I like arithmetic geometry, especially in and around the *p*-adic numbers. My current research is concerned with leveraging connections between the classical and geometric Langlands correspondences to say more about the cohomology of Shimura varieties and related spaces.

This year I will be a NSF Postdoc at Stanford working with Xinwen Zhu. Next year I will be a Benjamin Pierce Fellow at Harvard. I received my PhD from Princeton in 2023, advised by David Hansen and Chris Skinner.

Fine Hall, Princeton University

Washington Road

Princeton, NJ 08540, USA

E-mail:lhamann(at)math(point)princeton(point)edu

„Eine falsche Note zu spielen ist unbedeutend, aber ohne Leidenschaft zu spielen, ist unverzeihlich.“

**Geometric Eisenstein Series, Intertwining Operators, and Shin's Averaging Formula**with an Appendix by Alexander Bertoloni-Meli (arXiv)**Compatibility of the Fargues-Scholze Correspondence for Unitary Groups***Submitted*with Alexander Bertoloni-Meli and Kieu-Hieu Nguyen (arXiv)**Compatibility of the Gan-Takeda and Fargues-Scholze local Langlands***To Appear in Compositio Math (pending revision)*(arXiv) (Slides (Columbia)) (Slides (UCSD)) (Slides (TU Munich))**Zelevinsky Duality on Basic Local Shimura Varieties***To Appear in Mathematical Research Letters*(arXiv)**A Jacobian Criterion for Artin v-stacks**(arXiv)

**Non-left-orderable surgeries on twisted torus knots**with K. Christianson, R. Goluboff, and S. Varadaraj.*Proceedings of the American Math Society*144.6 (2016): 2683-2696 (arXiv)