
RATIONAL WEIGHTED PROJECTIVE HYPERSURFACES

LOUIS ESSER

ABSTRACT. A very general hypersurface of dimension n and degree d in complex projec-
tive space is rational if d ≤ 2, but is expected to be irrational for all n, d ≥ 3. Hypersurfaces
in weighted projective space with degree small relative to the weights are likewise rational.
In this paper, we introduce rationality constructions for weighted hypersurfaces of higher
degree that provide many new rational examples over any field. We answer in the affir-
mative a question of T. Okada about the existence of very general terminal Fano rational
weighted hypersurfaces in all dimensions n ≥ 6.

1. INTRODUCTION

An irreducible algebraic variety X over the field k is (k-)rational if there is a k-birational
map X 99K Pdim(X)

k . Determining whether a given variety is rational is often extremely
difficult. One classical problem is to determine which hypersurfaces in Pn+1

k are rational.

If X ⊂ Pn+1
k is a hypersurface of degree 1, it is a hyperplane, so it is isomorphic to Pn

k ,
hence rational. When d = 2, X is a quadric, which is rational if and only if it contains a
smooth k-point. For d ≥ 3, the problem is much subtler. For instance, when k = C, it’s
expected that the very general hypersurface of degree d ≥ 3 in Pn+1

C is not rational for
any n, with the exception of cubic surfaces. However, this is unproven already for cubic
hypersurfaces in P5

C.

Recently, the more general question of rationality for hypersurfaces in weighted projec-
tive space P(a0, . . . , an+1) has also been considered [3, 4, 11, 12, 13]. Weighted projective
hypersurfaces are a diverse class of varieties that include hypersurfaces in Pn+1 as well
as natural geometric constructions such as cyclic covers of projective space. In this paper,
we find many new examples of rational weighted projective hypersurfaces over any field
k by introducing two main rationality constructions.

The first construction, Theorem 3.2, generalizes a result of J. Kollár showing that certain
hypersurfaces in weighted projective space with “loop” equations are rational, among
other remarkable properties [9, Section 5]. The generalization pertains to any hypersur-
face defined by a Delsarte equation, i.e., an equation with the same number of monomials
as variables. The idea of the proof is to construct a birational map to Pn directly, using the
linear system generated by the monomials. This works under a certain gcd condition on
the exponents in the equation.

The second construction, Theorem 3.3, shows that certain weighted projective hyper-
surfaces admit a birational quadric bundle structure with a section over a rational variety,
and hence are rational.
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Just like in ordinary projective space, weighted hypersurfaces of “low degree” are eas-
ily shown to be rational. More precisely, a quasismooth weighted projective hypersurface
Xd ⊂ PC(a0, . . . , an+1) (with a0 ≥ a1 ≥ · · · ≥ an+1) is always rational whenever the follow-
ing criterion holds (see Proposition 3.1 for a more general statement):

(I) d < 2a0 or d = 2a0 = 2a1.

We use the constructions above to show that, contrary to the expectation in ordinary
projective space, there are many examples with d > 2max{a0, . . . , an+1} where X is very
general, quasismooth, and rational. In particular, we answer a question of T. Okada that
arose from his study of rationality for terminal Fano threefold hypersurfaces [13]:

Question 1.1. [13, Question 1.3] Let Xd ⊂ PC(a0, . . . , an+1) be a very general quasismooth
weighted projective hypersurface of dimension n ≥ 3 with terminal singularities. Can X
be rational without satisfying the degree criterion (I)?

We note that Question 1.1 is formulated for n ≥ 3 because of the example of cubic
surfaces in P3

C, which are rational but fail the criterion (I). In addition, there are several
other families of singular quasismooth weighted projective surfaces which are known to
be rational, some of which even have ample canonical divisor (see [2]).

The answer to Question 1.1 is negative when n = 3, meaning that the degree criterion is
necessary and sufficient for rationality in that case. Indeed, there are a total of 130 families
of quasismooth terminal weighted projective Fano threefold hypersurfaces, among which
20 satisfy (I), and hence are rational. Of the remaining 110 families, 95 have Fano index
1. I. Cheltsov and J. Park proved that every quasismooth member of each of these 95
families is birationally rigid, and in particular not rational [3]. Okada showed that a very
general member of the other 15 families is not rational [13, Theorem 1.1]. In fact, with the
lone exception of cubic hypersurfaces in P4

C, he proved that a very general hypersurface
from any of the 110 families failing (I) is not stably rational.

We show that the answer to Question 1.1 is actually affirmative in all dimensions n ≥ 6
(and for all n ≥ 3 if we weaken “terminal” to “klt”).

Theorem 1.2. For every integer n ≥ 3, there exist positive integers d, a0, . . . , an+1 such that
d > 2max{a0, . . . , an+1} and every quasismooth Xd ⊂ PC(a0, . . . , an+1) is a rational klt Fano
variety (and there exist such quasismooth X). For n ≥ 6, we can also make X terminal.

The terminal cases for n = 4, 5 remain open. Though the question was originally formu-
lated over the complex numbers, our methods yield quasismooth rational examples with
d > 2max{a0, . . . , an+1} in every dimension over any field k. We also find examples with
non-trivial moduli. We note that there is another approach to answering Question 1.1,
at least for n ≥ 7, using a different rationality construction due to M. Artebani and M.
Chitayat (see Remark 4.5). It’s interesting to note that the various constructions all seem
to produce terminal examples beginning only in dimension 6 or 7.

Section 2 defines the necessary terminology related to weighted projective varieties.
Section 3 establishes rationality criteria for weighted projective hypersurfaces. In Sec-
tion 4, we find some special choices for d, a0, . . . , an+1 that produce examples proving
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Theorem 1.2. We also give a method of checking whether loop hypersurfaces are canon-
ical or terminal using only the exponents. Finally, we show that there are families with
non-trivial moduli satisfying the conditions of Theorem 1.2.

Acknowledgements. We thank János Kollár and Burt Totaro for many helpful suggestions
and comments.

2. PRELIMINARIES

Over a base field k, we define the weighted projective space with weights a0, . . . , an+1 to
be the projective variety P := Pn+1

k (a0, . . . , an+1) := Proj(k[x0, . . . , xn+1]). Here the ai are
positive integers and the variable xi has weight ai. We sometimes use the abbreviation
a(r) to indicate that the weight a appears r times. The grading of the polynomial ring
above corresponds to a Gm,k-action on affine space An+2

k = Spec(k[x0, . . . , xn+1]) given by
the ring homomorphism

k[x0, . . . , xn+1] −→ k[x0, . . . , xn+1]⊗k k[t, t
−1],

xi 7−→ xi ⊗ tai .

Then Pk(a0, . . . , an+1) is also identified with the universal quotient (An+2
k \ {0})/Gm,k.

There is a third description of P as a toric variety: it is the toric variety over k associated
to the fan consisting of cones generated by proper subsets of the vectors e0, . . . , en, vn+1 ∈
Rn+1 in the lattice N generated by these vectors, where

vn+1 := − a0
an+1

e0 − · · · − an
an+1

en.

We call a set {c1, . . . , cr} of integers well-formed if gcd(c1, . . . , ĉi, . . . , cr) = 1 for each i =
1, . . . , r. A weighted projective space is well-formed if its set of weights is so. Any weighted
projective space is isomorphic, as a variety, to one which is well-formed.

Via the Proj construction, P is equipped with a reflexive sheaf O(1), which is associ-
ated to a Weil divisor on X . In the well-formed case, the canonical class of P is KP =
O(−

∑
i ai).

A subvariety X ⊂ P is quasismooth if its preimage C∗
X ⊂ An+2

k \ {0} under the quotient
morphism is smooth over k. The affine variety C∗

X is called the (punctured) affine cone over
X . The subvariety X is well-formed if P is well-formed and the intersection of X with the
singular locus of P has codimension at least 2 in X . A weighted projective hypersurface is a
subvariety of P defined by a single polynomial f(x0, . . . , xn+1) with k-coefficients that is
weighted homogeneous of degree d. A well-formed quasismooth hypersurface of degree
d satisfies the adjunction formula KX = OX(d−

∑
i ai).

A few special types of polynomials f appear in the paper. A polynomial f is Delsarte
if it has the same number of monomials as variables. One example is a loop polynomial,
which has the form:

xb0
0 x1 + xb1

1 x2 + · · ·+ x
bn+1

n+1 x0.

We say that this is a loop polynomial of type [b0, . . . , bn+1].
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Unless all the weights equal 1, a well-formed weighted projective space is always sin-
gular, but its singularities are of a special class called cyclic quotient singularities. A cyclic
quotient singularity of type 1

r
(c1, . . . , cs) is a singular point étale-locally isomorphic to the

point 0 ∈ As/µr, where the group µr acts by ζ ·(t1, . . . , ts) = (ζc1t1, . . . , ζ
csts) for any ζ ∈ µr.

We say this singularity is well-formed if gcd(r, c1, . . . , ĉj, . . . , cs) = 1 for all j = 1, . . . , s.

For the rest of this section take k = C. Then a quasismooth weighted projective hy-
persurface also has only cyclic quotient singularities, whose types are determined by the
weights and degree of the hypersurface (see [6, Lemma 2.5, Proposition 2.6]). There is a
combinatorial condition called the Reid-Tai criterion that can be used to determine whether
a cyclic quotient singularity of a particular type belongs to certain classes important to the
Minimal Model Program. In the theorem below, we use [x] to denote x−⌊x⌋, the fractional
part of x.

Theorem 2.1. [14, Theorem 4.11] Let 1
r
(c1, . . . , cs) be a well-formed cyclic quotient singularity.

This singularity is canonical (resp. terminal) if and only if
s∑

j=1

[
icj
r

]
≥ 1

(resp. > 1) for all i = 1, . . . , r − 1.

We also note that all quotient singularities (over C) are klt.

3. RATIONALITY CRITERIA FOR WEIGHTED PROJECTIVE HYPERSURFACES

Since every weighted projective space is a toric variety, it is rational (over any field).
Hypersurfaces for which the degree is small compared to the weights are also rational.
The proposition below is a generalization of the degree criterion (I) of T. Okada to an
arbitrary field k.

Proposition 3.1. Suppose that Xd ⊂ Pk(a0, . . . , an+1) is a well-formed quasismooth hypersurface
over any field k. Assume one of the following two conditions holds:

(1) d < 2a0;
(2) d = 2a0 = · · · = 2ar, for some r ≥ 1, and X contains a point in {xr+1 = · · · = xn+1 = 0}

defined over k.

Then X is rational over k.

In particular, a quasismooth Xd ⊂ Pk(a0, . . . , an+1) is always rational over an alge-
braically closed field k when d ≤ 2max{a0, . . . , an+1}, unless d = 2a0 and only one
weight equals half the degree. There are many non-rational examples in the latter case,
such as double covers X2a ⊂ P(a, 1(n+1)) of Pn branched in a divisor of degree 2a with
a ≥ n + 1. (Indeed, X is smooth and KX = OX(c) has global sections in this case since
c := 2a− a− n− 1 ≥ 0.)

Proof. Let f be the weighted homogeneous polynomial defining the hypersurface X . First
suppose that (1) holds. If there is any monomial of the form xi in f , then we may write
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the equation f = 0 as xi = g(x0, . . . , x̂i, . . . , xn+1). In this case, X is called a linear cone, and
the change of coordinates xi 7→ xi− g, defined over k, exhibits an isomorphism from X to
{xi = 0} ∼= P(a0, . . . , âi, . . . , an+1), which is rational.

If there is no monomial of the form xi in f and d < 2a0 holds, then there must be a
monomial of the form x0xi in f , or else the affine cone over X would contain (1, 0, . . . , 0) ∈
An+2

k and be singular at this point, contradicting quasismoothness. After an appropriate
coordinate change in xi, defined over k, we can assume that x0xi is the only monomial
involving x0, so that f = 0 can be written

x0xi = g(x1, . . . , xn+1).

In detail, we begin with an equation of the form x0xi = x0g1+g2, where g1 doesn’t involve
x0 or xi, and g2 does not involve x0. We set xi 7→ xi− g1 to eliminate the g1 term. This puts
the equation in the required form. Since g1 has k-coefficients, this coordinate changes is
defined over k.

There is then a k-birational map X 99K P(a1, . . . , an+1) defined by forgetting the coordi-
nate x0. Hence X is rational.

Now assume (2) holds. Then f is a sum of a quadratic form in x0, . . . , xr and terms
involving other variables. The closed stratum where xr+1, . . . , xn+1 vanish is isomorphic
to Pr, and by assumption its intersection with X contains a k-point. After a change of
variables in x0, . . . , xr, we may assume this k-point has x0 ̸= 0 but x1 = · · · = xr = 0.

Since X contains this point, there is no monomial of the form x2
0 in f . The quasismooth-

ness condition at this point therefore requires that there is a monomial of the form x0xi

with nonzero coefficient in f . From here, we can use the same argument from the proof
of (1) to show that X is rational. □

The remainder of this section presents two new rationality criteria for weighted pro-
jective hypersurfaces. These in particular produce many quasismooth rational examples
with d > 2max{a0, . . . , an+1}.

3.1. Delsarte hypersurfaces. A Delsarte polynomial is a weighted homogeneous polyno-
mial with the same number of monomials as variables. Given a Delsarte polynomial f
defining a weighted projective hypersurface in P(a0, . . . , an+1), we can associate to it an
(n+ 2)× (n+ 2) matrix B = (bij), where the entries bij are determined from the equation
f as follows:

f =
n+1∑
i=0

Ki

n+1∏
j=0

x
bij
j .

Here the Ki are nonzero constants in k. If the matrix B is invertible (over Q), we say
that f is an invertible Delsarte polynomial. In this case, we can find appropriate weights
a0, . . . , an+1 which make f weighted homogeneous as follows. Let qj be the sum of the
entries of the jth row of B−1. Then the equation BB−1 = In+2 means that for each i =

0, . . . , n + 1,
∑n+1

j=0 bijqj = 1. Define d to be the least common denominator of the qj and
aj := dqj . We observe that d always divides det(B). Then f is weighted homogeneous of
degree d with weights a0, . . . , an+1, and gcd(a0, . . . , an+1) = 1. This collection of weights
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(with the gcd condition) is uniquely determined by f . However, it is not always true that
this set of weights is well-formed.

The theorem below shows that a Delsarte polynomial satisfying a certain gcd condition
is rational. This generalizes a result of J. Kollár [9, Section 5] which proves rationality for
certain hypersurfaces defined by a loop polynomial.

Theorem 3.2. Suppose X := {f = 0} ⊂ Pk(a0, . . . , an+1) is an irreducible hypersurface defined
by an invertible Delsarte polynomial in a well-formed weighted projective space over any field k.
Let B be the matrix associated to f and d its weighted degree. If d = | det(B)|, then X is rational
over k.

Proof. Let L be the linear system generated by the monomials of f , where

f :=
n+1∑
i=0

Ki

n+1∏
j=0

x
bij
j .

We claim that this linear system induces a birational map |L| : P(a0, . . . , an+1) 99K Pn+1 if
and only if | det(B)| = d. (Note that while O(d) is not necessarily a line bundle on P, it is
a line bundle over an open set, so a space of global sections still induces a rational map as
shown.)

To see this, view both P(a0, . . . , an+1) and Pn+1 as quotients of An+2 \ {0}, and let M ∼=
Zn+2 and M ′ ∼= Zn+2 be the lattices of the respective tori inside these affine spaces. The
map |L| is induced by the map of rings C[M ′] → C[M ] sending yi 7→

∏n+1
j=0 x

mij

j . We

observe that the corresponding map of lattices is M ′ BT

−→ M . The map on dual lattices is
therefore N

B−→ N ′, and this descends to a map of quotient lattices:

N/(Z · (a0, . . . , an+1))
B−→ N ′/(Z · (1, . . . , 1)).

This lattice map is dual to the corresponding map of tori inside the weighted projective
spaces induced by |L|. It is indeed well-defined because (a0, . . . , an+1) 7→ (d, . . . , d) and
it’s easy to see that the map is injective (we’ve used here that B is invertible). It is also
surjective if the vectors Be0, . . . , Ben+1, v := (1, . . . , 1) generate N ′ ∼= Zn+2, or equivalently
if e0, . . . , en+1, B

−1v generate B−1Zn+2. But this in turn is the same as B−1v being a gen-
erator of B−1Zn+2/Zn+2, which is a finite abelian group of order | det(B)|. But B−1v is the
vector (a0/d, . . . , an+1/d), so its order in this group is the least common denominator d.
Therefore, the map of lattices is an isomorphism if and only if d = | det(B)|.

Now suppose d = | det(B)| holds. The transform of X under |L| : P(a0, . . . , an+1) 99K
Pn+1 is the hyperplane {K0y0 + · · · +Kn+1yn+1 = 0} ⊂ Pn+1. The restriction to X gives a
birational map X 99K Pn, completing the proof. □

This construction gives many new examples of rational weighted projective hypersur-
faces. Quasismooth examples are more limited, though: a quasismooth Delsarte hyper-
surface over C has an equation which is a sum of three types of atoms: Fermat, loop, and
chain (see [10, Theorem 1] and [1, Section 2.2]). The theorem of Kollár covers the case
where the defining polynomial is a single loop, but Theorem 3.2 gives quasismooth ex-
amples where it is a combination of multiple loops, for instance. This paper focuses on
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finding terminal examples, but the theorem can also be used to find new rational hyper-
surfaces X with KX ample.

3.2. Rational quadric bundles. It’s well-known that a smooth cubic hypersurface in Pn+1

of even dimension n = 2m containing two disjoint m-planes is rational. One way to see
this is to project away from one of the planes, which gives X the birational structure of
a quadric bundle over Pm with a section given by the second m-plane. The following
criterion can be viewed as a generalization of this fact. Thanks to J. Kollár for suggesting
a simpler formulation of the theorem.

Theorem 3.3. Let X := {f = 0} ⊂ Pk(a0, . . . , an+1) be an irreducible weighted projective
hypersurface over a field k and 1 ≤ m ≤ n− 1 be an integer with the following properties:

(1) gcd{a0, . . . , am} = 1 and the set {am+1, . . . , an+1} is well-formed;
(2) Every monomial of f has degree 1 or 2 in the variables x0, . . . , xm and at least one has

degree 1 in these variables.

Then X is rational over k.

This statement also holds, suitably interpreted, in the “degenerate” cases m = 0, n, n+1.
These lead to easy rationality constructions along the lines of Proposition 3.1, so we will
not consider them here.

Proof of Theorem 3.3. The idea of the proof is to look at the projection X 99K Pk(am+1, . . . , an+1).
We can understand this map better using some explicit toric geometry. The weighted pro-
jective space P(a0, . . . , an+1) is the toric variety corresponding to the fan which is gener-
ated by proper subsets of the collection of vectors e0, . . . , en, vn+1 ∈ Rn+1 in the lattice N
generated by these vectors, where

vn+1 := − a0
an+1

e0 − · · · − an
an+1

en.

There is a dominant toric rational map p : P(a0, . . . , an+1) 99K P(am+1, . . . , an+1) de-
fined by forgetting the first m + 1 coordinates. In the toric picture, this is given by
the quotient N → N ′ of lattices, where N ′ = N/(N ∩ spanR{e0, . . . , em}). We can re-
solve the indeterminacy of p by a single toric blowup Y of P(a0, . . . , an+1) in the stratum
{xm+1 = · · · = xn+1 = 0}, in particular the one obtained by performing the barycentric
subdivision of the fan in the new ray spanned by w := −a0e0 − · · · − amem. Under the
assumption (1), w is a primitive lattice point, and it’s not hard to show that the quotient
of lattices now gives rise to a morphism p : Y → P(am+1, . . . , an+1).

Here are the details for checking this. The images of the rays em+1, . . . en, vn+1 are
ēm+1, . . . , ēn, (−am+1ēm+1 − · · · − anēn+1) in the vector space spanned by em+1, . . . en, vn+1.
Notice that these are exactly the rays used to define P(am+1, . . . , an+1), and the lattices
match up by the assumption on well-formedness of {am+1, . . . , an+1}.

The toric rational map given by the projection of lattices is undefined only at the strata
corresponding to cones that do not map into cones of the fan of P(am+1, . . . , an+1). These
are the cones which contain all of the vectors em+1, . . . en, vn+1 among their generators.



8 LOUIS ESSER

The new vector w is a positive linear combination of em+1, . . . en, vn+1; in particular, w =
am+1em+1+ · · ·+anen+an+1vn+1. The new cones after the barycentric subdivision are pre-
cisely those that did not contain w to begin with, plus for every cone with em+1, . . . en, vn+1

among the generators, all the cones the cones with one of em+1, . . . en, vn+1 replaced by
w. All of the cones of the fan defining this blowup Y map into cones of the fan of
P(am+1, . . . , an+1), proving that this blowup resolves indeterminacies. We note that w is
a primitive lattice point. This is because if we express rw as the sum of an integer lattice
point and svn+1 for s ∈ Z, we must have an+1|sai for i = m+1, . . . , n+1. The assumption
on well-formedness of {am+1, . . . , an+1} gives that s must be an integer.

The fibers of the toric morphism p : Y → P(am+1, . . . , an+1) can be read off from the fan
of Y (for more details on how to do this in general, see, e.g., [8, Section 2]). In our case, we
only need to identify the behavior over the open torus orbit T ⊂ P(am+1, . . . , an+1). The
homomorphism of lattices associated to p is surjective by condition (1) and the collection
of cones of the fan of Y contained in the preimage of 0 ∈ N ′

R are precisely those generated
by subsets of e0, . . . , em, w. It follows that each fiber over the open torus orbit is the toric
variety corresponding to the fan of these cones. Since w = −a0e0 − · · · − amem, this is
the weighted projective space P(a0, . . . , am, 1), well-formed by (1). In fact, p|p−1(T ) can be
identified with the second projection P(a0, . . . , am, 1)× T

π2−→ T .

Now we analyze how X behaves under this transformation. If Di is the toric divisor
{xi = 0} in P(a0, . . . , an+1), then Di pulls back to Di in Y if i = 0, . . . ,m and to Di + aiE if
i = m+1, . . . , n+1, where E is the exceptional divisor of the blowup. Therefore, the total
transform of X in Y is given by the equation

f(x0, . . . , xm, z
am+1xm+1, . . . , z

an+1xn+1) = 0.

Here z is section associated to E and the left-hand side above can be viewed as a section
of the pullback of O(d) to Y .

Notice that this new equation is weighted homogeneous of degree d in the variables
x0, . . . , xm, z for the weighted projective space P(a0, . . . , am, 1), where z corresponds to the
weight 1. The intersection of the total transform of X with each fiber over T gives the
hypersurface in P(a0, . . . , am, 1) defined by this equation.

Here are some more details for checking that this is the total transform. A toric Q-
Cartier divisor D corresponds to a piecewise linear function φ on the support of the fan,
linear on each cone. The coefficient of each boundary divisor in D is determined by the
value of φ at the primitive lattice point of the ray corresponding to D. For instance, in
weighted projective space there are basic toric divisors Di := {xi = 0}, which correspond
to the unique piecewise function taking the value 1 at the ray corresponding to the divisor
and 0 on the other rays. We can compute the pullback of each of the divisors Di (and hence
the functions xi) in the blowup Y by evaluating the corresponding support functions on
the new ray, w.

The ray w is contained in the cone generated by em+1, . . . , en, vn+1, so we can see that Di

pulls back to Di (and hence xi to xi) if i = 0, . . . ,m. Note that we are denoting by Di the
divisor corresponding to the same ray in Y . On the other hand, Di pulls back to Di + aiE
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and xi pulls back to xiz
ai when i = m+ 1, . . . , n+ 1, because

w = am+1em+1 + · · ·+ an+1vn+1,

and hence
φ(w) = am+1φ(em+1) + · · ·+ an+1φ(vn+1).

Here we use E to denote the exceptional toric divisor, and z the corresponding function.
The equation for the total transform of X in Y is therefore

f(x0, . . . , xm, z
am+1xm+1, . . . , z

an+1xn+1) = 0.

There will be a common factor of zc in this equation, which corresponds to the multiple
of the exceptional divisor that appears in the total transform.

The affine chart {z ̸= 0} ⊂ P(a0, . . . , am, 1) is isomorphic to Am+1
k . Restricting p to this

open set on each fiber over T gives Am+1
k × T → T .

The intersection X̃ of X with Am+1
k × T is defined in the fiber of Am+1

k × T → T over
any point t = [cm+1 : · · · : c2m+1] of the scheme T ⊂ P(am+1, . . . , a2m+1) (for instance the
generic point) by the equation

{f(x0, . . . , xm, cm+1, . . . , c2m+1) = 0} ⊂ Am+1
k(t) .

By condition (2), this equation is either linear or quadratic in the variables x0, . . . , xm. If
it is linear, then the generic fiber of X̃ → T is isomorphic to Am

k(T ), so X is rational. If it is
quadratic, the generic fiber is an affine quadric over k(T ). But since every monomial of f
has degree 1 or 2 in x0, . . . , xm, the point 0 ∈ Am

k(T ) is contained in this quadric, and since
at least one monomial has degree 1 in these variables, it is smooth there.

But an affine quadric over a field L containing a smooth L-point is L-rational, so we’ve
shown that the generic fiber of the affine quadric bundle X̃ → T is rational over k(T ).
The field k(T ) is purely transcendental over k, so it follows that X̃ is rational over k, and
hence X is rational over k as well. □

4. TERMINAL EXAMPLES

In this section, we’ll use the rationality constructions from Section 3 to prove Theo-
rem 1.2. The main sequence of examples will come from Theorem 3.2. Delsarte equations
are of a special form, so it’s not necessarily true that a Delsarte hypersurface is very gen-
eral in its family. Further, these examples are rarely terminal. Nevertheless, we’ll find a
special choice of weights in each dimension n ≥ 7 where these conditions hold.

The proposition below gives a sufficient condition for a hypersurface defined by a loop
polynomial (over the complex numbers) to be terminal, based on the Reid-Tai criterion
[14, Theorem 4.11]. Recall that [x] denotes the fractional part x− ⌊x⌋ of x.

Proposition 4.1. Let X ⊂ PC(a0, . . . , an+1) be a well-formed hypersurface defined by a loop
polynomial of type [b0, . . . , bn+1] with b0, . . . , bn+1 ≥ 2. Suppose that

(II)
n+1∑
j=2

[(1− bj−1 + bj−1bj−2 − · · ·+ (−1)j−1bj−1bj−2 · · · b1)x] ≥ 1 (resp., > 1)
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for every x ∈ (0, 1). Then X is canonical (resp. terminal) in a neighborhood of the point [1 :
0 : · · · : 0]. In particular, if this condition holds for each cyclic permutation of the bj , then X is
canonical (resp. terminal).

The advantage of Proposition 4.1 is that one often needs only compute the sum of the
first few terms in (II). Also, the condition does not directly involve the weights.

Proof. A loop polynomial with exponents bj at least 2 defines a quasismooth hypersurface
over C. Since X is quasismooth at the coordinate point [1 : 0 : · · · : 0] of the first variable,
it has a cyclic quotient singularity there. The singularity is of type 1

a0
(a2, . . . , an+1) [6,

Proposition 2.6].

We use the fact that f is homogeneous of degree d to give expressions for the aj , modulo
a0. Since b0a0 + a1 = d, d ≡ a1 (mod a0). Next, b1a1 + a2 = d, so

a2 = d− b1a1 ≡ (1− b1)a1 (mod a0).

Proceeding inductively we get

aj = (1− bj−1 + bj−1bj−2 − · · ·+ (−1)j−1bj−1bj−2 · · · b1)a1 (mod a0), j = 2, . . . , n+ 1.

Note that gcd(a0, a1) = 1, or else a0, a1, and d share a common factor and following the
loop gives that all weights share a common factor, a contradiction. It follows that a1 is
a unit in µa0 , and multiplication by a unit does not alter the singularity type. Hence the
singularity at the coordinate point x0 is of type 1

a0
(β2, . . . , βn+1), where

βj := 1− bj−1 + bj−1bj−2 − · · ·+ (−1)j−1bj−1bj−2 · · · b1.

Now, the Reid-Tai criterion [14, Theorem 4.11] states that this singularity is canonical
(resp. terminal) iff

n+1∑
j=2

[
iβj

a0

]
≥ 1 (resp., > 1),

for each i = 1, . . . , a0 − 1. This sum is now the same as (II), but with x replaced by i/a0.
Hence the inequality (II) for every x ∈ (0, 1) is certainly enough to imply the Reid-Tai
criterion. Finally, applying [6, Proposition 2.6] again, we note that every singularity at a
point of X occurs in some stratum of the quotient singularities at the coordinate points,
so if the corresponding inequality to (II) holds for each coordinate point, then X itself is
canonical (resp. terminal). □

We can now prove Theorem 1.2.

Proof of Theorem 1.2. For each dimension n ≥ 3, we choose d, a0, . . . , an+1 in such a way
that there is a loop polynomial

f := x2
0x1 + x2

1x2 + · · ·+ x2
nxn+1 + x3

n+1x0,
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which is weighted homogeneous of degree d. Indeed, we can readily compute the re-
quired weights and degree using the matrix of the equation as in Section 3.1. We obtain:

ai = 2n+1 +
i∑

j=1

(−1)n+2−j2j−1, i = 0, . . . , n+ 1,

d = 3 · 2n+1 + (−1)n+2.

The first two weights differ by 1 and d = det(B), so the gcd condition of Theorem 3.2
holds.

Lemma 4.2. The only monomials of weighted degree d in a0, . . . , an+1 are those in the loop poly-
nomial f .

Proof. We first note that all weights but the last, an+1, are strictly between d/4 and d/2.
Indeed, the largest weight is an < 2n+1 + 2n−1 so 2an = 2 · 2n+1 + 2n < d. Conversely,
the smallest weight besides an+1 is an−1, which satisfies an−1 > 2n+1 − 2n−2, so 4an−1 =
4 · 2n+1 − 2n > d.

This shows that any monomial of degree d not involving the last variable is the product
of exactly three terms. If xk1xk2xk3 has degree d (with 0 ≤ k1 ≤ k2 ≤ k3 ≤ n), then

k1∑
j=1

(−1)n+2−j2j−1 +

k2∑
j=1

(−1)n+2−j2j−1 +

k3∑
j=1

(−1)n+2−j2j−1 = (−1)n+2.

We claim that k3 ≤ k2+1. Suppose by way of contradiction that this is not the case. As an
alternating sum of powers of 2, we can see that the k3 sum has absolute value greater than
2k3−2 and less than 2k3−1 (if k3 ≥ 2); the same holds for the other sums. Thus if k3 > k2+1,
the last sum has an absolute value of more than 2k3−2, which is at least twice the upper
bound 2k2−1 for the absolute value of the other two terms. It’s therefore impossible for the
sum to have absolute value 1 as long as k2 ≥ 2. (This leaves out the case k2 ≤ 1, but it’s
easy to check the same is still true in that setting.)

Thus we’ve shown k2 = k3 or k2 + 1 = k3. Either way, xk1xk2xk3 must now be one of the
loop monomials since all the weights are distinct and the latter two terms belong to some
unique loop monomial. Finally, we consider monomials involving the last variable xn+1.
We note that 2an + an+1 = d and an is the largest weight, so any monomial of degree d
involving xn+1 that is not x2

nxn+1 must have four terms. We can check

2an+1 + 2an−1 ≥ 2 · 2n+1 − 2n + 2 · 2n+1 − 2n−1 = 4 · 2n+1 − 2n − 2n−1 > d,

where we note that an−1 is the second-smallest weight. It follows that a monomial of
degree d with four terms must involve at least three copies of xn+1, and hence must be the
last monomial x3

n+1x0. □

Returning to the proof of Theorem 1.2, Lemma 4.2 shows that every hypersurface with
degree d and weights a0, . . . , an+1 has the same equation f , up to varying the coefficients.
The hypersurface is quasismooth if and only if all coefficients are nonzero. Theorem 3.2
shows that every quasismooth hypersurface in this family is rational. Every quasismooth
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member of the family is also a Fano variety by the adjunction formula, since the sum of
the weights is greater than the degree.

As an aside, the same example is quasismooth over any field, except possibly in a
few characteristics. Indeed, the following lemma shows that a loop polynomial of type
[b0, . . . , br] defines a quasismooth hypersurface over k unless b0 · · · br = (−1)r+1 in k.

Lemma 4.3. Let k be any field. For any positive integers b0, . . . , br, the common vanishing set
of the partial derivatives of xb0

0 x1 + · · · + x
br−1

r−1 xr + xbr
r x0 in Ar+1

k is the origin unless b0 · · · br =
(−1)r+1 in k.

Proof. The vanishing of the partial derivatives gives r + 1 equations:

b0x
b0−1
0 x1 + xbr

r = 0,

...

br−1x
br−1−1
r−1 xr + x

br−2

r−2 = 0,

brx
br−1
r x0 + x

br−1

r−1 = 0.

We note that if some variable, for example x0, is 0, then the first equation gives that xr = 0,
and we can conclude by induction that all variables vanish. Hence any nontrivial solution
to the system of equations above has all nonzero coordinates. If we move the second terms
to the right-hand side and multiply all the equations together, we obtain

b0 · · · brxb0
0 · · ·xbr

r = (−1)r+1xb0
0 · · · xbr

r .

Hence, if a nontrivial solution exists, we can cancel all variables to conclude that we must
have b0 · · · br = (−1)r+1 in k. □

We claim that this example also has terminal singularities whenever the dimension
n ≥ 7. This follows from Proposition 4.1 for n ≥ 8. Indeed, it’s actually true that the sum
of the first eight terms from (II) is already greater than 1 on the interval (0, 1) for every
cyclic permutation of [b0, . . . , bn+1] = [2, . . . , 2, 3], n ≥ 8. Since the initial terms in the sum
only depend on the first few of the values bi, which are either all 2’s or all 2’s except a 3
in some position, we only need to graph a handful of different functions to verify this.
(Or, more concretely, check a finite number of rational values in (0, 1) for each of these
functions.) As an example, the graph of the sum of the first five terms when b1 through b5
all equal 2 is shown in Figure 1. It is already greater than 1 at every point in the open unit
interval, so we’ve actually shown that any coordinate point of a loop hypersurface where
the “next five exponents” are 2 is terminal.

It turns out that the criterion (II) fails for our example when n = 7, but a computer
check shows it is still terminal (using the usual version of Reid-Tai from Theorem 2.1).
This gives an example where the criterion in Proposition 4.1 is not a necessary condition
for X to be terminal.

This completes the proof of the theorem when n ≥ 7. The loop example is not terminal
when n = 6, but the theorem is proven for n = 6 in Example 4.4. □
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FIGURE 1. The sum of the first five terms in (II) for a sequence of exponents
beginning 2, 2, 2, 2, 2, . . ., namely the function [−x] + [3x] + [−5x] + [11x] +
[−21x]. This function is greater than 1 on the interval (0, 1), so the corre-
sponding coordinate point is terminal.

In the loop examples in the proof above, any two quasismooth members of the family
are isomorphic to one another. In other words, the moduli space of quasismooth hyper-
surfaces is a single point.

However, we can use Theorem 3.3 to give new rational examples with non-trivial mod-
uli answering Question 1.1. This construction also gives the only example I could find
with n = 6:

Example 4.4. Consider the family of hypersurfaces X23 ⊂ PC(9
(2), 8(2), 7(2), 5(2)) of dimen-

sion 6. In this example, the degree is more than twice the maximum of the weights, but
we claim that every quasismooth member of the family is rational and terminal.

We first notice that every monomial of degree 23 with the given weights contains ex-
actly one or two terms from the first four variables (the ones corresponding to weights
9 and 8), and there exist monomials of both of these kinds. In fact, in order for X to
be quasismooth, it must contain both monomials that are linear and monomials that are
quadratic in the first four variables. The general member of the family is indeed quasi-
smooth. Hence the conditions of Theorem 3.3 are satisfied for any quasismooth X in the
family (where we take m = 3). It follows that any such X is rational. A quick computation
with the Reid-Tai criterion Theorem 2.1 also shows that this X is terminal. This completes
the proof of Theorem 1.2 for n = 6.

This family has nontrivial moduli. Indeed, two quasismooth hypersurfaces in the fam-
ily are isomorphic iff one is the image of the other under an automorphism of P [5, The-
orem 2.1]. There are 26 monomials of degree 23, so the projective space of weighted
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homogeneous polynomials of degree 23 is isomorphic to P25. On the other hand, Aut(P)
has dimension 15 (see, e.g., [5, Lemma 1.3]).

It’s possible to find similar examples in all even dimensions n ≥ 6.

Remark 4.5. Another recent rationality construction due to M. Artebani and M. Chitayat
[2, Proposition 3.6] gives an alternative approach to Theorem 1.2 in the case n ≥ 7. In-
deed, they show that hypersurfaces of the form Xac ⊂ P(c(k), a(ℓ)), gcd(a, c) = 1, k, ℓ ≥ 1
are always rational, provided that the equation f involves both variables of weight c and
of weight a. (The very general X in particular has this property.) Geometrically, their
rationality proof amounts to showing that the projection map X 99K Pk−1 × Pℓ−1 is bira-
tional.

In order to find examples failing the degree criterion (I), we need a, c > 2, so the smallest
possibilities are c = 4, a = 3. Using the Reid-Tai criterion, one can check that the example
only has terminal singularities when k > a and ℓ > c. The smallest example that works
for Theorem 1.2 is therefore X12 ⊂ P(4(4), 3(5)), which has dimension n = 7 (this is also
the only example from this construction that works for n = 7). These examples have
non-trivial moduli as well.

It’s also possible to find rational examples using Theorem 3.3 where the automorphism
group of the very general X is trivial.

Example 4.6. Consider the following family of complex hypersurfaces of dimension 6:

X1097 ⊂ P7(519, 507, 433, 404, 289, 231, 83, 59).

The equation of such a hypersurface has the form

f := c0x
2
0x7+ c1x

10
7 x1+ c2x

2
1x6+ c3x

8
6x2+ c4x

2
2x5+ c5x

3
5x3+ c6x

2
3x4+ c7x

2
4x0+ c8x2x3x6x

3
7 = 0.

The general X in this family is quasismooth and the conditions of Theorem 3.3 apply, so
every quasismooth X is rational. All automorphisms of a quasismooth hypersurface in
the family extend to Aut(P) by [5, Theorem 2.1]. But the automorphism group of this P
is diagonal, i.e., every element of the group is of the form xi 7→ kixi for some constants
ki ∈ C. This is because xi is the only monomial of degree ai for each i = 0, . . . , 7 (see
also [5, Lemma 1.3]). We may use the procedure of [7, Section 7] to compute the diagonal
automorphism group of the loop hypersurface we obtain by setting c8 = 0 in the equation
for X . The result is that a quasismooth X satisfying c8 = 0 has Aut(X) ∼= µ7, where ζ ∈ µ7

acts by

ζ · (x0 : x1 : x2 : x3 : x4 : x5 : x6 : x7) = (x0 : ζ
5x1 : ζ

3x2 : ζ
2x3 : ζ

4x4 : ζ
2x5 : ζ

5x6 : ζx7).

Indeed, we can confirm that ζ · f = ζf under this action. But the action on the last
monomial is ζ · (x2x3x6x

3
7) = ζ6x2x3x6x

3
7. This shows that the automorphism group of a

general hypersurface in the family is trivial.

We were unable to find any terminal examples answering Question 1.1 affirmatively in
dimensions 4 or 5, using any of the constructions mentioned above.
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