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ABSTRACT. We prove several results concerning automorphism groups of quasismooth
complex weighted projective hypersurfaces; these generalize and strengthen existing re-
sults for hypersurfaces in ordinary projective space. First, we prove in most cases that
automorphisms extend to the ambient weighted projective space. We next provide a char-
acterization of when the linear automorphism group is finite and find an explicit uniform
upper bound on the size of this group. Finally, we describe the automorphisms of a generic
quasismooth hypersurface with given weights and degree.

1. INTRODUCTION

Hypersurfaces in projective space are among the most well-studied varieties. In partic-
ular, a great deal is known about their automorphism groups, due to landmark theorems
of Grothendieck-Lefschetz [16], Matsumura-Monsky [30], and others. In this paper, we
generalize and strengthen several of these results to hypersurfaces in any weighted pro-
jective space over C.

Given a collection of positive integers a0, . . . , an+1, the weighted projective space P :=
P(a0, . . . , an+1) is defined to be the projective quotient variety (An+2 \ {0})/Gm. Here
the multiplicative group Gm acts by the formula t · (x0, . . . , xn+1) = (ta0x0, . . . , t

an+1xn+1).
When all weights ai are equal to 1, we recover ordinary projective space Pn+1. Unlike
Pn+1, weighted projective spaces are usually singular.

Hypersurfaces in weighted projective space are an extremely useful class of algebraic
varieties. Indeed, many of their properties are determined combinatorially by the choice
of degree and weights, and they exhibit a large range of behavior. In particular, there is
significant evidence that weighted projective hypersurfaces are flexible enough to solve
a diverse range of optimization problems in algebraic geometry (see, for example, [14, 8,
13, 40]). It is therefore desirable to understand basic properties of their automorphism
groups.

The outline of the paper is as follows: in Section 1.1, we discuss the necessarily pre-
liminaries on the objects of study. In Section 2, we prove that all automorphisms of well-
formed quasismooth weighted projective hypersurfaces X ⊂ P extend to the ambient
weighted projective space if dim(X) ≥ 3 or dim(X) = 2 and X has non-trivial canoni-
cal class (Theorem 2.1). This generalizes the same statement for hypersurfaces in Pn+1,
which is a consequence of the Grothendieck-Lefschetz theorem. Some partial results in
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this direction have appeared in works of Przyjalkowski and Shramov [36, 37]. An auto-
morphism of X that extends to P is called linear.

We prove several results on the size of the linear automorphism group Lin(X) of a
well-formed quasismooth X in Section 3. In particular, we give an exact characteriza-
tion of when this group is finite in terms of the degree d and weights a0, . . . , an+1 of X
(Theorem 3.1). When it is finite, we prove that there is an upper bound

|Lin(X)| ≤ Cn
dn+1

a0 · · · an+1

,

where Cn depends only on the dimension n (Theorem 3.4). We give a procedure for ef-
fectively calculating a value Cn for which the inequality above holds using the Jordan
constants of general linear groups over C. We also compute the optimal value for C1.

Finally, in Section 4, we consider automorphisms of a very general quasismooth hyper-
surface X with a given degree and weights. We prove that when d ≥ 5max{a0, . . . , an+1},
the group Lin(X) is contained in the center of Aut(P) (Theorem 4.1). When P = Pn+1, the
center of Aut(Pn+1) = PGLn+2 is trivial, so we recover the usual statement that Lin(X) = 1
for X very general. However, this stronger statement is not always true for other choices
of weights and degree. We give several examples illustrating new phenomena that arise
for generic automorphisms of weighted projective hypersurfaces that don’t occur in ordi-
nary projective space.

Acknowledgements. The author was supported by NSF grant DMS-2054553. Thanks to
Alex Duncan, Victor Przyjalkowski, and Burt Totaro for useful conversations.

1.1. Background on Weighted Projective Hypersurfaces. Throughout the paper, we’ll
work over the complex numbers, though some of the statements below remain true over
other fields. For a complete introduction to weighted projective hypersurfaces, see [20].

We say that P is well-formed if the action of Gm on An+2 has trivial stabilizers in codimen-
sion 1. This holds exactly when gcd(a0, . . . , âi, . . . , an+1) = 1 for each i. Every weighted
projective space is isomorphic as a variety to a well-formed one, so we will only con-
sider well-formed spaces P. If S = C[x0, . . . , xn+1] is the graded polynomial ring with the
weight of each xi equal to ai, then Proj(S) ∼= P(a0, . . . , an+1). The space P is equipped
with a reflexive sheaf O(d) for every integer d ∈ Z from the Proj construction, which is
the sheaf associated to a Weil divisor of degree d. It is a line bundle if and only if d is
divisible by every weight ai.

Let f be a weighted homogeneous polynomial of degree d. Then f defines a hyper-
surface X = {f = 0} ⊂ P(a0, . . . , an+1) of dimension n. The affine cone CX over X is
the subvariety of An+2 defined by the same equation f , while the punctured affine cone is
C∗

X := CX \ {0}. A hypersurface X is quasismooth if the punctured affine cone is smooth,
and it is well-formed if P is well-formed and X∩Psing has codimension at least 2 in X . When
X is well-formed and quasismooth, the canonical divisor satisfies the adjunction formula
KX = OX(d− a0 − · · · − an+1). (A slightly weaker condition is used for well-formedness
of weighted complete intersections in [20], but the stronger condition used here is the one



AUTOMORPHISMS OF WEIGHTED PROJECTIVE HYPERSURFACES 3

that implies the adjunction formula, see [35]; in any case, the two definitions coincide for
hypersurfaces.)

Quasismooth hypersurfaces of degree d in P only exist for certain choices of weights
and degree, according to the following criterion, which holds in characteristic 0:

Proposition 1.1. [20, Theorem 8.1] There exists a quasismooth hypersurface X of degree d in
the weighted projective space P(a0, . . . , an+1) if and only if one of the following properties holds:

(1) ai = d for some i ∈ {0, . . . , n+ 1}, or
(2) for each nonempty subset I of {0, . . . , n+ 1}, either

(a) d is an N-linear combination of the weights ai for i ∈ I , or
(b) there are at least |I| indices j /∈ I such that d − aj is an N-linear combination of the

numbers ai with i ∈ I .

If (1) or (2) holds, then the general hypersurface of degree d is quasismooth.

Here, “N-linear combination” means a linear combination with nonnegative integer
coefficients. We’ll frequently use the following version of the proposition applied to sin-
gleton sets I = {i}:

Proposition 1.2. Suppose X = {f = 0} ⊂ P is a quasismooth hypersurface of degree d in P.
Then for each i = 0, . . . , n + 1, there exists a monomial of degree d with nonzero coefficient in f
having the form either (a) xk

i , or (b) xk
i xj for some j ̸= i.

Proof. If such a monomial does not exist for some i, then the function f and all its deriva-
tives would vanish at the coordinate point ei ∈ An+2, contradicting the smoothness of the
punctured affine cone C∗

X . □

As mentioned above, P(a0, . . . , an+1) = Proj(S), where S = C[x0, . . . , xn+1] is the graded
polynomial ring with variables of the given weights. We also use the notation Sm to
denote the mth graded piece of S. Any graded automorphism of S induces an auto-
morphism of weighted projective space; let Aut(S) denote the group of graded automor-
phisms. In fact, every automorphism of P comes from Aut(S). This is proven in [1, Section
8], but for completeness, we provide a proof here:

Lemma 1.3. Let P := P(a0, . . . , an+1) be a well-formed weighted projective space and S :=
C[x0, . . . , xn+1] the graded polynomial ring with the weight of xi equal to ai. Then the natu-
ral map Aut(S) → Aut(P) is surjective. The kernel is isomorphic to C∗, where the isomorphism
associates to any t ∈ C∗ the automorphism mapping xi 7→ taixi for each i.

Proof. Suppose that f : P → P is an automorphism. Pullback by f yields an isomorphism
of class groups f ∗ : Cl(P) → Cl(P). Since Cl(P) ∼= Z and ampleness of classes must be
preserved, f ∗O(1) = O(1). It follows that for every m we have an isomorphism f ∗ :
H0(P,O(m)) → H0(P,O(m)) and that these isomorphisms are compatible with tensor
product. Since H0(P,O(m)) is the mth graded piece of S, these assemble to a graded
isomorphism f ∗ : S → S, which induces the original f . It’s straightforward to check that
only maps of the form xi 7→ taixi for all i are in the kernel, and that every t ̸= 1 gives a
non-identity map S → S by well-formedness. □
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Given a fixed embedding of a weighted projective hypersurface X ⊂ P, we’ll define the
subgroup Lin(X) ⊂ Aut(X) of linear automorphisms to consist of those automorphisms of
X which extend to P (or, equivalently, to some graded automorphism of S). We retain the
terminology “linear” by analogy with ordinary projective space, but it’s important to note
that the images of the variables xi under a graded automorphism of S need not be linear
as polynomials. For example, if S = C[x0, x1, x2] and x0, x1, x2 have weights 4, 3, and 1,
respectively, we could define an element of Aut(S) by x0 7→ x0 + x1x2 − x4

2, x1 7→ 2x1 + x3
2,

x2 7→ −x2.

We’ll need the following fact about automorphisms of graded polynomial rings in Sec-
tions 3 and 4. We say that a group G ⊂ Aut(S) is diagonalizable if, after conjugating G by
an automorphism of S, each element of g sends each variable xi to some scalar multiple
of itself. Any such automorphism also sends an arbitrary monomial to a scalar multiple
of itself.

Lemma 1.4. Let S = C[x0, . . . , xn+1] be a weighted polynomial ring with weights a0, . . . , an+1

and Aut(S) the group of graded automorphisms. If G ⊂ Aut(S) is a finite abelian group, then G
is diagonalizable.

This is, of course, a generalization of the well-known fact that any finite abelian group
in GLn+2(C) is diagonalizable.

Proof. The group Aut(S) embeds naturally in
⊕

b∈B GL(Sb), where B = {b : b = ai for some i}
is the set of integers that appear as a weight of S. (In particular, Aut(S) is a linear algebraic
group.) To diagonalize a finite abelian group G ⊂ Aut(S), we’ll focus on the representa-
tion on each of these pieces Sb in turn. Of course, within each Sb, we can diagonalize G
using some change of coordinates in Sb, but we must prove that we can do this simulta-
neously for all b using conjugation by an element γ in Aut(S).

To do this, we put the integers in B in increasing order and construct γ inductively. For
the smallest integer b0 ∈ B, there is a basis of Sb0 given by {xi : ai = b0}. Define γ on
the smallest weight variables in such a way that the representation of G on Sb0 becomes
diagonal in the given basis (this is no problem because all monomials of degree b0 are
generators of S). By the inductive hypothesis, we now assume G acts by multiplication by
a scalar on all variables xi of weight ai < b and consider the action on Sb. Write a basis for
Sb beginning with the variables of weight b, followed by the other monomials of degree b.
By the inductive hypothesis, we’ve already constructed a γ so that the representation of
G after changing coordinates in only the smaller variables is of the form(

A(g) 0
B(g) D(g)

)
.

Here D(g) is a diagonal sum of characters of G, because each g ∈ G acts on monomials in
the smaller weight variables by scalar multiplication. Since the entire space Sb must also
be a direct sum of one-dimensional characters of G, we can find a change of coordinates
affecting only coordinates in the first part of the basis (variables of weight b) so that the
representation becomes diagonal. This finishes the definition of the automorphism γ on
variables of weight up to b. By induction, the proof is complete. □
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2. LINEARITY OF HYPERSURFACE AUTOMORPHISMS

Let X be a smooth hypersurface in Pn+1. Then, automorphisms of X extend to Pn+1

whenever n ≥ 1 and d ≥ 3 unless (n, d) = (1, 3) or (2, 4). When n ≥ 3, this is a consequence
of the Grothendieck-Lefschetz theorem [16, Exposé XII, Corollaire 3.6], which holds even
for arbitrarily singular hypersurfaces in projective space. For n = 2, d ̸= 4, this is a
theorem due to Matsumura and Monsky [30]; when n = 1, d ≥ 4, it is due to Chang [7]. In
this section, we prove a generalization to hypersurfaces in weighted projective space. We
will deduce this statement from the local version of Grothendieck’s Lefschetz theorems,
but some care is needed. One complication is that a hypersurface in weighted projective
space need not be a Cartier divisor (this is usually assumed even for variants of the global
Lefschetz theorems that deal with singular varieties, e.g. [38]).

Theorem 2.1. Let X ⊂ P(a0, . . . , an+1) and X ′ ⊂ P(a′0, . . . , a′n+1) be two complex weighted
projective hypersurfaces of weighted degrees d and d′, respectively. Suppose further that X and X ′

are well-formed and quasismooth, neither is a linear cone, and one of the following holds:

(1) n ≥ 3; or
(2) n = 2 and a0 + a1 + a2 + a3 ̸= d.

Then, if g : X ′ → X is an isomorphism, we have d = d′, the ai coincide with the a′i up to
rearrangement, and g is induced by an automorphism of P(a0, . . . , an+1).

Remark 2.2. (1) The assumption of well-formedness is necessary (note that a quasi-
smooth hypersurface in a well-formed weighted projective space of dimension
at least 3 is automatically itself well-formed [20, Theorem 6.17]). For example,
any hypersurface X4 ⊂ P4(2, 2, 2, 2, 2) is isomorphic as a variety to a hypersurface
X2 ⊂ P4(1, 1, 1, 1, 1) with the same equation.

(2) A hypersurface is a linear cone if the equation f contains a linear term xi for some
i. In this case, the hypersurface f = 0 is isomorphic to a weighted projective space
of smaller dimension, and the theorem above fails rather trivially: for example,
{x0 = 0} ⊂ P4(1, 1, 1, 1, 1) and {x0 = 0} ⊂ P4(2, 1, 1, 1, 1) are both isomorphic to P3.
We avoid the linear cone case to exclude this pathology.

(3) The part of the theorem which states that the degree and weights coincide for any
two embeddings of the same weighted projective hypersurface was shown in the
greater generality of quasismooth weighted complete intersections of dimension
at least 3 by Przyjalkowski and Shramov [36, Proposition 1.5]. They also proved in
another paper that the action of any linearly reductive algebraic group Γ on a quasi-
smooth weighted complete intersection of dimension at least 3 or of dimension 2
with nontrivial canonical class comes from an action of Γ on the ambient weighted
projective space [37, Theorem 1.3]. We remove the reductivity assumption, an-
swering [37, Question 1.5] for hypersurfaces. Some results on the class groups of
weighted complete intersections of dimension at least 3 that we’ll use below date
back further to [31, 2].

Proof. Let S = C[x0, . . . , xn+1] be the graded polynomial ring in variables xi of degrees
ai, and define S ′ in the same way, so that P := P(a0, . . . , an+1) = Proj(S) and P′ :=
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P(a′0, . . . , a′n+1) = Proj(S ′). If f and f ′ are the homogeneous polynomials of weighted de-
grees d, d′ defining X and X ′, respectively, then X = Proj(S/(f)) and X ′ = Proj(S ′/(f ′)).
We’ll first show that the isomorphism g : X ′ → X comes from an isomorphism of graded
rings g∗ : S/(f) → S ′/(f ′). This is non-trivial since not every isomorphism of two Proj’s
comes from an underlying isomorphism of the graded rings. We use the notation OP(m)
and OX(m) for the sheaves coming from each respective Proj construction and i : X → P
for the closed immersion coming from the quotient of graded rings S → S/(f).

Lemma 2.3. In the setting of Theorem 2.1, for each m ≥ 0, the natural map i∗OP(m) → OX(m)
of sheaves is an isomorphism. Furthermore, the sheaf OX(m) is reflexive on X .

Proof. We may check these conditions on each affine open chart D+
X(xj) ⊂ X, j = 0, . . . , n+

1 where xj doesn’t vanish. (Here we note that each xj is still nonzero in the quotient S/(f)
because X is not a linear cone.) These cover X = Proj(S/(f)) and the corresponding
collection of opens D+

P (xj) also covers P. Use the notation S(α) for α ∈ S a homogeneous
element of positive degree to mean the degree zero part of the localization Sα; similarly,
when M is a graded S-module, M(α) means the degree zero part of the localization. We
then have D+

P (xj) = Spec(S(xj)), D
+
X(xj) = Spec((S/(f))(xj)), and that OP(m)|D+

P (xj)
is the

quasicoherent sheaf associated to the S(xj)-module (S(m))(xj). The claimed isomorphism
amounts to checking

(S(m))(xj) ⊗S(xj)
(S/f)(xj)

∼= ((S/f)(m))(xj).

This follows from the commutativity of localizations and tensor product, as well as keep-
ing track of the degrees on each side. To show that OX(m) is reflexive, we use the fol-
lowing criterion [17, Proposition 1.6]: a coherent sheaf F on a normal, integral scheme X
is reflexive iff 1) it is torsion-free, and 2) for every open set U ⊂ X and closed Y ⊂ U of
codimension at least 2, the restriction F(U) → F(U \ Y ) is a bijection.

It’s clear that OX(m) is torsion-free because S/(f) is (otherwise, the affine cone would
be non-reduced, contradicting quasismoothness). We can check the second property on
the affine charts D+

X(xj). On this chart, X is a quotient of the variety X ′ ⊂ An+1
x0,...,x̂j ,...,xn+1

by µaj , where X ′ is cut out by the equation f(x0, . . . , xj−1, 1, xj+1, . . . , xn+1) = 0. By well-
formedness of X , this action is free away from a codimension 2 subset Z ⊂ X ′. Therefore,
given s ∈ OX(U \ Y ), the restriction of s to U \ (Y ∪ Z) lifts to a regular function on the
preimage of this set in X ′. By quasismoothness, X ′ is smooth, and in particular normal,
so this function extends to all of the preimage of U and remains homogeneous of the same
weight for the µaj -action. Hence s extends to U , completing the proof. □

We require the reflexivity of OX(m) in order to view it as a member of the class group
Cl(X) below.

For each integer m, we claim that the following sequence of sheaves on P is exact:

(1) 0 → OP(m− d)
·f−→ OP(m) → OX(m) → 0.

Here the second map is multiplication by f . Indeed, the same sequence with OX(m)
replaced by OP(m)|X is manifestly exact because it corresponds to the exact sequence of
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modules 0 → S(m−d)
·f−→ S(m) → (S/(f))(m) → 0. By Lemma 2.3, OP(m)|X = i∗OP(X) ∼=

OX(m), so (1) is also exact.

By [11, Section 1.4], H1(P,OP(m − d)) = 0 for all m because the dimension of the
weighted projective space P is at least 2. This is the analog of projective normality for
weighted projective hypersurfaces. Therefore, we arrive at the exact sequence of global
sections

0 → H0(P,OP(m− d))
·f−→ H0(P,OP(m)) → H0(X,OX(m)) → 0.

Since Sm
∼= OP(m) and the image of the first map is fSm−d, we may identify H0(X,OX(m))

with the mth graded piece of S/(f). Therefore,

S/(f) =
∞⊕

m=0

H0(X,OX(m)),

and similarly with S ′/(f ′). Thus, it will be enough to find maps H0(X,OX(m)) → H0(X ′,OX′(m))
for each m to build our desired map S/(f) → S ′/(f ′).

Since X is quasismooth, the punctured affine cone C∗
X ⊂ An+2 \ {0} is smooth. The

hypersurface X is a quotient of C∗
X by the action of G := Gm on An+2 \ {0}; we’ll denote

the quotient morphism by q : C∗
X → X . Using the assumption of well-formedness of X ,

Sing(X) is codimension at least 2 in X . Sing(X) is also the image of the locus in C∗
X where

the G-action has nontrivial stabilizers.

Thus, we have Cl(X) ∼= Cl(Xsm), where Xsm = X \ Sing(X) is the smooth locus. Be-
cause Xsm is smooth, Cl(Xsm) = Pic(Xsm). Further, Pic(Xsm) is isomorphic to the group
PicG(q−1(Xsm)) of G-equivariant vector bundles on q−1(Xsm), since q−1(Xsm) → Xsm is the
quotient by a free group action. Finally, q−1(Xsm) has complement of codimension at least
2 in C∗

X , so G-equivariant line bundles on Xsm extend to all of C∗
X . In summary,

Cl(X) ∼= Pic(Xsm) ∼= PicG(q−1(Xsm)) ∼= PicG(C∗
X).

The isomorphism g : X ′ → X induces an isomorphism X ′
sm → Xsm, which also gives a

pullback map Pic(Xsm)
∼=−→ Pic(X ′

sm). We’ll identify Cl(X) and PicG(C∗
X) below without

further comment and use the same notation OX(m) for the corresponding elements in
either of these groups.

Proposition 2.4. Suppose that X and X ′ satisfy the conditions of Theorem 2.1. Then an isomor-
phism g : X ′ → X induces an isomorphism Cl(X)

∼=−→ Cl(X ′) which maps OX(1) to OX′(1).

Proof. We argue differently depending on the dimension of X . When dim(X) ≥ 3, we
claim that PicG(C∗

X)
∼= Z · OX(1) (and analogously for X ′).

Indeed, if we forget the G-equivariant structure, all line bundles on the smooth variety
C∗

X are trivial when dim(X) ≥ 3. This is because the local ring OCX ,0 is a complete intersec-
tion ring of dimension at least 4, regular outside its maximal ideal, so it is a parafactorial
ring [16, Exposé XI, Théorème 3.13]. It follows that Pic(CX) → Pic(C∗

X) is an isomor-
phism; furthermore, Pic(CX) is trivial [11, Section 3.2.2]. From Pic(C∗

X) = 0, we deduce
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that the group of G-equivariant line bundles on C∗
X is naturally isomorphic to the charac-

ter group of G, namely Z [5, Lemma 4.1.7]. It’s straightforward to check that the lineariza-
tion of the trivial bundle by the character t 7→ tm coincides with the G-equivariant bundle
OX(m). Therefore, Cl(X) = Z · OX(1). Since X and X ′ are isomorphic, dim(X ′) ≥ 3 also,
so identical reasoning shows Cl(X ′) = Z · OX′(1).

The pullback of an ample divisor by an isomorphism is still ample, so the isomorphism
Cl(X)

∼=−→ Cl(X ′) must send OX(1) to OX′(1). This proves the proposition when n ≥ 3.

If dim(X) = 2, we use a different argument, since we may not have Cl(X) ∼= Z in this
case. The canonical class of X is KX = OX(r), where r = d −

∑
i ai ̸= 0 by assumption.

We also have KX′ = OX(r
′) with r = d′ −

∑
i a

′
i having the same sign as r, depending

on whether X and X ′ have ample or anti-ample canonical class. The canonical class is
preserved by isomorphism, so pullback sends OX(r) to OX′(r′). We’ll prove that r = r′

and moreover that OX(1) maps to OX′(1).

Lemma 2.5. Let V be a connected scheme of finite type over C. If π1(V ) = 1, then Pic(V ) is
torsion-free.

Proof. For any positive integer ℓ, we have the following Kummer exact sequence of sheaves
of abelian groups on V in the étale topology:

1 → µℓ → Gm,V
x 7→xℓ

−−−→ Gm,V → 1.

The associated long exact sequence in cohomology gives

· · · → H1(V, µℓ) → Pic(V )
L7→Lℓ

−−−→ Pic(V ) → · · · .

Since V is connected, H1(V,Z) is the abelianization of π1(V ); hence H1(V,Z) = 0. The
universal coefficient theorem then gives that H1(V, µℓ) ∼= H1(V,Z/ℓ) = 0, so that the ℓth
tensor power map on Pic(V ) is injective. Since this holds for any positive integer ℓ, Pic(V )
is torsion-free. □

Here’s another, more geometric proof of Lemma 2.5. We use the cyclic covering trick.
Let L be a torsion element of Pic(V ) of order ℓ, so that there is an isomorphism s : Lℓ ∼= OV

given by some nowhere vanishing global section of Lℓ. We define a finite covering

Spec
V

ℓ−1⊕
i=0

Li → V.

Multiplication in the sheaf of OV -algebras A := ⊕ℓ−1
i=0L

i is defined by the usual multiplica-
tion La ⊗ Lb → L⊗(a+b) when a + b < ℓ and by the composition La ⊗ Lb → La+b s−→ La+b−ℓ

if a + b ≥ ℓ. Then this is an étale cover of V . However, since the fundamental group of
V is trivial, this covering must simply be a disjoint union of copies of V . This means that
L ∼= OV , as required.

Now we’ll conclude the proof of Proposition 2.4. By [11, Section 3.2.2], the fundamental
group of the punctured affine cone C∗

X vanishes whenever X is a quasismooth hypersur-
face of dimension at least 2. Therefore, the (non-equivariant) Picard group Pic(C∗

X) is
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torsion-free. Next, we use the exact sequence

0 → Z → PicG(C∗
X) → Pic(C∗

X),

where the first map sends 1 7→ OX(1) and the second map forgets the linearization.
Exactness of this sequence follows from [5, Theorem 4.2.2] plus the observation that
Z → PicG(C∗

X) is injective by ampleness of OX(1) on X . It follows that PicG(C∗
X) is torsion-

free, since any torsion element must map to zero in Pic(C∗
X), and hence be in the image of

Z → PicG(C∗
X). In addition, we see that OX(k) ∈ PicG(C∗

X) is not divisible by any integer
other than the factors of k, because otherwise the cokernel of the first map would contain
torsion elements.

This implies r = r′ above. Indeed, if g∗(OX(r)) ∼= OX′(r′), then the image L ∈ PicG(C∗
X′)

of OX(1) satisfies Lr = OX′(r′). Since OX′(r′) is divisible by r, r is a factor of r′ by the
above. Arguing symmetrically with the inverse isomorphism gives r = r′. In particular,
we then have that the image of OX(1) differs from OX′(1) by a torsion element of order
r. Because we also saw that PicG(C∗

X) is torsion free, this proves that g∗(OX(1)) ∼= OX′(1).
□

Finally, we’re ready to complete the proof of Theorem 2.1. We’ve now seen that in the
assumptions of the theorem, pullback by the isomorphism g sends OX(m) to OX′(m) for
any m ∈ Z. Therefore, g induces isomorphisms

g∗ : H0(X,OX(m)) → H0(X ′,OX′(m)).

These maps respect the tensor product of sections, so we may assemble them into an
isomorphism of graded rings g∗ : S/(f) → S ′/(f ′). In particular, g∗ gives an isomorphism
of the maximal irrelevant ideal m of elements of positive degree in S/(f) with m′ ⊂ S ′/(f ′).
The number of generators of m and their degrees (up to reordering) coincide with those of
m′. This is because if m is the smallest positive index with the graded piece mm nonempty,
the number of generators of degree m equals dim(mm), and then we can factor out by these
generators and repeat inductively.

Since X is quasismooth and not a linear cone, we have that d, the degree of the smallest
relation among the xi, is strictly greater than all weights ai. It follows that x0, . . . , xn+1 are
a minimal system of n+1 generators for the homogeneous ideal m. Similarly, x′

0, . . . , x
′
n+1

generate m′, which is an isomorphic to m, so this set of generators must also be minimal
and the collection a0, . . . , an+1 must be the same as a′0, . . . , a′n+1, up to reordering. Dimen-
sion counting yields that the relations are then also in the same degree, so we have d = d′.

Lastly, we observe that the isomorphism g∗ : S/(f) → S ′/(f ′) is induced by an isomor-
phism S → S ′. Indeed, for m < d, the mth graded piece of S is isomorphic to that of
S/(f), so g∗ gives isomorphisms Sm → S ′

m. All the generators of S are contained in Sm

for m < d so this gives rise to a homomorphism S → S ′. The inverse of g similarly gives
a morphism S ′ → S whose composition with the previous map is the identity on gener-
ators, and hence on all of S. Therefore, the homomorphism S → S ′ is an isomorphism.
By our work above, both Proj(S) and Proj(S ′) are isomorphic to P(a0, . . . , an+1), so the
isomorphism S → S ′ gives an automorphism of this weighted projective space inducing
the original isomorphism g : X ′ → X of hypersurfaces, as claimed. □
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This theorem fails if we weaken the hypotheses on dimension. As mentioned above,
two smooth plane curves C and C ′ in P2 of degree at least 4 are isomorphic if and only
if they differ by an isomorphism of the projective plane [7]. However, the situation for
weighted projective curves is considerably more complicated: there exist many curves of
genus at least 2 which can be embedded as well-formed quasismooth hypersurfaces in
different weighted projective spaces.

Example 2.6 (Hyperelliptic Curves). Let C be a hyperelliptic curve of genus g, p : C → P1

a 2 : 1 cover of P1, and P ∈ C a ramification point of the cover. Then C is isomorphic to
Proj(R(C,P )), where

R(C,P ) :=
∞⊕
k=0

H0(C, kP ).

This ring has generators x, y, and z in degrees 1, 2, and 2g+1, respectively, and a single
relation in degree 4g + 2. It is possible to choose the generator z so that the relation has
the form f(x, y, z) := z2 − h(x2, y) = 0, where h is a polynomial of degree 2g + 1. This
embeds C as a quasismooth hypersurface of degree 4g + 2 in P2(2g + 1, 2, 1). However, if
we use R(2C,P ) = R(C,KC) instead, we have another embedding of the same curve as a
degree 2g + 2 hypersurface in P2(g + 1, 1, 1).

Example 2.7. There are also non-hyperelliptic curves exhibiting similar behavior. For
C a smooth non-hyperelliptic curve of genus 3, we have the canonical embedding of C
in P2 = P2(1, 1, 1) as a degree 4 plane curve. Suppose further that C has the property
that there is a line ℓ ⊂ P2 tangent to C at a point P with multiplicity 4. Then we have
4P ∼ KC . One can show that ring R(C,P ) has generators in degrees 1, 3, and 4, giving
an embedding C ⊂ P2(4, 3, 1) as a hypersurface of degree 12. There are many similar
examples for curves of higher genus.

When dimX = 2 but
∑

i ai = d, Theorem 2.1 also fails. This is because the resulting
hypersurfaces are K3 surfaces in this case, which frequently have infinite automorphism
group. An example of Fano and Severi of a quartic surface in P3 with infinite automor-
phism group is described in the proof of Theorem 4 in [30], for instance. However, we’ll
see below in Theorem 3.1 that the linear automorphism groups of weighted projective
surfaces with

∑
i ai = d are always finite. Hence, some automorphisms of these surfaces

aren’t linear.

3. BOUNDS ON LINEAR AUTOMORPHISM GROUPS

Recall that the linear automorphism group Lin(X) ⊂ Aut(X) of a hypersurface X ⊂ P
is the subgroup of automorphisms that extend to P. As long as the degree of X exceeds
all weights of P, the only automorphism of P that fixes X pointwise is the identity (use
the same argument on extending morphisms of graded rings as above), so in this case we
may consider Lin(X) as a subgroup of both Aut(X) and Aut(P). Theorem 2.1 shows that
Lin(X) = Aut(X) whenever dim(X) ≥ 3 or dim(X) = 2 and KX ≇ OX .

In this section, we prove several results on the size of Lin(X). These will imply the
same results for Aut(X) in most dimensions in light of the last section. First, we give a
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criterion in terms of the degree d and the weights a0, . . . , an+1 which determines whether
or not Lin(X) is finite.

Theorem 3.1. Let X ⊂ P(a0, . . . , an+1) be a well-formed, quasismooth weighted projective hy-
persurface of degree d, where n ≥ 1. Then Lin(X) is finite if and only if one of the following two
conditions holds:

(1) d > 2max{a0, . . . , an+1}; or
(2) d = 2max{a0, . . . , an+1} and only a single weight achieves the maximum.

Further, if neither (1) nor (2) holds (so that Lin(X) is infinite), then X is rational.

Remark 3.2. (1) This generalizes a theorem of Matsumura and Monsky [30, Theorem
1], which shows that the linear automorphism group of a smooth hypersurface of
degree d in Pn+1 over an algebraically closed field k is finite if n ≥ 2 and d ≥ 3.
For k = C, this result was known in some form at least as far back as 1880, when
it appeared in a work of Jordan [23] (see also [33, Section 6] for further historical
remarks on this theorem). Note also that if d < 3, X is a hyperplane or a quadric.
These always have infinite linear automorphism groups and are rational for n ≥ 1.

(2) Some partial results along these lines were known previously. In the special case
when X is a smooth (rather than just quasismooth) well-formed weighted projec-
tive hypersurface, dim(X) ≥ 3 and KX ≇ 0, it was proven in [36, Corollary 1.4]
that Aut(X) is finite unless X is isomorphic to either Pn or a quadric hypersurface
of Pn+1. Note that X is never smooth unless the weights are pairwise relatively
prime and all divide the degree. However, the result of [36] also applies to smooth
weighted complete intersections with these properties; their methods are rather
different than ours. A statement similar to the first part of Theorem 3.1 also ap-
pears in work of Bunnett [6, Theorem 3.13], but gives an incorrect degree bound of
d ≥ max{a0, . . . , an+1}+ 2 for finiteness.

Proof of Theorem 3.1. First, assume that one of the two conditions on d in Theorem 3.1
holds. We’ll show that Lin(X) is finite, using generally the same approach as in [30].
By Lemma 1.3, any automorphism of P comes from a graded automorphism of S =
C[x0, . . . , xn+1], so we perform most of our analysis on the level of graded ring auto-
morphisms. For any graded homomorphism S → S, the image of each generator xi is
contained in the finite-dimensional vector space Sai . Thus, the endomorphism monoid of
S is isomorphic to AN as a variety, where N :=

∑
i dim(Sai). The linear algebraic group

Aut(S) is an open subvariety of AN . This is a generalization of the fact that GLn+2(C) is
an open subvariety of A(n+2)2 .

We saw in Lemma 1.3 that Aut(S) acts on P(a0, . . . , an+1) with kernel isomorphic to C∗,
where t ∈ C∗ acts as t · xi = taixi for each i. Let G ⊂ Aut(S) be the subgroup of elements
mapping the polynomial f defining X to a multiple of itself. Then Lin(X) = G/C∗. Since
Lin(X) is an algebraic group, if it has trivial Lie algebra, then it must be finite. We’ll show
that the Lie algebra g of G equals that of the subgroup ker(Aut(S) → Aut(P)) ∼= C∗; this
implies that the Lie algebra of the quotient Lin(X) = G/C∗ is trivial, as required.
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The tangent space to Aut(S) at the identity is naturally isomorphic to Sa0 ⊕ · · · ⊕ San+1 ,
where an element z := (z0, . . . , zn+1) corresponds to the infinitesimal automorphism xi 7→
xi+ ϵzi. Our aim is to show that if z ∈ g, then in fact z is a multiple of (a0x0, . . . , an+1xn+1),
which is the derivative of the function C∗ → G given by t 7→ (xi 7→ taixi) at t = 1.

Every z in the Lie algebra of Aut(S) defines a derivation Dz : S → S by the formula
h 7→ d

dϵ
h(x + ϵz)|ϵ=0. The fact that z ∈ g means that Dz(f) = cf for some constant c. But

we may express Dz(f) in terms of partial derivatives fi := ∂f
∂xi

as:

DZ(f) =
∑
i

fizi.

Therefore, we have ∑
i

fizi = cf =
∑
i

caixi

d
fi.

In this equation, the last equality follows from the following weighted variant of Euler’s
formula for homogeneous polynomials. Namely, for f homogeneous of weighted degree
d in variables xi with weights ai: ∑

i

aixifi = df.

Rearranging the equation above now gives

(2)
∑
i

(
zi −

caixi

d

)
fi = 0.

Since X is a quasismooth hypersurface, its punctured affine cone in An+2 \ {0} is smooth,
so that the only common zero of the partial derivatives f0, . . . , fn+1 is at the origin x = 0 in
An+2. The ring S is Cohen-Macaulay, each fi is a homogeneous element of positive degree
in a graded ring, and these n + 2 polynomials cut out the subvariety {0} of codimension
n+2 in An+2. Therefore, it follows that any permutation of the fi form a regular sequence
in the ring S.

A particular consequence of that fact is that fi is not a zero divisor in the ring S/Ii,
where Ii := (f0, . . . , f̂i, . . . , fn+1). The equation (2) then implies that zi − caixi/d ∈ Ii for
each i. That element is homogeneous of weighted degree ai, so we can guarantee that it is
zero if every nonzero polynomial in Ii has degree greater than ai. Each partial derivative
fj has degree d− aj , so we can conclude that zi − caixi/d = 0 if d− aj is greater than ai for
all j ̸= i. Either of the two conditions in the theorem guarantees that this criterion is met
for all i. Therefore, if we assume one of these conditions, then zi = caixi/d = (c/d)aixi for
all i, as required.

Next, we’ll show the converse: if either d < 2max{a0, . . . , an+1} or d = 2max{a0, . . . , an+1}
and there are multiple weights equal to the maximum, then Lin(X) is infinite. Fur-
thermore, we’ll prove that X is rational. It’s helpful to consider a few distinct cases.
Throughout, we’ll assume the weights are arranged in decreasing order, so in particular
a0 = max{a0, . . . , an+1}. We note that either assumption on degree above guarantees that
d < a0 + · · ·+ an+1 so that the hypersurface is Fano.
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Here’s a full proof of the fact that hypersurfaces failing (1) and (2) in Theorem 3.1 are
Fano.

Proposition 3.3. Let X = {f = 0} ⊂ P(a0, . . . , an+1) be a quasismooth hypersurface of dimen-
sion at least 1 which does not satisfy either of the conditions (1), (2) of Theorem 3.1. Then X is
Fano.

Proof. Suppose first that d < 2max{a0, . . . , an}. For quasismooth X , the minimum pos-
sible value of d is max{a0, . . . , an}, which corresponds to the case of a linear cone. The
hypersurface X is then isomorphic to a weighted projective space, and is hence Fano.
If d doesn’t equal this minimum, suppose without loss of generality that a0 is a maxi-
mum weight. Then quasismoothness of X means (by Proposition 1.2) that there must be
a monomial x0xi of degree d for some i. Thus, a0 + ai = d. Since n ≥ 1, d −

∑
i ai <

d − a0 − ai = 0, so X is Fano. Similarly, if d = 2max{a0, . . . , an}, condition (2) of Theo-
rem 3.1 fails only if we have (at least) two weights a0 and a1 which equal d/2. In this case
d−

∑
i ai < d− a0 − a1 < 0, so X is again Fano. □

If d = max{a0, . . . , an+1} = a0, then X is a linear cone, and hence isomorphic to
P(a1, . . . , an+1), which is rational. We may also assume that the equation of X is x0 +
f(x1, . . . , xn) = 0, where f is homogenenous of degree a0. Under the automorphism
x0 7→ x0 − f of P, this becomes x0 = 0. Every automorphism of {x0 = 0} = P(a1, . . . , an+1)
extends to P(a0, . . . , an+1) and this group is infinite since n ≥ 1.

Now suppose d < max{a0, . . . , an+1} < 2d. In order for X to be quasismooth, its equa-
tion must contain a monomial x0xl (for some l ̸= 0) with nonzero coefficient by Proposi-
tion 1.2. By a transformation of xl, we may assume that x0xl is the only term involving x0.
The equation then looks like

x0xl + xlf(x1, . . . , xn+1) + g(x1, . . . , x̂l, . . . , xn),

where f is homogeneous of degree d−al = a0 and may include xl, while g is homogeneous
of degree d and consists of terms not containing x0 or xl. Composing with x0 7→ x0 − f
then eliminates the middle term. After these transformations, it’s clear that X contains
an infinite group of automorphisms which for each t ∈ C∗ maps x0 7→ tx0, xl 7→ 1

t
xl, and

fixes all other variables. To show that X is rational, note that the g term above is nonzero
since X is quasismooth. On the open set xl ̸= 0, we may isolate x0 = −g/xl, so that the
projection forgetting x0 is a birational map to the rational toric variety P(a1, . . . , an+1).

Finally, suppose d = 2max{a0, . . . , an+1}, but that both a0 and a1 equal d
2
. A similar

series of reductions to the equation of f works here: we can change variables so that the
quadratic in x0 and x1 equals x0x1 and eliminate any other terms involving x0 and x1.
The equation x0x1 + f(x2, . . . , xn+1) = 0 has the same infinite family x0 7→ tx0, x1 7→ 1

t
x1

of automorphisms, and the projection forgetting the first coordinate is again a birational
map. This completes the proof. □

Next, we consider bounds on the size of the linear automorphism groups of hypersur-
faces when they are finite. Some results in this direction are known for hypersurfaces of
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degree d in ordinary projective space Pn+1, which we know have finite linear automor-
phism groups when d ≥ 3. An unpublished work of Bott and Tate from around 1961
showed that there is a bound on the size of the Lin(X) in terms of d and n (see [33] for
an exposition of these ideas). Around twenty years later, Howard and Sommese [19]
showed that there is a constant kn for every dimension n such that |Lin(X)| < knd

n+1, for
any d ≥ 3. We’ll prove an even stronger theorem in the setting of weighted projective
hypersurfaces.

Theorem 3.4. For every positive integer n, there exists a constant Cn depending only on n with
the following property: for any well-formed, quasismooth hypersurface X ⊂ P(a0, . . . , an+1) of
degree d and dimension n, if Lin(X) is finite, then

(3) |Lin(X)| ≤ Cn
dn+1

a0 · · · an+1

.

In particular, the same constant Cn works for hypersurfaces in any weighted projec-
tive space of dimension n. The comments following the proof of Lemma 3.6 describe an
explicit procedure for effectively producing a constant Cn for which the theorem holds.
We’ll need the following definitions during the proof.

Definition 3.5. Let G be a group. We say that G has the Jordan property if there exists a
constant J(G) such that for every finite subgroup H ⊂ G, there exists a normal abelian
subgroup A ⊂ H with index [H : A] ≤ J(G). The minimum J(G) with this property is
called the Jordan constant of G. The weak Jordan constant J̄(G) of G is the minimum constant
such that every finite H ⊂ G has a (not necessarily normal) abelian subgroup A ⊂ H with
[H : A] ≤ J̄(G).

An 1878 result by Jordan [22] shows that GLN(C) has the Jordan property for all N
(for a modern exposition of his original proof and subsequent developments, see [4]).
The explicit values of the Jordan constants JN := J(GLN(C)) were not computed until
much later: Collins [9] calculated all the JN and in particular showed that when N ≥ 71,
JN = (N + 1)!; this index is achieved by the N -dimensional standard representation of
the symmetric group SN+1. His proof relies on the classification of finite simple groups.

Weak Jordan constants have not been as well studied, but it follows from a theorem
of A. Chermak and A. Delgado that for any group with the Jordan property, J̄(G) ≤
J(G) ≤ J̄(G)2 (see [21, Theorem 1.41] and [34, Remark 1.2.2]). The precise values of
J̄N := J̄(GLN(C)) for small N are computed in [34], but to the author’s knowledge there
has been no complete calculation of all the J̄N .

Proof of Theorem 3.4. We’ll prove the theorem in the following three steps:

Step 1: Show that Lin(X) is the image of a finite group of graded ring automorphisms
which fixes the function f defining X and has order d|Lin(X)|.

Step 2: Find a uniform bound Cn on the weak Jordan constants J̄(Aut(S)) of the graded
automorphism groups of weighted polynomial rings S in n+ 2 variables.

Step 3: Show that the order of an abelian group of graded ring automorphisms fixing f
is at most dn+2/(a0 · · · an+1).
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Step 1: Suppose that G := Lin(X) is a finite group, for a quasismooth hypersurface X of
degree d in P = P(a0, . . . , an+1). Let S = C[x0, . . . , xn+1] be the weighted polynomial ring
with weights ai, f be the polynomial defining the hypersurface X , and π be the natural
quotient homomorphism π : Aut(S) → Aut(P). If g ∈ π−1(G) ⊂ Aut(S), the induced
automorphism of P preserves f , so g · f = cf for some constant c ∈ C. Define H to be
the subgroup of π−1(G) of elements g which satisfy the stronger condition g · f = f . We
claim that π|H : H → G is a surjective homomorphism with kernel of order d, so that in
particular H is a finite group with |H| = d|G|.

It’s clear that π|H : H → G is surjective because we can compose any automorphism
in π−1(G) with an element of ker(π) ∼= C∗ (see Lemma 1.3) to scale the factor c to 1. An
element of the kernel of π|H is a t ∈ C∗ with f(ta0x0, . . . , t

an+1xn+1) = tdf = f , so t is a dth
root of unity. This proves |H| = d|G|. To bound the order of G, we can therefore analyze
the group H ⊂ Aut(S) instead.

Step 2: Next, we reduce to only considering abelian groups by computing the weak Jor-
dan constant for the group Aut(S) of graded automorphisms. For any weighted polyno-
mial ring S, Aut(S) is a linear algebraic group. This implies that Aut(S) has the Jordan
property. However, even for a fixed number of variables, Aut(S) can have arbitrarily
large dimension as an algebraic group: for example, if S = C[x0, x1, x2] with weights a, 1,
and 1, respectively, then dim(Aut(S)) = dim(S1)+dim(S1)+dim(Sa) = a+6. Despite this,
we’ll prove that the Jordan constant of Aut(S) is uniformly bounded among polynomial
rings S with a fixed number of variables.

Following the notation used in Lemma 1.4, we let B := {b : b = ai for some i} be the set
of positive integers that occur as a weight of the polynomial ring S. For each b ∈ B, Nb is
the number of weights equal to b. Recall that J̄N := J̄(GLN(C)).

Lemma 3.6. Let S = C[x0, . . . , xn+1] be a weighted polynomial ring with weights a0, . . . , an+1.
Then J̄(Aut(S)) =

∏
b∈B J̄Nb

. In particular, for any integer n, there is a uniform upper bound Cn

on the weak Jordan constants of all groups Aut(S) where S has n+ 2 variables.

Proof. Inside each graded piece Sb with b ∈ B, there is a subspace Vb of dimension Nb

spanned by the variables of weight b, and a complementary subspace Wb spanned by
the remaining monomials of weighted degree b. The direct sum

⊕
GL(Vb) embeds as a

subgroup of Aut(S), consisting of all automorphisms that don’t “mix” variables of differ-
ent weights. We’ll show that any finite group G ⊂ Aut(S) is conjugate to a subgroup of⊕

GL(Vb) ⊂ Aut(S). To do this, we’ll construct the necessary coordinate change inside
each Sb.

Since finite groups are linearly reductive in characteristic zero, the representation of
G on Sb splits into a direct sum of irreducible representations. In particular, since Wb

is G-invariant, we can find a complementary G-invariant subspace V ′
b inside Sb. Define

the change of coordinates on variables of weight b in such a way that the span of the vari-
ables of weights b becomes V ′

b . We can construct this change of coordinates independently
within each Sb and arrive at an automorphism of the entire graded ring S. By construc-
tion, elements g ∈ G don’t mix variables of different weights in the new coordinates.
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This proves that any finite group G that appears as a subgroup of Aut(S) also embeds
in
⊕

GL(Vb). Therefore,

J̄(Aut(S)) = J̄

(⊕
b∈B

GL(Vb)

)
=
∏
b∈B

J̄Nb
.

Here the last equality comes from the general fact that J̄(G1 × G2) = J̄(G1)J̄(G2) (this is
one convenient property of weak Jordan constants that doesn’t hold for regular Jordan
constants). Because there are n+2 weights total, we have

∑
b∈B Nb = n+2. There are only

finitely many possibilities for the collection of positive integers Nb for a fixed n, so there
is a uniform upper bound Cn on the weak Jordan constant of Aut(S) depending only on
n. □

We may explicitly compute a value for Cn for a particular n by considering all partitions
of n+ 2 as a sum of positive integers Nb and multiplying the corresponding values of JNb

computed by Collins [9] (since J̄N ≤ JN ).

Step 3: Using Lemma 3.6, we now only need to bound the order of abelian subgroups
of automorphisms A ⊂ Aut(S), where S has n + 2 variables. Suppose that A ⊂ H is an
abelian subgroup of smallest index and assume we’ve changed coordinates on S so that
the action of A is diagonal, using Lemma 1.4.

Now suppose that f is a sum of s monomials with nonzero coefficients and write it as

f =
s∑

i=1

Ki

n+1∏
j=0

x
mij

j ,

where each Ki is nonzero by assumption. Package the exponents mij into an s × (n + 2)
matrix M . Each row corresponds to a monomial in f . We can use Proposition 1.2 to pick a
distinguished collection of n+ 2 monomials in f : indeed, for each i, select a monomial of
the form xbi

i or xbi
i xj , j ̸= i which has a nonzero coefficient in f . Take only the n + 2 rows

of M corresponding to these, and assemble them into a square (n+ 2)× (n+ 2) minor B
of M in such a way that the monomial associated to xi goes in the ith row.

Lemma 3.7. The matrix B constructed above is invertible and has determinant satisfying

0 < det(B) ≤ dn+2

a0 · · · an+1

.

Proof. We first note the following properties of B: first, every entry bi on the main diagonal
is a positive integer satisfying 2 ≤ bi ≤ d/ai. (The lower bound is by the criterion in
Theorem 3.1, while the upper bound is because xbi

i or xbi
i xj is a monomial of weighted

degree d.) Second, each row of B contains at most one nonzero element off the main
diagonal; if it does, this element must be a 1.

We can begin to compute the determinant by expanding along any rows or columns
that have only one nonzero entry, namely the diagonal entry. At each such step, the
diagonal entry bi is a positive integer which is at most d/ai, where i is the index of the row
in question. After removing the ith row and column, the resulting minor always has the
same properties as B, so it suffices to prove the inequality in the lemma with one copy of d



AUTOMORPHISMS OF WEIGHTED PROJECTIVE HYPERSURFACES 17

in the numerator and the ai in the denominator removed. Continuing in this way, we may
assume B has exactly one off-diagonal 1 in each row and column. Up to a permutation of
the indices, we can now further assume that B is block diagonal with blocks of the form

b0 1 0 · · · 0
0 b1 1 · · · 0
... . . . . . . ...
0 0 · · · br−1 1
1 0 · · · 0 br

 .

It now suffices to prove the lemma in the case that B is a single block of the form above
(so r = n + 1). It’s straightforward to compute that this “loop matrix” has determinant
b0 · · · bn+1 + (−1)n+1 ̸= 0, so it is invertible (here we use bi ≥ 2). As for the bound on
the determinant, it automatically holds when n is even since b0 · · · bn+1 − 1 < b0 · · · bn+1

and each bi < d
ai

. When n is odd, use the series of equations b0 = (d − a1)/a0, b1 =

(d− a2)/a1, . . . , bn+1 = (d− a0)/an+1 to compute

det(B) = b0 · · · bn+1 + 1 =
(d− a0)(d− a1) · · · (d− an+1)

a0 · · · an+1

+ 1

=
dn+2 − dn+1s1 + dns2 − · · ·+ dsn+1

a0 · · · an+1

<
dn+2

a0 · · · an+1

.

Here sl := sl(a0, . . . , an+1) is the degree l elementary symmetric polynomial in the weights
a0, . . . , an+1. In the last equality, the final term −sn+2/(a0 · · · an+1) = −1 in the expansion
cancelled with the 1. Since all weights are smaller than d, the terms dn+2−lsl decrease in
magnitude as l increases. This justifies the last inequality. □

With these properties of B in hand, we return to the proof of the theorem. We’ll show
that for any diagonal automorphism xj 7→ cjxj in A, the scalars cj satisfy |cj| = 1. Indeed,
since this automorphism preserves f , it preserves each monomial individually, and

Ki

∏
j

(cjxj)
mij = Ki

∏
j

x
mij

j ,

for each i = 1, . . . , s. Therefore,
∏

j c
mij

j = 1. Taking logarithms of the |cj|, this means that
(ln |c0|, . . . , ln |cn+1|) ∈ kerM . But kerM ⊂ kerB = {0} since B is invertible, so |cj| = 1 for
each j. Therefore, any element of A can be represented as an (n+2)-tuple (θ0, . . . , θn+1) of
elements of Q/Z, where cj = e2πiθj .

The condition that (θ0, . . . , θn+1) preserves f can be expressed as M(θ0, . . . , θn+1)
T ∈ Zs.

We can obtain an upper bound for the order of A by considering the weaker condition
B(θ0, . . . , θn+1)

T ∈ Zn+2 instead (this says that at least the n + 2 selected monomials in f
are preserved by the automorphism). The number of distinct solutions for (θ0, . . . , θn+1)
modulo Zn+2 to this latter equation is the index of Zn+2 in the superlattice spanned by
B−1e0, . . . , B

−1en+1, where e0, . . . , en+1 are the standard basis vectors in Zn+2. This index
equals det(B), so

|A| ≤ | det(B)| ≤ dn+2

a0 · · · an+1
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by Lemma 3.7. The original group H which contained A as a smallest index abelian
subgroup therefore has order

|H| ≤ J̄(Aut(S))
dn+2

a0 · · · an+1

≤ Cn
dn+2

a0 · · · an+1

.

Finally, we have the desired bound

|Lin(X)| = |G| = |H|
d

≤ Cn
dn+1

a0 · · · an+1

.

□

Example 3.8 (Fermat Hypersurfaces). For any positive integer n and degree d ≥ 3, the
Fermat hypersurface of dimension n and degree d in Pn+1 is X := {xd

0 + · · · + xd
n+1 = 0} ⊂

Pn+1. Then Lin(X) contains a copy of the symmetric group Sn+2 acting by permutation
of the variables xi and the diagonal automorphisms given by multiplying each xi by an
arbitrary dth root of unity (modulo the scalar transformations). Therefore, |Lin(X)| ≥
(n+ 2)!dn+1.

In fact, a computation of Shioda [39] shows that |Lin(X)| = (n + 2)!dn+1 when X is
defined over an algebraically closed field of characteristic zero (see also [28] for another
proof and some generalizations of this result). Note that a Fermat hypersurface can have
extra automorphisms in positive characteristic [28, Section 1].

This example shows that the order of growth with respect to the degree d in the estimate
Theorem 3.4 is optimal and that we must have Cn ≥ (n+ 2)! for all n. A natural question
is whether we may actually take Cn = (n+2)! for all n. We’ll show that this is nearly true
for n = 1, but not quite.

Proposition 3.9. Let X be a well-formed quasismooth weighted projective curve of degree d in
P(a, b, c) with finite linear automorphism group. Then

|Lin(X)| ≤ 6d2

abc
,

unless a = b = c = 1 and X is projectively equivalent to one of the following two plane curves in
P2 = P(1, 1, 1):

(1) The Klein quartic xy3+yz3+zx3 = 0, with automorphism group isomorphic to PSL2(F7)
of order 168;

(2) The Wiman sextic 10x3y3 + 9x5z + 9y5z − 45x2y2z2 − 135xyz4 + 27z6 = 0, with auto-
morphism group isomorphic to A6 of order 360.

Proof. In order for a weighted projective curve to be well-formed, we must have that the
weights a, b and c are pairwise relatively prime, and that each weight divides d. Indeed,
if some weight does not divide d, then the intersection X ∩ Psing contains the correspond-
ing coordinate point, which has codimension 1 in X . There are three cases to consider,
depending on which of a, b, or c coincide.

Suppose first that a, b, and c are all distinct. Then, any finite subgroup of Aut(P(a, b, c))
is abelian. This follows from Lemma 3.6, which shows that J̄(Aut(S)) = 1 in this case.
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Abelian subgroups of Aut(S) fixing the defining polynomial f of X have order at most
d3/(abc) by Step 3 of the proof of Theorem 3.4; hence by Step 1, |Lin(X)| ≤ d2/(abc).

Now suppose that b = c, but that a is distinct from the other two weights. Since P(a, b, c)
is well-formed, we must have b = c = 1. The weak Jordan constant of Aut(S) is J̄1J̄2 =
J̄2 = 12 in this case [34, Section 2.2]. Suppose our hypersurface is given by X = {f = 0},
where f has weighted degree d. In order for |Lin(X)| to exceed 6d2/(abc) = 6d2/a, we
would have to have (after conjugation) a finite subgroup G of GL1(C)⊕GL2(C) ⊂ Aut(S)
fixing f of order exceeding 6d3/a. The maximal possible order of an abelian subgroup
preserving f is d3/a, so we require our hypothetical G to have no abelian subgroup of
index less than or equal to 6. The image of G under the projection

GL1(C)⊕GL2(C)
p2−→ GL2(C)

would also have no abelian subgroup of index less than or equal to 6. All finite subgroups
of GL2(C) are central extensions of cyclic groups, dihedral groups, A4, S4, or A5. Of these,
only A5 has the required property: the largest abelian subgroup has index 12. Therefore,
the image of G in PGL2(C) is isomorphic to A5. It follows that p2(G) is a central extension
of A5 in GL2(C). Since X is quasismooth, the polynomial f is of the form

f = xd/a + xd/a−1ga(y, z) + xd/a−2g2a(y, z) + · · ·+ gd(y, z),

for some polynomials ga, g2a, . . . , gd of the indicated degrees in y and z. Here gd(y, z) must
be nonzero since f is irreducible. Each of the terms must be individually preserved by
the action of G because that action is block diagonal; in particular, gd(y, z) is an invariant
polynomial under the action of p2(G). But this means that the intersection of p2(G) with
the center of GL2(C) has order at most d (primitive roots of unity of higher degree could
not preserve this polynomial), so |p2(G)| ≤ |A5|d = 60d. Similarly, | ker(p2) ∩G| ≤ d/a, so

|G| ≤ 60d2

a
.

The combination of the inequalities |G| ≤ 60d2/a and |G| > 6d3/a means that d < 10.
However, we’ve already seen that gd(y, z) is a polynomial invariant of the action of the
binary icosahedral group in GL2(C). The homogeneous generators for that invariant ring
have degrees 12, 20, and 30 by a result of Klein [27], contradicting the bound on the de-
gree. It follows that no weighted projective curve of this form has more than 6d2/a linear
automorphisms.

The last possibility is that a = b = c, so that X is a smooth plane curve. In this case,
the problem of finding the largest possible automorphism groups in different degrees is
well studied. For d ≥ 4, recall that all plane curve automorphisms are linear [7]. Klein
[26] computed the linear automorphism group of the quartic curve in Proposition 3.9; it
has the largest possible automorphism group of any curve of genus g = 3 by the Hurwitz
bound |Aut(X)| < 84(g − 1). Wiman [43] first computed that the sextic in the proposition
has automorphism group A6. Later work showed that the Wiman sextic is the unique
degree 6 curve with largest automorphism group up to projective equivalence [10] and
that the Fermat curve has the same property for various other d ≤ 20 [24, 25]. Finally,
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Harui [18, Theorem 2.5] proved that the two curves listed in Proposition 3.9 are the only
ones with |Lin(X)| > 6d2 for any degree d. This proves the proposition. □

This classification shows that we may take C1 = 21
2

in Theorem 3.4. The author is
unaware of any counterexamples to the theorem with Cn = (n+2)! for n ≥ 2. By analogy
with Collins’ computations of Jordan constants, we might expect that unusual behavior
such as in the n = 1 case occurs only for small n.

Question 3.10. Does Theorem 3.4 hold with Cn = (n+2)! for n ≥ 2? In particular, does the
Fermat hypersurface have the largest automorphism group of any smooth hypersurface
of degree d in Pn+1 when n ≥ 2 and d ≥ 3?

Many partial results in this direction are known for smooth hypersurfaces in ordinary
projective space. For instance, we have a fairly complete picture of the possible orders of
automorphisms that can occur [15, 44]. The possible automorphism groups of smooth
cubic surfaces over an algebraically closed field of arbitrary characteristic were classified
by Dolgachev and Duncan [12]. Moreover, the linear automorphism groups of smooth
cubic threefolds and smooth quintic threefolds were classified by works of Wei and Yu
[42] and Oguiso and Yu [32], respectively. The Fermat cubic fourfold is also known to
have the largest possible automorphism group by a result of Laza and Zheng [29]. In
summary, the second part of Question 3.10 is known to have an affirmative answer at
least for the following pairs (n, d): (2, 3), (3, 3), (3, 5), and (4, 3).

4. AUTOMORPHISMS OF A VERY GENERAL HYPERSURFACE

Another result of Matsumura and Monsky is that the automorphism group of a very
general hypersurface in Pn+1 with n ≥ 2 and degree d ≥ 3 is trivial [30, Theorem 5]. One
might hope that the same result holds for weighted projective hypersurfaces whenever
the conditions of Theorem 3.1 are met. This turns out to be false, but we have the follow-
ing result under a slightly stronger assumption on the degree.

Theorem 4.1. Suppose that there exists a hypersurface X ⊂ P(a0, . . . , an+1) of degree d which is
quasismooth and well-formed, where n ≥ 1 and d ≥ 5max{a0, . . . , an+1}. Then for a very general
such X , Lin(X) is contained in the center of Aut(P) and is toric. In particular, Lin(X) is abelian.

Proof. Fix a very general hypersurface X = {f = 0} with the given weights and degree.
Any element of Lin(X) comes from an automorphism α : S → S of the graded ring
S = C[x0, . . . , xn+1]. The fact that α descends to X means that α(f) = cf for some constant
c ∈ C.

The conditions of Theorem 4.1 on the weights and degree are strictly stronger than
those of Theorem 3.1, so we know that Lin(X) is finite. In particular, the automorphism α
has finite order. It follows from Lemma 1.4 that after conjugating by some automorphism
of the graded ring S, α becomes diagonal, i.e., maps each xi to a scalar multiple of itself.
Let γ : S → S be such an automorphism that brings α into diagonal form. Define β :=
γαγ−1 and g := γ(f), so that β(g) = cg. For each i, let ci be the scalar such that β(xi) = cixi.
Next, let G := Aut(S) and H := CG(β) be the centralizer of the element β in G.
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We will show that unless G = H , that is, unless β is actually contained in the center
of Aut(S), the fact that {g = 0} has automorphism β forces more than dim(G) − dim(H)
monomials of degree d in the polynomial g to vanish. This would contradict the assump-
tion that f was originally chosen to be very general, since the space of degree d poly-
nomials with β as an automorphism would have codimension greater than dim(G/H).
The homogeneous space G/H , in turn, is isomorphic to the orbit of β under conjugation.
This is the same idea used in Matsumura and Monsky’s proof [30, Theorem 5] of the
analogous fact for hypersurfaces in Pn. (In that paper, they considered both diagonaliz-
able and unipotent automorphisms; since we are working over C instead of an arbitrary
algebraically closed field, we only need to consider the former type.)

We’ve already seen that the dimension of G = Aut(S) is dim(G) = dim(Sa0) + · · · +
dim(San+1). To compute the dimension of the centralizer H , it suffices to compute the
dimension of its Lie algebra; we may do this by seeing which infinitesimal transforma-
tions commute with β. Indeed, let σ : x 7→ x + ϵz be such a transformation, where
z = (z0, . . . , zn+1) is an (n+ 2)-tuple of homogeneous polynomials with zi ∈ Sai . We have
that

σβ(xi) = σ(cixi) = ciσ(xi) = ci(xi + ϵzi),

while
βσ(xi) = β(xi + ϵzi) = cixi + ϵβ(zi).

Comparing these two equations, we have that β and σ commute if and only if β(zi) = cizi;
that is, if and only if each monomial in zi is multiplied by ci when applying β. There-
fore, dim(H) is equal to the cardinality of the set of ordered 2-tuples (i, y) such that
i ∈ {0, . . . , n + 1} and y is a monomial of degree ai with β(y) = ciy. We may also de-
scribe the dimension of the entire group G = Aut(S) in a similar way: it is just the size
of the set of all 2-tuples (i, y) with y a monomial of degree ai. Therefore, dim(G/H) = |Γ|,
where Γ is the set

Γ := {(i, y) : β(y) ̸= ciy}.
If Γ is empty, then G = H , which is what we want. Assuming that it is nonempty, we
will now exhibit a vanishing monomial in g for each (i, y) ∈ Γ, plus exactly one extra.
This would show that the number of vanishing monomials is greater than dim(G/H), as
required.

We’ll begin by finding one vanishing monomial for each (i, y) ∈ Γ. Since X is quasi-
smooth, Proposition 1.2 guarantees that we may choose a monomial of degree d of one of
the following two forms: xk

i or xk
i xj , i ̸= j, for some positive integer k. By default, we’ll

always choose the form xk
i when ai actually divides d. By the assumption on degree, we

have k ≥ 5 in either case (if k < 5 and kai + aj = d for some i, j, then we must have k = 4,
ai = aj by the assumption on degree, so 5ai = d and we can choose x5

i instead).

If ai divides d, consider the pair of monomials {xk−1
i y, xk−2

i y2}. Since (i, y) ∈ Γ, β(y) =
cyy where cy ̸= ci. But then, our two monomials are multiplied by ck−1

i cy and ck−2
i c2y,

respectively, under β. These constants cannot be equal or else we would have cy = ci. If
both monomials had nonzero coefficients in g, that would contradict the fact that β(g) =
cg. Therefore, at least one monomial of the pair vanishes in g. The same reasoning works
for the pair {xk−1

i yxj, x
k−2
i y2xj} in the event that we began with xk

i xj of degree d instead.
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This argument exhibits exactly |Γ| = dim(G/H) distinct vanishing monomials in the
polynomial g. They are all distinct because any two pairs of monomials chosen above
are disjoint. This follows from the fact that we can recover the pair (i, y) uniquely from
either monomial of the pair. This works as follows: given a monomial xI belonging to
the pair we created from (i, y) ∈ Γ, find an index i′ such that: (1) the corresponding
weight ai′ is maximal among all variables appearing in xI with exponent at least 2, and
(2) the exponent of xi′ is itself maximal among variables with indices satisfying the first
condition. Examining the forms of the monomials we chose above, one can show that
since k − 2 > 2, the index i′ identified by this procedure must be unique and equal to i. If
we have two elements (i, y1) and (i, y2) in Γ with y1 ̸= y2, it’s clear that the chosen pairs of
monomials are disjoint. Thus, y is also uniquely determined.

The final step is to find just one extra monomial in g that vanishes. To do this, we’ll
make a slight modification to the list of pairs above, without breaking the disjointness
property of the previous paragraph. Since Γ is nonempty, we can fix a particular element
(i, y) ∈ Γ. Depending on the properties of i and y, we find two vanishing monomials
associated to (i, y) rather than just one as follows:

• If we chose xk
i with degree d (here k ≥ 5) and y is not equal to some other variable

xi′ , replace the pair {xk−1
i y, xk−2

i y2} with the two pairs {xk
i , x

k−1
i y} and {xk−2

i y2, xk−3
i y3}.

We can do the same modification when we have xk
i xj of degree d (and k ≥ 5, y not

linear) instead. None of the new monomials we’ve introduced can repeat among
the ones we previously found for other elements in Γ. We may now find two van-
ishing monomials for (i, y) instead of one.

• If xk
i has degree d with k ≥ 5 and y = xi′ , then we still replace the pair {xk−1

i xi′ , x
k−2
i x2

i′}
with the two pairs {xk

i , x
k−1
i xi′} and {xk−2

i x2
i′ , x

k−3
i x3

i′}. However, the latter pair
overlaps with the one we found for (i′, xi) ∈ Γ in the special case that k = 5. To
remedy the issue in this one case, also replace the pair {xix

4
i′ , x

2
ix

3
i′} associated to

(i′, xi) with {x5
i′ , xix

4
i′}. As before, the process would be the same if we had started

with xk
i xj of degree d in the beginning; no repeats are introduced.

By contradiction, we’ve now shown that G = H so that β is in the center of Aut(S).
This means that α = γ−1βγ = β, and more generally that α is diagonal in any choice of
coordinates. The induced automorphism of P(a0, . . . , an+1) is therefore always toric, as
claimed. □

For hypersurfaces satisfying the condition d ≥ 5max{a0, . . . , an+1} in Theorem 4.1, the
stronger statement that Lin(X) = {1} for X very general is not always true.

Example 4.2. Consider the family of hypersurfaces of degree 180 in P3(36, 31, 30, 25). The
general X in this family is quasismooth and well-formed. Furthermore, the weights and
degree satisfy the hypothesis of Theorem 4.1. However, since the only monomial of de-
gree 180 involving the variable x0 of weight 36 is x5

0, any quasismooth X has a non-trivial
automorphism of order 5 given by x0 7→ ζx0 for ζ a primitive fifth root of unity. As
predicted by the theorem, this automorphism is in the center of Aut(P).
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Example 4.3. Here’s another example where the degree is not in the range of Theorem 4.1
but there is still a non-trivial automorphism in the center of Aut(P). Consider the family of
hypersurfaces of degree 48 in P(16, 13, 12, 9). The general X in this family is quasismooth
and well-formed, but the only monomial of degree 48 involving x0 is x3

0. Therefore, X
always has a non-trivial automorphism of order 3 given by x0 7→ ζx0 for ζ a primitive
third root of unity.

In a similar way, one can construct examples where d is arbitrarily large relative to the
maximum of the weights, but non-trivial automorphisms still exist for any quasismooth
X . By having multiple “isolated” weights, generic automorphism groups can be made to
contain any abelian group.

Further, in the range where the conditions of Theorem 3.1 apply but those of Theo-
rem 4.1 do not (i.e., when the degree satisfies 2max{a0, . . . , an+1} ≤ d < 5max{a0, . . . , an+1}),
there are many examples of hypersurfaces with generic automorphisms outside the cen-
ter of Aut(P). These show that Theorem 4.1 is close to optimal.

Example 4.4 (Hyperelliptic curves, revisited). We saw above that hyperelliptic curves of
genus g naturally embed via the canonical map as X2g+2 ⊂ P2(g + 1, 1, 1). Conversely,
the general hypersurface of this degree is a hyperelliptic curve; up to a transformation
of weighted projective space, a general equation becomes x2

0 + f(x1, x2) = 0 and gives
a double cover of P1. The hyperelliptic involution is given by x0 7→ −x0, which is a
nontrivial automorphism of P2(g+1, 1, 1) that descends to X . Further, this automorphism
is not in the center of Aut(P).

Similar reasoning works for other families of hypersurfaces Xd ⊂ P(a0, . . . , an+1) in
higher dimensions whenever a0 = d/2; X always has the involution given by the double
cover, and this involution is often not in the center of Aut(P).

Example 4.5. It’s well known that any cubic plane curve has non-trivial linear automor-
phisms. Indeed, any smooth complex cubic plane curve X3 ⊂ P2(1, 1, 1) = P2 is projec-
tively equivalent to a curve in Hesse normal form

x3 + y3 + z3 = 3Cxyz,

where C ∈ C, C3 ̸= 1. This result dates back at least to the late 19th century [41, v.3, p.22].
The curve X defined by this equation has a linear automorphism group of order at least
18 (in fact, the order equals 18 except when C takes one of a handful of special values [3,
Corollary 3.10]). For general C, this group is generated by permutations of x, y, z and the
transformation (x : y : z) 7→ (x : ζy : ζ2z) for ζ a primitive third root of unity. It acts
transitively on the nine flex points of the curve, and is furthermore non-abelian. Since
Aut(P2) = PGL3(C) is centerless, all non-trivial automorphisms in this group must be
outside the center.

In the world of weighted projective hypersurfaces, we can bootstrap this example to
any number of dimensions by looking at families such as X15 ⊂ P4(5, 5, 5, 3, 3). The vari-
ables corresponding to weights of 3 and 5 never mix, so we can again change coordinates
so that the equation f defining X assumes Hesse normal form in the first three variables.
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Then, the transformations above are still automorphisms of f , leaving the variables of
weight 3 unchanged.

Example 4.6. Examples of generic non-central automorphisms with d = 4max{a0, . . . , an+1}
also exist because of the fact that any quartic “hypersurface” in P1, that is, a collection
of four general points, has nontrival linear automorphism group. More precisely, let
p1, p2, p3, p4 ∈ P1 be four general points. Any automorphism of P1 must preserve the
cross-ratio of these four points, and the stabilizer of the cross-ratio under the permutation
action of S4 on these points is the Klein four-group K = {id, (12)(34), (13)(24), (14)(23)}.
Further, since PGL2(C) is three-transitive, there is an automorphism mapping p1, p2 and
p3 according to any permutation σ ∈ K; by cross-ratio considerations, it also acts as σ on
the fourth. It follows that the subgroup of PGL2(C) preserving this set of four points is
isomorphic to K ∼= Z/2⊕ Z/2.

We can pick matrices in GL2(C) which descend to these transformations and preserve
the quartic equation in two variables defining the given set of four points. This construc-
tion allows us to find many positive-dimensional examples with non-central automor-
phisms. For instance, let X20 ⊂ P3(5, 5, 4, 4) be very general. Then X has nontrivial auto-
morphisms defined by the same linear transformations as above in the first two variables
and the identity on the variables of weight 4.
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