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ABSTRACT. For certain quasismooth Calabi–Yau hypersurfaces in weighted projective space,
the Berglund-Hübsch-Krawitz (BHK) mirror symmetry construction gives a concrete de-
scription of the mirror. We prove that the minimal log discrepancy of the quotient of such a
hypersurface by its toric automorphism group is closely related to the weights and degree
of the BHK mirror. As an application, we exhibit klt Calabi–Yau varieties with the smallest
known minimal log discrepancy. We conjecture that these examples are optimal in every
dimension.

1. INTRODUCTION

We say that a normal projective variety X is Calabi–Yau if the canonical class KX is Q-
linearly equivalent to zero. Similarly, a pair (X,D) is Calabi–Yau if KX +D ∼Q 0. Many
theorems and conjectures in algebraic geometry assert that the numerical invariants of
Calabi–Yau pairs with relatively mild singularities and a fixed dimension are bounded in
various ways. For instance, the volume of an ample Weil divisor on a klt Calabi–Yau pair
of dimension n with coefficients in a DCC set I is known to have a positive lower bound
depending only on n and I , by a result of Birkar [4, Corollary 1.4]. The index conjecture
predicts that the index of X , the smallest positive integer m such that m(KX +D) ∼ 0, is
uniformly bounded for the same class of pairs.

A series of papers by Totaro, Wang, and the author [11, 12] laid out examples of Calabi–
Yau varieties and pairs that are particularly extreme with respect to the two invariants
mentioned, volume and index. Several of these examples are in fact conjecturally optimal
with respect to the invariant of interest. Surprisingly, the conjecturally optimal examples
for volume and index are related by mirror symmetry [12, Remark 3.8]. In this paper,
we describe another connection between mirror symmetry and the birational geometry
of Calabi–Yau pairs, this time relating to the minimal log discrepancy.

When a pair (X,D) has relatively mild singularities, the minimal log discrepancy (or
mld for short) is a way of quantifying how singular it is. A pair is Kawamata log ter-
minal (klt) if the minimal log discrepancy is positive. It follows from results of Ha-
con, McKernan, and Xu that there is a positive lower bound on the mld among all klt
Calabi–Yau pairs of a fixed dimension n with coefficients in a fixed DCC set I (see Propo-
sition 2.1).

The framework of mirror symmetry suggests that there is a mirror dual associated to
a Calabi–Yau variety. In certain special cases, an explicit construction for the mirror is
known. The example we’ll focus on in this paper is Berglund-Hübsch-Krawitz (BHK)
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mirror symmetry, which describes how to find the mirror for certain orbifolds which are
quotients of Calabi–Yau hypersurfaces in weighted projective space.

Our main result shows that the mld of the “maximal toric quotient” of any Calabi–Yau
weighted projective hypersurface to which BHK mirror symmetry applies has a remark-
ably simple description in terms of the mirror. This gives a new connection between
mirror symmetry and invariants from birational geometry.

Theorem 1.1 (Theorem 3.1). Let Vd ⊂ PC(a0, . . . , an+1) be a well-formed quasismooth Calabi–
Yau hypersurface defined by a polynomial equation of degree dwith the same number of monomials
as variables such that its matrix of exponents is invertible (also called a Delsarte polynomial).
Suppose that AutT (V ) is the toric automorphism group of V . Let dT and aT0 , . . . , a

T
n+1 be the

mirror degree and mirror weights of V , respectively. Then, the minimal log discrepancy of the
quotient pair V/AutT (V ) is

(1) mld(V/AutT (V )) =
min{aT0 , . . . , aTn+1}

dT
.

Using this result, we compute the mld for some special examples. For instance, we
write down examples of klt Calabi–Yau varieties (rather than pairs) with the smallest
known mld. Some of the properties of these examples are explicated in a separate paper
[10]. Their mld decreases doubly exponentially with dimension, and we expect that they
achieve the smallest mld of any klt Calabi–Yau variety in each dimension (Conjecture 4.4).
This conjecture is supported by low-dimensional evidence. These results complement
known examples of klt Calabi–Yau pairs with standard coefficients due to Jihao Liu [20,
Remark 2.6] that have similar asymptotics. We also show how the properties of these
latter examples can be deduced as a special case of Theorem 3.1.

The key idea of the proof of Theorem 3.1 will be to view quotients of hypersurfaces as
above as hypersurfaces in fake weighted projective stacks, a special case of toric Deligne-
Mumford stacks. We then use the geometric description of the mld for toric singularities
to verify (1). The outline of the paper is as follows. In Section 2, we explain the neces-
sary background on hypersurfaces in fake weighted projective stacks and their singulari-
ties; these results generalize more familiar ones for hypersurfaces in weighted projective
space, but to the author’s knowledge have not appeared in the literature. The end of
Section 2 also summarizes the construction of the Berglund-Hübsch-Krawitz mirror. Sec-
tion 3 is devoted to the proof of Theorem 3.1, while Section 4 applies this result by con-
structing examples of klt Calabi–Yau pairs and varieties with the smallest known minimal
log discrepancy.

Acknowledgements. The author was partially supported by NSF grant DMS-2054553.
Thanks to Burt Totaro for useful conversations, and to the referees for many helpful sug-
gestions and comments.

2. NOTATION AND BACKGROUND

Throughout the paper, we’ll work over the complex numbers C.
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2.1. Minimal log discrepancies and toric stacks. The minimal log discrepancy (or mld) of
a pair (X,D) is a numerical measure of its singularities.

For us, a pair (X,D) consists of a normal projective varietyX and an effective Q-divisor
D with the property that KX + D is a Q-Cartier divisor. Then, for a proper birational
morphism µ : X ′ → X , where X ′ is again normal, and any irreducible divisor E ⊂ X ′, we
may define the log discrepancy of E (with respect to µ) as follows:

aE(X,D) := ordE(KX′ + E − µ∗(KX +D)).

The log discrepancy aE(X,D) only depends on the valuation defined byE on the function
field of X and not on the particular birational model µ : X ′ → X for E. The center cX(E)
of E in X is the image µ(E) ⊂ X , which again depends only on the valuation. For any
point x of the scheme X , the minimal log discrepancy of the pair (X,D) at the point x is
defined as

mldx(X,D) := inf{aE(X,D) : cX(E) = x̄}.
The (global) minimal log discrepancy of (X,D) is

mld(X,D) := inf
x∈X

mldx(X,D),

where the infimum is taken over all points x of the scheme X . Whenever the pair (X,D)
is log canonical (lc), that is, whenever mld(X,D) is nonnegative, the global mld can be
computed using a single log resolution of (X,D) and hence is a nonnegative rational
number [17, Definition 7.1]. A pair (X,D) is Kawamata log terminal (klt) if mld(X,D) > 0.

Recall that (X,D) is Calabi–Yau if KX + D ∼Q 0. For klt Calabi–Yau pairs (X,D) with
X of a fixed dimension n and D with coefficients belonging to a fixed set I satisfying the
descending chain condition, there is a positive lower bound on the minimal log discrep-
ancy:

Proposition 2.1. Let n be a positive integer and I a DCC set. Then there is a positive number
ϵ = ϵ(n, I) such that every klt Calabi–Yau pair (X,D) with dimension n and coefficients in I has
mld at least ϵ.

This follows from work of Hacon-McKernan-Xu [13]; see [12, Proposition 2.1] for a
proof, which uses ideas from [8, Lemma 3.13].

In this paper, we’ll focus primarily on klt Calabi–Yau pairs with standard coefficients,
meaning that I = {0}∪{1− 1

b
: b ∈ Z+}. These pairs arise naturally as certain quotients of

varieties by finite groups: more precisely, if Y is a normal projective variety with Q-Cartier
canonical class and an action by a finite group G, then the variety X := Y/G is naturally
equipped with a divisor D such that (X,D) is a pair with standard coefficients. This D
has the property that KY = π∗(KX +D), where π : Y → X is the quotient morphism. The
divisor is determined from the G-action in the sense that D has coefficient 1 − 1

b
on the

image of a prime divisor in Y for which the subgroup of G acting as the identity on the
divisor has order b.

Throughout the paper, we’ll need the explicit description of the minimal log discrep-
ancy of toric pairs. A toric pair is a pair (X,D) with X a normal Q-factorial toric vari-
ety and D a torus-invariant Q-divisor. When describing the fans of toric varieties and
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stacks, we’ll use the notation cone{v1, . . . , vk} to mean the cone generated by vectors
v1, . . . , vk ∈ RN , i.e., the set of points which are a nonnegative linear combination of these
vectors.

It will be geometrically convenient to phrase our results in the language of toric Deligne-
Mumford stacks [6, Section 3]. In the same way that the datum of a simplicial fan corre-
sponds to a normal, Q-factorial toric variety, the datum of a stacky fan corresponds to
a toric Deligne-Mumford stack. A stacky fan Σ consists of a triple (N,Σ, β). Here N is
a finitely generated abelian group, Σ is a full-dimensional and strictly convex rational
simplicial fan in N̄ := N ⊗Z R with r rays ρ1, . . . , ρr, and β is a collection of r elements
{β1, . . . , βr} of N such that the image β̄i of βi in N̄ spans ρi. The list {β1, . . . , βr} is the
same as a map β : Zr → N with a finite cokernel, where the ith standard basis element of
Zr maps to βi.

The Deligne-Mumford stack associated to Σ will be denoted Y(Σ). We’ll only explain
the construction of this stack when N is torsion-free, which corresponds to the stack hav-
ing trivial generic stabilizer. This assumption will hold for the rest of the paper. We can
then view N ∼= Zd as a lattice inside NR, and for simplicity we’ll use the notation βi rather
than β̄i for the images of elements of N distinguished by β. To construct the stack in that
case, we take a quotient of an open subset of Ar, with coordinates z1, . . . , zr, as follows.
Let JΣ be the monomial ideal generated by the set of products

∏
i:ρi /∈σ zi, where σ ranges

over all cones in Σ. Denote by β⋆ : M → (Zr)⋆ the dual to β (where M is the dual lattice
to N ) and consider the following exact sequence:

0 →M
β⋆

−→ (Zr)⋆ → S(Σ) → 0.

Here S(Σ) is a finitely generated abelian group which is the cokernel of the map β⋆. Then
G(Σ) := Spec(C[S(Σ)]) carries the structure of an algebraic group, canonically embedded
in (C∗)r = Spec(C[(Zr)⋆]) via the surjection C[(Zr)⋆] → C[S(Σ)]. The group G also has an
action on Ar inherited from the diagonal action of (C∗)r on this space. Then Y(Σ) is then
defined as the quotient stack [(Ar \V (JΣ))/G]. This is in fact a Deligne-Mumford stack [6,
Proposition 3.2].

By [6, Proposition 3.7], the coarse moduli space of the stack Y(Σ) is the ordinary toric
variety Y := Y (Σ) associated to the fan Σ in N . Thus, there is a natural toric pair structure
(Y,D) associated to the stack Y , where the coefficient of the torus-invariant divisor corre-
sponding to ρi in D is 1− 1

mi
; here, mi denotes the order of the subgroup which acts as the

identity on the divisor under the G(Σ)-action. The minimal log discrepancy of the stack Y
is by definition the mld of the associated pair (Y,D).

Since the fan Σ is rational simplicial, there exists a unique piecewise linear function
ψ : |Σ| → R which has value 1 on each βi and is linear on each cone σ ∈ Σ. We’ll call this
the log discrepancy function of the toric stack Y . The lemma below justifies this terminology.
It is the analog for toric stacks of the geometric description of the mld of toric singularities
due to A. Borisov [5, section 2].
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Lemma 2.2. Let Y(Σ) be a toric Deligne-Mumford stack with trivial generic stabilizer and let ψ
be the log discrepancy function of Y . Then the minimal log discrepancy of Y is

mld(Y) = min{ψ|(N∩|Σ|)\{0}}.

Proof. Since the mld is a local invariant, it suffices to consider the affine case where there
is a single cone in the fan Σ. If d is the rank of N , then the cone has r = d rays since
it is simplicial; these rays are spanned by β1, . . . , βd, respectively. The image of the map
β : Zd → N is a finite index sublattice of N . We’ll use e1, . . . , ed for the standard basis of
Zd, so β(ei) = βi. In this case, V (JΣ) = ∅ and the stack Y is the quotient of Ad by the finite
group G = Spec(C[S(Σ)]). This is equivalent to the usual toric description of a (possibly
ill-formed) affine abelian quotient singularity.

Let pi be the primitive lattice point on the ray spanned by βi. We claim that the order
of the subgroup of G acting as the identity on {zi = 0} ⊂ Ad is precisely the ratio βi/pi.
Indeed, the subscheme G of (C∗)d = C[(Zd)⋆] is defined by the ideal C[M ] ⊂ C[(Zd)⋆]. The
subgroup acting as the identity on {zi = 0} in (C∗)d is defined by the ideal C[Hi], where
Hi ⊂ (Zd)⋆ is the subgroup generated by the dual standard basis vectors f1, . . . , f̂i, . . . , fd
in (Zd)⋆. The intersection of G with this subgroup is then the spectrum of the group
algebra of

(2) coker(M
β⋆

−→ (Zd)⋆ → (Zd)⋆/Hi).

The quotient (Zd)⋆/Hi is the dual of the sublattice Z ·ei ⊂ Zd ⊂ N . Therefore, the image of
the composition in (2) can be thought of as the collection of linear maps Z · ei → Z which
extend to the ambient lattice N . The cokernel therefore has order equal to βi/pi, so the
spectrum of its group algebra is a finite discrete algebraic group of that same order.

Since the log discrepancy function ψ is 1 at βi, it has value pi/βi at the primitive lattice
point pi. In addition, 1− pi/βi is the coefficient of the image of the divisor {zi = 0} in the
pair (Y,D) associated to Y . The usual log discrepancy function of a toric pair is defined
by precisely these conditions, that is, by linearity on every cone of the fan and a value
of 1 − coeffDi

D on the primitive lattice point spanning the ray associated to each torus-
invariant divisor Di [1, Section 1]. Therefore, this calculation confirms that the function ψ
deserves the name “log discrepancy function”: for any primitive lattice point e ∈ N ∩ |Σ|,
the prime divisorEe overX corresponding to the barycentric subdivision of Σ with center
e has log discrepancy aEe(Y,D) = ψ(e). The minimum value of ψ on (N ∩ |Σ|) \ {0} is
therefore the mld of (Y,D), as required. □

2.2. Hypersurfaces in Fake Weighted Projective Stacks. In the main theorem, we’ll be
interested in computing the mld of certain pairs which are quotients of hypersurfaces
in weighted projective space by finite groups. Since these pairs are quotients of varieties
with canonical singularities by finite groups, they are klt, and therefore have positive mld.
It will be useful for us to view these same quotients as hypersurfaces inside of what we
call fake weighted projective stacks.

A fake weighted projective stack is a toric Deligne-Mumford stack Y(Σ) = (N,Σ, β) for
which N ∼= Zn+1 and the fan Σ, which is complete and generated by r = n + 2 rays
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ρ0, . . . , ρn+1, defines a Q-factorial projective toric variety of Picard number 1. The βi are
not required to be primitive lattice points on these rays, so this construction is slightly
more general than the usual definition of fake weighted projective spaces, which in turn
generalize ordinary weighted projective space P(a0, . . . , an+1). This subsection will gener-
alize some of the theory of weighted projective hypersurfaces and their singularities (see
[15] or [11, Section 2]) to this more general setting.

The top-dimensional cones of the fan Σ will be denoted σi, i = 0, . . . , n + 1. Here
σi := cone{β0, . . . , β̂i, . . . , βn+1}. We’ll use the coordinates x0, . . . , xn+1 for affine space
An+2. It follows that JΣ has generators x0, . . . , xn+1, so that Y = [(An+2 \ {0})/G]. In this
case, G = Spec(C[S(Σ)]) is a one-dimensional algebraic group of multiplicative type (or
equivalently, the product of Gm with a finite abelian group).

There is a unique collection of positive integers a0, . . . , an+1 for which a0β0 + · · · +
an+1βn+1 = 0 and gcd(a0, . . . , an+1) = 1. These are the weights of the fake weighted projec-
tive stack Y . The toric variety corresponding to Σ in the lattice generated by β0, . . . , βn+1 is
simply the usual weighted projective space P(a0, . . . , an+1), so Y is naturally the quotient
of this space by a finite group. To refer to a point of the coarse moduli space Y of Y , we
sometimes use homogeneous coordinates (x0 : · · · : xn+1).

The action ofG on An+2 also gives an action ofG on the polynomial ring C[x0, . . . , xn+1],
which in turn gives a grading on this ring by the group of characters S := S(Σ) ofG (this is
the same S(Σ) as above, namely the cokernel of the dual of β). Suppose that χ : G → C∗

is a character of G. An element f ∈ C[x0, . . . , xn+1] is called homogeneous of degree χ if
g · f = χ(g)f for all g ∈ G. For example, when the stack Y equals P(a0, . . . , an+1), the
group of characters is simply Z and “homogeneous of degree d ∈ Z” means “homoge-
neous of weighted degree d” in the usual sense. Since the action of G is diagonal, every
monomial is homogeneous of some degree. We’ll write θ0, . . . , θn+1 for the characters of
x0, . . . , xn+1, respectively. The datum consisting of the group G and these coordinate char-
acters θ0, . . . , θn+1 also determines the fake weighted projective stack Y .

For any subset I ⊂ {0, . . . , n + 1} of size k, there is an associated toric stratum WI ⊂
An+2 \ {0} where precisely the coordinates in I are nonvanishing. We have WI

∼= (C∗)k.
We’ll use UI to denote the image of this stratum in Y , which is also the set where the
homogeneous coordinates indexed by I are nonzero; then UI

∼= (C∗)k−1 if k > 1 and UI is
a point if k = 1.

In this language, it’s straightforward to identify the quotient singularities of a fake
weighted projective stack Y in terms of the coordinate characters θ0, . . . , θn+1. To write
down these singularities, we use the following notation. Let H be a finite group and
χ1, . . . , χl be characters of this group. A pair (V,DV ) has a quotient singularity of type
1
H
(χ1, . . . , χl) at a closed point p ∈ V if there is an étale neighborhood of p which is iso-

morphic to the quotient pair Al/H , whereH acts diagonally by characters χ1, . . . , χl. We’ll
often abuse notation slightly and say that the smooth Deligne-Mumford stack V with triv-
ial generic stabilizer and coarse moduli pair (V,DV ) has a quotient singularity of the given
type at p ∈ V .

Now, we can precisely describe the singularities of Y (cf. [11, Proposition 2.3]):
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Proposition 2.3. Let Y = [(An+2 \ {0})/G] be a fake weighted projective stack with coordinate
characters θ0, . . . , θn+1 and coarse moduli pair (Y,DY ). Let I ⊂ {0, . . . , n+ 1} be a subset of size
|I| = k and GI be the intersection

⋂
i∈I ker(θi). Then at any point p of the toric stratum UI ⊂ Y

where exactly the coordinates indexed by I are nonvanishing, Y has quotient singularity

1

GI

(θi|GI
: i /∈ I)× Ak−1.

Proof. Let q be a preimage of p in An+2. Precisely the coordinates of q indexed by I are
nonvanishing, so the stabilizer of q is the subgroup GI of G on which all coordinate char-
acters θi, i ∈ I are trivial. The stratum UI ⊂ Y is isomorphic to (C∗)k−1 and has the same
singularities at every point. The action ofGI on the coordinates not in I gives the quotient
singularity shown. □

When f is homogeneous of degree some character χ, it defines a hypersurface X in
Y ; indeed, let Cf := {f = 0} ⊂ An+2 be the affine cone of f and C∗

f := Cf \ {0} the
punctured affine cone. Then C∗

f is G-invariant, so there is a stack X = [C∗
f/G]. When C∗

f

is smooth, we say that X is a quasismooth hypersurface in Y . When X is quasismooth,
it is a smooth Deligne-Mumford stack. We’ll only deal with quasismooth hypersurfaces
in this paper, and we’ll furthermore assume that C∗

f is not a linear cone, i.e., f does not
contain the monomial xi for any i. This has the particular consequence that C∗

f is not
contained in any coordinate hyperplane of An+2, and so X = [C∗

f/G] has trivial generic
stabilizer. It therefore makes sense to define the minimal log discrepancy of X as the mld
of the associated pair (X,D), where X ⊂ Y (Σ) is the coarse moduli space of X and, as
usual, D has coefficient 1 − 1

b
on the image of a prime divisor where the subgroup of G

acting trivially is of order b.

We’ll use the following criterion for quasismoothness in linear systems, which is a gen-
eralization of a very similar statement due to Iano-Fletcher [15, Theorem 8.1]:

Proposition 2.4. Let Y = [(An+2 \ {0})/G] be a fake weighted projective stack and T be a set
of monomials which are homogeneous of degree χ, where χ is not a coordinate character. Then
a general linear combination of monomials in T defines a quasismooth hypersurface X ⊂ Y if
and only if for every nonempty set I = {i1, . . . , ik} ⊂ {0, . . . , n + 1}, one of the following two
conditions holds:

a. there exists a monomial in T of the form xm1
i1

· · ·xmk
ik

(for some nonnegative m1, . . . ,mk),
or

b. there is another subset J = {j1, . . . , jk} ⊂ {0, . . . , n + 1} of size k disjoint from I such
that for each µ = 1, . . . , k, there exists a monomial in T of the form x

m1,µ

i1
· · ·xmk,µ

ik
xjµ (for

some nonnegative m1,µ, . . . ,mk,µ).

Proof. For completeness, we’ll include the proof, which proceeds along the same lines as
Iano-Fletcher’s. Denote by L the linear system of punctured affine cones C∗

f ⊂ An+2 \ {0}
of linear combinations f of monomials in T . By Bertini’s theorem, a general member
of L is smooth away from the base locus Bs(L), which is a union of coordinate strata.
Therefore, it will suffice to check smoothness at points in the base locus.
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Given a stratumWI of dimension k, we may renumber indices so that I = {0, . . . , k−1}.
If condition (a) holds for I , then there is some monomial in T containing only the variables
x0, . . . , xk−1, so in particular a general f is nonvanishing at any given point p ∈ WI . We’ve
shown WI ∩ Bs(L) = ∅ so a general f intersects WI transversely and is smooth along this
intersection.

In the event that (a) does not hold for I , we have WI ⊂ Bs(L), but condition (b) must
hold. Then we may expand f as

f =
n+1∑
i=k

xigi(x0, . . . , xk−1) + h,

where monomials in h have total exponent of at least 2 in the variables xk, . . . , xn+1 (here
we’ve used that there are no monomials in T using only the first k variables). The partial
derivatives of f with respect to x0, . . . , xk−1 vanish on WI , but by condition (b), at least
k of the remaining partial derivatives gi are not identically zero on WI . Hence the locus
in WI where the general f is singular is the intersection of the base loci of k free linear
systems on An+2 with WI ; this intersection has dimension at most 0. Since this locus is
also G-invariant, it is empty. Hence the general C∗

f is smooth on WI .

Conversely, if both conditions fail, then no linear combination of monomials in T de-
fines a quasismooth hypersurface. Indeed, using the same expansion for f above with
respect to an I for which (a) and (b) fail, there are fewer than k nonvanishing gi in the
sum for general f . The intersection Z :=

⋂n+1
i=k {gi = 0} ∩WI ⊂ WI then has dimension

at least 1. It follows that all derivatives of f vanish on Z for any linear combination f of
monomials in T , so C∗

f is singular on the nonempty set Z. □

As above, let T be a set of monomials of degree χ and let L be the linear system spanned
by T . When the general member of L is quasismooth, then we can describe the singulari-
ties of X very explicitly (cf. [11, Proposition 2.6]):

Proposition 2.5. Let Y = [(An+2 \ {0})/G] be a fake weighted projective stack and T be a set of
monomials of degree χ spanning a linear system L. Suppose that the general hypersurface X in
L (with coarse moduli space X) is quasismooth. Let p ∈ X be a closed point of the toric stratum
UI ⊂ Y for |I| = k and let GI =

⋂
i∈I ker(θi). Then,

(1) If UI is not in the base locus of L, then X has a quotient singularity of type 1
GI

(θi|GI
: i /∈

I)× Ak−2 at p.
(2) If UI is in the base locus of L, then there exists a J ⊂ {0, . . . , n + 1} satisfying the

conditions of Proposition 2.4(b), and in particular, an index j ∈ J . Then X has a quotient
singularity of type 1

GI
(θi|GI

: i /∈ I, i ̸= j)× Ak−1 at p.

Proof. In both cases, the quasismoothness condition guarantees that X is locally given by
a coordinate hyperplane slice through p in Y . The resulting singularity will thus be the
same as the singularity in Y , with an appropriate weight removed. Indeed, let f be the
polynomial defining X . In case (1), C∗

f intersects the stratum WI transversely, so near a
preimage of p we can take it to have equation xi = 0 for some i ∈ I .
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In case (2), Proposition 2.4 guarantees that there is a set J of k indices so that the de-
rivative ∂f

∂xj
doesn’t vanish identically on WI for each j ∈ J . There must be some j ∈ J

such that the corresponding partial derivative does not vanish at a preimage of p, so we
can take the remaining coordinates as local coordinates of C∗

f by the inverse function
theorem. Therefore, the quotient singularity of X at p is the same as at Y with the jth co-
ordinate character removed. Furthermore, this singularity type is independent of which j
we choose: indeed, for every j ∈ J , by assumption θ−1

j χ is a product of nonnegative pow-
ers of the characters θi with i ∈ I . Upon restricting to GI , however, the latter characters
become trivial. Therefore, θj|GI

= χ|GI
for any j ∈ J , as expected. □

Remark 2.6. As a particular consequence of this lemma, for any fixed toric stratum UI ,
the hypersurface X has the same quotient singularity type at any intersection point with
UI . Further, the worst singularities with respect to minimal log discrepancy occur on the
smallest toric strata. Therefore, to compute the mld of X , it suffices to check singularities
(1) on toric 1-strata whose closures do not intersect Bs(L), and (2) at coordinate points
(0-dimensional strata) in the base locus of L.

2.3. Berglund-Hübsch-Krawitz Mirror Symmetry. Our main results on the minimal log
discrepancies of certain Calabi–Yau pairs will be phrased in terms of mirror symmetry.
This takes advantage of a construction of mirror pairs due to Berglund-Hübsch-Krawitz
(BHK) [3, 18]. We’ll review the BHK mirror symmetry construction in this section, but see
[2] for further details.

Let V := {f = 0} ⊂ P(a0, . . . , an+1) be a hypersurface of dimension n and weighted de-
gree d, which is well-formed and quasismooth. Under these assumptions, V is Calabi–Yau
if and only if d = a0+ · · ·+an+1. Suppose that the weighted homogeneous polynomial (or
potential) f defining the Calabi–Yau hypersurface X has the same number of monomials
as variables, namely n+ 2. Then we may write

f =
n+1∑
i=0

ci

n+1∏
j=0

x
aij
j .

The exponents aij determine an (n+2)×(n+2) matrixA. When this matrix is invertible, we
say that f is of Delsarte type (this terminology will only be used for polynomials defining
quasismooth Calabi-Yau hypersurfaces).

When f is of Delsarte type, it follows from [19, Theorem 1] that f can be written as a
sum of atomic potentials (up to coefficients). There are three sorts of atomic potentials [2,
Section 2.2]:

ffermat = xb,

floop = xb11 x2 + xb22 x3 + · · ·+ x
bk−1

k−1 xk + xbkk x1, and

fchain = xb11 x2 + xb22 x3 + · · ·+ x
bk−1

k−1 xk + xbkk .

The exponents bi in these equations are at least 2, or else the degree would be the sum
of just one or two weights, contradicting the fact that V is Calabi–Yau. It’s helpful to
visualize potentials of Delsarte type as directed graphs, where an index i points to j if
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5 3

1 7 2

4 6

FIGURE 1. The directed graph corresponding to a Delsarte potential func-
tion of shape f = xb11 x4+x

b2
2 +xb33 x6+x

b4
4 x7+x

b5
5 x1+x

b6
6 +xb77 x5. This potential

is composed of three atoms.

only if xbii xj is a monomial in f (see Figure 1). This directed graph has the property that
there is at most one arrow into and at most one arrow out of each node. The connected
components of the graph correspond to atomic potentials. In terms of the matrix A, the
index i points to an index j in the graph of the potential if and only if aij = 1.

From now on, suppose we’re working with a V defined by a potential of Delsarte type
with associated matrix A. By the classification of atomic potentials, A has nonnegative
integer entries, the diagonal entries are at least 2, and every row or column contains at
most one nonzero off-diagonal entry, which must be a 1. Without loss of generality, we
can ignore the coefficients ci in f and take them to be general nonzero constants. This is
because any two members of the linear system generated by the monomials

∏n+1
j=0 x

aij
j , i =

0, . . . , n+ 1, are isomorphic after multiplying by some element of the torus.

The matrices corresponding to the atomic potentials floop and fchain above are

Aloop =


b1 1

b2 1
. . . . . .

bk−1 1
1 bk

 and Achain =


b1 1

b2 1
. . . . . .

bk−1 1
bk

 ,

respectively. We’ll need the form of the inverses of these two types of matrices later, which
may be readily computed via a cofactor expansion:

Lemma 2.7. Let Aloop and Achain be the matrices above. Then

A−1
loop =

1

b1 · · · bk + (−1)k−1


b2 · · · bk −b3 · · · bk · · · (−1)k−2bk (−1)k−1

(−1)k−1 b3 · · · bkb1 · · · (−1)k−3bkb1 (−1)k−2b1
...

...
...

...
...

b2 · · · bk−2 · · · (−1)k−1 bkb1 · · · bk−2 −b1 · · · bk−2

−b2 · · · bk−1 · · · (−1)k−2bk−1 (−1)k−1 b1 · · · bk−1


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and A−1
chain =

1

b1 · · · bk


b2 · · · bk −b3 · · · bk · · · (−1)k−2bk (−1)k−1

0 b3 · · · bkb1 · · · (−1)k−3bkb1 (−1)k−2b1
... . . . . . . ...

...
0 · · · 0 bkb1 · · · bk−2 −b1 · · · bk−2

0 · · · 0 0 b1 · · · bk−1

 .

Define the charge qi to be the sum of the entries of the ith row of A−1. Then the degree
d of X is the least common denominator of the charges, and the weights satisfy ai = qid
[2, Section 2.2]. The transpose of A defines a new potential fT. The mirror charge qTi is
defined analogously as the sum of the entries of the ith column of A−1. Then fT defines
a Calabi–Yau hypersurface XT with degree dT equal to the least common denominator of
the qTi in the weighted projective space P(aT0 , . . . , aTn+1), where aTi = dTqTi . We’ll refer to dT

and aT0 , . . . , a
T
n+1 as the mirror degree and mirror weights, respectively.

Let Aut(f) be the group of diagonal automorphisms of Cn+2 which preserve the po-
tential f . This is a finite group and is generated by the columns of A−1, where a column
(c0, . . . , cn+1)

T is interpreted as the diagonal automorphism diag(e2πic0 , . . . , e2πicn+1) [2, Sec-
tion 3]. The action of the group Aut(f) descends to X via the surjective homomorphism
π : Aut(f) → AutT (V ), where AutT (V ) denotes the group of toric automorphisms of the
weighted projective hypersurface V . Let Jf := ker(π) and SL(f) := Aut(f)∩SLn+2(C). To
any group Jf ⊂ Gf ⊂ SL(f), one can associate a group GT

f satisfying JfT ⊂ GT
f ⊂ SL(fT).

The details of how to define this group won’t be needed here. Set G̃f := Gf/Jf ⊂ AutT (V )

and G̃T
f := GT

f /JfT ⊂ AutT (V
T).

We can now state the main theorem of BHK mirror symmetry ([2, Theorem 2.3]):

Theorem 2.8. The Calabi–Yau orbifolds [V/G̃f ] and [V T/G̃T
f ] form a mirror pair, in the sense

that
Hp,q

CR([V/G̃f ],C) ∼= Hn−p,q
CR ([V T/G̃T

f ],C),
where Hp,q

CR(−,C) denotes Chen-Ruan orbifold cohomology [9].

3. MINIMAL LOG DISCREPANCIES OF HYPERSURFACE QUOTIENTS

In this section, we’ll compute the minimal log discrepancies of certain klt Calabi–Yau
pairs with standard coefficients which are quotients of hypersurfaces in weighted projec-
tive space. It is conjectured that examples of this type achieve the smallest possible mld in
each dimension, along with other extreme properties [12, Conjectures 3.2, 3.4, 7.10]; these
conjectures are known to be true in low dimensions. Our main result gives a connection
between the mld’s of these quotients and mirror symmetry:

Theorem 3.1. Let Vd ⊂ P(a0, . . . , an+1) be a well-formed quasismooth Calabi–Yau hypersurface
defined by a polynomial of Delsarte type and AutT (V ) the group of toric automorphisms of V .
Then, the minimal log discrepancy of the quotient pair V/AutT (V ) is

mld(V/AutT (V )) =
min{aT0 , . . . , aTn+1}

dT
.
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Proof. Let f be the Delsarte-type equation defining the Calabi–Yau hypersurface V . We
may assume that f has general coefficients, since any two quasismooth members of the
linear system spanned by the monomials of f differ by an automorphism of the torus. Let
L be the linear system generated by monomials in f . Following the notation of Section 2.3,
let A be the (n+ 2)× (n+ 2) matrix determined by the exponents in f .

Since AutT (V ) is a finite subgroup of the torus, we may view V/AutT (V ) as a hypersur-
face X := {f = 0} inside the fake weighted projective stack Y := [P(a0, . . . , an+1)/AutT (V )] ∼=
[(An+2 \ {0})/G]. Here G is the subgroup of the torus (C∗)n+2 ⊂ An+2 generated by the
two smaller subgroups C∗ = {(ta0 , ta1 , . . . , tan+1) : t ∈ C∗} and Aut(f). We can now study
the singularities of the hypersurface X using toric geometry and the results of Section 2.2.
We’ll use (X,D) to denote the pair associated to the stack X .

To understand the quotient morphism An+2 \ {0} → Y of stacks from the standpoint of
toric geometry, begin with the cone in the lattice Zn+2 generated by standard basis vectors
e0, . . . , en+1. The fan consisting of this cone and all its subcones is the fan of the toric vari-
ety An+2. The subvariety An+2\{0} ⊂ An+2 corresponds to the subfan with the unique top-
dimensional cone removed. In Section 2.3, we saw that the finite group Aut(f) ⊂ (C∗)n+2

of automorphisms of the potential f is generated by the columns v0, . . . , vn+1 ofA−1. LetN
be the superlattice of Zn+2 generated by the column vectors v0, . . . , vn+1. Then the datum
for the fake weighted projective stack Y = Y(Σ) is the triple Σ = (N ′,Σ, {ē0, . . . , ēn+1}),
where N ′ = N/(N ∩ spanR{(a0, . . . , an+1)}), Σ is the fan spanned by the image of the coor-
dinate simplex conv(e0, . . . , en+1) under the quotient NR → N ′

R, and the ēi are the images
of the basis vectors ei. The fan Σ in N ′ also defines the coarse moduli space Y of Y as an
ordinary toric variety.

Since X is a quasismooth hypersurface in Y , the singularities of X will be suitable
hyperplane slices of the quotient singularities of Y . By Proposition 2.5 and Remark 2.6,
we only need to check the singularities of X on two types of toric strata to compute the
mld of X : the 1-dimensional strata for which neither neighboring coordinate point is
contained in the base locus of L, and the 0-dimensional strata (coordinate points) which
are in the base locus of L. We’ll consider these two cases separately. The key idea of the
proof is that the images of the lattice points vi ∈ Zn+2 will always “be responsible for” the
smallest log discrepancy that occurs.

Case 1: Suppose that ℓ ∼= C∗ is an open 1-stratum of Y whose closure does not intersect
the base locus of L. If the coordinates of the stratum are xi and xj , this is the same as
saying that in the graph of the corresponding Delsarte equation, neither i nor j “points”
at any other index. For instance, in the example of Figure 1, the 1-stratum where only x2
and x6 are nonzero satisfies this condition.

Up to rearranging indices, we may assume that ℓ ⊂ Y is the locus where only the coor-
dinates xn and xn+1 are nonzero. The cone in Σ corresponding to this 1-stratum is spanned
by ē0, . . . , ēn−1 and it is an n-dimensional cone in the (n + 1)-dimensional vector space
N ′

R. We claim that spanR{v̄0, . . . , v̄n−1} = spanR{ē0, . . . , ēn−1} and that cone{ē0, . . . , ēn−1} ⊂
cone{v̄0, . . . , v̄n−1}. (As the notation suggests, we’re using v̄i to mean the images of the
columns vi of A−1 in N ′.) To prove this, we use that the vectors ē0, . . . , ēn−1 are lin-
early independent in N ′

R and each of ē0, . . . , ēn−1 is a nonnegative Z-linear combination of
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v̄0, . . . , v̄n−1, via the following matrix equation:

(3) [e0 · · · en+1] = In+2 = A−1A = [v0 · · · vn+1]A.

Expanding out the last product gives each standard basis vector as a nonnegative integer
linear combination of columns v0, . . . , vn+1. Moreover, the coefficient of vi in the com-
bination for ej is aij . The last two rows of A have entries only on the diagonal by the
assumption that neither n nor n + 1 points to any other index. Therefore, vn and vn+1

each have coefficient zero in the linear combination describing each of e0, . . . , en−1. This
completes the proof of the claim above.

We may add on either v̄n or v̄n+1 to the set {v̄0, . . . , v̄n−1} to obtain a complete basis for
the lattice N ′ (either will suffice since v̄0 + · · ·+ v̄n+1 = 0). Putting all this together, we’ve
now described the singularities of Y on ℓ as Q × A1, where Q is the affine quotient sin-
gularity defined by the cone{ē0, . . . , ēn−1} in the sublattice K ⊂ N ′ with basis v̄0, . . . , v̄n−1

and the extra A1 direction is given by the inclusion K ⊂ N ′. By Proposition 2.5(1), the
singularity of X at any intersection point with ℓ is simply Q.

The log discrepancy function for the affine singularity Q is a linear function on N ′
R

which must be equal to 1 at each of the distinguished points ē0, . . . , ēn−1 on the respec-
tive rays. This means that it lifts to some linear functional on the original space Rn+2

with value 1 at each of e0, . . . , en−1. So if p ∈ Rn+2 is any (real) linear combination of
e0, . . . , en−1, the log discrepancy function evaluated at the image of p in N ′

R equals the
sum of coordinates of p in Rn+2 with the standard basis. By our work above, this applies
in particular to any linear combination of v0, . . . , vn−1. Since the only lattice points in N ′

inside cone{ē0, . . . , ēn−1} are nonnegative integer combinations of v̄0, . . . , v̄n−1, the log dis-
crepancy of any divisor on a log resolution ofQmust be a nonnegative linear combination
of the sums of coordinates of the vi. But sums of columns of A−1 are simply the mirror
charges qTi . We conclude that the log discrepancy of any divisor in a log resolution of the
singularity Q equals some nonnegative linear combination of the mirror charges.

Case 2: Suppose that p is a 0-dimensional stratum of Y contained in the base locus of
L. This means that in the graph of the Delsarte equation, the corresponding index points
to some other one. For instance, in the example of Figure 1, the coordinate points of
x1, x3, x4, x5, and x7 all satisfy this condition.

Up to rearranging indices, we’ll suppose that p is the coordinate point of xn and that n
points to n + 1. This is the same thing as saying there is a monomial of the form xbnn xn+1

in f . By the classification of Delsarte potentials, n can only point at n + 1, so X is de-
fined in an étale neighborhood of p by the equation xn+1 = 0. In the language of toric
geometry, the affine quotient singularity Q of Y at p is the toric variety associated to the
top-dimensional cone cone{ē0, . . . , ēn−1, ēn+1} in the fan of Y . By the discussion above
(and in agreement with Proposition 2.5(2)), the singularity of X at p is the hyperplane
slice xn+1 = 0 of Q. This slice is another affine quotient singularity Q′, which as a toric
Deligne-Mumford stack corresponds to the datum (P, cone{f0, . . . , fn−1}, {f0, . . . , fn−1}).
To avoid cumbersome notation, we’ve used P to represent the quotient lattice N/(N ∩
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spanR{(a0, . . . , an+1), en+1}). (Here we’ve taken the quotient by en+1 to represent the hy-
perplane slice xn+1 = 0.) The point fi is the image in P of ei. Similarly, we’ll let wi be the
image of vi in P .

Since v0 + · · · + vn+1 = (q0, . . . , qn+1) ∈ spanR{a0, . . . , an+1} and vn + bn+1vn+1 = en+1

(using the existence of the monomial xbnn xn+1 in f and (3)), we have after the quotient that
w0 + · · · + wn+1 = wn + bn+1wn+1 = 0. Solving these equations gives that wn is a Z-linear
combination of the remaining vectors and

wn+1 =
1

bn+1 − 1
(w0 + · · ·+ wn−1).

Therefore, w0, . . . , wn−1 span PR as a vector space, but we might also have to add wn+1

to get a full generating set for the lattice P (if bn+1 ≥ 3). In any case, the equation above
showswn+1 ∈ cone{w0, . . . , wn−1}. We also claim that cone{f0, . . . , fn−1} ⊂ cone{w0, . . . , wn−1}.
Indeed, using (3) again, each ei is a linear combination of at most two of the columns of
A−1, and the only basis vectors which require vn in the combination are en and en+1. Thus,
f0, . . . , fn−1 are nonnegative Z-linear combinations of w0, . . . , wn−1, wn+1, and we’ve al-
ready shown that wn+1 is in the cone generated by the others.

It follows that any lattice point x in P∩cone{f0, . . . , fn−1} is expressible as a nonnegative
Z-linear combination of w0, . . . , wn−1, wn+1. To see this, let x = γ0w0 + . . . + γn−1wn−1

be the expression for x in terms of the R-basis {w0, . . . , wn−1}. Because of the inclusion
cone{f0, . . . , fn−1} ⊂ cone{w0, . . . , wn−1}, all γi are nonnegative. If they are not integers,
they all have identical fractional part which is some multiple of 1

bn+1−1
, say s

bn+1−1
, because

of our formula for wn+1. Thus,

x = ⌊γ0⌋w0 + · · · ⌊γn−1⌋wn−1 + swn+1

expresses x as a nonnegative Z-linear combination, as required. We’ll need the following
fact about the special point wn+1 later:

Lemma 3.2. wn+1 ∈ cone{f0, . . . , fn−1}.

Proof. In order to prove that wn+1 is in cone{f0, . . . , fn−1}, we’ll show that the coordinate
functional associated to each coordinate fi in the basis {f0, . . . , fn−1} of PR is positive at
wn+1. It’s easier to view these as induced by linear functionals on the original space Rn+2

of which PR is a quotient.

Indeed, for each i = 0, . . . , n − 1, let πi : Rn+2 → R be the unique linear functional de-
scending to the coordinate functional for fi on PR. As above, e0, . . . , en+1 are the standard
basis vectors for Rn+2. Then πi is determined by the conditions: πi(ei) = 1, πi(ej) = 0 for
j ̸= i and j ̸= n, and πi(a) = 0, where a = (a0, . . . , an+1) is the vector of weights. We can
use these conditions to determine the value of πi on the final basis vector en:

πi(en) = −πi
(

1

an
(a0e0 + · · ·+ an−1en−1 + an+1en+1)

)
= − ai

an
.

We can conclude that for a vector r = (r0, . . . , rn+1) ∈ Rn+2, πi(r) ≥ 0 if and only if
ri − ai

an
rn ≥ 0, or in other words, ri ≥ ai

an
rn. To complete the proof of the lemma, we need
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to verify this inequality for r = vn+1 specifically, since this vector maps to wn+1 under the
quotient Rn+2 → PR.

We know that n points to n+1 and that both are part of an atom which is either a chain
or a loop potential. The entry rn of vn+1 that we’re interested in corresponds to a super-
diagonal element of one of the matrix inverses in Lemma 2.7; therefore, rn is negative. It
follows that if the index i is part of a distinct atom from n and n + 1 (so that ri = 0), the
required inequality is automatically satisfied. We can then reduce to the case of looking
at only loop or chain atoms.

The required inequality in these two special cases follows directly from Lemma 2.7;
we’ll switch to using the notation of that lemma to discuss the various column entries. In
the loop case, this means that we’ll look at the last column vk = (r1, . . . , rk) of the matrix
A−1

loop in Lemma 2.7 and try to prove ri ≥ ai
ak−1

rk−1 for i = 1, . . . , k − 2. The easiest way
to see this is to observe that, modulo Z, the ith row of A−1

loop is simply the previous row
times −bi−1 for each i. Therefore, the same fact holds true for the entries of the vector
which is the sum of the columns, namely the charge vector q = (a1/d, . . . , ak/d). We
can observe that the (k − 1)-entry rk−1 of the kth column of A−1

loop, namely −b1 · · · bk−2, is
(−1)k−i−1bi · · · bk−2 times the ith entry ri of the same column for all i = 1, . . . , k − 2. Since
the charge vector has a similar property modulo Z, (−1)k−i−1bi · · · bk−2ai ≡ ak−1 (mod d).
If (−1)k−i−1bi · · · bk−2 is negative, the ith entry is positive and the required inequality will
hold automatically, while if (−1)k−i−1bi · · · bk−2 is positive, bi · · · bk−2 is at least as large
as ak−1/ai, since all weights are between 0 and d and aibi · · · bk−2 ≡ ak−1 (mod d) by the
discussion above. This finishes the proof of the required inequalities.

The argument for the chain potential case is very similar, because A−1
chain has nearly

the same properties as A−1
loop. Indeed, above the main diagonal, consecutive rows have the

same relation as inA−1
loop, and the same argument works. Below the main diagonal, entries

of the column of interest might be zero, but the inequality again holds automatically in
this case. □

Finally, we need to compute the log discrepancy function for the singularity Q′:

Lemma 3.3. The log discrepancy function ψ for Q′ has value qTi on wi for i = 0, . . . , n− 1, n+1.

Proof. The singularity Q′ is affine, so the log discrepancy function ψ is simply the unique
linear functional on PR with the property that it has value 1 on each of the vectors f0, . . . , fn−1.
We’ll proceed in much the same way as the previous lemma by doing our calculations on
Rn+2; the linear functional ψ on the quotient vector space PR is induced by a unique lin-
ear functional ψ̃ on Rn+2 with the property that ψ̃(e0) = · · · = ψ̃(en−1) = 1, ψ̃(a) = 0, and
ψ̃(en+1) = 0, where a = (a0, . . . , an+1) is the vector of weights. We’re looking to compare
this to the “sum of coordinates” linear functional ϕ, which has a value of 1 at each of
e0, . . . , en+1. First, using ψ̃(a) = 0, we compute

ψ̃(en) = −ψ̃
(

1

an
(a0e0 + · · ·+ an−1en−1 + an+1en+1)

)
= −a0 + · · ·+ an−1

an
.
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For any point r = (r0, . . . , rn+1) ∈ Rn+2, the linear functionals ψ̃ and ϕ coincide on r if and
only if

r0 + · · ·+ rn+1 = r0 + · · ·+ rn−1 −
a0 + · · ·+ an−1

an
rn.

Simplifying this gives

rn+1 = −a0 + · · ·+ an−1 + an
an

rn = −d− an+1

an
rn = −bnrn,

where we’ve used that a0+· · ·+an+1 = d by the Calabi–Yau property of V and that xbnn xn+1

is a monomial of weighted degree d with these weights.

We’ll show that ϕ = ψ̃ holds for v0, . . . , vn−1, and vn+1 (and hence also for any linear
combinations of these). The criterion rn+1 = −bnrn only involves the last two coordinates
of r, so it is automatically satisfied for any vi with i not in the same atomic potential as n
or n+1 (since the relevant coordinates in the block diagonal matrix A−1 will both be zero
in that case).

Thus, it suffices to verify this condition for the relevant columns of the inverse matrix
A−1 where A is the matrix of an atomic loop or chain potential. Indeed, one can readily
check from Lemma 2.7 that the i+ 1, j entry of A−1 is −bi times the i, j entry, unless i = j.
This proves that rn+1 = −bnrn holds for every column vector except vn itself. Thus, for
i = 0, . . . , n − 1, n + 1, the value of ψ̃ on vi must equal the value of ϕ on vi, namely the
mirror charge qTi . This means ψ(wi) = ψ̃(vi) = qTi for the required values of i, completing
the proof. □

Since any point in P ∩ cone{f0, . . . , fn−1} is a nonnegative Z-linear combination of
w0, . . . , wn−1, wn+1, Lemma 3.3 shows that the log discrepancy of any divisor in a log res-
olution of the singularity Q′ is a nonnegative linear combination of the mirror charges.

In summary, the analysis in Cases (1) and (2) has shown that any log discrepancy of a
divisor in a log resolution of the pair (X,D) must be a nonnegative linear combination of
mirror charges qTi . Since (X,D) is the pair associated to V/AutT (V ), we’ve shown

mld(V/AutT (V )) ≥ min{qT0 , . . . , qTn+1}.

To demonstrate equality, the last step is to show that the smallest mirror charge actually
appears as a log discrepancy of some divisor over (X,D). This will follow quickly from
the work we’ve done already. Indeed, suppose without loss of generality that qTn+1 is the
smallest mirror charge. If any index (assume it’s n) points to n+ 1, we saw in Lemma 3.2
that the image wn+1 of vn+1 is a lattice point in the cone of the singularity of X at the
coordinate point of xn. Therefore, we get a divisor of log discrepancy qTn+1 by Lemma 3.3.
Otherwise, no other index points to n + 1. Representing A as a block diagonal matrix
separated into atomic potentials, this means that the n + 1 column of A has only the
diagonal entry b, which is the top left corner of an upper triangular block inside A. It
follows that vn+1 = 1

b
en+1 and the subgroup of AutT (V ) acting as the identity on the

divisor {xn+1 = 0} has order b. In the coarse moduli pair (X,D), the divisor {xn+1 = 0} ⊂
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X must have coefficient 1− 1
b

in D. This divisor therefore has log discrepancy of

1−
(
1− 1

b

)
=

1

b
= qTn+1,

as required. □

4. APPLICATIONS

In this section, we use Theorem 3.1 to construct Calabi–Yau varieties or pairs with par-
ticularly extreme properties. We’ll first examine how the main theorem offers an alterna-
tive perspective on an example due to Jihao Liu [20, Remark 2.6] of a klt Calabi–Yau pair
with standard coefficients and small mld. Later in the section, we’ll construct examples
of klt Calabi–Yau varieties (rather than pairs) with conjecturally minimal mld.

Liu’s example is closely related to another by Kollár of a klt pair with standard coeffi-
cients such that KX +D is ample and has very small volume (see [16], [14, Introduction]).
The Calabi–Yau pair is defined as follows:

(X,D) =

(
Pn,

1

2
H0 +

2

3
H1 + · · ·+ sn − 1

sn
Hn +

sn+1 − 2

sn+1 − 1
Hn+1

)
.

Here H0, . . . , Hn+1 are general hyperplanes in Pn, and the si denote Sylvester’s sequence.
This sequence begins s0 = 2 and is defined by sm = s0 · · · sm−1 + 1 for all m ≥ 1. The se-
quence grows doubly exponentially and its terms are pairwise relatively prime; the first
few terms are 2, 3, 7, 43, 1807, . . .. It’s clear that (X,D) is klt, since it is its own log reso-
lution. It also has standard coefficients, KX + D ∼Q 0, and the smallest log discrepancy
comes from the divisor Hn+1, so mld(X,D) = 1/(sn+1 − 1). It is conjectured [12, Conjec-
ture 3.2] that this is the smallest possible mld for any Calabi–Yau klt pair with standard
coefficients and dimension n. This conjecture is proven in dimensions at most 2 (see [12,
Proposition 6.8]).

The pair (X,D) above has another interpretation as a quotient of the hypersurface V ⊂
Pn+1(d/s0, d/s1, . . . , d/sn, 1) of degree d = sn+1 − 1 defined by the Fermat-type potential
equation

f := x20 + x31 + · · ·+ xsnn + x
sn+1−1
n+1 = 0.

The automorphism group of the potential f is isomorphic to µ2 ⊕ µ3 ⊕ · · · ⊕ µsn ⊕ µsn+1−1,
where the ith summand acts on xi by multiplication by the corresponding root of unity
and fixes all other variables. The toric automorphism group AutT (V ) is the quotient of
this group by the action of the subgroup C∗ ∩ Aut(f) ∼= µsn+1−1. We have AutT (V ) ∼=
µsn+1−1, generated by

ζ · (x0 : x1 : · · · : xn : xn+1) = (ζd/s0x0 : ζ
d/s1x1 : · · · : ζd/snxn : xn+1),

where ζ ∈ µsn+1−1. There is an isomorphism of varieties V/AutT (V ) ∼= Pn given by

(x0 : x1 : · · · : xn : xn+1) 7→ (x20 : x
3
1 : · · · : xsnn : x

sn+1−1
n+1 ),

which identifies V/AutT (V ) with the hyperplane y0+ y1+ · · ·+ yn+ yn+1 = 0 in Pn+1. This
hyperplane is, of course, isomorphic to Pn. The pair structure on the quotient is precisely
Liu’s pair above.
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Theorem 3.1 reproduces the same value for the mld of this pair. Indeed, the mirror
weights and degree of V equal the original weights and degree since f is Fermat (and so
the corresponding matrix A from Section 2.3 is diagonal). The smallest mirror weight is
therefore 1, so the mld of V/AutT (V ) is 1/(sn+1 − 1), as expected.

Next, we construct klt Calabi–Yau varieties (rather than pairs) with very small mld.
The construction shares some similarities with the large index Calabi–Yau example due to
Totaro, Wang, and the author [12, Section 7]. The intricate identities relating the constants
defining both of these examples are worked out fully in [10]. Therefore, we only define
the examples below and sketch proofs of their properties. The key idea is to begin with
a loop potential (resp. a potential of the form x20 + [loop]), so that the action of the toric
automorphism group (resp. an index 2 subgroup of the toric automorphism group) acts
freely in codimension 1. After taking the quotient, we then obtain a variety, rather than a
pair. The example will be defined recursively using Sylvester’s sequence. The formulas
are rather complicated, but we write down explicit examples for n = 2, 3, 4 at the end of
this section.

For brevity, given integers bi1 , . . . , bik , we introduce the symbol Bi1,...,ik for the alternat-
ing sum bi1bi2 · · · bik − bi1 · · · bik−1

+ · · ·+ (−1)k−1bi1 + (−1)k.

Definition 4.1. For n = 2r + 1, r ≥ 1 or n = 2r, r ≥ 1, we’ll define integers b0, . . . , bn, vn as
follows. When 0 ≤ i ≤ r, define bi := si. Then, define the remaining bi inductively via the
formulas

br+i := 1 + (br+1−i − 1)2Br+1,r,r+2,r−1,...,r+i−1,r−i+2

for 1 ≤ i ≤ r + 1 when n = 2r + 1 or 1 ≤ i ≤ r when n = 2r.

For n = 2r + 1, r ≥ 1, define an integer v2r+1 by:

v2r+1 := Br+1,r,r+2,r−1,...,2r+1,0 −Br,r+2,r−1,...,2r+1,0 + · · · −B0.

For n = 2r, r ≥ 1, define an integer v2r by:

v2r := 2(Br+1,r,r+2,r−1,...,2r,1 −Br,r+2,r−1,...,2r,1 + · · · −B1) + 1.

Note that a B with empty subscript is considered to be 1, so br+1 = 1 + (br − 1)2.
These formulas define the exponents of the equation for our hypersurface example. The
equations have the following form. When n = 2r + 1 for r ≥ 1, let the hypersurface V
have equation

(4) xb00 x2r+2+x
b1
1 x2r+1+ · · ·+xbrr xr+2+x

br+1

r+1 xr+x
br+2

r+2 xr−1+ · · ·+xb2r+1

2r+1 x0+x
v2r+1

2r+2 xr+1 = 0.

The potential defining this hypersurface is atomic of loop type. Similarly, when n = 2r
for r ≥ 1, let V have equation given by

(5) xb00 +xb11 x2r+1+x
b2
2 x2r+ · · ·+xbrr xr+2+x

br+1

r+1 xr+x
br+2

r+2 xr−1+ · · ·+xb2r2r x1+x
v2r
2r+1xr+1 = 0.

The potential in this case is of the form x20 + [loop].

The weights a0, . . . , an+1 and degree D of the hypersurface V ⊂ Pn+1(a0, . . . , an+1) are
uniquely determined by the equations above, once we require that gcd(a0, . . . , an+1) = 1,
which is necessary for the weighted projective space to be well-formed. The form of the
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equations guarantees that (4) and (5) define quasismooth hypersurfaces of each dimen-
sion n. If n = 2r + 1 is odd, the toric automorphism group G := AutT (V ) acts freely in
codimension 1 on V because it is defined by a loop potential [12, Proposition 7.2]. There-
fore, the quotient V/G is a variety, rather than a pair.

When n = 2r is even, the hypersurface V is not defined by a loop potential. Instead of
taking the quotient of V by AutT (V ), we instead consider V/G, where G is now the index
2 subgroup of AutT (V ) corresponding to the loop atom. Using the same reasoning as in
[12, Proposition 7.2], one can check that G acts freely in codimension 1 on V . On its own,
Theorem 3.1 does not say anything about V/G since G is not the full toric automorphism
group of V . However, given that V/AutT (V ) ∼= (V/G)/µ2, one can deduce in this case that
the mld of V/G is twice that of its quotient.

We define the additional constants:

Definition 4.2.

D :=

{
D2r+1 = Br+1,r,r+2,r−1,...,2r+1,0 if n = 2r + 1,

D2r = 2Br+1,r,r+2,r−1,...,2r,1 if n = 2r.

m :=

{
m2r+1 = B0,2r+1,1,2r,...,r,r+1 if n = 2r + 1,

m2r = B1,2r,2,2r−1,...,r,r+1 if n = 2r.

The properties of the klt variety example are summarized in the following theorem.

Theorem 4.3. [10, Theorem 5.1] In each dimension n ≥ 2, the hypersurface V defined above
is well-formed, Calabi-Yau and quasismooth of degree D. The hypersurface V carries an action of
the cyclic group µm such that V/µm is a complex klt Calabi–Yau variety with mld 1/m. This mld
is smaller than 1/22

n for each n > 2.

The verifications of these properties are carried out fully in [10], but the key point is
showing the identities [10, Proposition 4.1]

m2r+1D2r+1 − 1 = b0 · · · b2r+1v2r+1,

m2rD2r − 1 = b1 · · · b2rv2r.
(6)

For instance, when n = 2r + 1, the determinant of the loop matrix associated to the
potential equation (4) is b0 · · · b2r+1v2r+1+1. One can use (6) to prove the degree of V is D,
the smallest weight is an+1 = 1, and the smallest mirror charge is equal to 1/m. The value
of the mld is then a consequence of Theorem 3.1. The situation for even n is similar.

The value 1/m of the mld decays doubly exponentially with dimension and is ex-
tremely close to that of the conjecturally optimal klt pair mentioned earlier in the section.
Indeed, the mld value for varieties is within a constant factor of less than 6 of the value for
pairs when n is even, and less than 23 when n is odd [10, Lemma 8.1]. This is compelling
evidence for the conjecture that this example is optimal for klt varieties:

Conjecture 4.4. For every n ≥ 2, the quotient V/G defined above has the smallest mld of any klt
Calabi–Yau variety of dimension n.
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This conjecture is also supported by additional evidence in small dimensions. Indeed,
in dimension 2, V is the degree 22 hypersurface

{x20 + x31x3 + x1x
5
2 + x2x

19
3 = 0} ⊂ P3(11, 7, 3, 1).

The group G of order 13 acts freely in codimension 1 on V , and the quotient variety V/G
has mld 1

13
. This is the smallest possible for any klt Calabi–Yau surface by [12, Proposition

6.1]. Note that the mld of the quotient V/AutT (V ) by the full toric automorphism group,
of order 26, has mld 1

26
, as predicted by Theorem 3.1, since the mirror hypersurface to V

has degree 26 in P(13, 7, 5, 1). However, that quotient is a pair, rather than a variety.

In dimension 3, V is the degree 191 hypersurface

{x20x4 + x31x3 + x1x
5
2 + x0x

12
3 + x2x

165
4 = 0} ⊂ P4(95, 61, 26, 8, 1).

The group G of order 311 acts freely in codimension 1 on V , and Theorem 3.1 shows that
the quotient variety V/G is a klt Calabi–Yau 3-fold with mld 1

311
. In dimension 4, V is the

degree 925594 hypersurface

{x20+x31x5+x72x4+x2x373 +x1x
893
4 +x3x

904149
5 = 0} ⊂ P5(462797, 308531, 132129, 21445, 691, 1).

The group G of order 677785 acts freely in codimension 1 on V , and Theorem 3.1 shows
that the quotient variety V/G is a klt Calabi–Yau 4-fold with mld 1

677785
. For each of these

computations, applying Theorem 3.1 is a much simpler way of computing the mld than
analyzing all the quotient singularities of V/G individually.

In dimensions 3 and 4, our examples have the smallest mld of any possible examples of
this type. That is, they are optimal among all klt Calabi–Yau varieties arising as quotients
by toric automorphisms of quasismooth hypersurfaces in weighted projective space de-
fined by Delsarte potentials. This was verified by computer search, using the databases
of Calabi–Yau 3-fold and 4-fold hypersurfaces in [7].

REFERENCES

[1] F. Ambro, The set of toric minimal log discrepancies. Cent. Eur. J. Math. 4 (2006), no. 3, 358–370. 5
[2] M. Artebani, S. Boissière, and A. Sarti. The Berglund-Hübsch-Chiodo-Ruan mirror symmetry for K3
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