , xAM , xAK , xBM ); it is also
easy to see that G is 2-thin with base (xAK , xBM , xAM , xBK). Next, note
xAKxBM and xBKxAM are both doubly dominating semi-adjacent pairs, and
G contains no other doubly dominating semi-adjacent pairs. We also observe
that G is 1-thin with base (xAK , xBM ), and also with base (xBK , xAM ). By
6.3 then, 2-thin trigraphs are odd hole-free.
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The class T2. Let k ≥ 1 be an integer, and let G′1, ..., G
′
k be trigraphs,

such that for all i ∈ {1, ..., k}, G′i is either a triangle-pattern or a triad-
pattern or a 2-thin trigraph. For each i ∈ {2, ..., k}, let cidi be a doubly
dominating semi-adjacent pair in G′i. For each j ∈ {1, ..., k− 1}, let xjyj be
a doubly dominating semi-adjacent pair in G′q for some q ∈ {1, ..., j}. As-
sume that {c2, d2}, ..., {ck, dk}, {x1, y1}, ..., {xk−1, yk−1} are pairwise distinct
(and therefore pairwise disjoint). Let G1 = G′1, and for each i ∈ {1, ..., k −
1}, let Gi+1 be the trigraph obtained by composing Gi and G′i+1 along
(xi, yi, ci+1, di+1). Let G = Gk. We call such a trigraph G a skeleton. We ob-
serve that a semi-adjacent pair uv in G is doubly dominating in G if and only
if uv is a doubly dominating semi-adjacent pair in G′i for some i ∈ {1, ..., k}
and {u, v} is not among {c2, d2}, ..., {ck, dk}, {x1, y1}, ..., {xk−1, yk−1}.

The class T2 consists of all skeletons, and of all trigraphs G that can be
obtained as follows. Let G′0 be a skeleton, and let n ≥ 1 be an integer.
Let a1b1, ..., anbn be doubly dominating semi-adjacent pairs in G′0 such that
{a1, b1}, ..., {an, bn} are pairwise distinct (and therefore pairwise disjoint).
For each i ∈ {1, ..., n}, let G′i be a trigraph such that:

(1) VG′i = Ai ∪Bi ∪ {a′i, b′i};

(2) the sets Ai, Bi, {a′i, b′i} are all non-empty and pairwise disjoint;

(3) a′i is strongly complete to Ai and strongly anticomplete to Bi;

(4) b′i is strongly complete to Bi and strongly anticomplete to Ai;

(5) a′i is semi-adjacent to b′i, and either

– both Ai, Bi are strong cliques, and there do not exist a ∈ Ai and
b ∈ Bi, such that a is strongly anti-complete to Bi r {b}, b is
strongly anti-complete to Ai r {a}, and a is semi-adjacent to b,
or

– both Ai, Bi are strongly stable sets, and there do not exist a ∈ Ai

and b ∈ Bi, such that a is strongly complete to Bi r {b}, b is
strongly complete to Ai r {a}, and a is semi-adjacent to b, or

– G′i is a 1-thin trigraph with base (a′i, b
′
i), and G′i is not a 2-thin

trigraph.

We observe that for all i ∈ {1, ..., n}, a′ib′i is a doubly dominating semi-
adjacent pair in G′i, and if uv is a doubly dominating semi-adjacent pair in
G′i, then {u, v} = {a′i, b′i}. Now, let G0 = G′0, and for i ∈ {1, ..., n}, let Gi

be obtained by composing Gi−1 and G′i along (ai, bi, a
′
i, b
′
i). Let G = Gn.

6.4. Every trigraph in T2 is Berge.
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Proof. By 6.1, it suffices to show that every trigraph in T2 is odd hole-
free. Recall that 2-thin trigraphs are 1-thin, that triangle-patterns are
complement-bipartite, and that triad-patterns are bipartite. Thus, each
trigraph in T2 is obtained by successively composing 1-thin trigraphs, bipar-
tite trigraphs, and complement bipartite-trigraphs along doubly dominating
semi-adjacent pairs. Since bipartite and complement-bipartite trigraphs are
odd hole-free, the result follows form 6.2 and 6.3.

We end this section by stating a few results from [4] that help us understand
the structure of trigraphs in the class T2. By 6.7 from [4], all 1-thin trigraphs
(and therefore, all 2-thin trigraphs) are in T2. By 6.6 from [4], all bipartite
trigraphs with a doubly dominating semi-adjacent pair are in T2; and since
T2 is closed under complementation, it follows that all complement-bipartite
trigraphs with a doubly dominating semi-adjacent pair are in T2. Finally, by
6.8 from [4], the class T2 is closed under composing along doubly dominating
semi-adjacent pairs.

7 The main theorem

In this section, we restate and prove 3.4, the structure theorem for bull-free
Berge trigraphs.

3.4. Let G be a trigraph. Then G is a bull-free Berge trigraph if and only if
at least one of the following holds:

• G is obtained from smaller bull-free Berge trigraphs by substitution;

• G or G is an elementary expansion of a trigraph in T ∗1 ;

• G is an elementary expansion of a trigraph in T2.

Proof. We first prove the ‘if’ part. If G is obtained by substitution from
smaller bull-free Berge trigraphs, then G is bull-free and Berge by 2.2. Next,
suppose that G or G is an elementary expansion of a trigraph in T ∗1 ; since
G is bull-free and Berge if and only if G is, we may assume that G is an
elementary expansion of a trigraph in T ∗1 . Since T ∗1 is a subclass of T1, G is
an elementary expansion of a trigraph in T1, and so G is bull-free by 3.3; G
is Berge by 4.2 and 5.11. Finally, suppose that G is an elementary expansion
of a trigraph in T2. Then G is bull-free by 3.3 and Berge by 4.2 and 6.4.
This proves the ‘if’ part.

To prove the ‘only if’ part, suppose that G is a bull-free Berge trigraph.
If G contains a proper homogeneous set, then G is obtained by substitution
from smaller bull-free Berge trigraphs, and we are done. So assume that
G contains no proper homogeneous sets. Then by 3.2 and 3.3, one of the
following holds:
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• G or G is an elementary expansion of a trigraph in T1;

• G is an elementary expansion of a trigraph in T2.

If the latter outcome holds, then we are done. So assume that G or G is an
elementary expansion of a trigraph H ∈ T1. Since G (and therefore G as
well) is Berge, by 4.2, H is Berge. By 5.11 then, H ∈ T ∗1 . This completes
the argument.
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