Introduction and definitions

Three-variable bracket

A state of a link diagram is a choice of smoothing at each crossing of the diagram. There are two choices of smoothing at a crossing. Given a state s of a diagram D, let a(s), b(s) denote the number of A- and B-smoothings in s, and j(s) denote the number of loops resulting in applying s to D. Then the three-variable bracket \(D(A, B, D) \) is given by

\[
\sum_s A^{a(s)}B^{b(s)}(-1)^{j(s)}.
\]

This polynomial is not a link invariant. However, it is invariant under a flype. Any two reduced alternating diagrams of a link are related by flypes, so the three-variable bracket is an invariant of reduced alternating links.

Tutte polynomial

Label the edges of a graph \(G = (V, E) \) as 1, 2, \ldots, |E| and denote the labeling of edge e by \(l(e) \). Let \(T \) be the set of spanning trees of \(G \). For \(T \in T \), let \(e \in e(G) \) with respect to \(T \):

- externally active if \(e \in T \) and \(l(e) < l(f) \) for all \(f \) on the walk in \(T \) between endpoints of \(e \),
- internally active if \(e \in T \) and \(l(e) < l(f) \) for all \(f \) with endpoints in the two components of \(T - e \),
- inactive otherwise.

Let \(i(T), j(T) \) denote the number of edges which are externally or internally active with respect to \(T \), respectively. Then the Tutte polynomial of \(G \) is

\[
T(G, x, y) = \sum_{T \in T} x^{i(T)}y^{j(T)}.
\]

Current work

Relationship between three-variable bracket and Tutte polynomial

Given a non-split alternating link diagram \(D \), form its B-graph \(G = (V, E) \):

- Perform a B-smoothing at each crossing.
- Form a graph with a vertex for each resulting loop, and an edge for each crossing between adjacent loops.

Associate a state s with the subgraph \(G_s \) of the B-graph which includes all vertices and edges at A-smoothings of s. Note |s| = i components of \(G_s \) and j bounded faces of \(G_s \).

Therefore, the coefficient of \(A^{i-1}B^{j}(-1)^{k} \) in \(D \) is the number of spanning subgraphs \(G_s \) with i edges which have j components and k − j + 1 bounded faces. Such a graph can be formed uniquely by removing j − 1 internally active edges and adding k − j + 1 externally active edges from/to a maximal subtree of \(G \), so \(j = (|V| + k - j + 1)/2 \).

Thus, the coefficient of \(A^{i-1}B^{j}(-1)^{k} \) in \(D \) is

\[
\sum_{T \in T} i(T) \binom{k}{j} j(T) = \frac{1}{(1 - j)(k - j + 1)} \binom{|T|}{k} |G(x, y)| \frac{1}{y^{k+1-j}x^{j-1}} (1, 1).
\]

That is,

\[
\langle D \rangle = \sum_{k \geq 0} \left(\sum_{|B| = k} \binom{|V| - 1}{B} \frac{1}{(1 - j)(k - j + 1)} \frac{1}{y^{k+1-j}x^{j-1}} (1, 1) \right) B^{k} E^{1-|V|} T[G](dA^{-1}B + 1, dAB^{-1} + 1).
\]

Future questions

Can we obtain signature/write from the three-variable bracket?

Given a knot K with alternating diagram \(D \), the signature \(\sigma(K) \) is given by \(\sigma(K) = \sigma(D) \), where \(G \) is the Goeritz matrix of \(D \) and \(\sigma \) a correction term. Since \(D \) is alternating, \(\sigma \) is given by \(|w(D)| = c(D)/2 \) or \(|w(D)| = c(D)/2 \) where \(w(D) \) is the writhe of \(D \), depending on the choice of coloring of \(D \).

Since \(D \) is alternating, \(G \) is definite. Therefore, if \(|w(D)| \geq 0 \) then \(G \) is positive definite and the one term in the three-variable bracket of \(D \) of the form \(A^{-1}B \) satisfies \(j = \sigma(G) \). Similarly, if \(|w(D)| < 0 \) then \(G \) is negative definite and the one term of the form \(A^{-1}B \) satisfies \(j = -\sigma(G) \).

Thus, to recover \(\sigma(K) \) from the three-variable bracket it is sufficient to recover \(w(D) \).

Questions

- Is writhe determined by the B-graph?
- Is there a method of determining writhe from the Tutte polynomial?

Hypothesis

- Can writhe be determined from the Tutte polynomial?

Acknowledgements

I thank my advisor Dr. Rolland Trapp of California State University San Bernardino.

This research was made possible by funding from California State University San Bernardino and NSF grant DMS-1156608.

References

R.B. Bapat
The Laplacian matrix of a graph

Bela Bollobas
Modern Graph Theory

C.McA. Gordon and R.A. Litherland
On the signature of a link

Louis H. Kauffman
A Tutte polynomial for signed graphs

Michael Korn and Igor Pak
Combinatorial evaluations of the Tutte polynomial

W.B. Raymond Lickorish
An Introduction to Knot Theory