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Abstract
Fargues and Scholze showed that a candidate for the local Langlands correspon-
dence for p-adic reductive groups G/Qp could be realized in terms of a geometric
Langlands correspondence occurring over BunG, the moduli stack of G-bundles
on the Fargues-Fontaine curve. This builds a bridge between Shimura varieties
and the trace formula and shtukas and geometric Langlands, since the relevant
shtuka spaces can be shown to uniformize Shimura varieties. The goal of this
thesis is to build on this connection with the aim of describing the cohomology of
Shimura varieties. The basic strategy is as follows. First, show that the Fargues-
Scholze local Langlands correspondence agrees with more classical instances of
the correspondence, by describing the Galois action on global Shimura varieties
and using uniformization to relate this to shtukas. Second, combine such com-
patibility results with techniques in geometric Langlands to explicitly describe
eigensheaves on BunG. Third, use this description to describe the cohomology of
shtukas, and then use uniformization in the other direction to describe the coho-
mology of the global Shimura variety.

In chapter 1, we showcase a strategy for showing that the Fargues-Scholze
correspondence agrees with more classical instances of local Langlands in the
particular case of GSp4 and its inner form. We use this compatibility to describe
eigensheaves with eigenvalue φ , a supercuspidal L-parameter, and in turn prove
new cases of the Kottwitz conjecture. In chapter 2, we build on this paradigm,
and show how, assuming such compatibility results, we can parabolically induce
the eigensheaves on BunT for a maximal torus T ⊂ G to eigensheaves on BunG
with eigenvalue factoring through a maximal torus. We do this under a generic
assumption on the parameter, as in the work of Caraiani-Scholze. In chapter 3, we
discuss joint work in progress where one combines the results of chapters 1 and
2 to extend the torsion vanishing results of Cariani-Scholze to several new cases.
Motivated by this, we formulate several new conjectures on the cohomology of
global Shimura varieties, and explain how these conjectures would follow from
generalizing the analysis in chapter 2 to describe the eigensheaves with eigenvalue
φ induced from a supercuspidal L-parameter factoring through the dual group of
a general Levi subgroup of G.
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Introduction

0.1 Chapter 1
Fix distinct primes ℓ ̸= p. Let A (resp. A f ) denote the adeles (resp. finite adeles)
of the rational numbers. Let G/Qp be a split (for simplicity) connected reductive
group over the p-adic numbers, and let WQp denote the Weil group. We set Cp to
be the completed algebraic closure of Qp and Qℓ to be the algebraic closure of the
ℓ-adic numbers. The local Langlands correspondence is a conjectural map

LLCG : Π(G)→Φ(G)

π 7→ φπ

from the set Π(G) of isomorphism classes of smooth irreducible representations
of the p-adic group G(Qp) to the set Φ(G) of conjugacy classes of parameters
φ : WQp × SL2(Qℓ)→ Ĝ(Qℓ), where Ĝ is the reductive group with root datum
dual to G. There are many different ways of constructing and characterizing such
correspondences. However, in all its different guises, the correspondence should
always be able to characterize the local constituents at p of an automorphic repre-
sentation of G(A), where G is a global group whose base-change to Qp is G. For
a Shimura datum (G,X) attached to G, this global automorphic spectrum is inti-
mately related to a tower {S (G,X)K} of p-adic Shimura varieties over Cp, where
K is some varying compact open subgroup of G(A f ). If we write K := KpK p,
where Kp ⊂ G(Qp) is the level at p and K p ⊂ G(Ap

f ) is the level away from p,
then we can look at the complex

RΓc(S (G,X)K p ,Qℓ) := colimKp→{1}RΓc(S (G,X)K pKp,Qℓ)

defined by the ℓ-adic cohomology of this tower. This has an action of
G(Qp) ×WQp , and, given π ∈ Π(G), we can look at the isotypic part
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RΓc(S (G,X)K p,Qℓ)[π] with respect to π . The complex RΓc(S (G,X)K p,Qℓ)[π]
has a leftover WQp-action, and we expect the action to be given (up to multiplicity)
by rµ ◦φ ss

π for any suitable candidate of LLCG. Here rµ is the representation of Ĝ
of highest weight µ and φ ss

π is the semi-simplification of φπ ; the composite of φπ

with the map
WQp →WQp×SL2(Qℓ)

g 7→ (g,
(
|g|1/2 0

0 |g|−1/2

)
)

where | · | : WQp →Q∗ℓ denotes the norm character.
The first goal of this thesis is to compare the more classical story explained

above with a recent general construction of Fargues-Scholze for the local Lang-
lands correspondence. To explain this, we consider the Fargues-Fontaine curve
X and BunG, the moduli stack of G-bundles on it. We let Dlis(BunG,Qℓ) be the
derived category of lisse-étale Qℓ-sheaves on it. The space BunG is stratified by
elements of the Kottwitz set B(G). An element b ∈ B(G) gives rise to an inner
form of a Levi subgroup of G, denoted Jb, as well as a locally closed Harder-
Narasimhan strata jb : Bunb

G ↪→ BunG, which is (up to an ℓ-adically contractible
unipotent part) the classifying stack [∗/Jb(Qp)] of the p-adic points of the reduc-
tive group Jb. It follows that Dlis(Bunb

G,Qℓ) ≃ D(Jb(Qp),Qℓ) identifies with the
unbounded derived category of smooth Qℓ-representations of Jb(Qp), and, by ap-
plying excision on BunG with respect to this stratification, that we can think of the
category of lisse-étale Qℓ-sheaves on BunG as a complex of smooth irreducible
representations ρb ∈ Π(Jb) for all b ∈ B(G) together with some gluing datum. In
particular, a representation π ∈ Π(G) gives rise to a sheaf Fπ ∈ Dlis(BunG,Qℓ)
given by !-extending along the strata j1 : Bun1

G ↪→ BunG corresponding to the
trivial G-bundle.

The point of considering category Dlis(BunG,Qℓ) is that it carries a lot of
symmetries. In particular, given any cocharacter µ of G, we get a map

Tµ : Dlis(BunG,Qℓ)→ Dlis(BunG,Qℓ)
BWQp

called a Hecke operator, where D(BunG,Qℓ)
BWQp can be thought of as a collection

of representations ρb of the Jb tensored by a representation of WQp . By considering
the WQp-action for varying µ on Tµ(Fπ), this determines enough information to
uniquely specify an element φ FS

π of Φss(G), the conjugacy classes of semi-simple
maps WQp → Ĝ(Qℓ). The resulting map

LLCFS
G : Π(G)→Φ

ss(G)

2



π 7→ φ
FS
π

is the Fargues-Scholze local Langlands correspondence of G.
It is natural to wonder to what extent the two kinds of correspondences dis-

cussed above are compatible. Ideally, we want to show the diagram

Π(G) Φ(G)

Φss(G)

LLCG

LLCFS
G

(−)ss

commutes for all G, where (−)ss is the semi-simplification map described above.
This requires establishing a link between p-adic global Shimura varieties and the
Hecke operators Tµ described above. If we fix b ∈ B(G) then Tµ is computed
in terms of spaces of modifications Eb 99K E0 of meromorphy ≤ µ for b varying
in the subset B(G,µ) ⊂ B(G). Here Eb is the G-bundle on X corresponding to
b and E0 is the trivial G-bundle. If we let Sht(G,b,µ)∞ be the space of such
modifications then its cohomology valued in the sheaf attached to µ by geometric
Satake determines a complex RΓc(G,b,µ) of WQp ×G(Qp)× Jb(Qp)-modules.
We consider the isotypic part RΓc(G,b,µ)[π] with respect to π . The leftover
WQp-action on RΓc(G,b,µ)[π] for varying b ∈ B(G,µ) computes the WQp action
on Tµ(Fπ).

The complex RΓc(G,b,µ)[π] looks visually similar to the complex
RΓc(S (G,X)K p,Qℓ)[π] described above. The Shimura varieties S (G,X)K are
certain moduli spaces of abelian varieties over Cp. To such an abelian variety, one
can attach a p-adic Hodge filtration, a linear algebraic datum capturing informa-
tion about the variety. It was observed by Scholze-Weinstein [SW13; SW20a]
that this linear algebraic datum can actually be described by modifications of
the form described above. This allows one to show that, if µ is the minuscule
cocharacter of G associated to the X defining the Shimura datum then the com-
plex RΓc(S (G,X)K p,Qℓ)[π] is in fact built from the complexes RΓc(G,b,µ)[π]
and the cohomology of certain perfect schemes Igb called Igusa varieties, for
b ∈ B(G,µ) varying. This builds the required bridge between the two corre-
spondences, and suggests that, by describing the Galois action on the complex
RΓc(S (G,X)K p,Qℓ)[π], one can show an equality rµ ◦ φ FS

π = rµ ◦ φ ss
π , and, in

certain cases, this will imply an equality φ FS
π = φ ss

π as desired.
For GLn and its inner forms, the local Langlands correspondence was first

constructed in full generality by Harris-Taylor [HT01], and here the desired
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compatibility result was shown by Fargues-Scholze [FS21] and Hansen-Kaletha-
Weinstein [HKW22], where it essentially reduces to the work of Harris-Taylor
describing the cohomology groups RΓc(G,b,µ)[π] in terms of LLCG. The case of
a general group G introduces several new difficulties, related to the phenomenon
of endoscopy, which can be thought of as a measure of the failure of LLCG to
be a bijection. In the first chapter, we overcome these difficulties in the partic-
ular case of the group GSp4 and its inner form. Namely, by carrying out the
strategy sketched above, we show that the Fargues-Scholze correspondence is the
semi-simplification of the local Langlands correspondence constructed by Chan-
Gan-Takeda-Tantono [GT11; GT14; CG15] (Theorem 1.1.2).

Such compatibility results allow one to combine the geometric constructions
of the Fargues-Scholze construction with the more detailed knowledge known
about classical instances of the local Langlands correspondence to describe the
cohomology of global Shimura varieties. The point is again that the complexes
RΓc(S (G,X)K p ,Qℓ)[π] are built from the complexes RΓc(G,b,µ)[π] for mi-
nuscule µ , and the cohomology of the perfect schemes Igb. The second main
goal of this thesis is to use compatibility results to compute RΓc(G,b,µ)[π]
as explicitly as possible in terms of LLCG and deduce new consequences for
RΓc(S (G,X)K p,Qℓ)[π]. To illustrate this, one of the main open conjectures on
the complexes RΓc(G,b,µ)[π] is the Kottwitz Conjecture. This claims that if φπ is
supercuspidal in the sense that the semi-simplification φ ss

π does not factor through
M̂, for M a proper Levi subgroup of G, then complex RΓc(G,b,µ)[π] should be
concentrated in middle degree and be expressible in terms of rµ ◦φ ss

π pairing with
representations of Jb(Qp) according to character identities that LLCG should al-
ways satisfy. The complexes RΓc(G,b,µ)[π] can be studied from the point of
view of the Hecke operator Tµ(Fπ), which lives in the world of the geometric
Langlands correspondence. Using this dictionary, Fargues [Far16] explained that
the Kottwitz Conjecture would follow from constructing a perverse sheaf Sφ on
BunG expressible in terms of π ∈ Π(G) such that φπ = φ under LLCG for fixed
supercuspidal φ . Namely, he considers the sheaf

Sφ :=
⊕

b∈B(G)basic

⊕
π∈Πφ (Jb)

jb!(π) ∈ Dlis(BunG,Qℓ),

where B(G)basic are the elements such that Jb is an inner form of G (not just
a Levi), and Πφ (Jb) are the fibers of LLCG over φ . The key insight was that
the Kottwitz conjecture would follow from showing Sφ is an eigensheaf with
eigenvalue φ in the sense that, for all dominant cocharacters µ of G, one has an
isomorphism: Tµ(Sφ )≃Sφ ⊠ rµ ◦φ ss.
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Moving to this new perspective of eigensheaves allows us to use new tools
from geometric Langlands to study the complex RΓc(G,b,µ)[π]. For example,
the geometric Langlands program gives a recipe for the eigensheaf Sφ in terms of
what is called the spectral action. In the case that φ is a supercuspidal parameter,
the spectral action can be made fairly explicit. If one combines this explicit de-
scription with the compatibility results, such as the one we prove for GSp4, then
one can fully compute Sφ , and the Kottwitz conjecture follows. Using this per-
spective, we conclude the first chapter by showing that a version of the Kottwitz
Conjecture holds for GSp4 (Theorem 1.8.2), which establishes this Conjecture in
a new case.

0.2 Chapter 2
In the previous section, we discussed how, by using that the Fargues-Scholze local
Langlands correspondence agrees with the semi-simplification of more classical
instances of the correspondence, we could, for a supercuspidal parameter φ , ex-
plicitly compute eigensheaves Sφ with eigenvalue φ ss. In the second chapter of
this thesis, we expand on this paradigm. Namely, we consider a maximal torus
and Borel T ⊂ B ⊂ G, respectively, and let φ ∈ Φ(G) be an L-parameter whose
semisimplification φ ss is induced from a toral parameter φT : WQp → T̂ (Qℓ). Fol-
lowing Fargues’ vision, we might hope that, to such a parameter, we can attach
a perverse Hecke eigensheaf Sφ with eigenvalue φ ss. Moreover, we expect that
the stalks of this eigensheaf at the HN-strata jb : Bunb

G ↪→ BunG are given by
smooth representations of Jb(Qp) whose L-parameter under LLCG is φ , and that
the eigensheaf property describes how representations π with parameter φ under
LLCG contribute to the cohomology of the complexes RΓc(G,b,µ).

Since we are assuming that φ ss factors through a maximal torus T , a naive
guess is that the sought after perverse eigensheaf Sφ can only be supported on the
b ∈ B(G) such that that Jb must be quasi-split with Borel Bb and that Sφ |Bunb

G
is

valued in sub-quotients of the normalized parbaolic induction iJb
Bb
(χ), where χ is

the character attached to the toral parameter φT via local class field theory. The
elements b ∈ B(G) for which Jb is quasi-split are the set of unramified elements
B(G)un := Im(B(T )→ B(G)), as studied in Xiao-Zhu [XZ17]. Thinking through
this more carefully, one is lead to consider the perverse sheaf

Sφ :=
⊕

b∈B(G)un

⊕
w∈Wb

jb!(ρb,w)[−⟨2ρG,νb⟩] (1)

5



on BunG, where Mb ≃ Jb is the centralizer of the slope homorphism of b, Wb :=
WG/WMb is a quotient of Weyl groups identified with a set of representatives in WG

of minimal length, ρb,w := iJb
Bb
(χw)⊗ δ

−1/2
Pb

, and δPb is the modulus character of
the parabolic Pb with Levi factor Mb transferred to Jb. Here we note that the shifts
by −⟨2ρG,νb⟩ are equal to the dimension of the ℓ-adically contractible unipotent
part appearing in the strata Bunb

G and in particular make the sheaf Sφ perverse.
We formulate the following naive conjecture.

Conjecture 0.2.1. (Naive) For φ ∈Φ(G) an L-parameter such that φ ss is induced
from a toral parameter φT : WQp → T̂ (Qℓ), the sheaf Sφ defined by (1) is an
eigensheaf with eigenvalue φ ss.

Unfortunately, this is too naive; in particular, there can exist representations of
non quasi-split groups, whose L-parameter under LLCG factors through a maxi-
mal torus T after semi-simplification (e.g the trivial representation of D∗1

2
, units in

the quaternion division algebra). These representations should appear in the stalks
of the eigensheaf Sφ ; so, for our conjecture to have a chance of being true, we
impose the following condition on φT .

Definition 0.2.2. We say φT is generic if, for all coroots α , the character α ◦φT
of WQp is not isomorphic to the trivial representation or the norm character | · |;
equivalently, this holds if the Galois cohomology RΓ(WQp,α ◦φT ) is trivial for all
coroots α .

This implies that φ |WQp
= φ ss (i.e the parameter φ has no non-trivial mon-

odromy), and, assuming the Fargues-Scholze local Langlands correspondence sat-
isfies certain expected properties, one can show that the stalks of an eigensheaf
with eigenvalue φ ss can only be of the form described above. The main theorem
of chapter 2 is as follows.

Theorem 0.2.3. (Theorem 2.10.10) If φ ss is induced from a generic toral param-
eter φT then, assuming certain properties of the Fargues-Scholze local Langlands
correspondence (Assumption 2.7.5), and possible additional constraints on φT ,
Conjecture 0.2.1 is true.

To see why this could be true, we consider the diagram of spaces

BunB BunB

BunT BunG

p
q

j

p ,

6



where BunB is the moduli space parameterizing B-structures on G-bundles and
BunB is a compactification of BunB. Using this diagram, one can define a sheaf
nEisB(SφT ) ∈Dlis(BunG,Qℓ) by pulling back along q and taking ! push-forwards
along p. Here SφT is the eigensheaf attached to φT by geometric local class field
theory [Zou22].

Following work of Braverman-Gaitsgory-Laumon [BG02; Lau90] in classical
geometric Langlands, the true candidate should be given by a sheaf EisB(SφT ),
defined by ! push-forwarding along p instead of p. Unfortunately, to obtain the
correct definition one needs to tensor by a kernel sheaf ICBunB

, the intersection
cohomology of the Drinfeld compactification, and, in the geometric context we
are working in, defining this sheaf and showing it has good properties is a very
difficult problem.

Nevertheless, in classical geometric Langlands, there exists a map

nEisB(SφT )→ EisB(SφT )

which should be an isomorphism for φT generic, essentially because the Ga-
lois cohomogy groups RΓ(WQp,α ◦ φT ) for coroots α appear in the cone of this
map and are killed by the generic assumption. This suggests that the sheaf
nEisB(SφT ) ∈ Dlis(BunG,Qℓ), which is computable and understandable in the
Fargues-Scholze setting, should be the sought after eigensheaf, at least when φT
is generic. It also suggests that, assuming φT is generic, the sheaf nEisB(SφT )

should satisfy the same good properties that EisB(SφT ) does classically. Namely,
it should satisfy a functional equation with respect to the action of the Weyl group
([BG02, Theorem 2.24]), and behave well under Verdier duality on BunG. If these
two properties were to hold for nEisB(SφT ) it would immediately imply Conjec-
ture 0.2.1. The point is that BunB and BunT admit a decomposition into connected
components

BunB :=
⊔

ν∈B(T )

Bunν
B

BunT :=
⊔

ν∈B(T )

Bunν
T ,

which gives a decomposition

nEisB(SφT ) :=
⊕

ν∈B(T )

nEisν
B(SφT )

of the geometric Eisenstein series. Given b ∈ B(G)un, there exists a unique ele-
ment with G-dominant slopes bT ∈ i−1(b) for i : B(T )→ B(G) the natural map.
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The connected component BunbT
B essentially parametrizes split B-bundles, and

therefore it is relatively easy to show that

nEisbT
B (SφT )≃ jb!(ρb,1)[−⟨2ρG,νb⟩].

Now the Weyl group WG acts on B(T ) ≃ X∗(T ), and this acts transitively on the
fiber i−1(b) with stabilizer WMb . Therefore, the fiber is parameterized by the Weyl
group Wb = WG/WMb appearing above, and thus, the functional equation holding
for nEisB(SφT ) under the generic assumption on φT implies that⊕

w∈Wb

nEisw(bT )
B (SφT )≃

⊕
w∈Wb

jb!(ρb,w)[−⟨2ρG,νb⟩]

which varying over all elements b ∈ B(G)un gives us conjecture 0.2.1.
The eigensheaf property holding for Sφ , as in equation (1), implies the fol-

lowing formula for the cohomology of local Shimura varieties/shtuka spaces⊕
b∈B(G,µ)un

⊕
w∈Wb

RΓc(G,b,µ)[ρb,w⊗δPb][⟨2ρG,νb⟩]≃ iGB (χ)⊗ rµ ◦φ
ss.

The first sanity check that this is reasonable is that it is compatible with more
classical work of Shin [Shi12] (See Appendix 2.11.11) after passing to the
Grothendieck group of G(Qp)×WQp-representations, usually obtained by stabi-
lizing the trace formula on Igusa varieties. To give a deeper sense for what this is
saying, we note that there is a bijection

B(G,µ)un↔{Weyl group orbits of weights in Vµ}. (2)

In particular, this suggests a natural conjecture matching the summands⊕
b∈B(G,µ)un

⊕
w∈Wb

RΓc(G,b,µ)[ρb,w⊗δPb] appearing on the LHS with the sum-
mands appearing on the RHS: iGB (χ)⊗rµ ◦φ ss≃ iGB (χ)⊗

⊕
ν∈X∗(T )ν ◦φT⊗Vµ(ν),

where Vµ(ν) denotes the multiplicity of the representation of T̂ defined by ν in
Vµ |T̂ (Conjecture 2.11.18). It is fairly easy to verify this conjecture for the Weyl
group orbit of the highest weight, which corresponds to the maximal element
bµ ∈ B(G,µ)un under the natural partial ordering on B(G). In this case, it is
easy to compute the contribution of the summands indexed by bµ , using work of
Boyer [Boy99a] (or rather it’s generalization considered in [GI16]). In particu-
lar, this tells us that the summands on the LHS coming from bµ must be of the
form iGB (χ

w) for w ∈WG, and it thereby follows that one must have an intertwiner
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iGB (χ
w) ≃ iGB (χ) for this formula to hold. Such an isomorphism does not always

exist, but will exist under the generic hypothesis on φT (Proposition A.1.3). In
other words, our geometric functional equation for nEisB(SφT ) implies the usual
"functional equation" for the principal series representations iGB (χ).

While this is very conceptually satisfying, since every weight of Vµ for µ

minuscule is a Weyl group orbit of the highest weight, the previous calcula-
tion essentially tells us that we haven’t really said anything new about the lo-
cal Shtuka spaces which uniformize global Shimura varieties. However, this
changes if we drop the assumption that G is split and just assume that G is quasi-
split. In this case, we have an isomorphism B(T ) ≃ X∗(TQp

)Γ ≃ X∗(T̂ Γ) where

Γ := Gal(Qp/Qp), and the same description of nEisB(SφT ) holds, but we need to
modify the bijection (2) to become

B(G,µ)un↔{Weyl group orbits of weights in Vµ |ĜΓ}.

In particular, even if µ is minuscule, the restriction Vµ |ĜΓ might not be a minus-
cule representation of ĜΓ. For example, in the case that G is a unitary group or a
restriction of scalars of a split group. In this case, we can have that the basic ele-
ment b∈B(G,µ)un is unramified. If b is basic then Jb≃G under the inner twisting
and the above formula suggests that the complex RΓc(G,b,µ)[iGB (χ)] is concen-
trated in degree 0 (= middle degree under the non-perverse normalization), with
Weil group aciton specified by the central weight space of Vµ |ĜΓ . This situation
where the basic element is unramified is the one considered by Xiao-Zhu [XZ17].
In particular, they show that the central weight space of Vµ |ĜΓ , describes the irre-
ducible constituents of affine Deligne-Lusztig varieties, and this is precisely the
special fiber of the natural integral model of the shtuka space Sht(G,b,µ)∞ at
hyperspecial level, for b the basic element.

0.3 Chapter 3
Given a L-parameter φ ∈ Φ(G) such that the semi-simplification φ ss is induced
from a toral parameter φT : WQp → T̂ (Qℓ) we saw how, assuming the Fargues-
Scholze correspondence behaves reasonably (i.e by showing a local-global com-
patibility result, as in Section 1), we could construct an eigensheaf using geo-
metric Eisenstein series which captures how representations ρb of Jb for varying
b∈B(G) with L-parameter φ contribute to the cohomology of local Shtuka spaces,
assuming that φT is generic. In the previous chapters we worked with rational co-
efficients for the sake of simplicity, but the results we discussed in the previous
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section work just as well in the coefficient systems Λ ∈ {Fℓ,Zℓ}, assuming that
the prime ℓ is very good with respect to G in the sense of [FS21, Page 33]. In
particular, given a toral parameter φT we say that it is generic if, for all coroots
α ∈ X∗(T ), the character α ◦φT of WQp is not the trivial or norm character as be-
fore, and under this condition we prove analogous results to those discussed in the
previous section. Similarly, one can formulate the condition for a general quasi-
split group by saying that the complex RΓ(WQp,α ◦φT ) is trivial for all Γ-orbits
of coroots α in X∗(TQp

) for a maximal (not necessarily split) torus T ⊂ G. Here

α denotes the corresponding representation of LT .
Assume that G is an unramified reductive group, and let Khs

p ⊂ G(Qp) denote
a hyperspecial subgroup. We let

HKhs
p

:= Fℓ[Khs
p \G(Qp)/Khs

p ]

be the spherical Hecke algebra with Fℓ-coefficients. If we fix a maximal ideal
m ⊂ HKhs

p
then this defines for us an unramified semi-simple L-parameter φm :

WQp → Ĝ(Fℓ) which factors through a parameter φ T
m : WQp → T̂ (Fℓ). It is easy

to check that m is a decomposed generic maximal ideal in the sense of Caraiani-
Shcolze ([CS17, Definition 1.9]) if and only if φ T

m is generic in our sense. Conisder
now (G,X) a Shimura datum with G/Q a global group such that GQp =: G is
unramified and m ⊂ HKhs

p
a generic maximal ideal (i.e φ T

m is generic in the above
sense). We consider the cohomology

RΓc(S (G,X)K pKhs
p
,Fℓ)

for some sufficiently small level K p ⊂G(Ap
f ) away from p, and look at the local-

ization
RΓc(S (G,X)K pKhs

p
,Fℓ)m.

We have the following conjecture motivated by the torsion vanishing results of
[CS17; CS19; Kos21b; San23].

Conjecture 0.3.1. (Conjecture 3.1.2) Let (G,X) be a Shimura datum such that
G = GQp is unramified and K = KpK p ⊂ G(A f ) is a sufficiently small level with
Kp = Khs

p hyperspecial. If m⊂ Hhs
Kp

is a generic maximal ideal in the above sense

then the cohomology of RΓ(S (G,X)K,Fℓ)m (resp. RΓc(S (G,X)K,Fℓ)m) is con-
centrated in degrees d ≤ i≤ 2d (resp. 0≤ i≤ d), where d := dim(S (G,X)K).
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In the final chapter of this thesis we discuss some results of joint work in
progress with Si-Ying Lee [HL23], where we prove the above conjecture for some
PEL type Shimrua varieties of type A or C such that G is centrally isogenous to
groups given by products of ResL/Qp(GLn) for L/Qp unramified, GUn(E/Qp) for
E/Qp unramified and n odd, and ResL/Qp(GSp4) for L/Qp unramified (Theorem
3.1.12). The key point being that these are the cases where we can compare the
Fargues-Scholze correspondence to more classical instances of Langlands, and
thereby invoke the results of chapter 2.

The heart of our method for proving these results relies on a technique of
Koshikawa [Kos21b]. In fact, his argument for proving torsion vanishing was part
of the inspiration for the ideas discussed in chapter 2. The point is, as before,
that the cohomology of RΓc(S (G,X)K,Fℓ)m should be built from the complexes
RΓc(G,b,µ) and the cohomology of the Igusa varieties Igb for b ∈ B(G,µ) vary-
ing. What Koshikawa observed was, assuming the Fargues-Schole correspon-
dence behaves reasonably with Qℓ-coefficients, that only the elements lying in
B(G,µ)un := B(G,µ)∩B(G)un contribute to this generic localization. In the pre-
vious cases where torsion vanishing results have been proven, it is always the case
that the local group G is split, and so, as observed above, the set B(G,µ)un is a sin-
gleton consisting of the µ-ordinary element bµ . The shtuka space RΓc(G,bµ ,µ) is
rather pathological in this case, and the problem entirely reduces to controlling the
cohomology of the µ-ordinary Igusa variety Igbµ , which can be controlled through
Artin vanishing in the case that the Shimura variety is compact or through some
kind of semi-perversity result in the case that the Shimura variety is not compact.
However, in the cases we consider, where the group is non-split (e.g non-trivial
restrictions of scalars and odd unitary groups), the set B(G,µ)un can have multi-
ple elements, and for these b ∈ B(G,µ)un the complex RΓc(G,b,µ) is no longer
pathological, and one needs to control the degrees of cohomology that represen-
tations with L-parameter φm contribute to this complex. However, as seen at the
end of the previous section, such control is supplied by the theory of geometric
Eisenstein series, and this allows us to prove new cases of Conjecture 3.1.2.

The strategy we provide for proving these torsion vanishing results is quite
flexible. In particular, upon showing that the Fargues-Scholze correspondence
for G behaves like usual instances of the correspondence, one should be able to
deduce some form of Conjecture 0.3.1 from the theory of Geometric Eisenstein
series developed in chapter 2. It also suggests a wider class of generalizations
of Conjecture 0.3.1, which we discuss at the end of chapter 3. To formulate this
properly, for a general Shimura datum (G,X), we consider the G(Qp)×WQp-
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representation
RΓc(S (G,X)K p ,Fℓ).

In the appendix, we construct, using the spectral action, a G(Qp) ×WQp-
equivariant decomposition of this complex

RΓc(S (G,X)K p ,Fℓ)≃
⊕

φ∈Φss(G)

RΓc(S (G,X)K p,Fℓ)φ (3)

ranging over semi-simple L-parameters, and satisfying the property that, any rep-
resentation occurring in the RHS, has Fargues-Scholze parameter equal to φ as
conjugacy classes of parameters (Corollary B.1.8). By passing to Khs

p -invariants,
the previous conjecture can be interpreted as saying that the summand correspond-
ing to the parameters φm : WQp → Ĝ(Fℓ) coming from generic maximal ideals m
are concentrated in degrees 0 ≤ i ≤ d. It is now natural to ask for a general con-
dition on a semi-simple L-parameter φ that would guarantee this to be true. If φ

were supercuspidal then this essentially reduces to the Kottwitz conjecture proven
in the first chapter, since the non-basic strata will not contribute to the cohomol-
ogy of the global Shimura variety localized at a supercuspidal parameter φ (using
compatibility). Moreover, the Igusa variety in this case will essentially just be a
profinite set (cf. Definition 1.4.1). Assume now that φ is induced from a super-
cuspidal L-parameter φM : WQp → M̂(Fℓ) factoring through the dual group of a
proper Levi subgroup M of G. We call the pair (M,φM) a cuspidal support for the
parameter φ . It is natural to ask for a generalization of the generic condition in
the case that M = T . As discussed in the previous section, one of the motivations
for this condition in the toral case was that this should be the correct condition
guaranteeing that the geometric Eisenstein series nEisB(SφT ) agrees with the true
candidate nEisB(SφT ) for the Hecke Eigensheaf with eigenvalue φ . In particular,
in classical geometric Langlands, this should happen precisely when φT is generic.
Similarly, given an eigensheaf SφM on BunM with supercuspidal eigenvalue φM,
we can form the analogue of the geometric Eisenstein functor nEisP(SφM) con-
sidered in chapter 2 for a parabolic P with Levi factor M, by using the analogous
diagram

BunP B̃unP

BunM BunG

pPqP

jP

p̃P
,

and pulling back along qP and taking !-pushforwards along pP. Here p̃P : B̃unP→
BunG is a compactification of pP generalizing BunB, and using this one should be
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able to define an analogous sheaf ñEisP(SφM) as in classical geometric Langlands.
This should be the true candidate for the eigensheaf, and there should be a natural
map

nEisP(SφM)→ ñEisP(SφM).

We can now ask what is the correct condition on φM guaranteeing that this map
is an isomorphism, by consdering the geometry of the compactification B̃unP.
In chapter 3, we explain this, and are lead to the following generalization of the
generic condition.

Definition 0.3.2. (Definition 3.2.5) Let φ be a semi-simple L-parameter with cus-
pidal support (M,φM). We consider the representation V N

ad of M̂ given by looking
at the adjoint action of M̂ on N̂ the dual of the unipotent radical of P, and write
rN

ad : M̂ → GL(V N
ad) for the corresponding map. We say that φ is of Langlands-

Shahidi type if the Galois cohomology complexes

RΓ(WQp,r
N
ad ◦φM)

and
RΓ(WQp,r

N
ad ◦φ

∨
M)

are trivial, where (−)∨ denotes the dual.

With this condition pinned down, we formulate conjectural generalizations of
the results on principal geometric Eisenstein series obtained in chapter 2 in the
non-principal case. Since these results are the key input used in the paper [HL23]
on torsion vanishing, these conjectures lead us to the following very general Con-
jecture on the structure of the torsion of global Shimura varieties.

Conjecture 0.3.3. If φ is a semi-simple L-parameter of Langlands-Shahidi type
then the summand

RΓc(S (G,X)K p,Fℓ)φ ,

appearing in the decomposition (3), is concentrated in degrees 0≤ i≤ d.
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Chapter 1

Local-Global Compatibility of the
Fargues-Scholze Local Langlands
Correspondence

1.1 Introduction

1.1.1 Background and Main Theorems
Fix distinct primes ℓ ̸= p, let Qp denote the p-adic numbers, and let G/Qp be a
connected reductive group. Set Cp := Q̂p to be the completion of the algebraic
closure of Qp. We fix an isomorphism i : Qℓ

≃−→ C. Let WQp be the Weil group
of Qp and set Ĝ to be the reductive group over Qℓ with root datum dual to G.
Let Q be the finite quotient through which WQp acts on Ĝ. We define the L-group
LG := Q ⋉ Ĝ. We let Π(G) denote the set of isomorphism classes of smooth
irreducible representations of the p-adic group G(Qp), and let Φ(G) denote the
set of L-parameters, i.e the set of conjugacy classes of homomorphisms

φ : WQp×SL2(C)→ LG(C)

where SL2(C) acts via an algebraic representation and WQp acts via a continu-
ous semisimple homomorphism in a way that commutes with the natural projec-
tion LG(C)→ Q, where LG(C) is endowed with the discrete topology. The local
Langlands correspondence is a conjectural map

LLCG : Π(G)→Φ(G)
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π 7→ φπ

that builds a bridge between L-parameters and the smooth irreducible represen-
tations of G(Qp). Conjecturally (under some additional constraints on Φ(G) if
G is not split), these maps should be surjective with finite fibers called L-packets
and satisfy various properties such as compatibility with products, maps of L-
groups, character twists, as well as L, ε , and γ-factors. Moreover, one expects that
the correspondence is uniquely characterized by some such finite list of properties.

In general, the existence and uniqueness of such a correspondence is com-
pletely unknown. However, very recently, Fargues and Scholze [FS21], using
the action of the excursion algebra on the moduli space of G-bundles on the
Fargues-Fontaine curve, were able to construct a completely general candidate,
analogous to the work of V. Lafforgue in the function field setting [Laf18].
Namely, they construct a map

LLCFS
G : Π(G)→Φ

ss(G)

π 7→ φ
FS
π

where Φss(G) denotes the set of conjugacy classes of continuous semisimple maps

φ : WQp →
LG(Qℓ)

that commute with the projection LG(Qℓ)→ Q as above. Fargues and Scholze
showed that their map has several good properties such as compatibility with
parabolic induction; however, one would also like to check that this correspon-
dence agrees with known instances of the local Langlands correspondence. Pre-
cisely, given a candidate for the local Langlands correspondence

LLCG : Π(G)→Φ(G)

π 7→ φπ

we expect a commutative diagram of the form

Π(G) Φ(G)

Φss(G)

LLCG

LLCFS
G

(−)ss
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where the semisimplification map (−)ss precomposes an L-parameter φ ∈ Φ(G)
with the map

g ∈WQp 7→ (g,

(
|g| 12 0

0 |g|−1
2

)
) ∈WQp×SL2(C)

and then applies the fixed isomorphism i−1 : C ≃−→Qℓ, where | · | : WQp →W ab
Qp
≃

Q∗p→ C∗ is the norm character. We make the following definition.

Definition 1.1.1. For π ∈ Π(G), we say that a local Langlands correspondence
LLCG is compatible with the Fargues-Scholze local Langlands correspondence
if we have an equality: φ FS

π = φ ss
π , as conjugacy classes of semi-simple L-

parameters.

For GLn, the local Langlands correspondence was constructed by Harris-
Taylor/Henniart [He14; HT01] and is uniquely characterized by the preservation
of L, ε , and γ-factors. In this case, compatibility with the Fargues-Scholze local
Langlands correspondence follows from the description of the cohomology of the
Lubin-Tate and Drinfeld towers proven in [HT01] and was verified by Fargues
and Scholze [FS21, Theorem I.9.6]. The main goal of this note is to extend com-
patibility of the correspondence to GSp4 and its inner form. To this end, we now
fix a finite extension L/Qp and set G to be ResL/QpGSp4 and J to be its unique
non-split inner form ResL/QpGU2(D), where D/L is the quaternion division al-
gebra. In this case, the local Langlands correspondence has been constructed by
Gan-Takeda and Gan-Tantono, respectively [GT11; GT14]. It is constructed from
the local Langlands correspondence for GLn and theta lifting and admits a similar
unique characterization in terms of the preservation of L, ε , and γ factors. We note
that we can and do identify Φ(G) and Φ(J) with a subset of homomorphisms:

φ : WL×SL2(C)→ Ĝ(C) = GSpin5(C)≃ GSp4(C)

This allows us to introduce a bit of terminology. Namely, we say that a parameter
φ in Φ(G) or Φ(J) is supercuspidal if the SL2(C)-factor acts trivially and φ does
not factor through any proper Levi subgroup of GSp4. This terminology is justified
by the fact that this is precisely the case when the L-packets over φ contain only
supercuspidal representations. In what follows, we will often abuse notation and
drop the superscript (−)ss when speaking about such parameters, as in this case it
merely corresponds to forgetting the trivially acting SL2(C)-factor and applying
the isomorphism i−1. We now come to our main theorem.
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Theorem 1.1.2. The following is true.

1. For any π ∈ Π(G) (resp. ρ ∈ Π(J)) such that the Gan-Takeda (resp. Gan-
Tantono) parameter is not supercuspidal, we have that the Gan-Takeda
(resp. Gan-Tantono) correspondence is compatible with the Fargues-
Scholze correspondence.

2. If L/Qp is unramified and p> 2, we have, for all π ∈Π(G) (resp. ρ ∈Π(J))
such that the Gan-Takeda (resp. Gan-Tantono) parameter is supercuspidal,
that the Gan-Takeda (resp. Gan-Tantono) correspondence is compatible
with the Fargues-Scholze correspondence.

Remark 1.1.3. As will be explained more below, the restrictions in the case where
the parameter is supercuspidal are necessary to apply basic uniformization of the
generic fiber of abelian type Shimura varieties due to Shen [She17]. If one were
not to impose this assumption, the relevant Shimura varieties would have bad
reduction at p, which, to the best of our knowledge, prevents the methods of
Shen from working. In particular, if one could establish the expected description
of basic locus in the sense of the isomorphism (2) of Definition 4.1, for Shimura
varieties associated to the group ResF/QG, where G is an inner form of GSp4 over
a totally real field F with an inert prime p such that Fp ≃ L for L any extension
then our result would hold in complete generality.

As mentioned above, the proof of compatibility for GLn uses the results of
Harris-Taylor [HT01] on the cohomology of the Lubin-Tate/Drinfeld Towers. In
particular, if one looks at the rigid generic fiber of the Lubin-Tate tower

limm→∞ LTn,m,Q̆p

a tower of n− 1-dimensional rigid spaces over Q̆p, for fixed n ≥ 1 and varying
m≥ 1, where Q̆p denotes the completion of the maximal unramified extension of
Qp. The cohomology of this tower

RΓc(LTn,∞,Qℓ) := colimm→∞ RΓc(LTn,m,Cp,Qℓ)

based changed to Cp carries commuting actions of GLn(Qp) and D∗1
n
, the units in

the division algebra over Qp of invariant 1
n , as well as an action of the Weil group

WQp . In particular, given π ∈ Π(GLn) (resp. ρ ∈ Π(D∗1
n
)), we can consider the

complexes
RΓc(LTn,∞,Qℓ)[π] := RΓc(LTn,∞,Qℓ)⊗L

H (GLn)
π
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and
RΓc(LTn,∞,Qℓ)[ρ] := RΓc(LTn,∞,Qℓ)⊗L

H (D∗1
n
) ρ

where H (GLn) :=C∞
c (GLn(Qp),Qℓ) (resp. H (D∗1

n
)) is the usual smooth Hecke

algebra of G (resp. D∗1
n
). Then the key result of Harris-Taylor and later refined by

Boyer and Dat [Boy99a; Dat05] is as follows.

Theorem 1.1.4. [HT01; Boy99a; Dat05] Fix π ∈ Π(GLn), a supercuspidal rep-
resentation of GLn(Qp), let

JL : Π(D∗1
n
)→Π(GLn(Qp))

be the map defined by the Jacquet-Langlands correspondence and ρ := JL−1(π)∈
Π(D∗1

n
) a Jacquet-Langlands lift of π . Then the complexes RΓc(G,b,µ)[π] and

RΓc(G,b,µ)[ρ] are concentrated in middle degree n− 1. The middle degree co-
homology of RΓc(G,b,µ)[π] is isomorphic to

ρ⊠φ
∨
π ⊗| · |(1−n)/2

as a D∗1
n
×WQp representation. Similarly, the middle degree cohomology of

RΓc(G,b,µ)[ρ] is isomorphic to

π⊠φπ ⊗| · |(1−n)/2

where φπ ∈Φss(G) is the (semisimplified) L-parameter associated to π by Harris-
Taylor.

To see why this result is relevant for compatibility, we invoke the observation,
due to Scholze-Weinstein [SW13; SW20a], that, using Grothendieck-Messing
theory, the Lubin-Tate tower at infinite level

LTn,∞ := limm→∞ LTn,m,Q̆p

is representable by a space admitting a moduli interpretation as a space of shtukas
over the Fargues-Fontaine curve; namely, the space denoted Sht(GLn,b,µ)∞ in
the notation of [SW20a], where b ∈ B(GLn) is an element in the Kottwitz set of
GLn corresponding to a rank n isocrystal of slope 1

n and µ = (1,0, . . . ,0,0) is a
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dominant cocharacter of GLn. If X denotes the Fargues-Fontaine curve, then this
this parametrizes modifications

OX(−
1
n
)→ On

X

of type (1,0, . . . ,0,0) (i.e this map is an embedding with cokernel a length 1 tor-
sion sheaf on X), where OX(−1

n) is the unique rank n vector bundle on X of slope
−1

n . This interpretation allows one to relate the complex RΓc(LTn,∞,Qℓ)[π] to the
action of a Hecke operator Tµ−1 on BunG, acting on a sheaf Fπ constructed from
the supercuspidal representation π , where µ−1 = (0,0, . . . ,0,−1) is a dominant
inverse of µ . The Fargues-Scholze parameter of π is built from the action of the
excursion algebra on the sheaf Fπ , which in turn is built from Hecke operators
equipped with a factorization structure coming from geometric Satake. It thus is
reasonable to expect that the cohomology group RΓc(LTn,∞,Qℓ)[π] should have
WQp-action given by the Fargues-Scholze parameter φ FS

π : WQp → LGLn(Qℓ) ≃
GLn(Qℓ) composed with the highest weight representation of LGLn(Qℓ) corre-
sponding to the dominant cocharacter µ−1. However, this is just the dual of the
standard representation of GLn(Qℓ). Thus, using Theorem 1.2, we can see that

φ
∨
π = (φ FS

π )∨

where the twist by the norm-character | · |(1−n)/2 is cancelled out by a perverse
normalization (also related to the middle degree being the relevant one) in the
definition of the Hecke operator Tµ−1 . This implies compatibility for supercuspi-
dal π , which, by using compatibility of the Fargues-Scholze correspondence with
parabolic induction, is enough to conclude the general case. In a similar fashion,
using the description of the ρ-isotypic part one can prove compatibility for the
inner form D∗1

n
.

One may expect, given the above sketch of compatibility for GLn, that, to
prove Theorem 1.1, one must similarly provide a description of the cohomology
of the π ∈Π(G) (resp. ρ ∈Π(J))-isotypic part of a local Shimura variety/shtuka
space at infinite level associated to G. In the case where the associated L-
parameters are supercuspidal, this is the content of the Kottwitz conjecture
[RV14, Conjecture 7.3]. To this end, we consider the cohomology of a Shtuka
space associated to the group G = ResL/QpGSp4. Namely, the space denoted
Sht(G,b,µ)∞, where µ is the Siegel cocharacter and b ∈ B(G) is a basic element
in the Kottwitz set of G, corresponding to a rank 4 isocrystal with a polarization
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and automorphism group equal to J = ResL/Qp(GU2(D)). This space carries a
commuting G(Qp) and J(Qp) action. The quotients

Sht(G,b,µ)K := Sht(G,b,µ)∞/K

for varying compact open K ⊂ G(Qp) are, as before, representable by rigid ana-
lytic varieties over Spa(L̆) of dimension 3, where L̆ := LQ̆p. They define a tower
of local Shimura varieties in the sense of Rapoport-Viehmann [RV14], which uni-
formize the basic locus of certain global Shimura varieties analogous to the Lubin-
Tate case described above. Letting Sht(G,b,µ)K,Cp be the base-change of these
spaces to Cp, we can then consider the analog of the complexes described above

RΓc(G,b,µ) := colimK→1 RΓc(Sht(G,b,µ)K,Cp,Qℓ)

This complex is concentrated in degrees 0 ≤ i ≤ 6 = 2dim(Sht(G,b,µ)K) and
admits an action of G(Qp)× J(Qp)×WL. This allows one to consider the ρ and
π-isotypic parts, i.e we set

RΓc(G,b,µ)[ρ] := RΓc(G,b,µ)⊗L
H (J) ρ

and
RΓc(G,b,µ)[π] := RΓc(G,b,µ)⊗L

H (G) π

where H (G) (resp. H (J)) are the usual smooth Hecke algebra of G (resp. J). To
deduce compatibility, one needs to realize the (semi-simplified) L-parameter φπ

(resp. φρ ) of Gan-Takeda (resp. Gan-Tantono) in these two cohomology groups.
We will sketch how to do this in the next section using uniformization and global
methods. Interestingly, after knowing compatibility, one can use ideas from the
geometry of the Fargues-Scholze construction to provide a more precise of the
complexes RΓc(G,b,µ)[ρ] and RΓc(G,b,µ)[π]. Namely, recent work of Hansen
[Han20] allows us to deduce that if φρ (resp. φπ ) is supercuspidal the complexes
RΓc(G,b,µ)[ρ] (resp. RΓc(G,b,µ)[π]) are concentrated in middle degree 3. It
then follows from work of Hansen-Kaletha-Weinstein [HKW22] on a weaken-
ing of the Kottwitz conjecture and work of Fargues-Scholze [FS21, Section X.2]
describing the Hecke action on objects with supercuspidal Fargues-Scholze pa-
rameter that one can actually deduce a strong form of the Kottwitz conjecture
for these representations. To state this result, we first note that, if we are given a
supercuspidal parameter φ : WL→GSp4(Qℓ), even though the parameter φ is irre-
ducible, its composition with the standard embedding std : GSp4(Qℓ) ↪→GL4(Qℓ)
may not be. In particular, the size of the L-packets Πφ (G) := LLC−1

G (φ) and
Πφ (J) := LLC−1

J (φ) over φ are governed by this.
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1. (stable) std ◦ φ is irreducible. In this case, the L-packets each contain one
supercuspidal member.

2. (endoscopic) std◦φ ≃ φ1⊕φ2, where φi : WL→ GL2(Q̄ℓ) are distinct irre-
ducible 2-dimensional representations with det(φ1) = det(φ2). In this case,
the L-packets over φ each contain two supercuspidal members.

This allows us to state our main consequence of Theorem 1.1, which (almost)
verifies the strong form of the Kottwitz conjecture for GSp4/L and GU2(D)/L.

Theorem 1.1.5. Let L/Qp be an unramified extension with p > 2. Let π (resp. ρ)
be members of the L-packet over a supercuspidal parameter φ : WL→ GSp4(Qℓ)
as above. Then the complexes

RΓc(G,b,µ)[π]

and
RΓc(G,b,µ)[ρ]

are concentrated in middle degree 3.

1. If φ is stable supercuspidal, with singleton L-packets {π} = Πφ (G) and
{ρ} = Πφ (J), then the cohomology of RΓc(G,b,µ)[π] in middle degree is
isomorphic to

ρ⊠ (std◦φ)∨⊗| · |−3/2

as a J(Qp)×WL-module, and the cohomology of RΓc(G,b,µ)[ρ] in middle
degree is isomorphic to

π⊠ std◦φ ⊗| · |−3/2

as a G(Qp)×WL-module.

2. If φ is an endoscopic parameter, with L-packets Πφ (G) = {π+,π−} and
Πφ (J) = {ρ1,ρ2}1, the cohomology of RΓc(G,b,µ)[π] in middle degree is
isomorphic to

ρ1⊠φ
∨
1 ⊗| · |−3/2⊕ρ2⊠φ

∨
2 ⊗| · |−3/2

or
ρ1⊠φ

∨
2 ⊗| · |−3/2⊕ρ2⊠φ

∨
1 ⊗| · |−3/2

1For an explanation of the notation, see the discussion at the end of section 2.2.
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as a J(Qp)×WL-module. Similarly, the cohomology of RΓc(G,b,µ)[ρ] in
middle degree is isomorphic to

π
+⊠φ1⊗| · |−3/2⊕π

−⊠φ2⊗| · |−3/2

or
π
+⊠φ2⊗| · |−3/2⊕π

−⊠φ1⊗| · |−3/2

as a G(Qp)×WL-module. Here we write std◦φ ≃ φ1⊕φ2, with φi distinct
irreducible 2-dimensional representations of WL and det(φ1) = det(φ2).

Moreover, both possibilities for the cohomology of RΓc(G,b,µ)[ρ]
(resp. RΓc(G,b,µ)[π]) in the endoscopic case occur for some choice of
representation ρ ∈ Πφ (J) (resp. π ∈ Πφ (G)). In particular, knowing
the precise form of either RΓc(G,b,µ)[ρ] or RΓc(G,b,µ)[π] for some
ρ ∈Πφ (J) or π ∈Πφ (G) determines the precise form of the cohomology in
all other cases.

Remark 1.1.6. 1. Results of this form when L =Qp have also been shown by
Ito-Meida [IM21].

2. If one knew Arthur’s multiplicity formula for inner forms of GSp4 over
totally real fields, one should be able to determine the cohomology in the
endoscopic case more precisely, using basic uniformization and the more
precise description of the cohomology of the global Shimura variety this
multiplicity formula would provide (See for example [Ngu19, Section 3.2]
for this kind of analysis in the case of unitary groups.). However, to our
knowledge the multiplicity formula is unknown in this case. In the case
that L = Qp, one can apply what is known about the multiplicity formula
for GSp4/Q [Art04; GT19]. This is carried out by Ito-Mieda [IM21]. The
correct answer, for the ρ-isotypic part, should be that, if ρ = ρ1, we are in
the first case, and if ρ = ρ2, we are in the second case. Similarly, for the
π-isotypic part, if π = π+ is the unique generic member of the L-packet
for a fixed choice of Whittaker datum, we should be in the first case and,
if π = π−, we should be in the second case. It might also be possible to
show this using a weaker argument. Our analysis reduces us to checking
that RΓc(G,b,µ)[ρ1] admits a sub-quotient isomorphic to π+⊠φ1⊗|·|−3/2,
which may be possible to show through basic uniformization and a small
global argument.
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3. We hope that the perspective we take on the Kottwitz conjecture in this
paper will help provide further advancements in our knowledge of the co-
homology of local Shimura varieties. In particular, by invoking the use of
these very general geometric tools from the Fargues-Scholze construction,
we require global input only to show compatibility, which, as we will see in
the next section, requires substantially less than the input needed to deter-
mine the precise form of the cohomology such as a multiplicity formula for
the automorphic spectrum.

We will now conclude the introduction by providing a sketch of the proof of
Theorem 1.1.

1.1.2 Proof Sketch of the Main Theorems
As before, we set G = ResL/QpGSp4 and J = ResL/QpGU2(D). Similar to the case
of GLn, the idea behind proving compatibility for G and J is to use the compatibil-
ity of the Fargues-Scholze local Langlands correspondence with parabolic induc-
tion to reduce to the case where π is a supercuspidal representation. However, this
is a little bit more subtle than the case of GLn. Unlike GLn, the local Langlands
correspondence for these groups is not a bijection. As seen before, the L-packets
can be either of size 1 or 2. Given an L-parameter φ : WL×SL2(Qℓ)→GSp4(Qℓ),
there are three distinct possibilities.

1. The L-packets Π(G)φ and Π(J)φ do not contain any supercuspidal repre-
sentations.

2. The L-packets Π(G)φ and Π(J)φ contain a mix of supercuspidal and non-
supercuspidal representations.

3. The L-packets Π(G)φ and Π(J)φ contain only supercuspidals.

Case (1) is straight forward. Since compatibility is known for GLn and its
inner forms and any proper Levi subgroup of G (resp. J) is a product of such
groups, it follows from compatibility of the Fargues-Scholze correspondence
with parabolic induction and products that the correspondences are compatible
for any representation lying in such an L-packet.

Case (2) is a bit more subtle, here φ ss factors through a Levi subgroup of
GSp4(Qℓ), but φ itself does not. In particular, the restriction to the SL2 factor
of φ is non-trivial. In this case, we can write Πφ (G) = {πdisc,πsc} (resp.
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Πφ (J) := {ρdisc,ρsc} or Πφ (J) = {ρ1
disc,ρ

2
disc}, depending on whether the

parameter is of Saito-Kurokawa or Howe-Piatetski–Schapiro type), where πdisc
(resp. ρ1

disc, ρ2
disc, and ρdisc) are non-supercuspidal (essentially) discrete series

representation of G (resp. J), and πsc (resp. ρsc) is a supercuspidal representation
of G(Qp) (resp. J(Qp)). The key observation is that πdisc (resp. ρdisc) is an
irreducible sub-quotient of a parabolic induction, so, in this case, we can apply the
same argument as in case (1) to deduce compatibility of the two correspondences.
It remains to see that the same is true for πsc. To do this, we use a description of
the ρ-isotypic part of the Shtuka space Sht(G,b,µ)∞ introduced in section 1.1.
Namely, we consider the complex

RΓc(G,b,µ)[ρdisc]≃ RΓc(G,b,µ)⊗L
H (G) ρdisc

of G(Qp)×WL-modules. Recent work of Hansen-Kaletha-Weinstein [HKW22]
then tells us the form of this cohomology group (or rather a small variant thereof)
as a J(Qp)-representation. In particular, if we let RΓc(G,b,µ)[ρdisc]sc denote the
summand of RΓc(G,b,µ)[ρdisc] where J(Qp) acts via a supercuspidal represen-
tation, then in the Grothendieck group of admissible J(Qp)-representations of
finite length RΓc(G,b,µ)[ρdisc]sc is equal to −2πsc.

Similar to the case of G = GLn, this complex describes the action of the
Hecke operator Tµ acting on a sheaf Fρdisc constructed from ρdisc on BunG.
Moreover, the complex RΓc(G,b,µ)[ρdisc]sc can be interpreted as a complex of
sheaves on the open Harder-Narasimhan(=HN)-strata Bun1

G ⊂ BunG correspond-
ing to the trivial G-bundle on the Fargues-Fontaine curve X . It follows from the
above description in the Grothendieck group that the excursion algebra will act
on this complex via eigenvalues valued in the parameter φ FS

πsc
. However, since the

excursion algebra is built from Hecke operators, it will also commute with the
action of Hecke operators on Fρdisc . This allows us to conclude that it also must
act via eigenvalues valued in φ FS

ρdisc
giving a chain of equalities

φ
FS
πsc

= φ
FS
ρdisc

= φ
ss
ρdisc

= φ
ss
πsc

where the first equality follows from the previous argument and the second
equality follows from the above analysis of induced representations. Similarly,
one deduces compatibility for ρsc by applying a similar argument to the π-isotypic
part.

Case (3) is by far the most involved and takes up the majority of the paper.
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This is the case in which the L-parameter φ is supercuspidal. First, one can
make a reduction to showing compatibility for just ρ ∈ Π(J) with supercuspidal
Gan-Tantono parameter φ , by using the commutation of Hecke operators and the
excursion algebra similar to what was done in case (2). Now, the key point again
is that the complex RΓc(G,b,µ)[ρ] describes the action of the Hecke operator
Tµ on a sheaf Fρ on BunG. To make further progress towards compatibility, we
use that the Hecke operators can be in turn described using the spectral action
of the derived category of perfect complexes on the stack of L-parameters, as
constructed in [FS21, Chapter X]. In particular, a Hecke operator defines a
vector bundle on the stack of L-parameters, whose action on the sheaf Fρ via
the spectral action is precisely Tµ . Using this, we argue using the support of the
spectral action of certain averaging operators, considered by [AL21a] in the case
of GLn, to show that, if std◦φ ⊗| · |−3/2 occurs as a WL-stable sub-quotient of the
complex ⊕

ρ ′∈Πφ (J)

RΓc(G,b,µ)[ρ ′]

we have an equality:
std◦φ

FS
ρ = std◦φ

for all ρ ∈ Πφ (J). Now a GSp4-valued parameter is in turn determined by its
composition with std and its similitude character, which is precisely the central
character of ρ . Therefore, since the Fargues-Scholze correspondence is compati-
ble with central characters, this is enough to conclude that φ = φ FS

ρ . This reduces
the question of showing compatibility for ρ ∈ Π(GU2(D)) with supercuspidal
Gan-Tantono parameter φ to the following.

Proposition 1.1.7. Let φ be a supercuspidal parameter with associated L-packet
Πφ (J). Then the direct summand of⊕

ρ ′∈Πφ (J)

RΓc(G,b,µ)[ρ ′]

where G(Qp) acts via a supercuspidal representation⊕
ρ ′∈Πφ (J)

RΓc(G,b,µ)[ρ ′]sc

is concentrated in middle degree 3 and admits a non-zero WL-stable sub-quotient
with WL-action given by std◦φ ⊗| · |−3/2.
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Just as one does in proving Theorem 1.2, the key idea is to directly relate the
complex ⊕

ρ ′∈Πφ (J)

RΓc(G,b,µ)[ρ ′]sc

to the cohomology of a global Shimura variety using basic uniformization of
the generic fiber as proven by Shen [She17] and an analogue of Boyer’s trick
[Boy99b]. This allows us to in turn prove Proposition 1.4 using global re-
sults on Galois representations in the cohomology of these Shimura varieties
due to Kret-Shin [KS16] and Sorensen [Sor10]. More specifically, in this case
the relevant Shimura datum is given by (G,X), where G is a Q-inner form of
G∗ := ResF/Q(GSp4) for F/Q a totally real extension with p inert and Fp ≃ L.
The relevant uniformization result is then applicable if L/Qp is an unramified ex-
tension and p > 2. To state the key consequence of this uniformization result, we
introduce some notation. We let A and A f denote the adeles and finite adeles of Q,
respectively. If K p ⊂G(Ap

f ) denotes the level away from p and Kp ⊂ G(Qp) de-
notes the level at p, we let S (G,X)KpK p be the rigid analytic Shimura variety over
Cp of level KpK p. We set ξ be a regular weight of an algebraic representation Vξ

of G over Q and let Lξ denote the associated Qℓ local system on S (G,X)KpK p .
We then define

RΓc(S (G,X)K p,Lξ ) := colimKp→{1}RΓc(S (G,X)K pKp,Lξ )

The basic uniformization result of Shen then furnishes a Q-inner form G′ of G
satisfying that G′Qp

≃ J together with a G(Qp)×WL-invariant map

Θ : RΓc(G,b,µ)⊗L
H (Jb)

A (G′(Q)\G′(A f )/K p,Lξ )→ RΓc(S (G,X)K p,Lξ )

functorial in the level K p. Here A (G′(Q)\G′(A f )/K p,Lξ ) denotes the space of
algebraic automorphic forms of level K p valued in the algebraic representation Vξ

in the sense of [Gro99]. We want to use this uniformization map to apply global
results on the cohomology of RΓc(S (G,X)K p,Lξ ) to study the action of WL on
RΓc(G,b,µ). To do this, we show an analogue of Boyer’s trick, which says that
the non-basic Newton strata of the adic flag variety F ℓG,µ−1 := (G/Pµ−1)ad are
parabolically induced as spaces with G(Qp)-action. Using the Hodge-Tate period
map from the Shimura variety S (G,X)K p to F ℓG,µ−1 , this implies that, if we pass
to the part of the cohomology on both sides where G(Qp) acts via a supercuspidal
representation, we get a WL×G(Qp)-equivariant isomorphism:

Θsc : RΓc(G,b,µ)sc⊗L
H (Jb)

A (G′(Q)\G′(A f )/K p,Lξ )
≃−→RΓc(S (G,X)K p,Lξ )sc
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After showing this, we fix a ρ having supercuspidal Gan-Tantono parameter φ ,
and, via an argument using the simple trace formula, choose a globalization of
ρ to a cuspidal automorphic representation Π′ of G′, which occurs as a J(Qp)-
stable direct summand of A (G′(Q)\G′(A f )/K p,Lξ ) and is an unramified twist
of Steinberg at some non-empty set of places Sst , for some sufficiently large reg-
ular weight ξ and sufficiently small level K p. We set S to be a finite set of places
outside of which Π′ is unramified. The Hecke eigenvalues of Π′ then define a max-
imal ideal m⊂TS in the abstract commutative Hecke algebra of G′ away from the
finite places S. Regarding both sides of Θ as TS-modules, we can localize at m to
get a map

Θm : (RΓc(G,b,µ)⊗L
H (Jb)

A (G′(Q)\G′(A f )/K p,Lξ ))m→RΓc(S (G,X)K p,Lξ )m

We write K p = KSst∪{p}K{p}∪Sst for KSst∪{p} ⊂ G(ASst∪{p}
f ). Taking colimits on

both sides as K{p}∪Sst →{1}, we see that Θm induces a map:

(RΓc(G,b,µ)⊗L
H (Jb)

A (G′(Q)\G′(A f )/KSst∪{p},Lξ ))m→RΓc(S (G,X)KSst∪{p},Lξ )m

Since we know that Θsc is an isomorphism, we have an isomorphism

(RΓc(G,b,µ)⊗L
H (Jb)

A (G′(Q)\G′(A f )/KSst∪{p},Lξ ))
st
m
≃−→RΓc(S (G,X)KSst∪{p},Lξ )

st
m

Noting that A (G′(Q)\G′(A f )/K p,Lξ ) is semi-simple, we can project to the
summand where G(Fv) ≃ G′(Fv) acts via an unramified twist of the Steinberg
representation for all v ∈ Sst . This implies that we have an isomorphism

Θ
st
m,sc : (RΓc(G,b,µ)sc⊗L

H (Jb)
A (G′(Q)\G′(A f )/KSst∪{p},Lξ ))

st
m
≃−→RΓc(S (G,X)KSst∪{p},Lξ )

st
m,sc

The key point is now, by analyzing the simple twisted trace formula of Kottwitz-
Shelstad [KS99] and stable trace formulas of Arthur [Art02], we can prove a
strong multiplicity one type result (Proposition 5.4), for cuspidal automorphic
representations that are unramified twists of Steinberg at some sufficiently large
non-empty set of places and regular of weight ξ at infinity. This implies that
the representations of G′) occurring on LHS of Θst

m must have local constituent
at p with Langlands parameter φ , since we localized at the Hecke eigensystem
defined by Π′ at the unramified places. and, since the local constituents of
the automorphic representations of G′ at p occurring in the LHS are all in the
L-packet Πφ (J) by the strong multipicity one result, we can reduce Proposition
1.4 to showing that RΓc(S (G,X)K p,Lξ )

st
m,sc is concentrated in degree 3 and
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has WL-action given (up to multiplicity) by std ◦ φ ⊗ | · |−3/2. This follows from
the analysis carried out in Kret-Shin [KS16]. In particular, it follows from their
results that this complex will be concentrated in degree 3 and that the traces
of Frobenius in ΓF := Gal(F/F) on the étale cohomology of the associated
global Shimura variety over F are given by std ◦ φτv , where τv are the local
constituents of some weak transfer τ of Π′ to an automorphic representation of
ResF/QGSp4 =: G∗ and φτv is the associated Gan-Takeda parameter. This allows
one, up to multiplicities, to describe the Galois action on the global Shimura
variety in terms of the composition std◦ρτ , where ρτ is a global GSp4(Qℓ)-valued
representation of the absolute Galois group of F constructed by Sorensen [Sor10]
from τ characterized by the property that iWD(std ◦ ρτ)|F−s.s.

WFv
≃ φτv ⊗ | · |−3/2

for all but finitely many places v of F . This would give one precisely the desired
description of the WL-action on RΓc(G,b,µ)[ρ]sc if one knew that φτp = φρ .
Since Π′ is globalization of ρ , one needs to choose τ to be a strong transfer of Π′

at the prime p. This latter goal is accomplished using analysis of the simple trace
formula as done in Kret-Shin [KS16, Section 6] combined with the character
identities proven by Chan-Gan [CG15]. These results on strong transfers also aid
us in deducing the strong multiplicity one type result mentioned above.

In section 2, we give an overview of the Gan-Takeda and Gan-Tantono lo-
cal Langlands correspondence, putting it in the framework of the refined local
Langlands correspondence of Kaletha in preparation for applications to the Kot-
twitz conjecture. In section 3, we describe the Fargues-Scholze local Langlands
correspondence and related ideas, giving the proof of compatibility in cases (1)
and (2) and reducing case (3) to Proposition 1.4, via some properties of the spec-
tral action discussed in section 3.2. In section 4, we discuss basic uniformization
of the relevant Shimura varieties and prove the aforementioned analogue of
Boyer’s trick, showing that the uniformization map Θsc is an isomorphism. In
section 5, we analyze the simple trace formula with fixed central character in
a fashion similar to Kret-Shin [KS16] to deduce the existence of the required
strong transfers, as well as combine this with analysis of the simple twisted trace
formula to deduce the required strong multiplicity one result. In section 6, we
apply the results of section 5 combined with results of Kret-Shin [KS16] and
Sorensen [Sor10] to compute the relevant Galois action on the global Shimura
variety. Finally, in section 7, we put the results of the previous sections together
to prove Proposition 1.4. We then conclude with the application to the proofs
of Theorem 1.1 and 1.3, as well as formally deduce compatibility for the local
Langlands correspondence for Sp4 and its non quasi-split inner form SU2(D), as
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constructed by Gan-Takeda [GT10] and Choiy [Cho17], respectively. We finish
the section with a brief discussion of an application to the cohomology of the
related (non-minuscule) local Shtuka spaces.

Conventions and Notations
For a diamond or v-stack, we freely use the formalism in [Sch18; FS21] of ℓ-adic
cohomology of diamonds and v-stacks. We will fix isomorphisms i : Qℓ

≃−→ C
and j : Qp

≃−→ C and use the (geometric) normalization of local class field theory
that sends the Frobenius to the inverse of the uniformizer. For a supercuspidal L-
parameter, we will often abuse notation and use φ to denote both the L-parameter
and the semisimplified parameter φ ss, as in this case this merely corresponds to
forgetting the trivially acting SL2(C)-factor and applying the isomorphism i. For
a reductive group H/Qp, we will write RH omH(Qp)(−,Qℓ) : D(H(Qp),Qℓ)

op→
D(H(Qp),Qℓ) for the derived smooth duality functor, where D(H(Qp),Qℓ) is
the unbounded derived category of smooth representations. Namely, it is de-
rived functor induced by the left exact smooth duality functor V 7→ (V ∗)sm, where
(V ∗)sm is the set of all functions f : V → Qℓ such that there exists K ⊂ H(Qp)
a compact open such that for all v ∈ V and k ∈ K we have that f (kv) = f (v).
Normally, in the literature the space Sht(G,b,µ)∞ parametrizes modifications
E0 99K Eb with meromorphy µ . For us, it will denote the space parametrizing
modifications of type µ−1. This convention limits the appearances of duals (cf.
Remark 3.8).

1.2 Local Langlands for GSp4 and GU2(D)

1.2.1 Local Langlands for GSp4

In this section, we will describe the local Langlands correspndence of Gan-Takeda
for the group G := GSp4/L, where L/Qp is a finite extension. We fix a choice of
Whittaker datum m := (B,ψ) throughout section 2, where B is the Borel and ψ is
a generic character of L.

As before, we consider the set Φ(G) of admissible homomorphisms

φ : WL×SL2(C)→ Ĝ(C) = GSpin5(C)≃ GSp4(C)
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taken up to Ĝ-conjugacy, where WL acts via a continuous semisimple homomor-
phism with respect to the discrete topology and SL2(C) acts via an algebraic rep-
resentation. Similarly, let Π(G) denote the isomorphism classes of smooth irre-
ducible representations of the group G(L). We can now state the main theorem of
Gan-Takeda.

Theorem 1.2.1. [GT11] There is a surjective finite to one map

LLCG : Π(GSp4)→Φ(GSp4)

π 7→ φπ

with the following properties:

1. π is an (essentially) discrete series representation of GSp4(L) if and only
if its L-parameter does not factor through any proper Levi subgroup of
GSp4(C).

2. Given an L-parameter φ , we set Sφ := ZĜ(Im(φ)) to be the centralizer of
φ . The fiber Πφ (G) can be naturally parametrized by the set of irreducible
characters of the component group

Aφ := π0(Sφ )≃ π0(Sφ/Z(GSp4))

which is either trivial or equal to Z/2Z. When Aφ = Z/2Z, exactly one of
the two representations in Πφ (G) is generic for the fixed choice of Whittaker
datum, and is indexed by the trivial character of Aφ .

3. The similitude character sim(φπ) of GSp4(L) is equal to the central char-
acter ωπ via the isomorphism given by local class field theory.

4. Given a character χ of L∗ and letting λ : GSp4→ L∗ be the similitude char-
acter of GSp4(L), we have, via local class field theory, that the L-parameter
of π⊗ (χ ◦λ ) is equal to φπ ⊗χ .

5. If π ∈Π(GSp4) is a representation, for any smooth irreducible representa-
tion σ of GLr(L), we have that

γ(s,π×σ ,ψ) = γ(s,φπ ⊗φσ ,ψ)

L(s,π×σ ,ψ) = L(s,φπ ⊗φσ ,ψ)
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ε(s,π×σ ,ψ) = ε(s,φπ ⊗φσ ,ψ)

where the RHS are the Artin local factors associated to the representations
of WL×SL2(C) and the LHS are the local factors of Shahidi [Sha90] with
respect to the morphisms of L-groups defined in [GT11, Section 4] in the
case that π is a generic supercuspidal or non-supercuspidal and are the
local factors defined by Townsend [Tow13] if π is a non-generic supercus-
pidal representation.

The map LLCG is uniquely determined by the properties (1),(3), and (5), where
one can take r ≤ 2 in (5).

Remark 1.2.2. When the paper of Gan-Takeda was released there was no good
theory of L,ε , and γ factors for nongeneric supercuspidal representations sat-
isfying the usual properties. (See the 10-Commandents in [LR05]) Instead,
to uniquely characterize the correspondence for these representations, they use
an equality between the Plancharel measure on the family of inductions from
GSpin5(L)×GLr(L) ≃ GSp4(L)×GLr(L) to GSpin2r+5(L) for r ≤ 2. However,
this theory of L,ε , and γ factors was later constructed by Nelson Townsend in his
PhD thesis [Tow13].

We now make the following definition.

Definition 1.2.3. Write std : GSp4 ↪→ GL4 for the standard embedding. We say a
discrete L-parameter is stable if the L-packet Πφ (G) has size 1 and is endoscopic
if it has size 2. Equivalently, by Theorem 2.1 (2), this is equivalent to saying
that the character group A∨

φ
of the component group Aφ has cardinality 1 or 2,

respectively. By [GT11, Lemma 6.2], this can be characterized as follows.

• (stable) std◦φ is an irreducible representation of WL×SL2(C). In this case,
Sφ = Z(Ĝ) =Gm, so Aφ is trivial.

• (endoscopic) std ◦ φ ≃ φ1 ⊕ φ2, where the φi : WL × SL2(C) → GL2(C)
for i = 1,2 are distinct irreducible 2-dimensional representations of WL×
SL2(C) with det(φ1) = det(φ2). In this case, Aφ ≃ Z/2Z. We recall
that GSp4(C) has a unique endoscopic group GSO2,2, and the endo-
scopic parameters lie in the image of the map Φ(GSO2,2) → Φ(GSp4).
More specifically, the dual group of GSO2,2 is GSpin4 and one has an
identification GSpin4 ≃ (GL2(C)× GL2(C))0 := {(g1,g2) ∈ GL2(C)×
GL2(C)|det(g1) = det(g2)} and the map Φ(GSO2,2) → Φ(GSp4)

std◦−−→
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Φ(GL4) comes from the inclusion (GL2(C)×GL2(C))0 ⊂ GL4(C). Us-
ing this, we can compute that one has an identification

Sφ ≃ {(a,b) ∈ C∗×C∗|a2 = b2} ⊂ (GL2(C)×GL2(C))0

where the center Z(GSp4)(C)≃ C∗ embeds diagonally.

For an L-parameter φ we see, by Theorem 2.1 (2), that the size of the L-packet
Πφ (G) is at most 2, this allows us to subdivide into three cases:

1. The L-packet Πφ (G) does not contain any supercuspidal representations.

2. The L-packet Πφ (G) contains one supercuspidal and one non-
supercuspidal.

3. The L-packet contains only supercuspidals.

In Case (1) the parameter will not be discrete. Case (2) is where the parameter φ

does not factor through a Levi-subgroup so it is discrete, but its semisimplification
φ ss as defined in section 1 does. Case (2) does not occur when the parameter is
a stable discrete parameter, by definition. The relevant case is when the param-
eter is discrete endoscopic. To understand this, we let ν(n) denote the unique
n-dimension irreducible representation of SL2(C) then there are two cases:

1. (Saito-Kurokawa Type) We have std ◦ φ = φ0⊕ χ ⊠ ν(2), where φ0 is a
2-dimensional irreducible representation of WL and χ is a character, with
χ2 = det(φ0). Therefore, the semisimplification φ ss satisfies: std ◦ φ ss =

φ0⊕χ⊗| · | 12 ⊕χ⊗| · |− 1
2 .

2. (Howe-Piatetski–Shapiro Type) We have std ◦ φ = χ1⊠ ν(2)⊕ χ2⊠ ν(2),
where χ1 and χ2 are distinct characters of WL satisfying χ2

1 = χ2
2 . Therefore,

the semisimplification φ ss satisfies: std◦φ ss = χ1⊗|· |
1
2 ⊕χ1⊗|· |−

1
2 ⊕χ2⊗

| · | 12 ⊕χ2⊗| · |−
1
2 .

Remark 1.2.4. 1. The terminology here is explained by Arthur’s classification
[Art04] of the global automorphic representations of GSp4 appearing in the
papers [Kur78] and [HP79], respectively.

2. We will mention in the next section how to distinguish these two cases via
the number of supercuspidals in the L-packet Πφ (GU2(D)) defined by the
Gan-Tantono local Langlands correspondence.
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Case (3) is the situation where the parameter φ is supercuspidal as defined in
the introduction. In particular, in the supercuspidal case the restriction of the
parameter φ to the SL2(C) factor is trivial, so the irreducible representations
occurring in the decomposition of std◦φ are just representations of WL.

For the purposes of applying the weak form of the Kottwitz Conjecture
proven in Hansen-Kaletha-Weinstein [HKW22], we formulate this correspon-
dence in terms of the refined local Langlands of Kaletha [Kal16] with respect
to the fixed choice of Whittaker datum m. Now, given a parameter φ that is
either mixed supercuspidal or supercuspidal, we have by Theorem 2.1 (2) a
correspondence between the L-packet Πφ (G) and the set of irreducible characters
A∨

φ
. This in turn gives rise to an irreducible character of the group Sφ via the

composition:
Sφ → π0(Sφ ) = Aφ

This allows us to make the following definition.

Definition 1.2.5. For φ a supercuspidal or mixed-supercuspidal parameter φ as
above and π ∈Πφ (G), we denote the character of Sφ described above by τπ .

1.2.2 Local Langlands for GU2(D)

In this section, we describe the local Langlands correspondence for the unique
non-split inner form J = GU2(D), the group of similitudes of the unique 2-
dimensional Hermitian vector space over the quaternion division algebra D/L.
As in the previous section, we let Π(J) denote the set of irreducible admissible
representations of J, and Φ(J) be the set of L-parameters of J. This is a subset of
the previous set Φ(GSp4) as we will now explain. J has a unique up to conjugacy
minimal parabolic whose Levi factor is

D∗×GL1.

This defines a form of the Siegel parabolic of GSp4 and it determines a dual
parabolic subgroup P∨(C) in the dual group GSp4(C) of GU2(D). This is the
Heisenberg parabolic subgroup of GSp4(C), its conjugacy class is said to be rel-
evant for J while all other conjugacy classes of proper parabolics are said to be
irrelevant. We say φ ∈Φ(GSp4) is relevant if it does not factor through any irrele-
vant parabolic subgroups of GSp4(C). We define Φ(J) to be the subset of relevant
φ in Φ(GSp4). We set Bφ := π0(ZSp4(Im(φ))). One has an exact sequence:

⟨±1⟩ → Bφ → Aφ → 0
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Implying that one has an injection on the group of irreducible characters Âφ ↪→ B̂φ ,
which identifies Âφ as the subgroup of (index at most 2) of characters trivial on
the image of the center Z(Sp4)(C). One can check that B̂φ ̸= Âφ if and only if φ

is relevant for GU2(D). Now we can state the main theorem of Gan and Tantono.

Theorem 1.2.6. [GT14] There is a natural surjective finite-to-one map

LLCJ : Π(GU2(D))→Φ(GU2(D))

ρ 7→ φρ

with the following properties:

1. ρ is an (essentially) discrete series representation of GU2(D) if and only
if its parameter φρ does not factor through any proper Levi subgroup of
GSp4(C).

2. For an L-parameter φ , the fiber Πφ (J) can be naturally parametrized by the
set B̂φ \ Âφ . This set has size either 1 or 2.

3. The similitude character sim(φρ) of φρ is equal to the central character ωρ

of ρ , via the isomorphism given by local class field theory.

4. Given a character χ of L∗ and letting λ : GU2(D) → L∗ be the simili-
tude character of GU2(D), we have, via local class field theory, that the
L-parameter of ρ⊗ (χ ◦λ ) is equal to φρ ⊗χ .

5. If ρ ∈ Π(GU2(D)) is a non-supercuspidal representation then, for any
smooth irreducible representation σ of GLr(L), we have that

γ(s,ρ×σ ,ψ) = γ(s,φρ ⊗φσ ,ψ)

L(s,ρ×σ ,ψ) = L(s,φρ ⊗φσ ,ψ)

ε(s,π×σ ,ψ) = ε(s,φρ ⊗φσ ,ψ)

where the RHS are the Artin local factors associated to the representations
of WL×SL2(C) and the LHS are the local factors of Shahidi, as defined in
[GT14, Section 8].
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6. Suppose that ρ is a supercuspidal representation. For any irreducible super-
cuspidal representation σ of GLr(L) with L-parameter φσ , if µ(s,ρ⊠σ ,ψ)
denotes the Plancharel measure associated to the family of induced repre-
sentations IP(π⊠σ ,s) on GSpinr+4,r+1, where we have regarded ρ⊠σ as a
representation of the Levi subgroup GSpin4,1×GLr ≃GU2(D)×GLr, then
µ(s,ρ⊠σ) is equal to

γ(s,φ∨ρ ⊗φσ ,ψ)·γ(−s,φρ⊗φ
∨
σ ,ψ)·γ(2s,Sym2

φσ⊗sim(φρ)
−1,ψ))·γ(−2s,Sym2

φ
∨
σ ⊗sim(φρ),ψ)

The map LLCJ is uniquely determined by the properties (1), (3), (5), and
(6), with r ≤ 4 in (5) and (6).

We now further elaborate on the structure of the L-packets Πφ (J) :=
LLC−1

J (φ) in the case where the parameter φ is mixed supercuspidal. If the pa-
rameter φ is of this form, then, it follows from [GT14, Proposition 5.4] and the
description of LLCJ provided in [GT14, Section 7], that the L-packet Πφ (J) has
following structure, as alluded to in Remark 2.2 (2).

1. (Saito-Kurokawa Type) The L-packet Πφ (J) = {ρdisc,ρsc} contains one
supercuspidal representation ρsc and one non-supercuspidal representation
ρdisc.

2. (Howe-Piatetski–Shapiro Type) The L-packet Πφ (J) = {ρ1
disc,ρ

2
disc} con-

tains no supercuspidal representations.

We now would also like to briefly comment on the structure of the set B̂φ \ Âφ ,
confirming the expectation that the size of the L-packets Πφ (G) and Πφ (J) is
always the same.

• (stable) In the case that the L-parameter φ is stable, we have that Bφ =Z/2Z
and, as noted in section 2.1, Aφ = 1. This means the set B̂φ \ Âφ consists of
one element corresponding to the non-trivial character.

• (endoscopic) In the case that the parameter φ is endoscopic, we have that
the decomposition std◦φ ≃ φ1⊕φ2 induces an exact sequence

Aφ = Z/2Z ∆−→ Bφ = Z(SL2)×Z(SL2) = Z/2Z×Z/2Z

and so the set B̂φ \ Âφ has size 2 and is indexed by two characters η+− and
η−+ each non-trivial on one of the two C∗-factors under the isomorphism

Sφ ≃ {(a,b) ∈ C∗×C∗|a2 = b2} ⊂ (GL2(C)×GL2(C))0

from section 2.1.
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We now wish to put this local Langlands correspondence for the inner form in the
context of the refined local Langlands correspondence of Kaletha [Kal16]. We
consider the Kottwitz set B(G) [Kos21b; RR96] and let b ∈ B(G) be the basic
element whose associated σ -centralizer Jb = J. We take this to be the basic el-
ement whose slope homorphism is the dominant rational cocharacter of G given
by (1/2,1/2,1/2,1/2). Let Z(GSp4)≃Gm be the center. We recall that we have
an isomorphism π1(G) ≃ X∗(Z(Ĝ)) ≃ Z and that the κ-invariant of b is sent to
the element 1 ∈ Z under this isomorphism. This indexes the identity representa-
tion of Gm, denoted idGm . Thus, given a discrete parameter (= supercuspidal or
mixed supercuspidal) φ : WL×SL2(C)→ GSp4(C), the refined local Langlands
correspondence asserts bijections

Πφ (G)←→{irreducible algebraic representations τ of Sφ s.t τ|Z(Ĝ) = 1}

π 7→ τπ

Πφ (J)←→{irreducible algebraic representations τ of Sφ s.t τ|Z(Ĝ) = idGm}

ρ 7→ τρ

where 1 is the trivial representation. In section 2.1, we saw how for π ∈Πφ (G) to
construct the desired τπ . Here it is uniquely pinned down by the property that the
trivial representation corresponds to the unique m-generic representation. In the
case of the inner form, the situation is a bit more tricky. Consider ρ ∈ Π(J) with
associated L-parameter φρ . If φρ is stable then Sφ =Gm and τρ is simply idC∗ . If
φ is endoscopic, then, as noted in section 2.1, we have an inclusion:

Z(GSp4)(C) = C∗ ∆−→ Sφ ≃ {(a,b) ∈ C∗×C∗|a2 = b2}

We consider the characters τi : Sφ → C∗ for i = 1,2 given by projecting to the
first and second coordinate. These satisfy the property that τi|C∗ = idC∗ on the
diagonally embedded center as desired. Similarly, under the parametrization of
Gan-Tantono Πφ (J) = {ρ+−,ρ−+}, where ρ+− and ρ−+ correspond to the char-
acters η+− and η−+ described above. Specifically, if π1 and π2 are the unique
discrete series representations of GL2(L) in the L-packet over φ1 and φ2 then

ρ+− := θ(JL−1(τ2)⊠ τ1) and ρ−+ := θ(JL−1(τ1)⊠ τ2)

where θ denotes the non-zero local theta lift from D∗×GL2(F) to GU2(D), as
in [GT14, Proposition 5.4], and JL : Π(D∗)→ Π(GL2) is the Jacquet-Langlands
correspondence. Now we would like to match these two representations with
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τ1 and τ2 under the refined local Langlands of Kaletha. Suppose we fix such
a matching. Now, we consider a refined endoscopic datum c for the quasi-split
reductive group G, which we recall is a tuple (H,s,H ,η) which consists of

• a quasi-split group H over F ,

• an extension H of WF by Ĥ such that the map WF → Out(Ĥ) coincides
with the map ρH : WF → Out(Ĥ) induced by the action of WF on Ĥ ⊂ LH,

• an element s ∈ Z(Ĥ)Γ,

• an L-homomorphism η : H → LG,

satisfying the condition:

• we have η(Ĥ) = ZĜ(s)
◦.

Considering J as the σ -centralizer of the unique basic element b1 ∈ B(G) of
the Kottwitz invariant 1, this defines for us an extended pure inner twisting of
(ξ ,b) : G→ Jb in the sense of [Kot97a, Section 5.2], and we can attach a canon-
ical transfer factor ∆[m,c,b1] to this datum, as defined in [Kal16, Section 4.1].
Given a test function f ∈C∞

c (J(Qp),Qℓ), we can use these transfer factors to say
what it means for f c ∈C∞

c (H(Qp),Qℓ) to be matching in the sense that their stable
orbital integrals normalized with respect to these transfer factors match up.

Now, suppose we have a discrete parameter φ ∈ Φ(J) and a refined endo-
scopic datum c, such that φ = η ◦ φ c as conjugacy classes of parameters for an
L-parameter φ c : WL×SL(2,Qℓ)→H . Then the matching is uniquely described
using the endoscopic character identities. This assert an equality

Θ
1
φ c( f c) = ∑

π∈Πφc(H)

tr(1|τπ)θπ( f c) = e(J) ∑
ρ∈Πφ (J)

tr(s|τρ)θπ( f ) = Θ
s
φ ( f )

where e(J) is the Kottwitz sign of J, as defined in [Kot97b] and θπ denotes the
Harish-Chandra character of π . Using the linear independence of the distributions
Θπ and the fact that the packets Πφ (J) are disjoint, we can see that the match-
ing between ρ 7→ τρ is uniquely characterized by these relations. To show that
there exists a matching between the representations τ1 and τ2 and ρ+− and ρ−+,
we need to show that these identities are satisfied under the parametrization of
Gan-Takeda-Tantono. This will follow from the endoscopic character identities
verified by Chan-Gan [CG15]. Namely, in the case that the parameter φ is sta-
ble, one only needs to consider the trivial endoscopic datum ctriv = (G,1,LG, id),
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and these identities follow from [CG15, Proposition 11.1 (1)]. In the case that
the parameter φ is endoscopic, the case ctriv = (G,1,LG, id) follows from [CG15,
Proposition 11.1 (1)], but one also needs to consider the refined endoscopic datum
given by c= (GSO2,2,(1,−1),GSpin4, i : GSpin4→ GSpin5 ≃ GSp4), where i is
the map from before and (1,−1) ∈ Sφ ⊂ (GL2(C)×GL2(C))0. In this case, the
identities (up to a sign) follow from combining [CG15, Proposition 11.1 (1)] as
before and [CG15, Proposition 11.1 (2)], where we note that since τ1 and τ2 are
by definition two projections their traces against (−1,1) have the opposite sign,
which is consistent with [CG15, Proposition 11.1 (2)]. This shows the refined lo-
cal Langlands correspondence of Kaletha holds for the group G; however, in order
to describe the exact matching between ρ+− and ρ−+ with τ1 and τ2 one needs to
exactly compare the signs of the ad-hoc transfer factors fixed in the statement of
[CG15, Proposition 11.1 (2)] with the canonical ones ∆(m,c,b1) constructed by
Kaletha. The above argument only shows that there is some matching; nonethe-
less, for our purposes the choice ends up being irrelevant, so we denote the repre-
sentations in the L-packet Πφ (J) corresponding to the projections τ1 and τ2 by ρ1
and ρ2, respectively. Similarly, for the representations obtained by pre-composing
a character with the composition

Sφ → Aφ

we denote the elements of the L-packet Πφ (G) corresponding to the trivial (non-
trivial) character of Aφ by π+ (resp. π−). We note that, by Theorem 2.1 (2), π+

can be characterized by the unique m-generic representation of this L-packet.

Definition 1.2.7. Given a supercuspidal or mixed supercuspidal L-parameter φ as
above and ρ ∈Πφ (J), we let τρ be the irreducible representation of Sφ associated
to it via the matching described above. Given π ∈Πφ (G) and ρ ∈Πφ (J), we set

δπ,ρ := τ
∨
π ⊗ τρ

where τ∨π denotes the contragredient.

Remark 1.2.8. Changing the choice of Whittaker datum scales the representations
by a 1-dimensional character of Sφ that is trivial when restricted to the center, so
in particular this pairing is independent of the choice of Whittaker datum (See
[HKW22, Lemma 2.3.3]).
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1.3 The Fargues-Scholze Local Langlands Corre-
spondence

We will now discuss the Fargues-Scholze local Langlands correspondence and de-
duce compatibility in the cases where the Gan-Takeda/Gan-Tantono parameter is
not supercuspidal. We will then conclude by reducing the question of compatibil-
ity in the supercuspidal case to Proposition 1.4.

1.3.1 Overview of the Fargues-Scholze Local Langlands Cor-
respondence

For now, let G be any connected reductive group over Qp. Since we are going
to be using geometric Satake, we fix a choice of the square root of p in Qℓ, so
that half Tate-twists are well-defined. For us, we will always take i−1(

√
p), where

i :Qℓ
≃−→C is the fixed isomorphism. Fargues-Scholze [FS21] consider the moduli

space of G-bundles on the Fargues-Fontaine curve X , denoted BunG. This moduli
space is an Artin v-stack (in the sense of [FS21, Section IV.I]) and has the struc-
ture that the underlying points of its topological space |BunG| are in natural bijec-
tion with elements of the Kottwitz set B(G), where the slopes of the G-isocrystal
associated to b ∈ B(G) are the negatives of the slopes of the associated vector
bundle Eb and the specializations between points of |BunG| is dictated by the
partial ordering on B(G) induced by the kappa invariant and the slope homomor-
phism [Vie]. In particular, the connected components of BunG are in bijection with
B(G)basic

≃−→ π1(G)Γ. Specifically, for any b ∈ B(G)basic, there is a unique open
Harder-Narasimhan strata Bunb

G ⊂ BunG dense inside the associated connected
component. We recall that the elements of B(G)basic parametrize extended pure
inner forms of G, via sending an element b ∈ B(G)basic to its σ -centralizer Jb/Qp.
For such a basic b, we have an identification Bunb

G≃ [∗/Jb(Qp)]=: BJb(Qp) of the
HN-strata defined by b and the classifying stack of Jb(Qp). For any Artin v-stack
Z, Fargues-Scholze define a triangulated category D■(Z,Qℓ) of solid Qℓ-sheaves
[FS21, Section VII.1] and isolate a nice full subcategory Dlis(Z,Qℓ)⊂D■(Z,Qℓ)
of lisse-étale Qℓ-sheaves [FS21, Section VII.6.], which may be roughly thought
of as the unbounded derived category of étale Qℓ sheaves on Z, where one has
made an enlargement to capture information about the topology of p-adic groups.
In any case, the key point for us is that we have the following basic result.
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Lemma 1.3.1. [FS21, Proposition VII.7.1] There is an equivalence of categories

Dlis(BJb(Qp)),Qℓ)≃ D(Jb(Qp),Qℓ)

where the RHS denotes unbounded derived category of smooth Jb(Qp)-
representations with coefficients in Qℓ. Under this equivalence, Verdier duality
corresponds to smooth duality.

Remark 1.3.2. The main reason for constructing this category Dlis is that, if one
were to take the usual definition for the category of étale Qℓ-sheaves on BJb(Qp),
this equivalence would no longer be true. In particular, one would obtain the
bounded derived category of representations of Jb(Qp) admitting a Jb(Qp)-stable
Zℓ-lattice, where the representation is continuous with respect to the ℓ-adic topol-
ogy on the target. This would limit the scope of the Fargues-Scholze LLC as, in
general, one wants to consider smooth Qℓ-representations of Jb(Qp), and hence
the need for the enlargement of the derived category to Dlis.

Lemma 3.1 tells us that, given an irreducible smooth representation π of
G(Qp), we can consider the associated sheaf, denoted Fπ , on Bun1

G the open HN-
strata corresponding to the trivial element 1∈B(G), and take the extension by zero
along the open inclusion j!(Fπ)

2. This realizes the representation π in terms of
a sheaf on the moduli space BunG in an analogous way to how the function-sheaf
dictionary realizes cuspidal automorphic forms as functions associated to sheaves
in the context of curves over finite fields. Following V. Lafforgue [Laf18], Fargues
and Scholze construct a semisimple L-parameter associated to this sheaf by look-
ing at the action of the excursion algebra on this category Dlis(BunG,Qℓ). This
relies on a form of the geometric Satake correspondence for the B+

dR-affine Grass-
mannians. For any finite set I, let X I be the product of I-copies of the diamond
X = Spd(Q̆p)/FrobZ. We then have the Hecke stack

Hck

BunG BunG×X I
h←

h→×supp

defined as the functor that parametrizes, for S a perfectoid space in characteristic
p together with a map S→ X I defining a tuple of Cartier divisors in the relative

2The shriek push-forward is not in general well-defined in the context of solid Qℓ-sheaves.
However, for the inclusion of HN-strata into BunG, its existence follows from [FS21, Proposi-
tion VII.7.3], using [FS21, Proposition VII.6.7].
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Fargues-Fontaine XS over S, corresponding to characteristic 0 untilts S♯i for i ∈ I
of S, a pair of G-torsors E1, E2 together with an isomorphism

β : E1|XS\
⋃

i∈I S♯i

≃−→ E2|XS\
⋃

i∈I S♯i

where h←((E1,E2, i,(S
♯
i )i∈I)) = E1 and h→ × supp((E1,E2,β ,(S

♯
i )i∈I)) =

(E2,(S
♯
i )i∈I). We set LGI to be I-copies of the Langlands dual group of G, i.e

LG = Q⋉ Ĝ(Qℓ), where Ĝ is the reductive group having dual root datum to G
and is viewed as a reductive group over Qℓ. The Weil group acts on Ĝ via the
induced action on root datum through some finite quotient Q, which we now fix.
Let RepQℓ

(LGI) denote the category of algebraic Qℓ-representations of I-copies
of LG. For each element W ∈ RepQℓ

(LGI), the geometric Satake correspondence
of Fargues-Scholze [FS21, Chapter VI] furnishes a solid Qℓ-sheaf SW on Hck.
This allows us to define Hecke operators.

Definition 1.3.3. For each W ∈ RepQℓ
(LGI), we define the Hecke operator

TW : Dlis(BunG,Qℓ)→ D■(BunG×X I)

A 7→ R(h→× supp)♮(h←∗(A)⊗L SW )

where SW is a solid Qℓ-sheaf and the functor R(h→× supp)♮ is the natural push-
forward. I.e the left adjoint to the restriction functor in the category of solid Qℓ-
sheaves [FS21, Proposition VII.3.1].

Remark 1.3.4. These satisfy various compatibilities with respect to composition
and restriction to the diagonal. In particular, given two representations V,W ∈
RepQℓ

(LG), we have that

(TV × id)(TW )(·)|∆ ≃ TV⊗W (·)

where ∆ : X → X2 is the diagonal map.

We then consider Dlis(BunG,Qℓ)
BW I

Qp , the category of objects in
Dlis(BunG,Qℓ) with continuous action by W I

Qp
. Examples of objects in this cat-

egory are objects of Dlis(BunG,Qℓ) tensored by a continuous representation of
W I

Qp
, for a more precise description see [FS21, Section IX.1]. With this in hand,

we then have the following theorem of Fargues-Scholze.
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Theorem 1.3.5. [FS21, Theorem I.7.2, Proposition IX.2.1, Corollary IX.2.3] The
Hecke operator TW for W ∈ RepQℓ

(LGI)

TW : Dlis(BunG,Qℓ)→ D■(BunG×X I)

induces a functor

Dlis(BunG,Qℓ)→ Dlis(BunG,Qℓ)
BW I

Qp

and the induced endofunctors of Dlis(BunG,Qℓ) given by forgetting the Weil group
action preserve compact and ULA objects.

Remark 1.3.6. This should be thought of as a manifestation of Drinfeld’s Lemma,
where (roughly) the étale fundamental group of Spd(Q̆p)/FrobZ = X should be
the same as WQp .

From now on, when talking about Hecke operators we shall always refer
to this induced functor, which we will also abusively denote by TW . Theorem
3.2 has direct implications for the cohomology of local Shimura varieties. To
study this, consider a minuscule cocharacter µ with field of definition E, and let
b ∈ B(G,µ) be the unique basic element in the µ-admissible locus (See [RV14,
Definition 2.3]). We say that the triple (G,b,µ) defines a local Shimura datum
in the sense of Rapoport-Viehmann [RV14]. Attached to such a data, Scholze-
Weinstein [SW20a] construct a tower of diamonds

pK : (Sht(G,b,µ)K)K⊂G(Qp)→ Spd(Ĕ)

for varying open compact K ⊂ G(Qp). This is obtained by considering the
space Sht(G,b,µ)∞ which parametrizes modifications Eb→ E0 with meromorphy
bounded by µ , where Eb (resp. E0) is the bundle corresponding to b ∈ B(G) (resp.
the trivial bundle) on the Fargues-Fontaine curve. It has commuting actions by
G(Qp) and Jb(Qp) given by acting via automorphisms on E0 and Eb, respectively.
The tower is then given by considering the quotients of this space for varying open
compact K ⊂ G(Qp) under the action of G(Qp).

Definition 1.3.7. Let Sht(G,b,µ)K,Cp be the base-change of the above tower to
Cp. We define the complex

RΓc(G,b,µ) := colimK→{1}RΓc(Sht(G,b,µ)K,Cp,Qℓ)

a colimit of smooth WE × Jb(Qp)-modules with a G(Qp)-action, where WE is the
Weil group of E. A priori it only has an action by the inertia group, but this space
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admits a non-effective Frobenius descent datum. We then define, for ρ a smooth
admissible Jb(Qp)-representation, the complex

RΓc(G,b,µ)[ρ] := colimK→{1}RΓc(G,b,µ)K⊗L
H (Jb)

ρ

where H (Jb) is the usual smooth Hecke algebra. We also define

RΓ
♭
c(G,b,µ)[ρ] := colimK→{1}RH omJb(Qp)(RΓc(G,b,µ)K,ρ)[−2d](−d)

Similarly, for π a smooth admissible G(Qp)-representation, we define
RΓc(G,b,µ)[π] and RΓ♭

c(G,b,µ)[π].

Remark 1.3.8. We note that, by Hom-Tensor duality,
RH om(RΓc(G,b,µ)[ρ],Qℓ)[−2d](−d) is isomorphic to RΓ♭

c(G,b,µ)[ρ∗],
where ρ∗ is the contragredient. We will end up using both of these cohomology
groups throughout this manuscript. The former is more natural from the point
of view of basic uniformization, while the latter is disposable to the results of
Hansen-Kaletha-Weinstein [HKW22] on the Kottwitz conjecture.

To study these complexes, we specialize the above discussion of Hecke oper-
ators to the case where W =Vµ−1 is specified by the highest weight representation
of highest weight µ−1 a dominant inverse of µ and I = {∗} is a singleton. The
sheaf SW will then be supported on the closed subspace Hck≤µ−1 = Hckµ−1 of
Hck, parametrizing modifications with meromorphy bounded by or equal to µ−1,
where the equality follows by the minuscule assumption. The space Hckµ−1 is
cohomologically smooth of dimension d := ⟨2ρG,µ⟩ , and the sheaf SW , as in the
geometric Satake correspondence of [MV07], behaves like the intersection coho-
mology of this space, so we have SW ≃Qℓ[d](

d
2 ). This implies that, to study the

action of the Hecke operator TW on BunG, we can look at the restriction of the
diagram defining the Hecke correspondence to this subspace

Hckµ−1

BunG BunG×Spd(Ĕ)/FrobZ
h←

µ−1

h→
µ−1×supp

In particular, we have an isomorphism:

Tµ−1(A) := TW (A)≃ R(h→
µ−1× supp)♮(h←∗µ−1(A))[d](

d
2
)
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Now consider a smooth admissible representation π of G(Qp) and apply the
Hecke operator to the sheaf:

j!(Fπ)

Then the fiber of Hckµ−1 of h←
µ−1 over Bun1

G is identified with

[GrG,µ−1/G(Qp)]

the Schubert cell/variety associated to µ−1 in the B+
dR-affine Grassmannian, quo-

tiented out by G(Qp) acting on the trivial bundle via automorphisms. The sheaf

Tµ−1 j!(Fπ)

is then supported on the HN-strata given by the Kottwitz elements in B(G,µ)
since, by [Rap18, Proposition A.9], any G-bundle occurring as a modification of
type µ−1 of the trivial bundle has associated Kottwitz element lying in this set.
We then consider the restriction

j∗bTµ−1 j!(Fπ) ∈ D(Jb(Qp),Qℓ)
BWE

where jb : Bunb
G ↪→BunG is the inclusion of the open HN-strata defined by b. The

complex j∗bTµ−1 j!(Fπ) will be computed in terms of the cohomology of sheaves
supported on the Newton strata

[Grb
G,µ−1/G(Qp)]

parametrizing modifications of type µ−1 of the trivial bundle such that the re-
sulting bundle has associated Kottwitz element of type b after pulling back to
each geometric point, modulo automorphisms of the trivial bundle. The space
Sht(G,b,µ)∞ defined above is a pro-étale Jb(Qp)-torsor with respect to the
Jb(Qp)-action by automorphisms of Eb

Sht(G,b,µ)∞→ Grb
G,µ−1

over this Newton strata. Using this description of the infinite level Shimura vari-
ety, it then follows from base change and the fact that the sheaves SW are ULA
over X (See [FS21, Chapter IX.3] for details) that we have an isomorphism

RΓc(G,b,µ)[π][d](
d
2
)≃ j∗bTµ−1 j!(Fπ) ∈ D(Jb(Qp),Qℓ)

BWE
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of Jb(Qp)×WE-modules. For our purposes, it will be also useful to have a de-
scription of the ρ-isotypic part of this cohomology in terms of Hecke operators,
for ρ a smooth irreducible representation of Jb(Qp). In particular, analysis similar
to the above gives us an isomorphism

RΓc(G,b,µ)[ρ][d](
d
2
)≃ j∗1Tµ jb!(Fρ)

as G(Qp)×WE-modules. We record these two isomorphisms as a corollary of the
above discussion.

Corollary 1.3.9. Given a local Shimura datum (G,b,µ) as above and π (resp.
ρ) a smooth irreducible representation of G(Qp) (resp. Jb(Qp)). There exists an
isomorphism

RΓc(G,b,µ)[ρ][d](
d
2
)≃ j∗1Tµ jb!(Fρ)

of complexes of G(Qp)×WE-modules and an isomorphism

RΓc(G,b,µ)[π][d](
d
2
)≃ j∗bTµ−1 j1!(Fπ)

of complexes of Jb(Qp)×WE-modules.

We have the following basic structural result which, in more generality, fol-
lows from the analysis in Fargues-Scholze, but, in the case of a local Shimura
datum, also partially follows from standard finiteness results for rigid spaces (See
[RV14, Section 6]). In particular, one can show the following.

Theorem 1.3.10. [FS21, Corollary I.7.3, Page 317] For a local Shimura datum
(G,b,µ) as above, the cohomology groups of RΓ♭

c(G,b,µ)[ρ] and RΓc(G,b,µ)[ρ]
are valued in smooth admissible G(Qp)-representations of finite length with an
action of WE . Moreover, they are concentrated in degrees 0≤ i≤ 2d.

Remark 1.3.11. A sheaf F ∈Dlis(BunG,Qℓ) being ULA is equivalent to its stalks
at different HN-strata being valued in complexes of smooth admissible represen-
tations [FS21, Theorem V.7.1, Proposition VII.7.9], so indeed the admissibility of
the above complex is a consequence of Theorem 3.2 and Corollary 3.3.

Fargues-Scholze use the endofunctors defined by the Hecke algebra on
Dlis(BunG,Qℓ) to define the excursion algebra.
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Definition 1.3.12. For a finite set I, a representation W ∈ RepQℓ
(LGI), maps α :

Qℓ→ ∆∗W and β : ∆∗W → Qℓ, and elements γi ∈WQp for i ∈ I, one defines the
excursion operator on Dlis(BunG,Qℓ) to be the composition:

id = TQℓ

α−→ T∆∗W = TW
(γi)i∈I−−−→ TW = T∆∗W

β−→ TQℓ
= id

where ∆∗(W ) is the precomposition of W with the diagonal embedding LG→ LGI .

This defines a natural endomorphism of the identity functor on Dlis(BunG,Qℓ).
If one looks at the induced endofunctor given by the inclusion D(G(Qp),Qℓ) ⊂
Dlis(BunG,Qℓ) induced by the open immersion j : Bun1

G ↪→ BunG then one ob-
tains a natural endomorphism of the identity functor on D(G(Qp),Qℓ). In other
words, we get a family of compatible endomorphisms for all complexes of smooth
representations of G(Qp); namely, an element of the Bernstein center. One can
verify that this excursion algebra satisfies similar properties to that considered
by V. Lafforgue, so, using Lafforgue’s reconstruction theorem [Laf18, Proposi-
tion 11.7], one can show the following.

Theorem 1.3.13. To an irreducible smooth Qℓ-representation π of G(Qp) (or
more generally A ∈ Dlis(BunG,Qℓ) any Schur-irreducible object (i.e End(A) =
Qℓ)), there is a unique continuous semisimple map

φ
FS
π : WQp →

LG(Qℓ)

characterized by the property that for all I,W,α,β , and γi ∈WQp for i ∈ I, the
corresponding endomorphism of π defined above is given by multiplication by the
scalar that results from the composite

Qℓ
α−→ ∆

∗W =W
(φπ (γi))i∈I−−−−−−→W = ∆

∗W
β−→Qℓ

By further studying the geometry of BunG and the Hecke stacks, one can de-
duce various good properties of this correspondence.

Theorem 1.3.14. [FS21, Theorem I.9.6] The mapping defined above

π 7→ φ
FS
π

enjoys the following properties:

1. (Compatibility with Local Class Field Theory) If G = T is a torus, then
π 7→ φπ is the usual local Langlands correspondence
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2. The correspondence is compatible with character twists, passage to contra-
gredients, and central characters.

3. (Compatibility with products) Given two irreducible representations π1 and
π2 of two connected reductive groups G1 and G2 over Qp, respectively. We
have

π1⊠π2 7→ φ
FS
π1
×φ

FS
π2

under the Fargues-Scholze local Langlands correspondence for G1×G2.

4. (Compatibility with parabolic induction) Given a parabolic subgroup P⊂G
with Levi factor M and a representation πM of M, then the semisimple L-
parameter corresponding to any sub-quotient of indG

P (πM) the (normalized)
parabolic induction is the composition

WQp

φ FS
πM−−→ LM(Qℓ)→L G(Qℓ)

where the map LM(Qℓ)→ LG(Qℓ) is the natural embedding.

5. (Compatibility with Harris-Taylor/Henniart LLC) For G = GLn or an in-
ner form of G the semisimple L-parameter associated to π is the (semi-
simplified) parameter φ ss

π . associated to π by Harris-Taylor/Henniart.

6. (Compatibility with Restriction of Scalars) The above story works the same
for G′ a connected reductive group over any finite extension E ′/Qp, where
one then gets a semisimple L-parameter valued on WE ′ . If G = ResE ′/QpG′

is the Weil restriction of some G′/E ′ then L-parameters for G/Qp agree
with L-parameters for G′/E ′ in the usual sense.

7. (Compatibility with Isogenies) If G′→ G is a map of reductive groups in-
ducing an isomorphism of adjoint groups, π is an irreducible smooth repre-
sentation of G(E) and π ′ is an irreducible constituent of π|G′(E) then φπ ′ is
the image of φπ under the induced map Ĝ→ Ĝ′.

Remark 1.3.15. In (5), the compatibility of the Fargues-Scholze local Langlands
correspondence with the Harris-Taylor/Henniart local Langlands correspondence
for an arbitrary inner form of GLn is not included in the paper of Fargues-Scholze
[FS21]. However, it follows from the work of Hansen-Kaletha-Weinstein on the
Kottwitz conjecture [HKW22, Theorem 1.0.3].
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1.3.2 The Spectral Action
With these basic structural properties out of the way, we turn our attention to
the "spectral action" on Dlis(BunG,Qℓ), which will be very important to proving
compatibility of the two correspondences in the case where the parameter is super-
cuspidal, as well as deducing applications to the Kottwitz conjecture. We recall
that an L-parameter over Qℓ can be thought of as a continuous (not necessarily
semisimple) homomorphism

φ : WQp →
LG(Qℓ)

commuting with the natural projection to Q. One can use the classical construc-
tion of Grothendieck-Deligne to see that this coincides with the definition given
in section 2 for GSp4 after applying the isomorphism i, where the monodromy op-
eration is recovered through the exponential of the action of WQp on the ℓ-power
roots of unity, and assuming Frobenius semi-simplicity of φ . Such a continuous
map can be thought of as a continuous 1-cocycle WQp → Ĝ(Qℓ), with respect to
the action of WQp on Ĝ(Qℓ). If we let A/Zℓ be any Zℓ-algebra endowed with
a topology given by writing A = colimA′⊂A A′, where A′ is a finitely generated
Zℓ-module with its ℓ-adic topology, then we can defined a moduli space, denoted
Z 1(WQp, Ĝ), over Zℓ, whose A-points are the continuous 1-cocycles WQp→ Ĝ(A)
with respect to the natural action of WQp on Ĝ(A). This defines a scheme consid-
ered in [Dat+20] and [Zhu20] which, by [FS21, Theorem I.9.1], can be written as
a union of open and closed affine subschemes Z 1(WQp/P, Ĝ) as P runs through
subgroups of wild inertia of WE , where each Z 1(WQp/P, Ĝ) is a flat local com-
plete intersection over Zℓ of dimension dim(G). This allows us to consider the
Artin stack quotient [Z 1(WQp, Ĝ)/Ĝ], where Ĝ acts via conjugation. We then
consider the base change to Qℓ, denoted [Z 1(WQp , Ĝ)Qℓ

/Ĝ] and referred to as the
stack of Langlands parameters, as well as the category Perf([Z 1(WQp, Ĝ)Qℓ

/Ĝ])

of perfect complexes of coherent sheaves on this space. We let Dlis(BunG,Qℓ)
ω

denote the triangulated sub-category of compact objects in Dlis(BunG,Qℓ) (which
are precisely the objects with quasi-compact support on BunG and which restrict
to compact objects in D(Jb(Qp),Qℓ) for all b ∈ B(G) by [FS21, Theorem V.4.1,
Proposition VII.7.4]). We then have the key theorem of Fargues-Scholze.

Theorem 1.3.16. [FS21, Corollary X.I.3] There exists a natural compactly sup-
ported Qℓ-linear action of Perf(Z 1(WQp, Ĝ)Qℓ

/Ĝ) on Dlis(BunG,Qℓ)
ω satisfying

the property that the restriction along the map

RepQℓ
(LG)→ Perf([Z 1(WQp, Ĝ)Qℓ

/Ĝ])BWQp
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induces the action of Hecke operators

RepQℓ
(LGI)→ End(Dlis(BunG,Qℓ)

ω)
BW I

Qp

for a varying finite index set I.

Remark 1.3.17. 1. Here the map

RepQℓ
(LG)→ Perf([Z 1(WQp, Ĝ)Qℓ

/Ĝ])BWQp

associates to a representation V , with associated map rV : LG(Qℓ) →
GL(V )(Qℓ) a vector bundle on [Z 1(WQp, Ĝ)Qℓ

/Ĝ)] of rank equal to dim(V )
with WQp-action. This bundle, denoted CV , has the property that its eval-
uation at a Qℓ-point corresponding to a parameter φ : WQp → LG(Qℓ) is
precisely rV ◦φ .

2. The compactly supported condition means that, for all
F ∈ Dlis(BunG,Qℓ)

ω , the functor Perf([Z 1(WQp, Ĝ)Qℓ
/Ĝ]) →

Dlis(BunG,Qℓ)
ω induced by acting on F factors through an action

of Perf([Z 1(WQp/P, Ĝ)Qℓ
/Ĝ)]), where P is a subgroup of wild inertia.

Fargues and Scholze state this action in terms of a (∞,1)-category acting on
an (∞,1)-category, we suppress this technicality for simplicity. However,
we note that this enhanced action has the concrete implication that if one
has a morphism, cone, or homotopy limit/colimit in the derived category
Perf([Z 1(WQp, Ĝ)Qℓ

/Ĝ]) that acting on an object A ∈Dlis(BunG,Qℓ)
ω will

produce a corresponding morphism, cone, or homotopy limit/colimit.

3. In fact, Fargues-Scholze show that giving such a compactly supported
Qℓ-linear action is equivalent (when properly formulated) to giving a
RepQℓ

(QI)-linear monoidal functor

RepQℓ
(LGI)→ EndQℓ

(Dlis(BunG,Qℓ)
ω)

BW I
Qp

In the case that I = {∗}, the fact that the Hecke action satisfies this monoidal
property is precisely Remark 3.2.

To study this spectral action, we consider, as in [FS21, Section VIII.3.], the
coarse quotient in the category of schemes

Z 1(WQp, Ĝ)Qℓ
//Ĝ
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of Z 1(WQp, Ĝ)Qℓ
by the action of Ĝ via conjugation. Given an L-parameter

φ : WQp → LG(Qℓ), it follows by [Dat+20, Proposition 4.13] or [FS21,
Proposition VIII.3.2], that the Ĝ-orbit of φ defines a closed Qℓ-point of
Z 1(WQp , Ĝ)Qℓ

//Ĝ if and only if φ is a semisimple parameter. Moreover, the
natural map

π : [Z 1(WQp, Ĝ)Qℓ
/Ĝ]→Z 1(WQp, Ĝ)Qℓ

//Ĝ

evaluated on a Qℓ-point in the stack quotient defined by an L-parameter φ de-
fines a closed Qℓ-point in the coarse moduli space given by its semisimplifi-
cation φ ss. We can fit excursion operators into this picture as follows. We let
Z spec(G,Qℓ) := O(Z 1(WQp , Ĝ)Qℓ

)Ĝ be the ring of functions on the stack of L-
parameters/the coarse moduli space, which we refer to as the spectral Bernstein
center. As noted above, the excursion operators define a family of commuting en-
domorphisms of the identity functor on Dlis(BunG,Qℓ). We let Z geom(G,Qℓ) be
the ring of such endomorphisms as in [FS21, Definition IX.0.2], which we refer
to as the geometric Bernstein center. In [FS21, Corollary IX.0.3], Fargues and
Scholze construct a canonical map of rings

Z spec(G,Qℓ)→Z geom(G,Qℓ)

which is given by excursion operators in the following sense. By [FS21, The-
orem VIII.3.6], there is an identification between Z spec(G,Qℓ) and the algebra
of excursion operators. In particular, an excursion operator, as in Definition 3.3,
associated to the datum I, W , α , β , and γi ∈WQp for i ∈ I defines a function
fI,W,α,β ,(γi)i∈I ∈ O[Z1(WQp ,Ĝ)Qℓ

/Ĝ] = Z spec(G,Qℓ) on Z 1(WQp, Ĝ)Qℓ
//Ĝ, whose

evaluation on the closed point of the coarse moduli space associated to a semisim-
ple parameter φ : WQp → LG(Qℓ) is precisely the scalar that results from the en-
domorphism:

Qℓ
α−→ ∆

∗W =W
(φ(γi))i∈I−−−−−→W = ∆

∗W
β−→Qℓ

We note that multiplication by fI,W,α,β ,(γi)i∈I defines an endomorphism

O[Z1(WQp ,Ĝ)Qℓ
/Ĝ]→ O[Z1(WQp ,Ĝ)Qℓ

/Ĝ]

of the structure sheaf on the Artin stack [Z1(WQp , Ĝ)Qℓ
/Ĝ]. If we act on a Schur-

irreducible object A ∈ Dlis(BunG,Qℓ)
ω then we obtain an endomorphism

{O[Z1(WQp ,Ĝ)Qℓ
/Ĝ] ⋆A = A→ O[Z1(WQp ,Ĝ)Qℓ

/Ĝ] ⋆A = A} ∈ End(A) =Qℓ
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which will be precisely the scalar given by evaluating φ FS
A on the excursion datum

(See also [Zou22, Theorem 5.2]). In this way, we see that the action of excur-
sion operators can be obtained through the spectral action. We will leverage this
interpretation of excursion operators to prove the following key lemma.

Lemma 1.3.18. Let A ∈ Dlis(BunG,Qℓ)
ω be any Schur-irreducible object with

Fargues-Scholze parameter φ FS
A . Set x to be the closed point defined by the pa-

rameter φ FS
A in the coarse moduli space Z 1(WQp, Ĝ)Qℓ

//Ĝ and let π−1(x) denote
the closed subset defined by the preimage in [Z 1(WQp , Ĝ)Qℓ

/Ĝ]. Suppose we have
C∈ Perf([Z 1(WE , Ĝ)Qℓ

/Ĝ]) with support disjoint from π−1(x) then C acts by zero
on A via the spectral action.

Proof. If we look at the action on A ∈ Dlis(BunG,Qℓ) via the map

Z spec(G,Qℓ)→Z geom(G,Qℓ)

given by excursion operators this factors through the maximal ideal mA ⊂
Z spec(G,Qℓ) = O(Z1(WQp, Ĝ)Qℓ

)Ĝ defined by the closed point φ FS
A in the coarse

moduli space. By the conditions on the support of C, this implies that we can
write the identity element as 1 = 1C +1A ∈Z spec(G,Qℓ), where 1C is a function
that annihilates C and 1A is in the annihilator of Z spec(G,Qℓ)/mA. We consider
the spectral action of C on A

C ⋆A ∈ Dlis(BunG,Qℓ)

and look at the endomorphism induced by multiplication by 1 on C

C ⋆A→C ⋆A

which is just the identity. However, since 1C annihilates C, this is the same as
the action of 1A on C ⋆A, but, it follows by the above discussion that acting via
multiplication by 1A is the same as acting via the map

Z spec(G,Qℓ)→Z geom(G,Qℓ)

given by excursion operators, and the action of 1A after applying this map is zero.
This would lead to a contradiction unless C ⋆A is also zero.

To take advantage of this lemma, we now introduce the following endofunctors
of Dlis(BunG,Qℓ)

ω , which are analogues of the averaging operators considered
by [AL21a] in the Fargues-Scholze geometric Langlands correspondence for GLn
and by [FGV02; Gai04] in the classical geometric Langlands correspondence over
function fields.
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Definition 1.3.19. Let φ be a representation of WQp and V a representation of
LG with TV the associated Hecke operator. We consider the endofunctor of
Dlis(BunG,Qℓ)

A 7→ RΓ(WQp,TV (A)⊗φ
∨)

where RΓ(WQp,−) : Dlis(BunG,Qℓ)
BWQp → Dlis(BunG,Qℓ) is the derived func-

tor given by continuous group cohomology with respect to WQp . We denote this
endofunctor by AvV,φ : Dlis(BunG,Qℓ)→ Dlis(BunG,Qℓ).

We now would like to realize the functor AvV,φ as the spectral action of an
object in Perf([Z 1(WQp, Ĝ)Qℓ

/Ĝ)]) similar to [AL21a, Section 5.5]. An obvious
guess would be that one should take the vector bundle CV corresponding to the
Hecke operator TV , as in Remark 3.7 (1), and then twist this by the constant sheaf
defined by φ∨, which we denote by

CV ⊗φ
∨ ∈ Perf([Z 1(WQp , Ĝ)Qℓ

/Ĝ])BWQp

More precisely, this is the vector bundle with WQp-action whose evaluation at a
Qℓ-point corresponding to a L-parameter φ̃ : WQp → LG(Qℓ) is the vector space
with WQp-action given by tensoring the representation

φ̃ : WQp →
LG(Qℓ)

rV−→ GL(V )

with φ∨. To obtain the desired perfect complex, it is natural to apply RΓ(WQp,−)
to the vector bundle to CV⊗φ∨, which we denote by A vV,φ . We note that A vV,φ is
a perfect complex. Indeed, as p is invertible in Qℓ, the wild inertia P ⊂WQp will
always act through a finite quotient on CV ⊗ φ∨ and has no higher cohomology
which implies that the invariants

(CV ⊗φ
∨)P

are a direct summand of the vector bundle CV ⊗ φ∨. If we choose a generator
τ ∈ I/P in the tame quotient of the inertia subgroup I ⊂WQp together with a
Frobenius lift σ ∈WQp/P then the complex A vV,φ is computed as the homotopy
limit of the diagram:

(CV ⊗φ∨)P (CV ⊗φ∨)P

(CV ⊗φ∨)P (CV ⊗φ∨)P

τ−1

σ−1 σ(1+τ+...+τ p−1)−1

τ−1

(1.1)
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This gives a presentation of A vφ ,V as a perfect complex, as in [AL21a, Page 21].
To see this, note that σ and τ generate a dense discrete subgroup of WQp/P subject
to the relationship that σ−1τσ = τ p, and it follows that the limit of the diagram is
just ((CV ⊗φ∨)P)WQp/P and that the homotopy limit is in turn the derived functor
RΓ(WQp,CV ⊗φ∨)≃ RΓ(WQp/P,(CV ⊗φ∨)P), where we have used the vanishing
of the higher Galois cohomology with respect to P for the last isomorphism.

Then we have the following Lemma which is a verbatim generalization of
[AL21a, Lemma 5.7].

Lemma 1.3.20. There exists a canonical identification

AvV,φ (−)≃A vV,φ ⋆ (−)

of endofunctors of Dlis(BunG,Qℓ)
ω

Proof. Equation (1) gives a diagram of perfect complexes on [Z 1(WQp, Ĝ)Qℓ
/Ĝ].

Acting via the spectral action on an object F ∈ Dlis(BunG,Qℓ) then gives a dia-
gram

(TV (F )⊗φ∨)P (TV (F )⊗φ∨)P

(TV (F )⊗φ∨)P (TV ⊗φ∨)P

τ−1

σ−1 σ(1+τ+...+τ p−1)−1

τ−1

However, if we take the homotopy limit of the diagram in (1), the claim follows
from the fact that the spectral action commutes with homotopy limits, as noted in
Remark 3.7 (3).

With this identification in hand, we can apply Lemma 3.8 to prove the follow-
ing key consequence.

Lemma 1.3.21. Let A∈Dlis(BunG,Qℓ)
ω be an ULA Schur-irreducible object with

Fargues-Scholze parameter φ FS
A , V a representation of LG, and φ an irreducible

representation of WQp . If the cohomology sheaves of TV (A) ∈Dlis(BunG,Qℓ)
BWQp

with respect to the standard t-structure on Dlis(BunG,Qℓ)
BWQp have a non-zero

sub-quotient as WQp-modules with WQp-action given by φ or φ(1) then rV ◦ φ FS
A

also has such a sub-quotient.

Remark 1.3.22. During the creation of this manuscript, a similar result was ob-
tained by Koshikawa through a similar but simpler proof [Kos21a, Theorem 1.3].
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As we will similarly conclude in Section 3.3, he shows that if the cohomology
RΓc(G,b,µ)[ρ](d

2 ) admits a sub-quotient with WE-action given by an irreducible
representation φ then the Fargues-Scholze parameter φ FS

ρ admits a sub-quotient
given by φ∨. However, in his paper, the Shtuka space Sht(G,b,µ)∞ parametrizes
modifications of the form E0 99K Eb of type µ , whereas for us it parametrizes
modifications of type µ−1. This explains why, under our conventions, there is no
dual appearing.

Proof. We first show that the assumption on the cohomology sheaves of TV (A)
implies that averaging operator

Avφ ,V (A) = RΓ(WQp,TV (A)⊗φ
∨)

is non-trivial. Since A is compact we know by Theorem 3.2 that TV (A) is also
comapct and therefore supported on a finite number of HN-strata. By applying
excision with respect to the HN-strata of BunG [FS21, Proposition VII.7.3], we
can assume, without loss of generality, that TV (A) is supported on a single stalk,
where it is given by a complex of smooth irreducible representations of Jb(Qp)
for b ∈ B(G). Moreover, since A is ULA, by Theorem 3.2 the sheaf TV (A) is also
ULA and therefore it follows that, for all open compact K ⊂ Jb(Qp), TV (A)K is a
perfect complex of Qℓ-vector spaces. Writing TV (A) := colimK→{1}TV (A)K and
using that cohomology commutes with colimits, this allows us to apply results
from the Galois cohomology of WQp on finite-dimensional Qℓ vector spaces to
TV (A). To do this, we consider the spectral sequence

E p,q
2 = H p(WQp,H

q(TV (A)⊗φ
∨)) =⇒ H p+q(RΓ(WQp,TV (A)⊗φ

∨))

where cohomology is being taken with respect to the standard t-structure on
Dlis(BunG,Qℓ). Now recall that the cohomological dimension of WQp acting on
finite dimensional Qℓ-vector spaces is 2. Therefore, this sequence degenerates at
the E3 page. Moreover, the only non-zero degeneracy maps are given by

E0,q+1
2 = H0(WQp,H

q+1(TV (A)⊗φ
∨))→ E2,q

2 = H2(WQp,H
q(TV (A)⊗φ

∨))

However, using local Tate-duality on the RHS, we can rewrite this differential as
a map:

(Hq+1(TV (A))⊗φ
∨)WQp →H0(WQp ,H

q(TV (A)⊗φ
∨)∨(1))∨≃ ((Hq(TV (A))∨⊗φ(1))WQp )∨

Now the term on the RHS (resp. LHS) will only be non-zero if φ(1) (resp. φ )
occurs as a sub-quotient of Hq(TV (A)) (resp. Hq+1(TV (A))). By assumption,
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this will be true for some value of q, but now, since the Euler-Poincaré charac-
teristic of WQp acting on Qℓ-vector spaces is 0, one of these values being non-
zero implies the H1(WQp ,−) of some cohomology sheaf of TV must also be non-
zero. This will then give rise to a non-zero contribution to the cohomology of
RΓ(WQp,TV (A)⊗φ∨) so the averaging operator AvV,φ (A) applied to A is non-zero.
Lemma 3.9 therefore tells us that the spectral action of the perfect complex A vV,φ

on A is non-trivial. If x denotes the closed Qℓ-point in the coarse moduli space of
Langlands parameters defined by φ FS

A with preimage π−1(x) in the stack of Lang-
lands parameters, Lemma 3.8 tells us that A vV,φ must have non-zero support on
π−1(x). The Qℓ-points of π−1(x) correspond to the set of Langlands parameters
whose semisimplification is precisely φ FS

A . The previous analysis tells us that the
evaluation of the perfect complex RΓ(WQp,CV ⊗ φ∨) at some such point, corre-
sponding to an L-parameter φ̃ : WQp→ LG(Qℓ), must be non-zero. This evaluation
is precisely the complex

RΓ(WQp,rV ◦ φ̃ ⊗φ
∨)

However, by again applying local Tate-duality, this can only be the case if rV ◦ φ̃

has a sub-quotient isomorphic to φ or φ(1). Since φ is irreducible, this can only
happen if rV ◦ φ̃ ss = rV ◦φ FS

A has this property.

We conclude this section by reviewing how the spectral action behaves on
objects with supercuspidal Fargues-Scholze parameter along the lines of [FS21,
Section X.2]. These results will be used to deduce a strong form of the Kot-
twitz conjecture from compatibility. We recall that a supercuspidal parameter,
viewed as a continuous 1-cocyle with respect to the WQp-action on Ĝ(Qℓ), de-
noted φ : WQp → Ĝ(Qℓ), satisfies the property that it doesn’t factor through any
P̂(Qℓ) for P a parabolic subgroup of G. Equivalently, this is the same as insisting
that, if Sφ := ZĜ(Im(φ)) as before, then the quotient Sφ/Z(Ĝ)Γ is finite, where
Γ := Gal(Qp/Qp). From this, it follows by deformation theory (See the proof of
[Dat+20, Theorem 1.6] for more details) that the unramified twists of the param-
eter φ define a connected component

Cφ ↪→ [Z 1(WQp , Ĝ)Qℓ
/Ĝ]

giving rise to a direct summand

Perf(Cφ ) ↪→ Perf([Z 1(WQp, Ĝ)Qℓ
/Ĝ])

Therefore, the spectral action gives rise to a corresponding direct summand

D
Cφ

lis (BunG,Qℓ)
ω ⊂ Dlis(BunG,Qℓ)

ω
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such that the Schur-irreducible objects in this subcategory all have Fargues-
Scholze parameter given by an unramified twist of φ . Now, it follows by Propo-
sition 3.14 in the next section and Theorem 3.6 (4), that, since φ is supercuspidal,
the restriction of any object in D

Cφ

lis (BunG,Qℓ)
ω to any non-basic HN-strata of

BunG must be zero. Therefore, one obtains a decomposition

D
Cφ

lis (BunG,Qℓ)
ω ≃

⊕
b∈B(G)basic

DCφ (Jb(E),Qℓ)
ω

where Jb is the σ -centralizer of b and DCφ (Jb(E),Qℓ)
ω ⊂ D(Jb(E),Qℓ)

ω is a full
subcategory of the derived category of compact objects in smooth representations
of Jb(E). It also follows again by Theorem 3.6 (4) that the Schur-irreducible
objects of any DCφ (Jb(E),Qℓ)

ω must lie only in the supercuspidal components of
the Bernstein center. Now to further analyze this we fix a character χ of Z(G)(Qp)
and consider the subcategory

D
Cφ

lis,χ(BunG,Qℓ)
ω ≃

⊕
b∈B(G)basic

D
Cφ

χ (Jb(E),Qℓ)
ω

where D
Cφ

χ (Jb(E),Qℓ)
ω is the derived subcategory of DCφ (Jb(E),Qℓ)

ω generated
by compact objects with fixed central character χ , via the natural isomorphism
Z(Jb)(Qp) ≃ Z(G)(Qp) (where we recall that Jb is an extended pure inner form
of G). One can see that the spectral action of Perf(Cφ ) preserves this subcategory.
Indeed, it follows by [FS21, Theorem I.8.2] that Perf([Z 1(WQp, Ĝ)Qℓ

/Ĝ]) and in
turn Perf(Cφ ) is generated under cones and retracts by the image of RepQℓ

(LG)

in Perf([Z 1(WQp , Ĝ)Qℓ
/Ĝ]). This reduces us to checking that Hecke operators

preserve this subcategory, which, in turn reduces to the observation that, if one
looks at the simultaneous action of Jb(Qp)× Jb′(Qp) on the space parametrizing
modifications Eb → Eb′ , for b and b′ in B(G)basic that, under the canonical
identification Z(Jb′)(Qp) ≃ Z(Jb)(Qp), the diagonally embedded center acts
trivially. This follows since an element in the center of Jb(Qp) acts on the
modification by the inverse of an element in the corresponding center of Jb′(Qp),
where the inverse appears from the fact that Jb(Qp) is acting on the left and
Jb′(Qp) is acting on the right.

Now, via local class field theory, we take χ to be the central character de-
termined by φ and local class field theory (as in [Bor79, Section 10.1]). Since all
Schur-irreducible objects in D

Cφ

χ (Jb(E),Qℓ) lie in the supercuspidal component
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of the Bernstein-center and have fixed central character χ and, by [Cas95,
Theorem 5.4.1], supercuspidal representations are injective/projective in the
category of smooth representations with fixed central character, we can write
D

Cφ

χ (Jb(E),Qℓ)
ω =

⊕
π Perf(Qℓ)⊗π , where π runs over all supercuspidal repre-

sentations of Jb(E) with central character χ which, a priori, have Fargues-Scholze
parameter given by an unramified twist of φ , but, by Theorem 3.6 (2), must
indeed be equal to φ .

Now, the closed point of Cφ determined by the parameter φ gives rise to a
closed embedding

[Qℓ/Sφ ] ↪→Cφ

and in turn a fully faithful embedding

Perf([Qℓ/Sφ ]) ↪→ Perf(Cφ )

The above discussion and Lemma 3.8 imply that the action of Perf(Cφ ) factors
over this subcategory in the sense that everything not in the image of this must act
by zero. All in all, we conclude that we have a decomposition

D
Cφ

lis,χ(BunG,Qℓ)
ω =

⊕
b∈B(G)basic

⊕
πb

Perf(Qℓ)⊗πb

where the πb runs over all supercuspidal representations of Jb(E) with Fargues-
Scholze parameter φ FS

πb
= φ . Moreover, the RHS carries an action of RepQℓ

(Sφ ),
the category of finite-dimensional Qℓ-representations of Sφ . Therefore, given W ∈
RepQℓ

(Sφ ), we get an object:

ActW (πb) ∈
⊕

b∈B(G)basic

⊕
πb

Perf(Qℓ)⊗πb

Assume that W |Z(Ĝ)Γ is isotypic, given by some character η : Z(Ĝ)Γ → Q∗ℓ . As

Z(Ĝ)Γ is diagonalizable with characters given by B(G)basic
≃−→ π1(G)Γ via the κ

map, we obtain an element bη ∈ B(G)basic. Then ActW (πb) is concentrated on the
basic HN-strata given by b′ = b+bη . Therefore, we get an isomorphism

ActW (πb)≃
⊕
πb′

Vπb′ ⊗πb′
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where Vπb′ ∈ Perf(Qℓ) and πb′ runs over all supercuspidals of Jb′ with Fargues-
Scholze parameter φ FS

πb′
= φ . With this in hand, we can elucidate the WQp-action

on the Hecke operator applied to a smooth irreducible object with supercuspidal
Fargues-Scholze parameter, similar to what was done in Lemma 3.10 in the gen-
eral case. Namely, given V ∈ RepQℓ

(LG), we obtain a vector bundle on [Qℓ/Sφ ]
with WQp-action given by φ . In other words, we have a functor:

RepQℓ
(LG)→ RepQℓ

(Sφ )
BWQp

Theorem 3.7 and the above discussion imply that the action of the image of V in
RepQℓ

(Sφ )
BWQp acting via the spectral action on D

Cφ

lis,χ(BunG,Qℓ) is precisely the
Hecke operator TV . This tells us that, if we decompose rV ◦ φ viewed as a rep-
resentation of Sφ as a direct sum

⊕
i∈I Wi⊗σi where Wi ∈ Rep(Sφ ) is irreducible

and σi is a continuous finite-dimensional representation of WQp , then we have an
isomorphism

TV (π)≃
⊕
i∈I

ActWi(π)⊗σi

as Jb′(Qp)×WQp-modules. We now summarize the above discussion as a corol-
lary for future use.

Corollary 1.3.23. Let φ be a supercuspidal parameter of G, b∈ B(G)basic a basic
elment, V ∈ RepQℓ

(LG) an irreducible representation of some highest weight µ

with dominant inverse µ−1, and πb a representation of Jb(E) with Fargues-Scholze
parameter equal to φ . We set bµ ∈ B(G,µ−1) to be the unique basic element and
b′ = b+ bµ . If we decompose rV ◦ φ viewed as representation of Sφ as a direct
sum

⊕
i∈I Wi⊗σi, where Wi ∈ Rep(Sφ ) is irreducible and σi is a continuous finite-

dimensional representation of WQp , then there exists an isomorphism of WQp ×
Jb′(Qp)-modules

Tµ(πb)≃
⊕
i∈I

ActWi(π)⊗σi

where ActWi(π) ≃
⊕

πb′
Vπb′ ⊗πb′ with Vπb′ ∈ Perf(Qℓ) and πb′ ranging over su-

percuspidal representation of Jb′(Qp) with Fargues-Scholze parameter equal to
φ .

Remark 1.3.24. As we will start to see in the next section, the work of Hansen
[Han20], Hansen-Kaletha-Weinstein [HKW22], and compatibility of the Fargues-
Scholze and Gan-Takeda/Gan-Tantono local Langlands correspondence will al-
low us to use this Corollary to prove Theorem 1.3. This is suggested already by
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Corollary 3.3, which shows us that Tµ(πb) can be computed explicitly using the
cohomology of local Shimura varieties.

1.3.3 Compatibility with the Local Langlands for GSp4 and
GU2(D)

With the results of the previous section in place, we can now start making progress
towards our goal of proving compatibility. So we again let G = ResL/QpGSp4 and
J = ResL/QpGU2(D), for L/Qp a finite extension. As mentioned in section 1, the
case where a representation π ∈ Π(G) (resp. ρ ∈ Π(J)), is a sub-quotient of a
parabolic induction easily follows from Theorem 3.6 (3), (4), (5), and compati-
bility of the (semi-simplified) Gan-Takeda (resp. Gan-Tantono) parameter with
parabolic induction. We record this as a corollary now.

Corollary 1.3.25. Let π ∈ Π(G) (resp. ρ ∈ Π(J)) be representations occurring
as a sub-quotient of a parabolic induction. For such π (resp. ρ), the Fargues-
Scholze and Gan-Takeda (resp. Gan-Tantono) local Langlands correspondences
are compatible.

To tackle the remaining cases where the L-parameter φ is mixed supercusp-
idal or supercuspidal, we note that these are the cases where the L-parameter is
discrete (i.e the L-parameter does not factor through a Levi subgroup). This case
is disposable to the results of Hansen-Kaletha-Weinstein [HKW22]. We will now
let µ be the Siegel cocharacter of G so that the σ -centralizer of the unique basic
element b ∈ B(G,µ) is J. We now state the main result of [HKW22] specialized
to the case of the Shimura datum (G,b,µ).

Theorem 1.3.26. [HKW22, Theorem 1.0.2] Let φ be a mixed supercuspidal or
supercuspidal parameter and Sφ := ZĜ(Im(φ)) as before. Let Πφ (G) and Πφ (J)
denote the L-packets over φ . Set π ∈ Πφ (G) (resp. ρ ∈ Πφ (J)) to be smooth
irreducible representations of G (resp. J). If φ is supercuspidal or mixed super-
cuspidal, we have the following equality in the Grothendieck group K0(G(Qp))

ell

of elliptic admissible representations of G(Qp) of finite length

[RΓ
♭
c(G,b,µ)[ρ]] =− ∑

π∈Πφ (G)

HomSφ
(δπ,ρ ,std◦φ)π

and the following equality

[RΓ
♭
c(G,b,µ)[π]] =− ∑

ρ∈Πφ (J)
HomSφ

(δ∨π,ρ ,(std◦φ)∨)ρ
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in the Grothendieck group of elliptic admissible J(Qp)-representations of finite
length, where δπ,ρ is the algebraic representation of Sφ in Definition 2.3. More-
over, if the Fargues-Scholze parameter of π (resp. ρ) is supercuspidal this is true
in the Grothendieck group K0(G(Qp)) (resp. K0(Jb(Qp))) of all admissible rep-
resentations of finite length.

Remark 1.3.27. 1. To deduce the result for the π-isotypic part, we have im-
plicitly used the two towers isomorphism Sht(G,b,µ)∞ ≃ Sht(J, b̂,µ−1)∞,
where µ−1 is a dominant inverse to µ and b̂= b−1 ∈B(G,µ−1) is the unique
basic element [SW20a, Corollary 23.3.2.], and B(G,µ−1) ≃ B(J,µ−1) un-
der the inner twisting. This inverse explains the appearance of duals in the
formula for the π-isotypic part.

2. We see that, via Corollary 3.3, this, in the case that φ is supercuspidal,
should provide us insight into the multiplicity spaces Vπb′ appearing in
Corollary 3.11, assuming compatibility of the Fargues-Scholze and Gan-
Tantono/Gan-Takeda local Langlands correspondences. Namely, we will
see later (Theorem 3.17 and 3.18) that RΓc(G,b,µ)[ρ] ≃ RΓ♭

c(G,b,µ)[ρ]
and is concentrated in middle degree 3 if φ FS

ρ is supercuspidal. Assuming
compatibility, Corollary 3.11 will therefore tell us that RΓc(G,b,µ)[ρ] will
be a direct sum over representations π ∈ Πφ (G) with WL-action given by
std ◦φ FS

ρ = std ◦φρ decomposed as a representation of Sφ . The summands
in the decomposed Sφ -representation correspond to the weight spaces ap-
pearing in the above description in the Grothendieck group.

We now wish to write out the precise formula for the ρ and π-isotypic parts,
using the refined local Langlands discussed in section 2.

1. (φ stable) In this case, the L-packet Πφ (G) = {π} is a singleton so the RHS
of the above formula for the ρ-isotypic part has one term

−πHomSφ
(δπ,ρ ,std◦φρ)

In this case, Sφ = Gm and δπ,ρ is simply the identity representation. Thus,
this Hom space gets identified with the characters of GL4, so the formula
reduces to

−4π

2. (φ endoscopic) In this case, the L-packet has size 2 and, as seen in section
2.1, Πφ (G) = {π+,π−}, where π+ (resp. π−) corresponds to the trivial
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(resp. non-trivial) character of the component group. ρ can be either of the
two representations corresponding to the irreducible representation of Sφ

given by τi for i = 1,2 the projection to the two coordinates of Sφ . However,
the RHS remains the same regardless of which one it corresponds to. So,
without loss of generality, we assume that ρ = ρ1. Then the RHS of the
above formula for the ρ-isotypic part has two terms

π
+HomSφ

(τ1,std◦φρ)

and
π
−HomSφ

(τ1⊗ τπ− ≃ τ2,std◦φρ)

However, writing std◦φρ ≃ φ1⊕φ2, these get identified with

−π
+HomQ∗ℓ

(Q∗ℓ ,φ1)

and
−π
−HomQ∗ℓ

(Q∗ℓ ,φ2)

which will both be identified with characters of GL2. Thus, the RHS is
equal to

−2π
+−2π

−

Similarly, for the π-isotypic part, we get that the RHS of the above formula is
given by

−4ρ

in the stable case and
−2ρ1−2ρ2

in the endoscopic case.

As mentioned in section 1.2, we will now use the previous result to perform a
bootstrap to the supercuspidal representations occurring in the L-packets Πφ (G)
(resp. Πφ (J)), for φ a mixed supercuspidal parameter. For this, we will mention
one last result from the Fargues-Scholze local Langlands correspondence.

Proposition 1.3.28. [FS21, Section IX.7.1] For G any connected reductive group
over Qp, the action of the excursion algebra on Dlis(BunG,Qℓ) commutes with
Hecke operators. Moreover, it is compatible with restriction to the HN-strata
Bunb

G for b ∈ B(G) in the following sense. Given a Schur irreducible object A ∈
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Dlis(BunG,Qℓ) and b ∈ B(G), if we let B be a smooth irreducible constituent of
j∗b(A) then we can view it as a sheaf on the neutral strata of Bun1

Jb
and let φ FS

B
denote its Fargues-Scholze parameter with respect to the excursion algebra on
BunJb . Then the Fargues-Scholze parameter of A is the composition

WQp

φ FS
B−−→ LJb(Qℓ)→ LG(Qℓ)

where LJb(Qℓ) → LG(Qℓ) is the twisted embedding, as defined in [FS21,
Page 327].

Remark 1.3.29. The commutation of Hecke operators and the excursion algebra
follows from the interpretation of the excursion algebra in terms of endomor-
phisms coming from multiplication by the ring of global functions of the stack of
L-parameters, as discussed in Section 3.2.

From this, we can deduce the following useful corollary.

Corollary 1.3.30. For G any connected reductive group with (G,b,µ) a lo-
cal Shimura datum and π ∈ Π(G) and ρ ∈ Π(Jb) smooth irreducible repre-
sentations. All smooth irreducible representations occurring in the cohomol-
ogy of RΓc(G,b,µ)[π] have Fargues-Scholze parameter equal to φ FS

π . Simi-
larly, all smooth irreducible representations occurring in the cohomology of
RΓc(G,b,µ)[ρ] have Fargues-Scholze parameter equal to φ FS

ρ . The same is also
true for RΓ♭

c(G,b,µ)[ρ] and RΓ♭
c(G,b,µ)[π].

Proof. The first part follows immediately from Proposition 3.14 and Corol-
lary 3.3. It remains to see the same is true for the complexes RΓ♭

c(G,b,µ)[ρ]
and RΓ♭

c(G,b,µ)[π]. This can be done by writing them as j∗1TµR jb∗(ρ) and
j∗bTµ−1R j1∗(π), as in [FS21, Section IX.7.1], where it again follows from Propo-
sition 3.14 and Corollary 3.3.

We now exploit this corollary to deduce compatibility in the mixed supercus-
pidal case.

Corollary 1.3.31. Let φ be an L-parameter of Howe-Piatetski–Schapiro or Saito-
Kurokawa type. Then, for any π ∈Πφ (G) (resp. ρ ∈Πφ (J)), the Fargues-Scholze
and Gan-Takeda (resp. Gan-Tantono) local Langlands correspondences are com-
patible.
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Proof. We give the proof for the Gan-Takeda local Langlands correspondence
with the proof for the Gan-Tantono correspondence being completely anal-
ogous. If φ is of Saito-Kurokawa type then, as seen in section 2.2, we can
write Πφ (G) = {πsc,πdisc} and Πφ (J) = {ρsc,ρdisc}, where πsc (resp. ρsc) is
a supercuspidal representation of G (resp. J) and πdisc (resp. ρdisc) is a non-
supercuspidal representaiton. We note that the Gan-Takeda (resp. Gan-Tantono)
correspondences are compatible with the Fargues-Scholze correspondence for
πdisc (resp. ρdisc), by Corollary 3.12.

If we let µ be the Siegel cocharacter and b ∈ B(G,µ) be the unique basic
element. Then the σ -centralizer Jb is isomorphic to J and we can consider the
complex

RΓ
♭
c(G,b,µ)[ρdisc]

of J(Qp)×WL-representations. We then let RΓ♭
c(G,b,µ)[ρdisc]sc denote the direct

summand of RΓ♭
c(G,b,µ)[ρdisc], where J(Qp) acts via a supercuspidal representa-

tion. Theorem 3.13 tells us that we can describe this complex in the Grothendieck
group of admissible G(Qp)-representations of finite length as

[RΓ
♭
c(G,b,µ)[ρdisc]sc] =−2πsc

which tells us that πsc, occurs as a non-zero sub-quotient of the complex
RΓ♭

c(G,b,µ)[ρdisc]. By Corollary 3.15, we know that we have an equality:

φ
FS
ρdisc

= φ
FS
πsc

However, Corollary 3.12 tells us that φ FS
ρdisc

= φ ss
ρdisc

, which is equal to φ ss
πsc

, so
we get the desired equality. The analysis in the Howe-Piatetski–Schapiro case
is the same, where one can look at the ρ-isotypic part for any of the two non-
supercuspidals in Πφ (J).

In the remaining part of this section, we address proving compatibility in the
case where the parameter φ is supercuspidal. Before tackling the question of
compatibility, we address some geometric properties of the sheaves Fρ , for ρ

with supercuspidal Fargues-Scholze parameter. This will be leveraged in proving
the strong form of the Kottwitz Conjecture for the ρ and π-isotypic parts in
section 8, as mentioned in Remark 3.10 (2).

Now, considering again G a general connected reductive group, b ∈ B(G)basic
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a basic element, and a smooth irreducible representation ρ of the σ -centralizer
Jb(Qp). We will now address some further consequences of the Fargues-Scholze
parameter φ FS

ρ being supercuspidal. It turns out that the sheaves defined by rep-
resentations with these parameters have interesting geometric properties, which
were leveraged in [Han20] to prove various general results on the cohomology
groups. In particular, Hansen shows the following:

Theorem 1.3.32. [Han20, Theorem 1.1.] Let (G,b,µ) be a basic local Shimura
datum with E the reflex field of µ as before, and let ρ be a smooth irreducible
representation of Jb(Qp). Suppose the following conditions hold:

1. The spaces (Sht(G,b,µ)K)K⊂G(Qp) occur in the basic uniformization at p
of a global Shimura variety in the sense of Definition 4.1.

2. The Fargues-Scholze parameter φ FS
ρ : WQp →L G(Qℓ) is supercuspidal.

Then the complex RΓc(G,b,µ)[ρ] defined above is concentrated in middle degree
d = dim(Sht(G,b,µ)∞) = ⟨2ρG,µ⟩.

One of the key ideas in the argument is to exploit the behavior of the sheaf
jb!(Fρ) under Verdier duality, where jb : Bunb

G ↪→ BunG is the inclusion of the
open HN-strata corresponding to b ∈ B(G)basic. In particular, by Proposition 3.14
and Theorem 3.6 (4), one can see that the natural map jb!(Fρ)→ R jb∗(Fρ) is
an isomorphism. Namely, Proposition 3.14 implies that a non-zero restriction of
R jb∗(Fρ) to any non-basic HN-strata must be valued in representations having
Fargues-Scholze parameter φ FS

ρ under the relevant twisted embedding, which is
impossible since the σ -centralizers of non-basic elements are extended pure inner
forms of proper Levi subgroups of G and, by assumption, the parameter φ FS

ρ is
supercuspidal. This implies that, if we apply Verdier duality to both sides of the
isomorphism

j∗1Tµ jb!(Fρ)≃ RΓc(G,b,µ)[ρ][d](
d
2
)

supplied by Corollary 3.3, we see that the LHS is isomorphic to

j∗1Tµ jb!(Fρ∗)≃ RΓc(G,b,µ)[ρ∗][d](
d
2
)

On the other hand, on the RHS we act through Verdier duality on the tower
(Sht(G,b,µ)K)K⊂G(Qp), which are smooth rigid spaces of dimension d. So, in
particular, the dualizing object is isomorphic to Qℓ[2d](d). This allows one to
deduce the following consequence for the cohomology groups RΓc(G,b,µ)[ρ].
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Theorem 1.3.33. [Han20, Theorem 1.3, Theorem 2.23] Fix a basic local Shimura
datum (G,b,µ) and let ρ be representation of Jb(Qp) with supercuspidal Fargues-
Scholze parameter. Then there is a natural isomorphism

RH om(RΓc(G,b,µ)[ρ],Qℓ)≃ RΓc(G,b,µ)[ρ∗][2d](d)

as WE-equivariant objects of D(Jb(Qp),Qℓ), where ρ∗ is the contragredient of
ρ . In particular, we have a natural WE-equivariant isomorphism of admissible
G(Qp)-representations for all 0≤ i≤ 2d

H i(RΓc(G,b,µ)[ρ])∗ ≃ H2d−i(RΓc(G,b,µ)[ρ∗])(d)

Remark 1.3.34. As noted in Remark 3.4, the LHS of the above formula is iso-
morphic to RΓ♭

c(G,b,µ)[ρ∗][2d](d), so it follows by cancelling the shifts and Tate
twists and relaxing contragradients that one has an isomorphism

RΓ
♭
c(G,b,µ)[ρ]≃ RΓc(G,b,µ)[ρ]

as Jb(Qp)×WE-representations for all such ρ .

Now we turn our attention to the question of showing compatibility for su-
percuspidal parameters assuming Proposition 1.4. So again let L/Qp be a finite
extension and let G := ResL/Qp(GSp4) be the restriction of scalars of GSp4 and
J := ResL/QpGU2(D) the unique non-split inner form as before. As we will see in
section 8, it essentially follow from Theorem 3.13 and Corollary 3.15 that show-
ing compatibility for ρ ∈ Π(J) with supercuspidal Gan-Tantono parameter im-
plies the corresponding statement for π ∈ Π(G) with supercuspidal Gan-Takeda
parameter. So we fix such a ρ and assume that the Gan-Tantono parameter φρ is
endoscopic supercuspidal with the stable case being strictly easier. We will write
std ◦φρ ≃ φ1⊕φ2 for φi distinct irreducible 2-dimensional representations of WL
and let µ be the Siegel cocharacter. The Shtuka space Sht(G,b,µ)∞ in this case
will have dimension d := ⟨2ρG,µ⟩= 3. We will assume for the rest of this section
that Proposition 1.4 is true.

Proposition 1.3.35. Let φ be a supercuspidal parameter with associated L-packet
Πφ (J). Then the direct summand of⊕

ρ ′∈Πφ (J)

RΓc(G,b,µ)[ρ ′]
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where G(Qp) acts via a supercuspidal representation⊕
ρ ′∈Πφ (J)

RΓc(G,b,µ)[ρ ′]sc

is concentrated in middle degree 3 and admits a non-zero WL-stable sub-quotient
with WL-action given by std◦φ ⊗| · |−3/2.

First, we combine this with the following lemma.

Lemma 1.3.36. Let φ be a supercuspidal parameter then all representations in
the L-packet Πφ (J) have the same Fargues-Scholze parameter.

Proof. We choose a π ∈ Πφ (G) and then apply Corollary 3.15 to deduce that
all representations occurring in the cohomology of RΓ♭

c(G,b,µ)[π] have Fargues-
Scholze parameter equal to φ FS

π . However, by Theorem 3.13, we have that all
representations in ρ ∈Πφ (J) occur in the cohomology of RΓ♭

c(G,b,µ)[π], so their
Fargues-Scholze parameters are the same as desired.

With this in hand, we are ready to prove the key consequence of Proposition
1.4 using the results on the spectral action obtained in section 3.2.

Corollary 1.3.37. Assume that L/Qp is an unramified extension and that p > 2
and that Proposition 1.4 is true. Then, for ρ a smooth irreducible representation
of J(Qp) with supercuspidal Gan-Tantono parameter φ , the Gan-Tantono and
Fargues-Scholze correspondences coincide.

Proof. As mentioned in the introduction, the key will be the isomorphism

⊕
ρ ′∈Πφ (J)

j∗1Tµ jb!(Fρ ′)≃
⊕

ρ ′∈Πφ (J)

RΓc(G,b,µ)[ρ ′][3](
3
2
)

supplied by Corollary 3.3. Now Proposition 1.4 tells us that one of the summands
on the RHS admits a sub-quotient with WL-action given by φ1 and one of them
admits a sub-quotient with WL-action given by φ2. Applying Lemma 3.20 and 3.10
therefore tells us that std◦φ FS

ρ admits a sub-quotient isomorphic to φ1 or φ1(1) and
a sub-quotient isomorphic to φ2 or φ2(1). This gives four possibilities for what the
parameter std ◦ φ FS

ρ is. Since φ FS
ρ is a GSp4-valued parameter only two of these

are possible; namely, φ1⊕ φ2 or (φ1⊕ φ2)(1). However, the second possibility
can be ruled out since the similitude character of std ◦ φ FS

ρ must coincide with
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the central character of ρ by Theorem 3.6 (2), which agrees with the similitude
character of std◦φρ = φ1⊕φ2. Therefore, we conclude that std◦φ = std◦φ FS

ρ and,
by the aforementioned equality of similitude characters of these two parameters
and [GT11, Lemma 6.1], this is enough to conclude that φρ = φ FS

ρ , as conjugacy
classes of GSp4-valued parameters.

1.4 Basic Uniformization
In this section, we will briefly review what basic uniformization of the generic
fiber of a global Shimura variety means, following [Han20, Section 3.1]. Then
we will apply it to our particular case and derive an analogue of Boyer’s trick,
providing useful consequences for the proof of Proposition 1.4.

1.4.1 A Review of Basic Uniformization
We now recall briefly what basic uniformization means. Let G/Q be a connected
reductive group over Q and let (G,X) be a Shimura datum, with associate con-
jugacy class of Hodge cocharacters µ : Gm,C → GC. Fix a prime p, and set
G := GQp . Using our fixed isomorphism C ≃ Qp, we can and do regard µ as
a conjugacy class of cocharacters µ : Gm,Qp

→ GQp
. This allows us to consider

the µ-admissible locus B(G,µ) in the Kottwitz set of G. Let A (resp. A f ) de-
note the adeles (resp. finite adeles) of Q and Ap

f denote the finite adeles away
from p. For any compact open subgroup K ⊂ G(A f ), let S (G,X)K be the asso-
ciated rigid analytic Shimura variety over Cp of level K. We let K = K pKp, where
K p ⊂G(Ap

f ) and Kp ⊂ G(Qp) are open compact subgroups. We set

S (G,X)K p = limKp→{1}S (G,X)K pKp

If (G,X) is of pre-abelian type, this is (up to completing the structure sheaf) rep-
resentable by a perfectoid space and in general it is a diamond. By the results of
[Han20], there exists a canonical G(Qp)-equivariant Hodge-Tate period map

πHT : S (G,X)K p →F ℓG,µ−1

where F ℓG,µ−1 := (GCp/Pµ−1)ad is the adic space associated to the flag variety
defined by the parabolic Pµ−1 ⊂GCp given by µ−1 via the dynamical method. By
the G(Qp)-equivariance, πHT descends to a map:

πHT,Kp : S (G,X)KpKp → [F ℓG,µ−1/Kp]
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We let b ∈ B(G,µ) be the unique basic element, and let F ℓb
G,µ−1 be the basic

Newton stratum. This parametrizes, for S a perfectoid space in characterstic p,
modifications E0 99K E of type µ−1 between the trivial G-bundle E0 on the relative
Fargues-Fontaine curve XS and E a bundle isomorphic to the G-bundle Eb corre-
sponding to b∈B(G) after pulling back to a geometric point of S. (G,b,µ) defines
a local Shimura datum, as in section 3.1, so we may consider the infinite level
Shimura variety/Shtuka space Sht(G,b,µ)∞ and its base change Sht(G,b,µ)∞,Cp .
By pulling back along πHT , we get an open subspace S (G,X)b

K p ⊂S (G,X)K p ,
which descends to an open subspace S (G,X)b

K , for K ⊂G(A f ) an open compact.
We now have the key definition.

Definition 1.4.1. We say a global Shimura datum (G,X) satisfies basic uni-
formization at p if there exists (in fact this is always true see [Han20, Proposi-
tion 3.1]) a unique up to isomorphism Q-inner form G′ of G satisfying

• G′Ap
f
≃GAp

f
as algebraic groups over Ap

f ,

• G′Qp
≃ Jb, where Jb is the inner form of G given by the σ -centralizer of the

basic element b ∈ B(G,µ),

• G′(R) is compact modulo center,

and a G(A f )-equivariant isomorphism of diamonds over Cp

limK p→{1}S (G,X)b
K p ≃ (G′(Q)\G′(A f )×Spd(Cp) Sht(G,b,µ)∞,Cp)/Jb(Qp)

(1.2)
where Jb(Qp) acts diagonally, such that, under the identification F ℓb

G,µ−1 ≃
Sht(G,b,µ)∞,Cp/Jb(Qp), the morphism

πHT : limK p→{1}S (G,X)b
K p →F ℓb

G,µ−1

identifies with the projection

(G′(Q)\G′(A f )×Spd(Cp) Sht(G,b,µ)∞,Cp)/Jb(Qp)→ Sht(G,b,µ)∞,Cp/Jb(Qp)

where G(A f )≃G′(Ap
f )×G(Qp) acts on the RHS via the natural action of G′(Ap

f )

on G′(Q)\G′(A f ) and G(Qp) acts on Sht(G,b,µ)∞,Cp . Moreover, if the reflex
field of the cocharacter µ :Gm,Qp

→GQp
is E/Qp then this isomorphism descends

to an isomorphism of diamonds over Ĕ := EQ̆p.
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We now mention some consequences of uniformization which will be key to
us in what follows. Let H (Jb) := C∞

c (Jb(Qp),Qℓ) be the usual smooth Hecke
algebra. We fix an algebraic representation of G/Q, denoted Vξ , of some regular
highest weight ξ . The isomorphism i :Qℓ

≃−→C then determines a Qℓ-local system
Lξ on the Shimura variety S (G,X)K p . We now consider the space of algebraic
automorphic forms valued in Vξ :

A (G′(Q)\G′(A f )/K p,Lξ ) := colimKp→{1}A (G′(Q)\G′(A f )/K pKp,Lξ )

in the sense of Gross [Gro99]. Namely, it is the space of all continuous functions
φ : G′(A f )→ Vξ (Qℓ) with respect to the pro-finite topology on the target and
the discrete topology on the source such that, for all k ∈ K p, γ ∈ G(Q), and g ∈
G′(A f ), we have that φ(gk) = φ(g) and φ(γg) = γφ(g), where γ acts via Vξ . The
isomorphism (2) then allows us to deduce an isomorphism

RΓc(G,b,µ)⊗L
H (Jb)

A (G′(Q)\G′(A f )/K p,Lξ )
≃−→ RΓc(S (G,X)b

K p ,Lξ )

of G(Qp)×WE-modules, which when composed with the morphism

RΓc(S (G,X)b
K p,Lξ )→ RΓc(S (G,X)K p,Lξ )

coming from excision with respect to the open strata S (G,X)b
K p ↪→S (G,X)K p ,

gives rise to the uniformization map mentioned in the introduction. We show this
now.

Corollary 1.4.2. Assume that (G,X) satisfies basic uniformization at p, then there
exists a G(Qp)×WE-equivariant map

Θ : RΓc(G,b,µ)⊗L
H (Jb)

A (G′(Q)\G′(A f )/K p,Lξ )→ RΓc(S (G,X)K p,Lξ )

functorial in the level K p.

Proof. We fix a level at Kp ⊂ G(Qp) and write πHT,Kp : S (G,X)K pKp →
[F ℓG,µ−1/Kp] for the induced Hodge-Tate period map. Then we have an iso-
morphism:

RΓc(S (G,X)K p ,Lξ )≃ colimKp→{1}RΓ([F ℓG,µ−1/Kp],RπHT,Kp!(Lξ ))

Write jKp : [F ℓb
G,µ−1/Kp] ↪→ [F ℓG,µ−1/Kp] for the open inclusion of the basic

locus quotiented out by Kp. Now, we claim that, under this identification, the
desired map is given by

RΓc([F ℓb
G,µ−1/Kp], j∗Kp

RπHT,Kp!(Lξ ))→ RΓ([F ℓG,µ−1/Kp],RπHT,Kp!(Lξ ))

69



coming from applying excision with respect to jKp for varying Kp. Here we stress
that, since we are finite level, this is happening in the usual category of étale
Qℓ-sheaves, where excision is well-defined. The claim would now follow from
showing a natural identification

RΓc([F ℓb
G,µ−1/Kp], j∗Kp

RπHT,Kp!(Lξ ))≃RΓc(G,b,µ)Kp⊗L
H (Jb)

A (G′(Q)\G′(A f )/K p,Lξ )

for all Kp. There is a natural map

qb
Kp

: [F ℓb
G,µ−1/Kp]→ [Spd(Cp)/Jb(Qp)]

which is cohomologically smooth as in [Han20, Proposition 2.16]. Since we are
working with the usual category of étale Qℓ-sheaves, the derived category of Qℓ-
sheaves on the target is not identified with the unbounded derived category of
smooth representations of Jb(Qp), but rather the unbounded derived category of
smooth ℓ-complete representations (See Remark 3.1). However, by fixing a K p

stable lattice in the Zℓ-lattice in the Qℓ realization of the algebraic representa-
tion Vξ , we can endow Π := A (G′(Q)\G′(A f )/K p,Lξ ) with the structure of
such a Jb(Qp)-representation, and we write FΠ for this sheaf. By [Han20, Corol-
lary 3.7], the fact that we know basic uniformization at p implies we have a natural
in K p isomorphism:

(qb∗
Kp
)(FΠ)≃ j∗Kp

RπHT,Kp!(Lξ )

Applying RΓc([F ℓb
G,µ−1/Kp],−), we obtain

RΓc([F ℓb
G,µ−1/Kp],(qb∗

Kp
)(FΠ))≃ RΓc([F ℓb

G,µ−1/Kp], j∗Kp
RπHT,Kp!(Lξ ))

but now, by [Han20, Proposition 2.17], we have an isomorphism

RΓc(Sht(G,b,µ)∞/Kp,Qℓ)⊗L
H (Jb)

A (G′(Q)\G′(A f )/K p,Lξ )≃RΓc([F ℓb
G,µ−1/Kp],(qb∗

Kp
)(FΠ))

and this gives the desired result.

1.4.2 Boyer’s Trick
We will now be interested in applying uniformization to the situation we are in-
terested in, proving an analogue of Boyer’s trick [Boy99a] and deducing some
relevant consequences. The relevant results are due to Shen.

70



Theorem 1.4.3. [She17] If (G,X) is a Shimura datum of abelian type and p > 2
is a prime where G is unramified then (G,X) satisfies basic uniformization at p.

Remark 1.4.4. To see a full proof of this exact statement for the full integral model
at hyperspecial level, one can look at the proof of [Li-22, Theorem D].

Now, consider a Shimura datum (G,X), where G is a Q-inner form of G∗ :=
ResF/QGSp4, with F/Q a totally real field such that p is totally inert and Fp≃ L, a
fixed unramified extension of Qp and assume that GQp ≃ ResL/QpGSp4 = G. We
fix a level K = KpK p ⊂ G(A f ) as before, and assume from now on that (G,X)
is such that the corresponding cocharacter µ is the Siegel cocharacter. Therefore,
the unique basic b ∈ B(G,µ) will have σ -centralizer given by ResL/QpGU2(D),
with D/L the quaternionic division algebra. Since L/Qp is unramified and p > 2,
we can apply Theorem 4.2 to deduce basic uniformization at p. Let G′ be the
Q-inner form defined above. Now we prove the following result, which plays
a similar role to Boyer’s trick [Boy99a] in the study of the cohomology of the
Lubin-Tate/Drinfeld towers.

Lemma 1.4.5. For b ∈ B(G,µ) non-basic, the adic Newton strata F ℓb
G,µ−1 is

parabolically induced as a space with G(Qp)-action from a proper parabolic sub-
group P = LU of G and a diamond SP with P(Qp)-action. Moreover, the action
of U(Qp) on the ℓ-adic cohomology of RΓc(SP,Qℓ) is trivial.

Proof. We recall [RV14, Definition 4.28] that we say b ∈ B(G,µ) is Hodge-
Newton reducible if there exists a proper Levi subgroup L together with a basic el-
ement bL ∈ B(L,µL) mapping to b∈ B(G,µ) under the natural map B(L)→ B(G),
where µL is a choice of representative for µ as a geometric dominant cocharacter
of L. Given such a b, we let P be the standard parabolic of G with respect to a
choice of Borel such that its Levi factor is L, and fix µL to be the conjugacy class
of dominant cocharacters of L that is dominant respect to B. It now follows by
[GI16, Proposition 4.13] that P(Qp) ⊂ G(Qp) stabilizes a subspace C µ

b and that
we have a L(Qp)-equivariant isomorphism:

C µL
bL
×P(Qp) G(Qp)≃F ℓb

G,µ−1

We recall that, if Jb denotes the group diamond parametrizing automorphisms of
the bundle corresponding to b ∈ B(G), this has a semi-direct product decomposi-
tion

Jb := Jb(Qp)⋉J U
b
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given by the splitting of the HN-filtration of Eb [FS21, Proposition III.5.1]. By
[GI16, Proposition 4.24], the space C µL

b is isomorphic to

F ℓbL
L,µ−1

L
×J U

b

and, by [GI16, Lemma 4.28], it follows that the action of Ub(Qp) on RΓc(C
µL
bL

,Qℓ)
is trivial. Therefore, the claim will follow from checking that the non-basic ele-
ments in B(G,µ) are Hodge-Newton reducible. This follows immediately from
the classification of this condition in [GHN19, Theorem 2.5]. For clarity, we recall
how this works in our case. There are two non-basic elements b ∈ B(G,µ). The
µ-ordinary element, defined by the maximal element bmax ∈ B(G,µ) with respect
to the partial ordering on B(G,µ), and the intermediate strata corresponding to
the element lying between the basic element and bmax with respect to the partial
ordering on B(G). The element bmax admits a reduction to the unique element
bT ∈ B(T,µT ), where T is the maximal torus inside GSp4/L. Similarly, the ele-
ment b ∈ B(G,µ) corresponding to the intermediate strata admits a reduction to
the unique basic element bL ∈ B(L,µL), where L is the Levi factor of the Klingen
parabolic of GSp4.

We now consider some irreducible representation ξ as above and look at the
uniformization map

Θ : RΓc(G,b,µ)⊗L
H (Jb)

A (G′(Q)\G′(A f )/K p,Lξ )→ RΓc(S (G,X)K p,Lξ )

furnished by Corollary 4.1 and Theorem 4.2. We let RΓc(G,b,µ)sc and
RΓc(S (G,X)K p ,Lξ )sc be the direct summands where G(Qp) acts via a supercus-
pidal representation. Then we have the following key consequence of the previous
lemma, which justifies why we are referring to this as Boyer’s trick.

Proposition 1.4.6. The uniformization map Θ induces an isomorphism

Θsc : RΓc(G,b,µ)sc⊗L
H (Jb)

A (G′(Q)\G′(A f )/K p,Lξ )
≃−→RΓc(S (G,X)K p,Lξ )sc

on the summand where G(Qp) acts via a supercuspidal representation.

Proof. We let F ℓnbas
G,µ−1 denote the closed complement of F ℓb

G,µ−1 for b∈B(G,µ)

the unique basic element. The space F ℓnbas
G,µ−1 is stratified by F ℓb

G,µ−1 for b ∈
B(G,µ) non-basic. For varying Kp ⊂ G(Qp), we set [F ℓnbas

G,µ−1/Kp] to be the v-

stack quotient. We let S (G,X)nbas
K pKp

denote the preimage of [F ℓnbas
G,µ−1/Kp] under
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the map πHT,Kp : S (G,X)K pKp → [F ℓG,µ−1/Kp]. It follows from the proof of
Corollary 4.1 that the cone of Θ is identified with

RΓc(S (G,X)nbas
K p ,Lξ ) := colimKp→{1}RΓc(S (G,X)nbas

K pKp
,Lξ ).

We want to show that the cohomology is parabolically induced as a G(Qp) repre-
sentation from proper Levi subgroups of G. For this, we consider the Hodge-Tate
period morphism:

πHT,Kp : S (G,X)nbas
KpK p → [F ℓnbas

G,µ−1/Kp]

The Cartan-Leray spectral sequence then gives us

E p,q
2 = H p

c ([F ℓnbas
G,µ−1/Kp],Rq

πHT,Kp!(Lξ )) =⇒ H p+q
c (S (G,X)nbas

KpK p,Lξ ).

Using the G(Qp)-equivariance of the Hodge-Tate period map, the colimit over
Kp→{1} gives rise to a spectral sequence

colimKp→{1}H p
c ([F ℓnbas

G,µ−1/Kp],Rq
πHT,Kp!(Lξ )) =⇒ H p+q

c (S (G,X)nbas
Kp

,Lξ )

with G(Qp)-equivariant maps. Therefore, we are reduced to showing the follow-
ing.

Lemma 1.4.7. For all integers p,q ≥ 0 the cohomology of
colimKp→{1}H p

c ([F ℓnbas
G,µ−1/Kp],RqπHT,Kp!(Lξ )) is parabolically induced as

a G(Qp)-representation from a proper Levi subgroup of G.

Proof. We apply excision with respect to the locally closed stratification given by
F ℓb

G,µ−1 for b ∈ B(G,µ) which is not basic. We write jb,Kp : [F ℓb
G,µ−1/Kp] ↪→

[F ℓG,µ−1/Kp] for the associated locally closed immersion at level Kp. Since the
Newton strata F ℓb

G,µ−1 are stable under the G(Qp) action, this reduces us to show-
ing that the cohomology of

colimKp→{1}H p
c ([F ℓb

G,µ−1/Kp], j∗b,Kp
Rq

πHT,Kp!(Lξ ))

is parabolically induced as a G(Qp)-representation. However, this now follows
from Lemma 4.3, where one uses the second part of the claim to see the unipotent
radical acts trivally.

This result will be the key tool in allowing us to describe the WL-action on
the local Shimura variety by global methods. We start this global analysis by
constructing strong transfers between GSp4 and its inner forms over a number
field F and proving a strong multiplicity one result.
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1.5 Existence of Strong Transfers and a Strong Mul-
tiplicity One Result

In this section, we will show the existence of strong transfers of certain auto-
morphic representations of an inner form of GSp4 over a number field F , using
the analysis of the trace formula similar to that of [KS16, Section 6]. We will
then combine this with analysis of the simple twisted trace formula of Kottwitz-
Shelstad [KS99], to deduce a kind of strong multiplicity one result for inner forms
of GSp4.

1.5.1 The Simple Trace Formula and Existence of Strong
Transfers

In order to describe the Galois action on the global Shimura variety, we will need
to construct strong transfers for inner forms of GSp4/F over a totally real field F .
This will allow us to compute the traces of Frobenius on the global Shimura vari-
ety in terms of the Langlands parameters of the strong transfer. The construction
of strong transfers will be accomplished by applying the elliptic part of the stable
trace formula with respect to the Lefschetz functions constructed by Kret-Shin
[KS16] at the Steinberg/Infinite places and pseudo-coefficients at some finite
number places where the representation has supercuspidal L-parameter, applying
the character identities of Chan-Gan [CG15] to conclude equality of the orbital
integrals at these latter places. First, we recall the key results of Kret-Shin on the
trace formula with fixed central character. For now, we will work generally. Let
G denote a connected reductive group over a number field F with center Z, write
AZ for the maximal Q-split torus of ResF/QZ, and set AZ,∞ = AZ(R)0 to be the
connected component of the identity. Let AF be the adeles of F and write G(AF)

1

for a choice of subgroup so that G(AF) = G(AF)
1×AZ,∞, as in [Art81, Page 11].

We consider a closed subgroup X⊂ Z(AF) which contains AZ,∞ such that Z(F)X
is closed inside Z(AF) and a continuous character χ : (X∩Z(F))\X→ C∗.

We write PlF for the set of places of F , and, for v ∈ PlF , let Xv ⊂ Z(Fv)
denote a closed subgroup. We let χv : Xv → C∗ be a smooth character. Write
H (G(Fv),χ

−1
v ) for the space of smooth compactly supported functions modulo

center on G(Fv) which transform under Xv via χ−1
v . We also require the

functions to be Kv-finite for some maximal compact subgroup Kv of G(Fv) if
v is archimedean. We now take Xν := X(Fv), where X is as above. Given a
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semisimple element γv ∈ G(Fv) and an admissible representation πv of G(Fv)
with central character χv on Xν , we define the orbital integral and trace character
for fv ∈H (G(Fv),χ

−1
v ) as follows. Let Iγv denote the connected centralizer of γv

in G. We have
Oγv( fv) :=

∫
Iγv(Fv)\G(Fv)

fv(x−1
γvx)dx

and
tr( fv|πv) := tr(

∫
G(Fv)/Z(Fv)

fv(g)πv(g)dg)

where we have fixed compatible choices of Haar measure on G and Z throughout.
We note that this operator is well defined since the above operator is of finite rank
if v is finite and is of trace class if v is infinite, by the Kv-finiteness assumption.

We define the adelic Hecke algebra H (G(AF),χ
−1), as well as the global

orbital integrals by taking a restricted tensor product over the local Hecke
algebras defined above and products of the local integrals. Write Γell(G) to be
the set of F-elliptic conjugacy classes in G(F). Let A f ,F denote the finite adeles
of F . For our purposes, it will suffice to consider a central character datum
(X,χ), where X = Z(AF), and we write χ =

⊗
v∈PlF χv for smooth characters

χv : Z(Fv)→ C∗ and all v ∈ PlF . We let L2
disc,χ(G(F)\G(AF)) denote the space

of functions on G(F)\G(AF) transforming under X by χ and square-integrable
on G(F)\G(AF)

1/X(AF)∩G(AF)
1. Write Acusp,χ(G) for the set of isomor-

phism classes of cuspidal automorphic representations of G(AF) whose central
characters restricted to X are χ . For f ∈H (G(AF),χ

−1), define the invariant
distributions T G

ell,χ and T G
disc,χ by

T G
ell,χ( f ) := ∑

γ∈Γell(G)

i(γ)−1vol(Iγ(F)\Iγ(AF)/X(AF))Oγ( f )

T G
disc,χ( f ) := tr( f |L2

disc,χ(G(F)\G(AF)))

where i(γ) is the number of connected components in the centralizer of γ . Analo-
gously, we define T G

cusp,χ( f ) by taking the trace on the space of square-integrable
cusp forms whose central character restricted to X is χ . Let G∗ denote the quasi-
split inner form of G over F , with a fixed inner twist G∗ ≃ G over F . Since Z
is canonically identified with the center of G∗, we may view the character χ as a
central character datum for G∗. We then let f ∗ denote a Langlands-Shelstad trans-
fer of f to G∗. One can construct such a transfer by lifting f along the surjection
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H (G(AF))→H (G(AF),χ
−1) applying the transfer with trivial central charac-

ter due to Waldspurger and then taking the image along the analogous surjection
for G∗(AF). We let Σell,χ(G∗) denote the set of Z(AF) orbits of stable F-elliptic
conjugacy classes in G∗(F). We define the stable elliptic distribution

ST G∗
ell,χ( f ∗) := τ(G∗) ∑

γ∈Σell,χ (G∗)
ĩ(γ)−1SOG∗

γ,χ( f )

where SOG∗
γ,χ( f ∗) denotes the stable orbital integral of f ∗ at γ , τ(G∗) is the Tama-

gawa number of G∗, and ĩ(γ) is the number of Galois fixed connected components
of the centralizer of γ in G∗. Let ξ be an irreducible representation of GF∞

. Denote
by χξ : Z(F∞)→ C∗ the restriction of ξ to Z(F∞). Write f G

ξ
∈H (G(F∞),χ

−1
ξ

)

for a Lefschetz function associated with ξ . In other words, a function such that
tr( f G

ξ
|π∞) computes the Euler-Poincaré characteristic for the relative Lie alge-

bra cohomology of π∞⊗ ξ for every irreducible admissible representation π∞ of
G(F∞) with central character χξ . It follows by the Vogan-Zuckerman classifica-
tion [VZ84] that, if ξ is regular, this will be non-zero if and only if π∞ is an (es-
sentially) discrete series representation cohomological of regular weight ξ . For a
finite place vst of F , we let fvst := f G

Le f ,vst
∈H (G(Fvst )) denote a Lefschetz func-

tion at vst . Morally, this should be characterized by the property that tr( fvst |πvst )
computes the Euler-Poincaré characteristic of the continuous group cohomology
of G(Fvst ) valued in πvst . In the case that the center is anisotropic, it follows
from the computations in [BW80, Theorem XI.3.9] that this means that the trace
of f G

Le f ,vst
will only be non-zero if πv is 1-dimensional or an unramified twist of

the Steinberg representation, for all irreducible admissible unitary πv. For finite
places v= vst , they were originally constructed by Kottwitz; however, these results
do not apply for the desired application, since the center of GSp4 is not compact.
For the construction of these functions in this case and the proof of the property
that their traces detect when a representation is 1-dimensional or an unramified
twist of Steinberg, see [KS16, Appendix A].

We now assume for simplicity that the center Z of G is split, which will
be the case in all our applications. We consider a character η : G(F) → C∗
such that η |Z(Fvst )

= χvst . We can define a function f G
Le f ,η ∈H (G(F),χ−1

vst
) as

f G
Le f ,η(g) := η−1(g) f G/Z

Le f (g), where g ∈ G(Fvst )/Z(Fvst ) denotes the image of g
under the quotient map. This (up to scaling by a non-zero constant) forms a
pseudo-coefficient for the Steinberg representation twisted by η , as constructed
in [Kaz86; SS97]. In particular, by [KS16, Corollary A.8 (2)], we have, for πvst
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an irreducible (essentially) unitary representation of G(Fvst ) with central charac-
ter χvst , that tr( f G

Le f ,η |πvst ) ̸= 0 if and only if πvst is isomorphic to η or Steinberg
twisted by η .

Now we have the key lemma, which tells us that with respect to these choices
of test functions we get the following "simple trace formula".

Lemma 1.5.1. [KS16, Lemma 6.1, 6.2] Fix a central character datum (Z(AF),χ)
with χξ = χ|Z(F∞) as above for χξ attached to some regular weight ξ . For an
element f ∈H (G(AF),χ

−1) in the global Hecke algebra as above, assume that
f∞ = f G

ξ
∈H (G(F∞),χ

−1) is a Lefschetz function at ∞ and assume that fvst =

f G
Le f ,η is the Lefschetz function described above at vst for a character η of G(Fvst )

such that η |Z(Fvst )
= χvst . Then we have an equality:

ST G∗
ell,χ( f ∗) = T G

ell,χ( f ) = T G
disc,χ( f ) = T G

cusp,χ( f )

Proof. Strictly speaking, the cited Lemmas only prove this in the case where the
central character datum is (Z(F∞),χξ ); however, the result in this case easily fol-
lows using [KS16, Corollary A.8 (3)] (cf. the proof of [KS16, Corollary 8.5]).

Let Sst and Ssc be disjoint finite sets of finite places of F , and let S0 be a finite
set of places contained in Sst ∪ Ssc. Let S∞ denote the infinite places of F . Set
S to be a finite set of places containing Sst ∪ Ssc ∪ S∞. We assume that the inner
twist G∗ of G is trivialized away from S0 and S∞ (i.e for all v /∈ S0∪S∞, the inner
twisting gives rise to an isomorphism GFv ≃ G∗Fv

). In particular, G is unramified
outside S and we can fix a reductive model for G and G∗ over OF [1/S]. By abuse
of notation, we write G and G∗ for the integral models of these groups. The
inner twist gives an isomorphism G∗Fv

≃ GFv and isomorphisms G∗OFv
≃ GOFv

of
the hyperspecial subgroups determined by this model for the finite places v /∈ S.
The notion of unramified local representation on either side will be defined with
respect to this fixed choice of hyperspecial level.

For the rest of the section, we will assume that G∗ = GSp4. We assume
throughout that π is a global cuspidal automorphic representation of the group
G(AF) satisfying the following properties:

1. π is cohomological of some regular weight ξ at infinity.

2. πv is unramified at all finite places v /∈ S.

3. πv has supercuspidal L-parameter for v ∈ Ssc.
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4. πv is an unramified twist of Steinberg at all finite places v ∈ Sst .

Note, as in Definition 2.1, we can further partition Ssc into Sssc, where std◦φπv is
irreducible (ssc = stable supercuspidal) and Sesc, where std◦φπv is reducible (esc
= endoscopic supercuspidal).

The main result of this section shows the existence of strong transfers from
G to G∗ at the places in Ssc∪Sst ∪S∞ for a certain class of automorphic represen-
tations of G. It is essentially a more refined version of [KS16, Proposition 6.3] in
the particular case that G∗ = GSp4.

Theorem 1.5.2. Suppose that Sst is non-empty. Given a π as above, there exists a
cuspidal automorphic representation τ of G∗(AF) satisfying the following:

• τS ≃ πS.

• At all v ∈ Ssc∪Sst ∪S∞, τv has the same Langlands parameter as πv.

Moreover, we can choose τ to be globally generic. For the first part, the same is
true with the roles of τ and π reversed.

Proof. First off note that, since π is an unramified twist of Steinberg at some
finite place, τ , if it exists, is automatically (essentially) tempered at all places
(cf. Remark 5.1). It follows, by [GT19, Remark 7.4.7], that the global L-packet
of τ therefore contains a globally generic representation. So, if we can show the
existence of some τ with the desired properties, that means we can find τ globally
generic with the same properties. For the former, we now apply the trace formula.

Let X = Z(AF) and χ be the central character of π . We set f =
⊗

v∈F fv
to be a test function on G(AF) satisfying the following:

1. f∞ = f G
ξ

is a Lefschetz/Euler-Poincaré function of weight ξ of G(F∞).

2. At v ∈ Sst , fv = f G
Le f ,ηv

is a Lefschetz function for G(Fv), where ηv is the
unique character such that πv is the Steinberg twisted by ηv.

3. At v ∈ Sssc, fv = fπv is the pseudo-coefficient of πv, as constructed in
[Kaz86; SS97].

4. At v ∈ Sesc, fv = f
π
+
v
+ f

π
−
v

, where {π+
v ,π−v } is the L-packet over φπv and

f
π
±
v

is the pseudo-coefficient of π±v .
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5. At the finite places v /∈ S, fv is an arbitrary element of the unramified Hecke
algebra.

6. For v ∈ S \ Sst ∪ S∞ ∪ Ssc, choose fv to be an arbitrary function such that
tr( fv|πv)> 0.

Given such a f , we choose a test function f ∗ =
⊗

v∈F f ∗v on G∗(AF) satisfying the
following:

1. f ∗∞ = f G∗
ξ

is a Lefschetz/Euler-Poincaré for the representation ξ of G∗(F∞).

2. At v ∈ Sst , f ∗v = f G∗
Le f ,ηv

is the Lefschetz function for G∗(Fv).

3. At v ∈ Sssc, f ∗v = fτv is a pseudo-coefficient of τv, where τv is the unique
supercuspidal representation of G∗(Fv) with Langlands parameter φπv .

4. At v ∈ Sesc, f ∗v = f
τ
+
v
+ f

τ
−
v

, where {τ+v ,τ−v } is the L-packet over φπv of
G∗(Fv) and f

τ
±
v

is the pseudo-coefficient of τ±v .

5. At the finite places v /∈ S, f ∗v = fv is the same element of the unramified
Hecke algebra.

6. For v ∈ S\Sst ∪S∞∪Ssc, choose f ∗v = fv.

Now we wish to check that f and f ∗ are matching up to a non-zero constant c, in
the sense of [KS16, Section 5.5]. We can check this place by place. For the finite
places v /∈ Sst ∪Ssc∪S∞, this is tautological. For all v ∈ S∞∪Sst , this follows from
[KS16, Lemma A.4, A.11]. For v ∈ Ssc, this follows from the character identities
of Chan-Gan [CG15, Proposition 11.1]. Namely, recall for a regular semisim-
ple elliptic element γ the orbital integrals of the pseudo-coefficients of a discrete
series representation π is given by the Harish-Chandra character of π evaluated
at γ , and it vanishes if γ is non-elliptic [Kaz86, Theorem K] [KST20, Proposi-
tion 3.2]. It follows that the orbital integrals for a sum of pseudo-coefficients over
an L-packet of GSp4 or its inner form is already a stable distribution, by [CG15,
Main Theorem] combined with [CG15, Proposition 11.1 (1)] for the inner form.
Therefore, the desired equality of stable orbital integrals reduces to showing an
equality of the sum of Harish-Chandra characters over the L-packets of supercus-
pidal parameters, and this is precisely [CG15, Proposition 11.1 (1)].

Since the test functions are matching and Sst ̸= /0, we can apply Lemma 5.1 to
conclude:

T G∗
cusp,χ( f ∗) = ST G∗

ell,χ( f ∗) = cT G
cusp,χ( f )
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Then, by linear independence of characters, we have a relationship

∑
Π′∈Acusp,χ (G∗)

Π′S≃πS

m(Π′)tr( f ∗S |Π′S) = c · ∑
Π∈Acusp,χ (G)

ΠS≃πS

m(Π)tr( fS|ΠS)

where m(Π) (resp. m(Π′)) denotes the multiplicity of Π (resp. Π′) in the cuspidal
spectrum of G (resp. G∗). Now at the infinite places, as soon as tr( fv|Πv) ̸= 0 at
v |∞ the regularity condition on ξ implies that Πv is an (essentially) discrete series
representation cohomological of regular weight ξ and that tr( fv|Πv) = (−1)q(Gv)

by the Vogan-Zuckerman classification of unitary cohomological representations,
where q(G) is the F-rank of the derived group of G. At vst ∈ Sst it follows by
[KS16, Corollary A.8] that Πvst is either the ηvst -twist of the Steinberg or triv-
ial representation. If Πvst were one-dimensional then the global representation
would also be one-dimensional by a strong-approximation argument [KST20,
Lemma 6.2], implying that Π∞ cannot be tempered, which would contradict the
fact Π∞ is an (essentially) discrete series representation. Therefore, Πvst is al-
ways the ηvst twist of the Steinberg representation. At the remaining v ∈ Sssc
(resp. v ∈ Sesc), it follows from the definition of pseudo-coefficients that, if
tr( fv|Πv) > 0, we have Πv ≃ πv (resp. Πv ∈ {π+

v ,π−v }). Similar considerations
apply for Π′ ∈ Acusp,χ(G∗) occurring non-trivially in the LHS. In summary, by
the above analysis, we can deduce that the RHS of the previous equation is non-
zero for the term corresponding to π and that all the non-trivial terms on the RHS
have the same sign. Therefore, the LHS is also non-zero, and we see, by choosing
any non-zero term, that we obtain the desired τ . The converse direction works
similarly, where the role of G and G∗, are swapped.

Remark 1.5.3. We note that we crucially used at the places v ∈ Ssc that φπv was
supercuspidal. Otherwise, tr( fv|Πv) ̸= 0 wouldn’t necessarily imply that Πv lies in
the L-packet over φπv without assuming that Πv is tempered. However, by [KS16,
Lemma 2.7] any representation of GSp4 that is Steinberg at some non-empty finite
set of places is tempered at all places. Therefore, we can relax this assumption at
least for the forward direction of Theorem 5.2 to just assuming that τv is a discrete
series representation at all v ∈ Ssc.

1.5.2 The Stable and σ -twisted Simple Trace Formula
For the proof of strong multiplicity one, we will need some more refined analysis
of trace formulae. Namely, we will be interested in the discrete part of the stable
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trace formula in the particular case of G∗ = GSp4/F , as discussed in [CG15,
Section 7.1]. To this end, fix a central character datum (X,χ) = (Z(AF),χ) as
before. We recall that the unique elliptic proper endoscopic group of GSp4/F is
C = GSO2,2 ≃ (GL2×GL2)/{(t, t−1)|t ∈ GL1}. Then, for a test function f ∗ on
G∗(AF) as above, the discrete part of the stable trace formula is an equality:

IG∗
disc,χ( f ∗) = ST G∗

disc,χ( f ∗)+
1
4

STC
disc,χ( fC)

for fC a matching test function on C. Here

IG∗
disc,χ( f ∗)=∑

M
|W (G,M)|−1 · ∑

s∈W (M,G)reg

|det(s−1)aM/aG
|−1 ·tr(MP(s,0)·IP

disc,χ(0, f ∗))

is a sum indexed over classes of standard Levi subgroups of G∗. The precise
definition of the terms will not be important for our purposes, but the interested
reader can look at [Art02, Section 3]. We simply note that the term corresponding
to M = G∗ is precisely equal to T G∗

disc,χ( f ∗), as defined in section 5.1. ST G∗
disc,χ is

a stable distribution on G∗, similar to ST G∗
ell,χ , and STC

disc,χ is the analogous stable
distribution on C(AF). However, since C has no proper elliptic endoscopic group,
we have

STC
disc,χ( fC) = IC

disc,χ( fC) = TC
disc,χ( fC)+(other terms)

with the other terms indexed by proper standard Levi subgroups of C as above.
We will be interested in combining this with the elliptic part of the twisted

trace formula as described by Kottwitz-Shelstad [KS99] for the particular group
G̃ := GL4×GL1/F with respect to involution

σ : (g,e) 7→ (Jtg−1J−1,edet(g))

where

J :=


1

1
−1

−1


We can enumerate the elliptic σ -twisted endoscopic groups as follows.

1. G∗ = GSp4

2. CE = ResE/FGL′2 := {(g1,g2) ∈ ResE/FGL2|det(g1) = det(g2)}
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3. CE
+ = (GL2×ResE/FGL1)/GL1

where E is an étale quadratic F-algebra and E is not split in case (3). The simple
stable twisted trace formula says that if f̃ is a test function on G̃ whose twisted
orbital integral is supported on the regular elliptic set at at least 3 finite places,
then we have an identity

IG̃,σ
disc,χ( f̃ ) =

1
2

ST G∗
disc,χ( f ∗)+

1
4 ∑

E
STCE

disc,χ( fCE )+
1
8 ∑

E ̸=F⊕2

STCE
+

disc,χ( fCE
+)

where

• ∑E is a sum over étale quadratic F-algebras E,

• f̃ , f ∗, fCE , and fCE
+ are matching test functions,

• ST G∗
disc,χ , STCE

disc,χ , and STCE
+

disc,χ are the stable distributions appearing in the
discrete part of the stable trace formula, as described above,

• IG̃,σ
disc,χ is the invariant distribution which is the twisted analogue of IG∗

disc,χ .
It is given by [LW13, Theorem 14.3.1 and Proposition 14.3.2] and has the
form

IG̃,σ
disc,χ( f̃ )=∑

M
|W (G,M)|−1 · ∑

s∈W (M,G)reg

|det(s−1)s·σ
aM/aG

|−1 ·tr(MP(s,0)·IP
disc,χ(0, f̃ )IP,disc(σ))

where the sum runs over standard Levi subgroups M of G.

Now we want to apply these trace formulae with respect to appropriately cho-
sen test functions. We will assume that Sst is a finite set of places such that
|Sst | ≥ 3. Then, for all v ∈ Sst , we let f ∗v be a pseudo-coefficient for the un-
ramified twist of Steinberg by ηv, where ηv is a character of G(Fv) such that
the restriction to Z(Fv) is χv. In particular, we will take f ∗v to be the Lefschetz
function f G∗

Le f ,ηv
∈H (G∗(Fv),χ

−1
v ) considered in the previous section which is

a pseudo-coefficient for Steinberg up to scaling. It follows, by [CG15, Corol-
lary 10.8], that we can choose the local constituent of the matching function f̃ at
v to be the σ -twisted pseudo-coefficient of the Steinberg twisted by ηv, as defined
in [MW18]. These functions orbital integrals are supported on the regular elliptic
set (See the construction in [MW18, Section 7.2]) and therefore we can apply the
simple twisted trace formula. Moreover, the twisted orbital integral of f̃v is a sta-
ble function, and hence the κ-orbital integral of f̃v is zero for all κ ̸= 1. Therefore,
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it follows that the transfers of fv to all elliptic twisted endoscopic groups (G̃Fv ,σ)
vanish, except possibly for G∗Fv

. Thus, the simple twisted trace formula simplifies
giving an equality:

IG̃,σ
disc,χ( f̃ ) =

1
2

ST G∗
disc,χ( f ∗)

Now we apply the discrete part of the stable trace formula for G∗ to the RHS this
gives us an equality:

IG∗
disc,χ( f ∗)− 1

4
STC

disc,χ( fC) = ST G∗
disc,χ( f ∗)

However, for any v ∈ Sst , the orbital integral of f ∗v is again stable, so we see that
its transfer to the endoscopic group C is zero. Hence, the second term vanishes.
All in all, we obtain the following lemma.

Lemma 1.5.4. For Sst a finite set of finite places with |Sst | ≥ 3, f ∗ and f̃ matching
test functions on G∗ and G̃, respectively, such that f ∗v is a pseudo-coefficient for
the (essentially) discrete series Steinberg representation twisted by an unramified
character ηv such that ηv|Z(Fv) = χv and f̃v is the σ -twisted pseudo-coefficient for
the Steinberg representation of G̃Fv twisted by ηv, we have an equality:

1
2

IG∗
disc,χ( f ∗) = IG̃,σ

disc,χ( f̃ )

relating spectral information on G∗ to G̃.

1.5.3 Strong Multiplicity One
We now would like to combine the analysis of sections 5.1 and 5.2 to deduce a
strong multiplicity one result for G∗=GSp4/F and certain inner forms. Our anal-
ysis is very similar to [CG15, Sections 10.5 and 10.6] and benefited from reading
the proofs of [RW18, Proposition 10.1 and Theorem 11.4] in a paper of Rosner and
Weissauer, where they prove a similar multiplicity one result using Weselmann’s
topological twisted trace formula [Wes12] instead of the simple twisted trace for-
mula of Kottwitz-Shelstad. Let Sst and Ssc be disjoint finite sets of finite places.
Let S∞ denote the set of infinite places. Set S0 ⊂ Sst ∪Ssc and Ssc∪Sst ∪S∞ ⊂ S to
be finite sets of places as before. We let G be an inner form over F , as in Theorem
5.2, trivialized outside of S0∪S∞. We have the following.

Proposition 1.5.5. Assume that |Sst | ≥ 3. Let π be a cuspidal automorphic repre-
sentation of G∗ = GSp4/F or the above inner form G satisfying the following:
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1. π is cohomological of regular weight ξ at infinity,

2. π is unramified outside of S,

3. π is an unramified twist of Steinberg at all places in Sst ,

4. π has supercuspidal L-parameter at all places in Ssc.

If π ′ is a cuspidal automorphic representation of G∗ satisfying (1), (3), and π ′S ≃
πS then its Langlands parameter at all places in S agrees with π . If π ′ is a cuspidal
automorphic representation of G satisfying conditions (1), (3), and π ′S ≃ πS then
its Langlands parameter at all places in Sst ∪Ssc∪S∞ agrees with π .

Proof. Set χ to be the central character of π . We apply the above trace formulae
with central character datum (Z(AF),χ). If π is a representation of G∗=GSp4/F ,
we take τ to be a globally generic member of the global L-packet of π , as in the
proof of Theorem 5.2. If π is a representation of the inner form G then, using
Theorem 5.2, we take τ to be a globally generic strong transfer τ of π to a cuspidal
automorphic representation of G∗, with Langlands parameter equal to φπv at all
places in v ∈ Ssc∪Sst ∪S∞. Now we apply [GT11, Section 13] to τ to deduce the
existence of a strong transfer to a globally generic automorphic representation of
GL4(AF), denoted τ̃ . It satisfies the following:

1. τ̃ is a global theta lift of τ .

2. τ̃∨⊗χ ≃ τ̃ .

3. For all places v, we have that φτ̃v = std◦φτv as conjugacy classes of param-
eters.

4. Its form falls into the two cases:

(a) τ̃ is cuspidal

(b) τ̃ = σ ⊞σ ′ for σ ̸= σ ′ a cuspidal automorphic representation of GL2.

In the latter case, τ is the theta lift of a cusp form σ ⊗σ ′ on C = GSO2,2.

To distinguish these two cases, we say that τ̃ is a stable or endoscopic lift. We
choose matching test functions f̃ and f ∗ on G̃ and G∗, respectively, such that,
for v ∈ Sst , they are pseudo-coefficients for Steinberg twisted by ηv, as in Lemma
5.3, where ηv the unramified character that πvst is a twist of Steinberg of, where
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we can, up to scaling, take this to be the Lefschetz function f G∗
Le f ,ηvst

considered
in section 5.1. We let f ∗∞ be a Lefschetz function for the discrete series L-packet
given by ξ as before. Lemma 5.3 then gives us an equality:

1
2

IG∗
disc,χ( f ∗) = IG̃,σ

disc,χ( f̃ )

We first treat the case where τ̃ is a stable lift, and consider the part of the RHS
corresponding to the cuspidal representation τ̃ constructed above. By using linear
independence of the unramified characters and the strong multiplicity one prop-
erty for G̃, the above identity implies an equality

c1 · ∑
Π′≃πS

m(Π′)tr( f ∗S |Π′S) = trσ (τ̃S| f̃S) (1.3)

where c1 is a non-zero constant. Here trσ (τS| f̃S) is the σ -twisted trace, as de-
fined in [CG15, Section 5.16]. The LHS runs over automorphic representations
satisfying the following:

1. Π′ has non-zero contribution to the discrete part of the trace formula IG∗
disc,χ .

2. The coefficient m(Π′) is the coefficient associated with the trace of Π′ in
IG∗
disc,χ .

We can further simplify the LHS of (3) by noting that non-discrete spectrum rep-
resentations which intervene in IG∗

disc,χ are parabolically induced from the discrete
spectrum of proper Levi subgroups of G∗. By [CG15, Section 5.8], we know that
parabolically induced representations of G∗ lift to parabolically induced represen-
tations of G̃. Therefore, since τ̃ is a stable lift and therefore cuspidal, all terms
occurring in in the LHS must all come from the discrete spectrum T G∗

disc,χ( f ∗), by
strong multiplicity one for G̃. Moreover, the coefficients m(Π′) must then be the
multiplicities of Π′ in the discrete spectrum. However, as in Lemma 5.1, we have
an equality:

T G∗
disc,χ( f ∗) = T G∗

cusp,χ( f ∗)

In other words, we may assume that the sum on the LHS of (3) ranges over Π′ ∈
Acusp,χ(G∗), and that m(Π′) denotes the multiplicity in the cuspidal automorphic
spectrum. In other words, we can rewrite the LHS as

∑
Π′∈Acusp,χ (G∗)

Π′S≃πS

m(Π′)tr( f ∗S |Π′S)
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Now, for the RHS, we apply the local character identities of Chan-Gan [CG15,
Proposition 9.1], this tells us that we have an equality:

trσ (τ̃S| f̃S) = c2 ∏
v∈S

∑
π ′v∈Πφτv (G

∗
Fv)

tr( f ∗v |π ′v)

for some non-zero constant c2, where we have used property (3) of the represen-
tation τ̃ . In summary, we have concluded

∑
Π′∈Acusp,χ (G∗)

Π′S≃πS

m(Π′)tr( f ∗S |Π′S) = c ·∏
v∈S

∑
π ′v∈Πφτv (G

∗
Fv)

tr( f ∗v |π ′v)

for some non-zero constant c. If π was a representation of G∗, we know by our
choice of τ that φτv = φπv for all v ∈ S, so, by linear independence of characters
at the places v ∈ S \ S∞ ∪ Sst , this tells us that the local constituents of some Π′

occurring in the LHS with non-zero trace at S∞∪Sst are described by members of
the L-packet over φπv occurring with some multiplicity. Since the representation
π ′ is by assumption cohomological of regular weight ξ and an unramified twist
of Steinberg at all places in Sst , by arguing as in proof of Theorem 5.2, we have
that tr( fSst∪S∞

|π ′Sst∪S∞
) ̸= 0, and this gives us the desired claim for G∗ = GSp4.

Now, if π ′ is a representation of the inner form, we apply the character identities
of Chan-Gan [CG15, Proposition 11.1]. This tells us that the RHS of the previous
equation is equal to

c3 ∏
v∈S

∑
ρv∈Πφτv (GFv)

tr( fv|ρv)

for some non-zero constant c3. Now, to rewrite the LHS, we apply the trace for-
mula as in the proof of Theorem 5.2. By linear independence of characters, we
obtain a relationship

∑
Π′∈Acusp,χ (G∗)

Π′S≃πS

m(Π′)tr( f ∗S |Π′S) = c4 · ∑
Π∈Acusp,χ (G)

ΠS≃πS

m(Π)tr( fS|ΠS)

for some non-zero constant c4. All in all, we obtain that

· ∑
Π∈Acusp,χ (G)

ΠS≃πS

m(Π)tr( fS|ΠS) = c′∏
v∈S

∑
ρv∈Πφτv (GFv)

tr( fv|ρv)
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for some non-zero constant c′. We know by our choice of τ that φτv = φπv for all
v ∈ Ssc∪Sst ∪S∞. From here, the claim follows.

In the case that τ̃ is an endoscopic lift. We apply the stable trace form for G∗
and a test function f ∗ of G∗(AF). We recall that this is an identity:

ST G∗
disc,χ( f ∗) = IG∗

disc,χ( f ∗)− 1
4

STC
disc,χ( fC)

for a fC a matching test function on C(AF). Moreover, since C has no proper
elliptic endoscopic groups, we have

STC
disc,χ( fC) = IC

disc,χ( fC).

We look at the σ1⊗σ2-isotypic part, where σ1⊗σ2 is the representation of C
whose theta lift is τ . and use linear independence of characters at the unramified
places to obtain a semi-local identity

ST G∗
σ1⊗σ2

( f ∗S )= ∑
Π′S≃πS

m(Π′)tr( f ∗S |Π′S)−
1
4 ∑
(σ ′1⊗σ ′2)

S≃(σ1⊗σ2)S

m(σ⊗σ
′)tr( fC

S |(σ ′1⊗σ
′
2)S)

where the LHS is a stable distribution on G∗(AS), as in [CG15, Equation 8.5].
The first term in the RHS is a sum over discrete automorphic representations Π′ of
G∗(AF) with the coefficient m(Π′) being the multiplicity in the discrete spectrum,
and the second term is a sum over all automorphic representations σ ′1⊗ σ ′2 of
C(AF). It follows by [CG15, Corollary 8.6] that the LHS is equal to

1
2 ∏

v∈S
∑

π ′v∈Πφτv (G
∗
Fv)

tr( f ∗v |π ′v)

On the other hand, if, for v∈ Sst , we take f ∗v = f G∗
Le f ,ηv

to be the Lefschetz function
as above, we see that

−1
4 ∑
(σ1⊗σ ′2)

S≃(σ1⊗σ2)S

m(σ ⊗σ
′)tr( fC

S |(σ ′1⊗σ
′
2)S)

vanishes, since the orbital integral of f ∗v is stable and Sst ̸= /0. In summary, we
have concluded an identity

c′′∏
v∈S

∑
π ′v∈Πφτv (G

∗
Fv)

tr( f ∗S |π ′v) = ∑
Π′S≃πS

m(Π′)tr( f ∗S |Π′S)

for some non-zero constant c′′. Now taking f ∗∞ to be our Lefschetz function at ∞,
we can argue just as in the stable case.
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Remark 1.5.6. Strong multiplicity one for globally generic automorphic represen-
tations of GSp4 has been proven by Jiang-Soudry [JS07]. So, in the particular
case that π and π ′ are representations of GSp4, we could have just assumed that
Sst is non-empty and then applied their results to a globally generic member in the
global L-packets of π and π ′ to deduce the desired claim.

1.6 Galois Representations in the Cohomology of
Shimura varieties

We now would like to combine the results of the previous section with results
of Sorensen [Sor10] on the Galois representations associated to automorphic rep-
resentations of G∗ = GSp4/F to say something about the Galois action of the
global Shimura varieties occurring in basic uniformization. Let F/Q be a totally
real field and A f ,F the finite adeles of F . Throughout, we will assume that τ is
a cuspidal automorphic representation of G∗ satisfying the same properties as in
the previous section.

1. τ∞ is cohomological of some regular weight ξ of G∗(F∞).

2. τv is unramified at all finite places outside of S.

3. τv is an unramified twist of Steinberg at some finite set of finite places Sst .

We have the following key result of Sorensen.

Theorem 1.6.1. [Sor10, Theorem A] Fix a globally generic τ as above such
that Sst is non-empty. Then there exists, a unique (after fixing the isomorphism
i : Qℓ

≃−→ C) irreducible continuous representation ρτ : Gal(F/F)→ GSp4(Qℓ)
characterized by the property that, for each finite place v ∤ ℓ of F, we have

iWD(ρτ |WFv
)F−s.s ≃ φτv⊗| · |−3/2

where (−)F−s.s denotes the Frobenius semisimplification and φτv is the Gan-
Takeda parameter of τv.

Now let us fix τ with associated ρτ as above and assume that τ is a strong
transfer of some cuspidal automorphic representation π of G, as in Theorem 5.2.
We assume that Sst contains q an odd inert prime in the number field F and choose
the inner form G to be of the following form, as in Kret-Shin [KS16, Section 8],
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• G(R)≃ GSp4(R)×GU2(H)[F :Q]−1,

• GFv ≃ GSp4/Fv at all finite places v if [F : Q] is odd,

• GFv ≃ GSp4/Fv at all but the finite place q if [F : Q] is even,

where H is the Hamilton quaternions. Let A(π) be the set of isomorphism classes
of cuspidal automorphic representations Π of G such that, for all v ∈ Sst , Πv is an
unramified twist of Steinberg, Π∞ is ξ cohomological, and, for all v /∈ S∞ ∪ Sst ,
Πv ≃ πv. Our main task now is to show that ρτ is realized in the π∞ isotypic
component of the Shimura variety associated to a Shimura datum (G,X), where
X is as in [KS16, Pages 41-42]. Let Sh(G,X)K,F be the associated Shimura variety
over F which we recall is 3-dimensional. We set Lξ to be the Qℓ local system
associated to a irreducible representation of G over F of highest weight ξ on it
as before, and let H i

c(Sh(G,X)K,Lξ )ss denote the semisimplification as a Hecke
module of the compactly supported etale cohomology valued in Lξ . Choose K ⊂
G(A f ,F) a sufficiently small compact open subgroup such that π∞ has a non-zero
K-invariant vector. Let Sbad denote the set of prime numbers p for which either
p = 2, the group G is ramified, or Kp = ∏v|p Kv is not hyperspecial. Then we
define the virtual Galois representation

ρ
π
shim :=(−1)3

∑
Π∈A(π)

6

∑
i=0

(−1)i[HomG(A f ,F )(Π
∞,H i

c(Sh(G,X)K,F ,Lξ )ss)]∈K0(Qℓ(ΓF))

(1.4)
where K0(Qℓ(ΓF)) denotes the Grothendieck group of continuous ΓF :=
Gal(F/F)-representations with coefficients in Qℓ. We now define the rational
number

a(π) := (−1)3N−1
∞ ∑

Π∈A(π)
m(Π) · ep(Π∞⊗ξ )

where

1. m(Π) is the multiplicity of Π in the automorphic spectrum of G,

2. N∞ = |ΠG(F∞)
ξ

| · |π0(G(F∞)/Z(F∞)| = 4, where Π
G(F∞)
ξ

denotes the discrete
series L-packet of representations of G(F∞) cohomological of weight ξ ,

3. ep(Π∞⊗ξ ) := ∑
∞
i=0(−1)idim(H i(Lie(G(F∞)),K∞;Π∞⊗ξ ).

Then we have the following proposition of Kret-Shin.
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Proposition 1.6.2. [KS16, Proposition 8.2] With notation as above, for almost
all finite F-places v not dividing a prime number in Sbad and all sufficiently large
integers j, we have

tr(ρπ
shim(Frob j

v)) = a(π)q
j 3

2
v tr(std◦φπv)(Frob j

v)

Moreover, the virtual representation ρπ
shim is a true representation. In particular,

the only non-zero term appearing in the above alternating sum occurs in middle
degree (= 3).

Remark 1.6.3. The claim about it occurring in middle degree is part of the proof
of the Proposition not the statement. (See the discussion after equation (8.13) in
[KS16])

We use this to deduce the following corollary.

Corollary 1.6.4. The π∞-isotypic component of RΓc(Sh(G,X)K p,F ,Lξ ) is con-
centrated in degree 3 and has ΓF -action given (up to multiplicity) by the semi-
simplification of std◦ρτ .

Proof. The first part follows immediately from the previous Proposition, and the
second part follows from the identification of the traces. In particular, by the
Brauer-Nesbitt Theorem, Cheboratev density theorem, and the condition charac-
terizing ρτ , we can identify (up to multiplicity) the Galois representation ρπ

shim
with the semi-simplifaction of the Galois representation std◦ρτ .

1.7 Proof of the Key Proposition
We will now combine the results of the previous three sections to deduce some key
consequences that will be used to derive Proposition 1.4. For this, using Krasner’s
lemma, we now fix a totally real number field F with two odd totally inert primes
p and q such that Fp ≃ L the fixed unramified extension of Qp. We fix the Q-inner
form G of G∗ = ResF/QGSp4 defined in section 6, and let G′ be the inner form
of G seen in Definition 4.1. We take (G,X) to be the Shimura datum considered
in [KS16, Pages 41-42] as in section 6. We note that this forces the associated
geometric dominant cocharacter µ of G := GQp to be the Siegel cocharacter; in
particular, we can apply the results of section 4.2. Set ξ to be a regular weight of
an algebraic representation of G over Q. Let K p ⊂ G(Ap∞) be an open compact
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subgroup. We set Ssc = {p} and Sst to be a disjoint finite set of finite places of Q
containing q. We consider the uniformization map

Θ : RΓc(G,b,µ)⊗L
H (Jb)

A (G′(Q)\G′(A f )/K p,Lξ )→ RΓc(S (G,X)K p,Lξ )
(1.5)

supplied by Theorem 4.2 and Corollary 4.1. Now fix a smooth irreducible super-
cuspidal representation ρ of J = ResL/Qp(GU2(D))(Qp) = GU2(D)(L). We have
the following lemma.

Lemma 1.7.1. Suppose ρ is a supercuspidal representation of J(Qp), then, for
sufficiently regular ξ and sufficiently small K p, we can find a lift Π′ to a cuspidal
automorphic representation of G′, such that Π′∞ occurs as a J(Qp)-stable direct
summand of A (G′(Q)\G′(A f ))/K p,Lξ ). Moreover, for all places in Sst , we can
assume that the local constituents at v ∈ Sst are unramified twists of the Steinberg
representation.

Proof. This follows from an argument using the simple trace formula. See for ex-
ample [Han20, Proposition 2.9] or [Shi12]. We note in particular that cuspidality
is vacuous, since G′(R) is compact modulo center by construction.

So let Π′ be a globalization of a fixed supercuspidal ρ to a cuspidal automor-
phic representation of G′ for some sufficiently regular ξ and sufficiently small
K p. We can and do regard Π′p∞ as a representation of G(Ap

f ) ≃ G′(Ap
f ). We

set K p = K p
S KS, where KS ⊂G(AS

f ) is an open compact in the finite adeles away
from S, for S⊂ PlF some finite set of places of Q containing Sst ∪{p}∪{∞}, as in
section 5. We assume that S is sufficiently large such that outside of S the automor-
phic representation Π′ is unramified, so, in particular, the subgroup KS ⊂ G(AS

f )
is a product of hyperspecial subgroups away from S. We consider the abstract
commutative Hecke algebra

TS := Z[G(AS
f )//KS)]

of bi-invariant compactly supported smooth functions on G(AS
f ). We regard both

sides of (5) as TS-modules and consider the maximal ideal m defined by the Hecke
eigenvalues of Π′S. We then localize both sides of (5) at m to obtain a map:

Θm : (RΓc(G,b,µ)⊗L
H (Jb)

A (G′(Q)\G′(A f )/K p,Lξ ))m→RΓc(S (G,X)K p,Lξ )m

We would like to apply Propositions 4.4 and 5.4 to the representations occurring
on both sides of this map. However, to apply these results we need to make some
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more modifications. In particular, the automorphic representations of G′ occurring
in the LHS (resp. RHS) of Θm are not necessarily unramified twists of Steinberg
at all places in Sst .

To remedy this, we set K p =K{p}∪Sst K
{p}∪Sst , where K{p}∪Sst ⊂G(A{p}∪Sst

f )≃
G′(A{p}∪Sst

f ) is an open compact subgroup. Then we consider the colimits

RΓc(S (G,X)K{p}∪Sst ,Lξ ) := colimK{p}∪Sst→{1}RΓc(S (G,X)K{p}∪Sst K{p}∪Sst ,Lξ )

and

A (G′(Q)\G′(A f )/K{p}∪Sst ,Lξ ) := colimK{p}∪Sst→{1}A (G′(Q)\G′(A f )/K{p}∪Sst K
{p}∪Sst ,Lξ )

Since Sst ⊂ S, the map θm gives rise to a map

(RΓc(G,b,µ)⊗L
H (Jb)

A (G′(Q)\G′(A f )/KSst∪{p},Lξ ))m→RΓc(S (G,X)KSst∪{p} ,Lξ )m

By Proposition 4.4, we obtain an isomorphism

(RΓc(G,b,µ)sc⊗L
H (Jb)

A (G′(Q)\G′(A f )/KSst∪{p},Lξ ))m
≃−→RΓc(S (G,X)KSst∪{p},Lξ )m,sc

Now, for all v∈ Sst , we can project to summand of the LHS where G(Fv)≃G′(Fv)
acts via an unramified twist of Steinberg, noting that the LHS and hence the RHS
is semisimple.

This gives an isomorphism:

Θ
st
m,sc : (RΓc(G,b,µ)sc⊗L

H (Jb)
A (G′(Q)\G′(A f )/KSst∪{p},Lξ ))

st
m
≃−→RΓc(S (G,X)KSst∪{p} ,Lξ )

st
m,sc

We now apply Proposition 5.4 to obtain the following.

Proposition 1.7.2. Let ρ ∈ Π(J) be a representation with supercuspidal Gan-
Tantono parameter φ . Assume that |Sst | ≥ 3. Then, for Π′ a choice of globalization
of ρ as in Lemma 7.1, unramified outside S with associated maximal ideal m⊂TS

in the Hecke algebra defined by the Hecke eigenvalues of Π′S, the representations
of G′(A f ) occurring in the LHS of the map

Θ
st
m,sc : (RΓc(G,b,µ)sc⊗L

H (Jb)
A (G′(Q)\G′(A f )/KSst∪{p},Lξ ))

st
m
≃−→RΓc(S (G,X)KSst∪{p} ,Lξ )

st
m,sc

are isomorphic to Π
′∞ for Π

′ a cuspidal automorphic representation of G′(A)
satisfying the following:
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• Π
′S ≃Π′S,

• Π
′ is cohomological of regular weight ξ at ∞,

• Π
′ is unramified twist of Steinberg at all v ∈ Sst ,

• Π
′ has local constituent at p with associated L-parameter φ .

Proof. We localized at m corresponding to Π′S and are considering algebraic au-
tomorphic representations of G′ valued in the algebraic representation defined by
ξ . Therefore, it is clear that any representation occurring in the LHS is of the
form Π

′∞, where Π
′ is a cuspidal automorphic form of G′ satisfying (1) and (2).

Here cuspidality is automatic since G′(R) is compact modulo center. Moreover,
by construction, it follows that G′(Qv) acts on the LHS via representations which
are an unramified twist of Steinberg for v ∈ Sst . This allows us to apply proposi-
tion 5.4, since |Sst | ≥ 3 by assumption. Proposition 5.4 applied to the inner form
G′ of G∗ and the cuspidal automorphic representation Π′ of G′ tells us that Π

′

must have Langlands parameter at {p} = Ssc given by φ , which was the desired
claim.

We now combine this with Corollary 6.3 to deduce the following.

Corollary 1.7.3. With notation as above, the map

Θ
st
m,sc : (RΓc(G,b,µ)sc⊗L

H (Jb)
A (G′(Q)\G′(A f )/KSst∪{p},Lξ ))

st
m
≃−→RΓc(S (G,X)KSst∪{p} ,Lξ )

st
m,sc

is an isomorphism of complexes of G(Qp)×WL-modules concentrated in degree 3
with WL-action given, up to multiplicity and semi-simplification as a WL-module,
by std◦φ ⊗| · |−3/2.

Proof. Proposition 7.2 tells us that the LHS of Θst
m,sc breaks up as a direct sum of

G(Qp)×WL-modules of the form

RΓc(G,b,µ)sc⊗L
H (Jb)

Π
′{p,∞}∪Sst

for Π
′ a cuspidal automorphic representation of G′ that has L-parameter φ at p,

and is also cohomological of regular weight ξ at infinity and an unramified twist
of Steinberg at all places in Sst . It suffices to prove the claim for each one of these
summands. This summand will map to the Π

′{p,∞}∪Sst -isotypic part of the RHS
by construction. Let τ denote a strong transfer of Π′ to a cuspidal automorphic
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representation of G∗ given by Theorem 5.2, with associated Galois representation
ρτ given by Theorem 6.1. Applying Theorem 5.2 again, we consider a strong
transfer of τ to G given by Π. We note, by Corollary 6.3, that the Π

′{p,∞}∪Sst ≃
Π{p,∞}∪Sst -isotypic part will be concentrated in degree 3 and have WL-action given
(up to multiplicity and semi-simplification) by std ◦ φ ⊗| · |−3/2, by the property
characterizing ρτ and the fact that τ was a strong transfer.

With this in hand, we are finally ready conclude our key Proposition.

Proposition 1.7.4. Let φ be a supercuspidal parameter with associated L-packet
Πφ (J). Then the direct summand of⊕

ρ ′∈Πφ (J)

RΓc(G,b,µ)[ρ ′]

where G(Qp) acts via a supercuspidal representation⊕
ρ ′∈Πφ (J)

RΓc(G,b,µ)[ρ ′]sc

is concentrated in middle degree 3 and admits a non-zero WL-stable sub-quotient
with WL-action given by std◦φ ⊗| · |−3/2.

Proof. This is an immediate consequence of Proposition 7.2 and Corollary 7.3.

In particular, using Corollary 3.21, we can deduce the following.

Corollary 1.7.5. If p > 2 and L/Qp is an unramified extension, then, for all ρ ∈
Π(J) with supercuspidal Gan-Tantono parameter φρ , the Fargues-Scholze and
Gan-Tantono correspondences are compatible.

1.8 Applications
We will now apply Corollary 7.5 to deduce some applications to the strong form
of the Kottwitz conjecture and conclude the proof of Theorem 1.1. We begin with
the latter.

Theorem 1.8.1. The following is true.

94



1. For any π ∈ Π(G) (resp. ρ ∈ Π(J)) such that the Gan-Takeda (resp. Gan-
Tantono) parameter is not supercuspidal, we have that the Gan-Takeda
(resp. Gan-Tantono) correspondence is compatible with the Fargues-
Scholze correspondence.

2. If L/Qp is unramified and p> 2, we have, for all π ∈Π(G) (resp. ρ ∈Π(J))
such that the Gan-Takeda (resp. Gan-Tantono) parameter is supercuspidal,
that the Gan-Takeda (resp. Gan-Tantono) correspondence is compatible
with the Fargues-Scholze correspondence.

Proof. Part (1) follows by Corollary 3.12 and Corollary 3.16. Part (2) for the
Gan-Tantono local Langlands is precisely Corollary 7.5. It remains to show that
for L/Qp unramified and p > 2, π a smooth irreducible representation of GSp4/L
with supercuspidal Gan-Takeda φπ parameter that the two correspondences are
compatible. To show this, we consider the complex

RΓ
♭
c(G,b,µ)[π]

of J(Qp)×WL-representations. We know, by Theorem 3.13, that this admits sub-
quotients as a J(Qp)-module given by ρ , for all ρ whose Gan-Tantono parameter
φρ is equal to the Gan-Takeda parameter φπ of π . However, by Corollary 3.15,
we know that these representations must have Fargues-Scholze parameter equal
to φ FS

π . Therefore, we get a chain of equalities

φ
FS
π = φ

FS
ρ = φρ = φπ

where we have used compatibility of the Gan-Tantono and the Fargues-Scholze
correspondence for the middle equality.

Now, with this out of the way, we turn our attention to proving some strong
forms of the Kottwitz conjecture for these representations, verifying Theorem 1.3.

Theorem 1.8.2. Let L/Qp be an unramified extension with p > 2. Let π (resp. ρ)
be members of the L-packet over a supercuspidal parameter φ : WL→GSp4(Qℓ).
Then the complexes

RΓc(G,b,µ)[π]

and
RΓc(G,b,µ)[ρ]

are concentrated in middle degree 3.
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1. If φ is stable supercuspidal, with singleton L-packets {π} = Πφ (G) and
{ρ} = Πφ (J), then the cohomology of RΓc(G,b,µ)[π] in middle degree is
isomorphic to

ρ⊠ (std◦φ)∨⊗| · |−3/2

as a J(Qp)×WL-module, and the cohomology of RΓc(G,b,µ)[ρ] in middle
degree is isomorphic to

π⊠ std◦φ ⊗| · |−3/2

as a G(Qp)×WL-module.

2. If φ is an endoscopic parameter, with L-packets Πφ (G) = {π+,π−} and
Πφ (J) = {ρ1,ρ2}, the cohomology of RΓc(G,b,µ)[π] in middle degree is
isomorphic to

ρ1⊠φ
∨
1 ⊗| · |−3/2⊕ρ2⊠φ

∨
2 ⊗| · |−3/2

or
ρ1⊠φ

∨
2 ⊗| · |−3/2⊕ρ2⊠φ

∨
1 ⊗| · |−3/2

as a J(Qp)×WL-module. Similarly, the cohomology of RΓc(G,b,µ)[ρ] in
middle degree is isomorphic to

π
+⊠φ1⊗| · |−3/2⊕π

−⊠φ2⊗| · |−3/2

or
π
+⊠φ2⊗| · |−3/2⊕π

−⊠φ1⊗| · |−3/2

as a G(Qp)×WL-module. Here we write std◦φρ ≃ φ1⊕φ2, with φi distinct
irreducible 2-dimensional representations of WL and det(φ1) = det(φ2).

Moreover, both possibilities for the cohomology of RΓc(G,b,µ)[ρ]
(resp. RΓc(G,b,µ)[π]) in the endoscopic case occur for some choice of
representation ρ ∈ Πφ (J) (resp. π ∈ Πφ (G)). In particular, knowing
the precise form of either RΓc(G,b,µ)[ρ] or RΓc(G,b,µ)[π] for some
ρ ∈Πφ (J) or π ∈Πφ (G) determines the precise form of the cohomology in
all other cases.

Proof. We show the proof in the endoscopic case, with the stable case being
strictly easier. We first note that, since φ = φ FS

ρ by Theorem 8.1, it follows by
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assumption that the Fargues-Scholze parameter φ FS
ρ of ρ is supercuspidal. There-

fore, by Remark 3.12, we have an isomorphism

RΓc(G,b,µ)[ρ]≃ RΓ
♭
c(G,b,µ)[ρ]

of G(Qp)×WL-modules. Moreover, by Theorem 3.17, we see that both are con-
centrated in middle degree 3. Applying Theorem 3.13, we get the following chain
of equalities in the Grothendieck group of admissible G(Qp)-representations of
finite length

−[H3(RΓc(G,b,µ)[ρ])] = [RΓc(G,b,µ)[ρ]] = [RΓ
♭
c(G,b,µ)[ρ]] =− ∑

π∈Πφ (G)

HomSφ
(δπ,ρ ,std◦φρ)π

Now we saw in the discussion proceeding Theorem 3.13 that the RHS takes the
form:

−2π
+−2π

−

We set p1 and p2 to be the two representations of Sφ ≃ {(a,b) ∈ Q∗ℓ ×Q∗ℓ |a2 =

b2} ⊂ (GL2(Qℓ)×GL2(Qℓ))
0 given by projecting to the first and second Q∗ℓ -

factor, respectively. By Corollary 3.3, Corollary 3.11, and Theorem 8.1, we have
an isomorphism of G(Qp)×WL-modules

RΓc(G,b,µ)[ρ]≃ Actp1(ρ)[−3]⊠φ1⊗| · |−3/2⊕Actp2(ρ)[−3]⊠φ2⊗| · |−3/2

where Actp1(ρ) and Actp2(ρ) are a priori direct sum of shifts of supercuspidal
representations of G(Qp) with Fargues-Scholze (= Gan-Takeda) parameter equal
to φ . However, since we know that the LHS is a complex concentrated in middle
degree 3, this implies, by the above description in the Grothendieck group, that
one of the Actp1(ρ) and Actp2(ρ) is isomorphic to π+ and the other is isomorphic
to π−. Without loss of generality, assume that

Actp1(ρ1)≃ π
+

and
Actp2(ρ1)≃ π

−

We let p+ and p− be the representation of Sφ determined by the trivial and non-
trivial characters of the component group, respectively. Now, given two represen-
tations of Sφ , denoted W and W ′, it follows from Remark 3.7 (3) that we have an
isomorphism:

ActW ◦ActW ′(·)≃ ActW⊗W ′(·)
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In turn, we get

Actp∨1
(π+)≃ Actp∨1

◦Actp1(ρ1)≃ Actp+(ρ1)≃ ρ1

where the last isomorphism follows since p+ is the trivial representation. Sim-
ilarly, depending on the values of Actp1(ρ2) and Actp2(ρ2) we can deduce that
Actp∨2

(π+) is isomorphic to ρ1 or ρ2. Now by Corollary 3.3, Corollary 3.11, and
Theorem 8.1, we have an isomorphism

RΓc(G,b,µ)[π+]≃Actp∨1
(π+)[−3]⊠φ

∨
1 ⊗|·|−3/2⊕Actp∨2

(π+)[−3]⊠φ
∨
2 ⊗|·|−3/2

Since Actp∨1
(π+) ≃ ρ1 it therefore follows, by Theorem 3.13 and Remark 3.11,

that Actp∨2
(π+) must be isomorphic to ρ2. Moreover, we know that Actp− ◦

Actp1(ρ1) ≃ Actp2(ρ1) and Actp− ◦Actp2(ρ1) ≃ Actp1(ρ1). Therefore, we ob-
tain that Actp−(π

+) ≃ π− and Actp−(π
−) ≃ π+. This allows us to determine

that
Actp∨1

(π−)≃ Actp∨2
◦Actp−(π

−)≃ Actp∨2
(π+)≃ ρ2

and
Actp∨2

(π−)≃ Actp∨1
◦Actp−(π

−)≃ Actp∨1
(π+)≃ ρ1

which will determine the cohomology of RΓc(G,b,µ)[π−]. It only remains to
show that the value of RΓc(G,b,µ)[ρ2] is determined. However, this follows since

Actp2(ρ2)≃ Actp2 ◦Actp∨2
(π+)≃ π

+

and
Actp1(ρ2)≃ Actp1 ◦Actp∨1

(π−)≃ π
−

To conclude this section, we use Theorem 8.1 to deduce compatibility with the
local Langlands correspondence for Sp4 and its unique non quasi-split inner form
SU2(D). These correspondences are described in the papers [GT10] and [Cho17]
by Gan-Takeda and Choiy, respectively. For Sp4, this is described as the unique
correspondence which sits in the commutative diagram:

Π(GSp4) Φ(GSp4)

Π(Sp4) Φ(Sp4)

LLCGSp4

α

LLCSp4
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Here, the left vertical arrow is not a map at all, it is a correspondence defined
by the subset of Π(GSp4)×Π(Sp4) consisting of pairs (π,ω) such that ω is a
constituent of the restriction of π to Sp4, and the right vertical arrow is the map
on L-parameters induced by the natural map GSpin5(C)→ SO5(C). One has a
similar characterization of the local Langlands correspondence for SU2(D). With
this description of the correspondence, compatibility for Sp4 and SU2(D) follows
from Theorem 8.1 and Theorem 3.6 (7).

Corollary 1.8.3. For π (resp. ρ) a smoooth irreducible representation of Sp4/L
(resp. SU2(D)), with associated Gan-Takeda (resp. Choiy) parameter φπ : WL×
SL2(C)→ SO5(C) (resp. φρ ) we have that:

1. The Fargues-Scholze and Gan-Takeda (resp. Choiy) local Langlands corre-
spondences are compatible for any representation π (resp. ρ) such that φπ

(resp. φρ ) is not supercuspidal.

2. If L/Qp is unramified and p > 2 then the Fargues-Scholze and Gan-Takeda
(resp. Choiy) local Langlands correspondences are compatible for any rep-
resentation π (resp. ρ) such that φπ (resp. φρ ) is supercuspidal.

Remark 1.8.4. We note that Corollary 3.11, Theorem 3.18, Remark 3.11, and
[HKW22, Theorem 1.0.2] apply to a triple (G,b,µ), where µ is any cocharacter
and b ∈ B(G,µ) is the unique basic element. Therefore, by applying the same
kind of analysis as in the proof of Theorem 8.2, we can prove the analogue of
Theorem 8.2 in the Grothendieck group of finite length admissible representations
with a smooth action of WE (cf. [HKW22, Conjecture 1.0.1]) for the cohomology
of the local Shtuka spaces defined by the triple (G,b,µ). By Corollary 8.3, this
works even in the case when G = Sp4 and there are no Shimura varieties that these
spaces uniformize. Moreover, in the case that G = GSp4, one can also deduce
from Theorem 8.2 that it is concentrated in middle degree ⟨2ρG,µ⟩, using the
monoidal property of the Act-functors and Corollary 3.11, for µ any cocharacter.
This in particular will imply some form of Fargues’ Conjecture for these groups
(See e.g. [BHN22, Pages 37-40], for this worked out in the more complicated
case of G = Un).

99



Chapter 2

Geometric Eisenstein Series over the
Fargues-Fontaine Curve

2.1 Introduction

2.1.1 Geometric Eisenstein Series over Function Fields
In the Langlands program, Eisenstein series are a way of describing the non-
cuspidal automorphic spectrum of a group in terms of the cuspidal automorphic
spectrum of its proper Levi subgroups. Over function fields these objects have
several geometric incarnations, as first studied extensively by Laumon [Lau90]
in the case of GLn and later refined by Braverman-Gaitsgory [BG02] for general
reductive groups. In particular, if one is interested in the function field of a curve
Y over a finite field k then one replaces the functions defining Eisenstein series
by certain automorphic sheaves. Namely, let G/k be a split connected reductive
group; then one wishes to construct "Eisenstein sheaves" on BunG the moduli
stack of G-bundles on Y . To do this, for P⊂ G a proper parabolic subgroup with
Levi factor M one considers the following diagram of moduli stacks of bundles

BunP

BunM BunG

pPqP

where BunP is the moduli stack of P-bundles GP on Y and the maps pP (resp. qP)
send GP to the G-bundle (resp. M-bundle) GP×P G (resp. GP×P M). Using this,
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one can define an Eisenstein functor which (up to shifts and twists) is given by

EisP(−) := pP!q
∗
P(−),

and takes ℓ-adic sheaves on BunM to ℓ-adic sheaves on BunG. Under the function-
sheaf dictionary, the values of this functor give rise to the classical Eisenstein
series.

In this geometric context, one can ask for even more. Namely, in the geometric
Langlands correspondence one is interested in constructing Hecke eigensheaves
on BunG, and it is natural to ask whether one could upgrade EisP to a functor
that is well-behaved with respect to the eigensheaf property. In particular, if M̂
(resp. Ĝ) denotes the Langlands dual group of M (resp. G) one can consider
a M̂-local system EM̂ and a Hecke eigensheaf SEM̂

with eigenvalue EM̂. One
then considers the induced Ĝ local system EĜ given by the natural embedding
M̂ ↪→ Ĝ, and one would like to construct a functor that produces a eigensheaf with
eigenvalue EĜ from the Hecke eigensheaf SEM̂

. One might hope that EisP(SEM̂
)

works; however, this is too naive. Namely, one expects such sheaves to be well-
behaved under Verdier duality, and one can easily check that EisP(−) will not
commute with Verdier duality, since the map pP is not proper. To remedy this, one
considers relative Drinfeld compactifications of the map pP, denoted B̃unP and
BunP, respectively. These compactifications are equipped with open immersions
j̃ : BunP ↪→ B̃unP and j : BunP ↪→ BunP, which realize BunP as an open and
dense subspace, and are defined by considering parabolic structures with torsion
at finitely many Cartier divisors. Moreover, they both have maps

pP : BunP→ BunG

and
p̃P : B̃unP→ BunG

which are proper after restricting to a connected component and extend pP, as well
as maps q̃P : B̃unP→ BunM and qP : BunP→ BunMab extending the natural maps
qP : BunP→ BunM and q†

P : BunP
qP−→ BunM→ BunMab , respectively.

To obtain a sheaf that interacts well with Verdier duality, one needs to take
account for the singularities of the compactification. Namely, if one considers the
intersection cohomology sheaf ICB̃unP

of B̃unP then the desired functor is given
by

ẼisP(−) := p̃P∗(q̃
∗
P(−)⊗ ICB̃unP

)
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One of the main results of Braverman-Gaitsgory [BG02] is that this satisfies the
desired Hecke eigensheaf property when applied to SEM̂

. One may also wonder
what this corresponds to at the level of functions. We recall that the classical
Eisenstein series is known to satisfy a functional equation after multiplying by
an appropriate ratio of L-values. The compactified Eisenstein series corresponds
to this completed Eisenstein series under the function-sheaf dictionary. In fact,
in certain cases one can see the usual functional equation at the sheaf-theoretic
level. If P = B is the Borel and we consider the appropriately normalized Hecke
eigensheaf SET̂

associated to ET̂ via geometric class field theory then Ẽis(SφT )
satisfies a functional equation under a regularity hypothesis on the local system
ET̂ . Now let w ∈WG be an element of the Weyl group of G with w̃ ∈ N(T ) a
choice of representative. Then w̃ acts on BunT , and, if we write S w

ET̂
for the

pullback of SET̂
along this automorphism, we have the following result.

Theorem 2.1.1. [BG02, Theorem 2.2.4] For ET̂ a regular T̂ -local system on Y
and a choice of representative w̃ ∈ N(T̂ ) of w ∈WG, we have an isomorphism

ẼisB(SET̂
)≃ ẼisB(S

w
ET̂
)

of ℓ-adic sheaves on BunG.

As alluded to above, one can see that, after passing to functions, this gives
precisely the well-known functional equation for the Eisenstein series multiplied
by the appropriate ratio of L-values ([BG02, Section 2.2]). Moreover, by [BG08,
Theorem 1.5], under the regularity assumption the sheaf ẼisB(SET̂

) is perverse.
The main goal of this note is to explore what this theory of geometric Eisen-

stein series has to tell us in the context of the recent geometric Langlands corre-
spondence constructed by Fargues and Scholze.

2.1.2 Hecke Eigensheaves over the Fargues-Fontaine Curve
Consider two distinct primes ℓ ̸= p. Let G/Qp be a quasi-split connected reduc-
tive group with simply connected derived group over the p-adic numbers, and set
Q̆p to be the completion of the maximal unramified extension of Qp with Frobe-
nius σ . Let WQp ⊂ Γ := Gal(Qp/Qp) denote the Weil group. In [FS21], Fargues
and Scholze developed the geometric framework required to make sense of ob-
jects like BunG, the moduli stack of G-bundles on the Fargues-Fontaine curve
X , and show that the local Langlands correspondence for G can be viewed as a
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geometric Langlands correspondence over X . Namely, they prove a version of Ge-
ometric Satake in this setup, allowing them to construct Hecke operators and in
turn excursion operators. Their Hecke operators take sheaves on BunG to sheaves
on BunG with a continuous WQp-action, via some version of Drinfeld’s Lemma.
As a consequence, they were able to construct semi-simple Langlands parame-
ters φ FS

π : WQp → LG(Qℓ) attached to any smooth irreducible representation π of
G(Qp).

Predating the construction of the Fargues-Scholze local Langlands corre-
spondence was Fargues’ conjecture as formulated in [Far16, Conjecture 4.4].
This asserted the existence of Hecke Eigensheaves attached to supercuspidal L-
parameters φ : WQp → LG(Qℓ), where LG = Ĝ⋉WQp is the L-group of G. More
precisely, given such a φ , Fargues conjectured the existence of a Qℓ-sheaf Sφ on
BunG such that, if one acts via a Hecke operator TV corresponding to a represen-
tation V ∈ RepQℓ

(LG) then there is an isomorphism

TV (Sφ )≃Sφ ⊠ rV ◦φ

of sheaves on BunG with continuous WQp-action satisfying natural compatib-
lities. The moduli stack BunG is stratified by elements of the Kottwitz set
B(G) := G(Q̆p)/(b∼ gbσ(g)−1), giving rise to Harder-Narasimhan (abbv. HN)-
strata Bunb

G for all b ∈ B(G). It was conjectured that the sheaf Sφ must be sup-
ported on the basic locus

⊔
b∈B(G)basic

Bunb
G or, in bundle-theoretic terms, the locus

defined by semistable bundles. Each of the basic strata Bunb
G are isomorphic to the

classifying stack [∗/Jb(Qp)], where Jb is the σ -centralizer attached to b ∈ B(G).
The σ -centralizers of the basic elements parameterize extended pure inner forms
of G in the sense of Kottwitz [Kot97b], and the restrictions of the sheaf to these
classifying stacks can be interpreted as smooth representations of Jb(Qp). Using
this, Fargues also gave a conjectural description for what the restrictions of the
sheaf should be given by. In particular, for b ∈ B(G)basic the restriction to Bunb

G
should be a direct sum (up to multiplicities)1⊕

π∈Πφ (Jb)
π , where Πφ (Jb) is the

L-packet over φ as conjectured by Kaletha’s refined local Langlands correspon-
dence for G [Kal16]. Assuming the refined local Langlands, the verification of
the Hecke eigensheaf property ultimately reduces to a strong form of the Kottwitz
conjecture for the cohomology of a space of shtukas parameterizing modifications

Fb→Fb′

1There are no higher multiplicities if the centralizer of φ is abelian.
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on X bounded by a geometric dominant cocharacter µ , where b,b′ ∈ B(G)basic are
appropriately chosen basic elements with respect to µ , and Fb and Fb′ denote the
bundles on X corresponding to b,b′ ∈ B(G).

Since the work of Fargues-Scholze, the construction of this eigensheaf has
been carried out in several cases. For tori, it follows from the work of Fargues
[Far16; Far20], and Zou [Zou22]. For G = GLn, this is a result of Anschütz and
Le-Bras [AL21a]. For general reductive groups, a somewhat general strategy for
constructing this eigensheaf in the particular case of the group GSp4 is layed out
in [Ham21b], by showing compatibility of the Fargues-Scholze correspondence
with the refined local Langlands correspondence of Kaletha [Kal16], and then us-
ing this to deduce the non-minuscule cases of the Kottwitz conjecture required for
the verification of the Hecke eigensheaf property via the spectral action [FS21,
Section X.2]. This strategy is carried out for odd unitary groups in the paper
[BHN22]. We recall that the fibers of the local Langlands correspondence over
supercuspidal parameters should solely consist of supercuspidal representations.
Therefore, the above eigensheaves can be thought of as analogous to supercus-
pidal representations in the classification of smooth irreducible representations.
To have a more definitive connection between the theory of smooth representa-
tions and Fargues’ eigensheaves, it becomes desirable to construct eigensheaves
that serve as the analogues of parabolic inductions of supercuspidals, which will
analogously be "parabolically induced" from the eigensheaves attached to super-
cuspidal parameters. This will be precisely what carrying over the theory of the
previous section to the Fargues-Fontaine setting gives us.

2.1.3 Geometric Eisenstein Series over the Fargues-Fontaine
Curve

Let A⊂ T ⊂ B⊂G be a choice of maximal split torus, maximal torus, and Borel,
respectively. We will assume that G is quasi-split with simply connected derived
group. In this paper, we will be concerned with studying the geometric Eisen-
stein functor over the Fargues-Fontaine curve in the principal case (i.e where the
parabolic P ⊂ G is the Borel). Restricting to the principal case has several ad-
vantages. For one, one can unconditionally speak about the Hecke eigensheaf
attached to a parameter φT : WQp→ LT valued in the maximal torus. Additionally,
in this case there exists only one Drinfeld compactification BunB of the moduli
space of B-structures BunB, which has a fairly manageable geometry. As men-
tioned in §1.1, there are in general two compactifications BunP and B̃unP. The
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compactification BunP has a relatively simple geometry and can be understood
more or less the same as BunB. The problem is that BunP admits only a map
to BunMab and not to BunM. This means we can prove analogous results for the
Hecke eigensheaves attached to characters induced from φ : WQp → LMab which
correspond to generalized principal series representations induced from M. We
have chosen not to do this in this note for simplicity. However, if one wants to
consider inductions of Hecke eigensheaves attached to a general supercuspidal
parameter φM : WQp → LM then one is forced to understand the much more com-
plicated geometry of the space B̃unP. Certainly, some analogues of the results
proven in this paper should be possible, but there are many technical hurdles that
need to be overcome.

Geometric Eisenstein Series

Throughout, we will let φT : WQp → LT (Λ) be a continuous parameter valued in
the L-group of T , where Λ ∈ {Fℓ,Zℓ,Qℓ} has the discrete topology. Our aim
is to construct an eigensheaf (Definition 2.3.1) with eigenvalue φ , the composi-
tion of φT with the natural embedding LT (Λ)→ LG(Λ). This will be an object
in Dlis(BunG,Λ) the category of lisse-étale solid Λ-sheaves, as defined in [FS21,
Chapter VII]. We do not work directly with this category of solid sheaves in
our argument, as the usual six functors are not as well behaved in this case. In-
stead, we will first restrict to the case where Λ = Fℓ and one has an isomorphism
Dlis(BunG,Fℓ) ≃ Dét(BunG,Fℓ) with the usual category of étale Fℓ sheaves as
defined in [Sch18]. We then construct the lisse-étale sheaves with Zℓ and Qℓ co-
efficients from this sheaf. For the first part of this section, we will always assume
that Λ = Fℓ unless otherwise stated, and to simplify the notation, we adopt the
convention that, when working with Λ = Fℓ, we will denote the derived category
of étale sheaves on a v-stack or diamond Z by simply writing D(Z). We will as-
sume that the prime ℓ is very good with respect to the group G ([FS21, Page 33])
throughout, to avoid complications in this ℓ-modular setting.

We let SφT be the eigensheaf on the moduli stack BunT parameterizing T -
bundles on X attached to φT by Fargues [Far20; Far20] and Zou [Zou22]. Our
aim is to construct an eigensheaf with respect to the parameter φ by applying
a geometric Eisenstein functor to SφT . To do this, one needs to show that the
relevant geometric objects used in defining geometric Eisenstein series are well-
behaved in this framework. Namely, one can show that the moduli stack of B-
bundles on X , denoted BunB, gives rise to an Artin v-stack and the maps in the
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natural diagram
BunB

BunT BunG

p
q (2.1)

have good geometric properties; q is a cohomologically smooth (non-
representable) map of Artin v-stacks, and p is compactifiable and representable
in locally spatial diamonds (See §2.5.1). It follows that one has a well-defined
functor given by p!q

∗ : D(BunT )→ D(BunG) using the functors constructed in
[Sch18].

In order to make the functor p!q
∗ behave well with respect to Verdier du-

ality, one needs to take into account the appropriate shifts and twists coming
from the dualizing object on BunB. Namely, using the cohomological smooth-
ness of q and BunT , it is easy to see that the moduli stack BunB is coho-
mologically smooth of some ℓ-dimension given by a locally constant function
dim(BunB) : |BunB| → Z, where |BunB| is the underlying topological space of
BunB. It follows that, v-locally on BunB, the dualizing object is given by
Λ[2dim(BunB)]. This leads us to our first attempt to define the Eisenstein functor
as Eis(−) := p!(q

∗(−)[dim(BunB)]). While this definition is closer to what we
want, it has one key flaw; even though the dualizing object on BunB is v-locally
isomorphic to Λ[2dim(BunB)] it is not equal to this sheaf on the nose. In particular,
usually one would need to include some Tate twists. However, all these spaces are
defined over the base ∗= SpdFp, so one cannot naively make sense of this. Typi-
cally, this would be encoded via some kind of Frobenius descent datum, but here
the answer is even more interesting. Understanding this requires one to explicitly
compute the dualizing object on BunB. This can be accomplished by noting that
each of the connected components of BunB are related to Banach-Colmez spaces,
the diamonds parameterizing global sections H0(X ,E ) and H1(X ,E ) for E a bun-
dle on the Fargues-Fontaine curve X , as studied in [FS21, Chapter 2] and [Le 18].
These objects have a relatively explicit description in terms of pro-étale quotients
of perfectoid open unit discs and also have absolute versions defined over SpdFps ,
for some s≥ 1. Using this explicit description, one can compute that the dualizing
object on these absolute spaces is given by the constant sheaf with the appropriate
shift and Tate twist by the dimension. However, these Tate twists do not disap-
pear over the algebraic closure Fp; namely, the action of geometric Frobenius is
manifestly related to the action of pZ ∈ H0(X ,OX)

∗ = Q∗p by scaling of global
sections, essentially by definition of the Fargues-Fontaine curve. This allows one
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to see that the dualizing object on the Banach-Colmez space over Fp is isomorphic
to a shift of the constant sheaf together with a descent datum with respect to the
scaling action by Q∗p given by the norm character | · | : Q∗p→ Λ∗, which serves the
role of a Frobenius descent datum. Unravelling this all, this will ultimately tell us
that the dualizing object on BunB is related to the modulus character δB. One way
of nicely encoding these modulus character twists is to consider the sheaf ∆

1/2
B on

BunT , which will be the Hecke eigensheaf attached to the L-parameter

ρ̂ ◦ | · | : WQp →
LT (Λ)

where ρ̂ denotes the half sum of all positive roots of G and we abusively write
| · | : WQp → Λ∗ for the norm character of WQp . As a sheaf on BunT , the stalks on
the connected components Bunν

T ≃ [∗/T (Qp)] will just be given by the character

δ
1/2
B : T (Qp)→Λ∗. Similarly, we write ∆B for the sheaf given by the L-parameter

2ρ̂ ◦ | · |. We can now state our first Theorem.

Theorem 2.1.2. (Theorem 2.6.1) The dualizing object on BunB is isomorphic to

q∗(∆B)[2dim(BunB)]

In particular, the sheaf

ICBunB := q∗(∆
1/2
B )[dim(BunB)]

is Verdier self-dual on BunB.

With this in hand, we can refine the previous definition of the Eisenstein func-
tor. We define the normalized Eisenstein functor to be

nEis(−) := p!(q
∗(−)⊗ ICBunB)

This is already very suggestive. Indeed, the (unnormalized) Eisenstein functor
will have stalks related to the unnormalized parabolic induction of the characters
χ , and the normalized Eisenstein series will have stalks related to the normal-
ized parabolic induction. Moreover, just as smooth duality interacts nicely with
normalized parabolic induction so too does Verdier duality with the normalized
Eisenstein functor. In order to study how the normalized Eisenstein functor inter-
acts with Verdier duality, it becomes very natural to want a nice compactification
of the morphism p, as Eis involves the functor p!. As seen in §1.1, this can be
accomplished by considering an analogue of the Drinfeld compactification BunB.
We show that such a compactification exists and has the right properties.
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Theorem 2.1.3. (Proposition 2.5.8, Proposition 2.5.22) There exists an Artin v-
stack BunB together with an inclusion

j : BunB ↪→ BunB

which realizes BunB as an open and dense substack. Moreover, BunB has natural
maps q : BunB→ BunT (resp. p : BunB→ BunG) extending the map q (resp. p)
along j. The map p is representable in nice diamonds and proper after restricting
to connected components.

Now, we would like to claim that the sheaf nEis(SφT ) is a Hecke eigensheaf
with respect to the parameter φ given by composing φT with the natural embed-
ding LT → LG; however, in analogy with §1.1, the right object to consider in this
case is not nEis(SφT ), but rather a compactified version Eis(SφT ). Unfortunately,
there is currently no well-behaved formalism for intersection cohomology in the
context of diamonds and v-stacks. This prevents us from even defining the kernel
sheaf ICBunB

typically used in the definition of Eis(−) in any naive way. There
is however a way out if we impose some conditions on our parameter φT . We
write X∗(TQp

)/Γ for the set of Γ-orbits of geometric cocharacters. Given an ele-

ment ν ∈ X∗(TQp
)/Γ, we can attach to it a representation of LT by inducing the

representation of T̂ defined by a representative of the orbit ν in X∗(TQp
). We

consider the composition ν ◦φT , and we will say that φT is generic if the Galois
cohomology complexes

RΓ(WQp,α ◦φT )

are trivial for all α ∈ X∗(TQp
)/Γ defined by the Γ-orbits of coroots in X∗(TQp

).
This condition may appear mysterious; but there are several ways to see why it
is the morally correct condition. Perhaps the most compelling comes from local
representation theory. As mentioned in §1.1, the compactified Eisenstein series
in the function field setting corresponds to the completed Eisenstein series under
the function sheaf dictionary, while the non-compactified Eisenstein series corre-
sponds to just the usual Eisenstein series. In particular, the sheaf ICBunB

encodes
the zeros and poles of the meromorphic continuation of the Eisenstein series. If χ

denotes the character of T (Qp) attached to φT via local class field theory then we
recall that, if w ∈WG is an element of the relative Weyl group, the local analogue
of the meromorphic continuation of Eisenstein series is the theory of intertwining
operators. In particular, suppose that Λ =Qℓ, then we have maps

iχ,w : iGB (χ)→ iGB (χ
w)
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of smooth G(Qp)-representations, which can be viewed as meromorphic func-
tions on the set of complex unramified characters. Now, using local Tate-duality,
it is easy to see that the vanishing of the above complexes will imply that χ pre-
composed with coroots is not trivial or isomorphic to a power of the norm char-
acter. These are precisely the type of conditions one expects to guarantee that
the intertwining operators are holomorphic and give rise to an isomorphism. In
fact, we show that, for χ attached to a generic parameter φT , we always have an
isomorphism iGB (χ)≃ iGB (χ

w) for any w ∈WG (Proposition A.1.3).
This suggests that, at least heuristically, we should always have an isomor-

phism nEis(SφT ) ≃ Eis(SφT ), for φT satisfying some version of genericity and
any reasonable definition of Eis(SφT ). Indeed, this makes sense when we look at
the geometry of BunB; in particular, we will show that the closed complement of
BunB in BunB admits a locally closed stratification given by Div(ν)×BunB, where
Div(ν) is a certain partially symmetrized version of the mirror curve Div1 param-
eterizing effective Cartier divisors in X attached to ν inside the coinvariant lattice
X∗(TQp

)Γ. We recall that there is a natural map (−)Γ : X∗(TQp
)/Γ→ X∗(TQp

)Γ,
from Γ-orbits to coinvariants. This map defines an injection on the Γ-orbits of the
simple positive coroots. In particular, for each vertex i∈J of the relative Dynkin
diagram of G, we get an element αi in the coinvariant lattice, which corresponds
to a Γ-orbit of positive simple coroots. The natural strata of BunB are specified
by elements ν ∈ X∗(TQp

)Γ lying in the positive span of these αi, and each strata
corresponds to the locus of B-bundles with torsion specified by ν . Now, the re-
striction of q∗(SφT ) to this strata is given by pulling back a Hecke operator on
BunT applied to SφT along q. One can deduce that the factor appearing on the
divisor curve Div(ν) will be related to αi ◦φT , via the Hecke eigensheaf property
Tαi(SφT )≃αi◦φT ⊠SφT for SφT , where we have identified αi with its associated
Γ-orbit via (−)Γ. This implies that the complex RΓ(WQp,αi ◦ φT ) appears in p!
applied to this restriction as a tensor factor, and will in turn vanish for φT generic,
suggesting an isomorphism of the form nEis(SφT )≃ Eis(SφT ) in this case.

We can turn these heuristics into actual math. In particular, since we expect
an isomorphism of the form nEis(SφT )≃ Eis(SφT ) under some verison of gener-
icity, we should expect for such parameters that nEis(SφT ) behaves well under
Verdier duality, is a perverse Hecke eigensheaf with eigenvalue φ , and satisfies
the analogue of the functional equation seen in Theorem 2.1.1 in this case. The
precise conditions on φT that we will need to prove our results will depend on the
result and the particular group G. For this reason, we break up our condition into
several parts.
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Condition/Definition 2.1.4. (Condition/Definition 2.3.7) Given a parameter φT :
WQp → LT (Λ), we impose the following conditions on φT in what follows.

1. For all α ∈X∗(TQp
)/Γ defined by the Γ-orbits of simple coroots in X∗(TQp

),
the Galois cohomology complex RΓ(WQp,α ◦φT ) is trivial.

2. For all α ∈ X∗(TQp
)/Γ defined by the Γ-orbits of coroots in X∗(TQp

), the
Galois cohomology complex RΓ(WQp,α ◦φT ) is trivial.

3. If χ is the character attached to φT under local class field theory. We have,
for all w ̸= 1 in the relative Weyl group WG of G, that

χ⊗δB ̸≃ (χ⊗δ
−1/2
B )w

If φT satisfies (1) we say that it is weakly generic, and if it satisfies (2) then we say
it is generic. If it satisfies (2)-(3) we say that it is weakly normalized regular.

Remark 2.1.5. The relationship between these various conditions appears to be
complicated in general, and is related to the behavior of the principal series rep-
resentations iGB (χ) of G. Roughly speaking, Condition (2) guarantees the irre-
ducibility of non-unitary principal series representations and that the intertwining
operators for iGB (χ) are isomorphisms, while Condition (3) guarantees the irre-
ducibility of certain unitary principal series representations. As we will see in
Appendix A.1, genericity is enough to guarantee that one has an isomorphism
iGB (χ) ≃ iGB (χ

w) for all w ∈WG. However, one could still have an isomorphism
of this form if iGB (χ) is the reducible induction of a unitary character χ . This can
happen if the character χ is not regular (i.e it is fixed by some w∈WG). Condition
(3) is like such a regularity condition. To illustrate this, note that, for G = GLn,
if we write φT =

⊕n
i=1 φi as a sum of characters then genericity is equivalent to

supposing that
RΓ(WQp,φ

∨
i ⊗φ j)

is trivial for all i ̸= j. We note that, by local Tate-duality and using that the Euler-
Poincaré characteristic of this complex is 0, genericity is equivalent to assuming
that φi is not isomorphic to φ j or φ j(1). If we write χ = χ1⊗ . . .⊗χn as a product
of characters of Q∗p then this implies that χ

−1
i χ j ̸≃ | · |±1 for all i > j, which is

precisely the condition guaranteeing irreducibility. On the other hand, if G =
SL2, and we write χ for the character of Q∗p attached to φT via local class field
theory, we need that χ ̸≃ | · |±1 and χ2 ̸≃ 1 to guarantee irreducibility of iGB (χ).
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The condition χ ̸≃ | · |±1 is guaranteed by Condition (2), and Condition (3) is
equivalent to χ2 ̸≃ 1.
Remark 2.1.6. The choice of calling a parameter satisfying Condition (2) generic
is motivated by the analogous notion of decomposed generic considered by Cara-
iani and Scholze [CS17, Definition 1.9]. In particular, we note that if φT is un-
ramified and G = GLn then, by the previous remark, we see that Condition (2) is
precisely equivalent to φT being decomposed generic.

Weak genericity will be required to show our Eisenstein functor commutes
with Verdier duality, while weak normalized regularity will be needed to compute
the stalks of our Eisenstein series and show that it satisfies the functional equa-
tion. Unfortunately, in general to get the Hecke eigensheaf property for nEis(SφT )
we still need more. Write (−)Γ : X∗(TQp

)→X∗(TQp
)/Γ for the natural map from

geometric cocharacters to their Galois orbits. Given a geometric dominant cochar-
acter µ ∈ X∗(TQp

)+ with Galois orbit µΓ ∈ X∗(TQp
)+/Γ, we have an associated

representation VµΓ ∈RepΛ(
LG). The weights of VµΓ|LT can be interpreted in terms

of the representations corresponding to the Galois orbits of weights in the usual
highest weight representation Vµ of Ĝ. The following condition will guarantee the
Hecke eigensheaf property for nEis(SφT ), and the Hecke operator defined by VµΓ .

Definition 2.1.7. (Definition 2.3.14) For a toral parameter φT : WQp→ LT (Λ) and
a geometric dominant cocharacter µ , we say φT is strongly µ-regular if the Galois
cohomology complexes

RΓ(WQp,(ν−ν
′)Γ ◦φT )

are trivial for ν ,ν ′ defining distinct Γ-orbits of weights the highest weight repre-
sentation of Ĝ of highest weight µ .

Remark 2.1.8. We note that genericity usually implies strong µ-regularity for
some suitably chosen cocharacters µ ∈ X∗(TQp

)+. In particular, note that if
µ = (1,0, . . . ,0,0) and G = GLn then, since µ is minuscule, the possible weights
of Vµ in T̂ are all given by Weyl group orbits of µ , and the possible differences
between the weights will consequently be precisely the coroots of GLn.

Let’s now see how these conditions manifest in our results on Eisenstein series.
We begin with studying how Verdier duality interacts with Eisenstein series. To
do this, we need to make the following assumption.

Assumption 2.1.9. (Assumption 2.8.1) If j : BunB ↪→ BunB is the open inclusion
into the Drinfeld compactification the sheaf j!(ICBunB) is ULA with respect to q.
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Remark 2.1.10. This is a precise analogue of [BG02, Theorem 5.1.5]. The proof in
this case seems a bit subtle, since being ULA over a point in this case is not a trivial
condition, but should appear in upcoming work [HHS] on geometric Eisenstein
series and the Harris-Viehmann conjecture.

The relevance for studying how Verdier duality interacts with nEis(−) is as
follows. It follows that j!(ICBunB) is reflexive with respect to Verdier duality on
BunB. In particular, using the Verdier self-duality of ICBunB , this allows us to see
that the Verdier dual of j∗(ICBunB) is isomorphic to j!(ICBunB). This reduces the
problem of how Eisenstein series interact with Verdier duality to the problem of
describing the cone of the map

j!(q∗(SφT ))→ q∗(SφT )

after applying p!. As already mentioned above, if we look at the restriction of
q∗(SφT ) to the strata Div(ν)×BunB described above, this vanishes for weakly
generic φT after applying p!, as the Galois cohomology complexes RΓ(WQp,α ◦
φT ) will appear for α ∈ X∗(TQp

)/Γ corresponding to a Γ-orbit of simple coroots.
In particular, if DZ denotes Verdier duality on a v-stack or diamond Z, we can
show the following.

Theorem 2.1.11. (Theorem 2.8.3) For φT a weakly generic toral parameter, there
is an isomorphism of objects in D(BunG)

DBunG(nEis(SφT ))≃ nEis(DBunT (SφT ))

where we note that DBunT (SφT )≃Sφ∨T
, if φ∨T is the parameter dual to φT (i.e the

Chevalley involution applied to φT ).

We will assume the validity of the ULA Theorem and thereby the validity of
this theorem for the rest of the section. We now turn our attention to the Hecke
eigensheaf property. In particular, consider a finite index set I and a representation
V ∈ RepΛ(

LGI). Given (νi)i∈I ∈ (X∗(TQp
)/Γ)I , we write V ((νi)i∈I) for the mul-

tiplicity of the weight space of the corresponding representation of LT I in V |LT I ,
and write T(νi)i∈I for the associated Hecke operator. By applying excision to the
aforementioned locally closed stratification of BunB and combining it with the
geometric Satake correspondence of Fargues-Scholze [FS21, Chapter VI], we can
show the following result.

Theorem 2.1.12. (Theorem 2.7.1) For F ∈ D(BunT ), I a finite index set, and
V ∈ RepΛ(

LGI) with associated Hecke operator TV , the sheaf TV (nEis(F )) on
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BunG with continuous W I
Qp

-action has a W I
Qp

-equivariant filtration indexed by
(νi)i∈I ∈ (X∗(TQp

)/Γ)I . The filtration’s graded pieces are isomorphic to

⊕
(νi)i∈I∈(X∗(TQp

)/Γ)I

nEis(T(νi)i∈I(F ))⊗V ((νi)i∈I)

Moreover, the filtration is natural in I and V , as well as compatible with compo-
sitions and exterior tensor products.

The argument for proving this "filtered eigensheaf property" is very similar
to that given by [BG02] in their proof of the Hecke eigensheaf property for the
compactified geometric Eisenstein functor in the function field setting. However,
there Braverman and Gaitsgory rely on the decomposition theorem applied to the
perverse sheaf ICBunB

, which would not make sense in this context. Nevertheless,
we still have access to the excision spectral sequence one usually uses in prov-
ing the decomposition theorem. In particular, in the proof of the decomposition
theorem one uses the excision spectral sequence and then invokes the theory of
weights to show that it degenerates. Something similar happens here. Namely,
if we apply this to the sheaf F = SφT then we see that nEis(SφT ) is a filtered
eigensheaf in the sense that, up to passing to the graded pieces of this filtration, it
is an eigensheaf with eigenvalue φ , and later we can see, by looking at the Weil
group action, this filtration must always split under some version of genericity on
φT .

Even without knowing that the filtration on nEis(SφT ) splits, the filtered
eigensheaf property can already be used to tell us a lot about the structure of
nEis(SφT ). In particular, given b ∈ B(G), the restriction nEis(SφT )|Bunb

G
to the

HN-strata Bunb
G defines a complex of smooth Jb(Qp)-representations, and we are

interested in describing this restriction. Here Jb is the σ -centralizer of b and it is
an extended pure inner form of a Levi subgroup Mb of G. The fact that nEis(SφT )
is a filtered Hecke eigensheaf with eigenvalue φ implies that, if ρ is an irreducible
constituent of this restriction then the Fargues-Scholze parameter φ FS

ρ must be
equal to φ under the twisted embedding LJb→ LG. If we believe that the Fargues-
Scholze local Langlands correspondence is the true local Langlands correspon-
dence then this seems to suggest that ρ should be given by a normalized parabolic
induction of the character χ attached to φT via local class field theory. In partic-
ular, we note, by deformation theory, that a toral parameter being generic implies
that every lift of φT to Zℓ factors through LT and that the induced Qℓ-parameter
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cannot come from the semi-simplification of a parameter with non-trivial mon-
odromy (Lemma 2.3.18). This imposes a very rigid constraint on Jb. In particular,
the Borel B∩Mb of Mb should transfer to a Borel Bb of Jb. The elements where
this occurs are the elements in the image of the map B(T )→ B(G), called the
unramified elements B(G)un, as studied in the work of Xiao-Zhu [XZ17].

Corollary 2.1.13. (Corollary 2.7.7) For φT a generic parameter and b∈B(G), as-
suming compatibility of the Fargues-Scholze and the conjectural local Langlands
correspondence (Assumption 2.7.5), the restriction nEis(SφT )|Bunb

G
vanishes un-

less b ∈ B(G)un.

We now assume compatibility (Assumption 2.7.5) in addition to validity of
the ULA theorem (Assumption 2.8.1) for the rest of the section. The previous
corollary tells us that if we are interested in understanding the complex of Jb(Qp)-
representations defined by the stalks nEis(SφT )|Bunb

G
then we can restrict to the

case where b∈ B(G)un, and here we expect the stalks to be given by the inductions
iJb
Bb
(χ)⊗ δ

−1/2
Pb

, where δPb is the modulus character of the parabolc Pb with Levi
factor Mb transferred to Jb.2. This is indeed the case. To understand this, we use
that each element b ∈ B(G)un has a unique element bT such that the slopes are G-
dominant. Similarly, we write b−T for the unique element whose isocrystal slopes
are anti-dominant and will refer to it as the HN-dominant element, where we recall
that the isocrystal slopes are the negative of the Harder-Narasimhan slopes of the
associated bundles. The set of elements in B(T ) mapping to b can be described
as w(b−T ), where we identify w ∈Wb := WG/WMb with a set of representatives of
minimal length in WG. The connected components of BunB and BunT are indexed
by elements in B(T )≃ X∗(TQp

)Γ, giving a direct sum decomposition:

nEis(SφT ) =
⊕

ν∈B(T )

nEisν(SφT )

After restricting to Bunb
G, the point is that only the summands indexed by ν =

w(b−T ) for w ∈Wb survive. It is fairly easy to see this when ν = b−T . In particular,

the connected component Bunb−T
B will parametrize split B-structures since the HN-

2These twists by the modulus character come from the fact that the excursion algebra on BunG
acts on a smooth irreducible representation ρ ∈ D(Jb(Qp),Λ) ≃ D(Bunb

G) ⊂ D(BunG) via the
Fargues-Scholze parameter φ FS

ρ : WQp → LJb(Λ) of a smooth irreducible representation ρ of Jb,
composed with the twisted embedding LJb(Λ)→ LG(Λ), as in [FS21, Section IX.7.1].
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slopes are dominant, and the diagram (2.1) (essentially) becomes[
∗/Bb(Qp)

]
[
∗/T (Qp)

] [
∗/Jb(Qp)

]p
q

Using this, it is easy to see that p!q
∗(χ) will be given by compactly supported

functions of Jb/Bb(Qp) which transform under Bb(Qp) via χ . In other words, the
unnormalized induction IndJb

Bb
(χ). When one accounts for the twists coming from

the dualizing object as well as the sign switch between isocrystals and G-bundles,
one finds that the exact formula becomes

nEisb−T (SφT )≃ jb!(i
Jb
Bb
(χw0)⊗δ

−1/2
Pb

)[−⟨2ρ̂,νb⟩]

where jb : Bunb
G → BunG is the inclusion of the HN-strata corresponding to

b and w0 ∈ Wb is a minimal length representative of the element of longest
length. Now, what about the connected components ν = w(b−T ) with w non-
trivial? Here the HN-slopes of ν are at least partially anti-dominant, and therefore

Bunw(b−T )
B will parameterize some non-split extensions. Nonetheless, one finds

that nEisw(b−T )(SφT ) behaves similarly to the contribution of the connected com-
ponent given by the HN-dominant reduction. Note that, a priori, the complex
nEisw(b−T )(SφT ) could be supported on all b′ ∈ B(G) with b ⪰ b′ in the natural
partial ordering on B(G). If one imposes the previous compatibility assumption
and assumes φT is generic then one can use the previous corollary to assume that
b′ ∈ B(G)un. In this case, the complex nEisw(b−T )(SφT )|Bunb′

G
can be computed in

terms of the cohomology of the space of simulatenous reductions of a G-bundle
FG to two B-bundles with underlying T -bundles given by w(b−T ) and a Weyl
group translate of b′T , where b′T is the HN-dominant reduction of b′. This space
admits a locally closed stratification by the generic relative position of these two
reductions coming from the Bruhat decomposition of B\G/B. If b′ ̸= b then each
of the non-empty strata admit a map to a positive symmetric power of the mirror
curve Div1, and are locally modelled by a semi-infinite flag space called a Zastava
space, as studied in the function field setting by Feign, Finkelberg, Kusnetzov, and
Mirković [Fei+99]. By combining a study of these Zastava spaces with Condition
(3) on φT and induction on b, we can show that the restriction of nEisw(b−T )(SφT )
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to each of the locally closed strata indexed by b′ ̸= b vanishes, from which we can
conclude that the restriction nEisw(b−T )(SφT )|Bunb′

G
vanishes unless b′ = b, where

again only the contribution of the split B-structure matters. All in all, we conclude
an isomorphism:

nEisw(b−T )(SφT )≃ jb!(i
Jb
Bb
(χww0)⊗δ

−1/2
Pb

)[−⟨2ρ̂,νb⟩]

This parallel behavior between the HN-dominant connected component and
the connected components in its Weyl group orbit is no accident. In analogy with
§1.1, we expect, for a choice of representative w̃ ∈ N(T ) of w ∈WG in the relative
Weyl group, to have an isomorphism

nEis(SφT )≃ nEis(S w̃
φT
)

where S w̃
φT

is the pullback of SφT along the map BunT → BunT induced by w̃.

This involution sends the connected component BunbT
T to Bunw(bT )

T and sends the
character χ to χw. In particular, we see that, by our previous description of stalks,
this gives the precise analogue of Theorem 2.1.1. We summarize the above dis-
cussion as follows.

Theorem 2.1.14. (Corollary 2.9.2) Consider φT a weakly normalized regular
parameter with associated character χ : T (Qp) → Λ∗. Given b ∈ B(G)un,
we consider Jb, Mb, Bb, and Wb as defined above. For b ∈ B(G), the stalk
nEis(SφT )|Bunb

G
∈ D(Bunb

G)≃ D(Jb(Qp),Λ) is given by

1. an isomorphism nEis(SφT )|Bunb
G
≃
⊕

w∈Wb
iJb
Bb
(χw)⊗ δ

−1/2
Pb

[−⟨2ρ̂,νb⟩] if
b ∈ B(G)un,

2. an isomorphism nEis(SφT )|Bunb
G
≃ 0 if b /∈ B(G)un.

In particular, nEis(SφT ) is a perverse sheaf on BunG with respect to the standard
t-structure defined by the HN-strata using Theorem 1.11.

We note that the previous Corollaries imply that the stalks of the sheaf
nEis(SφT ) are valued in smooth admissible representation when φT is weakly
normalized regular. This implies that the sheaf nEis(SφT ) is ULA with respect
to the structure map BunG→ ∗, using the characterization given in [FS21, Theo-
rem V.7.1]. This ULA property allows us to extend the construction of nEis(SφT )

to Zℓ and Qℓ-coefficients, where passing to the world of lisse-étale solid sheaves is
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a non-trivial matter because of the difference between ℓ-adic and discrete topolo-
gies. We will need to work with φT that is integral in the sense that, if Λ = Qℓ,
it is of the form φ T ⊗Zℓ

Qℓ for a Zℓ-valued parameter φ T . Given an integral pa-
rameter φT such that the mod ℓ-reduction is weakly normalized regular, we get a
sheaf nEis(SφT ) ∈ Dlis(BunG,Λ) for all Λ ∈ {Fℓ,Zℓ,Qℓ}. The description of the
stalks, the filtered eigensheaf property with eigenvalue φ , and the commutation
with Verdier duality all extend in a natural way to these coefficient systems, and
we would now like to say that the filtered eigensheaf property implies it is a gen-
uine eigensheaf under the conditions on φT . For a representation V ∈ RepΛ(

LG),
the filtered eigensheaf property tells us that TV (nEis(SφT )) has a filtration whose
graded pieces have Weil group action given by νΓ ◦ φT , for ν ∈ X∗(TQp

) a non-

zero weight of V in T̂ . In order to see this splits, it suffices to show for ν ,ν ′

defining distinct Galois orbits of weights of V in T̂ that the extension group
H1(WQp ,(ν − ν ′)Γ ◦ φT ) vanishes for the Γ-orbit (ν − ν ′)Γ defined by ν − ν ′.
However, this is equivalent to saying that the entire complex

RΓ(WQp,(ν−ν
′)Γ ◦φT )

is trivial, and this was precisely the kind of vanishing result that strong µ-
regularity of φT guaranteed. Moreover, by the vanishing of the H0 the splitting
will be unique. In particular, if V =VµΓ for µ ∈X∗(TQp

)+ such that φT is strongly
µ-regular then this allows us to see that we get a unique splitting for V = VµΓ .
Now, as noted in Remark 2.1.8, we see that strong µ-regularity is usually guaran-
teed under generic for a sufficiently nicely chosen cocharacter. We would like to
use this to conclude that the filtration on TV

µΓ
splits in more generality. Suppose

we are given cocharacters µ1, . . . ,µk and we know that the filtration splits for the
Vµi then, using the compatibilities of the filtration, we can show the splitting for
any representation V realized as a direct summand of

⊗m
k=1V⊗ni

µk , but in this case
we cannot guarantee that this splitting is unique.

We need to be a bit careful when running the argument sketched above.
In particular, if Λ = Qℓ, then the category RepΛ(

LG) is semi-simple with irre-
ducible objects parametrized by Γ-orbits of dominant cocharacters X∗(TQp

)+/Γ

and the above argument goes through. If Λ ∈ {Zℓ,Fℓ} this is no longer true.
However, in these cases, we can replace RepΛ(

LG) by a sub-category of tilt-
ing modules TiltΛ(LG) ([Mat00],[Jan03, Appendix E]), which will be semi-
simple with indecomposable objects parameterized by µΓ ∈ X∗(TQp

)+/Γ, de-

noted TµΓ ∈TiltΛ(LG). Extending the theory of tilting modules to the full L-group
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LG is a bit subtle. However, this is precisely what our assumption that ℓ is very
good with respect to G will allow us to do. This category is preserved under taking
tensor products, and therefore we can define the notion of a "tilting eigensheaf"
(Definition 2.10.5) by replacing RepΛ(

LG) with TiltΛ(LG) in the usual definition.
For V ∈ RepΛ(

LGI), we write rV : LGI → GL(V ) for the associated map. This
allows us to define the following.

Definition 2.1.15. For a finite index set I, we say a tuple of cocharacters (µi)i∈I ∈
(X∗(TQp

)+)I is (µi)i∈I-regular if the filtration on TV (nEis(SφT ) splits for the tilt-
ing module V =⊠i∈ITµΓ

i
.

Remark 2.1.16. The argument sketched above allows us to show if φT is (µ1i)i∈I
and (µ2i)i∈I regular then this implies that φT is regular for the cocharacter attached
to any highest weight tilting module occurring in the tensor product ⊠i∈ITµΓ

1i
⊗

T
µΓ

2i
(Proposition 2.10.12). In particular, this implies that φT is (µ1i + µ2i)i∈I-

regular by considerations of highest weight. This property often allows us to see
that we get µ-regularity just under the generic hypothesis on φT . For example,
for G = GLn, and Λ = Qℓ then, as observed in Remark 2.1.8, genericity will
imply strong µ-regularity for µ = (1,0, . . . ,0), and this will imply the filtration
splits uniquely for this cocharacter. This allows us to see that the filtration splits
uniquely for the standard representation, and this in turn allows us to see that
we get a splitting for the representations corresponding to the other fundamental
coweights ωi = (1i,0n−i) using the decomposition V⊗i

std = Symi(V )
⊕
· · ·
⊕

Λi(V )
of the tensor powers of the standard representation Vstd of GLn. From here, we
can show µ-regularity for all µ using the fact that we can realize Tµ as a direct
summand of a tensor product of the representations corresponding to fundamental
weights. This argument also works with torsion coefficients since Λi(V ) = Vωi

will always be tilting by virtue of ωi being minuscule for all i = 1, . . . ,n when
G = GLn (Corollary 2.10.16).

Our main theorem is then as follows.

Theorem 2.1.17. (Theorem 2.10.10) For Λ ∈ {Fℓ,Zℓ,Qℓ}, we consider φT :
WQp → LT (Λ) an integral parameter such that its mod ℓ-reduction is weakly nor-
malized regular. There then exists a perverse sheaf nEis(SφT ) ∈ Dlis(BunG,Λ)
which is a filtered eigensheaf with eigenvalue φ . If V ∈ TiltΛ(LG) is a direct sum
of tilting modules ⊠i∈ITµΓ

i
for geometric dominant cocharacters µi, and φT is

µi-regular (resp. strongly µi-regular), the filtration on TV (nEis(SφT ) splits (resp.
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splits uniquely), and we have a natural isomorphism

TV (nEis(SφT ))≃ nEis(SφT )⊠ rV ◦φ

of sheaves in Dlis(BunG)
BW I

Qp . In particular, if φT is µ-regular (resp. strongly µ-
regular) for all geometric dominant cocharacters µ then nEis(SφT ) is a weak tilt-
ing eigensheaf (resp. tilting eigensheaf). For b∈B(G), the stalk nEis(SφT )|Bunb

G
∈

D(Bunb
G)≃ D(Jb(Qp),Λ) is given by

1. an isomorphism nEis(SφT )|Bunb
G
≃
⊕

w∈Wb
iJb
Bb
(χw)⊗ δ

−1/2
Pb

[−⟨2ρ̂,νb⟩] if
b ∈ B(G)un,

2. an isomorphism nEis(SφT )|Bunb
G
≃ 0 if b /∈ B(G)un.

Moreover, if DBunG denotes Verdier duality on BunG, we have an isomorphism

DBunG(nEis(SφT ))≃ nEis(Sφ∨T
)

of sheaves in Dlis(BunG,Λ).

Remark 2.1.18. The notion of a weak tilting eigensheaf means that we always
have isomorphisms

ηV,I : TV (nEis(SφT ))≃ nEis(SφT )⊠ rV ◦φ

for V ∈ Tilt(LGI) and a finite index set I, but do not necessarily know that the
desired compatibilities with respect to I and V . Even though we know these com-
patibilities for the filtration, it is not necessarily clear that the splitting we produce
through our argument respects these compatibilities without assuming strong µ-
regularity. Only knowing the compatibilities of the splittings under such restric-
tive conditions is a bit unfortunate; fortunately, for most of the applications to
local Shtuka spaces with one leg it suffices to only know a splitting exists.

This eigensheaf has several suprising applications to the cohomology of local
Shimura varieties and shtuka spaces. To formalize this, we define, for b ∈ B(G),
a complex of Jb(Qp)-representations denoted Redb,φ . If b /∈ B(G)un we set this to

be equal to 0 and if b ∈ B(G)un to be equal to
⊕

w∈Wb
iJb
Bb
(χw)⊗δ

−1/2
Pb

[−⟨2ρ̂,νb⟩].
Now let’s consider µ a geometric dominant cocharacter of G with reflex field
E and set B(G,µ) ⊂ B(G) to be the subset of µ-admissible elements (Defini-
tion 2.2.5). We let Tµ be the associated highest weight tilting module of Ĝ.
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This defines a representation of WE ⋉ Ĝ with associated Hecke operator Tµ . We
write rµ : WE ⋉ Ĝ→ GL(Tµ) for the associated map. We consider the cohomol-
ogy of the local shtuka spaces Sht(G,b,µ)∞, as defined in [SW20b]. In particu-
lar, the representation Tµ attached to a dominant inverse defines a sheaf Sµ on
Sht(G,b,µ)∞ via geometric Satake, and we can consider the complex RΓc(G,b,µ)
of Jb(Qp)×G(Qp)×WE-modules attached to cohomology valued in this sheaf.

Remark 2.1.19. We note that, since we have used the tilting module Tµ in the
definition of RΓc(G,b,µ) instead of the usual highest weight representation Vµ

this is slightly different than the usual definition appearing in the literature. The
two definitions will coincide when the representation Vµ defines a tilting module,
which is equivalent to Vµ being irreducible with coefficients in Λ. We say such a
µ is tilting if this holds. This will always hold if Λ =Qℓ or if µ is minuscule, and
we study this notion more carefully in Appendix A.2.

We can use nEis(SφT ) to describe the cohomology of RΓc(G,b,µ). Assume
that φT is µ-regular, the Hecke eigensheaf property then tells us that we have an
isomorphism

Tµ(nEis(SφT ))≃ nEis(SφT )⊠ rµ ◦φ |WE

of sheaves with continuous WE-action. If we restrict to the open HN-strata
j1 : Bun1

G → BunG defined by the trivial element 1 ∈ B(G) then this gives an
isomorphism

j∗1Tµ(nEis(SφT ))≃ iGB (χ)⊠ rµ ◦φ |WE

of complexes of G(Qp)×WE-modules. Now the point is that only the elements b∈
B(G,µ) occur as a modifications Fb→F 0

G of type µ , where F 0
G is the trivial G-

bundle. Therefore, only these stalks contribute to the LHS. By applying excision
to the locally closed stratification given by Bunb

G for b ∈ B(G,µ), we find that the
LHS has a filtration with graded pieces isomorphic to j∗1Tµ( jb!(Redb,φ )), but these
are related to the isotypic parts RΓ♭

c(G,b,µ)[Redb,φ ]. From the above analysis, we
deduce the following.

Theorem 2.1.20. (Theorem 2.11.7) For φT : WQp → LT (Λ) an integral toral pa-
rameter such that its mod ℓ-reduction is weakly normalized regular and any geo-
metric dominant cocharacter µ such that φT is µ-regular, we have an equality

∑
b∈B(G,µ)

[RΓ
♭
c(G,b,µ)[Redb,φ ]] = [rµ ◦φ |WE ⊠ iGB (χ)]

in the Grothendieck group K0(G(Qp)×WE ,Λ) of smooth admissible G(Qp)-
representations with a continuous action of WE .
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If we now consider the case where Λ = Qℓ then it follows that the averaging
formula is valid for all weakly normalized regular and µ-regular parameters φT :
WQp → LT (Qℓ), which admit a Zℓ-lattice. Moreover, with Qℓ-coefficients, we
can interpret both sides as trace forms on K0(T (Qp),Qℓ), and use that the set
of characters obtained from such parameters is Zariski dense in the variety of
unramified characters to conclude the following more general claim.

Theorem 2.1.21. (Theorem 2.11.10) For φT : WQp→ LT (Qℓ) any toral parameter
and µ any geometric dominant cocharacter of G, we have an equality

∑
b∈B(G,µ)

[RΓ
♭
c(G,b,µ)[Redb,φ ]] = [rµ ◦φ |WE ⊠ iGB (χ)]

in K0(G(Qp)×WE ,Qℓ).

If µ is minuscule and G=GLn then this recovers special cases of an averaging
formula of Shin [Shi12], which was formalized for more general reductive groups
by Alexander Bertoloni-Meli [Ber21]. In particular, for all χ the induction iGB (χ)
defines a class [iGB (χ)] ∈ Kst

0 (G(Qp),Qℓ) in the subgroup of the Grothendieck
group with stable character sum. To such a class, the averaging formula gives a
description of the RHS in terms of an average over B(G,µ) of the isotypic parts
of RΓc(G,b,µ) with respect to Redcb(i

G
B (χ)), where c is a refined endoscopic da-

tum (Definition A.3.1). In Appendix A.3, we verify that this indeed agrees with
the conjectured averaging formula when c is the trivial endoscopic datum. This is
rather remarkable. Such formulae are typically proven in the minuscule case by
stabilizing the trace formula on the Igusa varieties indexed by b ∈ B(G,µ), and
our analysis gives a more conceptual explanation for them. By combining our
work here with the compatibility results proven in [Ham21b] and [BHN22], this
gives a proof of this averaging formula in cases where the non-basic Igusa vari-
eties haven’t even been properly defined yet!3 We recall that, in the proof of the
averaging formula, we used excision to produce a filtration whose graded pieces
were isomorphic to

j∗1Tµ( jb!(Redb,φ ))≃ j∗1Tµ( jb!(nEis(SφT )|Bunb
G
))

By using the isomorphism DBunG(nEis(SφT )) ≃ nEis(Sφ∨T
), we can show

(See Corollary 2.11.15) that we have an isomorphism: j∗1Tµ( jb!(Redb,φ )) ≃
3However, in the case where G is split and µ is minuscule this formula can actually be checked

by hand (See Proposition 2.11.20), but in the case of unitary groups or restrictions of scalars and
µ minuscule this already gives new information.
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j∗1Tµ( jb∗(Redb,φ )) of objects in Dlis(BunG,Λ). This implies that the excision
spectral sequence degenerates, allowing us to conclude the following refined av-
eraging formula.

Theorem 2.1.22. (Theorem 2.11.16) For φT an integral parameter with weakly
normalized regular mod ℓ-reduction, and µ any geometric dominant cocharacter
such that φT is µ-regular, we have an isomorphism⊕

b∈B(G,µ)un

⊕
w∈Wb

RΓ
♭
c(G,b,µ)[ρb,w][−⟨2ρ̂,νb⟩]≃ iGB (χ)⊠ rµ ◦φ |WE

of complexes of G(Qp)×WE-modules, where ρb,w := iJb
Bb
(χw)⊗δ

−1/2
Pb

.

We now assume that φT is an integral parameter with weakly normalized reg-
ular mod ℓ reduction in all that follows. The previous theorem leads to a very
explicit descriptions of the complexes RΓc(G,b,µ)[ρb,w⊗δPb] and the degrees of
cohomology they sit in.

Corollary 2.1.23. (Corollary 2.11.17) For µ a geometric dominant cocharacter
with reflex field E such that φT is µ-regular, fixed b ∈ B(G,µ)un, and varying
w ∈Wb, the complex RΓ♭

c(G,b,µ)[ρb,w] is isomorphic to φ
µ

b,w⊠σ [⟨2ρ̂,νb⟩], for
φ

µ

b,w a representation of WE and σ a sub representation of iGB (χ). Moreover, we
have an isomorphism ⊕

b∈B(G,µ)un

⊕
w∈Wb

φ
µ

b,w ≃ rµ ◦φ |WE

of WE-representations.

Remark 2.1.24. When G = GLn, we can deduce these consequences for all µ un-
der the assumption that φT is generic (cf. Remark 2.1.5). We anticipate that,
by combining this statement with the approach to torsion vanishing taken by
Koshikawa [Kos21b] via using compatibility of the Fargues-Scholze and the usual
local Langlands correspondence, it should lead to generalizations of Caraiani and
Scholze’s results.

It is now natural to wonder what the representations φ
µ

b,w exactly are. It was
already observed by Xiao-Zhu [XZ17] that the elements of the set B(G,µ)un cor-
respond to Weyl group orbits of weights of the highest weight module Tµ or
rather its restriction Tµ |ĜΓ (Corollary 2.2.9). If we let bT ∈ B(T ) be the dominant
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reduction of an element b ∈ B(G,µ)un then the orbit of the character bT under
the Weyl group WG can be described as w(bT ) for w ∈Wb varying. For varying
b ∈ B(G,µ)un, this describes the set of non-zero weights which can occur in the
representation Tµ |ĜΓ . In particular, given such a ν ∈ X∗(TQp

)Γ, we can look at
the direct sum of weight spaces ⊕

ν∈X∗(TQp
)

νΓ=ν

Tµ(ν)

and this coincides with the weight space of Tµ |ĜΓ(ν) via the isomorphism
X∗(TQp

)Γ ≃ X∗(T̂ Γ). The refined averaging formula suggests the following re-
lationship.

Conjecture 2.1.25. (Conjecture 2.11.18) For all geometric dominant cocharac-
ters µ such that φT is µ-regular, an unramified element b ∈ B(G,µ)un, and a Weyl
group element w ∈Wb, we have an isomorphism⊕

w̃(bT )∈X∗(TQp
)

w̃(bT )Γ
=w(bT )

w̃(bT )◦φT |WE′ ⊗Tµ(w̃(bT ))≃ φ
µ

b,w|WE′

of WE ′-representations, where E ′|E denotes the splitting field of G.

We verify this conjecture in some particular cases, by noting that the contribu-
tion from the µ-ordinary locus can be explicitly computed using a shtuka analogue
of Boyer’s trick [Boy99a], as studied by Gaisin-Imai [GI16]. To do this, we note
that we have a distinguished element in B(G,µ)un called the µ-ordinary element,
which we denote by bµ . It is the maximal element in the partial ordering on
B(G,µ), and we let bµT be its dominant reduction. The conjecture suggests that
this should correspond to the Weyl group orbit of the highest weight of Tµ . In this
case, the space Sht(G,bµ ,µ)∞,Cp with its G(Qp)×Jb(Qp)-action is determined by
the space Sht(T,bµT ,µ)∞,Cp with its T (Qp)×T (Qp)-action. In particular, using
this we can deduce the following isomorphism (See Proposition 2.11.20):

RΓ
♭
c(G,bµ ,µ)[ρbµ ,w]≃ iGB (χ

ww0)⊠w(µ)◦φT |WE [⟨2ρ̂,νb⟩],

where w and w0 are minimal length representatives of Wb in WG. This calculation
has a very interesting consequence. In particular, when combined with the refined
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averaging formula, we see that we must have an isomorphism iGB (χ
w) ≃ iGB (χ).

So, by choosing µ to be sufficiently regular so that Wbµ
=WG, we can deduce the

following.

Theorem 2.1.26. (Corollary 2.11.22) For φT an integral parameter with weakly
normalized regular mod ℓ-reduction such that there exists a µ which is not fixed
under WG and φT is µ-regular, we have an isomorphism

iχ,w : iGB (χ)≃ iGB (χ
w)

of smooth G(Qp)-representations for all w ∈WG.

This showcases the strong connection between the theory of geometric Eisen-
stein series and the theory of intertwining operators and the Langlands quotient
that has been our philosophical guide throughout. A relation that holds even with
mod ℓ-coefficients! With mod ℓ coefficients, there is no good theory of inter-
twining operators or the Langlands quotient (See however [Dat05], for the current
state of the art), and we suspect that further developing the theory of geometric
Eisenstein series should provide some insights into these notions in the ℓ-modular
setting.

We saw above that our previous conjecture on φ
µ

b,w can be completely verified
using Boyer’s trick in the case that the only weights of Tµ |ĜΓ are orbits of the
highest weight. This will be the case when the image µΓ ∈X∗(TQp

)+
Γ
≃X∗(T̂ Γ)+

of µ is minuscule with respect to the pairing with X∗(T̂ Γ). If we combine this with
the refined averaging formula then we can also deduce the claim when B(G,µ) has
two elements. I.e the case where Tµ |ĜΓ has two weight spaces; one corresponding
to the µ-ordinary element and the other corresponding to the basic element. This
will prove the previous conjecture in all cases where µΓ ∈ X∗(T̂ Γ)+ is minuscule
or quasi-minuscule with respect to the pairing with the cocharacters X∗(T̂ Γ).

Theorem 2.1.27. (Corollary 2.11.27) For µ a geometric dominant cocharac-
ter and φT strongly µ-regular such that µΓ ∈ X∗(TQp

)+
Γ

is minuscule or quasi-

minuscule with respect to the pairing with X∗(T̂ Γ), the previous conjecture is
true.

Remark 2.1.28. Even for µ minuscule it can be the case that the image µΓ ∈
X∗(TQp

)+
Γ

is no longer minuscule with respect to the above pairing, as this cor-

responds to restricting the highest weight representation of Ĝ defined by µ to
ĜΓ. Therefore, even for µ minuscule, we can still have that the basic element
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b ∈ B(G,µ) is unramified (See [XZ17, Remark 4.2.11]) In these cases, a very
analogous result was proven by [XZ17], where they describe the irreducible com-
ponents of affine Deligne-Lusztig varieties in terms of the weight space defined
by the basic element. These affine Deligne-Lusztig varieties describe the special
fibers of the local shtuka spaces Sht(G,b,µ)∞/K in the case that G is unramified,
and K is a hyperspecial level. Moreover, we suspect that, by using nearby cycles,
one could deduce some special cases of their result from ours.

Throughout our results, we have introduced various technical conditions on
φT . We suspect that some of these conditions are artifacts of the proofs we have
used to overcome the technical geometry of BunB and its compacitifications in this
diamond world. While the conditions are manageable for specific applications to
specific groups it leaves one wanting for a more conceptually clear picture. In
particular, we conjecture that the following is true, which (modulo checking the
compatibilities of the isomorphisms in the eigensheaf property) our methods show
for GLn and integral parameters (Corollary 2.10.16).

Conjecture 2.1.29. For Λ ∈ {Fℓ,Zℓ,Qℓ} and φT : WQp → LT (Λ) a generic toral
L-parameter, there exists a sheaf nEis(SφT ) ∈ Dlis(BunG,Λ) which is a per-
verse Hecke eigensheaf with eigenvalue φ such that one has an isomorphism
DBunG(nEis(SφT )) ≃ nEis(Sφ∨T

), and its stalk at all b ∈ B(G) is isomorphic to
Redb,φ ⊗δ

−1
Pb

.

This conjecture would follow from knowing the existence of ICBunB
and in

turn the compactified Eisenstein functor Eis with all the various desiderata proven
by Braverman-Gaitsgory [BG02] in the function field setting. In particular, we
expect that Eis(−) should commute with Verdier duality, and satisfy the functional
equation if α ◦φT is non-trivial for all Γ-orbits of roots. Moreover, by the analogue
of the results of [BG08], there should be a natural map

nEis(SφT )→ Eis(SφT )

whose cone should be given by Eisenstein functors tensored with complexes ad-
mitting a filtration isomorphic to RΓ(WQp,α ◦φT ) for α a Γ-orbit of coroots of G.
In particular, we should have an isomorphism Eis(SφT ) ≃ nEis(SφT ) precisely
when φT is generic. It follows by our above analysis that this would imply an
isomorphism iGB (χ)≃ iGB (χ

w) for all generic χ , which is precisely what we show
in the appendix (Proposition A.1.3).

In §2, we start by defining the set of unramified elements in B(G) and dis-
cussing their relationship with highest weight theory, as in [XZ17]. In §3, we
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review the construction of eigensheaves on BunT attached to parameters φT , in-
troducing the conditions on our parameter φT and working through some useful
lemmas and examples related to them. In §4, we review the geometric Satake cor-
respondence of Fargues-Scholze, recalling the key results and relating the highest
weight theory of LG to the cohomology of semi-infinite Schubert cells. In §5,
we introduce Drinfeld’s compactifications over the Fargues-Fontaine curve and
establish Theorem 2.1.3. We also introduce a locally closed stratification of BunB
and show it is well-behaved. In §6, we move into the sheaf theory introducing the
normalized Eisenstein functor and establishing Theorem 1.2. In §7, we will study
how the Eisenstein functor interacts with Hecke operators, establishing Theorem
1.12. This will ultimately be done via a key diagram relating the action of Hecke
operators of BunG base-changed along the map p : BunB→ BunG to semi-infinite
Schubert cells, where it reduces to the results in §4. In §8, we study Verdier dual-
ity and show Theorem 1.11. In §9, we will carry out the computation of the stalks
of the Eisenstein series nEis(SφT ) establishing Theorem 1.14. In §10, we describe
the theory of tilting modules for the L-group LG, constructing nEis(SφT ) with Zℓ

and Qℓ-coefficients and showing Theorem 1.15. Finally, in §11, we deduce the
applications to the cohomology of local shtuka spaces showing Theorems 1.18,
1.20, 1.24, and 1.25.
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2.2 Notation
• Let ℓ ̸= p be distinct primes.

• Let G be a quasi-split connected reductive group with simply connected
derived group.

• We let Qℓ denote the algebraic closure of the ℓ-adic numbers, with residue
field Fℓ and ring of integers Zℓ, endowed with the discrete topology.
Throughout, we will assume that, for our fixed G, ℓ is very good in the
sense of [FS21, Page 33] and banal with respect to T .

• Let Γ be the absolute Galois group of Qp, and let WQp ⊂Γ be the Weil group
of Qp.

• We set LQp :=WQp×SL2(Qℓ) to be the Weil-Deligne group.

• Fix choices A⊂ T ⊂ B⊂G of maximal split torus, maximal non-split torus,
and Borel. We use U to denote the unipotent radical of B.

• We let WG be the relative Weyl group of G and w0 be the element of longest
length.

• We write IndG
B (−) for the unnormalized parabolic induction functor from

B to G. We let δB be the modulus character defined by B so that iGB (−) :=
IndG

B (−⊗ δ
1/2
B ) is the normalized induction. In other words, δB is defined

by the transformations of the space of right Haar measures.

• Let Q̆p be the completion of the maximal unramified extension of Qp with
Frobenius σ . For E/Qp a finite extension, we set Ĕ to be the compositum
EQ̆p.

• Set Cp to be the completion of the algebraic closure of Qp.

• Let B(G) = G(Q̆p)/(g∼ hgσ(h)−1) denote the Kottwitz set of G.

• For b ∈ B(G), we write Jb for the σ -centralizer of b.
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• We will always work over the fixed base ∗ := SpdFp, unless otherwise
stated.

• Let Perf denote the category of (affinoid) perfectoid spaces in characteristic
p over ∗ endowed with the v-topology. For S ∈ Perf, let PerfS denote the
category of affinoid perfectoid spaces over it.

• For S ∈ Perf, let XS denote the relative (schematic) Fargues-Fontaine curve
over S.

• For Spa(F,OF) ∈ Perf a geometric point, we will often drop the subscript
on XF and just write X for the associated Fargues-Fontaine curve.

• For b ∈ B(G), we write Fb for the associated G-bundle on X .

• For S ∈ Perf, we let F 0
G denote the trivial G-bundle on XS.

• We consider coefficient systems Λ ∈ {Fℓ,Zℓ,Qℓ}, with a fixed choice of
square root of p ∈ Λ. We define all half Tate twists with respect to this
choice.

• For an Artin v-stack X , we write D■(X ,Λ) for the condensed ∞-category of
solid Λ-valued sheaves on X , and write Dlis(X ,Λ) ⊂ D■(X ,Λ) for the full
sub-category of Λ-valued lisse-étale sheaves, as defined in [FS21, Chap-
ter VII].

• For a v-stack or diamond X , when working with torsion coefficients, we
will indicate this by just writing D(X) := Dét(X ,Λ) for the category of étale
Λ-sheaves on X , as defined [Sch18]. If X is an Artin v-stack ([FS21, Def-
inition IV.V.1]) admitting a separated cohomologically smooth surjection
U → X from a locally spatial diamond U such that the etale site has a basis
with bounded ℓ-cohomological dimension (which will always be the case
for our applications) then we will regard it as a condensed ∞-category via
the identification Dlis(X ,Λ) ≃ D(X) when viewed as objects in D■(X ,Λ)
[FS21, Proposition VII.6.6].

• We let Ĝ denote the Langlands dual group of G with fixed splitting
(T̂ , B̂,{Xα}).

• If E denotes the splitting field of G then the action of WQp factors through
Q :=WQp/WE . We let LG := Ĝ⋊Q denote the L-group.
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• For I a finite index set, we let RepΛ(
LGI) denote the category of finite-

dimensional algebraic representations of LGI .

• To any condensed ∞-category C , we write C
BW I

Qp for the category of objects
with continuous W I

Qp
-action, as defined in [FS21, Section IX.1].

• We will let Div1 := SpdQ̆p/FrobZ denote the mirror curve, and, for a finite
extension E/Qp, we write Div1

E for the base-change to E.

• For I a finite index set, we let DivI denote |I|-copies of the mirror curve.
For n ∈ Z, we let Div(n) = (Div1)n/Sn, denote the nth symmetric power of
the mirror curve, where Sn is the symmetric group on n letters.

• For a reductive group H/Qp, we write D(H(Qp),Λ) for the unbounded
derived category of smooth Λ-representations.

• We say a map of v-stacks f : X → Y is representable in nice diamonds if it
is representable in locally spatial diamonds, is compactifiable, and (locally)
tr.deg( f )< ∞.

• All 6-functors will be implicitly derived unless otherwise stated.

• For a locally pro-p group H, we write H for the functor sending S ∈ Perf
to Cont(|S|,H), the set of continuous maps from the underlying topological
space of S to H.

Remark 2.2.1. At various points, we will need to consider the functors f! :
D(X)→ D(Y ) and f ! : D(Y )→ D(X) for certain "stacky" morphisms of
Artin v-stacks f : X → Y . The correct definitions of these functors in this
case are given in the work of [GHW22]. In particular, they extend the 6-
functors studied in [Sch18; FS21] to fine maps [GHW22, Definition 1.3] of
decent v-stacks [GHW22, Definition 1.2]. In general being a decent v-stack
is stronger than being Artin. However, it is easy to check that all the stacks
(resp. morphisms) we consider these functors for will be decent (resp. fine).
To see this, one can use [GHW22, Proposition 4.11] which states that if f :
X→Y is a map of v-stacks which is representable in nice diamonds and Y is
decent then X is also decent and f is fine. In the cases we consider, one can
apply this if one takes Y = BunG. To see that BunG is decent, one can use
the charts studied in [FS21, Section V.3], and take advantage of the fact that
the maps defining the charts are formally smooth [FS21, Definition IV.3.1]
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by [FS21, Proposition IV.4.24]. This in particular allows one to see that
these charts map strictly surjectively [GHW22, Defition 4.1] to BunG. It
remains to explain why the maps appearing in our context are fine, to do
this one can combine the previous analysis with [GHW22, Proposition 4.10
(iii)], which says that fine morphisms satisfy the 2 out of 3 property.

• When speaking about such fine maps of decent v-stacks we will often just
cite theorems that only apply to the setting where f is representable in nice
diamonds, and leave it to the reader to check that one can deduce the analo-
gous results from the cited result and the formal properties of the 6-functors
defined in [GHW22].

• Given a decent v-stack X → ∗ such that X is fine over ∗, we let KX :=
f !(Λ) ∈ D(X) denote the dualizing object of X . Similarly, for F ∈
D(X), we will write RΓc(X ,F ) := f!(F ) ∈ D(Λ). We write DX(−) :=
RH om(−,KX) for the Verdier duality functor. For a fine map f : X → S
of decent v-stacks, we write DX/S := RH om(−, f !(Λ)) for relative Verdier
duality.

• We will use the geometric normalization of local class field theory. For
n ∈ Z, we write (n) for the nth power of the ℓ-adic cyclotomic character
of WQp . We note that, under this normalization, (1) is sent to the norm
character | · | : Q∗p→Λ∗, which acts trivially on Z∗p and sends p to p−1 ∈Λ∗.

Before introducing the rest of the notation, we discuss the relationship between
unramified elements in B(G) and the representation theory of the dual group.

2.2.1 Unramified Elements in B(G) and Highest Weight The-
ory

In this section, we will study the set of unramified elements in the Kottwitz set of
G. As we will show, these elements are connected to the highest weight theory
of the Langlands dual group Ĝ, as discussed in [XZ17, Section 4.2.1]. First, we
recall that the Kottwitz set B(G) of a connected reductive group G/Qp is equipped
with two maps:

• The slope homomorphism

ν : B(G)→ X∗(TQp
)+,Γ
Q
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b 7→ νb

where Γ := Gal(Qp/Qp) and X∗(TQp
)+Q is the set of rational dominant

cocharacters of G.

• The Kottwitz invariant

κG : B(G)→ π1(G)Γ

where π1(G) denotes the algebraic fundamental group of Borovoi.

Now, given a geometric cocharacter µ of G with reflex field E, we can define the
element:

µ̃ :=
1

[E : Qp]
∑

γ∈Gal(E/Qp)

γ(µ) ∈ X∗(TQp
)+,Γ
Q

We let µ♭ be the image of µ in π1(G)Γ ≃ X∗(Z(Ĝ)Γ). Via the isomorphim
B(G)basic ≃ π1(G)Γ, we regard it as a basic element of B(G), which are the min-
imal elements in the natural partial ordering on B(G). Now we recall that, for a
torus T , we have an isomorphism B(T )≃X∗(TQp

)Γ. We can use this isomorphism
to give a nice description of a certain piece of B(G).

Definition 2.2.2. [XZ17, Section 4.2.1] We let B(G)un ⊂ B(G) denote the im-
age of the natural map B(T )→ B(G). We refer to this as the set of unramified
elements.

We now have the following Lemma. We write (−)Γ for the natural quotient
map X∗(TQp

)→ X∗(TQp
)Γ.

Lemma 2.2.3. [XZ17, Lemma 4.2.2] Let X∗(TQp
)Γ≃B(T )→B(G) be the natural

map. Then this induces an isomorphism:

X∗(TQp
)Γ/WG ≃ B(G)un

Proof. Strictly speaking, the proof given by Xiao-Zhu is only in the case that G is
unramified. We remedy this now. Note that it is clear that this map is surjective, so
it suffices to check injectivity. Let µ1,µ2 ∈ X∗(TQp

) be two elements with b1,b2

their images in B(G) under the natural composite

X∗(TQp
)→ X∗(TQp

)Γ ≃ B(T )→ B(G),
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and suppose that b1 = b2. Since κG(b1) = κG(b2), it follows that we have µ1−
µ2 = (γ−1)ν +α for some coroot α ∈X∗(TQp

) and γ ∈ Γ. We may, without loss
of generality, replace µ1 by µ1+(γ−1)ν , and therefore assume that µ1−µ2 = α .
Since the slope homomorphisms of νb1 and νb2 are equal by assumption, we can
assume, after conjugating by an element of WG, that µ̃1 = µ̃2. Therefore, it follows
that, if Eα denotes the reflex field of α , we have an equality

∑
g∈Gal(Eα/Qp)

g(α) = 0

which in turn implies that

∑
g∈Gal(Eα/Qp)

(1−g)(α) = |Gal(Eα/Qp)|α

This would imply that αΓ vanishes in X∗(TQp
)Γ assuming that αΓ isn’t torsion.

However, Γ permutes the simple coroots, which form a basis of all coroots. There-
fore, it follows that αΓ is not torsion.

Now we would like to describe X∗(TQp
)Γ/WG slightly differently. To do this,

we consider the natural pairing

⟨−,−⟩ : X∗(TQp
)Γ×X∗(TQp

)Γ→ Z

induced by the usual pairing between cocharacters and characters. We let ∆̂ ⊂
X∗(TQp

) (resp. ∆⊂ X∗(TQp
)) be the set of (absolute) simple roots (resp. coroots)

of G. Then we define X∗(TQp
)+

Γ
to be the set of elements in X∗(TQp

)Γ whose inner

product with Im(∆̂→ X∗(TQp
)Γ) under the natural averaging map is positive. The

natural map
X∗(TQp

)+
Γ
→ X∗(TQp

)Γ/WG

is an isomorphism. We also note that we have a natural partial ordering on
X∗(TQp

)Γ. In particular, given ν ,ν ′ ∈ X∗(TQp
)Γ we say that ν ≥ ν

′ if ν − ν
′

is a positive integral combination of αΓ for α ∈ ∆. We note that we have a natural
injective order preserving map:

X∗(TQp
)+

Γ
→ X∗(TQp

)Γ,+
Q ×π1(G)Γ

With this, we can reformulate the previous lemma as follows.
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Lemma 2.2.4. [XZ17, Lemma 4.2.3] The following diagram is commutative and
respects the partial ordering

B(G)un X∗(TQp
)+

Γ

B(G) X∗(TQp
)Γ,+
Q ×π1(G)Γ

≃

ν×κ

Now recall that, for µ a geometric dominant cocharacter of G, we have the
following.

Definition 2.2.5. We define B(G,µ) ⊂ B(G) to be subset of b ∈ B(G) for which
νb ≤ µ̃ with respect to the Bruhat ordering and κ(b) = µ♭.

The previous lemma allows us to interpret the unramified elements in this set
as follows.

Corollary 2.2.6. [XZ17, Corollary 4.2.4] Under the identifications X∗(TQp
)+

Γ
≃

X∗(TQp
)Γ/WG ≃ B(G)un, we have an equality:

B(G,µ)un := B(G)un∩B(G,µ) = {λΓ ∈ X∗(TQp
)+

Γ
| λΓ ≤ µΓ}

We now would like to connect this set with the highest weight theory for Ĝ.
If the group is not split then the unramified elements are naturally connected with
the highest weight theory of the subgroup ĜΓ. Even though ĜΓ is possibly discon-
nected its representation theory behaves like a connected reductive group. To see
this, first we note that the subgroup T̂ Γ defined by the maximal torus has character
group isomorphic to X∗(TQp

)Γ, and the partial order described above allows one

to talk about the highest weight of a representation. In particular, if we let T̂ Γ,◦

(resp. ĜΓ,◦) denote the neutral component of T̂ Γ (resp. ĜΓ). Then one can use that
the natural map T̂ Γ/T̂ Γ,◦→ ĜΓ/ĜΓ,◦ is an isomorphism ([Zhu15, Lemma 4.6]) to
see that usual highest weight theory extends to ĜΓ. In particular, we have the
following.

Lemma 2.2.7. [Zhu15, Lemma 4.10] For µ ∈ X∗(TQp
)+

Γ
, there is a unique up to

isomorphism irreducible representation of Vµ ∈ RepQℓ
(ĜΓ) of highest weight µ ,

which give rise to all the irreducible representations in RepQℓ
(ĜΓ) for varying

µ . Moreover, the multiplicity of the µ weight space in Vµ is 1, and the non-zero
weights ν ∈ X∗(TQp

)Γ of Vµ lie in the convex hull of the WG-orbit of µ .
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To a geometric dominant cocharacter µ , we can attach an irreducible repre-
sentation Vµ ∈ RepQℓ

(Ĝ). This defines a natural representation of Ĝ⋊WEµ
as in

[Kot97a, Lemma 2.1.2], where Eµ is the reflex field of µ . An element ν ∈X∗(TQp
)

defines a representation of T̂ , and we write Vµ(ν) for the corresponding weight
space of Vµ . If we consider the restriction Vµ |ĜΓ then the weight space Vµ(ν)
gives rise to a νΓ weight space, where we write (−)Γ : X∗(TQp

)→ X∗(TQp
)Γ for

the map given by taking coinvariants. Using this, it is easy to see we have the
following relationship.

Lemma 2.2.8. For µ ∈X∗(TQp
)+ and ν ∈X∗(TQp

)Γ, we have the following equal-
ity:

dim(Vµ(ν)) = ∑
ν∈X∗(TQp

)

νΓ=ν

dim(Vµ(ν))

We will combine this lemma with the following, which follows from the above
discussion.

Corollary 2.2.9. ([XZ17, Lemma 4.26]) For µ a geometric dominant cochar-
acter, under the identification X∗(TQp

)+
Γ
≃ B(G)un the elements ν ∈ B(G,µ)un

correspond to WG-orbits of the possible non-zero weights in Vµ |ĜΓ .

Let’s study this now more carefully. For b ∈ B(G), we want to use the above
discussion to understand the fiber of the map:

i : B(T )→ B(G)un ⊂ B(G)

Recall that, given b ∈ B(G), since G is quasi-split the σ -centralizer Jb is an ex-
tended pure inner form (in the sense of [Kot97b, Section 5.2]) of a Levi subgroup
Mb of G [Kot97b, Section 6.2], which is the centralizer of the slope homomor-
phism νb of b. We make the following definition.

Definition 2.2.10. For b∈ B(G), we let WMb denote the relative Weyl group of Mb
and set Wb := WG/WMb . We will fix a set of representatives w ∈WG of minimal
length, as in [BZ77, Section 2.11], and abuse notation by writing w for both the
representative and the corresponding element.

When combining the above discussion with Lemma 2.2.3, we can deduce the
following Corollary.
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Corollary 2.2.11. For fixed b ∈ B(G)un, the fiber i−1(b) has a unique element,
denoted bT , whose κ-invariant lies in X∗(TQp

)+
Γ

. Moreover, we have an equality

i−1(b) = {w(bT ) | w ∈Wb}.

Now, given a parabolic P with Levi factor M, the element b ∈ B(G) admits a
reduction to a Levi subgroup M if and only if the parabolic P∩Mb of Mb transfers
to a parabolic of Jb under the inner twisting (apply [CFS21, Pages 13, 28] to the
basic reduction of b to Mb). We record this specialized to the case of the Borel for
future use.

Lemma 2.2.12. An element b ∈ B(G) lies in B(G)un if and only if B∩Mb defines,
via the inner twisting, a Borel subgroup of Jb.

Remark 2.2.13. We note that, when b∈ B(G)un, we have an isomorphism Mb ≃ Jb
because Jb will be a quasi-split inner form of Mb.

We will end with an important observation about the map (−)Γ :X∗(TQp
)/Γ→

X∗(TQp
)Γ from orbits to coinvariants. Let J̃ (resp. J ) denote the vertices of the

absolute (resp. relative) Dynkin diagram of G. For i ∈ J̃ , we write α̃i ∈X∗(TQp
)

for the corresponding simple absolute coroot. We recall that Γ permutes the α̃i,
and the orbits under Γ are in bijection with elements of J ; namely, the average
over the orbit is the (reduced) positive coroot corresponding to i ∈J . Therefore,
for each i∈J , we obtain an element αi ∈X∗(TQp

)Γ given by the common image
of the elements in the orbit corresponding to i ∈J under the map (−)Γ. This
allows us to make the following definition.

Definition 2.2.14. We denote the group of coinvariants by ΛG,B :=X∗(TQp
)Γ, and

set Λ
pos
G,B to be the semi-group spanned by the elements αi ∈X∗(TQp

)Γ correspond-
ing to the Γ-orbit of coroots indexed by i ∈J .

Now we introduce the rest of the notation motivated by the discussion above.

• We let Λ
+
G :=X∗(A)+ (resp. Λ̂

+
G :=X∗(A)+) be the semi-group of dominant

cocharacters (resp. characters), viewed as elements of the positive Weyl
chamber in ΛG := X∗(A) = X∗(TQp

)Γ (resp. Λ̂G = X∗(A) = X∗(TQp
)Γ) de-

fined by the choice of Borel.

• To a dominant character λ̂ ∈ Λ̂
+
G , we get an associated highest weight Weyl

G-module, denoted V λ̂ . It has a fixed highest weight vector vλ̂ ∈ V λ̂ , and,
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given a pair of such weights λ̂1, λ̂2, there is a canonical map

V λ̂1+λ̂2 → V λ̂1⊗V λ̂

which takes vλ̂1+λ̂2 to vλ̂1⊗ vλ̂2 .

• Let J be the set of vertices of the relative Dynkin diagram of G/Qp. For
each i ∈J , we denote the corresponding element in the coinvariant lattice
by αi ∈ X∗(TQp

)Γ, as in Definition 2.2.14. We warn the reader that this
is different then the Γ-orbits defined by the (reduced) simple roots corre-
sponding to i ∈J , these we will denote by αi,A ∈ X∗(A) ⊂ X∗(TQp

)Γ, and
will be sum over the elements in the Galois orbit associated to αi. On the
other hand, in the root lattice Λ̂G we will only be interested in the (reduced)
simple positive roots corresponding to i ∈J , and so we just write this as
α̂i ∈ Λ̂G.

• We consider the natural pairing

⟨−,−⟩ : Λ̂G×ΛG,B→ Z

given by the identifications Λ̂G =X∗(A)≃X∗(TQp
)Γ and ΛG,B =X∗(TQp

)Γ.

• Using the assumption on the derived group of G being simply connected, we
define a set of fundamental weights ϖ̂i ∈ Λ̂

+
G , non-uniquely characterized by

the property that ⟨ϖ̂i,α j⟩ = δi j. Namely, this can be defined by taking the
sum over the Galois orbits of fundamental weights in X∗(TQp

).

• We will regularly use the natural quotient map

(−)Γ : X∗(TQp
)→ X∗(TQp

)Γ

as well as the map

(−)Γ : X∗(TQp
)→ X∗(TQp

)/Γ

from cocharacters to their Galois orbits. We note that (−)Γ factorizes over
(−)Γ as a map of sets.

• For a geometric dominant cocharacter µ ∈X∗(TQp
)+ with reflex field E, we

write Vµ for the natural representation of WE ⋉ Ĝ of highest weight µ , as in
[Kot97a, Lemma 2.1.2]. We also write VµΓ ∈ RepΛ(

LG) for the induction
of this representation to LG, which only depends on the associated Γ-orbit
µΓ of µ .
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• For b ∈ B(G), we let Jb be the extended pure inner form of Mb considered
above. If b ∈ B(G)un, we write Bb for the Borel defined by B∩Mb under the
inner twisting, as in Lemma 2.2.12.

• Given b ∈ B(G)un, we note that, by Lemma 2.2.3, there exists a unique
element bT ∈ B(T ) with dominant slope homomorphism with respect to the
choice of Borel. We refer to this as the dominant reduction. Similarly, we
write b−T for the unique element with anti-dominant slopes and will refer to
this as the HN-dominant reduction of b (Recall that there is a minus sign
when comparing isocrystal slopes and HN-slopes).

• We set Wb :=WG/WMb , where WMb (resp. WG) is the relative Weyl group of
Mb (resp. G). We identify w ∈Wb with a representative of minimal length
in WG throughout.

• We will write ρ̂ for the half sum of all positive roots.

2.3 Geometric Local Class Field Theory

2.3.1 Hecke Eigensheaves for Tori
In this section, we want to talk about geometric local class field theory. Namely,
given a torus T with L-parameter

φT : WQp →
LT (Λ)

where LT denotes the Langlands dual group of T , we want to construct a Hecke
eigensheaf, denoted SφT , on the moduli stack BunT . We recall that, for a repre-
sentation V ∈ RepΛ(

LGI) of I-copies of the L-group of G for some finite index set
I, a Hecke operator is a map defined by the correspondence

HckI
G

BunG×DivI BunG

h←×π

h→

where HckI
G is the functor that parametrizes, for S → DivI defining a tuple of

Cartier divisors in the relative Fargues-Fontaine XS over S, corresponding to char-
acteristic 0 untilts S♯i for i ∈ I of S, a pair of G-torsors E1, E2 together with an
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isomorphism
β : E1|XS\

⋃
i∈I S♯i

≃−→ E2|XS\
⋃

i∈I S♯i

where h→((E1,E2,(S
♯
i )i∈I)) = E1 and (h← × π)((E1,E2,β ,(S

♯
i )i∈I)) =

(E2,(S
♯
i )i∈I). For an algebraic representation V ∈ RepΛ(

LGI), the geomet-
ric Satake correspondence of Fargues-Scholze [FS21, Chapters VI, IX.2]
furnishes a sheaf SV ∈D■(Hck,Λ). Using this, we can define the Hecke operator
as

TV : Dlis(BunG,Λ)→ D■(BunG×DivI,Λ)

F 7→ (h←×π)♮((h→)∗(F )⊗SV )

where (h←× π)♮ is the natural push-forward. I.e the left adjoint to the restric-
tion functor in the category of solid Λ-sheaves [FS21, Proposition VII.3.1]. This
induces a functor

TV : Dlis(BunG,Λ)→ Dlis(BunG,Λ)
BW I

Qp

via a version of Drinfeld’s Lemma [FS21, Theorem I.7.2, Proposition IX.2.1,
Corollary IX.2.3]. When Λ = Fℓ, this is essentially the statement that Λ-valued
local systems on DivI are equivalent to continuous representations of W I

Qp
on fi-

nite projective Λ-modules [FS21, Proposition VI.9.2]. In this case, we will freely
pass between this perspective of local systems and W I

Qp
-representations.

With this in hand, we can define what it means for a sheaf on BunG to be a
Hecke eigensheaf.

Definition 2.3.1. Given a continuous L-parameter φ : WQp → LG(Λ), we say a
sheaf Sφ ∈ Dlis(BunG,Λ) is a Hecke eigensheaf with eigenvalue φ if, for all V ∈
RepΛ(

LGI) with associated map rV : LGI → GL(V ), we are given isomorphisms

ηV,I : TV (Sφ )≃Sφ ⊠ rV ◦φ

of sheaves in Dlis(BunG,Λ)
BW I

Qp , that are natural in I and V , and compatible with
compositions and exterior tensor products in V . We will similarly say that Sφ

is a weak eigensheaf with eigenvalue φ if we only know the existence of these
isomorphisms.

Remark 2.3.2. We recall that Hecke operators are monoidal and functorial in
(V, I). In particular, given two representations V,W ∈ RepΛ(

LG), we have a natu-
ral isomorphism

(TV × id)(TW )(·)|∆ ≃ TV⊗W (·)
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where ∆ : Div1 → (Div1)2 is the diagonal map. The compatibilities for the iso-
morphisms ηV,I are defined with respect to such isomorphisms.

Now let’s elucidate what this means for tori. Recall that an irreducible
representation of LT I is parametrized by a tuple of Galois orbits (νi)i∈I ∈
(X∗(TQp

)/Γ)I . Similarly, one has a decomposition

HckI
T =

⊔
(νi)i∈I∈(X∗(TQp

)/Γ)I

HckI
T,(νi)i∈I

of HckI
T into open and closed substacks, where HckI

T,(νi)i∈I
parametrizes a modi-

fication E1 99K E2 of meromorphy given by the Galois orbit νi over the I Cartier
divisors in DivI . If one lets S(νi)i∈I be the sheaf defined by the representation of
LT I corresponding to (νi)i∈I , then this sheaf is simply the constant sheaf supported
on the component HckI

T,(νi)i∈I
. Therefore, for studying the Hecke operator T(νi)i∈I ,

we can restrict the Hecke correspondence to the diagram:

HckI
T,(νi)i∈I

BunT ×DivI BunT

h←(νi)i∈I
×π

h→(νi)i∈I

Let Eνi denote the reflex field of the Γ-orbit νi ∈X∗(TQp
)/Γ. We can consider the

following base-change of DivI:

DivI
E(νi)i∈I

:= ∏
i∈I

Div1
Eνi

We note that, since a modification of T -bundles is uniquely determined by the
locus of meromorphy, we have an isomorphism HckI

T,(νi)i∈I
≃ BunT ×DivI

E(νi)i∈I
.

Under this identification, we have a map

h→(νi)i∈I
: BunT ×DivI

E(νi)i∈I
→ BunT

where, given (FT ,(Di)i∈I), we denote the resulting T -bundle under applying this
map as FT (∑i∈I−νiDi). We note that the isomorphism class of this bundle is
only determined by the image of νiΓ in the coinvariant lattice, and this will be
important in the next section. The map h←(νi)i∈I

×π is defined by the natural finite

139



étale morphism q(νi)i∈I : DivI
E(νi)i∈I

→ DivI , and pushing forward corresponds to
inducing the ∏i∈I WEνi

action to ∏i∈I WQp .
Now, via local class field theory, there is a character χ : T (Qp)→ Λ∗ attached

to φT . Moreover, each connected component Bunν
T for varying ν ∈ B(T )≃ ΛG,B

is isomorphic to the classifying stack [∗/T (Qp)]. As a consequence, we may
interpret χ as a sheaf on the connected components jν : Bunν

T → BunT for ν ∈
B(T ). One might hope that considering

SφT :=
⊕

ν∈B(T )

jν!(χ)

the sheaf on BunT whose restriction to each connected component is equal to χ

gives rise to the desired Hecke eigensheaf. This is indeed the case. In particular,
via the realization of local class field theory in the torsion of Lubin-Tate formal
groups, we have the following proposition.

Proposition 2.3.3. [Far16, Section 9.2],[Zou22] The sheaf SφT is an eigensheaf
with eigenvalue φT . In particular, for all (νi)i∈I ∈ (X∗(TQp

)/Γ)I , we have an
isomorphism

T(νi)i∈I(SφT )≃⊠i∈Iνi ◦φT ⊗SφT

of objects in Dlis(BunT ,Λ)
BW I

Qp . More precisely, if ν̃i is a representative of the
Γ-orbit of νi for all i ∈ I, we have an isomorphism

(h→(νi)i∈I
)∗(SφT )≃⊠i∈I ν̃i ◦φT |WEνi

⊗SφT

which after applying q(νi)i∈I∗ gives rise to the previous identification of induced
representations.

A special role will be played by the eigensheaf attached to the parameter

ρ̂ ◦ | · | : WQp →
LT (Λ)

where we recall that ρ̂ denotes the half sum of all positive roots with respect to the
choice of Borel and | · | : WQp → Λ∗ is the norm character. We note that the value

of this sheaf on each connected component is given by the representation δ
1/2
B ,

where δB denotes the modulus character defined by B. This leads to the following
definition.
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Definition 2.3.4. We let ∆
1/2
B be the eigensheaf on BunT attached to the parameter

ρ̂ ◦ | · | : WQp →
LT (Λ)

via Proposition 2.3.3. Similarly, we write ∆B for the eigensheaf attached to 2ρ̂ ◦
| · |, where the stalks of this sheaf are given by δB.

The key point is that (up to shifts) the pullback of this eigensheaf to the moduli
stack BunB gives rise to a sheaf which we will denote by ICBunB . We will see later
that this sheaf is Verdier self-dual on BunB and therefore tensoring by it will give
rise to the morally correct definition of the Eisenstein functor. We note that, given
a parameter φT with associated eigensheaf SφT , the tensor product SφT ⊗∆

1/2
B

will be the eigensheaf attached to the tensor product φT ⊗ ρ̂ ◦ | · | of L-parameters
(the L-parameter whose value is equal to the product of the parameters). It there-
fore follows from Proposition 2.3.3 that the following is true.

Corollary 2.3.5. For all (νi)i∈I ∈ (X∗(TQp
)/Γ)I , we have an isomorphism

T(νi)i∈I(SφT ⊗∆
1/2
B )≃⊠i∈I(νi ◦φT )(⟨ρ̂,νiΓ⟩)⊗ (SφT ⊗∆

1/2
B )

of objects in Dlis(BunT ,Λ)
BW I

Qp .

Remark 2.3.6. Note that, for any representative ν̃ ∈ X∗(TQp
) of the orbit ν ∈

X∗(TQp
)/Γ, we have an equality: ⟨ρ̂, ν̃⟩= ⟨ρ̂,νΓ⟩.

Now we discuss the various conditions that we will impose on our parameter
φT , as well as discuss their relationship with the irreducibility of principal series
through various examples.

2.3.2 Genericity, Weak Normalized Regularity, and the Irre-
ducibility of Principal Series

Consider the functor

RΓ(WQp,−) : Dlis(BunT ,Λ)
BWQp → Dlis(BunT ,Λ)

given by taking continuous cohomology with respect to WQp . As we will see later,
computing the Eisenstein functor applied to the eigensheaf SφT will reduce to
computing the values of RΓ(WQp,(h

←
ν )∗(SφT )) and RΓ(WQp,(h

←
ν )∗(SφT ⊗∆

1/2
B ))

for ν ∈X∗(TQp
)/Γ. In this note, we will want to restrict to the simplest case where

these contributions all vanish. The exact conditions we will need are as follows.
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Condition/Definition 2.3.7. Given a parameter φT : WQp → LT (Λ), we impose
the following conditions on φT in what follows.

1. For all Γ-orbits α ∈ X∗(TQp
)/Γ of simple coroots in X∗(TQp

), the Galois
cohomology complex RΓ(WQp,α ◦φT ) is trivial.

2. For all Γ-orbits α ∈X∗(TQp
)/Γ of coroots in X∗(TQp

), the Galois cohomol-
ogy complex RΓ(WQp,α ◦φT ) is trivial.

3. If χ is the character attached to φT under local class field theory. We have,
for all w ̸= 1 in the relative Weyl group WG of G, that

χ⊗δB ̸≃ (χ⊗δ
−1/2
B )w

If φT satisfies (1) we say that it is weakly generic, and if it satisfies (2) then we say
it is generic. If it satisfies (2)-(3) we say that it is weakly normalized regular.

These conditions are related to the irreducibility of the induction iGB (χ). To
explain this, let’s translate all these conditions to the character χ . Let E/Qp denote
the splitting field of G. Then the action of WQp on Ĝ factors through WQp/WE .
Given α ∈ X∗(TQp

)/Γ a Γ-orbit of coroots with reflex field Eα , local class field
theory [Lan97] gives us a map

E∗α → T (Eα)

attached to α̃ ◦ φT |WEα
, for a representative α̃ in the Γ-orbit of α . If we post-

compose with the norm map NmEα/Qp then we get a map

E∗α → T (Qp)

which only depends on the Galois orbit α . We further precompose with the norm
map NmE/Eα

: E∗→ E∗α , giving a character:

E∗→ T (Qp)

We write χα : E∗→Q∗ℓ for the precomposition of χ with this map. Now, consider
the complex RΓ(WQp ,α ◦φT ), where φT is the parameter attached to χ . It follows
by Schapiro’s lemma that we have an isomorphism:

RΓ(WEα
, α̃ ◦φT |WEα

)≃ RΓ(WQp,α ◦φT )
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Applying local Tate duality and using that the Euler-Poincaré characteristic of
RΓ(WEα

, α̃ ◦φT |WEα
) is 0, we see that this is equivalent to insisting that α̃ ◦φT |WEα

is not the trivial representation or the cyclotomic character (1). From here, by
using compatibility of local class field theory with restriction and the fact that
α̃ ◦φT is an extension from WE , we can see that the above conditions on φT imply
the following conditions on χ .

Condition/Definition 2.3.8. Given a smooth character χ : T (Qp)→ Λ∗ consider
the following conditions on χ .

1. For all Γ-orbits α ∈X∗(TQp
)/Γ of positive coroots in X∗(TQp

), the charac-

ter χα is not isomorphic to the trivial representation 1 or | · |±1
E , where | · |E

is the norm character on E the splitting field of G.

2. For all w ∈WG non-trivial, we have that

χ⊗δ
1/2
B ̸≃ (χ⊗δ

−1/2
B )w

We say that χ is generic if (1) holds, and that it is weakly normalized regular if
(1)-(2) hold.

We now illustrate how this condition is related to irreducibility of iGB (χ) in
some examples. We will assume that Λ =Qℓ in all of the examples for simplicity.

Example 2.3.9. (G = GL2) We can write χ := χ1⊗ χ2 for χi : Q∗p→Q∗ℓ smooth
characters and i = 1,2. We see that χ being generic implies that χ1χ

−1
2 ̸≃ 1 and

χ1χ
−1
2 ̸≃ | · |±1, and this latter condition guarantees that the normalized parabolic

induction iGL2
B (χ1⊗χ2) is irreducible. Let’s also look at Condition (2) in this case.

Suppose it fails, then we have an isomorphism:

χ1(t1)χ2(t2)|t1t−1
2 |

1/2 ≃ χ1(t2)χ2(t1)|t1t−1
2 |

1/2

Evaluating at (t1, t2) = (t,1) this would imply that χ1χ
−1
2 ≃ 1, which would con-

tradict χ being generic.

In particular, we see that χ being generic is enough to guarantee irreducibility
and weak normalized regularity for GL2. In fact, this is a more general phe-
nomenon.

Lemma 2.3.10. If G = GLn then χ being generic implies that it is weakly nor-
malized regular.
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Proof. (Sketch) We write the character as a product χ := χ1⊗ χ2⊗·· ·⊗ · · ·⊗ χn
of characters χi : Q∗p → Λ∗, and write (t1, . . . , tn) for the natural coordinates on
T (Qp)≃ (Q∗p)n. We have an equality:

χ⊗δ
1/2
B =

n

∏
i=1

χi(ti)⊗|ti|
n−1

2 −(i−1)

We visualize the coordinates as a set of vertices of a graph:

(t1)↔ (t2)↔ ··· ↔ (tn−1)↔ (tn)

Then this has an axis of symmetry between tn/2 and tn/2+1 if n is even, and an
axis of symmetry going through t(n+1)/2 if n is odd. The element w corresponds
to a permutation σ of the vertices of the graph. Now suppose that σ crosses the
line of symmetry. If n is odd we assume that it sends t(n−1)/2 to t(n+1)/2 then by
evaluating the equality

χ⊗δ
1/2
B ≃ χ⊗ (δ

−1/2
B )w

at (1, . . . ,1, t(n−1)/2 = t,1, . . . ,1) it reduces to

χt(n−1)/2(t)|t| ≃ χt(n+1)/2(t)

which implies
χt(n−1)/2(t)

−1
χt(n+1)/2(t)≃ |t|

contradicting χ being generic. Similarly, if n is even and the permutation sends
tn/2 to tn/2+1 then evaluating at (1, . . . ,1, tn/2 = t,1, . . . ,1) the equality becomes

χtn/2 χ
−1
tn/2+1

(t)≃ 1

which again contradicts χ being generic. Here the point is that the power of the
norm character appearing when evaluating at (1, . . . ,1, t = ti,1, . . . ,1) is given by
the distance of ti from the reflection of ti+1 across the line of symmetry. In general,
we can consider the cycle which is closest to the line of symmetry, suppose it ends
in a permutation ti→ ti+1. If we just evaluated at (1, . . . ,1, t = ti,1, . . . ,1) then we
would get that χi(t)χi+1(t)−1 is equal to a very large power of the norm character.
However, since we choose the permutation to be as close as possible to the axis of
symmetry, the permutation will fix all the vertices from the axis of symmetry to
ti+1 reflected across it. Therefore, we are free to also evaluate at a power of t on
these invariant coordinates, since the characters χ j corresponding to an invariant
coordinate t j on either side of the equation will cancel. This allows us to reduce
the power of the norm character appearing to 1 or 0, and then we see that this
contradicts χ being generic again.
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Remark 2.3.11. Note that if Λ=Qℓ, we could have replaced the second part of the
above argument by simply evaluating the permutation σ on one of the coordinates
ti that σ leaves fixed. This would give a relationship of the form | · |n ≃ 1, which is
impossible with rational coefficients. With modular coefficients, this is impossible
under a banal hypothesis on the prime ℓ.

In general, genericity does not always imply weak normalized regularity. In
particular, Condition 2.3.7 (3) seems to be related to the irreducibility of some
unitary principal series representations.

Example 2.3.12. (G = SL2) In this case, χ : Q∗p→ Q∗ℓ is a character of Q∗p. The
induction iGB (χ) will be irreducible if and only if χ ̸≃ | · |±1 and χ2 ̸≃ 1. The
condition that χ ̸≃ | · |±1 is guaranteed by χ being generic but the condition χ2 ̸≃ 1
is not. However, we note that χ being weakly normalized regular enforces the
additional condition that χ2 ̸≃ 1 guaranteeing irreducibility in this case.

We notice in the previous example that the Condition that

χ⊗δ
1/2
B ̸≃ (χ⊗δ

−1/2
B )w

for w∈WG non-trivial guaranteed that the character χ was regular in the sense that
χ ̸≃ χw for all w ∈WG. This is the type of condition that guarantees irreducibility
of the unitary principal series representations. This is always true for w0 ∈WG the
element of longest length.

Lemma 2.3.13. If χ is weakly normalized regular then χ ̸≃ χw0 for the element
of longest length w0 ∈WG.

Proof. We note that the relationship

χ⊗δ
1/2
B ≃ (χ⊗δ

−1/2
B )w

becomes precisely the relationship

χ ≃ χ
w

for w = w0, using the product expansion of the modulus character and the fact that
w0 sends each (reduced) root α̂ to −α̂ .

We now come to the last condition on our parameter φT . In particular, the
exact condition we will need is as follows.
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Definition 2.3.14. For a toral parameter φT : WQp→ LT (Λ) and a geometric dom-
inant cocharacter µ , we say φT is strongly µ-regular if the Galois cohomology
complexes

RΓ(WQp,(ν−ν
′)Γ ◦φT )

are trivial for ν ,ν ′ distinct weights of the highest weight representation of Ĝ of
highest weight µk for all k = 1, . . . ,n.

To give some flavor for this condition, we prove the following Proposition.

Lemma 2.3.15. Suppose that G = GLn and let µ = (1, . . . ,0) denote the standard
character then strong µ-regularity is implied by generic.

Proof. We note that since µ is minuscule the standard representation Vµ has
weights given by Weyl group orbits of the highest weight. From here, it easily
follows that the difference of distinct weights of Vµ in T̂ are given by coroots of
G and the claim follows.

As mentioned in the introduction, weak normalized regularity and µ-regularity
for a geometric dominant cocharacter which isn’t fixed under any element of WG,
will imply the existence of isomorphisms iχ,w : iGB (χ)

≃−→ iGB (χ
w) for all w ∈WG

once the theory of geometric Eisenstein series has been developed. Similarly, we
will show the following.

Proposition 2.3.16. (Proposition A.1.3) If χ : T (Qp)→Q∗ℓ is a generic character
then, for all w ∈WG, we have an isomorphism iGB (χ)≃ iGB (χ

w).

In fact, for regular characters χ , the existence of such isomorphisms is equiv-
alent to irreducibility. More generally, we show that such isomorphisms exist as-
suming χ is generic (Proposition A.1.3), but this does not guarantee irreducibility
of certain unitary principal series as seen when G = SL2.

Using the Langlands classification, the proof of this proposition will essen-
tially reduce to a calculation of reducibility points in rank 1, where it reduces to
Example 2.3.12 and the following example, which illustrates the behavior of our
conditions in the non-split case.

Example 2.3.17. (G = U3/E) Let E/Qp be a quadratic extension. We write (−)
for the non-trivial automorphism of E over Qp. If e1,e2,e3 is the standard basis
for the cocharacter lattice X∗(TQp

) then (−) acts by

e1←→−e3
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e2←→−e2

It follows that the simple coroot α1 := e1− e2 is sent to the simple coroot α2 :=
e2− e3 under (−). Thus, the Γ-orbits of positive coroots in X∗(TQp

) are given by
{α1,α2} with reflex field E and α1 +α2 with reflex field Qp. Now recall that the
maximal torus T (Qp)⊂ U3(Qp) is isomorphic to E∗×E1, via the embedding

E∗×E1→ U3(Qp)

t 7→

t 0 0
0 s 0
0 0 t−1


where E1 denotes the set of norm 1 elements. Then if we write the character
χ(t,s) : E∗×E1 → Λ∗ as χ(t,s) = χ1(t)χ2(tst

−1) the reducibility of iGB (χ) de-
pends solely on χ1, as in [Rog90, Page 173], where here it reduces to the analo-
gous question for SU3, and there the reducibility points were studied in [Key84,
Section 7]. The induction iGB (χ) is reducible if and only if one of the following
hold:

1. χ1 = η | · |±1/2
E , where η |Q∗p = ηE/Qp ,

2. χ1 = | · |±1
E ,

3. χ1|Q∗p is trivial, but χ is not.

Here | · |E is the norm character of E which is in particular the splitting field of
G, and ηE/Qp : Q∗p → Λ∗ is the unique quadratic character with kernel given by
NmE/Qp(E

∗). We note that that the cocharacters of T (Qp) given by the Γ-orbits
of positive roots are

{α1,α2} : E∗→ T (Qp) = E∗×E1

t 7→ (t, t−1t)

and
{α1 +α2} : E∗→ E∗×E1

t 7→ (NmE/Qp(t),1)

By precomposing χ with the first character, we see that χ being generic implies
χ1 ̸≃ 1 and χ1 ̸≃ | · |±1

E , which implies reducibility point (2) cannot occur. By
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precomposing χ with the second character, we see that χ being generic implies
that χ(NmE/Qp(t))≃ χ1(NmE/Qp(t)) ̸≃ 1 and χ1(NmE/Qp(t)) ̸≃ |t|

±1
E . Note that

if χ ≃ η | · |±1/2
E then we have, for all t ∈ E∗, an isomorphism:

χ(NmE/Qp(t)) = χ1(tt)≃ η(NmE/Qp(t))|NmE/Qp(t)|
±1/2
E ≃ |t|±1

E

Summarizing, we see again that χ being generic guarantees irreducibility of the
two non-unitary inductions. Now, if χ|Q∗p is trivial then we have that

χ(NmE/Qp(t)) = χ1(tt)≃ 1

Thus, we see χ being generic guarantees the irreducibility of all principal series.
Moreover, χ being weakly normalized regular enforces the additional constraint
that

χ(tt) ̸≃ 1
which we just saw follows from χ being generic, so weak normalized regularity
follows from generic in this case.

The connection between genericity and irreducibility of non-unitary principal
series fits in nicely with the general Langlands philosophy. In particular, since we
are inducing from a Borel, we expect that a parameter should have monodromy
if it arises as a constituent of the reducible induction of a non-unitary charac-
ter. We saw in the above examples that this shouldn’t occur when the parameter
φT attached to χ is generic. We can analyze when a parameter comes from the
semi-simplification of a parameter with non-trivial monodromy and relate this to
genericity.

Lemma 2.3.18. We let φ : LQp → LG(Qℓ) be an L-parameter. Suppose that φ :
LQp → LG(Qℓ) has non-trivial monodromy, and that the semi-simplification φ ss

(See Assumption 2.7.5) factors through LT → LG via the natural embedding. If we
write φT : WQp→ LT (Qℓ) for the parameter induced by φ ss then φT is not generic.

Proof. If φ has non-trivial monodromy and the semi-simplification factors
through LT , there exists a lift

LB(Qℓ)

WQp
LT (Qℓ)

φ̃

φT

148



of φT , which is not given by the inclusion LT (Qℓ)→ LB(Qℓ). Such an extension
implies that there exists a non-trivial class in RΓ(WQp,α ◦ φT ), which would in
turn imply φT is not generic.

We finish this section by deducing a geometric consequence of weak gener-
icity that will be useful for studying how Eisenstein series interact with Verdier
duality.

2.3.3 A Geometric Consequence of Weak Genericity
We work with torsion coefficeints Λ = Fℓ. Consider the following easy lemma.

Lemma 2.3.19. Assume φT is weakly generic then it follows that, for all the Γ-
orbits of simple positive coroots α , the complex RΓ(WQp,α ◦φT (⟨ρ̂,αΓ⟩)) is triv-
ial.

Proof. We note that, since α is a Γ-orbit of simple positive coroots, we have that
⟨ρ̂,αΓ⟩= 1; therefore, we want to check that

RΓ(WQp,(α ◦φT )(1))

is trivial. By using local Tate-duality and that the Euler-Poincaré characteristic of
this complex is 0, this is equivalent to checking that (α ◦φT )(1) is not the trivial
representation or the cyclotomic twist by (−1), which is equivalent to insisting
that (α ◦ φT )

−1 is not the trivial representation or the cyclotomic twist by (1).
This is the same condition guaranteeing that the complex

RΓ(WQp,(α ◦φT )
−1)

is trivial, which follows from weak genericity applied to the Γ-orbit of negative
simple coroots −α .

This has an important geometric consequence, related to the vanishing of cer-
tain Galois cohomology groups appearing in the moduli space of B-bundles and
its compactifications. To explain this, let ν be an element of Λ

pos
G,B \ {0}. We can

write this as a linear combination ∑i∈J niαi for positive integers ni, where the
αi correspond to the Galois orbits of simple absolute roots as in Definition 2.2.14.
Given such an αi, we can consider the reflex field Ei of the associated Galois orbit,
and define the following partially symmetrized curve:

Div(ν) := ∏
i∈J

Div(ni)
Ei
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Points of this curve correspond to tuples of Cartier divisors Di over Ei of degree
ni for all i ∈J . We can consider the map

h→(ν) : BunT ×Div(ν)→ BunT

given by sending (FT ,(Di)i∈J ) to FT (∑−αi ·Di), where we are identifying αi
with its corresponding Γ-orbit.

This partially symmetrized mirror curve Div(ν) behaves a bit strangely if G is
not split. To illustrate this, consider the following example.

Example 2.3.20. Let G = U3 be a unitary group in 3 variables attached to a
quadratic extension E/Qp and write α1 and α2 for the two absolute positive sim-
ple roots. We recall, as in Example 2.3.17, that the Galois group exchanges α1
and α2. Therefore, they both map to a unique element α ∈X∗(TQp

)Γ which spans

the lattice Λ
pos
G,B by Definition. Consider the element ν := 2α ∈ X∗(TQp

)Γ. We

note that we have an equality Div(ν) = Div(2)E in this case. The pre-image of 2α

under the natural map (−)Γ : X∗(TQp
)/Γ→ X∗(TQp

)Γ consists of two elements:
the Γ-orbit {2α1,2α2} with reflex field E and the Γ-orbit of {α1+α2} with reflex
field Qp. We saw in the previous section that the space of modifications defined
by the Γ-orbit {2α1,2α2} is given by BunT ×Div1

E , correspondingly we have a
natural map

△{2α1,2α2} : Div1
E
△−→ Div2

E → Div(2)E

given by the diagonal embedding composed with the quotient map. It is easy to
check we have an equality h→{2α1,2α2}(−) = h→

ν
◦ (id×△{2α1,2α2}). Perhaps more

interestingly, attached to the Γ-orbit {α1 +α2}, we have a twisted diagonal map

△{α1+α2} : Div1
Qp
→ Div(2)E

given by sending a Cartier divisor D to its pre-image under the natural finite-étale
covering XS,E → XS of Fargues-Fontaine curves induced by the extension E/Qp.
By [Li-22, Proposition 1.5], this map defines a closed embedding whose image
lies in the complement of the image of△{2α1,2α2} in Div(2)E , and we similarly see
that we have a relationship h→(ν) ◦ (id×△{α1+α2})(−) = h→{α1+α2}(−).

The previous example illustrates that we can can understand BunT ×Div(ν)

as realizing the set of all modifications specified by Galois orbits ν ∈ X∗(TQp
)/Γ

such that νΓ = ν . This is indeed a general phenomenon. In particular, using that
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Γ permutes the simple absolute coroots of G, given any such ν with reflex field
Eν , we can define a twisted diagonal embedding

∆ν : Div1
Eν
→ Div(ν)

such that we have a relationship h→ν (−) := h→
ν
◦ (id×△ν)(−). If ν = αi for

i ∈J the map ∆ν is an isomorphism for the unique Γ-orbit of simple coroots
corresponding to αi. Therefore, the pullback of SφT along h←(ν) is isomorphic to
SφT ⊠ α̃i ◦ φT for a choice of representative α̃i of the Γ-orbit corresponding to
αi. In general, recall that given a local system L and n a positive integer, we can
consider the symmetric powers

L(n) := π∗(⊠
n
i=1L)Sn

where π denotes the push-forward along the Sn-torsor:

π : (Div1)n→ Div(n)

Using this, we can define a local system on Div(ν) given by

E(ν)
φT

:=⊠i∈J E(ni)
φi

where φi is the local system on Div1
Ei

corresponding to the character α̃i ◦ φT |WEi
of WEi for Ei the reflex field of the Galois orbit corresponding to αi. With this
in hand, we can describe the pullback of SφT along h←(ν) as the sheaf E(ν)

φT
⊠SφT

by using that Hecke operators are monoidal, and the natural compatibilities of the
eigensheaf. We now state a key vanishing result that will be important for studying
how geometric Eisenstein series interact with Verdier duality.

Lemma 2.3.21. If φT is weakly generic then, for all ν ∈Λ
pos
G,B\{0}, the complexes

RΓc(Div(ν),E(ν)
φT

(⟨ρ̂,ν⟩))

and
RΓc(Div(ν),E(ν)

φT
)

are trivial.

Proof. By Künneth formula, this easily reduces to showing that
RΓc(Div(ni),E(ni)

φi
(ni)) is trivial for all i ∈ J and ni ∈ N>0. However,
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E(ni)
φi

(ni) is given by taking the nith symmetric power of Eφi(1). Therefore, by
Künneth formula again, this reduces us to showing that

RΓ(WQp,αi ◦φT (1))≃ RΓc(WEi, α̃i ◦φT |WEi
(1))≃ RΓc(Div1

Ei
,Eφi(1))

vanishes, where the first isomorphism follows from Schapiro’s lemma and the
second isomorphism follows from the correspondence between Λ-valued local
systems on Div1

Ei
and representations of WEi [FS21, Proposition VI.9.2]. The van-

ishing of the LHS follows from weak genericity and Lemma 2.3.19. The second
vanishing statement follows from the same argument and weak genericity.

We will now review the next ingredient in our calculations of geometric Eisen-
stein series, the Geometric Satake correspondence.

2.4 Geometric Satake and the Affine Grassmannian

2.4.1 The Geometric Satake Correspondence
We will now recall some facts about the geometric Satake correspondence for the
B+

dR Grassmannian, as proven in [FS21, Chapter VI]. For any finite set I, we
consider the local Hecke stack

πG : H ckI
G→ DivI

For a point S→ DivI , we can consider the completion of the structure sheaf OXS

at the union of the I Cartier divisors in XS defined by S. This defines a ring
which we denote by B+, and inverting D, we get a ring which we denote by B.
The mapping sending S ∈ DivI to G(B+) and G(B) defines étale sheaves on Perf,
which we denote by L+

DivI G and LDivI G, respectively. We note that, for I = {∗} and
S = Spa(F,OF)→DivI a geometric point with associated untilt (C,OC), we have
B+ = B+

dR(C,OC) and B = BdR(C,OC), the usual de-Rham period rings attached
to the untilt. For simplicity, we will often just drop the subscript DivI and just
write L+G and LG for these étale sheaves. By [SW20b, Proposition 19.1.2], the
Hecke stack can be described as the quotient:

[L+G\LG/L+G]→ DivI

In other words, for S ∈ Perf mapping to DivI , H ckI
G will parameterize a pair of

G-bundles over the formal completion of the tuple of divisors DS,i defined by the
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map S→DivI together with a trivialization away from the DS,i. It follows that this
has a map to the global Hecke stack considered in §2.3, by restricting to formal
completions. Later on in the paper, we will use the analogous notations introduced
here for the local Hecke stack to denote their pullback to the global Hecke stack
HckG along this map.

To study this, we can uniformize this by the quotient

GrI
G := LG/L+G→ DivI

which is the Fargues-Fontaine analogue of the Beilinson-Drinfeld Grassmannian.
Using Beauville-Laszlo [SW20b, Lemma 5.29], this can be interpreted as parame-
terizing modifications FG 99KF 0

G over XS away from the tuple of Cartier divisors
defined by the projection to DivI . It follows by the results of [SW20b, Lecture XX]
that the Beilinson-Drinfeld Grassmannian is a well-behaved geometric object; it
can be written as a closed union of subsheaves that are proper and representable
in spatial diamonds over DivI , given by bounding the meromorphy of the modifi-
cations. We can consider the category

D(H ckI
G)

bd

of objects with support in one of the aforementioned quasi-compact subsets. This
carries a monoidal structure coming from the diagram:

H ckI
G×DivI H ckI

G
(p1,p2)←−−−− L+G\LG×L+G LG/L+G m−→H ckI

G

Here the middle space can be interpreted as parameterizing a pair of G-bundles
E1,E2 together with a pair of modifications β1 : E1 99K E0 and β2 : E0 99K E2
to/from the trivial bundle with the same locus of meromorphy. The maps pi are
the natural projections remembering only the data (Ei,βi) for i = 1,2, and m is
defined by sending (Ei,βi)i=1,2 to β2 ◦β1 : E1 99K E2. Given A,B ∈ D(H ckI

G)
bd ,

we define
A⋆B := Rm∗(p∗1(A)⊗ p∗2(B)) ∈ D(H ckI

G)
bd

the convolution of A and B [FS21, Section VI.8]. Since the map m is a fibration
in GrI

G it is proper over any quasi-compact subset, so by proper base-change it
gives a well-defined associative monoidal structure. One can further refine our
category of sheaves as follows. In particular, we note that the locus of H ckI

G
where the meromorphy is equal to the Galois orbit of µi ∈ X∗(TQp

)+ at the ith
Cartier divisor for i ∈ I is uniformized by a cohomologically smooth diamond of
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relative dimension ∑i∈I⟨2ρ̂,µi⟩ over DivI by [FS21, Proposition VI.2.4]. One can
check that this gives rise to a well-defined perverse t-structure on D(H ckI

G)
bd

over DivI given by insisting that !-restriction (resp. ∗-restriction) to these strata
sit in cohomological degrees ≥ (resp. ≤) −∑i∈I⟨2ρ̂,µi⟩, and that convolution
preserves perversity [FS21, Proposition VI.8.1]. With this in hand, we arrive at
the key definition.

Definition 2.4.1. [FS21, Definition I.6.2] We define the Satake category

SatIG ⊂ D(H ckI
G)

bd

as the category of all A ∈ D(H ckI
G)

bd which are perverse, flat (i.e for all Λ-
modules M A⊗M is also perverse), and ULA over DivI , as defined in [FS21,
Chapter V.7].

The ULA and flatness property in the above definition has the key consequence
that the pullback of A ∈ SatIG to GrI

G composed with the push-forward to DivI has
cohomology sheaves valued in Λ-valued local systems on DivI . In particular,
using an analogue of Drinfeld’s lemma [FS21, Proposition VI.9.2], this gives rise
to a fiber functor

F I
G : SatIG→ RepW I

Qp
(Λ)

A 7→
⊕

i

H i(RπG∗(A))

where RepW I
Qp
(Λ) denotes the category of continuous representations of W I

Qp
on

finite projective Λ-modules, and RπG∗ is the functor given by pulling back to GrI
G

and taking the push-forward to DivI , as in [FS21, Definition/Proposition VI.7.10].
Now, by using the factorization structure on these Grassmannians, one can also
construct an analogue of the fusion product [FS21, Section VI.9]. Let us recall its
construction. We consider a partition I = I1⊔ . . .⊔ Ik of this index set. We consider
the open subspace

DivI;I1,...,Ik ⊂ DivI

parameterizing a tuple of Cartier divisors (Di)i∈I such that Di and Di′ are disjoint
whenever i, i′ ∈ I = I1 ⊔ . . .⊔ Ik lie in different I js, and let H ckI;I1,...,Ik

G be the
base-change of H ckI

G to this open subspace. We can define the subcategory
SatI;I1,...,Ik

G ⊂ D(H ckI;I1,...,Ik
G )bd in an analogous manner to Definition 2.4.1. We

have a natural restriction map

SatIG→ SatI;I1,...,Ik
G
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which, by [FS21, Proposition VI.9.3], defines a fully faithful embedding. There
is also an identification

H ckI
G×DivI DivI;I1,...,Ik ≃

k

∏
j=1

H ckI j
G×∏ j DivI j DivI;I1,...,Ik

giving a natural map

SatI1
G× . . .×SatIk

G→ SatI;I1,...,Ik
G

via taking exterior products. Then, by [FS21, Definition/Proposition VI.9.4], this
lies in the full subcategory SatIG, and the resulting map

SatI1
G× . . .×SatIk

G→ SatIG

is called the fusion product. Now consider the composite

SatIG×SatIG→ SatI⊔I
G → SatIG

where the first map is the fusion product, and the last map is given by restricting
along the diagonal embedding H ckI →H ckI⊔I . Then this is naturally isomor-
phic to the convolution product. By this comparison between fusion and convolu-
tion, one can deduce that the convolution product is in fact symmetric monoidal,
and that the functor F I

G takes this monoidal structure to the usual tensor product
on RepW I

Qp
(Λ). Now, using Tannakian duality, one deduces the following.

Theorem 2.4.2. [FS21, Theorem I.6.3] For a finite index set I, the category SatIG
is naturally in I identified with RepΛ(

LGI) the category of representations of LGI

on finite projective Λ-modules.

Remark 2.4.3. One needs to be a bit careful here. In particular, LG as defined here
differs from the usual definition of the L-group; namely, the usual action of WQp

on Ĝ is twisted by a cyclotomic character (See [FS21, Section VI.11] for more
details).

One of the key points that also plays an important role in the proof of this
theorem is that this construction respects the natural map

resI,G
T : RepΛ(

LGI)→ RepΛ(
LT I)
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given by restricting a representation of LGI to LT I along the natural embedding:

LT I → LGI

To explain this, we need to explain how this functor is realized in the geome-
try of Beilinson-Drinfeld Grassmannians. First note that, as in §2.3, we have an
identification

GrI
T =

⊔
(νi)i∈I∈(X∗(TQp

)/Γ)I

GrI
T,(νi)i∈I

≃
⊔

(νi)i∈I∈(X∗(TQp
)/Γ)I

DivI
E(νi)i∈I

where GrT,(νi)i∈I parametrizes modifications of T -bundles with meromorphy equal
to the Galois orbit defined by νi at a Cartier divisor Di for all i ∈ I, and DivI :=
∏i∈I Div1

Eνi
, where Eνi denotes the reflex field of νi. In particular, we see that

Theorem 2.4.2 is trivial in this case, as F I
T will induce an equivalence between

SatIT and (X∗(TQp
)/Γ)I-graded objects in RepΛ(W

I
Qp

) under this isomorphism.
We consider the diagram

GrI
B

GrI
T GrI

G

p
q

and define the functor:

p!q∗ : D(GrI
G)

bd → D(GrI
T )

bd

As we will discuss further in the next section, the fibers of the morphism p over
the connected components GrI

T,(νi)i∈I
give rise to a locally closed stratification of

GrI
G which embed via the morphism q (cf. [FS21, Example VI.3.4]). These are

the so called semi-infinite Schubert cells. If one considers Gm acting on GrI
G via

a suitably chosen cocharacter µ composed with the L+G action on GrI
G then one

can identify these semi-infinite cells with a union Gm-orbits (the attractor of the
Gm-action), and the fixed points will be precisely the connected components:

GrI
T =

⊔
(νi)i∈I∈(X∗(TQp

)/Γ)I

GrI
T,(νi)i∈I
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This allows one to apply a diamond analogue [FS21, Theorem IV.6.5] of Braden’s
hyperbolic localization theorem [Bra03]. In particular, since sheaves in SatIG pull-
back to L+G-equivariant sheaves on GrI

G, they will be Gm-equivariant. From this,
one can deduce that p!q∗ is a hyperbolic localization with respect to this Gm-
action and will therefore preserve perverse, flat, and ULA objects over DivI . We
therefore get an induced functor

CT : SatIG→ SatIT

called the constant term functor, as in [FS21, Proposition VI.7.13]. We now con-
sider the following function

deg : |GrI
T | → Z

which has value ⟨2ρ̂, |(νi)i∈I|⟩ on the connected component indexed by (νi)i∈I ,
where |(νi)i∈I| := ∑i∈I ν iΓ ∈ ΛG,B. Now, by applying excision with respect to the
stratatification by semi-infinite cells one can show that, for all A∈ SatG, one has an
isomorphism

⊕
i H

i(πG∗(A))≃H 0(πT∗(CT(A)[deg])) (See the proof of [FS21,
Proposition VI.7.10]). This in particular gives us the following Proposition.

Proposition 2.4.4. For all finite index sets I, there exists a commutative diagram

SatIG SatIT

RepΛ(
LGI) RepΛ(

LT I)

F I
G

CT[deg]

F I
T

resI,G
T

where here F I
G (resp. F I

T ) is the equivalence given by Theorem 2.4.2 for G (resp.
T ).

Moreover, it follows by [FS21, Proposition VI.9.6], that the fusion product
respects the constant term functors.

Proposition 2.4.5. For all finite index sets I, with a partition I1⊔ . . .⊔ Ik, we have
a commutative diagram

SatI1
G× . . .×SatIk

G SatIG

SatI1
T × . . .×SatIk

T SatIT

CTI1 [deg]×...×CTIk [deg] CTI [deg]
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which commutes functorially in I, where the top (resp. bottom) vertical arrow is
given by the fusion product for G (resp. T ).

We now turn our attention to the semi-infinite cells.

2.4.2 The Cohomology of Semi-Infinite Cells
Theorem 2.4.2, Proposition 2.4.4, and Proposition 2.4.5 have implications for the
cohomology of spaces related to moduli spaces of B-structures. We will record
this now. We let E/Qp be the splitting field of G. Then we have an identification
GrI

G,E ≃GrI
GE

over the base change DivI
E of DivI to E. Sheaves on this space will

be equivalent algebraic representations of I copies of the dual group Ĝ. First, we
recall that we have the following natural stratification of GrI

G,E .

Definition 2.4.6. For (λi)i∈I ∈ (X∗(TQp
)+)I , we let GrI

G,(λi)i∈I ,E
(resp.

GrI
G,≤(λi)i∈I ,E

) be the locally closed (resp. closed) subfunctor of GrG parameteriz-
ing modifications

F 0
G→FG

between the trivial G-bundle F 0
G and a G-bundle FG of meromorphy equal to

(resp. less than) then ∑Di=D j λi at a Cartier divisor D j, for some fixed j ∈ I.

As mentioned in the previous section, GrI
G,(λi)i∈I ,E

is representable in nice
diamonds and is cohomologically smooth of dimension equal to ∑i∈I⟨2ρ̂,λi⟩
over DivI

E , by [FS21, Proposition VI.2.4]. Similarly, by [SW20b, Proposi-
tion 19.2.3], GrG,≤(λi)i∈I ,E is representable in nice diamonds and proper over DivI

E .
Fix ⊠i∈IVi = V ∈ RepΛ(Ĝ

I) with fixed central character, and suppose the high-
est weight of Vi is given by λi for λi ∈ X∗(TQp

)+. Attached to this, we get a

Λ-valued perverse sheaf SV supported on GrI
G,≤(λi)i∈I ,E

by Theorem 2.4.2 and
[FS21, Proposition VI.7.5]. We now fix a geometric point x→ DivI

E . In what fol-
lows, for a space ? over DivI

E we write x? for the base-change to x. Since a local
system on DivI

E will be determined by the W I
E-representation given by its pull-

back to this geometric point, looking at this pullback will be sufficient for most
calculations. We now consider another stratification of GrI

G,E .

Definition 2.4.7. Consider the natural map:

p : GrI
B,E → GrI

T,E
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For (νi)i∈I ∈ (X∗(TQp
))I , we set SI

G,(νi)i∈I ,E
to be the fiber of GrI

B,E over the

connected component GrI
T,(νi)i∈I ,E

in GrI
T,E parameterizing modifications of type

(νi)i∈I ∈ (X∗(TQp
))I . We note, by [FS21, Proposition VI.3.1], that the natural map

q : GrI
B,E → GrI

G,E

is a bijection on geometric points and it defines a locally closed embedding on
the SI

G,(νi)i∈I ,E
. Therefore, the spaces SI

G,(νi)i∈I ,E
for varying (νi)i∈I ∈ (X∗(TQp

))I ,

form a locally-closed stratification of GrI
G,E .

Remark 2.4.8. In particular, given a modification β : F 0
G 99KFG of G-bundles,

by the Tannakian formalism this is equivalent to specifying a set of meromorphic
maps

V λ̂

F 0
G
99K V λ̂

FG

for all dominant characters λ̂ ∈ Λ̂
+
G satisfying the Plücker relations (cf. Definition

2.5.6). The trivial G-bundle F 0
G admits a natural split B-structure whose associ-

ated T -bundle is the trivial T -bundle F 0
T , and this defines a set of maps

L λ̂

F 0
T
↪→ V λ̂

F 0
G

where L λ̂ := (V λ̂ )U and U is the unipotent radical of B. For a set of divisors
(Di)i∈I ∈ DivI

E , we can also consider the meromorphic map

L λ̂

F 0
T
(∑

i∈I
−⟨λ̂ ,νiΓ⟩ ·Di) 99KL λ̂

F 0
T
→ V λ̂

F 0
G
99K V λ̂

FG

defined by modifying the T -bundles by νi at Di for all i ∈ I. We claim that β

defines a point in SI
G,(νi)i∈I ,E

if and only if this map does not have a zero or pole

for all λ̂ . This is easy to see. In particular, if this map does not have a zero or a
pole then the maps

L λ̂

F 0
T
(−∑

i∈I
⟨λ̂ ,νiΓ⟩ ·Di)→ V λ̂

FG

define a B-structure FB on FG whose underlying T -bundle is given by
F 0

T (−∑i∈I⟨λ̂ ,νiΓ⟩ ·Di). Moreover, the construction induces a map of B-bundles

F 0
B 99KFB
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which when applying ×BG gives the modification β and when applying ×BT
gives rise to a modification defining a point in the union of connected components
GrI

T,(νi)i∈I ,E
over the point attached to (Di)i∈I in DivI

E . In other words, F 0
B 99KFB

defines an element of the locally closed stratum SI
G,(νi)i∈I ,E

.

For V ∈RepΛ(Ĝ
I), we again consider the sheaf SV on GrI

G,≤(λi)i∈I ,E
, and pull-

back to a fixed geometric point x→DivI
E defined by Spa(C) for C an algebraically

closed perfectoid field. If we write p(νi)i∈I : xSI
G,(νi)i∈I ,E

→ xGrI
T,(νi)i∈I ,E

≃ Spa(C)

for the induced map on connected components indexed by (νi)i∈I ∈ (X∗(TQp
))I ,

we note that we have an isomorphism

p!q∗(SV )≃
⊕

(νi)i∈I∈(X∗(TQp
))I

p(νi)i∈I!(SV |xSI
G,(νi)i∈I ,E

)=
⊕

(νi)i∈I∈(X∗(TQp
))I

H∗c(xSI
G,(νi)i∈I

,SV |xSG,(νi)i∈I
)

(cf. [FS21, Example VI.3.6]). However, this is simply the constant term functor in
the previous section. In particular, by Proposition 2.4.4, we deduce the following.

Corollary 2.4.9. For V =⊠i∈IVi ∈ Rep(ĜI), a geometric point x→DivI
E , and all

tuples (νi)i∈I ∈ (X∗(TQp
))I , we have an isomorphism

H−⟨2ρ̂,|(νi)i∈I |⟩
c (xSI

G,(νi)i∈I ,E ,SV |xSI
G,(νi)i∈I ,E

)≃⊠i∈IVi(νi)(−⟨ρ̂,νi)⟩)

of W I
E-modules.

Remark 2.4.10. The Tate twists appearing here are due to the difference between
the standard definition of LG and the one used in the geometric Satake equiva-
lence, as in the remark proceeding Theorem 2.4.2.

This will be the key proposition required for the proof of the filtered Hecke
eigensheaf property. More specifically, to show the compatibilities of the filtered
eigensheaf property, we need to show that this isomorphism is functorial in I.
In particular, consider a map of finite index sets π : I → J. For j ∈ J, we set
I j := π−1( j) and consider the natural map ∆IJ : DivJ

E → DivI
E , which diagonally

embeds the jth copy of Div1
E in DivJ

E into DivI j
E . Then, by the relationship between

fusion product and tensor product under Theorem 2.4.2, we have a identification

∆
∗
IJ(SV )≃S∆∗IJ(V )

of sheaves on GrJ
G,E , where ∆∗IJ(V ) is given by restriction along the corresponding

map ĜJ → ĜI . Now, by Proposition 2.4.5, we have the following.
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Corollary 2.4.11. For all finite index sets I,J with a map f : I → J, a tuple
(ν j) j∈J ∈ (X∗(TQp

))J , a representation V ∈ Rep(ĜI), and a geometric point

x→ DivJ
E , the identification ∆∗IJ(SV )≃S∆∗IJ(V ) induces an isomorphism

H∗c(xSJ
G,(ν j) j∈J ,E ,S∆∗IJ(V )|xSJ

G,(ν j) j∈J ,E
)≃

⊕
(νi)i∈I∈X∗(TQp

)

∑i∈I j νi=ν j

H∗c(xSG,(νi)i∈I ,E ,SV |xSI
G,(νi)i∈I ,E

)

of W J
E -modules, where the action on the RHS is via the natural map ∆IJ : W J

E →
W I

E . This is compatible with the identification

∆
∗
IJ(V ((ν j) j∈J))≃

⊕
(νi)i∈I∈(X∗(TQp

))I

∑i∈I j νi=ν j

V ((νi)i∈I)

under the isomorphisms of Corollary 2.4.9.

We note that the previous result has some very useful geometric consequences.
Let’s explain this in the case that I = {∗} is a singleton for a fixed geometric point
x→ Div1

E . Fix λ ∈ X∗(TQp
)+, and consider the highest weight representation

Vλ ∈ RepΛ(Ĝ) defined by λ . Since the sheaf Sλ is supported on xGrG,≤λ , we can
deduce the following.

Corollary 2.4.12. For ν ∈ X∗(TQp
) and λ ∈ X∗(TQp

)+ with associated highest

weight representation Vλ ∈RepΛ(Ĝ), if the weight space Vλ (ν) is non-trivial then
the intersection xSG,ν ,E ∩ xGrG,≤λ ,E is non-empty.

Remark 2.4.13. One can also see this by using the Iwasawa decomposition of
G and working explicitly with the loop group of G (See the analysis proceeding
[She21, Proposition 6.4] and [She21, Remark 6.5]). For example, one can show
that the intersection xGrG,≤λ ,E∩xSG,w0(λ ),E is simply the point given by ξ λ , where
ξ ∈ B+

dR(C,OC) is the uniformizing parameter defined by the geometric point x.
This corresponds to the lowest weight space Vλ (w0(λ )).

We will now finish our analysis by recording some facts about the closure
relationships for these strata.

Proposition 2.4.14. [She21, Proposition 6.4] For ν ∈ X∗(TQp
) and λ ∈

X∗(TQp
)+, the closure of the intersection

xSG,ν ,E ∩ xGrG,≤λ ,E
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in GrG,≤λ ,E is equal to the disjoint union⊔
ν ′≤ν

xSG,ν ′,E ∩ xGrG,≤λ ,E

where this defines a closed subspace in xGrG,≤λ ,E by [FS21, Proposition VI.3.1].
In particular, using the previous Corollary, we deduce that xSG,w0(λ ),E∩xGrG,≤λ ,E
is a closed subspace and xSG,λ ,E ∩ xGrG,≤λ ,E is an open subspace.

2.5 Moduli stacks of B-structures
In this section, we will study the moduli stack of B-structures BunB and its basic
geometric properties. This will allow us to define the geometric Eisenstein functor.
For understanding many of the finer properties of this functor, it is important to
consider a compactification of the natural morphism p : BunB→ BunG taking B-
bundles to their induced G-bundles. This compactification will be an analogue of
Drinfeld’s compactification in the function-field setting, denoted BunB. We will
show that this gives rise to an Artin v-stack, which admits BunB as an open and
dense substack, and that the natural map p : BunB→ BunG extending p is indeed
proper after restricting to connected components. We will also define a locally
closed stratification of BunB. These strata will play an important role in the proof
of the Hecke eigensheaf property and understanding how the Eisenstein functor
interacts with Verdier duality.

2.5.1 The Geometry of BunB

We will start by collecting some basic facts about the moduli stack BunB parame-
terizing, for S ∈ Perf, the groupoid of B-bundles on XS. Given a B-bundle GB, we
can send it to the induced T -bundle and G-bundle via the natural maps

B G

T
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which induces a diagram of v-stacks:

BunB BunG

BunT

p

q

Let’s first start by breaking this up into connected components. As seen in §3, the
connected components of BunT are indexed by elements ν ∈ B(T )≃X∗(TQp

)Γ =

ΛG,B. This allows us to define the following.

Definition 2.5.1. For ν ∈ B(T ), we write Bunν
B for the pre-image of the connected

component Bunν
T defined by ν under the map qν . We write pν : Bunν

B → BunG
and qν : Bunν

B→ Bunν
T for the restriction of p and q to Bunν

B, respectively.

We claim that this induces a decomposition of the moduli stack BunB into
connected components. To each element ν , we define the integer dν := ⟨2ρ̂,ν⟩,
where 2ρ̂ is the sum of all positive roots with respect to the choice of Borel. We
note that, if ν is anti-dominant with respect to the choice of Borel, dν is negative.
This will be the case where the HN-slopes are dominant so the B-bundles will
split, and the negative dimension comes from quotienting out by the torsor of
splittings. On the other hand, if ν is dominant then the connected component will
parametrize non-split B-structures and we see that the dimension will be positive.
We have the following claim.

Proposition 2.5.2. The map q is a cohomologically smooth (non-representable)
morphism of Artin v-stacks in the sense of [FS21, Definition IV.1.11]. In partic-
ular, for ν ∈ ΛG,B, the map qν is pure of ℓ-dimension equal to dν , in the sense of
[FS21, Definition IV.1.17].

Proof. This follows from [Ham21a, Proposition 4.7], where we note that BunT
is an Artin v-stack that is cohomologically smooth of ℓ-dimension 0 (See also
[AL21a, Lemma 4.1 (ii)]).

In particular, this implies using [Sch18, Proposition 23.11], that q is a uni-
versally open morphism of Artin v-stacks. Moreover, one can check that the
fibers of this morphism are connected (See the proof of [AL21a, Lemma 4.1 (ii)]
and [Ham21a, Proposition 3.16]). As a consequence, we can deduce that, since⊔

ν∈ΛG,B
Bunν

T is a decomposition of BunT into connected components, the fol-
lowing is true.
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Corollary 2.5.3. The connected components of BunB are given by Bunν
B, for vary-

ing ν ∈ B(T ).

We now comment briefly on the geometry of the map p. In particular, we have
the following.

Lemma 2.5.4. [AL21a, Lemma 4.1 (ii)] The map p is representable in nice dia-
monds.

These properties allow us to define the Eisenstein functor using the derived
functors defined in [Sch18].

Definition 2.5.5. We define a locally constant function

dim(BunB) : |BunB| → Z

x ∈ |Bunν
B| 7→ dν

and with it the unnormalized Eisenstein functor

Eis : D(BunT )→ D(BunG)

F 7→ p!(q
∗(F )[dim(BunB)])

In particular, since this definition involves the functor p! it is natural to con-
sider a compactification of the morphism p to understand the finer properties of
p!. This leads us to our study of the Drinfeld compactification.

2.5.2 The Drinfeld Compactification
The Definition and Basic Properties

We recall that classically (curve over a finite or complex field) there is a rather
straight-forward way of compactifying the map:

p : BunB→ BunG

This is called a Drinfeld Compactification of p, denoted BunB. Its main property
is that there exists an open immersion BunB → BunB, with topologically dense
image, and it has a map p : BunB → BunG extending p, which is proper after
restricting to a connected component. First, as a warm up, let us explain the
construction when G = GL2. For this, we recall that BunB can be viewed as
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parameterizing tuples (M ,L ,κ : L ↪→M ), where E is a rank 2 vector bundle,
L is a rank 1 vector bundle, and κ is an injective bundle map. To compactify
this space, we will allow κ to be a map of OXS-modules whose pullback to each
geometric point is an injective map of coherent sheaves on X . In other words, we
allow M /L to have torsion. For a general G, the idea is to apply the Tannakian
formalism. In particular, given a G-bundle FG we get, for all λ̂ ∈ Λ̂

+
G , an induced

highest weight bundle, denoted V λ̂

FG
. A point of BunB mapping to FG via p then

defines a set of line subbundles κ λ̂ : L λ̂ ↪→ V λ̂

FG
which satisfy some Plücker

relations. Using this interpretation, BunB can then be defined as classifying G-
bundles FG together with a system of maps κ

λ̂ : L λ̂ → V λ̂

FG
for all λ̂ ∈ Λ

+
G ,

which are injective after pulling back to a geometric point and satisfy the same
Plücker relations.

We now explain how to construct the aforementioned compactification BunB
of BunB over BunG in the Fargues-Fontaine setting. In order to describe the Drin-
feld compactification, we note that, for S ∈ Perf, BunB can be viewed as a stack
parameterizing triples:

1. A G-bundle FG on XS.

2. A T -bundle FT on XS.

3. A G-equivariant map κ : FG→ G/U×T FT .

By the Tannakian formalism, (3) can be described as a collection of injective
bundle maps on XS, κV : (V U)FT → VFG for every G-module V satisfying the
following Plücker relations:

1. For the trivial representation V , κV must be the identity map OXS → OXS .

2. For a G-module map V 1→ V 2, the induced square

((V 1)U)FT V 1
FG

((V 2)U)FT V 2
FG

κV 1

κV 2

commutes.
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3. For two G-modules V 1 and V 2, we have that the diagram

((V 1)U ⊗ (V 2)U)FT V 1
FG
⊗V 2

FG

((V 1⊗V 2)U)FT V 1
FG
⊗V 2

FG

κV 1⊗κV 2

id

κV 1⊗V 2

commutes.

As mentioned above, the idea will now be to introduce torsion in the above defi-
nition. In particular, we have the following definition for BunB.

Definition 2.5.6. We define BunB to be the v-stack parameterizing, for S ∈ Perf,
triples (FG,FT ,κ

V ), where κ
V is a map of OXS-modules defined for every G-

module V
(V U)FT → VFG

satisfying the following conditions:

• For every geometric point s→ S, the pullback of κ
V to the Fargues-Fontaine

curve over s is an injection of coherent sheaves.

• The Plücker relations hold in the following sense:

1. For the trivial representation V , κ
V is the identity map O → O .

2. For a G-module map V 1→ V 2, the induced square

((V 1)U)FT V 1
FG

((V 2)U)FT V 2
FG

κ
V 1

κ
V 2

commutes.
3. For two G-modules V 1 and V 2, we have that the diagram

((V 1)U ⊗ (V 2)U)FT V 1
FG
⊗V 2

FG

((V 1⊗V 2)U)FT V 1
FG
⊗V 2

FG

κ
V 1
⊗κ

V 2

id

κ
V 1⊗V 2

commutes.
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Remark 2.5.7. To simplify the notation, we will write L λ̂ := (V λ̂ )U and κ
λ̂

for the embedding attached to the highest weight module of G of highest weight
λ̂ ∈ Λ

+
G . It follows by construction that it suffices to consider only the embed-

dings induced by the highest weight Weyl G-modules attached to the fundamental
weights ϖ̂i ∈ Λ̂

+
G for i ∈J , using our assumption that the derived group of G is

simply connected.

This gives rise to a well-defined v-stack and, using this description, we get
well-defined morphisms p : BunB → BunG and q : BunB → BunT via projecting
the data (FG,FT ,κ) to the first and second factor, respectively. We also get a
natural map j : BunB → BunB. Now, to conclude this section, we prove some
basic things about its geometry.

Proposition 2.5.8. The v-stack BunB is an Artin v-stack, and the map j : BunB→
BunB is an open immersion.

Proof. It suffices to show the claim after base-change to an algebraically closed
perfectoid field Spa(F,OF). We write X for the associated Fargues-Fontaine
curve. Recall that, given a scheme Y , one defines the affine closure to be
Y = SpecΓ(Y,OY ). We let G/U be the affine closure of G/U . Viewing this as
a constant scheme over X , we consider the stack:

Z := [(G/U)/(T ×G)]→ X

Now, it follows by [BG02, Theorem 1.12], that, for S ∈ Perf, a section

Z

XS X

s

is equivalent to the datum of a T -bundle (resp. G-bundle) FT (resp. FG) on
XS together with a family of maps κ

V of OXS-modules, satisfying the Plücker
conditions of Definition 2.5.6. Therefore, if we consider MZ , the moduli stack
parameterizing such sections, then BunB is the sub-functor corresponding to the
locus where these maps are injective after pulling back to a geometric point. By
[Ham21a, Remark 3.3], this is an open subfunctor. By [Ham21a, Theorem 1.7],
MZ is an Artin v-stack; therefore, the same is true for BunB. It remains to see that
BunB is an open sub-functor. Now, by the work of [Gro83], it follows that G/U is
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strongly quasi-affine in the sense that G/U ↪→ G/U is an open immersion. This
induces an open immersion of stacks

[(G/U)/(T ×G)] = [X/B] ↪→ Z

which, after passing to moduli stacks of sections, gives a natural map BunB→MZ
factoring through the open immersion BunB ↪→MZ . The map BunB→MZ is an
open immersion, since [X/B] ↪→ Z is an open immersion, by arguing as in [FS21,
Proposition IV.4.22].

Properness of Compactifications

We now seek to show that the morphism p : BunB→ BunG is indeed a compact-
ification of the map p. In particular, we write Bunν

B for the pre-image of the
connected component Bunν

T ⊂BunT . Later we will see that Bunν

B defines the con-
nected components of BunB. This will follow from Corollary 2.5.3 and showing
that Bunν

B is dense inside Bunν

B (Proposition 2.5.22). We write qν : Bunν

B→ Bunν
T

and pν : Bunν

B→BunG for the maps induced by q and p, respectively. This section
will be dedicated to proving the following.

Proposition 2.5.9. For all ν ∈ΛG,B, the map pν is representable in nice diamonds
and proper.

Proof. Consider S ∈ Perf and an S-point of BunG corresponding to a G-bundle
FG. We let Z denote the fiber of p over the S-point defined by FG. We need to
show Z→ S is representable in nice diamonds and proper. To this end, let ϖ̂i for
i ∈J be the set of fundamental weights. The G-bundle FG then defines a finite
set of vector bundles (V ϖ̂i)FG =: Vi for i∈J . For ν ∈ΛG,B, we set di := ⟨ϖ̂i,ν⟩.
We consider the space

Pi := (H 0(Vi(−di))\{0})/Q∗p→ S

where H 0(Vi(−di)) is the Banach-Colmez space parameterizing global sections
of the vector bundle Vi twisted by −di and {0} denotes the 0-section. It follows,
by [FS21, Proposition II.2.16], that Pi→ S is representable in nice diamonds and
proper. Therefore, the same is true for the product:

∏
i∈J

Pi→ S
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This will parametrize line bundles Li of degree di together with a map

Li→ Vi

of OXS-modules whose pullback to each geometric point is an injection of coherent
sheaves. Therefore, we get a natural map

X →
r

∏
i=1

Pi

remembering only the embeddings defined by the fundamental weights ϖ̂i. Now,
by the Remark proceeding 2.5.6, it follows that this is an injective map into the
subspace where the Plücker relations are satisfied. The desired claim would there-
fore follow from showing that this locus is closed. To see this, note that the com-
mutativity conditions describing the Plücker relations can be expressed in terms
of the vanishing of some linear combination of morphisms of OXS-modules. Us-
ing this, one reduces to checking that, given a vector bundle T on XS, the point
in H 0(T ) defined by the zero section of T is closed. By choosing an injec-
tion T ↪→ O(m)N for sufficiently large m and N, one obtains an injective map
H 0(T )→H 0(O(m)N) of diamonds compatible with the zero section. Thus,
one reduces to checking the claim for T = O(m)N . In this case, it is nothing
more than [Far20, Lemma 2.10].

Now, we seek to describe the finer structure of these compactifications. In
particular, a key role will be played by their stratifications. To do this, we will
need to take a brief detour to discuss some properties of some OXS-modules on
the Fargues-Fontaine that occur as cokernels of fiberwise injective maps, as con-
sidered in the definition of the Drinfeld compactification.

OS-flat coherent sheaves on the Fargues-Fontaine Curve

Throughout this section, we fix S ∈ Perf and note that, in Definition 2.5.6, we
imposed the condition that the intervening maps of vector bundles F →F ′ on XS
satisfy the property that their pullback to each geometric point of S is an injection
of coherent sheaves on X . The stratification on the Drinfeld compactification will
be given by fixing the length of the torsion of the cokernel of such morphisms.
Normally, one could appeal to classical results on flat coherent sheaves in families
to get a handle on the structure of such strata; however, as the Fargues-Fontaine
curve XS is non-Noetherian unless S is a field, one cannot naively define a category
of coherent sheaves on it. Nonetheless, we can still define the following.
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Definition 2.5.10. [AL21b, Definition 2.8] For S ∈ Perf, a flat coherent OXS-
module on XS is an OXS-module F which can, locally for the analytic topology
on XS, be written as the cokernel of a fiberwise injective map of bundles on XS.
Equivalently, the map remains an injection after pulling back to any T ∈ PerfS.

Remark 2.5.11. By [AL21b, Proposition 2.6], it follows that we can always find a
global presentation of an S-flat coherent sheaf F as a two term complex of vector
bundles on XS.

Remark 2.5.12. We note that in the classical context of a relative projective curve
X → S over a reduced Noetherian scheme S the analogue of this condition for a
coherent sheaf F is equivalent to insisting that F is OS-flat (See [AL21b, Re-
mark 2.9]). However, as discussed above, the notion of coherent sheaves make no
sense in this context, and the notion of flatness also does not make sense as OXS is
not a module over OS.

We have the following easy lemma, which gives a homological criterion char-
acterizing flat coherent OXS-modules.

Lemma 2.5.13. Let F be an OXS-module. For integers a ≤ b write Perf[a,b](XS)
for the derived category of perfect complexes of Tor-amplitude [a,b], as in [AL21b,
Section 2.1]. The following conditions are equivalent.

1. F is a flat coherent OXS-module.

2. F is represented by an object in Perf[−1,0](XS) and Tor1,OXS
(OXT ,F ) is

trivial for all T ∈ PerfS.

Proof. For the forward direction, by definition F is represented by an object in
Perf[−1,0](XS). For the other condition, we choose a presentation

0→F−1→F0→F → 0

of F as the cokernel of a fiberwise injective map of vector bundles. Now, since the
first map is injective after tensoring by −⊗OXS

OXT for any T ∈ PerfS, it follows
easily by the associated long exact sequence that Tor1,OXS

(OXT ,F ) = 0. For the
converse direction, it follows from the proof of [AL21b, Proposition 2.6] that if
F is represented by an object in Perf[−1,0](XS) then it can be globally represented
by a two term complex of vector bundles on XS. Choosing such a presentation
F−1 → F0, it follows that the defining map must be fiberwise injective by the
vanishing of Tor1,OXS

(OXT ,F ) for all T ∈ PerfS.
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This simple lemma allows us to see the following.

Lemma 2.5.14. Flat coherent sheaves on XS are stable under taking kernels of
surjections and cokernels of fiberwise injective OXS-module maps.

Proof. We explain the case of taking cokernels of injections with the case of sur-
jections being similar. We consider two flat coherent sheaves F and F ′ on XS
and a short exact sequence

0→F →F ′→F ′/F → 0

of OXS-modules where the first map is fiberwise injective. It easily follows from
the corresponding long exact sequences of Tors, the previous lemma applied to F
and F ′, and the fiberwise injectivity of the first map that Tori,OXS

(OXT ,F
′/F ) is

trivial for all T ∈ PerfS and i ≥ 1. Therefore, by the previous lemma, it suffices
to show that F ′/F ∈ Perf[−1,0](XS). Since F ,F ′ ∈ Perf[−1,0](XS) it follows that
F ′/F ∈ Perf[−2,0](XS), and, by the vanishing of Tori,OXS

(OXT ,F
′/F ) for i≥ 2,

it must lie in Perf[−1,0](XS).

Now, consider the underlying topological space of S, denoted |S|. We can
consider a geometric point s ∈ |S| and the pullback of such a flat coherent OXS-
module F to Xs. The scheme Xs will just be the usual Fargues-Fontaine curve
over a geometric point so it is in particular a Dedekind scheme, and F |Xs will just
be a coherent sheaf. Therefore, we have a decomposition

F |Xs ≃F tors|Xs⊕F vb|Xs

where F tors|Xs (resp. F vb|Xs) is a torsion sheaf (resp. vector bundle) on Xs. Given
such a torsion sheaf, we write λ (F |Xs) := ℓ(F tors|Xs) for the length of this torsion
sheaf. Our main aim is to prove the following proposition. We would like to thank
David Hansen for supplying the idea behind its proof.

Proposition 2.5.15. If F is a flat coherent sheaf on XS then the function

|S| → N≥0

s 7→ λ (F |Xs)

is upper semi-continuous. Moreover, if this function is locally constant on S, then
there exists a unique short exact sequence of flat coherent sheaves on XS

0→F tors→F →F vb→ 0

where F vb is a vector bundle on XS, and F tors is a torsion sheaf in the sense that
its pullback to each geometric point is a torsion sheaf.
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Proof. To do this, we will need to prove the following lemma.

Lemma 2.5.16. Let F be a flat coherent sheaf on XS. We consider the v-sheaf on
PerfS, denoted H 0(F ), which sends T ∈ PerfS to the set of global sections of F .
The following is true.

1. H 0(F )→ S is separated and representable in nice diamonds.

2. The v-sheaf (H 0(F ) \ {0})/Q∗p → S given by deleting the 0-section and
quotienting out by the scaling action by Qp

∗ is proper and representable in
nice diamonds over S.

Proof. We can check all claims analytically locally on S. First note, by [AL21b,
Lemma 2.12], that analytically locally on S we can find an exact sequence

0→ E → OXS(−n)m→F → 0

where E is a vector bundle, for all n sufficiently large and fixed m. Passing to
cohomology, this gives us an exact sequence of v-sheaves:

0→H 0(F ) ↪→H 1(E )→H 1(O(−n)m)

Now note that the slopes of E are necessarily negative after pulling back to a
geometric point for n sufficiently large. Therefore, we can assume that H 1(E )
is a nice diamond by [FS21, Proposition II.3.5]. It follows by [FS21, Proposition
II.2.5 (i)] that H 1(OXS(−n)m) is separated which implies that the injective map
H 0(F )→H 1(E ) is a closed embedding. Therefore, H 0(F ) is also nice. For
the second part, we note that the closed embedding

H 0(F ) ↪→H 1(E )

is compatible with the 0-section and the scaling action. This reduces us to check-
ing that (H 1(E ) \ {0})/Q∗p→ S is proper, which follows from [FS21, Proposi-
tion II.3.5].

In particular, we will need the following Corollary.

Corollary 2.5.17. Let F and F ′ be two flat coherent sheaves on XS. We consider
the v-sheaf on PerfS, denoted H om(F ,F ′), which sends T ∈ PerfS to the set of
OXS-module homomorphisms F →F ′. The following is true.

1. H om(F ,F ′)→ S is separated and representable in nice diamonds.
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2. The diamond (H om(F ,F ′) \ {0})/Q∗p→ S given by deleting the 0-map
and quotienting out by the scaling action by Q∗p is proper over S.

Proof. By applying [AL21b, Lemma 2.12], we have analytically locally on S a
short exact sequence

0→ E → OXS(−n)m→F → 0

for all n sufficiently large. Applying Hom(−,F ′), we get an exact sequence of
v-sheaves:

0→H om(F ,F ′)→H om(OXS(−n)m,F ′)→H om(E ,F )

In other words, H om(F ,F ′) is the fiber of the last map over the 0-section,
and in turn the first map is a closed immersion by Lemma 2.5.16 (1) applied to
H 0(E ∨⊗F ′). This allows us to replace F with a vector bundle, and the claim
then follows by Lemma 2.5.16 applied to F∨⊗F ′.

Now that we have gotten this out of the way we can finally turn to the proof of
our claim. We consider the v-sheaf

SF → S

of fiberwise non-zero global sections s of F which are annihilated by ID ⊂ OXS

for D a degree 1 relative Cartier divisor D ⊂ XS. Alternatively, we can view this
as parameterizing pairs of (D, f ) of a degree 1 Cartier divisor in XS and a point
of H om(OXS/ID,F ) \ {0}. Using this description, we can factorize the map
SF → S as SF → Div1

S → S. We let SF/Q∗p be the quotient of this space

by the scaling action on the section f . Now the projection Div1
S → S is proper

and representable in nice diamonds by combining [FS21, Corollary II.2.4] and
[FS21, Proposition II.2.16]. Moreover, by the previous Corollary, we know that
SF/Q∗p→Div1

S is proper and representable in nice diamonds because it is a fibra-
tion in the spaces H om(OXT /ID,FT ) \ {0}/Qp

∗ for T ∈ PerfS and D a degree
1 relative Cartier divisor in XT . It follows that the image of SF → S is closed.
We note that this coincides with the locus where λ (F )> 0, so we have deduced
a special case of the upper semi-continuity result4. Now we argue by induction.
In particular, by replacing S by its image, it follows by properness that SF → S
is a v-cover. Therefore, after v-localization, we can assume that SF → S admits

4We could have also deduced this special case by arguing as in the proof of Proposition 2.5.8.
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a section, which implies that there exists a degree 1 Cartier divisor D ⊂ XS and a
fiberwise non-zero section s : OXS/ID →F . Using Lemma 2.5.14, we can re-
place F with F ′ = F/s(OXS), noting that the locus where λ (F ′)> 0 coincides
with the locus where λ (F ) > 1. Therefore, the claimed upper semi-continuity
result follows. For the second claim, uniqueness is clear, and, by [AL21b, The-
orem 2.11], the category of flat coherent sheaves on XS satisfies v-descent, so it
suffices to show the claim up to a v-localization. However, now via induction we
can just argue as above, using the sections s produced above and Lemma 2.5.14
to give rise to the map F tors→F .

Now we can reap the fruit of our labor in this section, and use it to show that
the compactification BunB has a well-behaved stratification.

Stratifications

We now turn our attention to stratifying BunB. In particular, for an element
ν ∈ Λ

pos
G,B \ {0}, we write ν = ∑i∈J niαi as a positive linear combination of the

elements corresponding to Γ-orbits of simple positive coroots αi. We let Div(ν)

be the partially symmetrized power of the mirror curve attached to it, as in §2.3.3.
We have a map of Artin v-stacks

jν : Div(ν)×BunB→ BunB

sending a tuple ({(Di)i∈J },FG,FT ,κ
λ̂ ), to the tuple

(FG,FT (−∑
i∈J

αi ·Di),κ
λ̂ )

where κ
λ̂ is the natural composition

(L λ̂ )FT (−∑
i∈J
⟨αi, λ̂ ⟩ ·Di)→L λ̂

FT

κ λ̂

−→ (V λ̂ )FG

defined by the unique effective modification of T -bundles of the specified mere-
morphy and support. We now make the following definition.

Definition 2.5.18. For ν ∈ Λ
pos
G,B \ {0}, we define the v-stack νBunB (resp.

≥νBunB) to be the locus where, for all λ̂ ∈ Λ̂
+
G , the cokernels V λ̂/Im(κ λ̂ ) have
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torsion of length equal to (resp. greater than) ⟨λ̂ ,ν⟩ after pulling back to any ge-
ometric point. By Proposition 2.5.15 (i), νBunB is a locally closed substack of
BunB, and the closure of νBunB in BunB is contained in ≥νBunB (In fact, is equal
to it, as will follow from Proposition 2.5.22).

To work with these strata, we will need the following.

Proposition 2.5.19. For ν ∈ Λ
pos
G,B \ {0}, the map jν induces an isomorphism

BunB×Div(ν) ≃ νBunB In particular, jν is a locally closed embedding.

Proof. It is clear that jν induces a map into the locally closed stratum νBunB. We
need to exhibit an inverse of this map. We first begin with the following lemma.

Lemma 2.5.20. Let Coh be the v-stack parameterizing, for S ∈ Perf, flat coherent
sheaves on XS, as in [AL21b, Theorem 2.11]. For k,n∈N≥0, we set Cohk

n to be the
locally closed (by Proposition 2.5.15 (i)) substack parameterizing flat coherent
sheaves whose torsion length (resp. vector bundle rank) is equal to k (resp. n)
after pulling back to a geometric point. There is a well-defined map

Cohk
n→ Div(k)

of v-stacks, sending a S-flat coherent sheaf F with attached short exact sequence
0→F tor→F →F vb→ 0, as in Proposition 2.5.15 (ii), to the support of F tor.

Proof. We note that, given F a S-flat coherent sheaf in Cohk
n, we have, by Propo-

sition 2.5.15 (ii), a unique short exact sequence

0→F tor→F →F vb→ 0

where we note that F tor will be a S-flat coherent sheaf of generic rank 0, using
Lemma 2.5.14. Now we can choose a presentation of this

0→F−1→F0→F tor→ 0

for two vector bundles F−1 and F0. Since F tor is of constant rank 0 by con-
struction, the first map must be a fiberwise injective map of vector bundles locally
of the same rank. Therefore, analytically locally on S, we can then take the top
exterior power of the map F−1→F0, and this will give rise to a fiberwise injec-
tive map of line bundles, which in turn gives rise to a relative Cartier divisor D
in XS (cf. [KM76] to see that this is independent of the choice of presentation).
If F defines a point in Cohk

n then D must be of degree k, and we get the desired
map.
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We need to exhibit an inverse to the natural map BunB×Div(ν)→ νBunB. To
do this, for S ∈ Perf, consider a short exact sequence of

0→ V1→ Vn+1→ Vn→ 0

of OXS-modules, where V1 (resp. Vn+1) is a line bundle (resp. rank n+ 1 vector
bundle), and the first map is a fiberwise-injective map, so that Vn is S-flat. Assume
that Vn defines a point in Cohk

n for some k, and let D be the degree k Cartier divisor
in XS defined by the previous Lemma. It follows by an application of Proposition
2.5.15 (ii) that we have a short exact sequence

0→ V tors
n → Vn→ V vb

n → 0

where V tors
n will define a point in Cohk

0 and V vb
n is a rank n vector bundle. Let

Ṽ1 denote the preimage of V tors
n in Vn+1. It is then easy to see that V1 → Vn+1

gives rise to an isomorphism V1(D) ≃ Ṽ1. Now, given a S-point of νBunB, we
can construct the desired inverse by applying the above argument to the short
exact sequences coming from the embeddings κ

ω̂i , for the fundamental weights
ω̂i ∈ Λ̂

+
G .

With this locally closed stratification in hand, we can now study how Hecke
correspondences base-changed to BunB interact with it. This will play a key role
in the proof of the Hecke eigensheaf property, and reduce showing the density of
BunB⊂BunB to studying the usual closure relationships for semi-infinite Schubert
cells.

The Key diagram and Density of the Compactification

We would now like to describe how Hecke correspondences on BunG interact
with pullback along the map p : BunB → BunG. This will be used to show the
filtered Hecke eigensheaf property for the geometric Eisenstein series, analogous
to the analysis carried out in [BG02, Section 3]. In this section, we will just study
the geometry of the relevant diagram and use it to deduce that the open inclusion
BunB ⊂ BunB defines a dense subset in the underlying topological space of BunB.
We fix a finite index set I, and consider the Hecke stacks HckI

G,E base-changed to
the field E over which G splits. We consider the usual diagram

BunG×DivI
E

h←G ×π

←−−− HckI
G,E

h→G−−→ BunG
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as in §2.3 and §2.4. We now fix a tuple of geometric dominant characters
(λi)i∈I ∈ (X∗(TQp

)+)I , and restrict to the locus HckG,≤(λi)i∈I ,E where the mero-

morphy of this modification is bounded by (λi)i∈I . We define the v-stack ZI
(λi)i∈I

by the Cartesian diagram:

ZI
(λi)i∈I

BunB

HckI
G,≤(λi)i∈I ,E

BunG

′h→G

′p p

h→G

By definition, ZI
(λi)i∈I

parametrizes pairs of G-bundles (FG,F
′
G) together with a

modification FG 99KF ′
G with meromorphy bounded by λi at Cartier divisors Di

for i ∈ I and an enhanced B-structure on F ′
G specified by maps κ

′λ̂ for λ̂ ∈ Λ̂
+
G .

The fact that the modification FG 99KF ′
G has meromorphy bounded by (λi)i∈I

implies that, for all λ̂ ∈ Λ̂
+
G , we have an inclusion:

V λ̂

F ′G
⊂ V λ̂

FG
(∑

i∈I
⟨λ̂ ,−w0(λiΓ)⟩ ·Di)

Therefore, the embeddings

κ
′λ̂ : L λ̂

F ′T
↪→ V λ̂

F ′G

give rise to a map:

κ
λ̂ : L λ̂

F ′T
(∑

i∈I
⟨λ̂ ,w0(λiΓ)⟩ ·Di) ↪→ V λ̂

FG

This defines for us a morphism

φ(λi)i∈I : ZI
(λi)i∈I

→ BunB×DivI
E

which records the point in BunB×DivI
E defined by the pair (κ λ̂ ,(Di)i∈I). This

sits in a commutative diagram

BunB×DivI
E ZI

(λi)i∈I
BunB

BunG×DivI
E HckI

G,≤(λi)i∈I ,E
BunG

p×id

φ(λi)i∈I

′h→G

′
p p

h←G ×π

h→G

(2.2)
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where we note that left square is not Cartesian. We will not use the space ZI
(λi)i∈I

at all in our arguments, but it should be important for future applications. For our
purposes, we consider ZI

(λi)i∈I
, the space obtained by replacing BunB with BunB

on the right hand side of the diagram. This sits in an analogous diagram

BunB×DivI
E ZI

(λi)i∈I
BunB

BunG×DivI
E HckI

G,≤(λi)i∈I ,E
BunG

p×id

φ(λi)i∈I

′h→G

′
p p

h←G ×π

h→G

(2.3)

As we will see, the proof of the filtered Hecke eigensheaf Property will ulti-
mately reduce to contemplating the fibers of the morphism φ(λi)i∈I . For our pur-
poses, it will suffice to consider the pullback of this diagram to a geometric point
Spa(F,OF)→DivI

E . We denote the resulting space by xZI
(λi)i∈I

. It sits in a diagram
of the form

xBunB xZI
(λi)i∈I

BunB

xBunG xHckI
G,≤(λi)i∈I ,E

BunG

p

φ(λi)i∈I

′h→G

′p p

h←G ×π

h→G

where xHckI
G,≤(λi)i∈I ,E

is the Hecke stack parameterizing modifications at the tuple
of Cartier divisors (Di)i∈I corresponding to x and xBunB (resp. xBunG) denotes
the base change of BunB (resp. BunG) to Spa(F,OF). Consider a tuple (νi)i∈I ∈
(X∗(TQp

))I and write ν := ∑i∈I νiΓ. Let Eνi denote the reflex field of νi. We view

the geometric point x→ DivI as a geometric point of Div(ν) via composing with
the map

∆(νi)i∈I : DivI
E →∏

i∈I
Div1

Eνi

∏i∈I△νi−−−−−→∏
i∈I

Div(νiΓ)→ Div(ν)

where the last map is given by taking the union of Cartier divisors and ∆νi is the
twisted diagonal embedding described in §2.3.3. We set x,(νi)i∈I BunB to be the
pullback of the locally closed stratum νBunB ≃ Div(ν)×BunB to this geometric
point. The substack x,(νi)i∈I BunB corresponds to the locus where the embeddings

L λ̂

FT
→ V λ̂

FG
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have a zero of order given by νi at Di for all dominant characters λ̂ of G and all
i ∈ I, and a zero nowhere else. We now consider the open substack x,0BunB =

xBunB. Since the maps κ have no zero at the Cartier divisors corresponding to x,
it follows that they define an L+B torsor over x,0BunB, which we denote by xB.
We then consider the map

i(νi)i∈I : BunB×DivI
E → BunB×DivI

E

given by sending (FG,FT ,κ
λ̂ ,(Di)i∈I) to the object (FG,FT (−∑i∈I ν i ·

Di),L λ̂

FT
(−∑i∈I⟨ν i, λ̂ ⟩ ·Di) ↪→ L λ̂

FT
↪→ V λ̂

FG
,(Di)i∈I), and note that the map

i(νi)i∈I defines an isomorphism between the pullbacks x,0BunB and x,(νi)i∈I BunB.
Therefore, by transport of structure, we get a L+B-torsor, denoted xB(νi)i∈I , over

x,(νi)i∈I BunB. For (νi)i∈I ∈ (X∗(TQp
))I , we let xZI,∗,(νi)i∈I

(λi)i∈I
(resp. xZI,(νi)i∈I ,∗

(λi)i∈I
) be the

fibers of ′h→G (resp. φ(λi)i∈I)) over x,(νi)i∈I BunB. We now have the following Lemma
describing these subspaces, which is an analogue of [BG02, Lemma 3.3.6].

Lemma 2.5.21. For tuples (νi)i∈I,(ν
′
i )i∈I ∈ (X∗(TQp

))I , geometric dominant

cocharacters (λi)i∈I ∈ (X∗(TQp
)+)I , and a geometric point x→ DivI

E , the fol-
lowing is true.

1. There is an isomorphism

xZI,∗,(ν ′i )i∈I
(λi)i∈I

≃ xGrI
G,≤(−w0(λi))i∈I

×L+B
xB

(ν ′i )i∈I

where the L+B action on xGrI
G,≤(−w0(λi))i∈I

is given by the inclusion L+B ↪→
L+G.

2. Under the identification in (1), the substack xZI,(νi)i∈I ,(ν
′
i )i∈I

(λi)i∈I
↪→ xZI,∗,(ν ′i )i∈I

(λi)i∈I
identifies with the substack

xGrI
G,≤(−w0(λi))i∈I ,E∩xSI

G,(−w0(λi)−νi+ν ′i )i∈I ,E×
L+B

xB
(ν ′i )i∈I ⊂ xGrI

G,≤(−w0(λi))i∈I ,E×
L+B

xB
(ν ′i )i∈I

3. When viewed as a stack projecting to x,(νi)i∈I BunB, the stack xZI,(νi)i∈I ,(ν
′
i )i∈I

(λi)i∈I
identifies with

xGrI
G,≤(λi)i∈I ,E ∩ xSI

G,(νi−ν ′i+w0(λi))i∈I ,E ×
L+B

xB
(νi)i∈I
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Proof. Follows from the definitions and the description of the semi-infinite cells
mentioned in the remark proceeding Definition 2.4.7.

As mentioned earlier, this description of the fibers will serve a key role in the
proof of the Hecke eigensheaf property. For now, we content ourselves by using
it to prove density.

Proposition 2.5.22. BunB defines a substack of BunB which is topologically
dense.

Proof. Consider a geometric point of s→ BunB defined by a triple (FG,FT ,κ),
and an open substack of U ⊂BunB containing s. It suffices to show that U contains
a point in BunB. We assume that κ has a singularity νi defined at distinct Cartier
divisors Di for i ∈ I corresponding to geometric points xi→ Div1

E . We write x→
DivI

E for the associated geometric point given by the product of the xi, and apply
the previous Lemma in the situation that ν ′i = 0 for all i∈ I. By Lemma 2.5.21 (1),
we have that xGrI

G,≤(−w0(λi))i∈I ,E
×L+B

xB ≃∏i∈I xiGrG,≤−w0(λi),E ×
L+B

xiB maps
to BunB via the morphism φ(λi)i∈I . Now, for the given (νi)i∈I , we can choose λi for
all i ∈ I such that the weight space Vλi(w0(λi)+νi) is non-zero. Then, by Lemma
2.5.21 (2) and Corollary 2.4.12, the fiber of φ(λi)i∈I over s is non-empty. Therefore,
pulling back U , we get a non-empty open subset of ∏i∈I xiGrG,≤−w0(λi),E ×

L+B

xiB. By the closure relations of Proposition 2.4.14, we get that this open subset
must have non-empty intersection with the open subspace ∏i∈I xiGrG,≤−w0(λi),E ∩
xiSG,−w0(λi),E×

L+B
xiB, but, by another application of Lemma 2.5.21 (2), this tells

us that U must have non-trivial intersection with BunB.

2.6 The Normalized Eisenstein Functor and Verdier
Duality on BunB

Now that we have finished our geometric preparations, we can start to understand
the sheaf theory on the moduli stack of B-structures. Our first order of business
is to refine our definition of the Eisenstein functor given in the previous section to
better respect Verdier duality on the moduli stack BunB.

2.6.1 The Normalized Eisenstein Functor
Before proceeding with our analysis of Eisenstein series, we refine the definition
of the Eisenstein functor. There is one key problem with our definition, the sheaf
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Λ[dim(BunB)] is not Verdier self-dual. In particular, the dualizing object KBunB on
BunB is not isomorphic to Λ[2dim(BunB)]; this is only v-locally true on BunB. To
elucidate the problem, note that, given ν ∈ ΛG,B, we can consider the natural map
qν : Bunν

B→ Bunν
T = [∗/T (Qp)]. Given a character κν of T (Qp), we can pull this

character back along qν to get a sheaf on Bunν
B. These characters give us sheaves

on Bunν
B, which v-locally will be constant, but are not constant on the nose. Our

main Theorem is as follows.

Theorem 2.6.1. The dualizing object on BunB is isomorphic to
q∗(∆B)[2dim(BunB)], with ∆B ∈ D(BunT ) as in Definition 2.3.4.

Before tackling the proof, we record the key consequence of this theorem for
us.

Corollary 2.6.2. The sheaf q∗(∆1/2
B )[dim(BunB)] on BunB is Verdier self-dual.

This motivates the definition of the normalized Eisenstein functor.

Definition 2.6.3. We let ICBunB := q∗(∆
1/2
B )[dim(BunB)]. We define the normal-

ized Eisenstein functor:

nEis : D(BunT )→ D(BunG)

F 7→ p!(q
∗(F )⊗ ICBunB)

In particular, we note that we have a natural isomorphism:

nEis(−)≃ Eis(−⊗∆
1/2
B ).

We now tackle the proof of Theorem 2.6.1.

2.6.2 The Proof of Theorem 2.6.1
As a warm up, we explain the proof in the case that G = GL2, proving some key
lemmas along the way. We recall that in this case B(T ) ≃ ΛG,B ≃ Z2 via the
Kottwitz invariant, and so we can index the connected components of BunB by a
pair of integers. We write dν for the ℓ-cohomological dimension of the connected
component Bunν

B.

Example 2.6.4. We first consider the case that ν = (d,d) for d ∈ Z, so ν . Note
that the connected component Bunν

B parametrizes split reductions, and is isomor-
phic to [∗/B(Qp)]. Now we have the following lemma, which is [HKW22, Exam-
ple 4.2.4].
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Lemma 2.6.5. f Let H be a locally pro-p group then K[∗/H]≃Haar(H,Λ)∗, where
Haar(H,Λ) is the space of Λ-valued right Haar measures on H.

Therefore, the dualizing object on Bunν
B is isomorphic to Haar(B(Qp),Λ)

∗.
We note that T (Qp) acts on this space by δ

−1
B by definition of the modulus char-

acter. However, the natural action of T (Qp) on the dualizing complex will be via
the right conjugation action t 7→ t−1ut on U(Qp). Thus, Theorem 2.6.1 is true in
this case.

Given a diamond or v-stack X → SpdFp, we define the local systems Λ(d) by
pulling back the local system on SpdFp given by the representation of Gal(Fp/Fp)
for which the geometric Frobenius acts via scaling by p−d ∈ Λ∗. We consider the
following key example.

Example 2.6.6. We let ZFp := H 0(O(1))Fp → SpdFp be the absolute positive
Banach-Colmez space parmeterizing sections of the line bundle O(1) on XS for
S ∈ PerfFp , as in [FS21, Section II.2.2]. The space has a right action of Q∗p by
the inverse of the scaling map on global sections, and this is the most natural
one to consider for the dualizing complex. The diamond ZFp is isomorphic to
SpdFp[|x1/p∞ |] [FS21, Proposition II.2.5 (iv)]. We let FrobZFp

denote the geo-
metric Frobenius sending x 7→ xp. Then, by [Han21, Proposition 4.8], we have a
natural isomorphism

KZFp
≃ Λ[2](1)

of étale sheaves on ZFp . We now show that the right action of Z∗p on the dualizing
complex is trivial. To do this, consider the open subspace UFp = H 0(O(1))Fp \
{0} ⊂ ZFp given by the complement of the 0-section, so that the action of Q∗p is
in particular free. It suffices to show the analogous claim for KUFp

. We let KUFp ,Zℓ

denote the dualizing complex on UFp with respect to étale (not solid sheaves) with
Zℓ-coefficients, as defined in [Sch18, Section 26]. Since U is cohomologically
smooth, we have that

KUFp
≃ KUFp ,Zℓ

⊗Zℓ
Fℓ,

implying that it suffices to prove the analogous claim for KUFp ,Zℓ
. Moreover, using

that the map
Aut(Z∗ℓ)→ Aut(Q∗ℓ)

is injective, it suffices to establish the analogous claim for KUFp ,Qℓ
, the dualizing

complex with Qℓ-coefficients. Now, to do this, consider the v-stack quotient by
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the right Z∗p action:
q : UFp → [UFp/Z

∗
p].

By [Han21, Proposition 4.6], fixing a Haar measure on Z∗p determines a unique
isomorphism:

(q∗(KUFp ,Qℓ
))Z

∗
p ≃ K[UFp/Z∗p],Qℓ

,

which in particular implies the Z∗p action is trivial on q∗(K[UFp/Z∗p],Qℓ
)≃ KUFp ,Qℓ

5,

where this isomorphism follows from [Sch18, Proposition 24.2].
Now, it remains to determine the value of κ(p). To elucidate this, we note

that, under the identification ZFp ≃ SpdFp[|x1/p∞ |], the element p−1 ∈Q∗p acts via
the geometric Frobenius FrobZFp

on ZFp (since we are looking at the right action).
It follows by the previous isomorphism that the value of the character κ(p) is
determined by the action of FrobZFp

on Λ(1), which is just the multiplication by
p−1 map on Λ. In summary, we have concluded an identification KZFp

≃ | · |−1[2]
of sheaves with the right Q∗p-action scaling action, where | · | is the rank 1 local
system on ZFp with right Q∗p-action given by the norm character. From here, we
conclude the analogous isomorphism

KZFp
≃ | · |−1[2]

of sheaves with right Q∗p-action over the algebraic closure.
Let’s now push this a bit further and consider the case of a general positive

absolute Banach-Colmez space ZFp := H 0(O(d))Fp → SpdFp for d ≥ 1. Now
we don’t have such a simple presentation as in the case that d = 1; however, we
claim that we still have a similar relationship between the geometric Frobenius
and the scaling action by pZ ∈ Q∗p on ZFp . To understand this, we invoke the
following explicit description. Recall that, for S ∈ Perf, we can view the adic
Fargues-Fontaine curve XS as given by gluing the open Fargues-Fontaine curve
YS,[1,p] along the map φ : YS,[1,1] ≃ YS,[p,p] induced by the geometric Frobenius,
with notation as in [FS21, Section II.1]. We write BS,[1,p] (resp. BS,[1,1]) for the
ring of functions of YS,[1,p] (resp. YS,[1,1]). We make use of the following lemma,
which follows from the analysis in [FS21, Section II.2].

5We note that these claims only apply to the maximal pro-p subgroup Zp ⊂Z/(p−1)Z×Zp ≃
Z∗p; however, since we are applying this in the setting where p−1 is invertible in Qℓ it is easy to
see the proof extends to further quotienting out by this finite group.
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Lemma 2.6.7. For d ∈Z, let O(d)XS be the natural line bundle of degree d on XS.
We have an isomorphism:

RΓ(XS,O(d))≃ {BS,[1,p]
φ−pd

−−−→ BS,[1,1]}

Therefore, if we write B[1,p] for the sheaf of rings on PerfFp defined by sending
S ∈ PerfFp to the global sections of YS,[1,p] then we have an isomorphism

H 0(O(d))≃ Bφ=pd

[1,p]

of diamonds over Spd(Fp). As in the above example, this identification tells us
that action of the geometric Frobenius FrobZFp

on ZFp is the same as the right ac-
tion by pd ∈Q∗p on ZFp under the right action. Again, by [Han21, Proposition 4.8],
we have an isomorphism

KZFp
≃ Λ[2d](d)

and, it follows that pd ∈ Q∗p acts on the sheaf Λ(d) by p−d ∈ Λ∗, which, arguing
as above, allows us to conclude an isomorphism

KZFp
≃ | · |−1[2d]

of sheaves with right Q∗p-action.

We record the content of the above example as a Lemma for future use.

Lemma 2.6.8. Let d ∈ N≥1 be a positive integer and consider the absolute pos-
itive Banach-Colmez space H 0(O(d))Fp → SpdFp. Then we have an isomor-
phism KH 0(O(d))Fp

≃ | · |−1[2d] (resp. KH 0(O(d))Fp
≃ | · |−1[2d]) as sheaves under

the right Q∗p-action, where | · | denotes the rank 1 sheaf on H 0(O(d))Fp (resp.
H 0(O(d))Fp

) that transforms under the right scaling action by Q∗p via the norm
character. Similarly, if λ = r

s > 0 with (r,s) = 1 then we have an isomorphism
KH 0(O(λ ))Fp

≃ |· |−s[2r], where O(λ ) is the unique stable bundle of slope λ on X.

Proof. The case of line bundles follows from the above discussion. To deal with
the general case, we can replace Qp with the unramified extension Qps to reduce
to the case of line bundles.
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Remark 2.6.9. In what follows, it will be important to formalize this in terms of
v-stacks. If we consider the v-stack quotient

[H 0(O(d))Fp
/Q∗p]→ SpdFp

then this admits a natural map q : [H 0(O(d))/Q∗p] → [SpdFp/Q∗p] to a clas-
sifying stack. Then the above isomorphism descends to an identification
K[H 0(O(d))Fp/Q

∗
p]
≃ q∗(| · |−1)[2d], where we recall that there is an identification

D([SpdFp/Q∗p]) ≃ D(Q∗p,Λ) of the derived category of sheaves on the classify-

ing stack [SpdFp/Q∗p] with the derived category of smooth Q∗p-representations on
Λ-modules.

Let’s now push this a bit further and prove an analogous claim for negative
Banach-Colmez spaces.

Lemma 2.6.10. Let d ∈ N≥1 and consider the negative absolute Banach-Colmez
space H 1(O(−d))→ SpdFp. Then we have isomorphisms KH 1(O(d))Fp

≃ |·|[2d]
(resp. KH 1(O(d))Fp

≃ | · |[2d]) as sheaves with right Q∗p-action. Similarly, if λ =
r
s < 0 with (r,s) = 1 then we have an isomorphism KH 1(O(λ ))Fp

≃ | · |s[2r] of

sheaves with right Q∗p action.

Proof. Using the explicit description above, we know that, if we consider the
sheaf of rings B[1,p] and B[1,1] on PerfFp given by taking global sections of YS,[1,p]
(resp. YS,[1,1]), there is an isomorphism

H 1(O(−d))Fp ≃ Coker(B[1,p]
φ−p−d

−−−−→ B[1,1])

of v-sheaves on PerfFp . As a consequence of this, we can deduce that the geo-
metric Frobenius FrobZFp

on ZFp = H 0(O(−d))Fp agrees with the right scaling
action by pd ∈Q∗p. Moreover, as in the positive case, we have an isomorphism

KH 1(O(d))Fp
≃ Λ[2d](d)

of étale sheaves. One can deduce this from the positive case [Han21, Proposi-
tion 4.8(ii)] and the proof of [FS21, Proposition II.2.5 (i)]. Now, arguing as in the
case of positive Banach-Colmez spaces, we deduce that

KH 1(O(d))Fp
≃ | · |[2d]
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as sheaves with Q∗p-action. The claim over Fp follows. This finishes the case
of line bundles. We can reduce to this case by replacing Qp by the unramified
extension Qps .

With these two lemmas in hand, let’s continue our calculation of the dualizing
object on BunB in the case that G = GL2 and B is the upper triangular Borel. We
will return to working over the base ∗= SpdFp in all that follows.

Example 2.6.11. Consider the case where ν = (−d,−e) is anti-dominant, so that
d > e. In this case, dν = e−d. We note that dν is negative, so to keep track of the
sign change, we consider the absolute value |dν |. The connected component Bunν

B
just parametrizes the split extensions of O(d) by O(e). Therefore, its topological
space is just a point. More precisely, if b corresponds to the bundle O(d)⊕O(e)
then it is isomorphic [∗/Jb], where Jb parametrizes automorphisms of O(d)⊕
O(e). The group diamond Jb is isomorphic to(

Aut(O(d)) H om(O(e),O(d))
0 Aut(O(e))

)
≃

(
Q∗p H 0(O(|dν |))
0 Q∗p

)

In particular, note that in this case Jb(Qp) = T (Qp) ≃ Q∗p×Q∗p. We need to
compute the dualizing object of [∗/Jb]. To do this, we consider the natural map

p : [∗/Jb]→ [∗/T (Qp)]

induced via the map Jb→ T (Qp) given by quotienting out by the unipotent part.
This map has a section given by the inclusion T (Qp)⊂Jb, and we denote this by
s : [∗/T (Qp)]→ [∗/Jb]. First off note, by Lemma 2.6.5, that the dualizing object
on [∗/T (Qp)] can be identified with the set of Haar measures on T (Qp). Now,
since T (Qp) is unimodular, this implies that, as a T (Qp)-representation, the sheaf
is trivial. Therefore, we are reduced to computing p!(Λ). To do this, note that
the section s is a fibration in the positive Banach-Colmez space H 0(O(|dν |)). It
therefore follows by the proof of [FS21, Proposition V.2.1] that adjunction induces
an isomorphism:

s!s!(Λ)≃ Λ

However, since s is a section of p, that gives us a natural isomorphism:

s!(Λ)≃ p!(Λ)

Therefore, we are reduced to computing s!(Λ). We now have the following.
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Lemma 2.6.12. There is a natural isomorphism

s!(Λ)≃ δ
−1
B [2|dν |]

of sheaves on [∗/Jb(Qp)] ≃ [∗/T (Qp)], where s : [∗/T (Qp)] → [∗/Jb] is the
natural map.

Proof. We consider the Cartesian diagram:

H 0(|dν |) ∗

[
∗/T (Qp)

]
[∗/Jb]

s̃

q̃ q

s

By base-change, we have a natural isomorphism q̃∗s!(Λ)≃ s̃!(Λ) and, by Lemma
2.6.8, the RHS is isomorphic to | · |−1[2|dν |] as a sheaf with the right Q∗p-action.
However, we want to understand how this transforms as a T (Qp) representation.
To do this, we note that the T (Qp) action on H 0(O(|dν |))≃H 0(O(e)∨⊗O(d))
comes from the semi-direct product structure on Jb

Jb =

(
Aut(O(d)) H om(O(e),O(d))

0 Aut(O(e))

)
=

(
Q∗p H 0(O(e)∨⊗O(d))
0 Q∗p

)
≃T (Qp)⋉H 0(O(d−e))

It follows that if we consider the map

T (Qp)→Q∗p(
a 0
0 d

)
7→ ad−1

then T (Qp) acts via composing this map with the right scaling action on
H 0(O(|dν |)). This implies that q̃∗s!(Λ) ≃ s̃!(Λ) ≃ δ

−1
B [2|dν |] as a sheaf with

right T (Qp)-action. This was the desired claim.

Using the previous adjunction, the lemma tells us that p!(Λ) ≃ s!(Λ) ≃
δB[−2|dν |]. This was the desired claim.

Now let’s consider the anti-dominant case.
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Example 2.6.13. Let ν = (−d,−e) be dominant so that d < e. Then dν =
e− d = |dν | is positive. The connected component Bunν

B is isomorphic to
[H 1(O(−dν))/T (Qp)], where T (Qp) acts via interpreting H 1(O(−dν)) as a
space parameterizing extensions

0→ O(d)→ E → O(e)→ 0

on XS, and T (Qp) acts on the right via the identification T (Qp) ≃
(Aut(O(d)),Aut(O(e))). Now we can factor the structure map as

[H 1(O(−dν))/T (Qp)]
f−→ [∗/T (Qp)]→∗

and, using that T (Qp) is unimodular, we reduce to computing f !(Λ) as before.
We consider the Cartesian diagram

H 1(O(−dν)) ∗

[
H 1(O(−dν))/T (Qp)

] [
∗/T (Qp)

]
f̃

q̃ q

f

and again, by base-change, this gives us an isomorphism q̃∗ f !(Λ)≃ f̃ !(Λ). Now,
applying Lemma 2.6.10, we deduce that q̃∗ f !(Λ) is isomorphic to | · |[2dν ] as
a sheaf with right Q∗p action. We note that the T (Qp)-action comes from the
identification H 1(O(d)⊗O(e)∨) ≃H 1(O(−dν)). Therefore, T (Qp) acts via
the map

T (Qp)→Q∗p(
a 0
0 d

)
→ ad−1

composed with the right action of Q∗p on H 1(O(−dν)) by scaling of global sec-
tions. As a consequence, we deduce that, as a T (Qp)-representation, Λ[2dν ](dν)
is isomorphic to δB[2dν ]. This gives the desired claim.

We will need some formalism to move beyond the case of GL2. Let G be a
connected quasi-split reductive group over Qp as before.
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We let b ∈ B(G)un be an unramified element, and set bT to be the dominant
reduction as before. We let Jb be the group diamond parameterizing automor-
phisms of the bundle Fb associated to b. Now, we can write J ≥λ

b for the sub-
diamond of automorphisms γ of Fb such that

(γ−1)(ρ∗(Fb))
≥λ ′ ⊂ (ρ∗Fb)

≥λ ′+λ

for all representations ρ of G. We set J >λ

b = ∪λ ′>λ J ≥λ ′

b . We note that, since
Jb(Qp) is the automorphism group of the isocrystal defined by b, and, for S∈ Perf,
there is an identification: H0(XS,OXS) =Qp(S), we have a natural injection

Jb(Qp) ↪→Jb

which has a natural section given by letting Jb act on the graded-pieces of the
HN-filtration. This gives us a semi-direct product decomposition

Jb ≃ Jb(Qp)⋉J >0
b

of group diamonds (See [FS21, Proposition III.5.1]).
We can relate this to B-bundles as follows. In a similar vein, we consider a

HN-dominant reduction b−T ∈ B(T ) of b ∈ B(G) with G anti-dominant isocrystal
slopes. We consider the torsor Q := Fb−T

×T B over XS for S ∈ Perf. We suppose
now that T is the centralizer of the slope homomorphism of b, so that bT is the
canonical basic reduction of b ∈ B(G). Then, as in [FS21, Proposition III.5.1.1],
we have an isomorphism

Jb(S)≃ Q(XS)

J >0
b (S)≃ (Eb−T

×T U)(XS) = RuQ(XS)

where U is the unipotent radical B. We note that Fargues-Scholze instead consider
the B−-torsor EbT ×T B−. Both of these provide descriptions of Jb, but the actions
of Jb(Qp) ≃ T (Qp) on the unipotent parts will be intertwined by conjugation by
the element of longest length. To distinguish them, we will write Gb−T

for the group
diamond such that Q(XS) = Gb−T

(S). We let G=0
b−T

be the slope 0 part and G>0
bT

be
the positive slope under this identification.

Remark 2.6.14. This identification is a manifestation of the following easy fact,
that we will use implicitly throughout. Given a bundle E on XS, the set of E -
torsors on XS is parametrized by H1(XS,E ), and the automorphisms of such E -
torsors are parametrized by H0(XS,E ).
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In particular, since Q defines a B-structure on Fb, every such global section
induces an automorphism of Fb. Moreover, since T is equal to Mb this will imply
that every element of Jb(S) can be obtained in this way. Let’s now consider the
case where bT is dominant, but we only have a proper inclusion T ⊂Mb. In other
words, there exist some positive roots α̂ such that ⟨α̂,νb⟩= 0 (cf. Example 2.6.4).
In this case, all we can conclude is that Q(XS) is isomorphic to a subset of Jb(S).
In particular, if we write Q>0(XS) for the subset mapping to J >0

b then we still
have an isomorphism

J >0
b (S)≃ Q>0(XS)

but, on the slope 0 part, Q=0(XS) is only isomorphic to a proper subset of
Jb(Qp)(S). The points of Q=0(S) will be identified with Bb(Qp)(S), where Bb⊂ Jb

is the Borel subgroup defined in Lemma 2.2.12, and RuQ=0 is identified with the
unipotent radical of this Borel. More precisely, if Jb is an inner twisting of Mb⊂G
then Mb is the Levi subgroup in G corresponding to the positive simple roots α̂i
such that ⟨α̂i,νbT ⟩ = 0, by definition of Mb as the centralizer of the slope ho-
momorphism of b. Now let’s refine this further, recall that U has a filtration by
commutator subgroups

(1)⊂ ·· · ⊂Ui+1 ⊂Ui ⊂ ·· · ⊂U1 ⊂U0 =U

where Ui/Ui−1 ≃Gdi
a . If we let D be the protorus with character group Q then the

slope homomorphism νb defines an action of D on Eb−T
×T Ui/Ui+1, which factors

through the action of the maximal split torus A on Eb−T
×T Ui/Ui+1. This gives rise

to a filtration on RuQ whose graded pieces will be a direct sum of the semistable
vector bundles

Qα̂

of degree equal to ⟨α̂,νb⟩ and rank equal to dim(gα̂), where gα̂ is the α̂ root
space6. This allows us to write G>0

b−T
as an iterated fibration of positive Banach-

Colmez spaces
H 0(Qα̂)

for α̂ such that deg(Qα̂) = ⟨α̂,νb⟩ > 0. The subgroup T (Qp) ⊂ Bb(Qp) will act
on G>0

b−T
on the right. To describe this action, let Pb denote the standard parabolic

with Levi factor Mb. By construction, the action will factor as

T (Qp)→ Aut(Ru(Pb))b(Qp).

6Recall that these are not one dimensional if the group is not split.
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Here Aut(Ru(Pb))b is the σ -centralizer of the image of the canonical reduction
bMb ∈ B(Mb)basic under the map B(Mb)→ B(Aut(Ru(Pb)) given by left conjuga-
tion t 7→ tut−1, and Aut(Ru(Pb))b(Qp) acts on the right of G>0

b by automorphisms
and taking inverses. In particular, if we restrict to the subgroup A(Qp) given by
the maximal split torus then this will preserve the decomposition of Aut(Ru(Pb))
into root eigenspaces. Therefore, for a reduced root α̂ > 0, the induced action of
A(Qp) on H 0(Qα̂) will factor as

A(Qp)
α̂−→Q∗p

composed with the right scaling action by global sections on H 0(Qα̂).
These observations combined with the above Lemmas relating the dualizing

objects on positive Banach-Colmez to norm characters give us everything we need
to pin down the dualizing object on Bunν

B in the case that ν is antidominant.

Proposition 2.6.15. Let b−T ∈ B(T ) be an element with anti-dominant slopes

with respect to B. The dualizing object K
Bun

b−T
B

on Bunb−T
B is isomorphic to

(qb−T )∗(δB)[2db−T
].

Proof. Since b−T has G anti-dominant isocrystal slopes its HN-slopes are G-

dominant, and therefore Bunb−T
B parametrizes split reductions. In particular, its

underlying topological space is just a point. More specifically, it is isomorphic to
[∗/Gb−T

], where Gb−T
(S) := Q(XS), and Q is the torsor defined above. The semi-

direct product structure on Jb and the above discussion imply that we have a
semi-direct product structure

Gb−T
≃ Bb(Qp)⋉G>0

b−T

on Gb−T
. Therefore, we have a natural map

[∗/Gb−T
]→ [∗/Bb(Qp)]→ [∗/T (Qp)],

and the induced right action of T (Qp) on K
Bun

b−T
B

will be given by the action de-

scribed above.
Now, by Lemma 2.6.5, the dualizing object on [∗/Bb(Qp)] is identified with

the modulus character δ=0 := δBb : T (Qp)→ Λ∗ under this right action. Here
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δBb will be given by the unique (See [Cas95, Lemma 1.6.1]) rational character of
T (Qp) such that, when restricted to A(Qp), it becomes

t 7→ ∏
α̂>0

⟨α̂,νb⟩=0

det(Ad(t|gα̂))

composed with the norm character. We now consider the dualizing object with
respect to the map:

p : [∗/Gb−T
]→ [∗/Bb(Qp)]

This map has a natural section

s : [∗/Bb(Qp)]→ [∗/Gb−T
]

the fibers of which are given by J >0
b . Arguing as in Example 2.6.11, this reduces

us to showing that
s!(Λ)≃ (δ ̸=0)−1[−2db−T

]

where δ ̸=0 : Bb(Qp)→Λ∗ is determined by the unique rational character of T (Qp)
such that when restricted to A(Qp) it is given by

t 7→ ∏
α̂>0

⟨α̂,νb⟩̸=0

|det(Ad(t|gα̂))|−1,

so that we have δB = δ=0δ ̸=0. To see this, we consider the Cartesian diagram

J >0
b ∗

[
∗/Gb−T

] [
∗/Bb(Qp)

]
s̃

q̃ q

s

which, by base-change, gives us an isomorphism q̃∗s!(Λ) ≃ s̃!(Λ). As above,
we can write G>0

b−T
as an iterated fibration of the positive Banach-Colmez spaces

H 0(Qα̂) for α̂ > 0 such that ⟨α̂,νb⟩ > 0. By Lemma 2.6.8, the dualizing object
on H 0(Qα̂) is isomorphic to | · |−dim(gα̂ )[2⟨α̂,νb⟩] as a Q∗p representation under
the right scaling action, and A(Qp) acts by α̂ composed with the right scaling
action on H 0(Qα̂). Hence, we obtain that the dualizing object on H 0(Qα̂) as a
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right A(Qp)-representation is given by |det(Ad(t|gα̂))|−1. Therefore, by using the
formula

(g◦ f )!(Λ) = g!(Λ)⊗g∗( f !(Λ))

for cohomologically smooth morphisms f and g, we deduce that the dualizing
object on J >0

b is isomorphic to

Λ[ ∑
α̂>0

⟨α̂,νb⟩̸=0

⟨α̂,νb⟩]( ∏
α̂>0

⟨α̂,νb⟩̸=0

|det(Ad(t|gα̂)|)|−1 =Λ[2⟨2ρ̂,νb⟩](δ ̸=0)−1|A(Qp)=Λ[−2db−T
](δ ̸=0)−1|A(Qp)

as a sheaf with A(Qp)-action. Now we need to show that, as a sheaf with Bb(Qp)-
action, that this is isomorphic to δ ̸=0. This follows since we know that the action
of Bb(Qp) on G>0

b−T
factors as

Bb(Qp)→ T (Qp)→ Aut(Ru(Pb))b(Qp))

composed with the right action by Aut(Ru(Pb))b(Qp) on G>0
b−T

by automorphisms
and taking inverses. In particular, by [Cas95, Lemma 1.61] and its proof, the
action of Bb(Qp) on the sheaf is uniquely determined by its restriction to A(Qp),
since the left conjugation map T →Aut(Ru(Pb)) factors through the split quotient.

We now push this further. Let ν ∈ B(T ) be an element mapping to b∈ B(G)un.
We write ν = w(bT ) ∈ B(T ) mapping to b ∈ B(G)un for w ∈Wb a representative
of minimal length and bT with dominant isocrystal slopes. We consider the torsor

Qν = Fν ×T B

and
RuQν = Fν ×T U

Now, since Qν defines a reduction of Fb, we have as before that Qν(XS) is iso-
morphic to a subgroup of Jb(S) giving rise to a slope filtration on Qν . This gives
the following definition.

Definition 2.6.16. For ν = w(bT )∈ B(T ) mapping to b∈ B(G)un as above, we let
Gν be the group diamond on Perf whose S-valued points are equal to Qν(XS). For
any λ ∈Q, we define subdiamonds G≥λ

ν
and G>λ

ν
, as above. We get a semi-direct

product structure
G>0

ν
⋊G=0

ν

where G>0
ν

injects into J >0
b and G=0

ν
injects into Jb(Qp).

193



In particular, G=0
ν

will be identified with the Borel subgroup Bb(Qp). Now, as
above, RuQν has a filtration given by the filtration on U

(1)⊂ ·· · ⊂Ui+1 ⊂Ui ⊂ ·· · ⊂U1 ⊂U0 =U

by commutator subgroups, where Ui−1/Ui ≃Gdi
a . The action of D via νb on these

graded pieces allows us to write G>0
ν

as an iterated fibration of the semistable
bundles Qα̂ for α̂ such that w−1(α̂) < 0 and ⟨α̂,νb⟩ ̸= 0. Here the fact that
w−1(α̂) < 0 appears is due to the minus sign when passing between isocrystal
slopes and G-bundles slopes. In particular, if ν is anti-dominant (so that Bunν

B
only parametrizes split B-structures) then all the roots α̂ such that ⟨α̂,νb⟩ ≠ 0 ap-
pear, as described above. The group A(Qp) will act on the right via α̂ composed
with the natural right action by scaling of global sections. Now, with this in hand,
let’s prove Theorem 2.6.1.

Proof. (Theorem 2.6.1) We begin with the following Lemma.

Lemma 2.6.17. If ν = w(bT ) ∈ B(T ) is an element mapping to b ∈ B(G)un then
the ℓ-dimension dν of the connected component Bunν

B is equal to

⟨2ρ̂,νb⟩−2⟨2ρ̂
w,νb⟩

where 2ρ̂w is the sum of the positive roots α̂ such that w−1(α̂)< 0.

Proof. By definition dν = ⟨2ρ̂,w(bT )⟩, and this is easily identified with the above
quantity recalling that νbT = νb by definition.

Write ν = w(bT ) as in the lemma. The key point is that we can factor the
structure morphism Bunν

B→∗ as

Bunν
B

f−→ [∗/Gν ]→ [∗/Bb(Qp)]→∗.

We decompose the modulus character δB as follows to reflect this factorization,
we have after restricting to A(Qp) that

t 7→∏
α̂>0
|det(Ad(t|gα̂))|= ∏

α̂>0
⟨α̂,νb⟩=0

|det(Ad(t|gα̂))| ∏
α̂>0

w−1(α̂)>0
⟨α̂,νb⟩̸=0

|det(Ad(t|gα̂))| ∏
α̂>0

w−1(α̂)<0
⟨α̂,νb⟩̸=0

|det(Ad(t|gα̂))|

where the products over all positive roots α̂ > 0. We call these rational characters
δ=0, δ>0, and δ<0, respectively.
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By arguing as in the proof of Proposition 2.6.15, we can see that the du-
alizing complex with respect to the map [∗/Gν ] → [∗/Bb(Qp)] is given by
δ<0[−2⟨2ρ̂w

G ,νb⟩)] and similarly the dualizing complex on [∗/Bb(Qp)] is given
by δ=0 under the relevant right action. Thus, it suffices to show that

f !(Λ)≃ δ
>0[2(⟨2ρ̂,νb⟩−⟨2ρ̂

w,νb⟩)],

as sheaves with right Bb(Qp)-action. To do this, we should proceed analogously
to Example 2.6.13. Namely, define the space Xν by the Cartesian diagram

Xν ∗

Bunν
B [∗/Gν ]

f̃

q̃ q

f

and we need to elucidate the space Xν . We claim it is an iterated fibration of
negative Banach-Colmez spaces. To see this, we consider Qν as above, and look
at the negative slope part Q<0

ν
. We can identify Xν(S) with the set of Q<0

ν
-torsors

over XS (cf. the proof of [FS21, Proposition V.3.5]). By considering the filtration
of U by commutator subgroups, we can write Xν as an iterated fibration of the
negative Banach-Colmez spaces

H 1(Q−α̂)

for positive roots α̂ > 0 such that w−1(α̂) > 0 and ⟨α̂,νb⟩ ̸= 0. Then, using
Lemma 2.6.10, we deduce that the dualizing object on H 1(Q−α̂) is equal to | ·
|dim(gα̂ )[2⟨α̂,νb⟩] as a sheaf with right Q∗p-action. Now A(Qp) acts on H 1(Q−α̂)

on the right via the right scaling action on H 1(Q−α̂) pre-composed with the
character

A(Qp)
α̂−→Q∗p

for varying α̂ > 0.
This tells us that we have an isomorphism

f̃ !(Λ)≃ δ
>0|A(Qp)[2(⟨2ρ̂,νb⟩−⟨2ρ̂

w
G ,νb⟩)]

as sheaves with A(Qp) action. However, as in Proposition 2.6.15, this is enough to
establish that we have the analogous isomorphism as sheaves with Bb(Qp)-action,
since it follows from the construction that the action of Bb(Qp) on Xν factors
through the adjoint action as before. The claim follows.
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2.7 The Filtered Eigensheaf Property

2.7.1 Proof of the Filtered Eigensheaf Property
We would now like the describe how Hecke correspondences on BunG interact
with the Eisenstein functor. This will be used to show the Hecke eigensheaf prop-
erty. Our analysis is heavily inspired by [BG02, Section 3], where an analogous
claim is proven in the classical case. However, unlike the arguments there, we
cannot appeal to the decomposition theorem, as the usual formalism of weights
doesn’t exist in this context. Nonetheless, we still have the excision spectral se-
quence, which will give us a filtration on the Eisenstein series. In §2.10, we
will show that, under the condition of µ-regularity (Definition 2.3.14), this filtra-
tion splits for the Hecke operator defined by VµΓ ∈ RepΛ(

LG) when applied to
F = SφT .

Our goal is the following Theorem.

Theorem 2.7.1. For F ∈ D(BunT ), I a finite index set, and V ∈ RepΛ(
LGI),

the sheaf TV (Eis(F )) has a W I
Qp

-equivariant filtration indexed by (νi)i∈I ∈
(X∗(TQp

)/Γ)I . The filtration’s graded pieces are isomorphic to

Eis(T(νi)i∈I(F ))⊗V ((νi)i∈I)(−⟨ρ̂,∑
i∈I

νiΓ⟩)

as sheaves in D(BunG)
BW I

Qp . Moreover, the filtration is natural in I and V , as well
as compatible with compositions and exterior tensor products in V .

Let E/Qp be an extension over which G splits. The value of TV (nEis(SφT ))
is determined by the value of the Hecke correspondence base-changed to E, us-
ing [FS21, Corollary V.2.3] (See [FS21, Page 314]). Here the correspondence is
determined by a representation V = ⊠i∈IVi ∈ RepΛ(Ĝ

I) of I-copies of the dual
group. We let λi ∈ X∗(TQp

)+ be the highest weight of Vi. By taking direct sums,
we can assume WLOG that V has a fixed central character. We let SV be the Λ-
valued sheaf on HckI

G,≤(λi)i∈I ,E
defined via Theorem 2.4.2. Our aim is to construct

a W I
E-equivariant filtration on the sheaf:

TV (Eis(F )) = (h→G ×π)!(h→∗G (p!q
∗(F )[dim(BunB)])⊗SV ) ∈ D(BunG)

BW I
E
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This will be accomplished by contemplating the diagram

BunB×DivI
E ZI

(λi)i∈I
BunB

BunG×DivI
E HckI

G,≤(λi)i∈I ,E
BunG

p×id

φ(λi)i∈I

′h→G

′p p

h←G ×π

h→G

as defined in §2.5.2 (2.3). Using base-change on the right Cartesian square, we
get an isomorphism

TV (Eis(F ))≃ (h→G ×π)!(
′
p!
′
h→∗G q∗(F )[dim(BunB)]⊗SV )

but, applying the projection formula with respect to p′, this becomes

TV (Eis(F ))≃ (h→G ×π)!
′
p!(
′h→∗G (q∗(F )[dim(BunB)])⊗

′
p∗(SV ))

We define
KV :=

′
h→∗G (Λ[dim(BunB)])⊗

′
p∗(SV )

allowing us to rewrite our formula nicely as

TV (Eis(F ))≃ (h→G ×π)!
′
p!(
′h→∗G q∗(F )⊗KV )= (p×id)!φ(λi)i∈I!(

′h→∗G q∗(F )⊗KV )
(2.4)

Now we would like to reduce the claim to applying excision to φ(λi)i∈I!(KV )

with respect to a locally closed stratification of BunB×DivI
E . The claim should

then follow from Corollary 2.4.9 and Lemma 2.5.21. In order to do this, let’s
further rewrite the formula. We recall that, for (νi)i∈I ∈ (X∗(TQp

))I , we have a
map

i(νi)i∈I : BunB×DivI
E → BunB×DivI

E

sending the tuple (FG,FT ,κ
λ̂ ,(Di)i∈I) to the tuple (FG,FT (−∑i∈I νi ·

Di),L λ̂

FT
(−∑i∈I⟨νi, λ̂ ⟩ ·Di) ↪→L λ̂

FT
↪→ V λ̂

FG
,(Di)i∈I). We also have the map

h→(νi)i∈I
: BunT ×DivI

E ≃ HckI
T,(νi)i∈I

→ BunT

as in §2.3 which is given by modifying a T -bundle by (νi)i∈I at a tuple of divisors
(Di)i∈I defining a point in DivI

E . Then, for F ∈ D(BunT ), we recall that we have
an identification (h→(νi)i∈I

)∗(F ) = T(νi)i∈I(F ) of sheaves in D(BunT )
BW I

E . Now, we
can verify the following easy Lemma, which follows from the definition of φ(λi)i∈I .
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Lemma 2.7.2. The following is true.

1. The maps h→(w0(λi))i∈I
◦ (q× id) ◦ φ(λi)i∈I and q ◦ ′h→G from ZI

(λi)i∈I
to BunT

coincide.

2. For every (νi)i∈I ∈ (X∗(TQp
))I , the maps (q× id)◦ i(νi)i∈I and (h→(νi)i∈I

× id)◦
(q× id) from BunB×DivI

E to BunT ×DivI
E coincide.

Now, with this in hand, let’s revisit equation (4):

TV (Eis(F ))≃ (p× id)!φ(λi)i∈I!(
′h→∗G q∗(F )⊗KV )

Using Lemma 2.7.2 (1), we have that

′h→∗G q∗(F )≃ φ
∗
(λi)i∈I

(q× id)∗(h→(w0(λi))i∈I
)∗(F )

substituting this in and applying projection formula with respect to φ(λi)i∈I , we can
rewrite the RHS as

(p× id)!((q× id)∗(h→(w0(λi))i∈I
)∗(F )⊗φ(λi)i∈I!(KV ))

Now we claim that we have the following description of φ(λi)i∈I!(KV ).

Theorem 2.7.3. The sheaf φ(λi)i∈I!(KV ) ∈ D(BunB)
BW I

E has a W I
E-equivariant fil-

tration indexed by (νi)i∈I ∈ (X∗(TQp
))I . The graded pieces of this filtration are

given by

⊠i∈I(iνi!( j× id)!(Λ[dim(BunB)]))⊗Vi(w0(λi)+νi)(−⟨ρ̂,w0(λi)+νi⟩)

Assuming this for now, we get that TV (Eis(F )) has a W I
E-equivariant filtration

with graded pieces given by

⊠i∈I(p×id)!((q×id)∗h→∗w0(λi)
(F )⊗(iνi!( j×id)!(Λ[dim(BunB)]))⊗Vi(w0(λi)+νi)(−⟨ρ̂,w0(λi)+νi⟩)))

Applying projection formula with respect to iνi , we obtain

⊠i∈I(p×id)!iνi!(i
∗
νi
(q×id)∗h→∗w0(λi)

(F )⊗( j×id)!(Λ[dim(BunB)]))⊗Vi(w0(λi)+νi)(−⟨ρ̂,w0(λi)+νi⟩)

but now, by Lemma 2.7.2 (2), we have

i∗νi
(q× id)∗h→∗w0(λi)

(F )≃ (q× id)∗h→∗w0(λi)+νi
(F )≃ (q× id)∗(Tw0(λi)+νi(F ))
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so substituting this into the previous formula we get

⊠i∈I(p×id)!iνi!((q×id)∗(Tw0(λi)+νi(F )⊗( j×id)!(Λ[dim(BunB)])))⊗Vi(w0(λi)+νi)(−⟨ρ̂,w0(λi)+νi⟩)

Now iνi does nothing to the G-bundle FG and the copy of DivI
E . Therefore, this

becomes

⊠i∈I(p×id)!((q×id)∗(Tw0(λi)+νi(F )) ⊗( j×id)!(Λ[dim(BunB)]))⊗Vi(w0(λi)+νi)(−⟨ρ̂,w0(λi)+νi⟩)

which is just

⊠i∈I(Eis⊠ id)(Tw0(λi)+νi(F ))⊗Vi(w0(λi)+νi)(−⟨ρ̂,w0(λi)+νi⟩)

by an application of projection formula to j× id. Since w0(λi) is the lowest weight
of Vi this implies the desired result. Thus, to construct the filtration all we have to
do is prove Theorem 2.7.3.

Proof. (Theorem 2.7.3) For (νi)i∈I ∈ (X∗(TQp
))I , let ν := ∑i∈I νiΓ. Consider the

locally closed stratum νBunB×DivI
E ≃ BunB×Div(ν)×DivI

E ⊂ BunB×DivI
E .

We have the natural projection

p1 : νBunB×DivI
E ≃ BunB×Div(ν)×DivI

E → Div(ν)

as well as the map

p2 : νBunB×DivI
E → DivI

E
∆(νi)i∈I−−−−→ Div(ν)

where the first map is the natural projection and ∆(νi)i∈I is as defined in §2.5.2.
Since Div(ν) is proper using [FS21, Proposition II.1.21] and in particular sepa-
rated, it follows that if we let (νi)i∈I(BunB×DivI

E)→ νBunB×DivI
E be the pull-

back of the diagonal morphism ∆Div(ν) along (p1, p2) that this is a closed im-
mersion. Therefore, we see that the composite (νi)i∈I(BunB×DivI

E)→ νBunB→
BunB ×DivI

E is a locally closed immersion parameterizing (κ λ̂ : (L λ̂ )FT →
(V λ̂ )FG , λ̂ ∈ Λ̂

+
G,(Di)i∈I) such that Coker(κ λ̂ ) has torsion of length ⟨λ̂ ,νiΓ⟩ sup-

ported at Di, in the sense of Lemma 2.5.20, and a 0 nowhere else for all λ̂ ∈ Λ̂
+
G

and i∈ I. If we let j(νi)i∈I := i(νi)i∈I ◦( j× id) then we see that this maps isomorphi-
cally onto (νi)i∈I(BunB×DivI

E), and for varying (νi)i∈I ∈ (X∗(TQp
))I these form a

locally closed stratification of BunB×DivI
E . Now, by applying the excision with
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respect to this locally closed stratification, we obtain a filtration on φ(λi)i∈I!(KZ)
whose graded pieces are isomorphic to:

j(νi)i∈I! j∗(νi)i∈I
φ(λi)i∈I!(KV )

Moreover, since the maps j(νi)i∈I are defined over the projection to DivI
E , it follows

that this filtration is W I
E-equivariant. It remains to determine the W I

E-action on the
graded pieces. To do this, we can consider the pullback to a geometric point
x = Spa(C,OC)→ DivI

E , where we can regard x as a point of Div(ν), as in §2.5.2.
We recall that by definition

KV :=
′
p∗(SV )⊗ (′h→G )∗(Λ[dim(BunB)])

so, by Lemma 2.5.21 (3), this identifies with

RΓc(xGrG,≤(λi)i∈I ,E∩xSG,(νi+w0(λi))i∈I ,E ,SV |xGrG,≤(λi)i∈I ,E
∩xSG,(νi+w0(λi))i∈I ,E

)[−⟨2ρ̂,∑
i∈I

(νi+w0(λi))⟩+dim(BunB)]

We need to justify that the contribution of the L+B torsor xB in Lemma 2.5.21 (3)
is isomorphic to Λ[−⟨2ρ̂,∑i∈I(νi+w0(λi))⟩]. To see this, consider the case where
I = {∗} is a singleton, and we have elements λ ∈ X∗(TQp

)+ and ν ∈ X∗(TQp
).

We consider the L+B-action on xGrG,≤λ ,E ∩ xSG,ν+w0(λ ),E . We note that L+T
will act trivially on this space, as can be seen from the definition of the semi-
infinite cells. Consider the remaining unipotent part L+U . Using the filtration
on U by commutator subgroups, we can write L+U as an iterated fibration of
L+Ga,α̂ indexed by the positive roots α̂ of G. One can check that the L+Ga,α̂
action on xGrG,≤λ ,E ∩ xSG,ν+w0(λ ),E factors through the truncated loop group
L+

nα̂
Ga,α̂ , where nα̂ = ⟨α̂,ν +w0(λ )⟩ (See for example the proof of [FS21, Propo-

sition VI.2.4]). If we let OX ,x denote the completed local ring at the fixed untilt
x, with uniformizing parameter tx then, by writing OX ,x/tnα̂

x as an iterated exten-
sion of OX ,x/tx ≃C, we can describe L+

nα̂
Ga,α̂ as a fibration of (A1

C)
⋄ iterated nα̂

times. This tells us that the compactly supported cohomology of L+
nα̂
Ga,α̂ over

Spa(C,OC) is isomorphic to Λ[−2nα̂ ]. As a consequence, we deduce that the con-
tribution of xB to the above formula is Λ[−∑α̂>0 nα̂ ] = Λ[−⟨2ρ̂,ν +w0(λ )⟩], by
Künneth. Now, by Corollary 2.4.9, j∗(νi)i∈I

φ(λi)i∈I!(KV ) identifies with

⊠i∈IVi(w0(λi)+νi)(−⟨ρ̂,(w0(λi)+νi)⟩)[−⟨2ρ̂,∑
i∈I

(w0(λi)+νi)⟩+⟨2ρ̂,∑
i∈I

(w0(λi)+νi)⟩+dim(BunB)]

or rather
⊠i∈IVi(w0(λi)+νi)(−⟨ρ̂,w0(λi)+νi)⟩)[dim(BunB)]

and so we get the desired result.
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It remains to see that this filtration satisfies the desired compatibilities. Con-
sider a map of finite index sets π : I → J. For j ∈ J, we set I j := π−1( j) and
consider the natural map ∆IJ : DivJ

E → DivI
E , which diagonally embeds the jth

copy of Div1
E in DivJ

E into DivI j
E . Attached to this, we have a Cartesian diagram

BunB×DivJ
E ZJ

(λ j) j∈J

BunB×DivI
E ZI

(λi)i∈I

id×∆IJ

φ(λ j) j∈J

∆̃IJ

φ(λi)i∈I

where λ j := ∑i∈I j λi for all j ∈ J. Base change gives us a natural isomorphism:

(id×∆IJ)
∗
φ(λi)i∈I!(K⊠i∈IVi)≃ φ(λ j) j∈J!∆̃

∗
IJ(K⊠i∈IVi) (2.5)

However, by the relationship between fusion product and tensor product under
Theorem 2.4.2, we deduce that ∆̃∗IJ(K⊠i∈IVi) ≃ K⊠ j∈JV j , where Vj := ⊗i∈I jVi. We
now compare the two filtrations on the LHS and the RHS of this isomorphism.
To do this, we define (ν j) j∈J by ν j := ∑i∈I j νi. We note that we have a natural
Cartesian diagram

BunB×DivJ
E BunB×DivJ

E

BunB×DivI
E BunB×DivI

E

i(ν j) j∈J

id×∆IJ id×∆IJ

i(νi)i∈I

On the LHS of (5), we have a filtration with graded pieces isomorphic to

(id×∆IJ)
∗i(νi)i∈I!( j×id)!(Λ[dim(BunB)])⊗⊠i∈IVi(w0(λi)+νi)(−⟨ρ̂,w0(λi)+νi⟩)

which is naturally isomorphic to

i(ν j) j∈J!(id×∆IJ)
∗( j×id)!(Λ[dim(BunB)])⊗⊠i∈IVi(w0(λi)+νi)(−⟨ρ̂,w0(λi)+νi⟩)

by base-change applied to the previous Cartesian square. We can further rewrite
this as

i(ν j) j∈J!◦( j× id)!(Λ[dim(BunB)])⊗⊠ j∈J⊗i∈I j Vi(w0(λi)+νi)(−⟨ρ̂,w0(λi)+νi⟩))
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On the other hand, for such a (ν j) j∈J , the RHS of (5) has a filtration with graded
pieces isomorphic to

i(ν j) j∈J!( j× id)!(Λ[dim(BunB)])⊗⊠ j∈JVj(w0(λ j)+ν j)(−⟨ρ̂,w0(λ j)+ν j⟩))

but now note that

Vj(w0(λ j)+ν j)(−⟨ρ̂,w0(λ j)+ν j⟩))=
⊕

(νi)i∈I∈ΛI
G,B

∑i∈I j νi=ν j

⊗
i∈I j

Vi(w0(λi)+νi)(−⟨ρ̂,w0(λi)+νi⟩))

for all j ∈ J. Therefore, the graded piece indexed by (ν j) j∈J on the RHS have a
split filtration with graded pieces isomorphic to the graded pieces coming from
the filtration on the LHS. The compatibility of these two filtrations now follows
from Corollary 2.4.11, and the fact that the filtration came from restricting the
sheaf SV to semi-infinite cells. Now, we can reap the fruit of this section using
the filtered eigensheaf property to get some control on the stalks of nEis(SφT ).

2.7.2 Consequences of the Filtered Eigensheaf Property

First, we note, by applying Theorem 2.7.1 when F = SφT ⊗∆
1/2
B together with

Corollary 2.3.5, we obtain the following.

Corollary 2.7.4. For all finite index sets I and V = ⊠i∈IVi ∈ RepΛ(
LGI), the

sheaf TV (nEis(SφT )) admits a W I
Qp

-equivariant filtration indexed by (νi)i∈I ∈
(X∗(TQp

)/Γ)I . The filtration’s graded pieces are isomorphic to nEis(SφT )⊗
⊠i∈I(νi ◦ φT )⊗Vi(νi). The filtration is natural in I and V , as well as compati-
ble with compositions and exterior tensor products in V .

In particular, we note that the direct sum of the graded pieces of the filtration
on TV (nEis(SφT )) is isomorphic to

nEis(SφT )⊗
⊕

(νi)i∈I∈(X∗(TQp
)/Γ)I

⊠i∈Iνi ◦φT ⊗Vi(νi)≃ nEis(SφT )⊠ rV ◦φ

as sheaves in D(BunG)
BW I

Qp , where φ is the parameter φT composed with the nat-
ural embedding LT → LG. In other words, TV (nEis(SφT )) is a filtered eigensheaf
with eigenvalue φ . We now would like to use this to deduce some consequences
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about the stalks of the Eisenstein series nEis(SφT ). In particular, let’s consider
some Schur irreducible constituent A of nEis(SφT ). We will now need our as-
sumption that the prime ℓ is very good. Under this assumption, the excursion
algebra will define endomorphims of A which determine and are determined by
the parameter φ FS

A , as in [FS21, Propositions I.9.1, I.9.3]. Since the excursion
algebra is determined by natural transformations of Hecke operators, the filtered
Hecke eigensheaf property tells us that these scalars must be specified by φ , so that
we have an equality: φ = φ FS

A , as conjugacy classes of semi-simple parameters.
In particular, if we consider b ∈ B(G) and look at the restriction nEis(SφT )|Bunb

G

to the locally closed HN-strata Bunb
G ⊂ BunG indexed by b. Then, by [FS21,

Proposition V.2.2], we have a natural isomorphism D(Bunb
G) ≃ D(Jb(Qp),Λ).

By the previous discussion and compatibility of the Fargues-Scholze correspon-
dence with restriction to Jb [FS21, Section IX.7.1], we deduce that any irreducible
constituent ρ of the restriction nEis(SφT )|Bunb

G
has Fargues-Scholze parameter

φ FS
ρ : WQp → LJb(Λ) equal to φ under the appropriately Tate twisted embedding:

LJb(Λ)→ LG(Λ)

Now, since our parameter φ is induced from the maximal torus, we would like
to say that this is impossible unless Jb itself admits a maximal torus, which is in
turn equivalent to assuming that b is unramified. Here we need to be a bit careful.
In particular, if we consider G = GL2 and b the element of slope 1

2 then Jb = D∗1
2

the units in the quaternion division algebra. The trivial representation 1 of D∗1
2

has
Fargues-Scholze parameter given by

WQp → GL2(Λ)

g 7→
(
|g|1/2 0

0 |g|−1/2

)
This parameter is induced from a maximal torus of GL2; however, it is not generic.
In particular, the composite of this parameter with the unique simple root defined
by the upper triangular Borel gives a Galois representation isomorphic to the norm
character | · |. Therefore, one might hope that assuming compatibility of some
suitably nice form of the local Langlands correspondence for G with the Fargues-
Scholze correspondence together with genericity of φT is enough to give us the
desired description of the stalks. This is indeed the case. The assumption we need
is as follows.
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Assumption 2.7.5. For a connected reductive group H/Qp, we have:

• Π(H) the set of smooth irreducible Qℓ-representations of H(Qp),

• Φ(H) the set of conjugacy classes of continuous maps

LQp =WQp×SL(2,Qℓ)→ LH(Qℓ)

where Qℓ has the discrete topology and SL(2,Qℓ) acts via an algebraic
representation and the map respects the action of WQp on LH(Qℓ), the L-
group of H.

• Φss(H) the set of continuous semi-simple homomorphisms

WQp →
LH(Qℓ)

• (−)ss : Φ(H)→Φss(H) the map defined by precomposition with

WQp →WQp×SL(2,Qℓ) = LQp

g 7→ (g,
(
|g|1/2 0

0 |g|−1/2

)
)

Then, we assume, for all b ∈ B(G), that there exists a map

LLCb : Π(Jb)→Φ(Jb)

ρ 7→ φρ

satisfying the following properties:

1. The diagram

Π(Jb) Φ(Jb)

Φss(Jb)

LLCb

LLCFS
b

(−)ss

commutes, where LLCFS
b is the Fargues-Scholze local Langlands correspon-

dence for Jb.
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2. Consider φρ as an element of Φ(G) given by composing with the twisted
embedding LJb(Qℓ) ≃ LMb(Qℓ) → LG(Qℓ) (as defined in [FS21, Sec-
tion IX.7.1]). Then φρ factors through the natural embedding LT → LG
if and only if b ∈ B(G)un.

3. If ρ is a representation such that LQp→ LJb(Qℓ)→ LG(Qℓ) factors through
LT , where the last map is the twisted embedding then, by (2), the element
b is unramified, and we require that ρ is isomorphic to an irreducible con-
stituent of iJb

Bb
(χw)⊗ δ

−1/2
Pb

for w ∈Wb. Here χ : T (Qp)→ Q∗ℓ is the char-
acter attached to the induced toral parameter φT , and δPb is the modulus
character of Mb ≃ Jb with respect to the standard parabolic Pb with Levi
factor Mb.

Remark 2.7.6. This assumption might seem a bit daunting, but is verifiable in
many cases. In particular, the first assumption follows from the compatibility of
the Fargues-Scholze correspondence with the Harris-Taylor correspondence for
groups of type An and its inner forms ([HKW22, Theorem 1.0.3]). Similarly, for
groups of type C2 and their inner forms over a unramified extension L with p > 2,
this follows from the main theorem of [Ham21b], and, for odd unramified unitary
groups over Qp this follows from the main theorem of [BHN22]. The methods
employed in these two papers should generalize to at least a few other cases.

Assumption (2) is also a standard and verifiable conjecture in the cases where
the local Langlands correspondence is known to exist. If ρ is a representation such
that φρ factors through LT then we are claiming that Jb has a Borel subgroup.
For non quasi-split groups, it is conjectured that one should only consider L-
parameters coming from the L-groups of the Levi subgroups of the non quasi-split
group. These are referred to as relevant L-parameters. In particular, one expects
the L-packets of LLCb over irrelevant φ to be empty (See for example [Kal16,
Conjecture A.2]), so if φρ factors through LT for some ρ under LLCb it should
imply that the group Jb has a Borel Bb. Assumption (3) is just the expectation that,
when φρ factors through LT , the members of the L-packet should be given by the
irreducible constituents of the parabolic inductions from T to Jb. The Weyl group
twists appear since the Weyl group conjugates of φρ : WQp → LJb(Qℓ)≃ LMb(Qℓ)

all map to the same parameter when viewed as a parameter valued in LG, and the
modulus twist by δ

−1/2
Pb

appears since we are comparing this to an L-parameter of
G via the twisted embedding LJb(Qℓ)≃ LMb(Qℓ)→ LG(Qℓ).

Under this assumption, we will deduce our main Corollary of the filtered
eigensheaf property.
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Corollary 2.7.7. Under Assumption 2.7.5, consider b ∈ B(G) with corresponding
locally closed HN-strata Bunb

G ⊂ BunG. For φ a generic parameter, the following
is true.

1. If b /∈ B(G)un the restriction

nEis(SφT )|Bunb
G

vanishes.

2. If b ∈ B(G)un is an unramified element and ρ is a smooth irreducible Fℓ-
representation occurring as a constituent of nEis(SφT )|Bunb

G
then ρ is an

irreducible constituent of iJb
Bb
(χw)⊗δ

−1/2
Pb

for some w ∈Wb.

Proof. As noted above, nEis(SφT )|Bunb
G

will be valued in an unbounded complex

of smooth Fℓ-representations of the σ -centralizer Jb of b. If we consider a smooth
irreducible constituent of this restriction ρ then, as already discussed above, it
follows that the Fargues-Scholze parameter φ FS

ρ :WQp→ LJb(Fℓ) under the twisted
embedding

LJb(Fℓ)→ LG(Fℓ)

agrees with φ . Using [Dat05, Lemma 6.8], we can choose ρ̃ a lift of ρ to a
smooth irreducible Qℓ-representation admitting a Jb(Qp)-stable Zℓ-lattice such
that ρ occurs as a subquotient of ρ̃ mod ℓ. Since the Fargues-Scholze correspon-
dence is compatible with reduction mod ℓ [FS21, Section IX.5.2], it follows that
the Fargues-Scholze parameter φ FS

ρ̃
factors through LG(Zℓ) and that it equals φ FS

ρ

mod ℓ. Now, since φ FS
ρ factors through LT and induces a generic parameter, we

claim that the same is true for φ FS
ρ̃

. This follows through standard deformation
theory. In particular, if

H1(WQp,α ◦φT )

vanishes for all Γ-orbits α of roots, then any lift of φ FS
ρ will factor through LT ,

but this vanishing is guaranteed by φT being generic (cf. [CS17, Lemma 6.2.2]).
It is also easy to see that φ FS

ρ̃
must be generic since its mod ℓ reduction is. Now,

by Assumption 2.7.5, we note that φ FS
ρ̃

is the semi-simplification of φρ̃ , the L-
parameter attached to ρ̃ , but by Lemma 2.3.18 and genericity that implies that
φρ̃ |WQp

= φ FS
ρ̃

. The two claims now follow from Assumptions 2.7.5 (2) and (3),
respectively.
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This statement will allow us to give a complete description of the eigensheaf
nEis(SφT ) for φT satisfying the slightly stronger condition of weak normalized
regularity. In particular, as we will see in §9, for the restrictions of the sheaf to
Bunb

G for b ∈ B(G)un, we will always be able to evaluate the stalks in terms of
normalized parabolic inductions of Weyl group translates of the character χ ,and,
by the previous Corollary, we know these are the only possible non-zero stalks.

Now we turn our attention to studying how the geometric Eisenstein functor
interacts with Verdier duality.

2.8 Eisenstein Series and Verdier Duality
We would like to study how the normalized Eisenstein functor interacts with
Verdier duality. This will be done assuming the following claim.

Assumption 2.8.1. We assume that the sheaf j!(ICBunB) is ULA with respect to
the morphism defined by q, in the sense of [FS21, Definition IV.2.31].

Remark 2.8.2. A proof of this claim should appear in upcoming work [HHS].

We assume this claim, and use it to show that this implies that our Eisenstein
functor commutes with Verdier duality when φT is weakly generic. In particular,
if DBunG (resp. DBunT ) denotes Verdier duality on BunG (resp. BunT ), our main
goal is to prove the following.

Theorem 2.8.3. Assuming 2.8.1 then, for φT a weakly generic toral parameter,
there is an isomorphism of objects in D(BunG)

DBunG(nEis(SφT ))≃ nEis(DBunT (SφT ))

where we note that DBunT (SφT )≃Sφ∨T
, if φ∨T denotes the parameter dual to φT .

First, let’s record some implications of Assumption 2.8.1.

Lemma 2.8.4. The sheaf j∗(ICBunB) is also ULA with respect to q, and we have
isomorphisms

DBunB
( j!(ICBunB))≃ j∗(ICBunB)

and
DBunB

( j∗(ICBunB))≃ j!(ICBunB)

of objects in D(BunB).
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Proof. The first claimed isomorphism just follows from Corollary 2.6.2, and
the fact that we always have an isomorphism of derived functors DBunB

◦ j! ≃
j∗ ◦DBunB , by projection formula. Now, since the dualizing object on BunT is
just the constant sheaf, by Lemma 2.6.5 and the fact that T is unimodular, it fol-
lows that we have a unique (up to fixing Haar measures on T (Qp)) isomorphism
DBunB

≃ DBunB/BunT
. Therefore, by [FS21, Corollary IV.2.25], we can show that

j∗(DBunB(ICBunB)) ≃ j∗(ICBunB) ≃ DBunB
( j!(ICBunB)) ≃ DBunB/BunT

( j!(ICBunB))
is also ULA with respect to q, where the first isomorphism follows from Corollary
2.6.2. The second claimed isomorphism now follows from the first and the fact
that ULA objects are reflexive with respect to Verdier duality, again by [FS21,
Corollary IV.2.25].

We will now combine this with the following lemma.

Lemma 2.8.5. Let f : X → S be a map of decent v-stacks which are fine over a
base ∗. Suppose that A is ULA with respect to f and B ∈ D(S), then we have a
natural isomorphism

DX(A⊗ f ∗(B))≃ DX(A)⊗ f ∗(DS(B))

in D(X).

Proof. Let g : S→∗ denote the structure morphism. It follows, by [FS21, Propo-
sition IV.2.19] and A being ULA, that we can rewrite the RHS of the above iso-
morphism as

DX(A)⊗ f ∗(DS(B))≃ RH om(A, f !(DS(B)))

which in turn is equal to

RH om(A, f !(RH om(B,g!(Λ))))

by definition. Now, by projection formula, we can further rewrite this as

RH om(A,RH om( f ∗(B), f !g!(Λ)))

but, by Hom-Tensor duality, this is just

RH om(A⊗ f ∗(B), f !g!(Λ)) = DX(A⊗ f ∗(B))

as desired.
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Combining the previous two Lemmas, we deduce the following.

Corollary 2.8.6. There is an isomorphism

DBunB
(q∗(SφT )⊗ j!(ICBunB))≃ q∗(DBunT (SφT ))⊗DBunB

( j!(ICBunB))≃ q∗(Sφ∨T
)⊗ j∗(ICBunB)

of objects in D(BunB). Similarly, using Lemma 2.8.4, we also have an isomor-
phism

DBunB
(q∗(SφT )⊗ j∗(ICBunB))≃ q∗(Sφ∨T

)⊗ j!(ICBunB)

of objects in D(BunB).

Now let’s apply these results to prove Theorem 2.8.3.

Proof. (Theorem 2.8.3) First note that, using projection formula with respect to j,
we have an isomorphism:

nEis(SφT )= p!(q
∗(SφT )⊗ICBunB)= p! j!( j∗q∗(SφT )⊗ICBunB)≃ p!(q

∗(SφT )⊗ j!(ICBunB))

Now, by Proposition 2.5.9, we have that p! is equivalent to p∗, this means that we
have an isomorphism

DBunG(nEis(SφT ))≃ p!(DBunB
(q∗(SφT )⊗ j!(ICBunB)))

but now, by Corollary 2.8.6, this is isomorphic to

p!(q
∗(Sφ∨T

)⊗ j∗(ICBunB)) (2.6)

Therefore, we need to exhibit an isomorphism between this sheaf and

nEis(DBunT (SφT ))≃ p!(q
∗(DBunT (SφT ))⊗ j!(ICBunB))≃ p!(q

∗(Sφ∨T
)⊗ j!(ICBunB))

(2.7)
In other words, we need to show that the cone of the natural map

q∗(Sφ∨T
)⊗ j!(ICBunB))→ q∗(Sφ∨T

)⊗ j∗(ICBunB)) (2.8)

is trivial after applying p!. We will do this by factorizing (8). In particu-
lar, note, by applying projection formula to j as above and rewriting ICBunB ≃
q∗(∆

1/2
B )[dim(BunB)]≃ j∗q∗(∆1/2

B )[dim(BunB)], we see that (7) is isomorphic to

p!( j! j∗q∗(Sφ∨T
⊗∆

1/2
B ))[dim(BunB)]

209



and therefore applying Verdier duality and Theorem 2.6.1 it follows that (6) is
isomorphic to

p!( j∗ j∗q∗(Sφ∨T
⊗∆

1/2
B ))[dim(BunB)]

Therefore, we can rewrite the map (8) as

j! j∗q∗(SφT ⊗∆
1/2
B )→ j∗ j∗q∗(SφT ⊗∆

1/2
B ))

Now note that we can factorize this morphism via the adjunction maps as

j! j∗q∗(Sφ∨T
⊗∆

1/2
B )[dim(BunB)]

(1)−→ q∗(Sφ∨T
⊗∆

1/2
B )[dim(BunB)]

(2)−→ j∗ j∗q∗(Sφ∨T
⊗∆

1/2
B ))[dim(BunB)]

By the octahedral axiom, it suffices to show the cone of (1) and (2) are trivial after
applying p!. The cone of (1) is relatively easy to get a handle on, but the cone of
(2) is more tricky. To do this, we note it suffices to show the claim after applying
Verdier duality on DBunB

. This follows because p! ≃ p∗ and Verdier duality on
BunG can be checked to be a conservative functor. In particular, one can use
the semi-orthogonal decomposition of D(BunG) into the HN-strata D(Bunb

G) to
reduce it to the claim that smooth duality on the unbounded derived category of
smooth Fℓ-representations of a p-adic reductive group is conservative. Now, by
the above discussion, the Verdier Dual of the target of (2) is equal to j! j∗q∗(SφT ⊗
∆

1/2
B )[dim(BunB)]. Hence, we deduce that the Verdier dual of (2) is equal to a map

j! j∗q∗(SφT ⊗∆
1/2
B ))→ DBunB

(q∗(Sφ∨T
⊗∆

1/2
B ))≃ q!(SφT ⊗∆

−1/2
B )

where ∆
−1/2
B is the sheaf on BunT whose restriction to each connected component

is given by the character δ
−1/2
B . As a quick sanity check, note that, by Theo-

rem 2.6.1, we have an isomorphism j∗q!(SφT ⊗∆
−1/2
B ) ≃ j!q!(SφT ⊗∆

−1/2
B ) ≃

q!(SφT ⊗∆
−1/2
B ⊗∆B)[dim(BunB)]≃ q∗(SφT ⊗∆

1/2
B )[dim(BunB)], and so we can

see that this is the natural map coming from adjunction. Now, observe that φT
is weakly generic if and only if φ∨T is weakly generic (since taking duals just ex-
changes the role of positive and negative roots). Therefore, it suffices to show the
following.

Lemma 2.8.7. Assume that φT is weakly generic toral parameter, then the cone
of the morphism

j! j∗q∗(SφT ⊗∆
1/2
B )≃ j!q∗(SφT ⊗∆

1/2
B )→ q∗(SφT ⊗∆

1/2
B )
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vanishes after applying p!. Similarly, the cone of the natural map

j! j∗q∗(SφT ⊗∆
1/2
B )≃ j!q∗(SφT ⊗∆

1/2
B )→ q!(SφT ⊗∆

−1/2
B )

vanishes after applying p!.

Proof. We start with the first map. By excision, it suffices to show that the re-
striction to the locally closed stratum νBunB vanishes for all ν ∈ Λ

pos
G,B \{0} after

applying p!. In particular, we are tasked with computing

p! jν! j∗νq
∗(SφT ⊗∆

1/2
B )

for all such ν . Note that the composite map

BunB×Div(ν)
jν−→ BunB

q−→ BunT

can be identified with

BunB×Div(ν)
q×id−−−→ BunT ×Div(ν)

h→(ν)−−→ BunT

where the last map is the Hecke operator defined in §2.3.3. Therefore, we are
reduced to computing

p! jν!(q× id)∗(h→(ν))
∗(SφT ⊗∆

1/2
B )≃ p! jν!(q× id)∗(SφT ⊗∆

1/2
B ⊠E(ν)

φT
(⟨ρ̂,ν⟩))

However, note that we have an equality: p ◦ jν = p× g, where g : Div(ν)→ ∗ is
the structure map. Therefore, by Künneth formula, we obtain that the RHS can be
identified with

nEis(SφT )⊗RΓc(Div(ν),E(ν)
φT

(⟨ρ̂,ν⟩))

but now it follows, by Corollary 2.3.21 and the weak genericity assumption on φT ,
that the complex RΓc(Div(ν),E(ν)

φT
(⟨ρ̂,ν⟩)) is trivial. Now for the second map we

argue similarly. In particular, it suffices to show that q!(SφT ⊗∆
−1/2
B ) vanishes

after applying p! jν∗ j!
ν
, but then, as before, we observe that j!

ν
◦ q! = (q× id)! ◦

(h→
ν
)!. By uniformizing Div1 by punctured positive Banach-Colmez spaces, the

dualizing object on Div(ν) can be identified up to a shift with Λ(⟨ρ̂,ν⟩). It follows
that h!

ν
(∆
−1/2
B ⊗SφT ) can be identified up to a shift with E(ν)

φT
(−⟨ρ̂,ν⟩+⟨ρ̂,ν⟩) =

E(ν)
φT

. Similarly, we can compute (q× id)! using Theorem 2.6.1, and this will not
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effect the Div(ν)-factor. Using that p! ◦ jν∗ ≃ p∗ ◦ jν∗ = (p× g)∗ together with
the properness of g [FS21, Proposition II.1.21], we can apply Künneth to see the
desired vanishing follows from the vanishing of the complex

RΓc(Div(ν),E(ν)
φT

)

which again follows from Corollary 2.3.21.

We now conclude by noting the following important corollary of assumption
2.8.1.

Corollary 2.8.8. The functor

nEis(−) : D(BunT )→ D(BunG)

induces a functor

nEis(−) : DULA(BunT )→ DULA(BunG)

on the full subcategories of ULA objects over ∗.

Proof. By projection formula applied with respect to the open immersion j, we
have a natural isomorphism

nEis(−)≃ p∗(q
∗(−)⊗ j!(ICBunB)),

as explained above. In particular, given A ∈ DULA(BunT ), we have, by [FS21,
Proposition IV.2.26] and assumption 2.8.1, that q∗(A)⊗ j!(ICBunB) is ULA over
∗. Now, since the map p is proper after restricting to connected components, the
claim follows by [FS21, Proposition IV.2.11].

For the rest of the paper, we will assume 2.8.1 and thereby the validity of
Theorem 2.8.3 and Corollary 2.8.8. In addition, we will assume compatibility
with a suitably nice form of the local Langlands correspondence (Assumption
2.7.5).
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2.9 Stalks of Geometric Eisenstein Series
Now our aim is to explicitly determine the stalks of the sheaf nEis(SφT ), when
φT is weakly normalized regular. Recall this means that φT is generic, and, for all
w ∈WG non-trivial, χ ⊗ δ

1/2
B ̸≃ (χ ⊗ δ

−1/2
B )w. Genericity will allow us to apply

the results of Corollary 2.7.7, and the second condition will appear naturally in
the computation of the stalks. It is helpful to treat each connected component
separately. In particular, using Corollary 2.5.3, we consider the decomposition:

nEis(SφT ) =
⊕

ν∈B(T )

nEisν(SφT )

The main result of this section is as follows.

Theorem 2.9.1. Consider φT a weakly normalized regular parameter with as-
sociated character χ : T (Qp)→ Λ∗. We fix ν ∈ B(T ) with image b ∈ B(G)un,
dominant reduction bT , and associated Borel Bb. Using Corollary 2.2.11, we can
write ν = w(bT ) for a unique w ∈Wb. Then we have an isomorphism

nEisν(SφT )≃ jb!(i
Jb
Bb
(χw)⊗δ

−1/2
Pb

)[−⟨2ρ̂,νb⟩]

under the identification D(Jb(Qp),Λ) ≃ D(Bunb
G), where jb : Bunb

G → BunG is
the locally closed immersion defined by the HN-stratum corresponding to b, and
Pb is the standard parabolic with Levi factor Mb ≃ Jb.

By varying ν over all connected components, we obtain the following.

Corollary 2.9.2. Consider φT a weakly normalized regular parameter, with as-
sociated character χ : T (Qp)→ Λ∗. For b ∈ B(G), the stalk nEis(SφT )|Bunb

G
∈

D(Bunb
G)≃ D(Jb(Qp),Λ) is given by

1. an isomorphism nEis(SφT )|Bunb
G
≃
⊕

w∈Wb
iJb
Bb
(χw)⊗ δ

−1/2
Pb

[−⟨2ρ̂,νb⟩] if
b ∈ B(G)un,

2. an isomorphism nEis(SφT )|Bunb
G
≃ 0 if b /∈ B(G)un.

In particular, nEis(SφT ) is a perverse sheaf on BunG with respect to the standard
t-structure defined by the HN-strata using Theorem 2.8.3.

First, consider the following easy Lemma.
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Lemma 2.9.3. For ν ∈ B(T ) with image b in B(G), the restriction

nEisν(SφT )|Bunb′
G

for b′ ∈ B(G) vanishes unless b⪰ b′ in the natural partial ordering on B(G).

Proof. This follows from the observation that the image of Bunν
B under pν is con-

tained in the open substack Bun≤b
B parametrizing bundles with associated Kottwitz

element less than b. In particular, using the Tannakian formalism [Zie15, Theo-
rems 4.42, 4.43], this reduces to the observation that, for GLn, a bundle E with a
filtration by vector subbundles has Harder-Narasimhan polygon less than or equal
to Harder-Narasimhan polygon of the direct sum of the graded pieces of the fil-
tration, which is an easy consequence of the formalism of Harder-Narasimhan
reductions (See for example [Ked17, Corollary 3.4.18]).

Thus, for a fixed b′ ∈ B(G), Lemma 2.9.3 tells us that nEis(SφT )|Bunb′
G

is a

direct sum of nEisν(SφT )|Bunb′
G

for ν whose image b ∈ B(G) satisfies b⪰ b′. Now
the key point is that, under the weak normalized regularity assumption, all the
contributions will vanish except when b′ = b. This is one of the many reasons that
weak normalized regularity (or at least genericity) is absolutely necessary to get
a reasonable eigensheaf. In general, all possible ν contribute to nEis(SφT )|Bunb′

G
,

and nEis(SφT )|Bunb′
G

will be equal to an infinite direct sum of smooth irreducible
representations sitting in infinitely many degrees. We now reduce Theorem 2.9.1
to two propositions. We first have the following proposition describing the contri-
bution of the split reduction in the connected components Bunν

B.

Proposition 2.9.4. Let ν ∈ B(T ) be an element mapping to b ∈ B(G)un. We write
ν = w(bT ) as above. If ξ : T (Qp)→ Λ∗ is any smooth character, we have an
isomorphism

Eisν(ξ )|Bunb
G
≃ IndJb

Bb
(ξ w⊗ (δ w

B )
−1/2⊗δ

1/2
Bb

)⊗δ
−1/2
Pb

[−⟨2ρ̂,νb⟩]

of complexes of smooth Jb(Qp)-modules, under the identification D(Bunb
G) ≃

D(Jb(Qp),Λ), where w ∈Wb is identified with a representative of minimal length
and δPb is as in assumption 2.7.5. .

In particular, using the isomorphism

nEis(SφT )≃ Eis(SφT ⊗∆
1/2
B )
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we have, for all ν ∈ B(T ) mapping to b ∈ B(G)un and χ the character attached to
φT , an isomorphism

nEisν(SφT )|Bunb
G
= Eis(SφT ⊗∆

1/2
B )|Bunb

G
≃ IndJb

Bb
(χw⊗ (δ w

B )
1/2⊗ (δ w

B )
−1/2⊗δ

1/2
Bb

)⊗δ
−1/2
Pb

[−⟨2ρ̂,νb⟩]

≃ IndJb
Bb
(χw⊗δ

1/2
Bb

)⊗δ
−1/2
Pb

[−⟨2ρ̂,νb⟩]

≃ iJb
Bb
(χw)⊗δ

−1/2
Pb

[−⟨2ρ̂,νb⟩]

This tells us that all the claimed contributions to the restriction nEis(SφT )|Bunb
G

appear. All that remains is to show is that there are no additional contributions,
and this is precisely what weak normalized regularity will allow us to do.

Proposition 2.9.5. Assume φT is weakly normalized regular, then, for all ν ∈B(T )
mapping to b ∈ B(G)un, the sheaf nEisν(SφT ) is only supported on the HN-strata
Bunb

G.

We dedicate the remainder of this section to the proof of these two proposi-
tions.

The Proof of Proposition 2.9.4

We let Bunν
B be the connected component defined by ν ∈ B(T ) mapping to

b ∈ B(G)un, and let Bunν ,b
B be the preimage of Bunb

G along pν : Bunν
B → BunG.

Topologically, the stack Bunν ,b
B is just a point defined by the split reduction

Qν = Fν ×T B, as in Definition 2.6.16. We already saw in the proof of Theo-
rem 2.6.1 what the automorphisms of this B-bundle are. In particular, they are
given by the group diamond Gν , where Gν(S) = Qν(XS) for S ∈ Perf, and Qν is
defined as Fν ×T B. In other words, we have an isomorphism

Bunν ,b
B ≃ [∗/Gν ]

and the map pν : Bunν
B→ BunG induces a map of the form

[∗/Gν ]→ [∗/Jb]≃ Bunb
G

which we will abusively denote by p. This map is given by an injection

Gν ↪→Jb
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of group diamonds, coming from the fact that Qν defines a reduction of Fb. More-
over, the map qν : Bunν ,b

B → BunT is identified with a map of the form

[∗/Gν ]→ [∗/T (Qp)]

which we will abusively denote by q. This map factors as

[∗/Gν ]
[
∗/Bb(Qp)

] [
∗/T (Qp)

]
≃w
[
∗/T (Qp)

]
q♮

where the first map is given by the semi-direct decomposition

Gν ≃ G>0
ν

⋉G=0
ν

and the identification G=0
ν
≃ Bb(Qp), the second map q♮ is the natural projection,

and the last isomorphism is given by conjugating by the minimal length represen-
tative w ∈Wb. We will explain more below why this conjugation by w appears.
For now, it follows by base change that we have an isomorphism

Eisν(ξ )|Bunb
G
≃ p!q

∗(ξ )[dν ]

where dν = dim(Bunν
B). We let [∗/Jb(Qp)]→ [∗/Jb] be the natural map, as in

§2.6.1. Our goal is to compute

s∗p!q
∗(ξ )[dν ]

as a complex of Jb(Qp)-representations. To do this, we consider the stack Y ν

defined by the Cartesian diagram

Y ν

[
∗/Jb(Qp)

]

[∗/Gν ] [∗/Jb]

[
∗/T (Qp)

]

p̃

s̃ s

q

p (2.9)
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By base-change, it suffices to compute:

p̃!s̃∗q∗(ξ )[dν ]

Let’s now describe the stack Y ν . We define G ν to be the cokernel of the natural
map of group diamonds:

0→ G>0
ν
→J >0

b → G ν → 0

The diamond G=0
ν
≃ Bb(Qp)⊂ Jb(Qp)≃J =0

b acts on the right of the first term
by the action described in §2.6.1. It acts on the second term by the right conjuga-
tion on the opposite parabolic P−b . This map is equivariant with respect to these
actions and hence G ν also acquires a right action of Bb(Qp). We deduce that the
space Y ν is isomorphic to the v-stack quotient:

[G ν/Bb(Qp)]

With this in hand, we further refine diagram (9)[
G ν/Bb(Qp)

] [
∗/Jb(Qp)

]
[
∗/Bb(Qp)

]

[∗/Gν ] [∗/Jb]

[
∗/T (Qp)

]

p̃

s̃

j

s

i

q

q

p

(2.10)

where i and j are the natural maps, and q is the composition of the natural projec-
tion q♮ : [∗/Bb(Qp)]→ [∗/T (Qp)] followed by conjugation by w. The reason that
conjugation by w appears is in order to make this diagram commutative. To illus-
trate the point, consider an element b ∈ B(G) which admits a canonical reduction
to bT ∈ B(T )basic, so that JbT ≃ T and Wb = WG. We write b−T for the conjugate
of bT under the element of longest length w0. Then there are two distinct ways of
presenting Bunb

G in terms of the moduli space of B-bundles. Namely, one has

BunbT
B− ≃ [∗/Jb]
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and
Bunb−T

B ≃ [∗/Jb].

However, only the first will identify the projection to BunT with the natural map
Bunb

G ≃ [∗/Jb] → [∗/Jb(Qp)] considered in [FS21], as is implicit in [FS21,
Proposition III.5.1]. In the second identification, one needs to conjugate by the
element of longest length in order to make this true. In particular, this is why
the action of T (Qp) on J >0

b by right conjugation on the parabolic P−b appeared
above.

Using the diagram (10), we can further reduce to computing

p̃!s̃∗q∗(ξ )[dν ]≃ i! j!s̃∗q∗(ξ )[dν ]≃ i! j! j∗q∗(ξ )[dν ]

but now, by projection formula, this is isomorphic to

i!(q∗(ξ )⊗ j!(Λ))[dν ].

Now recall by Lemma 2.6.17 we have an equality

dν = ⟨2ρ̂,νb⟩−2⟨2ρ̂
w
G ,νb⟩

where ρ̂w is the sum of the positive roots α̂ > 0 such that w−1(α̂)< 0. To proceed
further, we consider the character

δ (t) := δ
1/2
Bb
⊗ (δ w

B )
−1/2⊗δ

−1/2
Pb
|T (Qp)(t)

This is the unique rational character of T (Qp) that, after restricting to A(Qp) is
given by

∏
α̂>0

⟨α̂,νb⟩=0

|det(Ad(t|gα̂)|1/2
∏
α̂>0
|det(Ad(t|gw(α̂)))|−1/2

∏
α̂>0

⟨α̂,νb⟩̸=0

|det(Ad(t|gα̂)|−1/2 = ∏
α̂>0

⟨w−1(α̂),νb⟩>0
⟨α̂,νb⟩̸=0

|det(Ad(t|gα̂))|−1.

Here we have used that w, as a minimal length representative in Wb, will not send
any of the roots lying in Bb to a negative root. We have the following lemma.

Lemma 2.9.6. j!(Λ) is isomorphic to (q♮)∗(δ )[2(⟨2ρ̂w
G ,νb⟩−⟨2ρ̂,νb⟩)].

Let’s see why the result follows from this. In particular, using the formula
dν = ⟨2ρ̂,νb⟩−2⟨2ρ̂w

G ,νb⟩, this gives us an isomorphism:

Eisν(ξ )≃ i!(q∗(ξ )⊗ (q♮)∗(δ ))[−2⟨2ρ̂,νb⟩+2⟨2ρ̂
w
G,νb⟩+ ⟨2ρ̂,νb⟩−2⟨2ρ̂

w
G ,νb⟩]
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≃ i!((q♮)∗(ξ w⊗δ ))[⟨−2ρ̂,νb⟩]
However, now i!((q♮)∗(ξ ⊗δ ))) will be identified with compactly supported func-
tions on Jb(Qp) which transform under the action of Bb(Qp) by the character
ξ w⊗ δ via the natural projection Bb(Qp)→ T (Qp). However, this is precisely
the parabolic induction IndJb

Bb
(ξ w⊗δ ), and the claim follows. We now prove the

lemma.

Proof. (Lemma 2.9.6) We need to determine j!(Λ), where j is the map

[G ν/Bb(Qp)]→ [∗/Bb(Qp)].

Recall that G ν is defined via the short exact sequence of group diamonds:

0→ G>0
ν
→J >0

b → G ν → 0

However, as in §2.6.1, the map G>0
ν
→J >0

b respects the filtration by commutator
subgroups as well as the action of the slope homomorphism, and we similarly see
the cokernel G ν has an induced filtration by commutator subgroups. Namely,
since G>0

ν
breaks up in terms of the positive Banach-Colmez spaces H 0(Qα̂),

for α̂ a positive root such that w−1(α̂) < 0 and ⟨α̂,νb⟩ ≠ 0, and J >0
b breaks up

as H 0(Qα̂), for α̂ a positive root such that ⟨α̂,νb⟩ ≠ 0, we can write G ν as an
iterated fibration of the positive Banach-Colmez spaces

H 0(Qα̂)

where α̂ is a positive root such that ⟨α̂,νb⟩ ≠ 0 and w−1(α̂) > 0. Therefore, we
deduce that j is an iterated fibration of positive Banach-Colmez spaces, and we
can apply the proof of [FS21, Proposition V.2.1] to deduce that the adjunction

j! j!(Λ)≃ Λ

is an isomorphism. The claim is therefore reduced to showing that:

j!(Λ)≃ δ
−1[2(⟨2ρ̂,νb⟩−⟨2ρ̂

w
G ,νb⟩)]

As per usual, we consider the Cartesian diagram

G ν ∗

[
G ν/Bb(Qp)

] [
∗/Bb(Qp)

]
j̃

π̃ π

j
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and, by base-change, obtain an isomorphism:

j̃!(Λ)≃ π̃
∗ j!(Λ)

By Lemma 2.6.8, the dualizing object on the Banach-Colmez spaces H 0(Qα̂) is
isomorphic to | · |−dim(ĝα̂ )[2⟨α̂,νb⟩] as a sheaf with right Q∗p-action. However, as
discussed above, in the present situation A(Qp) acts on J >0

b via right conjugation
of the opposite parabolic P−b . Hence, the induced right action on this Banach-
Colmez space is by

A(Qp)
α̂−1
−−→Q∗p

and the right scaling action of Q∗p on H 0(Qα̂). This tells us that the dualizing
object on G ν as a sheaf with the relevant right A(Qp)-action is isomorphic to

∏
α̂>0

w−1(α̂)>0

|det(Ad(t|gα̂)|[2 ∑
α̂>0

w−1(α̂)>0

⟨α̂,νb⟩]

but this is isomorphic to

δ
−1|A(Qp)[2(⟨2ρ̂,νb⟩−⟨2ρ̂

w
G,νb⟩)]

as desired. However, now we can also see that it is also isomorphic to this as a
sheaf with right T (Qp)-action, by using that the action of T (Qp) on G ν factorizes
over the adjoint action, as in the proof of Proposition 2.6.15.

The Proof of Proposition 2.9.5

We argue by induction on b ∈ B(G)un with respect to the partial ordering on B(G)
and the following stronger statement.

"For b∈ B(G)un with dominant reduction bT , and ν = w(bT )∈ B(T ) mapping
to b for varying w ∈Wb, we have an isomorphism

nEisw(bT )(SφT )≃ jb!(i
Jb
Bb
(χw)⊗δ

−1/2
Pb

)[−⟨2ρ̂,νb⟩]

of sheaves in D(BunG)."
The base case will be when b is such that any b′ ∈ B(G)un satisfying b ⪰ b′

is equal to b. Since the stalk of nEisν(SφT )|Bunb′
G

will only be non-trivial for

b′ ∈B(G) such that b ⪰̸= b′ by Lemma 2.9.3, the result in this case follows follows
from Proposition 2.9.4 and Corollary 2.7.7 (1), where we note that φT is weakly
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normalized regular and therefore generic. For the inductive step, assume the claim
is true for all b′ ∈ B(G)un such that b ⪰̸= b′. Let ν ∈ B(T ) be an element mapping
to b. By Proposition 2.9.4 and Corollary 2.7.7 (1) again, it suffices to show that
the restriction of nEisν(SφT ) to Bunb′

G vanishes for all such b′. By Corollary 2.7.7
(2), it suffices to show, for all w ∈Wb′ , that the complex

RH om(nEisν(SφT )|Bunb′
G
, iJb′

Bb′
(χw)⊗δ

−1/2
Pb′

)=RH om(nEisν(SφT ), jb∗(i
Jb′
Bb′

(χw)⊗δ
−1/2
Pb′

))

is trivial. In particular, since, by Corollary 2.8.8, we know that nEisν(SφT ), is
ULA it follows that nEisν(SφT )|Bunb′

G
is admissible in the sense that, for all com-

pact open K ⊂ Jb(Qp), nEisν(SφT )
K|Bunb′

G
is a perfect complex. By Corollary

2.7.7 (2) and [Vig96, p. II.5.13], we know that there are only finitely many pos-
siblities for smooth irreducible constituents of nEisν(SφT )|Bunb′

G
. Therefore, by

choosing K ⊂ G(Qp) sufficiently small (so that every such constituent has a non-
zero fixed vector), we deduce that nEisν(SφT )|Bunb′

G
is a compelx with finite length

cohomology, which reduces us to showing that the previous complex is trivial. To
do this, let ν

′ = w(b′T ) be the element mapping to b′ ∈ B(G) defined by w ∈Wb′ .
Our inductive hypothesis tells us that we have an isomorphism

jb′!(i
Jb′
Bb′

(χw)⊗δ
−1/2
Pb′

)[−⟨2ρ̂,νb′⟩]≃ nEisν
′
(SφT )

varying over ν
′ mapping to b′ ∈ B(G). If we write nEisν

′
∗ (SφT ) for the sheaf

defined by replacing p! with p∗ in the definition of nEisν
′
∗ (SφT ). It follows, us-

ing Theorem 2.8.3 and Theorem 2.6.1, that this is isomorphic to jb′∗(i
Jb′
Bb′

(χw)⊗

δ
−1/2
Pb′

)[−⟨2ρ̂,νb⟩] (See the discussion preceding Proposition 2.11.12 for details).
Therefore, it then suffices to show, for all ν

′ mapping to b′ ∈ B(G)un and ν map-
ping to b ∈ B(G)un, that

RH om(nEisν(SφT ),nEisν
′
∗ (SφT ))

is trivial. To aid our analysis, we consider the following functor

CTν(−) := qν
∗ ◦pν!(−) : D(BunG)→ D(Bunν

T )[−dim(Bunν
B)]

which is in particular the right adjoint of the unnormalized Eisenstein functor
Eisν(−) := p!(q

∗(−)[dim(Bunν
B)]). Writing nEisν(SφT ) as Eisν(SφT ⊗∆

1/2
B ) and

using adjunction, it suffices to show that the complex

RH omT (Qp)(χ⊗δ
1/2
B ,CTν ◦nEisν

′
∗ (SφT ))
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is trivial in D(Bunν
T )≃ D(T (Qp),Λ). To show this, we first look at the diagram

Bunν
B×BunG Bunν

′
B Bunν

′
B Bunν

′
T

Bunν
B BunG

Bunν
T

′
pν

′
pν ′

pν ′

qν ′

pν

qν

and note, by base-change, that we have a natural isomorphism

qν
∗ ◦pν! ◦pν

′
∗ ◦qν

′∗(−)≃ qν
∗ ◦

′
pν
′
∗ ◦

′
pν! ◦qν

′∗(−)

of derived functors D(Bunν
′

T )→D(Bunν
T ). This tells us that CTν ◦nEisν

′
∗ (SφT ) is

the direct image of the complex

′
pν!(qν

′∗(SφT ⊗∆
1/2
B ))[dim(Bunν

′
B )−dim(Bunν

B)]

on Bunν
B ×BunG Bunν

′
B onto Bunν

T . By [Ham21a, Lemma 4.9], the space
Bunν

B×BunG Bunν
′

B has a locally closed stratification given by the generic relative
position of the two bundles ⊔

w∈WG

(Bunν
B×BunG Bunν

′
B )w

which we denote by Zν ,ν ′
w for varying w ∈WG. Using the excision spectral se-

quence, this implies that CTν ◦nEisν
′
∗ (SφT ) also admits a filtration whose graded

pieces we write as (CTν ◦nEisν
′
∗ (SφT ))w. Consider the following claim.

Proposition 2.9.7. Let ν and ν
′ be two elements mapping to b and b′ in B(G)un,

respectively.

1. Suppose that b ̸= b′ then the stack Zν ,ν ′
w is empty if w = 1.

2. If w ̸= 1 then (CTν ◦ nEisν
′
∗ (SφT ))w is an extension of complexes in

D(T (Qp),Λ) isomorphic to (χ⊗δ
−1/2
B )w.
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First, let’s finish the proof of Proposition 2.9.5 assuming this. By the above
discussion, it suffices to show that the complex

RH omT (Qp)(χ⊗δ
1/2
B ,(CTν ◦nEisν

′
∗ (SφT ))w)

is trivial for all w ∈WG. This is trivial if w = 1 by point (1). If w ̸= 1, then
it follows from point (2) and the fact that the existence of an isomorphism χ ⊗
δ

1/2
B ≃ χw⊗ (δ

−1/2
B )w would contradict Condition 2.3.7 (3) in the definition of

weak normalized regularity. Therefore, since φT is weak normalized regular by
assumption, the claim follows. Let’s now finish up by reducing this Proposition to
a simpler claim, which we will prove in the next section. Proposition 2.9.7 is an
analogue of [BG08, Proposition 10.8] and the idea behind its proof is the same.

Proof. (Proposition 2.9.7) We first begin by elucidating the geometry of the
spaces Zν ,ν ′

w a bit more. For S ∈ Perf, note that a S-point of Bunν
B×BunG Bunν

′
B

corresponds to a pair of B-structures on a G-bundle FG on XS. Namely, it
parametrizes a pair F 1

B (resp. F 2
B) of two B-structures on a G-bundle FG whose

reduction to T , denoted F 1
T (resp. F 2

T ) is isomorphic to Fν (resp. F
ν
′) after

pulling back to any geometric point of S. We can think of it as parameterizing
sections

XS→ B\G/B

such that the degree is of the specified form. More transparently, we can think of
a point of Bunν

B×BunG Bunν
′

B as the B-bundle F 2
B together with a section

s : XS→F 2
B×B G/B

where B acts via conjugation on G/B. For λ̂ ∈ Λ̂
+
G , we recall that by interpreting

V λ̂ as global sections of the appropriately twisted bundle on G/B corresponding
to λ̂ under Borel-Weil-Bott, every point in G/B gives rise to a line ℓλ̂ ⊂ V λ̂ . We
consider the B-stable subspace V λ̂

≥w ⊂ V λ̂ consisting of weights greater than or

equal to w(λ̂ ) and V λ̂
>w ⊂ V λ̂

≥w the codimension 1 subspace consisting of weights
strictly greater than w(λ̂ ). We let (G/B)w := BwB/B be the locally closed Schu-
bert cell attached to w ∈WG. We write (G/B)≥w for its closure. The closure is
stratified by the Schubert cells indexed by elements w′ ∈WG with length less than
or equal to w. Then the line ℓλ̂ ⊂ V λ̂ will correspond to a point in (G/B)≥w if and
only if it belongs to V λ̂

≥w for all λ̂ ∈ Λ̂
+
G . Moreover, the point belongs to the stra-

tum (G/B)w if and only the projection to V λ̂
≥w/V

λ̂
>w is non-zero. This allows us to
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explain what it means to lie in the locally closed stratum Zν ,ν ′
w . In particular, by

definition [Ham21a, Page 26], lying in this stratum is equivalent to the condition
that s factors through F 2

B ×B (G/B)⪰w and is not contained in any closed strata
defined by F 2

B×B (G/B)⪰w′ for any w′ > w in the Bruhat order. This implies that
the section s determines a set of line subbundles

L λ̂

F 1
T
→ (V λ̂

≥w)F 2
B

for all λ̂ ∈ Λ̂
+
G . Moreover, via the inclusion V λ̂

≥w ⊂ V λ̂ , these give the Plücker
description of the B-structure F 1

B such that FG ≃F 1
B ×B G≃F 2

B ×B G. For this
to define a point in Zν ,ν ′

w , these need to satisfy the condition that the induced map

L λ̂

F 1
T
→ (V λ̂

≥w)F 2
B
→ (V λ̂

≥w/V
λ̂
>w)F 2

B
= (L λ̂ )(F 2

T )
w

is non-zero map of OXS-modules (cf. [Bra+02a, Page 14],[BG08,
Page 48],[Sch15a, Propositions 4.3.2, 4.4.2]). In particular, since L λ̂

F 1
T

is a line
bundle, the map being non-zero implies it is a fiberwise injective map of line bun-
dles. Now, recalling our choice of Borel, if we define θ := ν −w(ν ′) then the
support of the torsion of the cokernel of this map of line bundles determines a
point in Div(θ), by the assumptions on the degrees and Lemma 2.5.20. For this
strata to be non-empty, we must have that θ ∈ Λ

pos
G,B. Therefore, for all non-empty

strata, we have a map:
πw : Zν ,ν ′

w → Div(θ)

Now, with these preparations out of the way, let’s start with the proof. For Point
(1), note that if w = 1 then we have an injective map of line bundles

L λ̂

F 1
T
→L λ̂

F 2
T

for all λ̂ , which give rise to the embeddings defined by F 1
B when composed with

the injections of bundles L λ̂

F 2
T
→ V λ̂

FG
defined by F 2

B , by construction. However,

since the composition L λ̂

F 1
T
→ V λ̂

FG
is also a map of vector bundles, this is impos-

sible unless F 1
T ≃F 2

T , which would contradict our assumption that ν ,ν ′ ∈ B(T )
map to b ̸= b′ in B(G). Therefore, we have established point (1). For point (2),
we write q1 (resp. q2) for the natural projections of Zν ,ν ′

w to Bunν
T (resp. Bunν

′
T ).

We note that q2 is equal to the composition

Zν ,ν ′
w

q1×πw−−−−→ Bunν
T ×Div(θ)

oph→(θ)−−−→ Bunw(ν ′)
T

w−1
−−→ Bunν

′
T
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where oph→(θ) is the map sending (FT ,(Di)i∈J ) to the bundle FT (∑i∈J αi ·Di)

and the last map is given by conjugation by w. Recall, (CTν ◦ nEisν
′
∗ (SφT ))w is

given (up to a shift) by the sheaf

q1∗ ◦
′
pν
′! ◦qν

′∗(χ⊗δ
1/2
B )

We can write this as the Verdier dual of q1! ◦
′
pν
′∗ ◦ qν

′!(χ−1⊗ (δ
1/2
B )−1) ≃ q1! ◦

′
pν∗ ◦ qν∗(χ−1⊗δ

1/2
B ), where the last isomorphism is Theorem 2.6.1. Replacing

χ by χ−1, this reduces us to showing that q1!◦
′
pν
′∗◦qν

′∗(χ⊗δ
1/2
B )≃ q1!◦q∗2(χ⊗

δ
1/2
B ) is an extension of complexes which are isomorphic to (δ

1/2
B )w⊗ χw. Using

the above factorization of q2, we rewrite this as

q1!◦(q1×πw)
∗◦(oph→(θ))

∗◦(w−1)∗(χ⊗δ
1/2
B )≃ q1!◦(q1×πw)

∗((χw⊗(δ 1/2
B )w)⊠(E(θ)

φ w
T ⊗(ρ̂w◦|·|))

∨)

but now, by projection formula, we are reduced to the following, which is an
analogue of [BG08, Proposition 10.10]

Proposition 2.9.8. The direct image (q1×πw)!(Λ) is an extension of complexes
which are pullbacks of complexes on Div(θ).

We will prove Proposition 2.9.8 by relating the spaces Zν ,ν ′
w to some variants

of what are called Zastava or semi-infinite flag spaces in the classical literature, as
first studied over function fields by Feign, Finkelberg, Kusnetzov, and Mirković
[Fei+99; FM99].

Zastava Spaces

We let U ′ ⊂U be the subgroup defined by the positive root spaces α̂ > 0 such that
w(α̂)< 0. We set B′ := TU ′ ⊂ B to be the subgroup of the Borel defined by these
root spaces. We recall that U ′ acts simply transitively on the closed Schubert cell
(G/B)≥w and use this to define the w-twisted version of the Zastava space.

Definition 2.9.9. For θ ∈ Λ
pos
G,B, we let W θ

w → Div(θ) be the v-sheaf parameteriz-
ing, for S ∈ Perf, a triple

(FU ′ ,s,D)

of the datum:
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• A U ′-bundle FU ′ on XS.

• A section s : XS→FU ′×U ′ (G/B)≥w that does not lie in (G/B)≥w′ for any
w′ > w in the Bruhat order.

• A divisor D ∈ Div(θ) such that the induced non-zero ( =⇒ fiberwise injec-
tive) maps of line bundles

L λ̂ → (V λ̂
≥w)FU ′

→ (V λ̂
≥w/V

λ̂
>w)FU ′

= OXS

for all λ̂ ∈ Λ̂
+
G have cokernel with torsion supported on D.

Classically, the usual Zastava space in the literature is the same datum as above
in the case that w = w0 together with a level structure on the bundle L λ̂ so that
it encodes information about enhanced B-structures on one of the factors. It’s
importance is that it provides a local model for the singularities of the Drinfeld
compactification BunB. The space we have defined above in the case that w = w0
is the open part of the Zastava space which models just the space BunB. As seen in
our description of Zν ,ν ′

w in the previous section, this will clearly have a relationship
to the spaces we are interested in describing. Let us first just consider the case of
the element of longest length. We claim that the following is true.

Lemma 2.9.10. For w = w0 the element of longest length and θ = ν −w(ν ′) ∈
Λ

pos
G,B for ν

′ and ν as above, there exists a commutative diagram

Zν ,ν ′
w W θ

w

Bunν
T ×Div(θ) Div(θ)

q1×πw

p2

which is a Cartesian square.

Proof. When w = w0, we have that U ′ =U and B′ = B. Given an S-point of W θ
w ,

the maps
L λ̂ → (V λ̂

≥w)FU ↪→ (V λ̂ )FG

of vector bundles on XS define a B-structure FB on the G-bundle FU ×U G. We
note that the induced map

L λ̂ → (V λ̂
≥w)FU → (V λ̂

≥w/V
λ̂
>w)FU = OXS
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with torsion cokernel of support given by D ∈ Div(θ) induces an identification
L λ̂ ≃ OXS(−⟨λ̂ ,θ⟩ ·D) implying that FB×B T has Kottwitz invariant given by
θ = ν−w(ν ′) after pulling back to a geometric point. Given a bundle F 1

T ∈Bunν
T

of degree ν , we can dualize the above maps to get a fiberwise injection

OXS → (L λ̂ )∨ ≃ OXS(⟨λ̂ ,θ⟩ ·D)

of line bundles, and then tensor by L λ̂

F 1
T

to get an injection

L λ̂

F 1
T
→L λ̂

F 1
T
(⟨λ̂ ,θ⟩ ·D)

Similarly, by taking duals and twisting the U-torsor FU by F 1
T , we obtain B =

T ⋉U-bundles F 1
B and F 2

B defining points in Zν ,ν ′
w , giving rise to a map

(Bunν
T ×Div(θ))×Div(θ) W θ

w → Zν ,ν ′
w

which we can see is an isomorphism. In particular, given a point in Zν ,ν ′
w corre-

sponding to B-bundles F 1
B and F 2

B then we can define a U-bundle F 2
B×B U , and,

as already seen in the previous section, we get a section s : XS→FU×U (G/B)≥w,
D ∈ Div(θ), and a T -bundle F 1

T of the desired form.

Now this lemma implies Proposition 2.9.8 in the case that w = w0. In particu-
lar, under the isomorphism

(Bunν
T ×Div(θ))×Div(θ) W θ

w ≃ Zν ,ν ′
w

Bunν
T splits off as direct factor, and so, by Künneth, we deduce the claim. Now

we would like to apply a similar argument using the spaces W θ
w in the case that w

is a general element. However, we run into a problem that, in general, all we get
is a map

(Bunν
T ×Div(θ))×Div(θ) W θ

w → Zν ,ν ′
w

where attached to a point in (Bunν
T ×Div(θ))×Div(θ) W θ

w we only get a B′-torsor
F 1

B′ with T -factor of degree ν . The above map is then given by a base-change

of the natural map fν : Bunν

B′ → Bunν
B. In particular, if we let Z̃ν ,ν ′

w → Zν ,ν ′
w be

the base-change of Zν ,ν ′
w along the map fν then the analogue of this Lemma holds

with Z̃ν ,ν ′
w in place of Zν ,ν ′

w by the same argument. Now let’s study the map fν :
Bunν

B′ → Bunν
B in a particular example and see how to prove Proposition 2.9.8 in

this case.
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Example 2.9.11. Suppose that G=GL3 and let ν correspond to a tuple of integers
(−e,− f ,−g) ∈ Z3 ≃ B(T ) via the Kottwitz invariant. We suppose w corresponds
to the simple reflection exchanging the first and second basis vectors. After rigid-
ifying the T -bundle FT to be isomorphic to (O(e),O( f ),O(g)), we can view
Bunν

B as the moduli space of torsors under the U-torsor1 O(e)⊗O( f )∨ O(e)⊗O(g)∨

0 1 O( f )⊗O(g)∨

0 0 1


over X , where the automorphisms (up to rigidification) of a point in Bunν

B are
given by considering the H 0 Banach-Colmez spaces attached to these bundles.
Similarly, after rigidification, we can view Bunν

B′ as the moduli space of torsors
under the U ′-torsor 1 O(e)⊗O( f )∨ 0

0 1 0
0 0 1


over X , and the map fν is given by taking direct sums of the extension of O(e)
by O( f ) defined by the point in Bunν

B′ with O(g). In particular, we can see that
the fibers of the map fν : Bunν

B′ → Bunν
B are an iterated fibration in the Banach-

Colmez spaces H 0(O(e)⊗O(g)∨) and H 0(O( f )⊗O(g)∨). If we assume that
these Banach-Colmez spaces are positive it follows from the proof of [FS21,
Proposition V.2.1] that the adjunction

fν! f !
ν
→ id

is an equivalence. In particular, combining this with the above discussion would
give us the proof of Proposition 2.9.8 in this case. We now consider d ∈ N>0
and fix a closed point ∞ ∈ X in the Fargues-Fontaine curve over an algebraically
closed complete field F in characteristic p. We look at the short-exact sequence
of OX -modules

0→ OX(−d)→ OX → OX ,∞/td
∞→ 0

where OX ,∞ is the completed local ring and t∞ is the uniformizing parameter cor-
responding to an untilt C of F . Tensoring by O(g), we get a short exact sequence:

0→ OX(g−d)→ OX(g)→ OX ,∞/td
∞→ 0

Let νd correspond to the tuple of integers (e, f ,g− d) ∈ Z3. Then we consider
the natural map fνd : Bunνd

B′ → Bunνd
B . If we choose d sufficiently large such that
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the spaces H 0(O(e)⊗OX(g− d)∨) and H 0(O( f )⊗OX(g− d)∨) are positive
Banach-Colmez spaces then the fibers of fνd will be an iterated fibration in these
positive Banach-Colmez spaces, and therefore we can again conclude that the
adjunction

fνd f !
νd
→ id

is an isomorphism. Now we claim that we have a map:

Bunν
B→ Bunνd

B

Explicitly, given a point Bunν

B′ , we have an exact sequence

0→ E2→ E → O(g)→ 0

of bundles, where E2 is an extension of O(e) and O( f ). We can then consider
the pullback of this exact sequence with respect to the map O(g− d)→ O(g)
given by the modification, which will give us a point in Bunνd

B . We write fν ,d∞ :
Bunν ,d∞

B := Bunν
B×Bun

νd
B

Bunνd
B′ → Bunν

B for the pullback of fνd along this map.

We again conclude that the adjunction

fν ,d∞! f !
ν ,d∞
→ id

is an isomorphism. If we could use this map instead of fν , we could prove the
claim by arguing as above. Indeed, consider q1× πw : Zν ,ν ′

w → Bunν
T ×Div(θ).

If we base-change all the above spaces to F , and let (Div \∞)(θ) be the par-
tially symmetrized power defined by Div1 \∞, the open complement of the closed
point ∞→ Div1 defined by the fixed untilt, then, if we consider the map q1×πw :
Zν ,ν ′

w → Bunν
T × (Div \∞)(θ) restricted to this locus, we can show that the base-

change Zν ,ν ′
w along fν ,d∞ sits in a analogous Cartesian square to Lemma 2.9.10,

and deduce Proposition 2.9.8 for the restriction of (q1× πw)! fν ,d∞! f !
ν ,d∞

(Λ) ≃
(q1×πw)!(Λ) to the open strata (Div\∞)(θ) ⊂ Div(θ). However, by excision, we
can reduce Proposition 2.9.8 to studying this restriction with the claim over the
closed complement being trivial. The claim in this case follows.

With this motivating example, all that remains is to formalize the above argu-
ment. In particular, first off note, by [FS21, Corollary V.2.3], that for the proof of
Proposition 2.9.8 it suffices to consider the base-change of all the above spaces to
the base ∗= Spd(F) for F an algebraically closed perfectoid field in characteristic
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p. We consider such a field with fixed characteristic 0 untilt C, and let ∞→ Div1

be the closed F-point defined by this untilt. We consider the open complement
Div1 \∞, and the partially symmetrized powers (Div1 \∞)(θ) defined by the open
subset. By applying excision, it suffices to verify Proposition 2.9.8 over this open
subset with the claim over the closed complement being trivial. We abuse notation
and write Zν ,ν ′

w and W θ
w for the base-change to this open subspace for the rest of

the section. Now let’s consider the spaces defined by the locally pro-finite sets
B(Qp) (resp. B′(Qp)), and the natural map

f0 : Bun0
B′ ≃ [∗/B′(Qp)]→ Bun0

B ≃ [∗/B(Qp)]

of v-stacks. The fibers of this map are an iterated fibration in H 0(OX) = Qp in-
dexed by the positive roots α̂ > 0 such that w(α̂)> 0. We choose ν∞ ∈X∗(TQp

)Γ

to be an element such that ⟨ν∞, α̂⟩< 0 for all α̂ > 0 such that w(α̂)> 0. Recalling
our choice of Borel, this implies that the map

fν∞
: Bunν∞

B′ → Bunν∞

B

is a fibration in iterated positive Banach-Colmez spaces. We consider a modifica-
tion F 0

T 99KFν∞
at ∞ of meromorphy ν∞. This modification induces a map

Bun0
B→ Bunν∞

B

which we precompose with the map

Bunν
B→ Bun0

B

also given by an appropriate modification. This allows us to define

Bunν ,∞
B′ := Bunν∞

B′ ×Bunν∞
B

Bunν
B

by base-changing fν∞
. We write

fν ,∞ : Bunν ,∞
B′ → Bunν

B

for the base-change of fν∞
. By the proof of [FS21, Proposition V.2.1], we have

that the adjunction
fν ,∞! f !

ν ,∞→ id
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is an isomorphism, since fν∞
and in turn fν ,∞ is an iterated fibration of positive

Banach-Colmez spaces. Now we define

Z̃ν ,ν ′
w := Zν ,ν ′

w ×Bunν
B

Bunν ,∞
B′

By the previous adjunction, it suffices to show the analogue of Proposition 2.9.8
for the composition

Z̃ν ,ν ′
w → Zν ,ν ′

w
q1×πw−−−−→ Bunν

T × (Div\∞)(θ)

and the shriek pullback of the constant sheaf along the first map. However, by now
arguing exactly as in the proof of Lemma 2.9.10, with B′ and its unipotent radical
U ′ replacing B and U , we can deduce that the base-change of W θ

w → (Div\∞)(θ)

along p2 : Bunν
T × (Div \∞)(θ)→ (Div \∞)(θ) is precisely the space Z̃ν ,ν ′

w . This
concludes the proof of Proposition 2.9.8 by Künneth.

2.10 The Hecke Eigensheaf Property

2.10.1 Tilting Eigensheaves
We would now like to combine our work in the previous sections and use it to
construct eigensheaves. We would like to do this in a uniform way for coefficient
systems Λ ∈ {Fℓ,Zℓ,Qℓ}, where Λ has the discrete topology unless otherwise
stated. One of the issues is that the representation theory of LG/Λ is substantially
different in each of these three cases. The structure of the representation theory of
RepQℓ

(LG) was described in §2. With Qℓ-coefficients, the category is semisimple
with simple objects given by VµΓ for µΓ ∈ X∗(TQp

)+/Γ a Γ-orbit of a geometric

dominant cocharacter µ . If Λ ∈ {Fℓ,Zℓ} this is no longer so straightforward; the
representation VµΓ can fail to be irreducible. To develop a good theory of algebraic
representations with these coefficients, we will need to invoke our assumption that
ℓ is very good with respect to G and use the theory of tilting modules. We first
discuss the general notion of a tilting module. Fix H a split connected reductive
group over Λ ∈ {Fℓ,Zℓ,Qℓ}. We consider the involution

D : RepΛ(H)→ RepΛ(H)

V 7→ (V ∗)σ
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where V ∗ is the dual representation and σ is the Chevalley involution. For λ ∈
X∗(H)+ a dominant character, we let V λ denote the highest weight representation
attached to λ by Borel-Weil-Bott, and we write Vλ := D(V λ ). We now come to
our key definition.

Definition 2.10.1. Given V ∈ RepΛ(H), we say that V has a Weyl (resp. good)
filtration if it admits a filtration whose successive quotients are isomorphic to V λ

(resp. Vλ ). We say V is tilting if it admits both a good and a Weyl filtration. We
write TiltΛ(H)⊂ RepΛ(H) for the full sub-category of tilting modules.

The category of tilting modules is additive, but usually not abelian. If Λ =Qℓ

the highest weight modules are simple, and TiltΛ(H) = RepΛ(H). Therefore, this
is only an interesting notion if Λ ∈ {Fℓ,Zℓ}. The key point of moving to this
sub-category is that we have the following generalization of usual highest weight
theory due Ringel and Donkin [Rin91], [Don93].

Theorem 2.10.2. For each λ ∈ X∗(H)+, there exists a unique indecomposable
tilting module Tλ ∈ TiltΛ(H) with highest weight λ . We have that dim(Tλ (λ )) =
1, and, for varying λ , this parametrizes all indecomposable tilting modules.

We also get the usual classification of all tilting modules in terms of highest
weight tilting modules.

Proposition 2.10.3. [Jan03, Section E.22],[Mat00, Lemma 7.3] For all V ∈
TiltΛ(H), there exists unique integers n(λ ) ∈ N≥0 for all λ ∈ X∗(H)+ and an
isomorphism

V ≃
⊕

λ∈X∗(H)+

(Tλ )
n(λ )

of tilting modules.

Now we come to a difficult result which was proven by [Wan82] for groups of
type An, [Don93] for almost all groups, and [Mat00] in general.

Theorem 2.10.4. If we have two tilting modules V,V ′ ∈ TiltΛ(H) then the tensor
product V ⊗V ′ is tilting.

We can now extend this to the L-group using our assumption that ℓ is very
good with respect to G. By Theorem 2.10.2 applied to H = Ĝ, we deduce that we
have a well-defined category TiltΛ(Ĝ) of tilting modules, where each object can
be written as a direct sum of highest weight tilting modules Tµ for µ ∈X∗(TQp

)+
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using Proposition 2.10.3. Now, given such a µ , we consider the reflex field Eµ ,
and extend this to a representation of WEµ

⋉ Ĝ, as in [Kot97a, Lemma 2.1.2].
We define the tilting module TµΓ as the induction of this representation from
WEµ

⋉Ĝ to WQp ⋉Ĝ, and let TiltΛ(LG)⊂RepΛ(
LG) be the full sub-category given

by direct sums of such modules, where we note that TµΓ only depends on the
Γ-orbit of µΓ ∈ X∗(TQp

)+/Γ of µ . Now, since ℓ is very good, it follows that

WQp acts on Ĝ via a quotient Q that is prime to ℓ by definition [FS21, Page 33],
and therefore WQp/WEµ

is also of order prime to ℓ. Combing this observation,
Frobenius Reciprocity/Mackey theory, and Theorem 2.10.4, we conclude that TµΓ

is indeed an irreducible representation of LG, and that Tilt(LG) is preserved under
tensor products. This allows us to define the following.

Definition 2.10.5. Given a continuous L-parameter φ : WQp → LG(Λ), we say
a sheaf Sφ ∈ Dlis(BunG,Λ) is a tilting eigensheaf with eigenvalue φ if, for all
V ∈ TiltΛ(LGI), we are given isomorphisms

ηV,I : TV (Sφ )≃Sφ ⊠ rV ◦φ

of sheaves in Dlis(BunG,Λ)
BW I

Qp , which are natural in I and V , and compatible
with compositions and exterior tensor products in V . If Λ = Qℓ this recovers
Definition 2.3.1. We similarly say Sφ is a weak tilting eigensheaf if only the
isomorphisms ηV,I exist.

Remark 2.10.6. Our discussion of highest weight theory in §2.2.1 for ĜΓ also
extends to the tilting modules Tµ under our assumption that ℓ is very good. In
particular, using Proposition 2.10.2, we can understand the possible weights oc-
curring in Tµ |ĜΓ in terms of ν ∈ X∗(TQp

)Γ, which lie in the convex hull of the

WG orbit of µΓ ∈X∗(TQp
)+

Γ
, and the ν weight space of Tµ |ĜΓ will be a direct sum

over the weight spaces Tµ(ν) for ν ∈ X∗(TQp
) mapping to ν , as in Lemma 2.2.8.

To see this, we note, by [FS21, Proposition VIII.5.11], ℓ being very good implies
that we have the following:

1. ĜΓ is a smooth linear algebraic group, and ĜΓ,◦ is reductive.

2. ĜΓ/ĜΓ,◦ ≃ T̂ Γ/T̂ Γ,◦ is of order prime to ℓ, where ĜΓ,◦ (resp. T̂ Γ,◦) denotes
the neutral component of ĜΓ (resp. T̂ Γ), and the isomorphism follows as in
[Zhu15, Lemma 4.6].
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These observations allows us the see the highest weight theory of the (possibly
disconnected) group ĜΓ behaves as expected with modular coefficients by mim-
icking the proof of Lemma 2.2.7.

We now define our candidate tilting eigensheaf for each of the possible coeffi-
cient systems Λ ∈ {Fℓ,Zℓ,Qℓ}.

2.10.2 The Construction of the Eigensheaf

We fix a toral parameter φT : WQp → LT (Λ), with induced parameter φ : WQp

φT−→
LT (Λ) → LG(Λ). Our goal is to construct a candidate tilting eigensheaf with
respect to the parameter φ . If Λ = Fℓ, we have already carried this out. It is sim-
ply the sheaf nEis(SφT ) ∈ D(BunG) viewed as a sheaf in Dlis(BunG,Fℓ) via the
identification D(BunG) ≃ Dlis(BunG,Fℓ) [FS21, Proposition VII.6.6], obtained
by embedding both categories into D■(BunG,Fℓ). To move beyond this case, we
need to invoke the following Lemma.

Lemma 2.10.7. For Λ = Fℓ and φT weakly normalized regular, the sheaf
nEis(SφT ) ∈ D(BunG) is ULA with respect to the structure map BunG→∗.

Proof. Given A ∈ D(BunG), we recall that A being ULA with respect to the map
BunG→∗ is equivalent to saying that its stalks A|Bunb

G
are valued in a complex of

smooth representations such that AK|Bunb
G

is a perfect complex of Λ-modules for
all open pro-p subgroups K ⊂ Jb(Qp) [FS21, Theorem V.7.1]. In particular, the
result follows from Corollary 2.9.2.

Now, if Λ =Zℓ then, by taking inverse limits with respect to the mod ℓn reduc-
tions of φT , and considering the systems of sheaves given by applying the Eisen-
stein functor to the eigensheaf attached to these reductions, we obtain a sheaf

̂nEis(SφT ) ∈ DULA
ét (X ,Zℓ)

Now, we have a fully faithful embedding

DULA
ét (BunG,Zℓ) ↪→ D■(BunG,Zℓ)

given as in [FS21, Page 261]. This embedding is used to define the Hecke opera-
tors in the setting of solid sheaves (See [FS21, Page 264]), utilizing that sheaves
in the Satake category are ULA over DivI . In particular, this embedding is Hecke
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equivariant in the appropriate sense, and so the filtered eigensheaf property trans-
fers to the image of ̂nEis(SφT ) in D■(BunG,Zℓ). We also have a natural embed-
ding Dlis(BunG,Zℓ) ↪→ D■(BunG,Zℓ), and we can analogously define the set of
ULA objects in it [FS21, Definition VII.7.8], denoted DULA

lis (BunG,Zℓ). We have
the following claim.

Lemma 2.10.8. Under the embeddings of DULA
lis (BunG,Zℓ) and DULA

ét (BunG,Zℓ)

into D■(BunG,Zℓ) described above, these two full subcategories are isomorphic.

Proof. We have a semi-orthogonal decomposition of DULA
lis (BunG,Zℓ)

([FS21, Proposition VII.7.3]) and DULA
ét (BunG,Zℓ) into D(Jb(Qp),Zℓ)adm

and D̂(Jb(Qp),Zℓ)adm by excision, respectively. Here D̂(Jb(Qp),Zℓ) denotes
the derived category of ℓ-complete smooth representations of Jb(Qp), and the
subscript adm is used to denote the full subcategory of objects such that its
invariants under an open compact K ⊂ Jb(Qp) is a perfect complex. Since the
semi-orthogonal decompositions are compatible with the two embeddings into
D■(BunG,Zℓ) it suffices to show that we have an identification

D(Jb(Qp),Zℓ)adm ≃ D̂(Jb(Qp),Zℓ)adm,

but this follows from [Han20, Proposition 2.6].

Using the isomorphism supplied by the previous Lemma, we can regard
̂nEis(SφT ) ∈ DULA

ét (X ,Zℓ) as an object in Dlis(BunG,Zℓ), which we denote by
nEis(SφT ). Since these isomorphisms are compatible with Hecke operators it
follows that Corollary 2.7.4 transfers to this sheaf. It now remains to describe
the desired sheaf when Λ = Qℓ. In this case, we need to assume the parameter
φT : WQp → LT (Qℓ) is of the form φ T ⊗Qℓ, where φ T : WQp → LT (Zℓ) is a pa-
rameter with weakly normalized regular mod ℓ-reduction. Then we consider the
sheaf nEis(S

φ T
) ∈ Dlis(BunG,Zℓ) constructed above, and define

nEis(SφT ) := nEis(S
φT
)[

1
ℓ
] ∈ Dlis(BunG,Qℓ)

by taking the colimit over the multiplication by ℓ maps. Now with the candidate
eigensheaf defined, we begin the proof of the eigensheaf property. To capture the
necessary integrality conditions, we define the following.

Definition 2.10.9. For Λ ∈ {Fℓ,Zℓ,Qℓ} with the discrete topology and a contin-
uous toral parameter φT : WQp → LT (Λ) we say that φT is integral if it admits a
mod ℓ-reduction. In particular, if Λ =Qℓ, we assume it is of the form φ T ⊗Zℓ

Qℓ

for some continuous parameter φ T : WQp → LT (Zℓ).
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2.10.3 The Hecke Eigensheaf Property
We start with the following Theorem.

Theorem 2.10.10. For Λ ∈ {Fℓ,Zℓ,Qℓ} with the discrete topology, we consider
φT : WQp → LT (Λ) an integral parameter with weakly normalized regular mod ℓ
reduction. There then exists a perverse sheaf nEis(SφT ) ∈Dlis(BunG,Λ) which is
a filtered eigensheaf with eigenvalue φ as in Corollary 2.7.4. If V is a direct sum
of⊠i∈ITµΓ

i
for geometric dominant cocharacters µi, and φT is strongly µi-regular

(Definition 2.3.14), the filtration on TV (nEis(SφT ) splits uniquely, and we have a
natural isomorphism

TV (nEis(SφT ))≃ nEis(SφT )⊠ rV ◦φ

of sheaves in Dlis(BunG)
BW I

Qp . In particular, if φT is strongly µ-regular for all
geometric dominant cocharacters µ then nEis(SφT ) is a tilting eigensheaf. For
b ∈ B(G), the stalk nEis(SφT )|Bunb

G
∈ D(Bunb

G)≃ D(Jb(Qp),Λ) is given by

1. an isomorphism nEis(SφT )|Bunb
G
≃
⊕

w∈Wb
iJb
Bb
(χw)⊗ δ

−1/2
Pb

[−⟨2ρ̂,νb⟩] if
b ∈ B(G)un,

2. an isomorphism nEis(SφT )|Bunb
G
≃ 0 if b /∈ B(G)un.

Moreover, if DBunG denotes Verdier duality on BunG, we have an isomorphism

DBunG(nEis(SφT ))≃ nEis(Sφ∨T
)

of sheaves in Dlis(BunG,Λ).

Proof. The existence of nEis(SφT ) and the transfer of the filtered Hecke eigen-
sheaf property to this sheaf was discussed in the previous section. The claim
on Verdier duality follows from Theorem 2.8.3, and the discussion in [FS21,
Section VII.5]. The description of the stalks follows from the construction and
Corollary 2.9.2. It remains to show that the filtration on TV (nEis(SφT )) splits
uniquely for ⊠i∈ITµΓ

i
= V ∈ RepΛ(

LG) such that φT is strongly µi-regular for
all i ∈ I. To do this, we note that an extension between the graded pieces of
the filtration on TV (nEis(SφT )) is specified by a cohomology class in the H1 of
RΓ(W I

Qp
,⊠i∈I(νi−ν ′i )

Γ ◦φT )≃
⊗L

i∈I RΓ(WQp,(νi−ν ′i )
Γ ◦φT ) for νi and ν ′i defin-

ing two distinct Γ-orbits of weights of the representation Tµ in T̂ for all i ∈ I.
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In particular, we note if φT is strongly µi-regular then the H1 vanishes and the
filtration splits, and similarly the H0 vanishes so the splitting is unique. In par-
ticular, since we know the filtration satisfies all the desired compatibilities for the
eigensheaf property if we know strong µ-regularity for all µ , it follows from the
splitting being unique that nEis(SφT ) is a tilting eigensheaf.

We now fix an integral parameter φT with weakly normalized regular mod
ℓ-reduction and consider the sheaf nEis(SφT ) ∈ Dlis(BunG,Λ) supplied by the
previous theorem. We come to the following definition.

Definition 2.10.11. Given a tuple of geometric dominant cocharacters (µi)i∈I ∈
(X∗(TQp

)+)I for all i ∈ I, we say that φT : WQp → LT (Λ) is (µi)i∈I-regular if the
filtration on

TV (nEis(SφT ))

splits (but not necessarily uniquely) for the tilting module V = ⊠i∈ITµΓ
i
∈

TiltΛ(LGI).

As seen in the proof of Theorem 2.10.10, if the µi are such that φT is strongly
µi-regular then it follows that φT is (µi)i∈I-regular. For certain µi, strong µi-
regularity will be implied by genericity, and the following Proposition allows us
to deduce that the filtration splits in more cases.

Proposition 2.10.12. Suppose that (µ1i)i∈I,(µ2i)i∈I ∈ (X∗(TQp
)+)I are tuples of

characters such that φT is (µ1i)i∈I and (µ2i)i∈I-regular. Then if V ≃ ⊠i∈ITµΓ
i
∈

TiltΛ(LGI) occurs as a direct summand of the tensor product ⊠i∈ITµΓ
1i
⊗T

µΓ
2i
∈

Tilt(LGI) then it follows that φT is (µi)i∈I-regular.

Proof. It suffices to show that, given (µ1i)i∈I,(µ2i)i∈I ∈ (X∗(TQp
)+)I with V1 :=

⊠i∈ITµΓ
1i

and V2 := ⊠i∈ITµΓ
2i

such that we know the filtration on TV1(nEis(SφT ))

and TV2(nEis(SφT )) splits, the same is true for the filtration on TV (nEis(SφT )),
where V ∈ TiltΛ(LGI) is a direct summand of V1⊗V2. To do this, we can use the
isomorphism

TV1TV2(nEis(SφT ))|△ ≃ TV1⊗V2(nEis(SφT ))

coming from the fusion product, where △ : Dlis(BunG,Λ)
BW I⊔I

Qp →
Dlis(BunG,Λ)

BW I
Qp is the natural map given by diagonal restriction. By as-

sumption, the diagonal restriction of the filtration on the LHS splits. Moreover,
by the compatibilities of the filtration, we know that the filtration on the LHS
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refines the filtration on the RHS. In particular, we deduce that the filtration on
TV1⊗V2(nEis(SφT )) has a splitting, and since V is a direct summand of V1⊗V2,
we know that the filtration also splits on TV (nEis(SφT )).

In particular, by considerations of highest weight, the tilting module
⊠i∈IT(µ1i+µ2i)Γ is always a direct summand of ⊠i∈ITµΓ

1i
⊗T

µΓ
2i

. Using this, we
deduce the following Corollary.

Corollary 2.10.13. If φT is (µ1i)i∈I and (µ2i)i∈I-regular then it is also (µ1i +
µ2i)i∈I-regular.

This motivates the following definition.

Definition 2.10.14. We say a parameter φT is normalized regular if it is integral
with weakly normalized regular mod ℓ reduction and if there exists a set of of
elements µk for k = 1, . . . ,n such that:

1. The µk generate X∗(TQp
)+ in the sense that any µ = ∑

n
k=1 nkµk as elements

in X∗(TQp
)+ for some nk ∈ Z.

2. φT is strongly µk-regular, for all k = 1, . . . ,n.

This allows us to state the following corollary.

Corollary 2.10.15. Suppose that φT is normalized regular then it is (µi)i∈I-
regular for all finite index sets I and µi ∈ X∗(TQp

)+. In particular, the sheaf
nEis(SφT ) is a (weak) tilting eigensheaf with eigenvalue φ given by the compos-
ite of φT with the natural map LT → LG.

Proof. We recall that nEis(SφT ) being a (weak) tilting eigensheaf means that, for
all V ∈ TiltΛ(LGI), we know that we have an isomorphism

TV (nEis(SφT ))≃ nEis(SφT )⊠ rV ◦φ

but we do not know that these isomorphisms satisfy the desired compatibilities.
To show this, it suffices to show the filtration on TV (nEis(SφT )) just splits (not
necesarily uniquely) for all highest weight tilting modules V = ⊠i∈ITµΓ

i
corre-

sponding to the Γ-orbits of varying (µi)i∈I ∈ (X∗(TQp
)+)I . Since φT is strongly

µk-regular for the k = 1, . . . ,n appearing in the definition of normalized regularity,
it follows, as in the proof of Theorem 2.10.10, that the filtration on TV (nEis(SφT ))
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splits for any tuple of the generating cocharacters (µi)i∈I such that µi = µk for all
i ∈ I and varying k = 1, . . . ,n appearing in Definition 2.10.14. However, since
every tuple of cocharacters µi, can be written as a linear combination of µk for
k = 1, . . . ,n, this follows from Corollary 2.10.13.

By choosing µk for k = 1, . . . ,n to be, for example a set of minuscule/quasi-
minuscule generators of X∗(TQp

)+, this allows to see that µ-regularity for all µ is
actually an open condition on the variety of unramified twists of a fixed φT . This
will be sufficient for most applications of the Eisenstein series to descirbing the
cohomology of local shtukas and Shimura varieties in the Grothendieck group.
However, for more refined applications of our results it becomes important to
spell out the precise assumptions needed to deduce µ-regularity for all µ . Ideally,
it should be implied by genericity of φT for all µ , as is suggested by Conjecture
2.1.29. For G = GLn, we show how to verify this from the results proven above.

Corollary 2.10.16. For G = GLn, if φT is an integral generic L-parameter (In
particular, its mod ℓ-reduction is weakly normalized regular by Lemma 2.3.13)
then the sheaf nEis(SφT ) is a (weak) tilting eigensheaf.

Proof. We give the proof for Λ = Fℓ, with the other cases being strictly easier. It
suffices to show for all tuples (µi)i∈I ∈ (X∗(TQp

)+)I that φT is (µi)i∈I regular. By
Lemma 2.3.15, we know that if φT is generic then it is strongly µ-regular for the
cocharacter µ = (1,0, . . . ,0) corresponding to the standard representation Vstd of
Ĝ≃ GLn. By Proposition 2.10.13, it suffices to show that if φT is generic then µ-
regularity holds for the fundamental coweights µ =ωi = (1i,0n−i) for i = 1, . . . ,n.
We recall that the ωi are minuscule in this case and therefore it follows by Lemma
A.2.1 that the representation Λi(Vstd)≃Vωi is irreducible and thereby equal to the
tilting module Tωi . However, now the result follows from Proposition 2.10.12 and
the fact that Λi(Vstd) is a direct summand of V⊗n

std .

With our main results in hand, we can move into applications.

2.11 Applications
Now we will deduce some applications to the cohomology of local shtuka spaces.
In §9.1, we will use our eigensheaf to derive an analogue of an averaging formula
of Shin for the cohomology of local shtuka spaces. In §9.2 and §9.3, we will
discuss a refined version of this averaging formula, and use it to derive a very
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explicit formula for the isotypic parts of local shtuka spaces with respect to
parabolic inductions of characters coming from normalized regular parameters.
By combining this with a shtuka analogue of Boyer’s trick, we will show
that this gives rise to a geometric construction of intertwining operators, and
recovers a result analogous to a result of Xiao and Zhu [XZ17] on the irreducible
components of affine Deligne-Lusztig varieties, but on the generic fiber.

Let’s first recall the key definitions. We say a local shtuka datum is a
triple (G,b,µ) for µ a geometric dominant cocharacter of G and b ∈ B(G,µ) an
element of the µ-admissible locus of the Kottwtiz set of G (Definition 2.2.5). We
let E be the reflex field of µ . The triple (G,b,µ) defines a diamond

Sht(G,b,µ)∞→ Spd(Ĕ)

parameterizing modifications Fb→F 0
G with meromorphy bounded by µ on X7.

It carries an action of G(Qp)× Jb(Qp) and a (non-effective) descent datum from
Ĕ down to E. This allows us to consider the tower of quotients

Sht(G,b,µ)∞/K =: Sht(G,b,µ)K

for varying open compact subgroups K ⊂ G(Qp). We write Sµ for the Λ-valued
sheaf attached to the highest weight tilting module Tµ of WE ⋉ Ĝ as in the pre-
vious section. This is given by pulling back the sheaf on HckG,E defined by Tµ

and Theorem 2.4.2 along the natural map Sht(G,b,µ)→ HckG,E . In particular,
the sheaf Sµ is equivariant with respect to the actions of G(Qp) and Jb(Qp) by
construction. Letting Sht(G,b,µ)K,Cp denote the base-change of these spaces to
Cp, we can now define the complex

RΓc(G,b,µ) := colimK→{1}RΓc(Sht(G,b,µ)K,Cp ,Sµ)

of G(Qp)× Jb(Qp)×WE-modules. We now want to disentangle the G(Qp) and
Jb(Qp) action. To do this, for π (resp. ρ) a smooth irreducible representation of
G(Qp) (resp. Jb(Qp)) on Λ-modules, we define the π (resp. ρ)-isotypic part. I.e
the complexes

RΓc(G,b,µ)[π] := RΓc(G,b,µ)⊗H (G) π

and
RΓc(G,b,µ)[ρ] := RΓc(G,b,µ)⊗H (Jb) ρ

7Note that this is the space denoted Sht(G,b,µ−1) in [SW20b]. We find that our convention
simplifies certain formulae.
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where H (G) :=C∞
c (G(Qp),Λ) (resp. H (Jb)) is the usual smooth Hecke algebra

of G (resp. Jb). We recall that Sht(G,b,µ)∞ has dimension equal to ⟨2ρ̂,µ⟩=: d.
The complexes RΓc(G,b,µ)[π] (resp. RΓc(G,b,µ)[ρ]) are concentrated in de-
grees −d ≤ i≤ d and are valued in admissible Jb(Qp) (resp. G(Qp)) representa-
tions, which are moreover of finite length with Qℓ-coefficients [FS21, Page 317].
Similarly, we define the complexes

RΓ
♭
c(G,b,µ)[π] := RH om(RΓc(G,b,µ),π)

and
RΓ

♭
c(G,b,µ)[ρ] := RH om(RΓc(G,b,µ),ρ).

We will make regular use of the relationship between these complexes and
Hecke operators. For simplicity, we will mostly stick to the isotypic parts
RΓ♭

c(G,b,µ)[ρ], as it removes various annoying twists and shifts8; however, one
can easily translate to the isotypic parts RΓ♭

c(G,b,µ)[ρ] in the cases we consider,
using Corollary 2.11.15. We write

Tµ : Dlis(BunG,Λ)→ Dlis(BunG,Λ)
BWE

for the Hecke operator defined by the representation Tµ . For b ∈ B(G), consider
the natural map

f : J >0
b →∗,

where Aut(Eb) ≃ Jb(Qp)⋉J >0
b , and the semidirect product structures is given

by allowing Aut(Eb) to act on the canonical reduction of Eb. Since f is an iter-
ated fibration of Banach-Colmez spaces and J >0

b has an action of Jb(Qp) on the
right coming from the canonical reduction of Eb. As mentioned in Proposition
2.9.4, this comes from the natural right conjugation action on P−b . We have an
isomorphism

f!(Λ)≃ κ[−2⟨2ρ̂G,νb⟩]

for some character κ : Jb(Qp)→ Λ∗ (cf. [GI16, Lemma 4.18]). We have the fol-
lowing relationship between isotypic parts of Shtuka spaces and Hecke operators.

Lemma 2.11.1. [FS21, Section IX.3] Given a local shtuka datum (G,b,µ) as
above and π (resp. ρ) a smooth representation of G(Qp) (resp. Jb(Qp))
on Λ-modules, we can consider the associated sheaves ρ ∈ D(Jb(Qp),Λ) ≃
Dlis(Bunb

G,Λ) and π ∈ D(G(Qp),Λ) ≃ Dlis(Bun1
G,Λ) on the HN-strata jb :

8We thank Naoki Imai for drawing our attention to this.
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Bunb
G ↪→ BunG and j1 : Bun1

G ↪→ BunG, respectively. There then exists an iso-
morphism

RΓc(G,b,µ)[ρ⊗κ
−1][2⟨2ρ̂G,νb⟩]≃ j∗1Tµ jb!(ρ)

of complexes of G(Qp)×WE-modules and an isomorphism

RΓc(G,b,µ)[π]≃ j∗bTµ−1 j1!(π)

of complexes of Jb(Qp)×WE-modules, where µ−1 := −w0(µ) is a dominant in-
verse of µ . Similarly, we have an isomorphism

RΓ
♭
c(G,b,µ)[ρ]≃ j∗1Tµ jb∗(ρ)

of complexes of G(Qp)×WE-modules, and an isomorphism

RΓ
♭
c(G,b,µ)[π][−2⟨2ρG,νb⟩]≃ j!

bTµ−1 j1∗(π)⊗κ
−1

of complexes of Jb(Qp)×WE-modules.

Remark 2.11.2. This comparison comes from the fact that when comparing Hecke
operators and isotypic parts of Shtuka spaces, that, after several applications of
base-change, the difference will be controlled by the ! pushforward of the constant
sheaf along the map

Sht(G,b,µ)∞→ Grb
G,µ−1

from the Shtuka space to the adic Newton strata of the B+
dR affine Grassmannian.

This is in particular a Jb-torsor. The third and fourth relationship can be obtained
from the first and second by acting via Verdier duality and using Hom-Tensor
duality.

We can be more explicit about this character. In particular, we have the fol-
lowing, whose argument is provided in the paper [HI23].

Proposition 2.11.3. We have an isomorphism κ ≃ δ
−1
Pb

, where δPb is the modulus
character of the standard parabolic Pb with Levi factor Mb transferred to Jb along
the inner twisting. In particular, we have, by Lemma 2.11.1, isomorphisms

RΓc(G,b,µ)[ρ⊗δPb][2⟨2ρ̂G,νb⟩]≃ j∗1Tµ jb!(ρ)

and
RΓ

♭
c(G,b,µ)[ρ]≃ j∗1Tµ jb∗(ρ)

of G(Qp)×WE-modules.
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We note that, since we used the tilting module Tµ in the definition of
RΓc(G,b,µ) and the Hecke operator Tµ , the complex RΓc(G,b,µ) will in general
be different from the usual complex defined with respect to the highest weight
module Vµ . However, they will agree when we impose the following condition on
µ with respect to our coefficient system Λ.

Definition 2.11.4. For Λ ∈ {Fℓ,Zℓ,Qℓ}, we will say µ is tilting if the represen-
tation Vµ ∈ RepΛ(Ĝ) lies in the full subcategory TiltΛ(Ĝ) of tilting modules or
equivalently if it is irreducible with coefficients in Λ.

Remark 2.11.5. If Λ = Qℓ this condition always holds. Moreover, by Lemma
A.2.1, this always holds if µ is minuscule. In Appendix A.2, we give more insight
into this notion.

We now consider a toral parameter φT : WQp→ LT (Λ) with associated smooth
character χ : T (Qp)→ Λ∗. Unless otherwise stated, we will assume that φT is
integral with weakly normalized regular mod ℓ-reduction. Given such a φT , we set
φ to be the L-parameter of G induced via the natural embedding LT (Λ)→ LG(Λ)
and consider the sheaf nEis(SφT )∈Dlis(BunG,Λ) given by Theorem 2.10.10. We
begin our analysis by relating our eigensheaves to an averaging formula of Shin.

2.11.1 The Averaging Formula
For µ a geometric dominant cocharacter with reflex field E, we write rµ : WE ⋉
Ĝ→GL(Tµ) for the map defined by Tµ . Since the Hecke operator TµΓ attached to
TµΓ ∈RepΛ(

LG) factors through the Hecke operator Tµ attached to Tµ (cf. [FS21,
Pages 313-315]) if φT is µ-regular then, by definition, we have an isomorphism

Tµ(nEis(SφT ))≃ rµ ◦φ |WE ⊠nEis(SφT )

of objects in Dlis(BunG,Λ)
BWE . Now let’s apply the restriction functor j∗1(−) to

both sides of this isomorphism. By the description of the stalks, we know that
the RHS is equal to rµ ◦φ |WE ⊠π , where π := iGB (χ) is the normalized parabolic
induction of the character χ attached to φT by class field theory. We can also
simplify the RHS. In particular, first off note that, since any G-bundle FG on X
that occurs as a modification FG 99K F 0

G of type µ lies in the set B(G,µ) by
[Rap18, Proposition A.9], we have an isomorphism

j∗1(Tµ(nEis(SφT )))≃ j∗1Tµ(nEis(SφT )|B(G,µ))
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where here we view B(G,µ) as the open subset of BunG defined by the iden-
tification B(G) ≃ |BunG| describing the underlying topological space |BunG| of
BunG [Vie, Theorem 1.1], where B(G) has the natural topology given by the par-
tial ordering. We can further refine this by applying excision with respect to the
locally closed stratification by the Harder-Narasimhan strata Bunb

G ⊂ BunG for
b ∈ B(G,µ), using [FS21, Proposition VII.7.3]. The excision spectral sequence
then tells us that the LHS has a filtration whose graded pieces are isomorphic to:

j∗1(Tµ( jb! j∗b(nEis(SφT )))),

which, using Proposition 2.11.12, and the description of the stalks of the Eigen-
sheaf one can show is isomorphic to j∗1(Tµ( jb∗ j∗b(nEis(SφT )))). In particular,
in K0(G(Qp)×WE ,Λ), the Grothendieck group of Λ-valued smooth admissible
G(Qp)-representations with a continuous action of WE , this tells us that we have
an equality:

∑
b∈B(G,µ)

[ j∗1(Tµ( jb∗ j∗b(nEis(SφT )))] = [rµ ◦φ |WE ⊠π] (2.11)

Now, using the description of the stalks of nEis(SφT ) and Lemma 2.11.1, we can
spell out the LHS more clearly. In particular, we define the following.

Definition 2.11.6. For φT an arbitrary toral parameter with induced parame-
ter φ and b ∈ B(G), we define the complex of smooth admissible Jb(Qp)-
representations Redb,φ as follows. If b /∈ B(G)un, we set Redb,φ to be equal to
0, and, if b ∈ B(G)un, we set Redb,φ to be equal to⊕

w∈Wb

iJb
Bb
(χw)⊗δ

−1/2
Pb

[−⟨2ρ̂,νb⟩] ∈ D(Jb(Qp),Λ)

where δPb is the modulus character of Jb defined by the standard parabolic Pb ⊂G
with Levi factor Mb ≃ Jb, as before.

This allows us to deduce the following from equation (11).

Theorem 2.11.7. For φT : WQp → LT (Λ) an integral parameter with weakly nor-
malized regular mod ℓ reduction, if π := iGB (χ) is the normalized parabolic induc-
tion of the smooth character χ attached to φT then, for any geometric dominant
cocharacter µ such that φT is µ-regular, we have an equality

∑
b∈B(G,µ)

[RΓ
♭
c(G,b,µ)[Redb,φ ]] = [rµ ◦φ |WE ⊠π]

in K0(G(Qp)×WE ,Λ).
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Remark 2.11.8. We note that, in the above analysis, we didn’t necessarily have
to restrict to the HN-strata Bun1

G or even a single cocharacter. In particular, by
considering Hecke operators defined by representations in TiltΛ(LGI) for a finite
index set I, we could have deduced an analogous formula for shtuka spaces with
I legs for an arbitrary finite index set I. We could have also restricted to any HN-
stratum; however, if the HN-stratum is not defined by a basic element, the answer
is not as clean as above. In particular, given a G-bundle Fb on X corresponding to
a general element b∈B(G), it is to the best of our knowledge completely unknown
exactly which G-bundles FG occur as modifications FG 99K Fb of type µ . It
would be interesting to understand this question better. We leave it to the reader
to work out the precise statements of these more general implications.

We can use this claim to deduce the averaging formula for an arbitrary toral pa-
rameter φT when Λ =Qℓ, by viewing both sides as trace forms on K0(T (Qp),Qℓ)
and using a continuity argument. We note that, in this case, µ is always tilting
so we have that RΓc(G,b,µ) and RΓ♭

c(G,b,µ) are just the usual complexes. We
recall that f : K0(G(Qp),Qℓ)→ Qℓ is a trace form if it can be written as tr(δ |−)
for δ ∈C∞

c (G(Qp),Qℓ). We now fix a δ ∈C∞
c (G(Qp),Qℓ) and γ ∈WE , we define

the following functions attached to this datum

f δ ,γ
L : K0(T (Qp),Qℓ)→Qℓ

χ 7→ tr(δ × γ|iGB (χ)⊠ rµ ◦ ι(χ)|WE )

f δ ,γ
R : K0(T (Qp),Qℓ)→Qℓ

χ 7→ ∑
b∈B(G,µ)un

∑
w∈Wb

tr(δ × γ|RΓ
♭
c(G,b,µ)[iJb

Bb
(χw)⊗δ

1/2
Pb

])(−1)⟨2ρ̂G,νb⟩

where ι(χ) ≃ φT is the isomorphism given by local class field theory. We have
the following lemma.

Lemma 2.11.9. The functions f δ ,γ
L and f δ ,γ

R define trace forms on K0(T (Qp),Qℓ).

Proof. This follows from the fact that normalized parabolic induction takes
trace forms to trace forms as can be checked from the characterization of trace
forms in the trace Paley-Wiener theorem [BDK86], and the fact that tr(δ ×
γ|RΓc(G,b,µ)[−]) defines a trace form on K0(Jb(Qp),Qℓ) by [HKW22, Theo-
rem 6.5.4].

This gives the following.
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Theorem 2.11.10. For φT : WQp → LT (Qℓ) an arbitrary toral parameter with
associated character χ , and iGB (χ) =: π , we have an equality

∑
b∈B(G,µ)

[RΓ
♭
c(G,b,µ)[Redb,φ ]] = [rµ ◦φ |WE ⊠π]

in K0(G(Qp)×WE ,Qℓ).

Proof. It suffices to show that the trace forms f δ ,γ
L (χ) and f δ ,γ

R (χ) agree for
varying δ and γ and all χ ∈ K0(T (Qp),Qℓ). We define the difference ∆δ ,γ :=

f δ ,γ
L (χ)− f δ ,γ

R (χ). We say that a subset S∈K0(T (Qp),Qℓ) is dense if ∆δ ,γ(x) = 0
for all x ∈ S implies that ∆δ ,γ = 0. Using Theorem 2.11.7 and Lemma 2.10.15, we
can reduce to showing that the subset S of all characters χ which are normalized
regular and admit a Zℓ-lattice is dense. This is relatively easy to show. In partic-
ular, if we view ∆δ ,γ as a regular function on the variety of unramified twists of a
fixed character χ then the set of characters admitting a Zℓ lattice is Zariski-dense.
Moreover, the locus where χ is normalized regular is also clearly Zariski dense,
since it is implied by insisting that χ precomposed with sums of coroots is not the
norm or trivial character for the sums of coroots appearing in differences of dis-
tinct weights of Vµk , for a finite list of generating cocharacters µk with k = 1, . . . ,n
appearing in the definition of µ-regularity, and it is also clear for the condition
of weak normalized regularity. Therefore, the claim follows, using the previous
Lemma.

This theorem is compatible with existing results. We recall that Shin [Shi12]
and Bertoloni-Meli [Ber21], have described similar averaging formulas. In partic-
ular, given a refined endoscopic datum e = (H,H ,s,η) (Definition A.3.1), Shin
and Bertoloni-Meli define maps

Redeb(−) : Kst
0 (H(Qp),Qℓ)→ K0(Jb(Qp),Qℓ)

where Kst
0 (H(Qp),Qℓ) denotes the Grothendieck group of stable virtual Qℓ-

representations of H(Qp). If we are given an L-parameter φ which factors as

LQp

φ H

−−→H
Lη−→ LG then, using the local Langlands correspondence for G, we are

able to attach a stable distribution SΘφ ∈Kst
0 (H(Qp),Qℓ) which should satisfy the

endoscopic character identities as in [Kal16, Conjecture D]. The averaging for-
mula (Conjecture A.3.2) is a conjectural formula for

∑
b∈B(G,µ)

RΓ
♭
c(G,b,µ)[Redcb(SΘφ )]
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in K0(G(Qp)×WE ,Qℓ). Our averaging formula is related to the case when
ctriv = (G,1,LG, id) is the trivial endoscopic datum. In particular, if φT is a generic
toral parameter then, by Lemma 2.3.18, φ should define an actual L-parameter
with trivial monodromy, and we can consider the L-packet Πφ (G) under the local
Langlands correspondence for G appearing in Assumption 2.7.5. By Assumption
2.7.5 (3), the members of the L-packet will be given by the irreducible constituents
of iGB (χ). Therefore, we have that SΘφ = [π] in Kst

0 (G(Qp),Qℓ), and in the ap-
pendix we verify that the following is true.

Proposition 2.11.11. Let χ : WQp → Q∗ℓ be a smooth generic character, so that,
using Lemma 2.3.18, we have an equality

SΘφ = [π]

in K0(G(Qp),Qℓ)
st under the local Langlands correspondence appearing in As-

sumption 2.7.5. Then we always have

[Redb,φ ] = Redetriv([π])

in the Grothendieck group K0(Jb(Qp),Qℓ), and Conjecture A.3.2 holds true for
the L-parameter φ attached to χ .

We would now like to refine our averaging formula further. In particular, us-
ing Theorem 2.8.3, we can upgrade this equality in the Grothendieck group to a
genuine isomorphism of complexes.

2.11.2 The Refined Averaging Formula and Intertwining Op-
erators

Consider an element b ∈ B(G)un with anti-dominant reduction b−T ∈ B(T ). For
w ∈Wb, we set ρb,w := iJb

Bb
(χw)⊗ δ

−1/2
Pb

to be the twisted normalized parabolic
induction, and consider jb : Bunb

G ↪→ BunG, the inclusion of the locally closed
HN-strata corresponding to b. Temporarily, we will work with a more general
integral toral parameter. As seen in §2.10, the sheaf nEis(SφT ) ∈ Dlis(BunG,Λ)

with its desired properties might not be well-defined for Λ ∈ {Zℓ,Qℓ} if φT isn’t
integral with weakly normalized regular mod ℓ-reduction; however, we note that,
since b−T is antidominant, when Λ = Fℓ, we always have that nEisb−T (SφT ) is only

supported on Bunb
G, since Bunb−T

B will only parametrize split reductions. Moreover,
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nEisb−T (SφT ) will be isomorphic to jb!(ρb,w0) by Proposition 2.9.4. Therefore,
by the same procedure carried out in §2.10, we always get a well-defined sheaf
nEisb−T (SφT ) ∈ Dlis(BunG,Λ) for any integral toral parameter φT such that we
have an isomorphism

jb!(ρb,w0)[−⟨2ρ̂,νb⟩]≃ nEisb−T (SφT ) (2.12)

and, if φT is an integral parameter with weakly generic mod ℓ-reduction, then, as
in §2.10, Theorem 2.8.3 extends in a natural way to nEisb−T (SφT ). We can act by
DBunG(−) on both sides of (12). By the commutation of Eisenstein series with
Verdier duality, the RHS of (12) becomes

nEisb−T (Sφ∨T
)≃ jb!(ρ

∗
b,w0
⊗δ

−1
Pb

)[−⟨2ρ̂,νb⟩]

where ρ∗b,w0
= (iJb

Bb
(χw0)⊗δ

−1/2
Pb

)∗ = iJb
Bb
((χw0)−1)⊗δ

1/2
Pb

denotes the contragra-
dient. On the other hand, the LHS of (12) becomes

jb∗(DBunb
G
(ρb,w0))[⟨2ρ̂,νb⟩]

We now need to be a bit careful. In particular, we recall that Bunb
G ≃ [∗/Jb],

where Jb is the group diamond parameterizing automorphisms of Fb, and
we are implicitly using the identification Dlis(Bunb

G,Λ) ≃ D(Jb(Qp),Λ) given
by pullback along the map p : [∗/Jb] → [∗/Jb(Qp)], as in [FS21, Proposi-
tion V.2.2, VII.7.1]. Therefore, we need to account for the shifts and twists
given by p!. We can use that the natural section s of p is an iterated fi-
bration of positive Banach-Colmez space and Proposition 2.11.3, to show that
p!(−) ≃ p∗(− ⊗ δ

−1
Pb

)[−2⟨2ρ̂,νb⟩], and therefore the LHS of (12) becomes
jb∗(ρ∗b,w0

⊗δ
−1
Pb

)[⟨2ρ̂,νb⟩−2⟨2ρ̂,νb⟩] = jb∗(ρ∗b,w0
⊗δ

−1
Pb

)[−⟨2ρ̂,νb⟩]. In conclu-
sion, we have an isomorphism:

jb∗(ρ∗b,w0
⊗δ

−1
Pb

)[−⟨2ρ̂,νb⟩]≃ jb!(ρ
∗
b,w0
⊗δ

−1
Pb

)[−⟨2ρ̂,νb⟩]

Relaxing the contragradients and cancelling the shifts, we deduce an isomor-
phism:

jb∗(ρb,w0)≃ jb!(ρb,w0).

Now, given w ∈Wb, we can replace SφT by Sφ w
T

in the above argument, where
φ w

T is the conjugate of φT by w. This tells us that, if φ w
T is integral with weakly

generic mod ℓ reduction, we have an isomorphism:

jb∗(ρb,ww0)≃ jb!(ρb,ww0)

In conclusion, we deduce the following.
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Proposition 2.11.12. For b∈ B(G)un, w∈Wb, and ρb,ww0 = iJb
Bb
(χww0)⊗δ

−1/2
Pb

as
defined above, where χ is the character attached to an integral toral parameter
φT such that its conjugate φ w

T has weakly generic mod ℓ reduction, we have an
isomorphism

jb!(ρb,ww0)≃ jb∗(ρb,ww0)

of objects in Dlis(BunG,Λ).

Remark 2.11.13. Note that, if we want this to hold for all b ∈ B(G)un and w ∈Wb,
this is equivalent to assuming that the mod ℓ-reduction of φT is generic, since WG
acts transitively on the Γ-orbits of coroots.

Remark 2.11.14. If b is basic then this precisely says that the sheaf defined by
ρb,ww0 is inert in the sense of [Han20, Definition 2.19]. In particular, this Propo-
sition, in conjunction with [Han20, Theorem 2.22] and Lemma 2.3.18, seems
to suggest that inert sheaves should correspond precisely to the representations
whose semi-simplified L-parameter comes from the semi-simplification of a pa-
rameter with non-trivial monodromy. For example, if one takes the constant sheaf
on Bun1

G and considers j1!(Λ) then we have that DBunG( j1!(Λ)) ≃ j1∗(Λ) which
one can check is not isomorphic to j!(Λ). Similarly, we see that the L-parameter
attached to the trivial representation comes from the semi-simplification of a pa-
rameter with non-trivial monodromy (the Steinberg parameter).

Now consider µ a geometric dominant cocharacter of G with reflex field E
and an element b ∈ B(G,µ). Applying j∗1Tµ(−) to both sides of the previous
isomorphism, we conclude, using Proposition 2.11.3, an isomorphism

RΓc(G,b,µ)[ρb,w⊗δPb]≃ RΓ
♭
c(G,b,µ)[ρb,w][−2⟨2ρG,νb⟩].

Corollary 2.11.15. Let (G,b,µ) be a local shtuka datum. For b ∈ B(G)un, w ∈
Wb, and φT an integral toral parameter such that φ w

T has weakly generic mod ℓ
reduction, there is an isomorphism

RΓc(G,b,µ)[ρb,w⊗δPb]≃ RΓ
♭
c(G,b,µ)[ρb,w][−2⟨2ρG,νb⟩]

of complexes of G(Qp)×WE-modules. In particular, by Remark 2.11.13, if the
mod ℓ-reduction of φT is generic, then this is true for all w ∈Wb.

We now claim that the cohomology of RΓc(G,b,µ)[ρb,w⊗δPb] should be con-
centrated in degree ⟨2ρ̂,νb⟩, for ρb,w as above. To do this, let’s put ourselves back
in the position of an integral φT with weakly normalized regular mod ℓ reduction.
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We saw that in the previous section that the excision spectral sequence applied to
nEis(SφT )|B(G,µ) gives rise to a filtration whose graded pieces are isomorphic to
jb! j∗b(nEis(SφT )), but Lemma 2.11.12 implies that these graded pieces are also
isomorphic to jb∗ j∗b(Eis(SφT )). In particular, this allows us to deduce that the
edge maps in the excision spectral sequence split, and therefore the sequence de-
generates, giving an isomorphism:⊕

b∈B(G,µ)

jb∗ j∗b(nEis(SφT ))≃ nEis(SφT )|B(G,µ)

We now would like to apply the eigensheaf property. So fix a geometric dominant
cocharacter, and assume that φT is µ-regular. If π = iGB (χ) is the normalized
parabolic induction of χ as above then, using our description of the stalks, we
deduce the following "refined averaging formula".

Theorem 2.11.16. For φT :WQp→ LT (Λ) an integral toral parameter with weakly
normalized regular mod ℓ-reduction and µ a geometric dominant cocharacter
such that φT is µ-regular, we have an isomorphism⊕

b∈B(G,µ)un

⊕
w∈Wb

RΓ
♭
c(G,b,µ)[ρb,w][−⟨2ρ̂G,νb⟩]≃ (iGB (χ)⊠ rµ ◦φ |WE )

of complexes of G(Qp)×WE-modules.

Unless otherwise stated, we will from now on assume that φT is integral
with weakly normalized regular mod ℓ reduction. Using the previous formula,
we can give a very explicit description of the complexes RΓ♭

c(G,b,µ)[ρb,w], for
b ∈ B(G,µ)un and w ∈Wb.

Corollary 2.11.17. For µ a geometric dominant cocharacter with reflex field E
such that φT is µ-regular, fixed b ∈ B(G,µ)un, and varying w ∈Wb, the complex
RΓ♭

c(G,b,µ)[ρb,w] is isomorphic to φ
µ

b,w⊠σ [⟨2ρ̂,νb⟩], for φ
µ

b,w a representation of
WE and σ a subrepresentation of iGB (χ). Moreover, we have an isomorphism⊕

b∈B(G,µ)un

⊕
w∈Wb

φ
µ

b,w ≃ rµ ◦φ |WE

of WE-representations.

This leads to a natural question. How can we describe the WE-representations
φ

µ

b,w in terms of the weights appearing in rµ ◦φ |WE . We recall, by Corollary 2.2.9,
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that the orbit of bT under the Weyl group WG can be described as w(bT ) for w∈Wb
varying; moreover, using Corollary 2.2.9 and Remark 2.10.6, we see that we have
a correspondence between B(G,µ)un and the set of Weyl orbits of weights which
can occur in the representation Tµ |ĜΓ . In particular, given ν ∈ X∗(TQp

)Γ, we
consider the subspace ⊕

ν∈X∗(TQp
)

ν̃Γ=ν

ν̃ ◦φT |WE ⊗Tµ(ν)

of (rµ ◦φ)|WE , where we note that if we forget the Galois action then this identifies
with the ν weight space of Tµ |ĜΓ by Lemma 2.2.8. Now the refined averaging
formula suggests the following.

Conjecture 2.11.18. For all geometric dominant cocharacters µ such that φT
is µ-regular, an unramified element b ∈ B(G,µ)un, and a Weyl group element
w ∈Wb, we have an isomorphism⊕

w̃(bT )∈X∗(TQp
)

w̃(bT )Γ
=w(bT )

w̃(bT )◦φT |WE′ ⊗Tµ(w̃(bT ))≃ φ
µ

b,w|WE′

of WE ′-representations, where bT is a dominant reduction of b and E ′|E denotes
the splitting field of G.

For the rest of this section, let us look at some cases where this can be shown
explicitly, using a shtuka analogue of Boyer’s trick. To illustrate the idea, we
begin with a particularly nice example, where Theorem 2.11.16 and Conjecture
2.11.18 can be checked by hand.

Example 2.11.19. Let G = GL2 and µ = (1,0). Write φT = φ1⊕φ2, and consider
the set B(G,µ). It consists of two elements: the µ-ordinary element and the
basic element. Only the µ-ordinary element lies in B(G,µ)un; therefore, only this
element contributes to the expression in Theorem 2.11.16. Namely, if bµ denotes
the µ-ordinary element, we note that ⟨2ρ̂,νbµ

⟩ = ⟨2ρ̂,µ⟩ = 1. We conclude that
Theorem 2.11.16 is an isomorphism

RΓ
♭
c(G,bµ ,µ)[χ⊗δ

−1/2
B ]⊕RΓ

♭
c(G,bµ ,µ)[χ

w0⊗δ
−1/2
B ]≃ iGL2

B (χ)⊠φ [1]

of G(Qp)×WQp-representations. This can be seen through direct computation. In
particular, we have an isomorphism Jbµ

≃ T , and, since µ is minuscule, we have
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that Sµ ≃ Λ[1](1
2). The space Sht(G,bµ ,µ)∞,Cp is the moduli space parameter-

izing modifications O(−1)⊕O 99KO2 of type (1,0). Every such modification is
determined by an injection O(−1) ↪→ O of line bundles. Formally, this implies
that the space Sht(G,b,µ)∞,Cp as a space with GL2(Qp)-action is parabolically
induced from the space parameterizing such injections as a space with T (Qp) ac-
tion. Here T (Qp) acts on the space of injections O(−1) ↪→ O via the scaling
action precomposed with projection to the first factor of T (Qp). This is a man-
ifestation of the fact that Sht(G,bµ ,µ)∞,Cp is a Jb-torsor over the flag variety
(G/B)(Qp) ≃ P1(Qp) ⊂ P1

Cp
≃ GrG,≤µ−1,Cp

, where the last isomorphism is the
Bialynicki-Birula map. In particular, note that the compactly supported coho-
mology of G/B(Qp) is precisely the space of compactly supported functions on
(G/B)(Qp). All in all, this allows us to conclude isomorphisms

RΓ
♭
c(G,bµ ,µ)[χ⊗δ

−1/2
B ] = IndG

B−(χ⊗δ
−1/2
B )⊠φ1[1] = iGB (χ

w0)⊠φ1[1]

RΓ
♭
c(G,bµ ,µ)[χ

w0⊗δ
−1/2
B ] = IndG

B−(χ
w0⊗δ

−1/2
B )⊠φ2[1] = iGB (χ)⊠φ2[1],

where there is a cancellation of the 1
2 Tate twist in Sµ and the Tate twist com-

ing from δ
−1/2
B , as in §2.3. the compactly supported cohomology of J >0

b con-
tribute. Now, if χ is attached to a generic parameter φT , this implies that iGB (χ)
is irreducible as in Example 2.3.9, and it follows that we have an isomorphism
iGB (χ)≃ iGB (χ

w0), which allows us to conclude the result.

Now let’s generalize this example. In particular, recall that B(G,µ) has a
distinguished µ-ordinary element, denoted bµ , which is the maximal element with
respect to the partial ordering on B(G,µ), and has the property that µ̃ = νbµ

, where
µ̃ is the weighted average over the Galois orbit of µ as in §2.2.1. If we write
µT for µ viewed as a geometric cocharacter of T in the negative Weyl chamber
defined by the choice of Borel, we can see that bµ admits a dominant reduction to
the unique element bµT ∈ B(T,µT ). In other words, the element bµ always lies in
B(G,µ)un := B(G,µ)∩B(G)un. Conjecture 2.11.18 suggests to us that this should
give rise to the contribution given by the highest weight of Tµ |ĜΓ , which will have
multiplicity one. We now prove the following result using a shtuka analogue of
Boyer’s trick [Boy99a] proven by Gaisin-Imai [GI16].

Proposition 2.11.20. For µ any geometric dominant cocharacter with reflex field
E, bµ ∈ B(G,µ)un the µ-ordinary element with dominant reduction bµT , w ∈Wb
varying, and φT any toral parameter, we have an isomorphism

RΓ
♭
c(G,bµ ,µ)[ρbµ ,w]≃ w(µT )◦φT |WE ⊠ iGB (χ

ww0)[⟨2ρ̂,νbµ
⟩]

252



of WE ×G(Qp)-representations, where w,w0 ∈Wb are representatives of minimal
length.

Proof. We note that the element bµ ∈ B(G,µ) is Hodge-Newton reducible in the
sense of [RV14, Definition 4.5]. In particular, bµ is induced from the unique ele-
ment bµT ∈ B(T,µT ) via the natural map B(T )→ B(G). Consider a rank k vector
bundle of the form

⊕k
i=1 O(ni) for ni ∈ Z and suppose we have a modification:

k⊕
i=1

O(ni) 99K On

Then it is easy to see that such a modification will be determined by a tuple of
modifications

O(ni) 99K O

for all i = 1, . . . ,k. If we apply the Tannakian formalism [GI16, Lemma 4.11], this
tells us that the space Sht(G,bµ ,µ)∞,Cp parameterizing modifications of the form

Fbµ
99KF 0

G

will be determined by the spaces Sht(T,w(bµT ),w(µT ))∞,Cp parametrizing modi-
fications of the form

Fw(bµT )
99KF 0

T

with meromorphy equal to w(µT ) for varying w ∈Wbµ
. In particular, this tells

us that the moduli space Sht(G,bµ ,µ)∞,Cp parameterizing modifications of mero-
morphy≤ µ is actually equal to the open subspace Sht(G,bµ ,µ)

µ
∞ parameterizing

modifications of meromorphy equal to µ . This is because any modification in-
duced from a modification

FbµT
99KF 0

T

of type µT will be of type µ , which implies that we have an isomorphism
Sµ ≃ Λ[d](d

2 ), where d = ⟨2ρ̂,νbµ
⟩ = ⟨2ρ̂,µ⟩ using [FS21, Proposition VI.7.5].

Here we need to be a bit careful since Sµ is the pullback of the sheaf asso-
ciated to the tilting module Tµ not Vµ as per usual. However, we note that
the above discussion tells us that the Newton strata in the Schubert cell/variety
Grbµ

G,≤µ−1,Cp
= Grbµ

G,µ−1,Cp
has only non-empty intersection with the semi-infinite

cells SG,w(µT ),Cp indexed by the Weyl group orbits of the highest weight, using
the Remark proceeding 2.4.7. Since both Tµ and Vµ have highest weight with
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multiplicity one, the discrepancy doesn’t matter via Corollary 2.4.9. It remains to
describe the complex RΓ♭

c(G,bµ ,µ)[ρbµ ,w]. Using our above observations, [GI16,
Theorem 4.26] (as in the proof [HI23, Theorem 4.21]), it follows that we have an
isomorphism

RΓ
♭
c(G,bµ ,µ)[ρbµ ,w]≃ IndG

P−bµ

(RΓ
♭
c(M,bµM ,µM)[iJb

Bb
(χw)⊗δ

−1/2
Pbµ

][⟨2ρ̂,µ⟩](⟨ρ̂,µ⟩)

of complexes of G(Qp)×WE-representation, where M = Mbµ
is the centralizer of

the slope homomorphism, µM is the G-dominant choice of µ viewed as a cochar-
acter of M, and bµM ∈ B(M,µM) is the µ-ordinary element. We note that, since
bµ ∈ B(G)un, it follows that B(M,µM) is a singleton and that µM is central with
respect to M. In particular, Sht(M,µM,bµM) is 0-dimensional and identifies with
the profinite set M(Qp) (recall that M ≃ Jbµ

≃ JbµM
in this case). This allows us

to identify

RΓ
♭
c(Mb,µM,bµM)[i

Jb
Bb
(χw)⊗δ

−1/2
Pbµ

]≃ iMb
B∩Mb

(χw)⊗δ
−1/2
Pbµ
⊠w(µT )◦φT (−⟨ρ̂,µ⟩)|WE ,

where we can identify the 1-dimensional Weil group action through excursion
algebra considerations. Therefore, we get an isomorphism

RΓ
♭
c(G,bµ ,µ)[ρbµ ,w]≃ IndG

P−bµ

(iMb
B∩Mb

(χw)⊗δ
−1/2
Pbµ

)⊠w(µT )◦φT |WE )[⟨2ρ̂,µ⟩](⟨−ρ̂,µ⟩+ ⟨ρ̂,µ⟩)≃

iGB (χ
ww0)⊠w(µT )◦φT |WE [⟨2ρ̂,µ⟩]

of complexes of G(Qp)×WE-representations which gives the desired result.

Remark 2.11.21. We note that in the proof we did not use any of our results on ge-
ometric Eisenstein series. It would be interesting to generalize some of these com-
putations to some non-principal situations. In particular, if one works with a gen-
eral parabolic P with Levi factor M and a supercuspidal parameter φM : WQp→ LM
and assumes that Fargues’ conjecture holds on the Levi subgroup M, then the re-
sults of [GI16] guarantee that one has similar formulas relating the cohomology
of the shtuka spaces of G to basic local shtuka spaces of M for Hodge-Newton
reducible b ∈ B(G,µ) admitting a reduction to M. The description of the eigen-
sheaf in Fargues’ conjecture, as described for odd unramified unitary groups in
[BHN22] and partially for GSp4 in [Ham21b], gives one a very explicit descrip-
tion of these basic local shtuka spaces, which would in turn give a computational
approach to understanding and generalizing these formulas beyond the principal
case. We fully anticipate that some of the methods we use in the principal case
generalize to the non-principal case; however, the results seem much more tech-
nical, and these computations would give a nice foothold into the problem.
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This explicit calculation has some interesting consequences. In particular,
we already saw in Example 2.11.19 that relating Proposition 2.11.20 to Theorem
2.11.16 required using the existence of an isomorphism iGB (χ) ≃ iGB (χ

w); i.e. in-
tertwining operators. This phenomenon actually persists. In particular, we deduce
the following.

Corollary 2.11.22. Let χ : T (Qp)→ Λ∗ be a character obtained from an integral
toral parameter φT whose mod ℓ-reduction is weakly normalized regular. For µ ∈
X∗(TQp

)+, let Wµ be the stabilizer of the action of WG on X∗(TQp
)+ and assume

that φT is µ-regular. Then, for all w ∈WG/Wµ a minimal length representative,
we have an isomorphism

iGB (χ)≃ iGB (χ
ww0)

of G(Qp)-representations.

Proof. Since Mbµ
will be by construction the centralizer of µ , we have an iso-

morphism WMbµ
≃Wµ . The previous proposition then tells us that we have an

isomorphism

RΓ
♭
c(G,bµ ,µ)[i

Jbµ

Bbµ
(χw)⊗δ

1/2
Pbµ

]≃ w(µT )◦φT |WE ⊠ iGB (χ
ww0)[⟨2ρ̂,νbµ

⟩]

for all w ∈WG/Wµ a minimal length representative. On the other hand, since
φT is µ-regular, Corollary 2.11.17 tells us that the LHS must be isomorphic
as a G(Qp) representation to some copies of subrepresentations of iGB (χ). To
show that iGB (χ) ≃ iGB (χ

ww0), it therefore suffices to show that they are equal
in the Grothendieck group. However, we claim that [iGB (χ)] ≃ [iGB (χ

ww0)] in
K0(G(Qp),Λ) for any Λ ∈ {Qℓ,Zℓ,Fℓ} and w ∈WG. With Qℓ-coefficients, this
is classical [Dij72a, Theorem 4]. It suffices to treat the case of Fℓ-coefficients.
In this case, after choosing a lift χ̃ of χ , we have an equality [iGB (χ̃)⊗Qℓ] =
[iGB (χ̃

ww0)⊗Qℓ]. So we can find Zℓ-lattices in both representations such that
this equality is also true in the Grothendieck group K0(G(Qp),Zℓ). However,
the semi-simplification mod ℓ doesn’t depend on the choice of Zℓ-lattice, by the
strong Brauer-Nesbitt principle of Vignéras [Vig96, Section 2.5]. It follows that
the equality [iGB (χ)] = [iGB (χ

ww0)] holds in K0(G(Qp),Fℓ) as well.

In particular, the refined averaging formula, together with the direct computa-
tion of provided above, gives rise to an isomorphism: iχ,w : iGB (χ) ≃ iGB (χ

w). If
Λ =Qℓ this recovers the following special case of Proposition A.1.3.
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Corollary 2.11.23. Suppose that χ : T (Qp)→ Q∗ℓ is a normalized regular char-
acter admitting a Zℓ-lattice then we have isomorphisms iGB (χ) ≃ iGB (χ

w) for all
w ∈WG.

We also have the following result which implies that the representations are in
fact irreducible under the imposed conditions, reproving cases of Corollary A.1.4.

Corollary 2.11.24. Let φT : WQp → LT (Λ) be an integral weakly normalized reg-
ular parameter with associated character χ . Suppose that φT is µ-regular for
some µ which is not fixed under any element in the Weyl group and χ is regular
then iGB (χ) is irreducible.

Proof. First note that, by Corollary 2.11.22, we have an isomorphism iGB (χ) ≃
iGB (χ

w) = iGBw(χ) for all w ∈WG. Here Bw is the conjugate of B by w. We write
rG

B for the normalized parabolic restriction functor. We recall that we are working
with ℓ-modular coefficients in possibly non-banal characteristic so it is not auto-
matic that all the constituents of iGB (χ) are not cuspidal. In particular, we will need
the following lemma.

Lemma 2.11.25. Let w0 ∈WG be the element of longest length for a character
χ : T (Qp)→ Λ∗. If we have an isomorphism iGB (χ)≃ iGB (χ

w0) of G(Qp)-modules
then any non-zero quotient σ ′ of iGB (χ) satisfies rG

B (σ
′) ̸= 0

Proof. We apply second adjointness [Dat+22, Corollary 1.3] to the map

iGBw0 (χ)
≃−→ iGB (χ)→ σ

′

to conclude the existence of a non-zero map χ→ rG
B (σ

′), which implies the claim.

Now suppose for the sake of contradiction that iGB (χ) is not irreducible. Then
there exists an exact sequence

0→ σ → iGB (χ)→ σ
′→ 0

Since parabolic restriction is exact (for example by using second adjointness), we
get an exact sequence

0→ rG
B (σ)→ rG

B iGB (χ)→ rG
B (σ

′)→ 0.

From here, we conclude an equality of the length of representations.

ℓ(rG
B (σ))+ ℓ(rG

B (σ
′)) = ℓ(rG

B (i
G
B (χ)))≤ |WG|,
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where the inequality follows from the geometric Lemma [Dat05, Section 2.8]9.
By the previous Lemma, we conclude that ℓ(rG

B (σ)) <WG. Now, since we know
that σ ⊂ iGB (χ) ≃ iGB (χ

w) for all w ∈WG, Frobenius reciprocity implies that we
have non-zero maps rG

B (σ)→ χw for all w ∈WG. This gives a contradiction by
the regularity of χ .

This suggests an interesting relationship between the theory of geometric
Eisenstein series over the Fargues-Fontaine curve and the classical theory of inter-
twining operators and the Langlands quotient, which we hope is explored more in
the future. This prospect becomes even more exciting in the ℓ-modular situation.
The theory of intertwining operators in this context has been partially explored by
Dat [Dat05, Sections 6-8], and the Langlands quotient theorem does not naively
hold in this context, as the following example illustrates.

Example 2.11.26. Suppose that ℓ ̸= 2, ℓ | p−1, and G = GL2. We let χ = δ
−1/2
B

be the modulus character. We note that, by our assumption that ℓ | p−1, we have
an isomorphism | · | ≃ 1T . It follows that we have that δ

−1/2
B ≃ δ

1/2
B . We consider

the usual short exact sequence

0→ 1G→ iGB (δ
−1/2
B )→ StG→ 0

where StG denotes the Steinberg representation. Acting by smooth duality actually
gives a splitting of the short exact sequence and in turn a chain of isomorphisms

iGB (δ
−1/2
B )≃ StG⊕1G ≃ iGB (δ

1/2
B )

of smooth G(Qp)-representations. In particular, we see that iGB (δ
1/2
B ) does not

have a unique irreducible quotient in this case, so that the Langlands quotient
theorem cannot naively hold.

Let’s now explore a case in which Proposition 2.11.20 can be used to verify
Conjecture 2.11.18. Suppose that µ is a geometric dominant cocharacter such
that the image µΓ ∈ X∗(TQp

)+
Γ

is quasi-minuscule or minuscule with respect to

the pairing with X∗(T̂ Γ). In this case, we recall that the orbit of the highest weight
space Tµ |ĜΓ(bµ) forms a closed orbit under the relative Weyl group WG, where
bµ ∈ B(G,µ)un is the µ-ordinary element. It then follows that all the weight

9Note that this bound however fails without taking normalized restriction because of the afore-
mentioned cuspidal constituents of iGB (χ) in non-banal characteristic [Dat05, Page 48]

257



spaces of Tµ |ĜΓ in this orbit will be given by the κ-invariants of w(bµT )∈ B(T )≃
X∗(T̂ Γ), for w ∈WG varying. However, by Proposition 2.11.20, we see that all the
weight spaces of this form come from the contribution of the µ-ordinary element
to the refined averaging formula. If µΓ is minuscule with respect to the above
pairing this is the only weight space in Tµ |ĜΓ , and we see that Conjecture 2.11.18
is true. If µΓ is quasi-minuscule, the only other element in B(G,µ)un is the basic
element, denoted µ♭. By Corollary 2.2.9, the highest weight representation Tµ |ĜΓ

admits a central weight space Tµ |ĜΓ(µ♭
T ) in this case, where µ♭

T ∈ B(T )≃X∗(T̂ Γ)

is the (unique) reduction to T of µ♭ ∈ B(G,µ)un. We deduce the following from
the refined averaging formula.

Corollary 2.11.27. Let µ be a geometric dominant cocharacter such that φT is
strongly µ-regular with reflex field E. Assume that µΓ is quasi-minuscule with
respect to the pairing with X∗(T̂ Γ). Let µ♭ ∈ B(G,µ) be the unique basic element.
It follows by Corollary 2.2.9 that µ♭ is unramified in this case. We let µ♭

T be its
unique reduction to B(T ). There is an isomorphism

RΓc(G,b,µ♭)[iJb
Bb
(χ)]≃RΓ

♭
c(G,b,µ♭)[iJb

Bb
(χ)]≃

⊕
µ̃♭

T∈X∗(TQp
)

µ̃♭
T Γ

=µ♭
T

µ̃
♭
T ◦φT |WE′⊗Tµ(µ̃

♭
T )⊠iGB (χ)

of complexes of WE ′ ×G(Qp)-modules, where E ′|E denotes the splitting field of
G.

Proof. The isomorphism of the ♭ isotypic part with the non-♭ isotypic part follows
from Proposition 2.11.15, noting that for b basic the shifts and twists do not occur.
and The rest follows from combining Theorem 2.11.16 and Proposition 2.11.20.
Noting that, by the strong µ-regularity assumption on φT , the Weil group action
of the contribution of the highest weight to the refined averaging formula must
be distinct from the Weil group action on the contribution of the central weight
spaces, by the vanishing of the H0s for the differences of these weight spaces.

Remark 2.11.28. If G is split then the condition that the central weight space of
Tµ |ĜΓ is non-zero cannot occur if µ is minuscule. However, if G is not split then
it can occur that the central weight space is non-trivial even if µ is minuscule. For
example, if one considers an odd quasi-split unitary group Un and the cocharacter
(1,0, . . . ,0,0) then the σ -centralizer will be isomorphic to Un, and therefore the
basic element b ∈ B(G,µ) lies in B(G)un. A more in depth characterization of
when this can occur is given in [XZ17, Remark 4.2.11]. This result is in some
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sense a generic fiber manifestation of some of the results in [XZ17]. Here, in
the case that G is unramified, Xiao and Zhu relate the irreducible components of
affine Deligne-Luztig varieties to the central weight spaces appearing above, and
use these irreducible components to construct cohomological correspondences on
the special fibers of certain Shimura varieties using uniformization. These affine
Deligne-Luztig varieties are precisely the special fibers of a natural integral model
of Sht(G,µ♭,µ)∞/K for a choice of hyperspecial subgroup K ⊂ G(Qp).
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Chapter 3

Further Applications and
Conjectures

In the first part of this chapter, we explain some of the ideas in joint work with
Si Ying Lee [HL23], where we combine the results discussed in chapters 1 and 2
together with the geometry of the Hodge-Tate period morphism to deduce general-
izations of the torsion vanishing results proven by Caraiani-Scholze, Koshikawa,
and Santos [CS17; CS19; Kos21b; San23]. In the second section of this chapter,
we explain a very general torsion vanishing Conjecture generalizing the torsion
vanishing results discussed in the first section (Conjecture 3.2.19). Moreover, we
explain how these conjectures are motivated by thinking about the analogue of the
theory of geometric Eisenstein series described in chapter 2 in the non-principal
case.

3.1 Applications to Torsion Vanishing
Let G be a connected reductive group over Q admitting a Shimura datum (G,X),
and let A (resp. A f ) denote the adeles (resp. finite adeles) of Q. Fix a prime
number p > 0 and let G := GQp be the base-change to Qp. We will assume that G
is unramified so that there exists a hyperspecial subgroup Kp := Khs

p ⊂G(Qp) and
a Borel B with maximal torus T , which we now fix. We consider the open compact
subgroup K := K pKp ⊂ G(A f ), where K p ⊂ G(Ap

f ) denotes a sufficiently small
level away from p. Let Sh(G,X)K pKp denote the attached Shimura variety defined
over the reflex field E. We take a prime ℓ ̸= p and assume that ℓ is very good
with respect to G, as in [FS21, Page 33] throughout. We will be interested in
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understanding the ℓ-torsion cohomology groups

RΓc(Sh(G,X)K,E ,Fℓ)

and
RΓ(Sh(G,X)K,E ,Fℓ).

In particular, since the level at p is hyperspecial, the unramified Hecke algebra

HKhs
p

:= Fℓ[Khs
p \G(Qp)/Khs

p ]

will act on these complexes on the right. Given a maximal ideal m⊂HKhs
p

, we can
localize both of these cohomology groups at m. We will be interested in describing
this localization. To do this, we recall that, given such a maximal ideal m⊂ HKp ,
this defines an unramified L-parameter

φm : WQp →
LG(Fℓ)

specified by the semisimple element φm(FrobQp). In particular, if T denotes the
maximal torus of G then φm is induced from a parameter φ T

m : WQp → LT (Fℓ) ⊂
LG(Fℓ) factoring through the L-group of the maximal torus. Now, recall that
the irreducible representations of LT correspond to the Γ-orbits X∗(TQp

)/Γ of

geometric dominant cocharacters of G, where Γ := Gal(Qp/Qp) is the absolute
Galois group. We then have the following definition.

Definition 3.1.1. (Definition 2.3.8) Given a toral L-parameter φT : WQp→ LT (Fℓ),
we say that φT is generic if, for all α ∈ X∗(TQp

)/Γ corresponding to a Γ-orbit of
coroots, we have that the complex RΓ(WQp,α ◦ φT ) is trivial. Similarly, we say
that m is generic if φ T

m is a generic toral parameter.

If G=GLn then this coincides with the notion of generic considered in [CS17,
Definition I.9]. We set d = dim(Sh(G,X)K). Motivated by [CS17, Theorem 1.1]
and [CS19, Theorem 1.1], we make the following conjecture.

Conjecture 3.1.2. Let (G,X) be a Shimura datum such that G = GQp is
unramified and K = KpK p with Kp = Khs

p hyperspecial. If m ⊂ Hhs
Kp

is a

generic maximal ideal then the cohomology of RΓ(Sh(G,X)K,E ,Fℓ)m (resp.
RΓc(Sh(G,X)K,E ,Fℓ)m) is concentrated in degrees d ≤ i≤ 2d (resp. 0≤ i≤ d).
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We first recall the motivating situation of Caraiani-Scholze [CS17; CS19].
Let F/Q be a CM field and let (B,∗,V,(·, ·)) be a PEL datum with B a central
simple F-algebra and V a non-zero finite type left B-module. Let (G,X) denote
the Shimura datum attached to it with reflex field E ⊂ C, where G is a connected
reductive group over Q defined by the B-linear automorphisms of V preserving
the choice of pairing (·, ·). We have the following result.

Theorem 3.1.3. [CS17; CS19; Kos21b; San23] Assume that (G,X) is a PEL type
Shimura datum of type A attached to a PEL datum as above. If the prime p splits
completely in F then Conjecture 3.1.2 is true.

Remark 3.1.4. Caraiani-Scholze and Koshikawa prove this under the assumption
that B = F and V = F2n, and the global unitary group G is quasi-split or in the
case when p is split in F and the Shimura variety is compact. These additional
assumptions were removed in the PhD thesis of Santos [San23].

Remark 3.1.5. We believe that Conjecture 3.1.2 should be true under the weaker
hypothesis that H2(WQp,α ◦φT ) is trivial for all Γ-orbits of coroots α , as is shown
in [CS17; CS19; Kos21b; San23] in situation of this Theorem. However, the
theory of geometric Eisenstein series which we will use to prove these results
becomes more complicated in this case (See the discussion around Conjecture
2.1.29); in particular, there should be a non-trivial difference between the sheaf
nEis(Sφm

T
) and the true candidate for the eigensheaf ñEis(Sφm

T
) without the full

generic assumption), and so a proof under these weaker hypothesis using our
methods would require more deeply understanding geometric Eisenstein series
when this assumption is dropped (at least in the case when G is not-split).

Caraiani-Scholze [CS17; CS19] proved this result under some small restric-
tions, which Koshikawa [Kos21b] was able to remove by exhibiting a much more
flexible method for proving Theorem 3.1.3 using compatibility of the Fargues-
Scholze correspondence with the semi-simplificaiton of the Harris-Taylor corre-
spondence. In [HL23], we expand the scope of Koshikawa’s technique motivated
by the analysis in chapter 2. We then carry the strategy out in some particular
cases using work on local-global compatibility of the Fargues-Scholze local Lang-
lands correspondence as is shown in Theorem 1.1.2 for GSp4 and [BHN22, The-
orem 1.1] for GUn and Un. One of the basic ingredients we use is the perspective
on Mantovan’s product formula provided by the Hodge-Tate period morphism.
To explain this, we let µ ∈ X∗(TQp

)+ denote the minuscule geometric dominant
cocharacter of G determined by the Hodge cocharacter of X and an isomorphism
j : C ≃ Qp which we fix from now on. We consider the Kottwitz set B(G) and
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with it the subset B(G,µ)⊂ B(G) of µ-admissible elements. Let p|p be the prime
dividing p in the reflex field E, associated to the embedding Q→ Qp given by

j. We let Ep be the completion at p, C := Êp be the completion of the algebraic
closure, and Ĕp be the compositum of Ep with the completion of the maximal un-
ramified extension of Qp. We recall that, attached to each element b ∈ B(G,µ),
there exists a diamond

Sht(G,b,µ)∞→ Spd(Ĕp)

parametrizing modifications
Eb 99K E0

of meromorphy µ between the G-bundle Eb corresponding to b and the trivial
G-bundle. The space has an action by G(Qp) = Aut(E0) and Jb(Qp) ⊂ Aut(Eb),
where Jb is the σ -centralizer of b. This allows us to consider the quotients

Sht(G,b,µ)∞/Kp→ Spd(Ĕp)

for varying compact open subgroups Kp⊂G(Qp). We can consider the compactly
supported cohomology

RΓc(Sht(G,b,µ)∞,C/Khs
p ,Fℓ)

at hyperspecial level with torsion coefficients, with is action by WEp × Jb(Qp)×
HKhs

p
. Now, the Mantovan product formula tells us that if we look at the non-

compactly supported cohomology RΓ(Sh(G,X)K,E ,Fℓ) then this should always
admit a filtration in the derived category whose graded pieces are

RΓ(Igb,Fℓ)⊗L
H (Jb)

RΓc(Sht(G,b,µ)∞,C/Khs
p ,Fℓ(db))[2db]

for varying b ∈ B(G,µ), where the objects are as follows.

1. Igb is the perfect Igusa variety attached to an element b ∈ B(G,µ) in the
µ-admissible locus inside B(G) and db := dim(Igb) = ⟨2ρG,νb⟩, where ρG
is the half sum of all positive roots and νb is the slope homomorphism of b.

2. H (Jb) :=C∞
c (Jb(Qp),Fℓ) is the usual smooth Hecke algebra.

3. Fℓ(db) is the sheaf on Sht(G,b,µ)∞,C/Khs
p with trivial Weil group action

and Jb(Qp) action as defined in [Kos21b, Lemma 7.4].

263



Such a filtration should always exist, but isn’t currently proven in general. In the
case that the Shimura datum (G,X) is PEL of type A or C, a modern proof of this
result can be found in [Kos21b, Theorem 7.1].

This filtration on the complex RΓc(Sh(G,X)K,E ,Fℓ) allows us to roughly split
the verification of Conjecture 3.1.2 into two parts.

1. Controlling the cohomology of the shtuka spaces

RΓc(Sht(G,b,µ)∞,C/Khs
p ,Fℓ)m.

2. Controlling the cohomology of the Igusa varieties RΓ(Igb,Fℓ).

We first discuss point (1). One of the key observations underlying Koshikawa’s
method is that the cohomology of the space Sht(G,b,µ)∞ computes the action of a
Hecke operator Tµ corresponding to µ on BunG the moduli stack of G-bundles of
the Fargues-Fontaine curve. The Hecke operators commute with the action of the
excursion algebra on BunG, and the action of the excursion algebra on a smooth
irreducible representation ρ , viewed as a sheaf on BunG, determines the Fargues-
Scholze parameter of ρ . It follows that RΓc(Sht(G,b,µ)∞,C/Khs

p ,Fℓ(db))m as
a complex of smooth Jb(Qp)-modules will have irreducible constituents ρ with
Fargues-Scholze parameter φ FS

ρ equal to φm as conjugacy classes of parameters.
When GQp = G is a product of GLns as in Theorem 3.1.3, it follows from the
work of Hansen-Kaletha-Weinstein that the Fargues-Scholze correspondence with
rational coefficients agrees with the semi-simplification of the Harris-Taylor cor-
respondence, where we recall that Jb is a product of inner forms of Levi subgroups
if G is quasi-split. In particular, using that m is generic, it follows that φ FS

ρ = φm

must lift to a Zℓ parameter which is also generic in the analogous sense, and the
condition of generic implies that the lift cannot come from the semi-simplification
of a parameter with non-trivial monodromy. Using this, one can deduce that such
a non-zero ρ only exists if the group Jb is quasi-split, which can only happen
if b ∈ B(G,µ) is the maximal µ-ordinary element. In this particular case (G is a
product of GLns), this can only happen if b∈ B(G,µ) is the µ-ordinary (maximal)
element.

This argument of Koshikawa was the inspiration for the proof of Corollary
2.7.7. In particular, there it was noted that, for m generic, the cohomology
RΓc(Sht(G,b,µ)∞,C/Khs

p ,Fℓ(db))m should only be non-trivial if b ∈ B(G,µ)un :=
B(G)un ∩B(G,µ), where B(G)un is as defined in 2.2.1, as long as the Fargues-
Scholze local Langlands correspondence has certain expected properties (as in
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Assumption 2.7.5). These will be precisely the elements for which Jb is quasi-
split with Borel Bb (Lemma 2.2.12).

We recall that the set B(G,µ)un corresponds to the Weyl group orbits of
weights of the representation Vµ of Ĝ restricted to ĜΓ, by Corollary 2.2.9. In par-
ticular, since µ is minuscule, if G is split then B(G,µ)un consists of one element
corresponding to the unique Weyl group orbit of the highest weight. Moreover,
the contribution of the cohomology of this shtuka space is rather easy to compute
(as in the proof of Proposition 2.11.20), and the problem reduces to controlling
the cohomology of Igb when b ∈ B(G,µ)un is the µ-ordinary element. However,
if G is not split then the restriction of Vµ may have multiple Weyl group orbits of
weights, and one needs to control the cohomology groups

RΓc(Sht(G,b,µ)∞,C/Khs
p ,Fℓ(db))m

for a general b ∈ B(G,µ)un. In particular, for non-split G, the basic element could
be unramified, as discussed in Remark 2.11.28, and in this case we have that the
attatched Igusa variety is just a profinite set (cf. Definition 1.4.1). Therefore, the
problem of torsion vanishing requires completely controlling the generic part of
the torsion cohomology of this basic local Shimura variety.

Such control of the cohomology of shtuka spaces with torsion coefficients
was also attained in chapter 2. To formulate this properly, given a maximal ideal
m ⊂ HKhs

p
we construct in Appendix B.1 a full-subcategory D(BunG,Fℓ)φm ⊂

D(BunG,Fℓ) of the category of étale Fℓ-sheaves on BunG together with an idem-
potent localization map (−)φm : D(BunG,Fℓ) → D(BunG,Fℓ)φm such that, on
smooth irreducible representations, the localization map is either an isomorphism
or 0 depending on if the representation has Fargues-Scholze parameter conju-
gate to φm or not (Lemma B.1.7 (1)). If m is generic it follows, by the proof of
Corollary 2.7.7, that, assuming 2.7.5 holds for G, an object A ∈ D(BunG,Fℓ)φm

is only supported on the HN-strata indexed by b ∈ B(G)un, and its restriction to
such a b ∈ B(G)un will be valued in constituents of the representations of the form
ρb,w := iJb

Bb
(χw)⊗ δ

−1/2
Pb

, for χ the character attached to φT by Artin reciprocity.
Here we recall w ∈Wb := WG/WMb ranges over a set of representatives of min-
imal length, where Mb is the centralizer of the slope homomorphism of b, Bb is
the Borel of Mb transferred to Jb via the inner twisting, as in Lemma 2.2.12, and
δPb is the modulus character of Mb transferred to Jb. For the representations ρb,w,
we know that ! and ∗ push-forwards are isomorphic by Proposition 2.11.12 and
the generic assumption. We let DULA(BunG,Fℓ) denote the full subcategory of
ULA objects, where we recall by [FS21, Theorem V.7.1], that this is equivalent to
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insisting that the restrictions to all the HN-strata indexed by b ∈ B(G) are valued
in the full subcategories Dadm(Jb(Qp),Fℓ) of admissible complexes (i.e the invari-
ants under all open compacts K ⊂ Jb(Qp) is a perfect complex). Moreover, we can
show that the representations ρb,w are semi-simple. In particular, by combining
these facts, one can show that one has a direct sum decomposition

DULA(BunG,Fℓ)φm ≃
⊕

b∈B(G)un

Dadm(Jb(Qp),Fℓ)φm

given by the splitting of the excision filtration via the aforementioned equivalence
of the ! and ∗-pushforwards. Now the key result that will be important for torsion
vanishing is studying how Hecke operators interact with the perverse t-structure
on BunG on this localized category D(BunG,Fℓ)φm .

We recall that D(BunG,Fℓ) has an action by Hecke operators. In particular,
for each geometric dominant cocharacter µ , we have a correspondence

HckG,≤µ

BunG BunG×Spd(C)
h←µ

h→µ

where HckG,≤µ is the stack parametrizing modifications E1→ E2 of a pair of G-
bundles with meromorphy bounded by µ at the closed Cartier divisor defined by
the fixed untilt over C, and h→µ (resp. h←µ ) remembers E2 (resp. E1). We define

Tµ : D(BunG,Fℓ)→ D(BunG,Fℓ)
BWEµ

A 7→ h→µ∗(h
←∗
µ (A)⊗L Sµ)

where Eµ is the reflex field of µ and Sµ is a sheaf on HckG,≤µ attached to the
highest weight tilting module Tµ of highest weight µ by geometric Satake. The
action of Hecke operators commutes with the action of excursion operators and
therefore the action of the spectral Bernstein center and preserves ULA objects. It
follows that we have an induced map

Tµ : DULA(BunG,Fℓ)φm → DULA(BunG,Fℓ)
BWEµ

φm

on the localized category (See Lemma B.1.7 (2)).
We are almost ready to state the local result we will need. To do this, we

recall that D(BunG,Fℓ) has a natural perverse t-structure. In particular, BunG is
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cohomologically smooth of ℓ-dimension 0. Moreover, each one of the HN-strata
Bunb

G are isomorphic to [∗/Jb], which is cohomologically smooth of ℓ-dimension
−dimℓ(Jb) =−db =−dim(Igb). Therefore, we can define a perverse t-structure
pD≥0(BunG,Fℓ) on D(BunG,Fℓ) given by insisting that the ! (resp. ∗) restrictions
to Bunb

G are concentrated in degrees ≥ ⟨2ρG,νb⟩ (resp. ≤ ⟨2ρG,νb⟩). We let
Perv(BunG,Fℓ) be the heart of this t-structure, and, for m a maximal ideal, let
Perv(BunG,Fℓ)φm := Perv(BunG,Fℓ)∩D(BunG,Fℓ)φm .

The key point is now, assuming that φm
T is weakly normalized regular (Defini-

tion 2.3.8) so in particular generic, and that we know something about the struc-
ture of the Fargues-Scholze local Langlands correspondence (Assumption 2.7.5),
the filtered perverse tilting eigensheaf nEis(Sφ T

m
) supplied by Theorem 2.10.10

has stalk at b ∈ B(G)un given by a direct sum of the representations ρb,w, which
will be semi-simple, as discussed above. Moreover, we saw that these represen-
tations give rise to all possible smooth irreducible representations occurring in
DULA(BunG,Fℓ)φm ≃

⊕
b∈B(G)un Dadm(Jb(Qp),Fℓ)φm . Assuming the filtration on

Tµ(nEis(Sφ T
m
)) splits (i.e when φT is µ-regular (Definition 2.1.15)), this will give

us an isomorphism

Tµ(nEis(Sφ T
m
))≃ nEis(Sφ T

m
)⊠ rµ ◦φm ∈ Perv(BunG,Fℓ)

BWEµ

φm

where rµ : Ĝ→ GL(Tµ) is the map attached to the tilting module Tµ . In particu-
lar, this allows us to see that, on this localized category, perverse sheaves are sent
to perverse sheaves under Hecke operators. So, using local-global compatibiltiy
results for the Fargues-Scholze correspondence as shown in Theorem 1.1.2, we
can prove the following.

Theorem 3.1.6. Let µ be a geometric dominant minuscule cocharacter and G a
product of groups satisfying the conditions of Table (3.1) with p and ℓ satisfying
the corresponding conditions. Then if m is generic the restriction of the Hecke
operator

j∗1Tµ : DULA(BunG,Fℓ)φm → Dadm(G(Qp),Fℓ)
BWEµ

φm

is perverse t-exact. In particular, it induces maps

j∗1Tµ : pDULA,≥0(BunG,Fℓ)φm → Dadm,≥0(G(Qp),Fℓ)
BWEµ

φm

and
j∗1Tµ : pDULA,≤0(BunG,Fℓ)φm → Dadm,≤0(G(Qp),Fℓ)

BWEµ

φm

on the halves of the perverse t-structure, where we note that the perverse t-
structure on D(Bun1

G,Fℓ)≃ D(G(Qp),Fℓ) coincides with the usual t-structure.
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Here is the table summarizing our local constraints:

G Constraint on G ℓ p

ResL/Qp(GLn) L/Qp unramified (ℓ, [L : Qp]) = 1
ResL/Qp(GSp4) L =Qp (ℓ,2(p4−1)) = 1

L/Qp unramified (ℓ,2[L : Qp](p4[L:Qp]−1)) = 1 p ̸= 2
ResL/Qp(GU2) L/Qp unramified (ℓ, [L : Qp]) = 1
G = Un(L/Qp) n odd L unramified ℓ ̸= 2

G = GUn(L/Qp) n odd L unramified ℓ ̸= 2
G(SL2,L) L/Qp unramified (ℓ, [L : Qp]) = 1
G(Sp4,L) L/Qp unramified, L ̸=Qp (ℓ,2[L : Qp](p4[L:Qp]−1)) = 1 p ̸= 2

(3.1)

Here, the groups G(SL2,L) and G(Sp4,L) are the similitude subgroup of
ResL/Qp(GL2) (resp. ResL/Qp(GSp4)), i.e. the subgroup of elements such that
the similitude factor lies in Qp.

Remark 3.1.7. As discussed above, assuming 2.7.5 holds for G, the results of
chapter 2 allow one to verify this for any µ after imposing some additional condi-
tions such as weak normalized regularity and µ-regularity on the toral parameter
φm

T attached to the maximal ideal m. However, for the groups considered, we
show that these additional conditions are superfluous and all one needs is generic,
except for the case where G = ResL/Qp(GSp4) or G = G(Sp4,L) with L/Qp non-
trivial, where we need an extra banality assumption on the prime ℓ. It should be
the case (Conjecture 2.1.29) that the results used to establish this theorem should
always be true just under the condition that m is generic. The rest of the assump-
tions come from the very good assumption on ℓ, and the need to work with good
reduction Shimura varieties for some of the results describing the behavior of the
Fargues-Scholze correspondence, as in Chapter 1.

We should also warn the reader that some of the results of chapter 2 and in
particular this consequence, are currently contingent on showing that j!(ICBunB)
is ULA with respect to the map q : BunB→ BunT (Assumption 2.8.1).

These local torsion vanishing results would allow us to prove Conjecture 3.1.2
in several new cases if one could get control over the Igusa varieties Igb. In
Koshikawa’s argument, this is done by using a semi-perversity result proven by
Caraiani-Scholze [CS19, Theorem 4.6.1], which was further generalized in work
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of Santos [San23]. Roughly speaking, we want to show that RΓ(Igb,Fℓ) is concen-
trated in degrees ≥ db, so that the complex of Jb(Qp)-representations RΓ(Igb,Fℓ)
defines the stalk of a semi-perverse sheaf on BunG at b ∈ B(G), to which we can
apply the previous result. In the case that the Shimura vareities Sh(G,X)K are
compact, there is a simpler way of seeing this. In particular, Igb is known to be a
perfect affine scheme in this case, and so the desired semi-perversity just follows
from Artin vanishing by using Poincaré duality on the global Shimura variety.
It turns out that this style of argument can be made to work even in the non-
compact case. In [CS17; CS19; Kos21b; San23], the non-compactly supported
cohomology RΓ(Sh(G,X)K,Fℓ)m is studied together with its filtration involving
RΓ(Igb,Fℓ) coming from Mantovan’s formula, and shown to be concentrated in
degrees ≥ d. However, one could also study the compactly supported cohomol-
ogy RΓc(Sh(G,X)K,Fℓ)m and show that it is concentrated in degrees ≤ d, à la
Poincaré duality. To do this, we recall [CS19, Section 3.3] that, in the non-
compact case, the perfect scheme Igb is not affine, but it admits a partial minimal
compactification gb : Igb ↪→ Igb,∗ which is affine, as proven in the more general
setting of PEL type A or C by Santos [San23]. We define

Vb := RΓc−∂ (Ig
b,∗,Fℓ) := RΓ(Igb,∗,gb!(Fℓ))

the partially compactly supported cohomology, which is supported in degrees≤ db
by Artin-vanishing and the affineness of Igb,∗. Now, for K ⊂G(A f ) a sufficiently
small open compact, we define S (G,X)K := (Sh(G,X)K⊗E Ep)

ad to be the adic
space over Spa(Ep) attached to the Shimura variety. We can define the infinite
level perfectoid Shimura varieties S (G,X)K p by taking the inverse limit of the
finite level spaces S (G,X)K pKp as Kp→ {1}. The base-change S (G,X)K p,C is
representable by a perfectoid space if (G,X) is of pre-abelian type, and in general
it is diamond. By the results of [Sch15b; Han20], we have a Hodge-Tate period
map

πHT : [S (G,X)K p,C/G(Qp)]→ [F ℓG,µ−1/G(Qp)]

recording the Hodge-Tate filtration on the abelian varieties with additional struc-
ture that S (G,X)K p,C parametrizes. Here F ℓG,µ−1 := (GC/Pµ−1)ad is the adic
flag variety attached to the parabolic in GC given by a dominant inverse of µ .
We recall that the flag variety [F ℓG,µ−1/G(Qp)] admits a locally closed stratifi-
cation ib : [F ℓb

G,µ−1/G(Qp)] ↪→ [F ℓG,µ−1/G(Qp)] indexed by b ∈ B(G,µ), given
by pulling the HN-stratification along the natural map h← : [F ℓG,µ−1/G(Qp)]→
BunG. We will now impose the following very mild assumption in what follows,
which we need to apply Hartogs’ principle in our proof.
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Assumption 3.1.8. Write ∂ Igb,∗ ⊂ Igb,∗ for the closed complement of Igb in Igb,∗.
We assume that (G,X) is a PEL datum of type A or C such that, for all b∈B(G,µ),
the perfect scheme ∂ Igb,∗ is empty or has codimension in Igb,∗ greater than 2.

Remark 3.1.9. If G is simple then it is easy to show that this assumption will
be satisfied if dim(S (G,X)K p,C) ≥ 2, by using that the boundary of the par-
tially minimally compactified Igusa varieties is expressible as the Igusa varieties
of Shimura varieties attached to Levis of Q-rational parabolics of G. Moreover, if
S (G,X)K p,C is compact then it is automatic that ∂ Igb,∗ is empty. Therefore,
if G is simple, this is excluding the cases where dim(S (G,X)K p,C) = 1 and
S (G,X)K p,C is non-compact. There are two possibilities; either (G,X) is the
Shimura datum attached to the modular curve or it is the Shimura datum attached
to the unitary Shimura curve. In the latter case, we have that the connected com-
ponents are given by modular curves. In these cases, the results of [CS19] are
sufficient to prove Conjecture 3.1.2.

Now one can show that the stalk of RπHT!(Fℓ) at a geometric point x :
Spa(C,C+)→F ℓG,µ−1 which lies in the adic Newton strata F ℓb

G,µ−1 is given by

Vb. Moreover, if we write h←b : [F ℓb
G,µ−1/G(Qp)]→ [Spd(C)/Jb] ≃ Bunb

G for

the pullback of h← to Bunb
G then one can deduce that the complex ib!i∗bRπHT!(Fℓ)

is isomorphic h←∗ jb!(Vb). Therefore, by excision, we deduce that the complex of
G(Qp)×WEp-representations

h→∗ RπHT!(Fℓ)≃RΓc(SK p,C,Fℓ)≃ colimKp→{1}RΓc(SK pKp,C,Fℓ)≃ colimKp→{1}RΓc(Sh(G,X)K pKp,C)

has a filtration with graded pieces isomorphic to h→∗ h←∗( jb!(Vb)) for varying
b ∈ B(G,µ), where h→ : [F ℓG,µ−1/G(Qp)]→ [Spd(C)/G(Qp)]. Here the sec-
ond isomorphism follows since compactly supported cohomology respects taking
limits of space, and the third isomorphism is a standard comparison result due to
Huber [Hub96, Theorem 3.5.13].

Now, via the Bialynicki-Birula isomorphism and Beauville-Laszlo gluing, the
flag variety [F ℓG,µ−1/G(Qp)] identifies with an open substack of HckG,≤µ for
the fixed minuscule µ . In particular, under this relationship the maps h→µ and h←µ
identify with h→ and h←, and therefore we can relate the graded pieces of the
excision filtration to Hecke operators. We write

RΓc(G,b,µ) := colimKp→{1}RΓc(Sht(G,b,µ)/Kp,Fℓ(db))

for the complex of G(Qp)×Jb(Qp)×WEp-modules defined by the cohomology at
infinite level, and deduce the following variant of the Mantovan product formula
for the compactly supported cohomology.
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Theorem 3.1.10. The complex RΓc(SK p,C,Fℓ) has a filtration as a com-
plex of G(Qp) × WEp-representations with graded pieces isomorphic to
j∗1(Tµ jb!(Vb))[−d](−d

2 ). More specifically, the graded pieces are isomorphic to

(RΓc(G,b,µ)⊗L
H (Jb)

Vb)[2db].

as G(Qp)×WEp-modules.

We now apply our localization functor (−)φm : D(BunG)→ D(BunG)φm to
RΓc(SK p,C,Fℓ) viewed as a sheaf on BunG by ! extending along the neu-
tral strata. After applying RΓ(Khs

p ,−), this agrees with RΓc(SK pKhs
p ,C,Fℓ)m,

the usual localization under the unramified Hecke algebra (Lemma B.1.7 (3)),
which is the object we want to study. This in turn admits a filtration by
RΓ(Khs

p ,( j∗1Tµ jb!(Vb)))φm[−d](−d
2 ). However, now we know by the above, that

the natural map jb!(Vb)→ jb∗(Vb) is an isomorphism after applying (−)φm . More-
over, it can only have interesting contributions coming from the unramified ele-
ments B(G,µ)un. In particular, we can deduce the following Corollary.

Theorem 3.1.11. Suppose (G,X) is a PEL datum of type A or C such that GQp is a
product of simple groups as in Table (3.1) with p and ℓ satisfying the correspond-
ing conditions, the complex RΓc(SK,C,Fℓ)m ≃ RΓc(Sh(G,X)K p,C,Fℓ)m breaks up
as a direct sum⊕

b∈B(G,µ)un

RΓc(Sht(G,b,µ)∞,C/Khs
p ,Fℓ(db))m⊗L

H (Jb)
RΓc−∂ (Ig

b,∗,Fℓ)

of HKhs
p
×WEp-modules.

As a consequence, we immediately deduce our main Theorem, by combining
Theorem 3.1.6 with the fact that RΓc−∂ (Igb,∗,Fℓ) ∈ D≤db(Jb(Qp),Fℓ), by Artin
vanishing.

Theorem 3.1.12. Suppose (G,X) is a PEL datum of type A or C such that GQp

is a product of simple groups as in Table (3.1) with p and ℓ satisfying the corre-
sponding conditions then Conjecture 3.1.2 is true.

As we will now explain more, in the case that the unique basic element
b ∈ B(G,µ)un is unramified the contribution of the corresponding summand in
3.1.11 to middle degree cohomology should serve as a generic fiber analogue of
the description of the middle degree cohomology on the special fiber of the inte-
gral model at hyperspecial level, as provided in [XZ17, Theorem 1.1.4].
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3.2 Conjectures and Concluding Remarks

3.2.1 Relationship to Xiao-Zhu
Assume that the basic element b ∈ B(G,µ)un is unramified (See [XZ17, Re-
mark 4.2.11] for a classification). Let us look at the middle degree cohomology
Hd(RΓc(S (G,X)K p,C,Fℓ)φm). By Theorem 3.1.11, it has a summand isomorphic
to

Hd(RΓc(G,b,µ)⊗L
H (Jb)

RΓc−∂ (Ig
b,Fℓ)).

To describe this, let G′ be the unique Q-inner form of G such that G(Ap∞) ≃
G′(Ap∞), G′(R) is compact modulo center, and GQp ≃ Jb (See [Han20, Propo-
sition 3.1] for the existence). We write C(G′(Q)\G′(A f )/K p,Fℓ) for the set of
all continuous functions on the profinite set G′(Q)\G′(A f )/K p It is easy to show
that one has an isomorphism

C(K p\G′(A f )/G′(Q),Fℓ)≃ RΓc−∂ (Ig
b,∗,Fℓ)

for example using basic uniformization of PEL type Shimura varieties (See
[Han20, Theorem 3.4]), as described in Definition 1.4.1. Here the LHS means
compactly supported smooth functions. We let Vµ ∈ RepFℓ

(Ĝ) be the highest
weight representation of highest weight µ , where we recall that this agrees with
the highest weight tilting module since µ is minuscule by Proposition A.2.1. Let
bT denote the unique (since b is basic) reduction of b ∈ B(G) to B(T ), and regard
it as an element in B(T ) ≃ X∗(T̂ Γ). It should be the case that, under possible
additional constraints on m depending on µ (See for example Conjecture 2.11.18
and [XZ17, Definition 1.4.2]), we have an isomorphism between

C(K p\G′(A f )/G′(Q),Fℓ)⊗L
H (Jb)

RΓc(Sht(G,b,µ)∞,C/Khs
p ,Fℓ)m

and
C(K p\G′(A f )/G′(Q),Fℓ)m⊗Vµ |ĜΓ(bT )[−d](−d

2
)

of G(Qp)-representations, where we note that Jb ≃ G if b ∈ B(G,µ)un since b is
basic and Jb must be quasi-split since it is unramified1. This would follow from
Conjecture 2.11.18. In particular, by arguing as in Koshikawa [Kos21b, Page 6],
we know that RΓc(Sht(G,b,µ)∞,C/Khs

p ,Fℓ)m will have irreducible constituents
given by the representations of Jb(Qp) with Fargues-Scholze parameter equal φm

1One should also be able to describe the Weil group action, as in Conjecture 2.11.18.
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as conjugacy classes of parameters. Moreover, using that Assumption 2.7.5 holds
for the groups appearing in Table 3.1, we know that they have to be constituents
of the iGB (χ), which will be irreducible by Corollary 2.11.24 under the generic
assumption and the constraints appearing in Table 3.1. Then Conjecture 2.11.18
would imply that RΓc(G,b,µ)[iGB (χ)] ≃ iGB (χ)⊗Vµ |ĜΓ(bT )[−d](−d

2 ) as G(Qp)-
modules. Assume ℓ is banal (i.e coprime to the pro-order of Khs

p ) then passing to
Khs

p -invariants, recalling that it is exact under the banal hypothesis, gives us the
claimed description of the generic part of the basic locus.

Remark 3.2.1. If B(G,µ)un consists of only the basic element and the µ-ordinary
element, and φ T

m is strongly µ-regular (Definition 2.3.14), then Conjecture 2.11.18
holds, by Corollary 2.11.27. In particular, the description of the generic part of
the cohomology of the basic locus claimed above can be made unconditional.

We note that this description of the middle degree cohomology on the rigid
generic fiber of the Shimura variety at hyperspecial level parallels Theorem
[XZ17, Theorem 1.14 (1)], describing the middle degree cohomology on the spe-
cial fiber of the natural integral model2.

3.2.2 Non-Principal Geometric Eisenstein Series and a Gen-
eral Torsion Vanishing Conjecture

In this section, we would like to formulate some conjectures on the behavior of
non-principal geometric Eisenstein series. These conjectures will lead to a natural
generalization of Conjecture 3.2.19 that goes far beyond the scope of just describ-
ing the generic localization of the torsion cohomology at hyperspecial level. We
fix Λ ∈ {Fℓ,Zℓ,Qℓ} a coefficient system. If Λ ∈ {Zℓ,Fℓ} we assume that ℓ is very
good with respect to G/Qp a fixed connected reductive quasi-split group G. We
assume that the derived group of G is simply connected, as in chapter 2, and fix a
choice T ⊂ B⊂ G of maximal torus and Borel in G.

We let P ⊂ G be a parabolic subgroup which is standard with respect to the

2For this comparison it would have been more natural to consider an analogue of Theorem
3.1.11 with Qℓ-coefficients. This is indeed doable assuming that φm admits a Zℓ-lattice as in the
statement of Theorem 2.10.10. This integrality condition is however an artifiact of the theory of
solid Qℓ-sheaves not being properly understood (e.g excision fails) and should be removable with
more technology.
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choice of Borel, and denote its Levi factor by M. We look at the diagram

BunP BunG

BunM

pP

qP (3.2)

of v-stacks. We would now like to use this to define a geometric Eisenstein functor
that parabolically induces eigensheaves on BunM with eigenvalue give by a super-
cuspidal L-parameter φM : WQp → LM(Λ) to eigensheaves on BunG with eigen-

value φ : WQp

φM−→ LM(Λ)→ LG(Λ). First, let us review what the structure of
the eigensheaf SφM should be for such a supercuspidal L-parameter φM. When
Λ =Qℓ, the eigensheaf SφM should have the form specified by Fargues’ Conjec-
ture [Far16, Conjecture 4.4]; namely, the stalks at all the basic elements should be
given by the L-packets specified by Kaletha’s refined local Langlands correspon-
dence [Kal16]. However, we also expect that some version of this should also be
true with ℓ-modular coefficients.

Conjecture 3.2.2. Let φM : WQp → LM(Λ) a supercuspidal L-parameter. For all
ν ∈ B(M)basic, there should exist a finite set of smooth irreducible representations
ΠφM(Jν) only depending on the isomorphism class of Jν as a connected reductive
group such that ⊕

ν∈B(M)basic

⊕
π∈ΠφM (Jν )

jν!(π)

is an eigensheaf with eigenvalue φM.

Remark 3.2.3. It is easy to see that such an eigensheaf must be supported on the
basic locus, using that the parameter is supercuspidal and that the σ -centralizers
at the non-basic elements are inner forms of proper Levi subgroups of G (cf. the
discussion proceeding 1.3.21). As mentioned above, with Qℓ-coefficients this is
essentially a slightly weaker form of Fargues’ conjecture [Far16, Conjecture 4.4],
where the key difference is that we don’t insist that the eigensheaf property respect
the action of the centralizer group Sφ , as described in chapter 1 for G = GSp4 in
§1.2. In particular, this weaker form of Fargues’ Conjecture for M =GSp4 follows
from generalizing the analysis used in the proof of Theorem 1.8.2, as mentioned
in Remark 1.8.4, and should (more or less) follow from showing compatibility of
the Fargues-Scholze local Langlands with the refined local Langlands of Kaletha.
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Pinning down the Sφ -action required for the full form Fargues’ conjecture con-
cretely translates into determining which of the two possibilities for the statement
of Theorem 1.8.2 occurs, and this should be doable through more refined trace for-
mula analysis. In the case of odd unramified unitary groups, this was carried out
by Bertoloni-Meli–Nguyen [MN21], and in turn we have in joint work [BHN22]
been able to show the full form of Fargues’ Conjecture in this case. For GLn,
this was carried out by Anschütz and Le Bras [AL21a], and for torii with general
coefficient systems by Zou [Zou22].

The general case of this conjecture with Fℓ-coefficients is essentially com-
pletely unknown aside from the case of torii. In particular, the definition of the
packets ΠφM(Jν) are much more mysterious, but for general linear groups it will
be given by the correspondence of Vigneras [Vig01]3. By combining the spectral
action with the calculations of Dat, specifying how these representations con-
tribute to the Lubin-Tate tower [Dat12] with modular coefficients, one should be
able to verify this conjecture in this particular case (cf. the analysis explained in
Remark 1.8.4 and [BHN22, Section 4]). However, for general reductive groups,
this is currently very mysterious.

We would now like to define a geometric Eisenstein functor which will
parabolically induce the eigensheaves described in the above conjecture. Unfor-
tunately, due to the formalism of ℓ-adic sheaves not being as well-behaved when
Λ ∈ {Zℓ,Qℓ}, for now we can only really do this properly with Fℓ-coefficients,
and then use analysis similar to §2.10 to get statements for the other coeffi-
cient systems. Here, using [FS21, Proposition VII.6.6], we have an identification
Dlis(BunG,Fℓ) ≃ D(BunG,Fℓ) with the category of étale Fℓ-sheaves studied in
[Sch18]. We define a functor

nEisP(−) : D(BunM,Fℓ)→ D(BunG,Fℓ)

A 7→ pP!(q
∗
P(A)⊗L ICBunP).

Here ICBunP := q†∗(∆
1/2
P ), where q† : BunP → BunM → BunMab :=⊔

ν∈X∗(Mab
Qp

)Γ
[∗/Mab(Qp)] denotes the natural map to Bun of the abelianiza-

tion Mab of M, and ∆
1/2
P :=

⊕
ν∈X∗(Mab

Qp
) jν!(δ

1/2
P )[⟨2ρG,ν⟩] is the sheaf defined

by the modulus character δ
1/2
P viewed as a character on Mab(Qp). We note

3This can be shown by using the compatibility of both Fargues-Scholze and Vigneras construc-
tion with mod ℓ-reduction, and the semi-simplification of the Harris-Taylor correspondence.
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that, since the derived group of G is simply connected, we have an isomorphism
X∗(Z(M̂)Γ) ≃ B(M)basic

≃−→ B(Mab) ≃ X∗(Mab
Qp

)Γ, using [Kot97a, Lemma 5.13]

for the second isomorphism. Therefore, the natural map q : BunM → BunMab

induces an isomorphism of connected components. Moreover, by [Ham21a,
Proposition 3.16] and its proof, we know that the preimage Bunν

P of the con-
nected component Bunν

M indexed by ν under q is cohomologically smooth of
ℓ-dimension ⟨2ρG,ν⟩, and the induced morphism qν : Bunν

P → Bunν
M is open

with connected fibers. In particular, as in chapter 2, it follows that we have a
decomposition into connected components

BunP =
⊔

ν∈X∗(Mab
Qp

)Γ

Bunν
P,

and the connected component of BunP indexed by ν is cohomologically smooth
of dimension ⟨2ρG,ν⟩. This motivates the following generalization of Corollary
2.6.2, which should follow through similar methods.

Conjecture 3.2.4. The sheaf ICBunP is Verdier self-dual on BunP.

We assume the existence of the eigensheaf SφM with eigenvalue φM as in
Conjecture 3.2.2, and look at the sheaf

nEis(SφM) ∈ D(BunG,Fℓ).

We now ask the question: "When is this a Hecke eigensheaf?". As in chapter 2,
we cannot expect this to always be true. In particular, we need to impose some
condition generalizing the generic condition (Definition 2.3.8) in chapter 2 to a
general Levi M.

To do this, we need to introduce some notation. As noted above, we have an
isomorphism X∗(Mab

Qp
)Γ ≃ X∗(Z(M̂Γ)). We denote this lattice by ΛG,P in what

follows. If we let J̃ (resp. J̃M) denote the set of vertices of the absolute Dynkin
diagram of G (resp. M) then the absolute simple coroots α̃i for i ∈ J̃ \J̃M de-
fine elements of X∗(Mab

Qp
), and we let Λ

pos
G,P denote the positive span of the image

of these coroots in the coinvariant lattice, as in Definition 2.2.8. Moreover, the
absolute Galois group Γ will permute the simple coroots indexed by J̃ and J̃M.
We write JG,P for the orbits of J̃ \J̃M under this map, and, for i∈JG,P, write
αi ∈ X∗(Mab

Qp
)Γ for the element in the coinvariant lattice that this element maps

to. We let N be the unipotent radical of the standard parabolic P, and consider
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the representation V N
ad given by looking at the action of LM on the Lie algebra

of LN via the adjoint action. We write rN
ad : LM → GL(Vad) for the associated

map. Consider θ ∈ ΛG,P ≃ X∗(Z(M̂Γ)), and write V N,θ
ad for the maximal subrep-

resentation of V N
ad whose restriction to Z(M̂Γ) is given by the character θ . We let

rN,θ
ad : LM→ GL(V N,θ

ad ) denote the corresponding map.
We now come to our key definition.

Definition 3.2.5. We say a supercuspidal L-parameter φM : WQp → LM(Λ) is of
Langlands-Shahidi type if, for all θ ∈ ΛG,P

4, the Galois cohomology groups

RΓ(WQp,r
N,θ
ad ◦φM)≃ 0

and
RΓ(WQp,r

N,θ
ad ◦φ

∨
M)≃ 0

are trivial for all θ .

Remark 3.2.6. We note, since we enforced this condition on both rN,θ
ad ◦ φM and

rN,θ
ad ◦φ∨M, that this is independent of the choice of parabolic P.

Remark 3.2.7. In the case that M = T , we claim that this recovers the condition
of generic given by Definition 2.3.8. In particular, we consider the natural map
(−)Γ :X∗(TQp

)/Γ→X∗(TQp
)Γ from Γ-orbits of geometric dominant cocharacters

to the coinvariants. Then, for θ ∈ Λ
pos
G,B, one has an isomorphism

rN,θ
ad ◦φT ≃

⊕
θ̃∈X∗(TQp

)\Γ
θ̃Γ=θ

θ̃ ◦φT ⊗V N
ad(θ̃)

of WQp-representations (cf. Lemma 2.2.8), where V N
ad(θ̃) denotes the multiplicity

of the representation of LT corresponding to θ̃ in V N
ad. Using this, we see that the

condition is equivalent to generic, as desired.
The terminology of "Langlands-Shahidi type" comes from the fact that the

representation rN
ad ◦ φM is precisely the representation which appears in the de-

scription of the constant term of usual Eisenstein series via the Langlands-Shahidi
method. In a similar vein, this should be a condition guaranteeing that the geo-
metric Eisenstein series over the Fargues-Fontaine curve is as simple as possible;
namely, we can formulate the first version of our conjecture.

4In fact, it easy to show that rN,θ
ad ◦φM can only be non-zero for θ ∈Λ

pos
G,P, since P was assumed

to be standard with respect to the choice of Borel.
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Conjecture 3.2.8. For φM : WQp → LM(Fℓ) a L-parameter of Langlands-Shahidi
type, we have that

nEisP(SφM) ∈ D(BunG,Fℓ)

is a perverse Hecke eigensheaf with eigenvalue φ : WQp

φM−→ LM(Fℓ)→ LG(Fℓ).

Let us explain roughly why one should believe such a statement to be true. The
key point is that this should be a condition guaranteeing that the "true" eigensheaf
classically defined using a geometric Eisenstein functor attached to a compact-
ificaiton of p : BunP → BunG agrees with nEisP(SφM). Let us first explain the
structure of the relevant compactifications, as is done in the toral case in §2.5.2.
As seen there, one can use the Plücker description of BunP to define Drinfeld
compactifications, which we denote by BunP and B̃unP. These come equipped
with open immersions

jP : BunP ↪→ BunP

j̃P : BunP ↪→ B̃unP

and a map tP : B̃unP → BunP, which will be the identity on the open subspace
BunP. The map pP extends to a map p̃P (resp. pP) along j̃P (resp. jP). More-
over, the map qP : BunP→ BunM (resp. q†

P : BunP→ BunMab) considered above,
extends to maps q̃P (resp. qP) along j̃P (resp. jP).

We suppress giving the full definition of these v-stacks here, but, to give some
more flavor for these compactifications, we note that, for S ∈ Perf, the Plücker
description of the space BunP tells us that it will parametrize a set of embeddings

F ↪→ E ,

where F is a rank k vector bundle and E is a rank n vector bundle for 1 ≤ k < n
with cokernel isomorphic to a vector bundle on the Fargues-Fontaine curve XS
over S. Such a map is equivalent to the datum of the map given by its top exterior
power

Λ
k(F ) ↪→ Λ

k(E ),

and one can either consider fiberwise-injective OXS-module maps of the form
F ↪→ E or fiberwise-injective injective OXS-module maps of the form Λk(F ) ↪→
Λk(E ). These will define different notions of "enhanced" P-structures which B̃unP
and BunP will parametrize, respectively. From this point of view, we can think of
the map tP as given by taking top exterior powers. In particular, when P is a Borel
so that F will always be a line bundle, we have an equality BunB = B̃unB of the
two compactifications.
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Similar to the case of BunP, one should be able to construct a Verdier self-dual
sheaf ICB̃unP

∈ D(B̃unP,Fℓ). Assuming such a sheaf existed, one could consider
the functor

ñEisP(−) : D(BunM,Fℓ)→ D(BunG,Fℓ)

A 7→ pP!(q
∗
P(A)⊗L ICB̃unP

),

such that it is always the case that ñEisP(SφM) is an eigensheaf with eigenvalue
φ , as in [BG02], without assuming any condition on φM. Unfortunately, in this
context, it is more difficult to define ICB̃unP

, as the usual formalism of intersection
cohomology (even in classical rigid geometry) is not as well-behaved. Neverthe-
less, inspired by the main results of Braverman-Gaitsgory on geometric Eisenstein
series in the global function field setting [BG02], we can still make the following
Conjecture.

Conjecture 3.2.9. There exists a sheaf ICB̃unP
∈ D(B̃unP,Fℓ) on B̃unP, with as-

sociated functor ñEisP(−) as defined above, satisfying the following properties.

1. The sheaf ICB̃unP
is Verdier self-dual on B̃unP and ULA with respect to the

natural map q̃P : B̃unP→ BunM.

2. We have an isomorphism j̃∗P(ICB̃unP
)≃ ICBunP .

3. There is a natural isomorphism DBunG(ñEisP(−)) ≃ ñEisP(DBunM(−)),
where DZ denotes Verdier duality on Z.

4. For φM : WQp → LM(Fℓ) any semi-simple L-parameter and SφM ∈
D(BunM,Fℓ) any eigensheaf with eigenvalue φM, the sheaf ñEisP(SφM) is

an eigensheaf with eigenvalue φ : WQp

φM−→ LM(Fℓ)→ LG(Fℓ).

Remark 3.2.10. Using similar arguments to §2.8, we note that (3) would follow
from (1) and the properness of p̃P : B̃unP → BunG after restricting to the fibers
over the connected components of BunM. This properness should hold in the
Fargues-Fontaine setup; however, is a lot more subtle beyond the case where P is
a Borel (Proposition 2.5.9).

We assume such a sheaf exists then, by property (2) and projection formula,
we have a natural map

nEisP(SφM)→ ñEisP(SφM) (3.3)
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given by adjunction. The key motivation behind Conjecture 3.2.8 is that, when
φM is of Langlands-Shahidi type, this map should be an isomorphism. Therefore,
by Property (4), we have that nEisP(SφM) is an eigensheaf with eigenvalue φ

as desired. The reason this should be true is that the cokernel of this map should
admit a filtration with graded pieces isomorphic to RΓ(WQp ,r

N,θ
ad ◦φM) for varying

θ ∈ Λ
pos
G,P. We explain this briefly now.

The space BunP will behave very similarly to the space BunB studied in chap-
ter 2. In particular, for each θ ∈ Λ

pos
G,P \ 0, we can write θ := ∑i∈JG,P

niθi, and

consider Div(θ) := ∏i∈JG,P
Div(ni)

Ei
, where Ei is the reflex field of the Γ-orbit at-

tached to i ∈JG,P, as in §2.3.3. For θ ∈ Λ
pos
G,P, we will get a locally closed strata

θ BunP ⊂ BunP

corresponding to the locus where the cokernel of the maps in the Plücker descrip-
tion have torsion specified by θ . This will be isomorphic to

θ BunP ≃ Div(θ)×BunP

as in Proposition 2.5.19. For varying θ , these form a stratification of BunP. In
turn, we can define a locally closed stratification θ B̃unP of B̃unP, by pulling back
the strata θ BunP along the map tP. This should be isomorphic to

Hck+,(θ)
M ×BunM BunP

where Hck+,(θ)
M ⊂ Hck(θ)M is a subspace of the symmetrized version of the Hecke

stack fibered over BunM×Div(θ) via the map h→M × supp (For a more precise de-
scription in the global function-field setting see [Bra+02b, Propositions 1.7, 1.9]).
Now, the key point is that the perverse sheaves attached to the representations
V N,θ

ad under geometric Satake should appear in the ∗-pullback of the sheaf ICB̃unP
to the strata indexed by θ , as in [Bra+02b, Theorem 1.12] in the global function-
field setting. It would follow that the cone of (3.3) is related to the Hecke operator
TV N,θ

ad
(SφM)≃SφM ⊠ rV N,θ

ad
◦φM, where we have used the eigensheaf property for

SφM . From here, it would follow that the cone of the map (3.3) is given by Eisen-
stein functors tensored by the Galois cohomology groups RΓ(WQp,r

N,θ
ad ◦φM) for

θ ∈ ΛG,P \0 varying, and this vanishes by the Langlands-Shahidi condition.
This motivates the belief that nEisP(SφM) should satisfy the same good prop-

erties as ñEisP(SφM) when φM is of Langlands-Shahidi type. In particular, as
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discussed in chapter 2, we expect that, under a condition such as the vanishing of
the H0 of the complexes RΓ(WQp,r

N,θ
ad ◦φM) for θ ∈ ΛG,P \0 (See [BG02, Theo-

rem 2.2.4] for this statement in the toral case5), we expect that ñEisP(SφM) should
satisfy a functional equation, and in turn the sheaf nEisP(SφM) should also sat-
isfy a similar functional equation if φM is of Langlands-Shahidi type. With this in
place, we conjecture the following.

Conjecture 3.2.11. If φM is of Langlands-Shahidi type then we have an isomor-
phism

nEisP(SφM)≃ nEisQ(SφM)

for any two parabolics P and Q with Levi M.

As discussed in chapter 2 for the toral case, this functional equation would
have many implications for the stalks of the sheaf nEisP(SφM). To describe this,
we let B(G)M := Im(B(M)basic→ B(G)) be the set of elements in B(G) admitting
a basic reduction to M, generalizing the set of unramified elements studied in
chapter 2. For b ∈ B(G)M, we consider the set W [M,Mb] as defined in [BM22,
Section 5.3]. This will be identified with the set of elements in WG such that

w(M)⊂Mb

w(M∩B)⊂ B,w−1(Mb∩B)⊂ B

One can show the following facts about B(G)M, by similar arguments as in §2.2.1.

Lemma 3.2.12. Let b ∈ B(G)M, the following is true

1. There is an injection i−1(b) ↪→ W [M,Mb]. The image is given by the
set of elements w such that w(M) ⊂ Mb transfers to a Levi of JbMb

un-
der the inner twisting between Mb and JbMb

. Namely, for every such ele-
ment ν ∈ B(M)basic, there exists a unique w ∈W [M,Mb] such that w(ν) ∈
B(w(M))basic has G dominant slopes.

2. An element b ∈ B(G) lies in B(G)M if and only if there exists w ∈W [M,Mb]
such that the parabolic w(P)∩Mb of Mb transfers to a parabolic subgroup
Qb,w ⊂ Gb under the inner twisting. More precisely, if ν maps to b ∈ B(G)

5In particular, the analogue of their regularity condition for the eigensheaf SφT is equivalent to
assuming that, for all Γ-orbits of coroots α ◦φT does not contain a copy of the trivial representation,
which is precisely what the vanishing of the H0 implies.
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with corresponding Weyl group element wν as in (1) then wν(P)∩Mb trans-
fers to a parabolic subgroup of G. Moreover, for every element ν ∈B(L)basic
mapping to b, the Levi factor of Qb,wν

is equal to Jwν (ν).

Note that the eigensheaf SφM should be supported on the basic (or semi-stable)
locus Bunss

M ≃
⊔

ν∈B(M)basic
[∗/Jν(Qp)]; therefore, to compute nEisP(SφM) it suf-

fices to consider the pullback of the diagram 3.2 to this locus, giving

Bunss
P BunG

Bunss
M

qss

pss

.

The fibers of qss over the elements with anti-dominant isocrystal slopes (= dom-
inant HN-slopes) will parameterize split P-structures, and therefore be relatively
easy to compute with. For example, over the connected component ν = 1 the
previous diagram becomes[

∗/P(Qp)
] [

∗/G(Qp)
]

[
∗/M(Qp)

]
and we obtain that

nEis1(SφM)≃
⊕

π∈ΠφM (M)

j1!(iGP (π)).

where ΠφM(M) is the packet described in Conjecture 3.2.2.
We can perform a similar calculation for any element ν after restricting

to Bunb
G, as in Proposition 2.9.4. For any element ν ∈ B(M)basic mapping to

b ∈ B(G)M, we write wν ∈W [M,Mb] for the corresponding Weyl group element
supplied by 3.2.12 (1). Then we should have

nEisν
P(SφM)|Bunb

G
≃

⊕
π∈ΠφM (Jν )

iJb
Qb,wν

(πwν )⊗δ
−1/2
Pb

[−⟨2ρG,νb⟩]

where δPb is the modulus character of the standard parabolic in G with Levi fac-
tor Mb transferred to Jb along the inner twisting, Qb,wν

is the parabolic supplied
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by 3.2.12 (2), and πwν is given by applying the isomorphism Jν ≃ Jwν (ν) of σ -
centralizers induced by wν . Then Conjecture 3.2.11 will tell us that this in fact the
only relevant contribution, so that we have

nEisν
P(SφM)≃

⊕
π∈ΠφM (Jν )

jb!(i
Jb
Qb,wν

(πwν )⊗δ
−1/2
Pb

)[−⟨2ρG,νb⟩]

This motivates the following definition.

Definition 3.2.13. For Λ ∈ {Fℓ,Zℓ,Qℓ} and φM : WQp → LM(Λ) a supercuspidal
L-parameter with induced parameter φ : WQp → LG(Λ), assuming the validity of
Conjecture 3.2.2, and in particular the existence of the packets ΠφM(Jν) for all
ν ∈ B(M)basic, we define, for fixed b ∈ B(G)M, the complex

Redtw
b,φ :=

⊕
π∈ΠφM (Jν )

⊕
ν∈i−1

M (b)

iJb
Qb,wν

(πwν )⊗δ
−1/2
Pb

[−⟨2ρG,νb⟩]

of Jb(Qp)-representations.

In the case that Λ = Fℓ, we should have by the above discussion an isomor-
phism

nEisP(SφM) :=
⊕

b∈B(G)M

jb!(Redtw
b,φ ).

With this motivating analysis, we collect the discussion thus far and formulate
a general conjecture for arbitrary coefficients Λ ∈ {Fℓ,Zℓ,Qℓ}. This is a non-
principal version of Conjecture 2.1.29.

Conjecture 3.2.14. For Λ ∈ {Fℓ,Zℓ,Qℓ} and φM : WQp → LM(Λ) a supercuspi-
dal L-parameter of Langlands-Shahidi type. There exists a sheaf nEisP(SφM) ∈
Dlis(BunM,Λ) satisfying the following properties.

1. We have an isomorphism

nEisP(SφM) :=
⊕

b∈B(G)M

jb!(Redtw
b,φ )

of objects in Dlis(BunG,Λ).

2. The sheaf nEisP(SφM) is an eigensheaf with eigenvalue φ : WQp

φM−→
LM(Λ)→ LG(Λ).
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3. If Λ = Fℓ then the sheaf nEisP(SφM) agrees with the sheaf defined above
under the identification D(BunG,Fℓ)≃ Dlis(BunG,Fℓ).

4. For fixed b ∈ B(G)M, the natural map

jb!(Redtw
b,φ )→ R jb∗(Redtw

b,φ )

is an isomorphism of sheaves in Dlis(BunG,Λ)
6.

Remark 3.2.15. We note that (4) should follow from (1), since we be-
lieve that for Λ = Fℓ we should have an isomorphism DBunG(nEisP(SφM)) ≃
nEisP(DBunM(SφM)). This follows, since nEisP(SφM) should agree with the con-
jectural sheaf ñEisP(SφM) under the Langlands-Shahidi condition as discussed
above, and ẼisP(SφM) should satisfy this property by Conjecture 3.2.9 (3).

Remark 3.2.16. When Λ = Qℓ, one should be able to compare the description of
the stalks with the averaging formula of Shin, as is does in Appendix A.3 for the
toral case. Recall that, in the case of rational coefficients, the packets ΠφM(Mν)
describing the stalks of the sheaf SφM should be specified by the refined local
Langlands correspondence of Kaletha. This should relate to the description of the
local Langlands correspondence for B(G) over the parameter φ provided in recent
work of Meli-Oi [BM22] (up to modulus character twists).
Remark 3.2.17. As in the proof of Corollary 2.11.22, this should imply that the
one has isomorphisms of the form

iGP (π)≃ iGQ(π)

for all pairs of parabolics Q and P with shared Levi factor M and π ∈ ΠφM(M).
This is an interesting question in representation theory in its own right especially
with ℓ-modular coefficients, independent of any kind of consequences for categor-
ical local Langlands.

By carrying out analysis described in the previous section and in §2.11,
this should imply several consequences for the cohomology of local and global
Shimura varieties, we conclude by explaining the global applications.

Fix a Shimura datum (G,X) with reflex field E, and let Ep denote the
completion at a place p|p determined by an isomorphism Qp ≃ C and assume
Λ ∈ {Fℓ,Qℓ} in what follows. We can look at the G(Qp)×WEp-representation

RΓc(S (G,X)K p,C,Λ)

6We note that this also makes sense with coefficients Λ ∈ {Zℓ,Qℓ} despite being in the realm
of solid sheaves, using [FS21, Proposition VII.7.3]
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defined by the cohomology at infinite level. By applying Corollary B.1.8, we
obtain a G(Qp)×WEp-equivariant decomposition of this

RΓc(S (G,X)K p,C,Λ) =
⊕

φ

RΓc(S (G,X)K p,C,Λ)φ

running over semi-simple L-parameters φ : WQp → LG(Λ). Each summand has
irreducible constituents with Fargues-Scholze parameter equal to φ by Lemma
B.1.7 (2). For such a φ , we let (φM,M) denote a cuspidal support. I.e φM : WQp →
LM(Λ) is a supercuspidal L-parameter such that φ is induced by composing with
the natural embedding LM(Λ)→ LG(Λ). We say φ is of Langlands-Shahidi type
if φM is. Note that this does not depend on the choice of cuspidal support.

We conjecture the following generalization of the results discussed in §3.1
(e.g. Theorem 3.1.6). This, as in the toral case, should follow from showing
forms of Conjecture 3.2.14.

Conjecture 3.2.18. Let φ be a semi-simple L-parameter of Langlands-Shahidi
type with cuspidal support (M,φM). The category Dlis(BunG,Λ)φ of φ -local lisse-
étale Λ-sheaves (as defined in Appendix B.1) breaks up as a direct sum

Dlis(BunG,Λ)φ ≃
⊕

b∈B(G)M

D(Bunb
G,Λ)φ

and the ! and ∗ pushhforwards agree for any smooth irreducible representation
ρ of Jb(Qp) lying in Dlis(Bunb

G,Λ)φ for b ∈ B(G)M with respect to the inclusion
Bunb

G ↪→ BunG.

Given V ∈ RepΛ(
LGI), the map induced by associated the Hecke operator

TV : Dlis(BunG,Λ)φ → Dlis(BunG,Λ)
BW I

Qp
φ

is perverse t-exact, where the fact the Hecke operator preserves this subcategory
is Lemma B.1.7 (2).

In particular, by combining this with a generalization of Theorem 3.1.10 and
the analysis described in the previous section, we could deduce the following
Conjectures as a consequence.

Conjecture 3.2.19. Let φ be a semi-simple L-parameter of Langlands-Shahidi
type with cuspidal support (M,φM). Then the complex RΓc(S (G,X)K p,C,Λ)φ

(resp. RΓ(S (G,X)K p,C,Λ)φ ) is concentrated in degrees 0≤ i≤ d (resp. d ≤ i≤
2d).
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Remark 3.2.20. We note, if φ is supercuspidal (i.e doesn’t factor through a proper
Levi subgroup) and Λ =Qℓ, this essentially reduces to the Kottwitz Conjecture as
proven in chapter 1 for GSp4. In particular, in this case only the basic locus will
contribute to the cohomology of the global Shimura variety (using compatibility),
and it reduces to the Kottwitz conjecture for the basic local Shimura variety.

Remark 3.2.21. For (G,X) of PEL type A or C satisfying assumption 3.1.8, we
would also obtain a WEp×G(Qp)-equivariant direct sum decomposition

RΓc(S (G,X)K p,C,Λ(db))φ ≃
⊕

b∈B(G)M

(RΓc(G,b,µ)φ ⊗LVb)[2db]

where RΓc(G,b,µ) := colimKp→{1}RΓc(Sht(G,b,µ)∞,C/Kp,Λ(db)) and
RΓc(G,b,µ)φ is the projection applied to the complex viewed as a G(Qp)-
representation. This should also generalize once one has appropriate general
definitions of Igb and Igb,∗ so that one can actually define Vb := RΓc−∂ (Igb,∗,Λ).
Under possible additional constraints on φ , one should also be able to describe the
contribution of RΓc(G,b,µ)φ in terms of the decomposition Vµ |Z(M̂Γ) = Tµ |Z(M̂Γ)

for b ∈ B(G)M, as is explained in the toral case in §3.2.1. It would be interesting
to formulate an optimal conjecture of this type.
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Appendix A

Appendix to Chapter 2

A.1 Intertwining Operators and the Irreducibility
of Principal Series

We want to show the irreducibility of principal series representations obtained
from the characters χ attached to parameters φT : WQp → LT (Qℓ) satisfying the
Conditions in 2.3.8. We let χ : T (Qp)→ C∗ be the character attached to φT via
local class field theory and a fixed isomorphism Qℓ ≃ C sending p1/2 to the fixed
choice of square root in Qℓ. Our goal will be to show the following two facts.

Proposition A.1.1. Suppose that χ is a regular character in the sense that it is
not fixed under any w ∈WG then if we have an isomorphism

iGB (χ)≃ iGB (χ
w0)

the representation iGB (χ) is irreducible.

Remark A.1.2. This also follows using Frobenius reciprocity and second adjoint-
ness, as in the proof of Corollary 2.11.24. However, the method we exhibit here
gives much more insight into how to compute the reducibility points of principal
series representations.

Proposition A.1.3. If χ : T (Qp)→C∗ is a generic character then, for all w∈WG,
we have an isomorphism

iGB (χ)≃ iGB (χ
w)

of smooth G(Qp)-representations.
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By combining these two Propositions, we deduce the following.

Corollary A.1.4. For χ a generic regular character, the induction iGB (χ) is always
irreducible.

The idea behind proving such results is due to Speh and Vogan [SV80, Theo-
rem 3.14] in the archimedean case. They study the reducibility of principal series
using the Langlands classification [BW80, Section IV]. Strictly speaking, their
analysis is for the archimedean place, but it is easy to see that it extends to the
case of a p-adic group using the analogous Langlands classification there [BW80,
Section XI.2]. They (roughly) break the problem of understanding the reducibility
points of principal series representations into two parts:

1. ([SV80, Theorem 3.14(a)]) Understanding the reducibility points of non-
unitary principal series with respect to the parabolic inductions from T to
Mi for i ∈J , where Mi is the rank 1 Levi subgroup of G whose relative
Dynkin diagram is given by {i} ⊂J .

2. ([SV80, Theorem 3.14(b)]) Understanding the reducibility points of unitary
principal series representations with respect to induction from T to a (not
necessarily rank 1) proper Levi subgroup of G.

We will now explain this heuristic in our case. To see analogous analysis worked
out more explicitly for specific p-adic reductive groups, we point the reader to
[Tad94, Section 7], [Mui97, Section 3], [Mat10, Section 3] for a small sample.
For (2), a very definitive answer to such questions can be found in the paper of
Keys [Key82]. In particular, by [Key82, Corollary 1] the number of irreducible
components of such a unitary parabolic induction can be computed in terms of
the Knapp-Stein R-Group [KS72; Kna73a; Kna73b], which Keys determines for
all split groups. While this is very interesting, we will not address this here. In
particular, we have the following.

Corollary A.1.5. If χ is a regular unitary character then the normalized parabolic
induction iGB (χ) is irreducible.

Proof. This follows from the Bruhat decomposition and the fact that iGB (χ)
is unitary and therefore fully decomposable (See [Cas95, Theorem 6.6.1] or
[Bru61]).

Now consider X∗(TQp
)Γ⊗R ≃ X∗(A)⊗R ≃ Rd the set of unramified char-

acters. For s ∈ Rd , we write νs for the associated unramified character. We will
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say that νs is positive (resp. strictly positive) if, for all simple (reduced) positive
coroots αi,A, the precomposition of νs with αi,A is positive (resp. strictly positive),
or in other words that s lies in the positive Weyl chamber of X∗(A)⊗R defined
by the Borel. We write χ = µχνsχ , where µχ is a unitary character and νsχ is
an unramified character of T , for some sχ ∈ Rd . We now consider intertwining
operators. Recall that, for w ∈WG and s ∈ Rd , we have the intertwining operator

Iw(µχ ,s) : iGB (µχν
s)→ iGB ((µχν

s)w)

f (g) 7→
∫

Uw

f (w−1ug)du

where Uw :=U ∩wU−w−1 and U− is the unipotent radical of the opposite Borel.
This integral will converge if νs lies sufficiently deep in the dominant Weyl cham-
ber, and admits a meromorphic continuation as a function of s (where one allows
s to be complex and imposes this constraint on the real part). Away from these
poles, it gives rise to an intertwining operator between iGB (µχνs) and iGB ((µχνs)w)
in the usual representation theory sense. For our purposes, we will be interested
in the intertwining operator Iw0(µχ ,s) for the element of longest length w0. In
this case, one can see that the operator is convergent for all s which are strictly
positive, and the image of the operator is the unique irreducible Langlands quo-
tient of iGB (µχνs) (See [BW80, Sections XI.2.6, XI.2.7]). This quotient has mul-
tiplcity one and therefore the intertwining space between iGB (χ) and iGB (χ

w0) is
one-dimensional. It follows that, if νsχ is strictly positive, it suffices to exhibit an
isomorphism iGB (χ) ≃ iGB (χ

w0) to show irreducibility. We will now use this kind
of analysis to prove Proposition A.1.1.

Proof. (Proposition A.1.1) First off note that, for all χ , we have an equality

[iGB (χ)] = [iGB (χ
w0)]

in K0(G(Qp)) (See for example [Dij72b, Theorem 4]). This allows us to, without
loss of generality, assume that νsχ is positive. Now, consider the set of i∈J such
that the precomposition of νsχ with αi,A is equal to 0. This defines a parabolic Pχ

of G which we decompose as Pχ = MχAχNχ , where Aχ is the maximal split torus
in the center of Mχ . If JMχ

denotes the vertices of the relative Dynkin diagram of
Mχ then JMχ

⊂J corresponds to the set of simple positive coroots where this
precomposition vanishes. Now, set ν1 := νsχ |A∩Mχ

and ν2 := νsχ |Aχ
. We consider

the parabolic induction
iMχ

B∩Mχ
(µχ ⊗ν1)
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where we now note that µχ⊗ν1 is unitary by construction. Therefore, iMχ

B∩Mχ
(µχ⊗

ν1) is unitary and thereby fully decomposable. It follows that, since iMχ

B∩Mχ
(µχ ⊗

ν1) and iMχ

B∩Mχ
((µχ ⊗ ν1)

w
Mχ

0 ) are equal in the Grothendieck group, we have an

isomorphism iMχ

B∩Mχ
(µχ ⊗ν1) ≃ iMχ

B∩Mχ
((µχ ⊗ν1)

w
Mχ

0 ), where wMχ

0 is the element
of longest length of the Weyl group of Mχ . Now, we have an isomorphism:

iGB (χ)≃ iGPχ
((iMχ

B∩Mχ
(µχ ⊗ν1))⊗ν2)

Since χ is regular then, it follows by Lemma A.1.5, that the unitary induction
iMχ

B∩Mχ
(µχ ⊗ ν1) is irreducible. Therefore, the RHS is the induction of an irre-

ducible tempered representation times an unramified character ν2 satisfying the
property that ⟨αi,A,ν2⟩> 0 for all i ∈J \JMχ

by construction. Again applying
the Langlands classification [BW80, Sections XI.2.6, XI.2.7], the intertwining op-
erator attached to the parabolic Pχ and the element w0wMχ

0 converges for s = sχ ,
and since it maps to a unique quotient of multiplicity one it suffices to exhibit
an isomorphism between iGPχ

((iMχ

B∩Mχ
(µχ⊗ν1))⊗ν2) and the induction twisted by

w0wMχ

0 . However, since we just saw that iMχ

B∩Mχ
((µχ ⊗ν1)

w
Mχ

0 )≃ iMχ

B∩Mχ
(µχ ⊗ν1),

it suffices to show we have an isomorphism iGB (χ)≃ iGB (χ
w0). This establishes the

claim.

Now we just need to show Proposition A.1.3.

Proof. We claim that this reduces to the analogous question for G a group of rank
1. In particular, let’s consider for i ∈J the simple positive (reduced) coroot
α := αi,A and the rank 1 parabolic Pα = MαNαAα attached to it. As before, we
write να

1 := νsχ |A∩Mα
and να

2 := νsχ |Aα
. For all simple positive coroots α , we

have an isomorphism

iGB (χ)≃ iGPα
((iMα

B∩Mα
(µχ ⊗ν

α
1 ))⊗ν

α
2 )

However, if wα is the simple reflection corresponding to α , we have that

iGB (χ
wα )≃ iGPα

((iMα

B∩Mα
((µχ ⊗ν

α
1 )

wα )⊗ν
α
2 )

Therefore, if we can show the existence of an isomorphism:

iMα

B∩Mα
(µχ ⊗ν

α
1 )≃ iMα

B∩Mα
((µχ ⊗ν

α
1 )

wα )
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It will imply that we have an isomorphism:

iGB (χ)≃ iGB (χ
wα )

Now we can proceed by induction on the length of Weyl group elements. We just
described the base case, but then, by replacing χ with χwα we can proceed by
considering another simple reflection attached to another simple positive coroot
distinct from α . We note that, since χ being generic is a condition for all coroots
(not just simple), at each step of the induction we are tasked with showing the
following.

Proposition A.1.6. Let G be a absolutely simple, simply connected, quasi-split
connected reductive group of split rank 1. Let α be the unique simple (reduced)
positive coroot of G and wα the corresponding simple reflection. Then, for all χ

a generic character of T (Qp), we have an isomorphism

iGB (χ)≃ iGB (χ
wα )

of smooth G(Qp)-representations.

It remains to justify the absolutely simple simply connected assumption. To
do this, note that given a G not satisfying these conditions, we can find a central
isogeny f : G̃→ G, where G̃ is a product of torii and absolutely simple simply
connected groups. If we let B̃ be the preimage of the Borel B with maximal torus
given by T̃ the preimage of T then, since Ker( f ) is contained in the center, we
have an isomorphism G̃/B̃≃ G/B. This implies that we have an isomorphism:

iGB (χ)|G̃(Qp)
≃ iG̃B̃ (χ|T̃ )

Moreover, since f will induce an isomorphism on the root spaces, it follows that if
χ is generic with respect to G then χ|T̃ is generic with respect to G̃. This reduces
us to exhibiting the desired isomorphism for G̃. Now, we prove the Proposition
A.1.6 through brute force. In particular, we will use Tits’ classification theorem
[Tit79] (See also [Car01] for the classification in rank 1). We adopt the same
notation as in [Tit79]. Since we are assuming the group to be quasi-split, there are
two cases.

1A1
1,1

In this case, we have that G = SL2. We saw in Example 2.3.12 that genericity
guaranteed irreducibility aside from the case where χ2 ≃ 1, but since this is a
unitary character it still follows that we have the desired isomorphism.
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2A1
2,1

In this case, the group cannot be split; in particular, we have that G = SU3 is a
quasi-split special unitary group attached to a quadratic extension E/Qp. We saw
in Example 2.3.17 that χ being generic guaranteed irreducibility and hence the
desired isomorphism.

A.2 Tilting Cocharacters
We consider a general quasi-split connected reductive group G/Qp, and a geomet-
ric dominant cocharacter µ ∈ X∗(TQp

)+. For Λ ∈ {Qℓ,Zℓ,Fℓ}, we are interested
in understanding the condition of µ being tilting (Definition 2.11.4). Recall that
this means that the representation Vµ ∈ RepΛ(Ĝ) attached to µ lies in the subcat-
egory TiltΛ(Ĝ). If Λ =Qℓ this is always true, and so we fix Λ ∈ {Fℓ,Zℓ} in what
follows. Since this only involves the representation theory Ĝ we may, without
loss of generality, assume G is split in what follows. This is simply the question
of when the highest weight module Vµ of Ĝ is irreducible with Λ-coefficients.
This question has been studied extensively (See for example [Jan03, Pages 283-
286] for a comprehensive overview). In the first two sections, we discuss some
general theory to determine when µ is tilting in this split case, and then provide a
table summarizing when µ is tilting in the case that µ is a fundamental coweight.

A.2.1 General Theory
We assume G is a split connected reductive group throughout this section, with
Langlands dual group Ĝ. For µ a dominant cocharacter, the condition that µ is
tilting is equivalent to showing that the highest weight G-module Vµ ∈ RepΛ(Ĝ)
is simple. We begin with the following lemma.

Lemma A.2.1. If µ is minuscule then it is tilting.

Proof. In this case, the weights of Vµ form a closed Weyl group orbit. It follows
that Vµ is always irreducible and therefore tilting.

We would now like to provide a finer criterion for irreducibility. To do this, we
will introduce some notation. Given a coroot ν and r ∈ Z, we consider the affine
reflection of X∗(T )⊗R given as

sν ,r(µ) := sν(µ)+ rν
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where sν ∈WG is the reflection attached to ν . We set Wℓ to be the subgroup
generated by reflections sν ,nℓ, where ν is a coroot and n ∈ Z, and write ρ for the
sum of all coroots of G. Elements w ∈Wℓ act on µ ∈ X∗(T )⊗R, via the standard
dot action w · µ := w(µ +ρ)−ρ . In other words, we regard sν ,nℓ as a reflection
around the hyperplane:

{µ ∈ X∗(T )⊗R | ⟨µ +ρ,ν∨⟩= nℓ}

It follows that the standard alcove for this action is given by

C = {µ ∈ X∗(T )⊗R | 0 < ⟨µ +ρ,ν∨⟩< ℓ}

and we denote the closure by C. We now have the following slightly more general
criterion for the irreducibility of Vµ .

Proposition A.2.2. [Jan03, Corollary 5.6] Suppose that µ ∈C∩X∗(T )+ then µ

is tilting.

For a given µ , this will give us a lower bound on the ℓ for which µ is tilting.
However, it is only a sufficient condition and not necessary. In particular, note that
we have the following.

Theorem A.2.3. [Mat00, Theorem 2.6] If µ = (ℓ−1)(ρ) then µ is tilting.

So V(ℓ−1)(ρ) will always be simple, but (ℓ− 1)(ρ) will not usually lie in
C∩X∗(T )+. Moreover, if we define the Coxeter number h = maxν{⟨ρ,ν∨⟩+1}
ranging over all coroots ν then it is easy to see that C∩X∗(T ) ̸= /0 is equivalent
to ℓ ≥ h, and so, for small ℓ, Proposition A.2.2 tells us nothing. To tackle these
more general cases, we introduce a sum formula for the characters of the repre-
sentations. Namely, for V ∈ RepΛ(Ĝ), we write ch(V ) := ∑ν∈X∗(T ) dim(V (ν))eν

for the character of V . For µ a dominant cocharacter, we write χ(µ) := ch(Vµ)
for the character of Vµ . Then we have the following.

Proposition A.2.4. [Jan03, Section 8.19] For each µ ∈ X∗(T )+, there is a filtra-
tion of Ĝ-modules

· · · ⊂V 2
µ ⊂V 1

µ ⊂V 0
µ =Vµ

such that
∑
i>0

ch(V i
µ) = ∑

ν

∑
0<mℓ<⟨µ+ρ,ν∨⟩

νℓ(mℓ)χ(sν ,mℓ ·µ)
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where νℓ(−) is the ℓ-adic valuation and ν ranges over all coroots. Moreover, we
have that Vµ/V 1

µ is isomorphic to the irreducible socle of Vµ . In particular, we see
that µ is tilting if and only if

∑
ν

∑
0<mℓ<⟨µ+ρ,ν∨⟩

νℓ(mℓ)χ(sν ,mℓ ·µ) = 0

This generalizes Proposition A.2.2 and gives a computational method for ver-
ifying when µ is tilting. See for example [Jan03, Section 8.20] for this worked
out for G = SL4 and ℓ > 3, [GS88] for a table answering this question for G an
exceptional group and certain µ , and [BW71] for an analogous table for certain
exceptional groups and low rank classical groups. In general, a precise classifica-
tion of when µ is tilting for all G seems to be quite complicated, and to the best
of our knowledge is unknown. However, when G is of type An−1, there exists a
complete classification.

Proposition A.2.5. [Jan91, Page 113] For G of type An−1, µ is tilting if and only if
for each coroot ν of G the following is satisfied. Write ⟨µ +ρ,ν∨⟩= aℓs +bℓs+1,
with a,b,s∈N and 0 < a < ℓ. Then there have to be positive coroots β0,β1, . . . ,βb
such that ⟨µ +ρ,β∨i ⟩ = ℓs+1 for 1 ≤ i ≤ b, ⟨µ +ρ,β∨0 ⟩ = aps, ν = ∑

b
i=0 βi, and

∑
b
i=1 βi is a coroot.

For general types, we will content ourselves with describing the fundamental
coweights, where we can give a full description of the tilting condition.

A.2.2 The Tilting Condition for Fundamental Coweights
We assume that G is a split adjoint group, and let α̂ j denote the simple roots,
where we use the enumeration as in [Bou68, Pages 250-275]. We choose fun-
damental coweights characterized by ⟨ϖi, α̂ j⟩ = δi j. We will be interested in the
question of when the representation Vϖi is irreducible. In this case, we have a com-
plete classification [Jan03, Pages 286-287],[Jan91, Section 4.6]. We note that, if
ϖi is minuscule, this is automatic by Lemma A.2.1, so in what follows we simply
provide a list of ℓ for the non-minuscule ϖi (See [LR08, Page 221] for a classifica-
tion). This namely implies the case of An is trivial, since all fundamental weights
are minuscule. Additionally, we recall that our results will only apply if ℓ is very
good in the sense of [FS21, Page 33], so we have also enumerated the condition
that ℓ is very good for the different types1.

1We warn the reader if G is non-split there can also be additional constraints on ℓ.
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Type of G Type of Ĝ µ ℓ ℓ very good

Bn,n≥ 2 Cn ϖi, 1 < i≤ n ℓ |
(n+1−(i+ j)/2

(i− j)/2

)
, 0≤ j < i, j ∼= i mod 2 ℓ ̸= 2

Cn,n≥ 2 Bn ϖi, 1≤ i < n ℓ= 2 ℓ ̸= 2
Dn,n≥ 4 Dn ϖi, 1 < i < n−1 ℓ= 2 ℓ ̸= 2

E6 E6 ϖ1,ϖ6 /0 ℓ ̸= 2,3
ϖ3,ϖ5 ℓ= 2

ϖ2 ℓ= 3
ϖ4 ℓ= 2,3

E7 E7 ϖ1 ℓ= 2 ℓ ̸= 2,3
ϖ2 ℓ= 3

ϖ3,ϖ5 ℓ= 2,3
ϖ4 ℓ= 2,3,13
ϖ6 ℓ= 2,7
ϖ7 /0

E8 E8 ϖ1 ℓ= 2 ℓ ̸= 2,3,5
ϖ2 ℓ= 2,3,7
ϖ3 ℓ= 2,3,19
ϖ4 ℓ= 2,3,5,13,19
ϖ5 ℓ= 2,3,5
ϖ6 ℓ= 2,3,5,7
ϖ7 ℓ= 2,3,5
ϖ8 /0

F4 F4 ϖ1 ℓ= 2 ℓ ̸= 2,3
ϖ2,ϖ3 ℓ= 2,3

ϖ4 ℓ= 3
G2 G2 ϖ1 ℓ= 3 ℓ ̸= 2,3

ϖ2 ℓ= 2

By comparing the fourth and fifth columns, we deduce the following.

Proposition A.2.6. For G a split adjoint connected reductive group over Qp, if ℓ
is very good then ϖi for any i ∈J is tilting for all G of type An,Cn,Dn,E6,F4,
and G2.
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A.3 Relationship to the Classical Averaging For-
mula, by Alexander Bertoloni-Meli

In this appendix, we show that the averaging formula proven in Theorem 2.11.10
is compatible with existing formulas and conjectures in the literature.

A.3.1 Averaging Formulas
To begin, we recall the general statement of these averaging formulas. Such for-
mulas first appeared in the book of Harris–Taylor ([HT01]) and are classically de-
duced by studying the geometry of the mod-p fibers of Shimura varieties. These
fibers admit a Newton stratification in terms of the set B(G,µ) and the strata are
uniformized by Rapoport–Zink spaces and Igusa varieties. The cohomological
consequence of this is the formula of Mantovan ([Man05]) which up to twists is
given as

∑
i

lim−→
K⊂G(A f )

(−1)iH i
c(Sh(G,X)K,Qℓ)= ∑

b∈B(G,µ)

RΓ
♭
c(G,b,µ)[∑

j
(−1) j lim−→

K p⊂G(Ap
f )

H j
c (Ig

b
K p,Qℓ)],

(A.1)
in K0(G(A f )×WEµ

), where Sh(G,X)K (resp. Igb
K p) is the Shimura variety (resp.

Igusa variety) determined by the associated data. Averaging formulas can then be
deduced by studying isotypic pieces of the above formula.

In order to precisely state these averaging formulas, we first recall some facts
about stable characters following [Hir04]. Let G be a connected reductive group
with Levi subgroup M and parabolic P. Let K0(G(Qp),C)st ⊂ K0(G(Qp),C) de-
note the subgroup of virtual representations with stable character. Then the nor-
malized Jacquet module and parabolic induction functors induce morphisms

iGP : K0(M(Qp),C)→ K0(G(Qp),C), rG
P : K0(G(Qp),C)→ K0(M(Qp),C).

Moreover, one can show these operations preserve stability so that we get homo-
morphisms

iGP : K0(M(Qp),C)st→K0(G(Qp),C)st , rG
P : K0(G(Qp),C)st→K0(M(Qp),C)st .

Now let G∗ denote the unique quasi-split group that is an inner form of G.
We assume that G arises as an extended pure inner twist of G∗ and fix this extra
structure (G,ρ,z). One can work with more general G using Kaletha’s theory of
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rigid inner twists, but this is not necessary to explore the connections to this paper
where G is always quasi-split.

We also need to introduce endoscopy for G. For convenience, we recall:

Definition A.3.1. A refined endoscopic datum for a connected reductive group G
over a local field F is a tuple (H,H ,s,η) which consists of

• a quasi-split group H over F ,

• an extension H of WF by Ĥ such that the map WF → Out(Ĥ) coincides
with the map ρH : WF → Out(Ĥ) induced by the action of WF on Ĥ ⊂ LH,

• an element s ∈ Z(Ĥ)Γ,

• an L-homomorphism η : H → LG,

satisfying the condition:

• we have η(Ĥ) = ZĜ(s)
◦.

Now suppose that (H,H ,s,η) is a refined endoscopic datum for G. Then
after fixing splittings of G,H, Ĝ, Ĥ, there is a canonical endoscopic transfer of
distributions inducing a morphism

TransG
H : K0(H(Qp),C)st → K0(G(Qp),C).

Furthermore, suppose we have a refined endoscopic datum (HM,HM,s,ηM) of
M such that HM is a Levi subgroup of H and the following diagram commutes:

H LG

HM
LM.

η

ηM

The datum (HM,HM,H,M,s,η) along with these compatibilities is called an em-
bedded endoscopic datum in [Ber21; BS22]. Our fixed choice of splittings of G,
H and their duals determines from P a parabolic subgroup PHM of H with Levi
subgroup HM. We then have an equality

TransG
H ◦ iHPHM

= iGP ◦TransM
HM

. (A.2)
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There is also a compatibility of Trans and r which we now recall. A re-
fined endoscopic datum e = (H,H ,s,η) of G and a Levi subgroup M ⊂ G
can be upgraded to the structure of an embedded endoscopic datum in poten-
tially many non-equivalent ways and these are parametrized by a set D(M,e) ∼=
W (Ĥ)\W (M,H)/W (M̂), where W (M,H) is defined to be the subset of the Weyl
group W (Ĝ) of Ĝ such that ZLH((w◦η)−1(Z(M̂)Γ)) surjects onto WF , and where
W (Ĥ) is identified with a subgroup of W (Ĝ) via η . Then we have

rG
P ◦TransG

H = ∑
D(M,e)

TransM
HM
◦ rH

PHM
.

We now define the map Redeb which plays a crucial role in the statement of the
averaging formula. We define

Redeb : K0(H(Qp),C)st → K0(Jb(Qp),C) (A.3)

by

Redeb = ( ∑
D(M,H )

TransHM
Jb
◦ rH

Pop
H
)⊗δ

1
2
Pe(Jb),

where δ P is the transport of the modulus character for P to Jb, and e(Jb) ∈ {±1}
is the Kottwitz sign.

Then the (still largely conjectural) averaging formula gives a relation satisfied
by RΓ♭

c(G,b,µ) at Langlands (or Arthur) parameters φ for which there is an as-
sociated stable distribution SΘφ ,G on G satisfying endoscopic character identities
as in [Kal16, Conjecture D]. In particular, this is the case for all tempered L-
parameters. To describe the expected formula, fix such a parameter φ and suppose

that (H,H ,s,η) is an endoscopic datum such that φ factors as LF
φ H

−−→H → LG.
Then we expect

Conjecture A.3.2 (Averaging Formula). We expect the following equality in
K0(G(Qp)×WEµ

):

∑
b∈B(G,µ)

[RΓ
♭
c(G,b,µ)[Redeb(SΘφ H ,H)]] = TransG

H(SΘφ H ,H)⊠ tr(rµ ◦φ |WEµ
| s).

In particular, when e is the trivial endoscopic datum given by etriv =
(G∗,LG∗,1, id) then we expect

∑
b∈B(G,µ)

[RΓ
♭
c(G,b,µ)[Redetriv

b (SΘφ ,G∗)]] = SΘφ ,G⊠ rµ ◦φ |WEµ
.
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For GLn, this is known in the trivial endoscopic case for all representations
by [Shi12]. Because L-packets are singletons for GLn, the trivial endoscopic case
implies the endoscopic versions of the formula. In [MN21], the formula is proven
for discrete parameters and elliptic endoscopy of unramified GUn, for n odd. In
[Ber21], a strategy is outlined to prove this formula in the elliptic endoscopic
cases using the cohomology of Igusa and Shimura varieties. This strategy should
(eventually) yield results comparable to [MN21] whenever adequate global results
are known about the Langlands correspondence and the cohomology of Shimura
and Igusa varieties.

The averaging formulas imply strong results about RΓ♭
c(G,b,µ). For instance,

in [MN21, §6] it is shown that the averaging formula for each elliptic endoscopic
group and for φ a supercuspidal parameter implies the Kottwitz conjecture as in
[RV14, Conjecture 7.3].

A.3.2 Proof of Proposition 2.11.11
The averaging formula in §2.11.1 corresponds to the case of the trivial endoscopic
triple etriv = (G∗,LG∗,1, id). Hence to check that Theorem 2.11.10 agrees with
A.3.2, we just need to check that Redetriv

b (SΘφ ,G∗) coincides with Redb,φ for φ

induced from φT generic. Since φT is generic, by Lemma 2.3.18 φ should give
rise to a well-defined L-parameter with trivial monodromy. Therefore, under the
LLCG appearing in Assumption 2.7.5, we are assuming the parameter φ has an L-
packet given by the irreducible constituents of the multiplicity free representation
iGB (χ), by Assumption 2.7.5 (3). Suppose first that b ∈ B(G)un. Then we have

[Redb,φ ] = ∑
w∈WG/WMb

iJb
Bb
(χw)⊗δ

1/2
Pb

(−1)⟨2ρ̂G,νb⟩.

in K0(G(Qp)). The set D(M,e) is a singleton and corresponds to the trivial em-
bedded datum where HM = M. Note that rG

Pop
b
(iGB (χ)) = rG

Pb
(iGB (χ)) and that the
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latter term can be simplified by the geometric lemma of [BZ77].

Redetriv
b (SΘφ ,G∗) = (TransJb

Mb
◦ rG

Pop
b
)(iGB (χ))⊗δ

1
2
Pe(Jb)

= TransJb
Mb
◦ ( ∑

w∈WG/WMb

iMb
B∩Mb

χ
w)⊗δ

1
2
Pe(Jb)

= ( ∑
w∈WG/WMb

iJb
Bb
)◦TransTb

T χ
w⊗δ

1
2
P(−1)⟨2ρ̂G,νb⟩

= Redb,φ .

where the third equality is (A.2) combined with an application of [HKW22,
Lemma A.2.1].

Now consider the case where b /∈B(G)un. We must show that Redetriv
b (iGB (χ))=

0, for which it suffices to show that TransJb
Mb
(iMb

B∩Mb
(χw)) = 0 for each w ∈

WG/WMb . This follows from the fact that T does not transfer to Jb by assump-
tion and the character of iMb

B∩Mb
(χw) is supported on the conjugates of T as per

[Dij72b, Theorem 3].
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Appendix B

Appendix to Chapter 3

B.1 Spectral Decomposition of Sheaves on BunG, by
David Hansen

Let G/Qp be a connected reductive group, k/Zℓ an algebraically closed field.
If char(k) ̸= 0 we assume ℓ is very good for G. We write D(H(Qp),k) for the
unbounded derived category of smooth k-representations of H(Qp).

Set D(BunG) = Dlis(BunG,k), regarded as a stable ∞-category whenever con-
venient. Let XĜ = Z1(WE , Ĝ)k/Ĝ be the stack of L-parameters over k, and let
XĜ be its coarse moduli space, q : XĜ → XĜ the natural map. We will regard
XĜ as a disjoint union of finite type algebraic stacks over k, and XĜ as a disjoint
union of finite type affine k-schemes. As in [FS21], we have the spectral action
of Perf(XĜ) on D(BunG), and there is a natural map ΨG : O(XĜ) = O(XĜ)→
Z(D(BunG)) := π0(idD(BunG)), where we recall that Z1(WE , Ĝ)k is a disjoint union
of affine schemes by [FS21, Theorem VIII.1.3]. These two structures are compat-
ible (as proven by Zou [Zou22, Theorem 5.2.1]).

By [FS21, Prop. VIII.3.8], the set of closed points XĜ(k) is naturally in bi-
jection with the set of isomorphism classes of semisimple L-parameters φ : WE →
LG(k). Let mφ ⊂O(XĜ) be the maximal ideal associated with a given φ .

Definition B.1.1. Given any φ as above, D(BunG)φ ⊂ D(BunG) is the full sub-

category of A ∈ D(BunG) such that for every f ∈ O(XĜ)∖mφ , A
· f→ A is an iso-

morphism. Here · f is the endomorphism of A induced by ΨG.

We will call objects of D(BunG)φ φ -local sheaves.
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By construction, D(BunG)φ is a full subcategory of D(BunG) stable un-
der arbitrary limits and colimits, and the tautological inclusion functor
ιφ : D(BunG)φ ↪→ D(BunG) commutes with limits and colimits. By the ∞-
categorical adjoint functor theorem [Lur09, Cor. 5.5.2.9.(2)], it therefore admits
a left adjoint Lφ : D(BunG)→ D(BunG)φ .1 The unit of the adjunction gives a
map A→ ιφLφ A =: Aφ functorially in A. Since ιφ is fully faithful, Lφ ιφ = id,
so (Aφ )φ = Aφ , i.e. the endofunctor A ⇝ Aφ is idempotent. We remark that
D(BunG)φ is a Bousfield localization of D(BunG), and the map A→ Aφ is the
initial map from A to a φ -local sheaf.

Proposition B.1.2. The full subcategory D(BunG)φ is preserved by the spectral
action, and A⇝ Aφ commutes with the spectral action. Moreover, supp(Aφ ) ⊆
supp(A).

Proof. The first claim is clear, since the spectral action commutes with the action
of O(XĜ). For the remaining claims (and some later arguments), it is useful to give
an explicit formula for Aφ . Let Iφ be the diagram category whose objects are ele-
ments of O(XĜ)∖mφ and where a morphism f → g is an element h∈O(XĜ)∖mφ

such that g = f h. This is clearly cofiltered. Let F ∈ Fun(Iφ ,D(BunG)) be the
functor sending f to A and sending a morphism h ∈ Mor( f ,g) to ·h ∈ End(A).
Then Aφ = colimi∈Iφ

F(i). The remaining claims are now immediate, since per-
fect complexes on XĜ are in particular OXĜ

-modules and the spectral action is an
action of ∞-categories.

To make sense of the next proposition, note that for any A,B ∈ D(BunG),
Hom(B,A) is naturally a Z(D(BunG))-module, whence a O(XĜ)-module.

Proposition B.1.3. If C ∈D(BunG) is compact, then Hom(C,Aφ )∼=Hom(C,A)mφ

functorially in A and C, where the RHS is the usual localization as an O(XĜ)-
module.

Proof. Notation as in the previous proof, we have

Hom(C,Aφ )∼= Hom(C,colimi∈Iφ
F(i))

∼= colimi∈Iφ
Hom(C,F(i))

∼= Hom(C,A)mφ

where the second isomorphism follows from the compactness of C and the third
isomorphism is immediate from the definition of (−)mφ

.
1To see that ιφ is accessible, use [Lur09, Prop. 5.4.7.7] together with the fact that ιφ admits a

right adjoint, which follows from [Lur09, Cor. 5.5.2.9.(1)].
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Proposition B.1.4. If A is ULA, then also Aφ is ULA.

Proof. Recall from [FS21, Prop. VII.7.9] that B ∈ D(BunG) is ULA iff
RHom(C,B)∈ Perf(k) is a perfect complex for all compact objects C ∈D(BunG).
Now, if C is compact, RHom(C,−) commutes with filtered colimits, so

RHom(C,Aφ )≃ RHom(C,colimi∈Iφ
F(i))

≃ colimi∈Iφ
RHom(C,F(i))

with notation as in the proof of Proposition B.1.2. Since F(i) ≃ A for all i,
colimi∈Iφ

RHom(C,F(i)) is a filtered colimit of perfect complexes Pi which van-
ish outside a finite interval independent of n, and with dimk(H j(Pi)) bounded
independently of i. It then easily follows that colimi∈Iφ

RHom(C,F(i)) is perfect,
whence the claim.

Proposition B.1.5. If A is ULA, the natural maps A→ ∏φ Aφ ←⊕φ Aφ are iso-
morphisms, where the direct sum is over all semi-simple L-parameters. In partic-
ular, Aφ is functorially a direct summand of A for ULA sheaves A, and the functor
(−)φ on ULA sheaves is perverse t-exact.

The isomorphism ⊕φ Aφ

∼→ ∏φ Aφ may be surprising at first glance. To put
this in context, we remind the reader that if (πi)i∈I is a collection of admissible
smooth k[G(Qp)]-modules whose product ∏i πi is admissible, then ⊕iπi

∼→∏i πi
automatically, because admissibility of ∏i πi implies that for any given compact
open subgroup K ⊂ G(Qp) we have πK

i = 0 for all but finitely many i. A similar
argument occurs in the following proof, which actually shows that if (Ai)i∈I is any
collection of ULA sheaves on BunG whose product ∏i Ai is ULA, then ⊕iAi

∼→
∏i Ai automatically.

Proof. We first show that A→∏φ Aφ is an isomorphism. Let C be any compact
object. It suffices to prove that the natural map

Hom(C,A)→∏
φ

Hom(C,Aφ )∼= Hom(C,∏
φ

Aφ )

is an isomorphism, since D(BunG) is compactly generated [FS21, Theorem I.5.1
(iii)]. As in the previous proof, RHom(C,A) is a perfect complex, so Hom(C,A)
is a finite k-vector space. In particular, it is a finite length O(XĜ)-module sup-
ported at a finite set of closed points S ⊂ XĜ(k), so if φ /∈ S then Hom(C,Aφ ) =
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Hom(C,A)mφ
= 0 using Proposition B.1.3. We then conclude that

Hom(C,A) =⊕φ∈SHom(C,A)mφ

=⊕φ∈SHom(C,Aφ )

= ∏
φ

Hom(C,Aφ )

where the first equality follows from general nonsense about finite length mod-
ules over commutative rings, the second equality follows from Proposition B.1.3,
and the third equality follows from the vanishing of Hom(C,Aφ ) for all but
finitely many φ . This also shows that Hom(C,⊕φ Aφ ) ∼= ⊕φ Hom(C,Aφ ) →
∏φ Hom(C,Aφ ) is an isomorphism (here again the first isomorphism follows from
compactness of C), which implies that ⊕φ Aφ

∼→∏φ Aφ is an isomorphism.

Next, recall the Verdier duality functor DBunG on D(BunG), which induces an
involutive anti-equivalence on the subcategory of ULA sheaves. Recall also that,
for any A, the diagram

O(XĜ)
ΨG //

f 7→ f∨
��

End(A)

��
O(XĜ)

ΨG // End(DBunG(A))

commutes, where f 7→ f∨ is the involution of O(XĜ) induced by composition with
the Chevalley involution at the level of L-parameters. Since f ∈mφ iff f∨ ∈mφ∨,
we deduce that if A is φ -local then DBunG(A) is φ∨-local. Using biduality, we also
get that if A is ULA then A is φ -local if and only if DBunG(A) is φ∨-local.

Corollary B.1.6. If A is ULA, then DBunG(Aφ )∼= (DBunG(A))φ∨ .

Proof. By Proposition B.1.5 and the remarks preceding its proof, the decomposi-
tion A =⊕φ Aφ dualizes to a decomposition

DBunG(A) = ∏
φ

DBunG(Aφ )∼=⊕φDBunG(Aφ ).

On the other hand, applying Proposition B.1.5 directly to DBunG(A) gives a de-
composition

DBunG(A)∼=⊕φ ′(DBunG(A))φ ′,
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so comparing these we get a natural isomorphism

⊕φDBunG(Aφ )∼=⊕φ ′(DBunG(A))φ ′.

Applying (−)φ∨ to both sides and using that DBunG(Aφ ) is φ∨-local, we get the
claim.

We now conclude with the following consequences of the above discussion.

Lemma B.1.7. The following is true.

1. Any Schur irreducible object A ∈ D(BunG,Fℓ)φ has Fargues-Scholze pa-
rameter equal to φ as conjugacy classes of parameters.

2. Given V ∈ Repk(
LGI), the Hecke operator TV : D(BunG)→ D(BunG)

BW I
Qp

takes the subcategory D(BunG)φ to D(BunG)
BW I

Qp
φ

, and there is a natural
isomorphism TV ((−)φ )≃ (TV (−))φ .

3. Suppose that G is unramified. Let Khs
p ⊂ G(Qp) be a choice of hyper-

special level, and Hhs
Kp

the unramified Hecke algebra with coefficients in
k. Consider m ⊂ HKhs

p
a maximal ideal, with associated L-parameter

φm : WQp → LG(k). Then, given a smooth irreducible representation A ∈
D(G(Qp),k)⊂ D(BunG), we have an isomorphism

RΓ(Khs
p ,A)m ≃ RΓ(Khs

p ,Aφm),

where the LHS is the usual localization under the smooth Hecke algebra.

4. If A ∈ Dlis(BunG) is ULA then one has a direct sum decomposition

A≃
⊕

φ

Aφ

ranging over all semi-simple L-parameters.

Proof. Claims (2) and (4) follow from Proposition B.1.2 and Proposition B.1.5,
respectively, where for claim (2) we use the relationship between Hecke operators
and the spectral action described above.

For (1), this follows since the action of OXĜ
(XĜ) on A will factor through

the maximal ideal mA defined by the semi-simple L-parameter φ FS
A attached to
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A by the above discussion, and therefore A ∈ D(BunG,Fℓ) forces an equality of
maximal ideals mA =mφ .

For (3), we use the arguments in Koshikawa [Kos21b, Page 6]. In particular,
there it it is shown that the map

OXĜ
(XĜ)→ EndG(Qp)(cIndG(Qp)

Khs
p

(Fℓ))≃ Hhs,op
Kp

given by the spectral action, factors through the usual action by the unrami-
fied Hecke algebra composed with the involution KhK → Kh−1K. Moreover,
the pullback of the maximal ideal m ⊂ HKhs

p
is given by the maximal ideal

mφm ⊂ OXĜ
(XĜ). Now, by arguing as in Proposition B.1.3, we have an identi-

fication:

RHom(cIndG(Qp)

Khs
p

(Fℓ),Aφm)≃ RHom(cIndG(Qp)

Khs
p

(Fℓ),A)mφm
.

Using Frobenius reciprocity, this gives an identification:

RΓ(Khs
p ,Aφm)≃ RΓ(Khs

p ,A)mφm

but the RHS identifies with RΓ(Khs
p ,A)m, as explained above.

We note that we get the following Corollary of this.

Corollary B.1.8. Let A be a complex of smooth G(Qp)-representations with coef-
ficients in k which is admissible (i.e AK is a perfect complex for all compact open
K ⊂ G(Qp)). We then have a decomposition

A≃
⊕

φ

Aφ

running over semisimple L-parameters, where any irreducible constituent π of Aφ

has Fargues-Scholze parameter equal to φ FS
π , as conjugacy classes of parameters.

Proof. This follows immediately by applying to Lemma B.1.7 (1) and (4) to the
full subcategory D(G(Qp),k)⊂ D(BunG)
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[Mat10] Ivan Matić. “The unitary dual of p-adic SO(5)”. In: Proc. Amer.
Math. Soc. 138.2 (2010), pp. 759–767. ISSN: 0002-9939. DOI: 10.
1090/S0002-9939-09-10065-5. URL: https://doi.org/10.
1090/S0002-9939-09-10065-5.

[MN21] A. Bertoloni Meli and K.H. Nguyen. “The Kottwitz conjecture
for unitary PEL-type Rapoport–Zink spaces”. In: Preprint (2021).
arXiv:2104.05912.
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