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What is entanglement?

The notion of entanglement dates back to 1935, and was introduced under that name

by Erwin Schrödinger in two papers, one published in English in the Proceedings of the

Cambridge Philosphical Society and another published in German in Naturwissenschaften.

The latter is the famous paper on the ‘cat paradox’, and both were written in response to

the line of debate opened in the paper of Einstein, Podolsky and Rosen. Schrödinger says

that entanglement “is not one, but the characteristic trait of quantum mechanics, the one

that enforces its entire line of departure from classical lines of thought.”

This ‘trait’ is that two physical systems that are brought into temporary interaction,

and then completely separated, can no longer be described, even after the interaction has

utterly ceased, by individual wave functions for each of the two systems. Schrödinger wrote

that “by their interaction, the two representatives (or functions) have become entangled.”

The quantitative theory of entanglement has begun to be developed surprisingly recently,

largely in the contexts of quantum information, communication and cryptography.
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Entanglement is now a very big topic (measured by journal pages and decibels, at least).

We shall say something about it and about von Neumann entropy of states in these lectures,

and why these topics are related.

First, we shall discuss entropy and its various properties. It is important to understand

these, their proofs, and to what extent they are the quantum version of classical entropy

notions.

Remark : Entanglement arises from the fact that QM deals with several degrees of

freedom in terms of a tensor product of spaces, not a sum of spaces (which would be the

analog of the classical Cartesian product). More on this later. Put another way, it is a

miracle that the early founders of QM, such as Schrödinger, instinctively headed for the

tensor product (which resulted in a ‘linear’ theory for many-body systems, the Schrödinger

equation) instead of having a wave function for each particle as in Hartree-Fock theory,

which is a very non-linear theory (but much beloved by physicists and chemists).
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Some Basic Facts About States (quickly)
(Apologies to everyone who knows this stuff, but this is supposed to be a summer school.)
In QM each ‘degree of freedom’ is associated with a (separable) Hilbert space of finite

or infinite dimension. A d-o-f can be the the state of some subsystem of a larger system,
or it can be the momenta of particles in a domain. It can be the ’angles’ of a spin, or set
of spins. The Hilbert space associated to several degrees of freedom is the tensor product,
⊗, of the spaces. For simplicity here we take all Hilbert spaces to be finite dimensional.
H12··· = H1 ⊗H2 ⊗ · · · .
The vectors in H12··· are linear combinations of multiplets of vectors vi, wj , · · ·k where

vi, wj , · · ·k are orthonormal bases for H1, H2, · · ·k. These form an O.N. basis for H12···.
Note the simple, but important fact that H12··· = H1 ⊗ (H2···)
The observables are (bounded) linear operators on H12···. A state on the observables is

a positive linear functional (call it ω) whose value on the identity operator is 1. In the
finite dimensional case states are given by
ω(A) = Tr ρA ‘positive ′ means that ω(A∗A) ≥ 0 for any A

where A is an observable and ρ is a positive semi-definite operator with Trρ = 1, called a
density matrix. Here Tr is the trace. In case there are infinitely many degrees of freedom
(as in a spin system in the thermodynamic limit), or when the Hilbert spaces are infinite
dimensional, we have to be a bit more cautious in our definitions.
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Some references

An excellent reference for matrices, traces, and other things we shall talk about is:

Eric Carlen, Trace Inequalities and Quantum Entropy: An Introductory Course, in

’Entropy and the quantum’, 73–140, Contemp. Math., 529, Amer. Math. Soc. (2010).

Also available on www.mathphys.org/AZschool/material/AZ09-carlen.pdf

Another useful (short) reference is: Matrix and Operator Trace Inequalities on both

Wikipedia and Scholarpedia
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Partial Trace
An important concept is partial trace. Given an operator (observable or a density matrix)

A12 on H12 there is a unique operator (observable or density matrix) on H1, called

A1 := Tr2A12

with the property that for all observables B1 on H1

TrH12A12(B1 ⊗ 12) = TrH1A1B1

The matrix elements of this operator can be written explicitly as

⟨v|A1|v⟩ =
∑
j

⟨v ⊗ wj |A12|v ⊗ wj⟩

where the wj are an O.N. basis for H2 (the result is basis independent). The symbol ⊗
has been extended here to operators. Previously it was defined for vectors. The extension
is obvious:
(A1 ⊗B2)(v1 ⊗ w2) = A1v1 ⊗B2w2

Note that TrH12 = TrH1 (TrH2), so that Tr1A1 = Tr12A12.
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Schmidt Decomposition

A simple example of a (bipartite) state is a rank-one density matrix on H12 given by

ρ12 = |Ψ⟩⟨Ψ| with |Ψ⟩ ∈ H12. This gives us a ρ1 on H1 with ρ1 = Tr2ρ12, and

ρ2 = Tr1ρ12.

Choose orthonormal bases for the two spaces and consider the coefficients of |Ψ⟩ = ψi,j

in these bases. Thus, |Ψ⟩ looks like a matrix, which we shall call R. Then the matrix ρ2

in this basis is simply R†R, while ρ1 = RR†. By a well known theorem of linear algebra,

the non-zero eigenvalues of ρ1 and ρ2 are identical. Call them λj > 0 and let ϕj1, ϕ
j
2 be

the corresponding eigenvectors of ρ1, ρ2. Then, the usual eigenvector decomposition of

ρ1, ρ2 tells us that

|Ψ⟩ =
∑min{d1, d2}

j=1

√
λj |ϕj1 ⊗ ϕj2⟩ .

The λj are called Schmidt numbers.
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Purity and Purification

A density matrix can be expanded in its orthonormal eigenvectors |vj⟩ and its eigenvalues

λj (which satisfy λj ≥ 0,
∑

j λj = 1):

ρ =
∑
j

λj |vj⟩⟨vj | . (∗)

We say that ρ is pure if there is only one non-zero term, i.e. ρ = |v⟩⟨v| with ∥v∥ = 1.

Very Useful Purification Lemma: For any H1 and and density matrix ρ1 on H1 there

is another Hilbert space H2 and a pure state ρ12 on H12 = H1 ⊗H2 such that

ρ1 = TrH2ρ12.

ρ12 is called a purification of ρ1. One way to construct it is simply to use (*) and think

of the index j as vector components in a second Hilbert space H2 and think of
∑

j as a

partial trace over that space and to think of |vj⟩⟨vj | as a vector in H12 that happens to

be diagonal in the j basis of H2.
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Purification was introduced in Araki, L, Entropy Inequalities, Commun. Math. Phys.

18, 160-170 (1970).

As we said, whenever ρ12 is pure the spectrum of ρ1 = Tr2 ρ12 equals the spectrum of

ρ2 = Tr1ρ12. This is the same statement (in another language) of the well known theorem

of linear algebra that specX†X = specXX† (except for possibly extra zero eigenvalues to

make up the difference of dimensions).

Consequently, Tr1 F (ρ1) = Tr2 F (ρ2) for any function, F , when ρ12 is pure.

This simple fact (together with purification) allows us to get new inequalities from old

ones.

EXAMPLE: Suppose We know that Tr12F (ρ12)≤Tr1F (ρ1) + Tr2F (ρ2) for all ρ12.

Now purify ρ12 → ρ123 (pure). Then

Tr12F (ρ12) = Tr3F (ρ3), Tr2F (ρ2) = Tr13F (ρ13)

and our inequality becomes

Tr3F (ρ3) ≤ Tr1F (ρ1)+Tr13F (ρ13), equivalently, Tr13F (ρ13) ≥ Tr3F (ρ3)− Tr1F (ρ1) .

Since the indices are ’dummy’, replace 3 by 2 in this inequality and obtain

Tr2F (ρ2)− Tr1F (ρ1) ≤ Tr12F (ρ12) ≤ Tr2F (ρ2) + Tr1F (ρ1) Woweee !!
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HOMEWORK PROBLEM: This new inequality, which was obtained from the old one by

purification, might seem to be valid only for special matrices ρ12, ρ1, ρ2 that arise after

purification. In fact, it is general. Prove this!

(It is easy if you keep calm.)
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Some Facts From the Last Millenium – to be Explained

The (von Neumann) Entropy of a density matrix ρ is

S = S(ρ) := −TrH ρ log ρ .

2. Definitions: If ρ12 is a DM on H12, then we can define ρ1 := Tr2 ρ12 on H1, etc.,

We can then define S12, S1, S2, etc.

3. Subadditivity(classical and quantum): S12 ≤ S1 + S2.

4. Using purification, as just mentioned, we deduce from 3 the Araki-L Triangle

Inequality: (No direct proof is known!)

S3 ≤ S23 + S2 and hence |S1 − S2| ≤ S12 ≤ S1 + S2

This is the closest one comes in QM to the classical monotonicity: S12 ≥ max{S1, S2}
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Some More Ancient Facts

5. Strong Subadditivity SSA (L, Ruskai) : S123 − S23 ≤ S12 − S2.

I.e., Conditional entropy, (S12 − S2), decreases when a third space (3) is added.

We can also write this as SA
∪

B + SA
∩

B ≤ SA + SB .

6. By ‘purification’ (pure ρ1234) SSA becomes: S14 + S12 ≥ S4 + S2.

Remarkable!!

7. Recall Golden-Thompson inequality: TrelogA+logB ≤ TrAB (A,B ≥ 0)

The L, Ruskai proof of SSA was based on a triple matrix inequality (L, 1973 **):

TrelogA+logB−logC ≤
∫ ∞

0

TrA
1

C + t
B

1

C + t
dt.

Note that there is no G-T inequality TrelogA+logB−logC ≤ TrAC−1B.

** L, Convex Trace Functions and the Wigner-Yanase-Dyson Conjecture, Adv. in

Math. 11, 267-288 (1973).

Elliott Lieb –Topics in Quantum Entropy and Entanglement Nr. 12



Essential Property of Entropy

Concavity and convexity is what makes thermodynamics work. Nowadays they don’t

tell you this in a course on stat-mech/thermodynamics, but Maxwell and Gibbs understood

it very well. Let’s discuss the concavity of entropy.

A function f(x) is concave if f(λx+(1−λ)y) ≥ λf(x)+ (1−λ)f(y) for all 0 ≤ λ ≤ 1

and x, y. It is convex if the inequality goes the other way. Thus, x4 is convex and
√
x is

concave for x ≥ 0.

Note that x can stand for two variables (e.g., energy and volume) and the statement

that entropy is a jointly concave function of energy and volume is a much stronger state-

ment than that it is concave in energy for fixed volume and concave in volume for fixed

energy. It is important to understand this very important principle as being at the heart

of thermodynamics and the second law.

For our purposes we want to note that the quantum entropy, S(ρ), is a concave function

of ρ. Indeed, if f(x) is a concave function of x ∈ R+ then Trf(ρ) is a concave function

of density matrices. (The function f(x) = −x lnx is concave, of course.)

HOMEWORK: Prove this by evaluating the traces using the eigenvectors of λρ1+(1−λρ2).

Elliott Lieb –Topics in Quantum Entropy and Entanglement Nr. 13



Subadditivity, (SA) S12 ≤ S1 + S2

Golden-Thompson: Tr eA+B ≤ Tr eA eB for A and B Hermitean.

This is NOT true without the trace Tr. It can be proved by Trotterizing eA+B and then

using the Cauchy-Schwarz inequality for traces: |TrXY |2 ≤ TrX∗X TrY ∗Y .

Peierls-Bogolubov: Tr eA+B ≥
(
Tr eA

)
exp{⟨B⟩A} =

(
Tr eA

)
exp{TrBeA/TreA}

for A and B Hermitean.

We define Mutual Information as M(ρ12)= S(ρ1) + S(ρ2)− S(ρ12) .

Proof of SA: Now set ∆ = −M12 = S12 − S1 − S2. We want to show that e∆ ≤ 1.

∆ = Tr12 ρ12{− ln ρ12 + ln ρ1 + ln ρ2}, whence (by Peierls-Bogolubov),

e∆ ≤ (Tr12 ρ12)
−1 exp{ln ρ12 − ln ρ12 + ln ρ1 + ln ρ2} = Tr12 exp{ln ρ1 + ln ρ2}

= Tr12 ρ1 ρ2 = 1. QED Thus, mutual information is always ≥ 0.
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Strong Subadditivity, (SSA) S123 + S3 ≤ S13 + S23

Let’s try the same idea as for SA. Set ∆ = S123 + S3 − S13 + S23 and try to prove

e∆ ≤ 1.

By following exactly the same route we end up with trying to validate the last line, namely,

Tr123 exp{ln ρ13 + ln ρ23 − ln ρ3} ≤ 1.

If we could say that this is less than Tr123 {ρ13 ρ23 ρ−1
3 }

we would be done (because doing Tr2 gives Tr13{ρ13ρ3ρ−1
3 } = 1. ) Unfortunately we

can’t say this. In fact it is nonsense because Tr123 {ρ13 ρ23 ρ−1
3 } is not necessarily real.

One could try to play with

Golden-Thompson inequality: Tr eA+B ≤ Tr eA eB for A, B Hermitean. But this is

only 2 matrices, A,B, while we have 3, namely ln ρ13, ln ρ23,− ln ρ3. The remedy is

Triple matrix inequality:

TrelogA+logB−logC ≤
∫ ∞

0

TrA
1

C + t
B

1

C + t
dt.
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Inserting ln ρ13, ln ρ23,− ln ρ3 for A,B,C we have

e∆ ≤
∫∞
0

Tr123 ρ13
1

ρ3+tρ23
1

ρ3+tdt

=
∫∞
0

Tr23 ρ3
1

ρ3+tρ23
1

ρ3+tdt

=
∫∞
0

Tr3 ρ3
1

ρ3+tρ3
1

ρ3+tdt. = Tr3ρ3 = 1 QED

CONCLUSION: ∆ ≤ 1 =⇒ SSA is true. S123 + S3 ≤ S13 + S23
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Matrix Concavity Theorem

The triple matrix inequality is useful in more than one context. For example it can be
used to improve the celebrated Maassen–Uffink generalized uncertainty principle, which
we will get to later.
For now, let us note that it is a consequence of the following Matrix Concavity

Theorem. See Nielsen–Chuang (appendix).

Let A and B be arbitrary positive semidefinite operators (matrices), let 0 ≤ p ≤ 1
be fixed, and let K be any fixed matrix. Then the function of A and B given by

f(A, B) = Tr
(
ApK†B1−pK

)
is jointly concave.

(Jointly concave means that when A = λA1 + (1− λ)A2, B = λB1 + (1− λ)B2

then f(A,B) ≥ λf(A1, B1) + (1− λ)f(A2, B2)).

This mathematical inequality is the starting point of strong subadditivity and other
theorems that allow the subject of quantum entropy and entanglement to go forward.

Reference: ’Convex Trace Functions and the WYD conjecture’
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Matrix Concavity Theorem (continued)

The original proof in “Convex Trace Functions” used complex variable techniques

which, while simple in principle, is tricky to set up. It took about 5 years for another

proof (B. Simon, given in Nielsen-Chuang) and now there are several. They are all tricky

and many claim to be the shortest. It all depends on what prior knowledge you take for

granted.

The steps from the concavity theorem to the triple matrix theorem are only in “Convex

Trace Functions”. They are sort of elementary but not obvious. It would be nice to have

a more direct proof.

There is another route to SSA (discovered by Lindblad) directly from the matrix con-

cavity theorem via monotonicity of relative entropy. We discuss that next.
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Monotonicity of Relative Entropy
If ρ and σ are two density matrices we define (Umegaki) their Relative Entropy to be

S(ρ∥σ) = Trρ (ln ρ− lnσ) .

which is a quantum analog of the classical S(ρ∥σ) =
∫
ρ(x) ln(ρ(x)/σ(x))dx.

It measures the closeness of ρ and σ. Note that S(ρ12∥ρ1⊗ρ2) =M(ρ12) = S1+S2−S12.

First, we note that S(ρ∥σ) ≥ 0, and = 0 iff ρ = σ.

HOMEWORK problem: Prove this using Golden Thompson and Peierls Bogolubov.

Second, we note that (ρ, σ) → S(ρ∥σ) is jointly convex. This follows by differentiating

the concave function f(p) = Trρp σ1−p at p = 1. The derivative is −S(ρ∥σ). Since f(1)

is linear in (ρ, σ) this derivative must be concave. HOMEWORK: Check this out!

Monotonicity says that relative entropy increases after partial trace ρ12 → ρ1, σ12 → σ1
S(ρ1∥σ1) ≤ S(ρ12∥σ12)

But this follows from the joint convexity of S(·∥·). Why? Because going from ρ12 to

ρ1 means taking the trace over H1 of the sum of the matrix elements (w.r.t. 2) instead

of taking the sum after the trace over H1.

HOMEWORK: Write out this remark formally.
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Monotonicity of Relative Entropy ⇒ SSA

Recall S(ρα∥σα) ≤ S(ραβ∥σαβ).

Now, make the following choices: Hα → H12, Hβ → H3

and ραβ → ρ123, σαβ → ρ1 ⊗ ρ23. We get SSA:

S123 + S2 ≤ S12 + S23

Cute, isn’t it! HOMEWORK: Check this.

MORAL: Lots of important inequalities arise from each other, so it is really only

important to get one of them in order to enter the club. The Matrix Concavity Theorem

is such an entry point.

Useful reference: ‘Strong Subadditivity of Quantum Entropy’ in Wikipedia
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CPT maps

We just proved that tracing out degrees of freedom (which means, physically, ignoring

them in a measurement) lowers relative entropy. This can be generalized to arbitrary

CPT maps, which we first explain. The generalization is sometimes called the Data Pro-

cessing Inequality and it has something to do with the connection between entropy and

entanglement. First, CPT:

Let H and K be Hilbert spaces and let B(H), B(K) be the bounded linear maps (i.e.,

matrices) on H, resp. K (aka “superoperators”). Let Φ be a linear map from B(H) to

B(K). We say that Φ is a PT Positive, Trace Preserving map if

1. P Φ(A) is positive whenever A ∈ B(H) is positive. (positive → positive).

2. T Φ preserves traces: TrHA = TrK Φ(A).

We say that a PT map Φ is a CPT (Completely Positive, Trace Preserving) map if for any

other Hilbert space L, Φ⊗ 1B(L) is PT.

A CPT map is also called a channel.
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Crazy! But don’t give up. Don’t head for the exit. Hang in there.

What does this mean?

Quantum communication and information is all about CPT maps. When we do some-

thing to a density matrix of a system (such as adding or removing degrees of freedom)

we want to be sure that we preserve positivity and the unit trace, of course, but we also

want to preserve these properties when we think of our system as being a subsystem of

the universe (the ⊗1 is the environment).

If you think about it for a while, you will see that this latter condition is that when we

tensor on the identity we preserve positivity. (The trace condition is automatic.)

Stinespring’s theorem shows how to view this as ordinary unitary time evolution followed

by tracing out the environment.

A simple example of a PT but not CPT map is Φ(A) = Atranspose.

HOMEWORK: Check what happens for this transpose map when H, K and L are just

two-dimensional. (* If you understand this you will have understood a lot.)
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Kraus operators and Stinespring’s Factorization theorem

K.Kraus figured out that Φ is a CPT map from B(H) → B(K) if and only if it can be
represented as:

Φ(A) =
∑

j
Fj AF

†
j

for some (non-unique) operators Fj , called Kraus operators, from K → H satisfying∑
j F

†
j Fj = 1H.

HOMEWORK: What if
∑

j FjF
†
j = 1K instead? What is preserved then? (Hint:

CPT maps do not generally preserve the identity 1)
Earlier W. Stinespring found a general characterization of CPT as follows: There is

another Hilbert space L and a unitary U : K → H⊗L, with TrL U U
† = 1H , such that

Φ(A) = TrL U† (A⊗ 1L)U with TrL U U
† = 1H

This says that a CPT map can be thought of as first embedding A in a bigger space,
then rotating with U , and finally bringing A back with a partial trace. We shall now use
this to extend the monotonicity of relative entropy to the DPI for general CPT maps.

The extra space L, which helped us effect the CPT map and then disappeared, is called
an Ancilla. Such assistants are used often in QIT.
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Data Processing Inequality or Complete Monotonicity of
Relative Entropy

Recall the relative entropy: S(ρ∥σ) = Trρ (ln ρ− lnσ), and its monotonicity under

partial traces: S(ρ1∥σ1) ≤ S(ρ12∥σ12), (*)

where ρ1 = Tr2ρ12 and σ1 = Tr2σ12.

Partial trace Tr2 is, of course, a CPT map from B(H12) = B(H1⊗H2) to B(H1). We

want to generalize this to arbitrary CPT maps, which has been called the data processing

inequality: ρ12 becomes simply ρ and ρ1 becomes Φ(ρ), etc.. Thus, monotonicity or DPI

is the following for all CPT maps Φ.

S(Φ(ρ)∥Φ(σ)) ≤ S(ρ∥σ)
CPT maps can raise or lower entropy, but they always lower relative entropy. They make

it harder to distinguish ρ from σ.

Stinespring says we can write Φ(ρ) = TrL U
† (ρ⊗1L)U and Φ(σ) = TrL U

† (σ⊗1L)U .

If we think of H12 = H ⊗ L and ρ12 = U† (ρ ⊗ 1L)U (and similarly for σ12), then the

S(ρ∥σ) = Trρ (ln ρ− lnσ) inequality (*) becomes the DPI inequality. QED.
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Entanglement

We will be concerned with two objects (degrees of freedom, particles, systems, etc.)

described by states (density matrices) on Hilbert spaces H1 and H2, respectively. The

combined space is H12 = H1 ⊗H2, and the density matrix on H12 is ρ12

A simple example of a state with no correlations or entanglement is ρ12 = ρ1 ⊗ ρ2.

Others are possible, however.

We say that ρ12 is not entangled if it is separable, i.e., if it is possible to write

ρ12 =
∑

j
λj ρ

j
1 ⊗ ρj2 with all λj > 0 and ρj1 and ρj2 are density matrices.

If such a decomposition is not possible we say that ρ12 is entangled.

The size of the summation
∑

j is at most d1 d2 + 1. (Note: It is always possible to

decompose ρ12 into a sum of products, but not always with positive λj .)
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Notes:

1. Since each ρji can be written as a sum of pure states (the eigenvalue decomposition)

we may as well take the ρji to be pure.

2. We do not assume that the ρji are orthogonal for different j (meaning Tr ρji ρ
k
i ̸= cjδj,k).

3. A pure state is entangled unless it is a simple product:

ρ12 = |Ψ⟩⟨Ψ|, and Ψ = ψ1⊗ψ2 (= |ψ1⟩ |ψ2⟩ in some papers and books).

Physicists often pretend that the states of interest are pure, but that is not always

justified. Consider the optimum situation, that our laboratory is in a pure state ρL = L⟩⟨L.
The ρS of the system on our lab bench, which is obtained by partial trace of ρL, cannot

be expected to be pure.
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Entanglement Questions

How do we measure entanglement when it occurs?

What does entanglement have to do with measurements or with communication or other

physical quantities? This will involve Bell states (discussed later on).

If we have a measure, is it Faithful? That is, does the measure give us a positive value

if and only if ρ12 is entangled.

As one might expect, such good measures turn out to be complicated to evaluate, Can

we find useful, simple tests (entanglement witnesses) that tell us incomplete, but useful

information about entanglement.
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Entanglement of Formation

The following definition of entanglement has something to do with the number of Bell

states needed to form our given state ρ12. This will be explained later. For now we look

at its mathematical properties.

Ef (ρ12) = inf
{∑n

j=1
λjS1(Tr2ωj) : ρ12 =

∑n

j=1
λjωj

}
where the ωj are density matrices and the λj are positive and sum to 1. This means we try

to decompose ρ12 into lots of pieces and add up the entanglement of each. Since entropy

is concave, we can take the ωj to be pure states. If ρ12 itself is pure then there can only

be one term in the sum, in which case Ef is just the usual entanglement as normally used

(namely E(ρ12) = S1(Tr2ρ12)). Our definition of Ef transports this usual definition to

density matrices.

It is easy to see that Ef (ρ12) = 0 if and only if ρ12 is separable.

Thus, Ef is a faithful measure of entanglement! HOMEWORK: Prove this!

We know that Ef is not additive. (meaning Ef (ρ12 ⊗ σ12) = Ef (ρ12) + Ef (σ12) ) but

no counterexamples are known!
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Squashed Entanglement

Another definition of Entanglement is the squashed entanglement, introduced by Tucci

and Christandl-Winter. It has something to do with the number of Bell states that one

can extract from a given state ρ12.

Esq(ρ12) =
1
2 inf
ρ123→ρ12

(S13 + S23 − S123 − S3) .

The quantity in parenthesis is always positive by Strong Subadditivity. One is asking for

an extension of ρ12 with minimum SSA difference.

Brandao-Christandl-Yard proved that Esq is faithful. It is zero if and only if ρ12 is

separable. It is also additive (hint: use H3 ⊗H3 in place of H3.)

HOMEWORK: 1. Find one simple extension of ρ12 that will demonstrate that

Ef (ρ12) ≥ Esq(ρ12) .

2. Show that Esq(ρ12) = 0 if ρ12 is separable. 3. If ρ12 is pure then Esq(ρ12) = S1.

Clearly Esq is even harder to compute than Ef . We will next prove a simple lower bound

for Esq (and hence Ef ), which is easier to compute. It is not faithful, unfortunately. It

was derived together with Eric Carlen.
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Squashed Entanglement Lower Bound

Recall our earlier result, obtained by purification , that SSA is equivalent to:

S14 + S12 ≥ S4 + S2. for any ρ124.

Now exchange the dummy indices 4 and 1 to get S14 + S24 ≥ S1 + S2. Add the two

inequalities and get S12 + 2S14 + S24 ≥ S1 + 2S2 + S4.

Purify this last inequality (pure ρ1234) and get, believe it or not, an extended SSA ! :

1
2 (S13 + S23 − S123 − S3) ≥ S1 − S12,

which implies that Ef (ρ12) ≥ Esq(ρ12) ≥ max{S1 − S12, S2 − S12, 0 }

(Christandl-Winter had this with just the average 1
2 (S1+S2)−S12, which is very different.)

MORAL : Define the Extreme Quantum Regime by negative conditional entropy

(i.e., S1 > S12 or S2 > S12). This never happens classically. This is the regime of most

interest to physicists (e.g., the ground state). In this regime there is always squashed

entanglement.
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Pinsker’s Inequality and Quantitative Subadditivity

We just talked about extended SSA.

While on this topic, we mention (an improved) Pinsker’s inequality, heavily used in QIT,

and quantitative subadditivity (Carlen, L).

Recall relative entropy: S(ρ∥σ) = Trρ(ln ρ− lnσ).

S(ρ||σ) ≥ −2 lnTr
[
ρ1/2σ1/2

]
≥ Tr

[√
ρ−

√
σ
]2

.

By taking ρ = ρ12, and σ = ρ1 ⊗ ρ2 we get quantitative subadditivity:

S1 + S2 − S12 ≥ −2 lnTr12
√
ρ12

√
ρ1 ⊗ ρ2

With ∆ = 1
2S(ρ||σ), by the Peierls-Bogoliubov and Golden-Thompson inequalities,

e−∆ = exp
[
Trρ1

2 (lnσ − ln ρ)
]
≤ Tr exp

[
1
2 (lnσ + ln ρ)

]
≤ Tr exp

[
1
2 lnσ

]
exp

[
1
2 ln ρ

]
= Tr

[
σ1/2ρ1/2

]
.
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Entanglement Witnesses

We have discussed two examples of faithful entanglement measures. They are not

so easy to use, however. We also need simpler, partial measures, called entanglement

witnesses which can be used to help us decide if a state is entangled or not.

The set of non-entangled (= separable) states on a given product of Hilbert spaces H
and K is a convex subset of the set of all operators on H⊗K (Why?). (Meaning that if

ρ12 and σ12 are separable then so is λρ12+(1−λ)σ12, for all 0 ≤ λ ≤ 1.) Call this convex

set Sep12.

Because it is convex, given ρ12 that is not in Sep12 there is a separating hyperplane (a

linear functional) such that ρ12 is on the negative side of the plane. More specifically:

There is a Hermitean operator A12 on H ⊗ K so that Tr12A12ρ12 < 0 and that

Tr12A12σ12 > 0 for all product density matrices σ12 = σ1 ⊗ σ2.

An entanglement witness may be described as follows (Horodecki’s): Let Φ be a Positive

(not completely positive) map on H1. Then, if ρ12 is separable Φ1 ⊗ 12(ρ12) is a positive

operator (i.e., no negative eigenvalues).

Conversely, if Φ1 ⊗ 12(ρ12) is positive for all such Φ1 then ρ12 is separable. Not Trivial!
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Bell States

Let’s try to relate the definitions of entanglement to familiar objects, namely Bell states.

A qubit is just a system where the Hilbert space is H = C2. The four Bell states are pure

bipartite 2-qubit states |Ψ⟩⟨Ψ| defined by the four vectors in C2 ⊗ C2:

Φ+ = 1√
2
(| ↓⟩ ⊗ | ↓⟩+ | ↑⟩ ⊗ | ↑⟩) Φ− = 1√

2
(| ↓⟩ ⊗ | ↓⟩ − | ↑⟩ ⊗ | ↑⟩)

Ψ+ = 1√
2
(| ↑⟩ ⊗ | ↓⟩+ | ↓⟩ ⊗ | ↑⟩) Ψ− = 1√

2
(| ↑⟩ ⊗ | ↓⟩ − | ↓⟩ ⊗ | ↑⟩)

provide an orthonormal basis of H1 ⊗H2 consisting of maximally entangled states.

Definition: A maximally entangled state on H1 ⊗H2 has the form

ρ12 = 1
min{d1, d2}

∑min{d1, d2}
j=1 |ξj ⊗ χj⟩⟨ξj ⊗ χj |

where the |ξj⟩ are from an orthonormal basis of H1, and similarly |χj⟩. The reason such

an ρ12 is maximally entangled is that Ef (ρ12) = ln (min{d1, d2}) which is the most it

can be.

Warning: In this business one usually uses logarithms to base 2. I have been using natural

logs, so that Ef (|Φ+⟩⟨Φ+|) = ln(2). The next definition we need is (LOCC).
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Local Operations and Classical Communication = LOCC

Any ρ12 on any H1 ⊗H2 and be converted to σ1 ⊗ σ2 on any K1 ⊗K2 by some CPT

map. But we are interested in CPT maps that act on only one factor. That is it maps

B(H1) → B(K1) or it maps B(H2) → B(K2). The first kind of map is Φ1 ⊗ 12 and the

second is 11 ⊗ Φ2, These are “Local Operations”. Maps of the form Φ1 ⊗ Φ2 are also

called local operations.

In quantum communication we are usually interested in H1 = K1 and H2 = K2,

There is a soap opera that goes with this in which ‘Alice’ and ‘Bob’ are actors

who are interested in finding out what ρ12 is by making measurements on it using local

operations. Alice on H1 and Bob on H2. They communicate their results to each other by

carrier pigeon, for example, or any other classical communication system. ρ12 −→ ρAB .

Let us begin by defining a measurement. (What! Does he never stop defining things

and get down to business?)
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Measurement

The measurement apparatus on a state ρ is defined by a CPT map which, according to

Kraus, is

Φ(ρ) =
∑µ

m=1Mm ρM†
m with

∑µ
m=1M

†
mMm = 112.

The Mm are the possible ‘measurement outcomes’ . A measurement outcome is a choice

of one m (and the reduction of the state to (TrMµ
m=1 ρM

†
m)−1Mm ρM†

m, but we won’t

need this.)

For a pure state, this reads |Ψ⟩ → ⟨Ψ|M†
mMm|Ψ⟩−1/2Mm|Ψ⟩.

(Technically, a local operation is a CPT map to operators on a Hilbert space. To make

the measurement apparatus into such a map we can define it as a map to H⊗ L, where
L = Cµ is an ancilla, and the map is into the set of diagonal µ×µ matrices on Cµ. Thus,

a measurement apparatus maps ρ into a block-diagonal matrix, each block belonging to

B(H). If you don’t get this, forget it.)

Now the commercial is over and we take you back to Alice and Bob.
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Measurement and Entanglement

Schrödinger again:

By interactions the two representatives (or ψ-functions) become entangled. To disen-

tangle them we must gather further information by experiment, although we knew as much

as anybody could possibly know about all that happened (during the interaction).

Of either system, taken separately, all previous knowledge may be entirely lost, leaving

us but one privilege: to restrict the experiments to one only of the two systems. After

reestablishing one representative by observation, the other one can be inferred simultane-

ously. In what follows the whole of this procedure will be called the disentanglement. Its

sinister importance is due to its being involved in every measuring process and therefore

forming the basis of the quantum theory of measurement, threatening us thereby with at

least a regressus in infinitum, since it will be noticed that the procedure itself involves

measurement.

Another way of expressing the peculiar situation is: the best possible knowledge of a

whole does not necessarily include the best possible knowledge of all its parts, even though

they may be entirely separated...
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An Example

A&B know that ρ12 is a pure state whose |Ψ12⟩ is one of the following Bell states. They

want to decide which one it is.

Φ+ = 1√
2
(| ↓⟩⊗| ↓⟩+ | ↑⟩⊗| ↑⟩) Ψ+ = 1√

2
(| ↑⟩⊗| ↓⟩+ | ↓⟩⊗| ↑⟩)

Here, H1 is a qubit in Princeton and H2 is one in Timbuktu. Classical communication

is not easy but that doesn’t stop this dauntless pair.

With a local operation Alice measures spin up. She could have measured something

else, (such as the spin in the X direction) which would make the story more interesting.

However, her measurement, indeed no measurement she could have made, distinguishes

the two states.

But now Bob measures spin down and that clinches the matter. Ψ+ wins!

The state has been reduced to | ↑⟩ ⊗ | ↓⟩.
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Nielsen’s Theorem

We can ask how powerful an LOCC operation can be. That is, given ρ12 and σ12 on the

same H12, can we find a LOCC that maps ρ12 to σ12. The general answer is not known,

but the necessary and sufficient condition is known (Nielsen) if these are both pure states.

It is stated as follows.

Suppose Λ and Γ are two ordered, finite sequences of d real numbers with the same

sum. λ1 ≥ λ2 ≥ ... ≥ λd and γ1 ≥ γ2 ≥ ... ≥ γd with
∑
λj =

∑
γj .

We say that Γ majorizes Λ (in symbols Γ ≻ Λ) if the partial sums satisfy:∑k
j=1 γj ≥

∑k
j=1 λj for every k = 1, 2, ..., d.

If both bipartite states are pure and if ρ1, σ1 are the one-system reduced density matri-

ces, let Λ (respectively Γ) be the ordered sequences of eigenvalues of ρ1 (resp. σ1). There

is an LOCC that takes ρ12 → σ12 if and only if Γ ≻ Λ . (And hence S(ρ1) ≥ S(σ1).)

This is a very good theorem and hard to prove. A similar majorization theorem relates

the diagonals and the eigenvalues of a hermitean matrix. (Did you know this fact?)

Now that we have explored LOCC, let’s get back to Bell states and entanglement.
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The Operational Meaning of Entanglement

If Alice and Bob have n copies of an entangled bipartite pure state Ψ12, i.e., Ψ
⊗n
12 , how

many copies of a Bell state, say Ψ+ can they produce from it using only local operations

and classical communication? Conversely, to produce Ψ⊗n
12 from a ‘stream’ of Bell States

Ψ⊗m
+ , using local operations and classical communication, how large does m have to be?

In the large n limit, one can define two operational measures of entanglement,

distillable entanglement Ed and entanglement cost Ec that quantify, respectively,

the rate at which one can ‘distill’ ebits (maximally entangled states, Bell states) from

Ψ12, and how many ebits does it takes to build Ψ12. Both are shown to coincide with

E(Ψ12) = Ef (ρ12) = S1 for pure states.

The situation for mixed states is much more complicated. It was conjectured that

Ec = Ef but this is now known to be false, although no explicit counterexamples are

known. It is easy to prove that Ec ≤ Ef , and it is conjectured, but not proved, that

Ec = Ef in ‘most’ cases.
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Entanglement Distillation and Entanglement Cost

Alice and Bob have a state ρ12. They make (in principle) a large number of copies of

this state and form the n-fold tensor product ρ⊗n
12 = ρ12 ⊗ ρ12 ⊗ ....ρ12. They ask if they

can find an LOCC that maps n′ copies of a Bell state |Ψ+⟩⟨Ψ+| into the state ρ⊗n
12 and

try to make n′ as small as possible. (Note: It doesn’t matter which Bell state we use.)

To be honest, they have to produce the n′ copies to within a small tolerance, but we won’t

quibble about that. Then, in general,

Ec(ρ12) = limn→∞ n′/n. It is also Ec(ρ12) = limn→∞
1
nE

f (ρ⊗n
12 ).

As mentioned above, Ec(ρ12) = Ef (ρ12) for pure ρ12 and E
c(ρ12) ≤ Ef (ρ12) generally.

For entanglement distillation we do things the other way around. We LOCC map a

product of n copies of ρ12 into n′ Bell states, with n′/n as large as possible. Then

Ed(ρ12) = limn→∞ n′/n. In general, Ed(ρ12) ≤ Ec(ρ12)
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The Connection Between Entropy and Entanglement

You may wonder why entropy plays such a dominant role in the quantification of entan-

glement. For pure states we can use Nielsen’s theorem to make this very clear to anyone

familiar with elementary equilibrium statistical mechanics, where the difference between

energy and free-energy is TS (by definition) and S = −
∑
p ln p.

A Bell state has ρ1 = 1
211. This maximally entangled density matrix is dominated by

any other C2 density matrix since its eigenvalues are 1
2 ,

1
2 . The eigenvalues of n′ tensor

copies of this Bell state (which has dimension = 2n
′
) are easily seen to have only the

eigenvalue 2−n′
and this occurs with multiplicity 2n

′
(thus making the trace = 1).

Now suppose Alice & Bob share a bipartite pure state ρ12 = |Ψ⟩⟨Ψ| of dimension d2.

Let λj denote the set of Schmidt numbers (eigenvalues of ρ1) by λ1, . . . , λd. Now look

at n tensor copies of ρ12, which is a pure state, of course, with the ρ1(ρ
⊗n
12 ) = Tr⊗n

2 ρ⊗n
12

density matrix equal to the n-fold tensor product ρ⊗n
1 of ρ1. What are the eigenvalues

of this “ρ1”? Each eigenvalue is a product of Schmidt numbers, one from each factor,

without any restriction. λi1λi2 · · ·λin .
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Connection Between Entropy and Entanglement (cont.)

Now, think of a stat-mech problem of n independent particles with one-body eigen-

values − lnλ1, · · · ,− lnλd at inverse temperature β = 1. The partition function is

Z = (
∑d

j=1 λj)
n = 1, whence the free energy is F = lnZ = 0. We can compute

the entropy per particle, which, as always, is S = −
∑
p ln p = −

∑d
j=1 λj lnλj .

We used the Boltzmann factor eln λj , and not eln (1/d), as you might wish, because we

are interested in estimating errors in Trρ1 caused by perturbations, and not in Tr d−11.

In this problem the average energy/particle is E = S, since F = 0. Physics (actually the

law of large numbers, a.k.a. the ‘asymptotic equipartition theorem’) tells us that the

distribution of the n-body energy values is sharply peaked around nE. Except for a small

probability (i.e., a small change in the trace) all nonzero eigenvalues of ρ1 lie in the interval

(en(−S−ϵ), en(−S+ϵ)) for any ϵ > 0 as n → ∞. Since the Tr “ρ1“ = Tr ρ⊗n
1 = 1, there

are between en(S−ϵ) and en(S+ϵ) eigenvalues in this interval. The missing eigenvalues are

rare or close to zero.
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Connection Between Entropy and Entanglement (end)

Let us summarize the situation. If we have n′ Bell states the non-zero eigenvalues of

ρ⊗n′

1 is 2−n′
(with 2+n′

degeneracy).

The non-zero eigenvalues of ρ⊗n
1 for our pure bipartite state lie (except for a vanishingly

small number) somewhere between e−n(S−ϵ) (with e+n(S−ϵ) degeneracy) and e−n(S+ϵ)

(with e+n(S+ϵ) degeneracy), for any ϵ > 0 and very large n. The entropy of ρ⊗n
1 is nS

with S = −
∑d

j=1 λj lnλj .

Nielsen’s theorem tells us that we can find an LOCC map from Bell state to our pure

ρ12 if spectrum (ρ12) majorizes spectrum (Bell). This occurs if e+n(S−ϵ) ≤ 2n
′
.

Conversely, we can LOCC from ρ12 to Bell if e+n(S+ϵ) ≥ 2n
′
. Since ϵ is arbitrary (as

n→ ∞ the two conditions coincide, and we conclude that

Ec(ρ12) = Ed(ρ12) = limn→∞(n′/n) = S(ρ1)/ ln 2 = Ef (ρ12)/ ln 2 .
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Entropy and Quantum Uncertainty

We switch now to a use of entropy as a measure of quantum mechanical uncertainty. It

has much more to say than does the Heisenberg uncertainty principle.

Given a density matrix ρ on H and an O.N. basis of vectors A = {aj} of H, define

probabilities pj = ⟨aj , ρ aj⟩ . Then define the ‘classical entropy’ H(ρ) = −
∑

j pj log pj .

H(A) can be quite small, even if S(ρ) is large, but Maasen & Uffink (PRL 1988) found

an uncertainty principle: Let B = {bj} be another O.N. basis. Then

H(A) +H(B) ≥ −2 log {supj,k |(aj , bk)|}. (∗)

This can be generalized to continuous bases, e.g., delta functions and plane waves:

−
∫
ρ(x, x) ln ρ(x, x)dx−

∫
ρ̂(k, k) ln ρ̂(k, k)dk ≥ 0, with ρ(x, x) = ⟨x|ρ|x⟩, etc.

NOTE: The entropies on the left can be arbitrarily negative!

Following a conjecture and result of Rumin, Rupert Frank and I improved this to:
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−
∫
ρ(x, x) ln ρ(x, x)dx−

∫
ρ̂(k, k) ln ρ̂(k, k)dk ≥ S(ρ).

The quantum entropy S(ρ) is bounded above by two classical entropies!.

Even more generally, we can generalize to any two spaces L2(X, µ), L2(Y, ν) and with

a unitary U : X → Y having an integral kernel U(x, y) that is bounded.

As before, we have ρ̂ = U∗ρU (like the Fourier transform), and then

−
∫
X

ρ(x, x) ln ρ(x, x)dµ(x)−
∫
Y

ρ̂(y, y) ln ρ̂(y, y)dν(y) ≥ S(ρ)− 2 log {sup
x, y

|U(x, y)|}

Note that X and Y can be quite different. E.g., X = Z (the integers) and Y = [−π, π]
(the Brillouin zone). Thus, the X integral is a sum and the Y integral is continuous. (This

is reminiscent of strong subadditivity: S1 + S2 ≥ S12.)
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Our proof of this last theorem uses only two simple, well known tools:

1. (usual) Golden-Thompson inequality: Tr eA+B ≤ Tr eA eB .

2. Gibbs’ Variational Principal (or Peierls-Bogolubov inequality): For self-adjoint H

Tr ρH + Tr ρ log ρ ≥ − log Tr e−H .

HOMEWORK: Prove the theorem or look it up in Annales Inst. Henri Poincaré 13 (2012)

Now we turn to more serious matters, which are truly quantum mechanical and use

strong subadditivity and the ‘triple matrix inequality’.
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Two Hilbert Space Theorem

By definition, a classical measurement on a density matrix ρ on H1 is a

collection of operators Mm on H1 such that
∑

mM∗
mMm = 1H1 ; the probability of

measurement m is Tr1MmρM
∗
m.

Now we suppose that we have the usual ρ12 on H12 = H1 ⊗H2. We also suppose that

we have two kinds of measurements, which we shall call A and B, and we want to find

some kind of uncertainty principle relating the two. The measurement operators will be

denoted by Am and Bn.

Recall that the usual conditional entropy of ρ12 is S(1|2) := S12 − S2. In its place we

define the classical/quantum conditional entropy for the A measurement by

H(1A|2) := −
∑

m
Tr2(Tr1Amρ12A

∗
m) log(Tr1Amρ12A

∗
m)− S2.

and similarly for a B measurement.

Note where the Σm is! This is not the conditional entropy of
∑

j Amρ12A
∗
m.
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Two-Space Theorem: Suppose we have two measurements {Am} and {Bn}. Then

H(1A|2) +H(1B |2) ≥ S(1|2)− log c1, where c1 = sup
m,n

(Tr1BnA
∗
mAmB

∗
n)

Note that if ρ12 = ρ1⊗ ρ2 then this theorem reduces to the generalized Maassen-Uffink

theorem mentioned before.
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Two Hilbert Space Theorem (continued)

This theorem is difficult because it brings out the terrors of “entanglement”. It was

conjectured by Renes and Boileau in 2009, who realized that the SSA theorem, or an

equivalent, would be needed in its proof. Berta et. al. proved the special ’rank-one‘ case

where all {Aj}, and all {Bk} are O.N. rank-one projectors.

Subsequently, Coles, Griffiths, et. al. and Tomamichael and Renner eliminated some of

the rank-one conditions. All these proofs were quite long, however. It turns out that the

theorem can be proved in a few lines by merely adapting the original proof of SSA! That

is, by using the triple matrix inequality.

There is also a 3-space theorem, but better to stop this while we are ahead.

But it is worth mentioning the continuous version of this theorem (Heisenberg like).
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Continuous Version (e.g., Fourier Transform)

We can now formulate the entangled version of the Maassen-Uffink theorem,

which relates the classical entropies in Fourier and in configuration space. This is done

by allowing the measurement operators Am and/or Bn indexed by discrete m,n to be-

come indexed continuously. Sums are replaced by integrals in this case. For the Fourier

transform, for example, we apply the 2-space theorem and infer that

H(1A|2) +H(1B|2) ≥ S12 − S2

where

H(1A|2) = −
∫

Rd

dx Tr2⟨x|ρ12|x⟩H1 log⟨x|ρ12|x⟩H1 − S2

and

H(1B |2) = −
∫

Rd

dk Tr2⟨k|ρ12|k⟩H1 log⟨k|ρ12|k⟩H1 − S2 .

In this case c1 = supx,k |e2πik·x| = 1 and, therefore, ln c1 = 0.
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Fermion Entanglement

Here, solely for your amusement, is an exercise (with E. Carlen) in computing entan-

glement. It is where one is led by just following the rules.

Bosons are sometimes thought to be more complicated than fermions because they can

‘condense’. But condensed bosons that are in a product, or ‘coherent’, state

Ψ = ϕ(x1)ϕ(x2) · · ·ϕ(xN ) are not entangled in any way (by usual definitions of entan-

glement) whereas fermions are always entangled by the Pauli principle. Our goal is to

quantify the minimum possible entanglement and, as folklore might suggest, show that

pure Slater determinant states give the minimum entanglement. If this is the case then

Slaters can be said to be the fermionic analog of boson condensation!

We study the bipartite density matrix of 2 fermions embedded in a sea of N fermions.

Some results depend on N , while others do not.
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Theorem #1

We return to the quantitative investigation of fermionic entanglement. We naturally as-

sume, going forward, that H1 = H2.

Our first theorem expresses an extremal property of Slater determinants for Ef .

Theorem 1. Let ρ12 be fermionic, i.e., suppose that the range of ρ12 is contained in

H ∧H. Then,

Ef (ρ12) ≥ ln(2),

and there is equality if and only if ρ12 is a convex combination of pure-state Slater

determinants; i.e., the state is fermionic separable.

In other words,

Eantisymmetric
f (ρ12) := Ef (ρ12)− ln(2)

is a faithful measure of fermionic entanglement.
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Theorem #2

We all know subadditivity of entropy (positivity of mutual information): S1 + S2−S12 ≥ 0,

and that equality occurs only when ρ12 = ρ1 ⊗ ρ2. This cannot happen for fermions.

Theorem 2 (Mutual Information of fermionic ρ12: ).

S1 + S2 − S12 ≥ ln

(
2

1− Trρ21

)
,

and there is equality if and only if the N -particle fermionic state is a pure-state Slater

determinant. (not a convex combination of Slaters)

Recall that for N fermions ρ1 = ρ2 ≤ 1
N Id, and equality occurs only for an N -particle

Slater. For a Slater S1 = S2 = lnN .
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Do Slaters minimize squashed entanglement?

We cannot find the minimum of Esq over all fermionic states but

We conjecture that the minimum Esq occurs for Slaters

We conjecture that Esq for a Slater is given by:

Esq(ρ12) =


1
2 ln

N+2
N−2 if N is even

1
2 ln

N+3
N−1 if N is odd

SERIOUS HOMEWORK: Prove or disprove these conjectures.
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Squashed entanglement continued

At first we thought that the minimum was the same as for the entanglement of formation

Ef , namely, ln(2). This is grossly incorrect! The minimum is at least as small as the value

just mentioned, i.e.,

Esq(ρ12) =

{
1
2 ln

N+2
N−2 if N is even

1
2 ln

N+3
N−1 if N is odd.

This upper bound shows that Esq for a Slater depends heavily on N , namely ≈ 2/N .

It is obtained by starting with an N -particle Slater (which is pure and which gives us the

required ρ12) and then taking ρ123 to be the (mixed) N/2-particle reduced density matrix

of this Slater state. Thus, dimH3 =
(

N
N/2− 2

)
. Then

S123 = ln

(
N

N/2

)
, S3 = ln

(
N

N/2− 2

)
, S13 = S23 = ln

(
N

N/2− 1

)
and 1

2 (S13 + S23 − S123 − S3) is as above.
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Entropy minimizing properties of Slater determinants

Let ρ1...N be an N -particle fermionic density matrix. Let ρ1 = Tr2...Nρ1...N denote its

single particle density matrix. Let ρ12 = Tr3...Nρ1...N denote its two particle density

matrix.

It is well-known that

{ρ : ρ1 = Tr2...N (ρ1...N ) with ρ1...N fermionic} = {ρ : ρ ≤ 1
N 1} .

The extreme points of this convex set are the normalized projections onto N -dimensional

subspaces, which are precisely the one-particle reduced density matrices of N -particle

Slater determinants. Hence S(ρ1) ≥ lnN with equality if and only if ρ1 comes from an

N -particle Slater determinant.
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Entropy minimizing properties of Slater determinants
continued

No such simple description of the set of all density matrices on H ⊗ H of the form

ρ12 = Tr3...N (ρ1...N ) is known. Yang proved a sharp upper bound on the largest eigenvalue

of ρ12 depending on the dimension of H. As the dimension increases, this approaches

N
(
N
2

)−1
= 2/(N − 1). If there were O(N) eigenvalues nearly as large as this, one might

have S(ρ12) close to lnN . However, producing the single large eigenvalue in the Yang

state produces many more very small eigenvalues, resulting in a large entropy. The Yang

pairing state (which is at the basis of superconductivity and superfluidity) has an entropy

of order ln(dim(H)).

A Slater ρ12 has
(
N
2

)
eigenvalues 1/

(
N
2

)
, and thus S12 = ln

(
N
2

)
≈ 2 lnN − ln(2).
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Theorem #3

We believe that a Slater minimizes S12. What we can prove is:

Theorem 3. The 2-particle reduced density matrix of any N -particle fermionic state

satisfies

S(ρ12) ≥ 2 lnN +O(1) .

and, therefore, a Slater is at least asymptotically close to the minimum.

FINAL EXAM: Prove the conjecture
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THANKS FOR LISTENING !
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