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1. INTRODUCTION

This note contains some supporting code for the paper “Hypersurfaces with large au-
tomorphism groups.” We used both MAGMA and GAP to calculate invariant polynomials or
their degrees, though many of the results of these calculations were to confirm existing
results in the literature.

The main tools are as follows: in MAGMA, one can create a matrix group object and then
use the function InvariantsOfDegree to find invariant polynomials. We can do sim-
ilarly for semi-invariant polynomials because semi-invariants are invariants of normal
subgroups with abelian quotient (see Lemma 1.3 of the main paper).

Alternatively, GAP has databases of representations of finite groups. The function MolienSeries

computes the power series whose coefficients are the dimensions of each graded piece of
the invariant ring of your given representation.

The sections below provide the implementations of these functions for various compu-
tations performed in the paper. The references for the matrix generators are given in the
main paper.

2. N = 2

2.1. Binary Icosahedral Group 2.A5. In appropriate coordinates, the generators for the
binary icosahedral group 2.A5 of order 120 are

M1 =

(
−ϵ3 0
0 −ϵ2

)
,M2 =

1√
5

(
−ϵ+ ϵ4 ϵ2 − ϵ3

ϵ2 − ϵ3 ϵ− ϵ4,

)
,

where ϵ is a primitive 5th root of unity.

MAGMA implementation:

K<z> := CyclotomicField(5);

M1 := Matrix(K,2,2,[-z^3,0, 0,-z^2]);

M2 := 1/(2*z + 2*z^4 + 1)*Matrix(K,2,2,[-z+z^4, z^2-z^3, z^2-z^3, z-z^4]);

G := MatrixGroup<2,K | M1,M2>;

InvariantsOfDegree(G,12);

The code above returns the smallest degree invariant polynomial of this group: xy(x10+
11x5y5 + y10).

Alternatively, we could use GAP:
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gap> G := AtlasGroup("2.A5");

Group([ (1,2,5,4)(3,6,8,7)(9,13,11,14)(10,15,12,16)(17,19,18,20)(21,24,23,22),

(1,3,2)(4,5,8)(6,9,10)(7,11,12)(13,16,17)(14,15,18)(19,21,22)(20,23,24) ])

The AtlasGroup function contains many common groups, such as the binary icosahe-
dral group.

gap> Display(Irr(G));

[1, 1, 1, 1, 1, 1, 1, 1, 1],

[2, E(5)+E(5)^4, E(5)^2+E(5)^3, -1, 0, 1, -E(5)-E(5)^4, -2, -E(5)^2-E(5)^3],

[2, E(5)^2+E(5)^3, E(5)+E(5)^4, -1, 0, 1, -E(5)^2-E(5)^3, -2, -E(5)-E(5)^4],

[3, -E(5)^2-E(5)^3, -E(5)-E(5)^4, 0, -1, 0, -E(5)^2-E(5)^3, 3, -E(5)-E(5)^4],

[3, -E(5)-E(5)^4, -E(5)^2-E(5)^3, 0, -1, 0, -E(5)-E(5)^4, 3, -E(5)^2-E(5)^3],

[4, -1, -1, 1, 0, 1, -1, 4, -1],

[4, -1, -1, 1, 0, -1, 1, -4, 1],

[5, 0, 0, -1, 1, -1, 0, 5, 0],

[6, 1, 1, 0, 0, 0, -1, -6, -1]

This command gives you the character table of G, where each row corresponds to an
irreducible representation of G (over C) and each column the trace of the matrix for one
conjugacy class of elements of G. The first column is the trace of the identity matrix, so
it tells you the dimension of the representation. So G has 9 irreducible representations
of dimensions 1, 2, 2, 3, 3, 4, 4, 5, and 6. In this case, we’re interested in the embeddings
G ⊂ GL2(C), so we’ll look at the irreducible representations of dimension 2 (there are two
of them, but they have the same degrees of invariants).

gap> List([ 0 .. 30 ], i -> ValueMolienSeries( MolienSeries(Irr(G)[2]),i));

[1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1]

This returns the first 30 coefficients of the Molien series of this representation. It con-
firms that the first (non-constant) invariant polynomial occurs in degree 12.

2.2. Binary Octahedral and Tetrahedral Groups. In appropriate coordinates, the gener-
ators for the binary octahedral group 2.S4 of order 48 are

M1 =
1

2

(
1 + i 1 + i
−1 + i 1− i

)
,M2 =

(
0 1
−1 0

)
,M3 =

(
ϵ 0
0 ϵ−1

)
,

where ϵ is a primitive 8th root of unity.

The binary tetrahedral group 2.A4 is a subgroup of the above group of index 2, which
is generated by the first two matrices M1,M2.

MAGMA implementation:

K<z> := CyclotomicField(8);

M1 := 1/2*Matrix(K,2,2,[1+z^2,1+z^2, -1+z^2,1-z^2]);

M2 := Matrix(K,2,2,[0,1, -1,0]);

M3 := Matrix(K,2,2, [z,0, 0,z^7]);

G := MatrixGroup<2,K | M1,M2,M3>; //binary octahedral group 2.S4
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H := MatrixGroup<2,K | M1,M2>; //binary tetrahedral group 2.A4

The only normal subgroup of 2.S4 with abelian quotient is 2.A4 ⊂ 2.S4, so a semi-
invariant polynomial of 2.S4 must actually be an invariant polynomial of 2.A4. MAGMA

confirms that the smallest degree invariant polynomial of 2.A4 has degree 6, and equals
x5
1x2 − x1x

5
2.

The only normal subgroup of 2.A4 with abelian quotient is the preimage of the normal
Klein four-group in A4 ⊂ PGL2(C), so a semi-invariant polynomial of 2.A4 must actually
be an invariant polynomial of this subgroup. MAGMA confirms that the smallest degree
invariant polynomial for this subgroup has degree 4.

2.3. Exceptional Hypersurfaces Constructed Using N = 2 Groups. Just to doublecheck
that our examples are really correct, let’s construct the groups Lin(f) explicitly in each
case.

Example 2.1. Let X ⊂ P3 be the degree 6 surface defined by the following equation:

x5
0x1 − x0x

5
1 + x5

2x3 − x2x
5
3 = 0.

We define the following 2× 2 matrices:

M1 =
1

2

(
1 + i 1 + i
−1 + i 1− i

)
,M2 =

(
0 1
−1 0

)
,M3 =

(
ϵ 0
0 ϵ19

)
,

where ϵ is a primitive 24th root of unity with ϵ6 = i.

Let the group G ⊂ GL4(C) be generated by block matrices of the form(
Mi 0
0 Mj

)
,

for i, j ∈ {1, 2, 3} and the block matrix (
0 I2
I2 0

)
.

MAGMA Implementation:

K<y> := CyclotomicField(24);

z := y^3;

M1 := 1/2*Matrix(K,2,2,[1+z^2,1+z^2, -1+z^2,1-z^2]);

M2 := Matrix(K,2,2,[0,1, -1,0]);

M3 := Matrix(K,2,2, [y,0, 0,y^19]);

B1 := DiagonalJoin(M1,M1);

B2 := DiagonalJoin(M1,M2);

B3 := DiagonalJoin(M1,M3);

B4 := DiagonalJoin(M2,M1);

B5 := DiagonalJoin(M2,M2);

B6 := DiagonalJoin(M2,M3);

B7 := DiagonalJoin(M3,M1);
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B8 := DiagonalJoin(M3,M2);

B9 := DiagonalJoin(M3,M3);

B10 := Matrix(K,4,4,[0,0,1,0, 0,0,0,1, 1,0,0,0, 0,1,0,0]);

G := MatrixGroup<4,K | B1,B2,B3,B4,B5,B6,B7,B8,B9,B10>;

This group G has order 41472 and equals Lin(f), where f is the polynomial above defin-
ing the surface.

Example 2.2. Let X ⊂ P3 be the degree 12 surface defined by the following equation:

x0x1(x
10
0 + 11x5

0x
5
1 + x10

1 ) + x2x3(x
10
2 + 11x5

2x
5
3 + x10

3 ) = 0.

We define the following 2× 2 matrices:

M1 =

(
ζ 0
0 ζ49

)
,M2 =

1√
5

(
−ϵ+ ϵ4 ϵ2 − ϵ3

ϵ2 − ϵ3 ϵ− ϵ4,

)
,

where ζ is a primitive 60th root of unity and ϵ = ζ12.

Let the group G ⊂ GL4(C) be generated by block matrices of the form(
Mi 0
0 Mj

)
,

for i, j ∈ {1, 2} and the block matrix (
0 I2
I2 0

)
.

MAGMA Implementation:

K<y> := CyclotomicField(60);

z := y^12;

M1 := Matrix(K,2,2,[y,0, 0,y^49]);

M2 := 1/(2*z + 2*z^4 + 1)*Matrix(K,2,2,[-z+z^4, z^2-z^3, z^2-z^3, z-z^4]);

G := MatrixGroup<2,K | M1,M2>;

B1 := DiagonalJoin(M1,M1);

B2 := DiagonalJoin(M1,M2);

B3 := DiagonalJoin(M2,M1);

B4 := DiagonalJoin(M2,M2);

B5 := Matrix(K,4,4,[0,0,1,0, 0,0,0,1, 1,0,0,0, 0,1,0,0]);

G := MatrixGroup<4,K | B1,B2,B3,B4,B5>;

This group G has order 1036800 and equals Lin(f), where f is the polynomial above
defining the surface.

Example 2.3. Let X ⊂ P5 be the degree 12 hypersurface defined by the equation

x0x1(x
10
0 + 11x5

0x
5
1 + x10

1 ) + x2x3(x
10
2 + 11x5

2x
5
3 + x10

3 ) + x4x5(x
10
4 + 11x5

4x
5
5 + x10

5 ) = 0.

We define the following 2× 2 matrices:
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M1 =

(
ζ 0
0 ζ49

)
,M2 =

1√
5

(
−ϵ+ ϵ4 ϵ2 − ϵ3

ϵ2 − ϵ3 ϵ− ϵ4,

)
,

where ζ is a primitive 60th root of unity and ϵ = ζ12.

Let the group G ⊂ GL6(C) be generated by block matrices of the formMi 0 0
0 Mj 0
0 0 Mk

 ,

for i, j ∈ {1, 2} and the block matrices 0 I2 0
I2 0 0
0 0 I2

 ,

 0 I2 0
0 0 I2
I2 0 0

 .

MAGMA Implementation:

K<y> := CyclotomicField(60);

z := y^12;

M1 := Matrix(K,2,2,[y,0, 0,y^49]);

M2 := 1/(2*z + 2*z^4 + 1)*Matrix(K,2,2,[-z+z^4, z^2-z^3, z^2-z^3, z-z^4]);

G := MatrixGroup<2,K | M1,M2>;

B1 := DiagonalJoin(M1,DiagonalJoin(M1,M1));

B2 := DiagonalJoin(M1,DiagonalJoin(M1,M2));

B3 := DiagonalJoin(M1,DiagonalJoin(M2,M1));

B4 := DiagonalJoin(M1,DiagonalJoin(M2,M2));

B5 := DiagonalJoin(M2,DiagonalJoin(M1,M1));

B6 := DiagonalJoin(M2,DiagonalJoin(M1,M2));

B7 := DiagonalJoin(M2,DiagonalJoin(M2,M1));

B8 := DiagonalJoin(M2,DiagonalJoin(M2,M2));

B9 := Matrix(K,6,6,[0,0,1,0,0,0, 0,0,0,1,0,0, 1,0,0,0,0,0, 0,1,0,0,0,0,

0,0,0,0,1,0, 0,0,0,0,0,1]);

B10 := Matrix(K,6,6,[0,0,1,0,0,0, 0,0,0,1,0,0, 0,0,0,0,1,0, 0,0,0,0,0,1,

1,0,0,0,0,0, 0,1,0,0,0,0]);

G := MatrixGroup<6,K | B1,B2,B3,B4,B5,B6,B7,B8,B9,B10>;

This group G has order 2239488000 and equals Lin(f), where f is the polynomial above
defining the fourfold.

3. N = 3

For N = 3, we are interested in primitive subgroups of GL3(C) which have [G : Z(G)] >
3! · 33−1 = 54.



6 LOUIS ESSER AND JENNIFER LI

3.1. Three-dimensional Representation of A5. In appropriate coordinates, the genera-
tors for the subgroup A5 ⊂ GL3(C) are

M1 =

1 0 0
0 cos(2π/5) sin(2π/5)
0 − sin(2π/5) cos(2π/5)

 ,M2 =
1√
5

 1 2 0
−2 1 0

0 0 −
√
5

 .

MAGMA Implementation:

K<y> := CyclotomicField(20);

z := y^4;

i := y^5;

M1 := Matrix(K,3,3, [1,0,0, 0,(z+z^4)/2,-i*(z-z^4)/2, 0,-i*(z^4-z)/2,(z+z^4)/2]);

M2 := 1/(2*z+2*z^4+1)*Matrix(K,3,3, [1,2,0, 2,-1,0, 0,0,-(2*z+2*z^4+1)]);

G := MatrixGroup<3,K | M1,M2>;

MAGMA calculates that the smallest degree semi-invariant polynomial is x2 + y2 + z2, and
that the next invariant is in degree 4. The only degree 4 invariant is the square of the
polynomial above.

3.2. The Klein group PSL2(F7). In appropriate coordinates, the generators for the sub-
group PSL2(F7) ⊂ GL3(C) are

M1 =

ϵ4 0 0
0 ϵ2 0
0 0 ϵ

 ,M2 =

0 0 1
1 0 0
0 1 ϵ

 ,M3 = α

 ϵ− ϵ6 ϵ2 − ϵ5 ϵ4 − ϵ3

ϵ2 − ϵ5 ϵ4 − ϵ3 ϵ− ϵ6

ϵ4 − ϵ3 ϵ− ϵ6 ϵ2 − ϵ5

 ,

where ϵ is a primitive 7th root of unity and α = 1√
−7

.

MAGMA Implementation:

K<z> := CyclotomicField(7);

M1 := Matrix(K,3,3, [z^4,0,0, 0,z^2,0, 0,0,z]);

M2 := Matrix(K,3,3, [0,0,1, 1,0,0, 0,1,0]);

M3 := -1/(2*z^4+2*z^2+2*z+1)*Matrix(K,3,3, [z-z^6,z^2-z^5,z^4-z^3,

z^2-z^5,z^4-z^3,z-z^6, z^4-z^3,z-z^6,z^2-z^5]);

G := MatrixGroup<3,K | M1,M2,M3>;

MAGMA confirms that the smallest degree semi-invariant polynomial is the Klein quartic
x3y + y3z + z3x = 0.

3.3. The Valentiner Group 3.A6. In appropriate coordinates, the generators for the sub-
group 3.A6 ⊂ GL3(C) are

M1 =

−1 0 0
0 1 0
0 0 −1

 ,M2 =

0 1 0
0 0 1
1 0 0

 ,M3 =

1 0 0
0 0 ζ2

0 −ζ 0

 ,M4 =
1

2

 1 τ τ−1

τ−1 τ 1
τ −1 τ−1

 ,

where ζ is a primitive third root of unity and τ = 1+
√
5

2
.
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MAGMA Implementation:

K<x> := CyclotomicField(15);

y := x^3;

z := x^5;

M1 := Matrix(K,3,3, [-1,0,0, 0,1,0, 0,0,-1]);

M2 := Matrix(K,3,3, [0,0,1, 1,0,0, 0,1,0]);

M3 := Matrix(K,3,3, [1,0,0, 0,0,z^2, 0,-z,0]);

M4 := 1/2*Matrix(K,3,3, [1,1/(y+y^4+1),-(y+y^4+1), 1/(y+y^4+1),(y+y^4+1),1,

(y+y^4+1),-1,1/(y+y^4+1)]);

G := MatrixGroup<3,K | M1,M2,M3,M4>;

MAGMA confirms that the smallest degree invariant polynomial is a unique polynomial
of degree 6 (the next smallest invariant polynomial has degree 12).

3.4. The Hessian Group and its Subgroups. The Hessian subgroup of GL3(C) is the
group generated by the following matrices.

M1 =

1 0 0
0 ω 0
0 0 ω2

 ,M2 =

0 1 0
0 0 1
1 0 0

 ,M3 =
1

i
√
3

1 1 1
1 ω ω2

1 ω2 ω

 ,M4 =

ϵ 0 0
0 ϵ 0
0 0 ϵω

 ,

where ω is a primitive third root of unity and ϵ is a primitive 9th root of unity with ϵ3 = ω2.

MAGMA Implementation:

K<z> := CyclotomicField(9);

M1 := Matrix(K,3,3, [1,0,0, 0,z^6,0, 0,0,z^3]);

M2 := Matrix(K,3,3, [0,1,0, 0,0,1, 1,0,0]);

M3 := Matrix(K,3,3, [z,0,0, 0,z,0, 0,0,z^7]);

M4 := Matrix(K,3,3, [1,1,1, 1,z^6,z^3, 1,z^3,z^6])*1/(2*z^6+1);

G := MatrixGroup<3,K| M1,M2,M3,M4>;

The group G has semidirect product structure G ∼= H3⋉SL2(F3), where the Heisenberg
group H3 is the group of order 27 generated by M1,M2, and ωI3.

There are three primitive subgroups of the Hessian group G: G itself, a group H1 of
index 3, and a group H2 of index 6 (from Blichfeldt). We can find these in MAGMA using
the “Subgroups” function. MAGMA confirms that the smallest degree semi-invariant poly-
nomial has degree 6 for each of these three groups.

3.5. Exceptional Hypersurfaces Constructed Using N = 3 Groups.

Example 3.1. Let X ⊂ P2 be the degree 4 curve defined by

x3
0x1 + x3

1x2 + x3
2x0 = 0.

We define the following 3× 3 matrices:



8 LOUIS ESSER AND JENNIFER LI

M1 = i

ϵ4 0 0
0 ϵ2 0
0 0 ϵ

 ,M2 =

0 0 1
1 0 0
0 1 ϵ

 ,M3 = α

 ϵ− ϵ6 ϵ2 − ϵ5 ϵ4 − ϵ3

ϵ2 − ϵ5 ϵ4 − ϵ3 ϵ− ϵ6

ϵ4 − ϵ3 ϵ− ϵ6 ϵ2 − ϵ5

 ,

where ϵ is a primitive 7th root of unity and α = 1√
−7

.

Let the group G ⊂ GL3(C) be generated by M1,M2,M3.

MAGMA Implementation:

K<y> := CyclotomicField(28);

z := y^4;

i := y^7;

M1 := i*Matrix(K,3,3, [z^4,0,0, 0,z^2,0, 0,0,z]);

M2 := Matrix(K,3,3, [0,0,1, 1,0,0, 0,1,0]);

M3 := -1/(2*z^4+2*z^2+2*z+1)*Matrix(K,3,3, [z-z^6,z^2-z^5,z^4-z^3,

z^2-z^5,z^4-z^3,z-z^6, z^4-z^3,z-z^6,z^2-z^5]);

G := MatrixGroup<3,K | M1,M2,M3>;

This group G has order 648 and equals Lin(f), where f is the polynomial above defining
the curve. (Note that the only difference between this and the PSL2(F7) example is the
central extension by µ4.)

Example 3.2. Let X ⊂ P2 be the degree 6 curve defined by

10x3
0x

3
1 + 9(x5

0 + x5
1)x2 − 45x2

0x
2
1x

2
2 − 135x0x1x

4
2 + 27x6

2 = 0.

We define the following 3× 3 matrices:

M1 =

1 0 0
0 −1 0
0 0 1

 ,M2 =

0 1 0
0 0 1
1 0 0

 ,M3 =

1 0 0
0 0 ζ2

0 −ζ 0

 ,M4 =
1

2

 1 τ τ−1

τ−1 τ 1
τ −1 τ−1

 ,

where ζ is a primitive third root of unity and τ = 1+
√
5

2
.

Let the group G ⊂ GL3(C) be generated by M1,M2,M3,M4.

MAGMA Implementation:

K<x> := CyclotomicField(15);

y := x^3;

z := x^5;

M1 := Matrix(K,3,3, [1,0,0, 0,-1,0, 0,0,1]);

M2 := Matrix(K,3,3, [0,0,1, 1,0,0, 0,1,0]);

M3 := Matrix(K,3,3, [1,0,0, 0,0,z^2, 0,-z,0]);

M4 := 1/2*Matrix(K,3,3, [1,1/(y+y^4+1),-(y+y^4+1), 1/(y+y^4+1),(y+y^4+1),1,

(y+y^4+1),-1,1/(y+y^4+1)]);

G := MatrixGroup<3,K | M1,M2,M3,M4>;
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This group G has order 2160 and equals Lin(f), where f is equal to the polynomial
above after a change change of coordinates. (Note that the only difference between this
and the 3.A6 example is the central extension by µ2.) We don’t write the matrix generators
in the coordinates for the equation above because the matrices become very messy in
these coordinates.

4. N = 4

4.1. Tensor Products of N = 2 Groups. One way to construct subgroups of GL4(C) is to
take tensor products of subgroups of GL2(C) as follows. For two matrices

A =

(
a b
c d

)
, B =

(
e f
g h

)
,

the tensor product is 
ae af be bf
ag ah bg bh
ce cf de df
cg ch df dh

 .

In this way, we can begin with G1 ⊂ GL2(C) and G2 ⊂ GL2(C) and take tensor products
of all pairs of matrix generators to get a map G1 × G2 → GL4(C). This map is almost
injective, except it takes (−I2,−I2) 7→ I4, so for the primitive subgroup pairs of GL2(C), it
will always have kernel of order 2. Blichfeldt classifies the subgroups that arise this way,
and some extensions of these groups, on pg. 165-169 of his book. In his numbering, the
groups with [G : Z(G)] ≥ 648 are

• Group 4◦: ((2.A4)× (2.A5))/µ2, [G : Z(G)] = 720
• Group 6◦: ((2.S4)× (2.A5))/µ2, [G : Z(G)] = 1440
• Group 7◦: ((2.A5)× (2.A5))/µ2, [G : Z(G)] = 3600
• Group 11◦: Extension of case 7 with [G : Z(G)] = 7200
• Group 12◦: Extension of ((2.S4)× (2.S4))/µ2 with [G : Z(G)] = 1152

Here’s the MAGMA implementation of all these groups:

//Tensor products of GL_2(C) groups:

//Generators for binary icosahedral subgroup of GL2(C)

K<y> := CyclotomicField(40);

z := y^8;

M1 := Matrix(K,2,2,[-z^3,0, 0,-z^2]);

M2 := 1/(2*z + 2*z^4 + 1)*Matrix(K,2,2,[-z+z^4, z^2-z^3, z^2-z^3, z-z^4]);

I := MatrixGroup<2,K | M1,M2>;

t := y^5;

N1 := 1/2*Matrix(K,2,2,[1+t^2,1+t^2, -1+t^2,1-t^2]);

N2 := Matrix(K,2,2,[0,1, -1,0]);

N3 := Matrix(K,2,2, [t,0, 0,t^7]);

O := MatrixGroup<2,K | N1,N2,N3>; //binary octahedral group 2.S4

T := MatrixGroup<2,K | N1,N2>; //binary tetrahedral group 2.A4
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B1 := TensorProduct(M1,M1);

B2 := TensorProduct(M1,M2);

B3 := TensorProduct(M2,M1);

B4 := TensorProduct(M2,M2);

B5 := TensorProduct(N1,N1);

B6 := TensorProduct(N1,N2);

B7 := TensorProduct(N1,N3);

B8 := TensorProduct(N2,N1);

B9 := TensorProduct(N2,N2);

B10 := TensorProduct(N2,N3);

B11 := TensorProduct(N3,N1);

B12 := TensorProduct(N3,N2);

B13 := TensorProduct(N3,N3);

B14 := TensorProduct(M1,N1);

B15 := TensorProduct(M1,N2);

B16 := TensorProduct(M1,N3);

B17 := TensorProduct(M2,N1);

B18 := TensorProduct(M2,N2);

B19 := TensorProduct(M2,N3);

//Now I’ll construct those groups in Blichfeldt Sections 121 and 122

//which have center of index at least 648

//4 in his notation, with [G4:Z(G4)] = 720

G4 := MatrixGroup<4,K | B14,B15,B17,B18>;

//6 in his notation, with [G6:Z(G6)] = 1440

G6 := MatrixGroup<4,K | B14,B15,B16,B17,B18,B19>;

//7 in his notation, with [G7:Z(G7)] = 3600

G7 := MatrixGroup<4,K | B1,B2,B3,B4>;

//11 in his notation, with [G11:Z(G11)] = 7200

T1 := t*Matrix(K,4,4, [1,0,0,0, 0,0,1,0, 0,1,0,0, 0,0,0,1]);

G11 := MatrixGroup<4,K | B1,B2,B3,B4,T1>;

//12 in his notation, with [G12:Z(G12)] = 1152

G12 := MatrixGroup<4,K | B5,B6,B7,B8,B9,B10,B11,B12,B13,T1>;

As Blichfeldt notes on pg. 169, all these groups leave the quadric x0x3 − x1x2 = 0
invariant, so this gives a semi-invariant polynomial for each group of degree 2. However,
the only semi-invariant polynomials of these groups are powers of this quadric for d < 12
for 4◦, 6◦, 7◦, 11◦, and for d < 6 for 12◦ (this can be verified with MAGMA).

4.2. The group 2.A7. For fun, here are the generators of 2.A7 ⊂ GL4(C) (from Blichfeldt):

M1 =


1 0 0 0
0 β 0 0
0 0 β4 0
0 0 0 β2

 ,M2 =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 ,M3 =
1√
−7


p2 1 1 1
1 −q −p −p
1 −p −q −p
1 −p −p −q

 ,
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where β is a primitive 7th root of unity, p = β + β2 + β4, and q = β3 + β5 + β6.

MAGMA Implementation:

K<z> := CyclotomicField(7);

sqrtneg7 := 1 + 2*z + 2*z^2 + 2*z^4;

p := z + z^4 + z^2;

q := z^3 + z^5 + z^6;

M1 := Matrix(K,4,4,[1,0,0,0, 0,z,0,0, 0,0,z^4,0, 0,0,0,z^2]);

M2 := Matrix(K,4,4,[1,0,0,0, 0,0,1,0, 0,0,0,1, 0,1,0,0]);

M3 := 1/sqrtneg7*Matrix(K,4,4, [p^2,1,1,1, 1,-q,-p,-p, 1,-p,-q,-p, 1,-p,-p,-q]);

G := MatrixGroup<4,K|M1,M2,M3>;

MAGMA and GAP both confirm that the minimum degree of a polynomial semi-invariant
(same as invariant here) is 8.

4.3. The group Sp4(F3). Here are the generators of Sp4(F3) ⊂ GL4(C) (from Blichfeldt):

M1 =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 ,M2 =


1 0 0 0
0 1 0 0
0 0 ω 0
0 0 0 ω2

 ,M3 =


ω 0 0 0
0 ω 0 0
0 0 ω 0
0 0 0 1

 ,

M4 =
1√
−3


√
−3 0 0 0
0 1 1 1
0 1 ω ω2

0 1 ω2 ω

 ,M5 =


0 0 −1 0
0 1 0 0
−1 0 0 0
0 0 0 −1

 ,

where ω is a primitive 3rd root of unity.

MAGMA Implementation:

K<z> := CyclotomicField(3);

k := (z^2 - z)/3;

M1 := Matrix(K,4,4,[1,0,0,0, 0,0,1,0, 0,0,0,1, 0,1,0,0]);

M2 := Matrix(K,4,4,[1,0,0,0, 0,1,0,0, 0,0,z,0, 0,0,0,z^2]);

M3 := Matrix(K,4,4,[z,0,0,0, 0,z,0,0, 0,0,z,0, 0,0,0,1]);

M4 := k*Matrix(K,4,4,[1/k,0,0,0, 0,1,1,1, 0,1,z,z^2, 0,1,z^2,z]);

M5 := Matrix(K,4,4,[0,0,-1,0, 0,1,0,0, -1,0,0,0, 0,0,0,-1]);

G := MatrixGroup<4,K|M1,M2,M3,M4,M5>;

MAGMA confirms our previous GAP calculation that the minimum degree of a polynomial
semi-invariant (same as invariant here) is 12.

4.4. Normalizer of the Extra-special Group. The remaining case is the normalizer N of
the extra-special group H4 of order 32 in GL4(C). This group fits into an exact sequence

0 → H̃4 → N → S6 → 0.

Here H̃4 is the product of H4 with µ2. The matrix generators for H4 are
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M1 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,M2 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,M3 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 ,M4 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

To obtain the entire group N we add the two additional generators

M5 =
1 + i√

2


i 0 0 0
0 i 0 0
0 0 1 0
0 0 0 1

 ,M6 =
1 + i

2


−i 0 0 i
0 1 1 0
1 0 0 1
0 −i i 0

 .

MAGMA Implementation:

K<z> := CyclotomicField(8);

M1 := Matrix(K,4,4,[0,0,1,0, 0,0,0,1, 1,0,0,0, 0,1,0,0]);

M2 := Matrix(K,4,4,[0,1,0,0, 1,0,0,0, 0,0,0,1, 0,0,1,0]);

M3 := Matrix(K,4,4,[1,0,0,0, 0,-1,0,0, 0,0,-1,0, 0,0,0,1]);

M4 := Matrix(K,4,4,[1,0,0,0, 0,1,0,0, 0,0,-1,0, 0,0,0,-1]);

M5 := z*Matrix(K,4,4, [z^2,0,0,0, 0,z^2,0,0, 0,0,1,0, 0,0,0,1]);

M6 := (1+z^2)/2*Matrix(K,4,4, [-z^2,0,0,z^2, 0,1,1,0, 1,0,0,1, 0,-z^2,z^2,0]);

G := MatrixGroup<4,K|[M1,M2,M3,M4,M5,M6]>;

There are several subgroups of this group which are primitive: Blichfeldt lists them as
13◦ through 21◦ on pg. 172 of his book. We’ll only be concerned with 16◦ through 21◦

since these have [G : Z(G)] ≥ 648.

We can search through the different subgroups of the group above using MAGMA’s “sub-
groups” function. The calculation gives that all of these have semi-invariants of degree at
least 4, but mostly starting only in degree 8, with two exceptions! The largest exception
(and the only one which gives an exceptional example) is 19◦, which has a semi-invariant
of degree 4. This group is generated by M1,M2,M3,M4,M6 above and

M8 =
1 + i√

2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

(The numbering is because I also coded group 18◦ to check it.) To compute the group
19◦ in MAGMA use (in addition to previous code):

M7 := z*Matrix(K,4,4,[1,0,0,0, 0,z^2,0,0, 0,0,z^2,0, 0,0,0,1]);

M8 := z*Matrix(K,4,4,[1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,-1]);

G18 := MatrixGroup<4,K|[M1,M2,M3,M4,M6,M7]>; // Group 18^o on Blichfeldt pg. 172

G19 := MatrixGroup<4,K|[M1,M2,M3,M4,M6,M8]>; // Group 19^o on Blichfeldt pg. 172

//This last one is Lin(f) for an exceptional example of degree 4
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MAGMA gives that there is a semi-invariant polynomial of degree 4:

x4
0 + x4

1 + x4
2 + x4

3 − 6(x2
0x

2
1 + x2

0x
2
2 + x2

0x
2
3 + x2

1x
2
2 + x2

1x
2
3 + x2

2x
2
3).

Since the center is already µ4, this is already Lin(f) for f the equation above, which is
another exception because |Lin(f)| = 7860 > 24 · 44.

5. N = 6

For N = 6, there are only two groups large enough that we need to analyze. One of
these, a central extension of the Janko group J2, we can analyze using GAP (use AtlasGroup("2.J2"))
since J2 is a simple group. The smallest degree of a semi-invariant is 12, using the Molien
series function and the property that 2.J2 has no nontrivial abelian quotients.

The other group is the largest possible in dimension 6, which Collins writes as 61.U4(3).22.
A paper by Lindsay (cited in main text) gives the matrix generators for this group. Indeed,
this group is generated by all 6 × 6 permutation matrices, all order 3 matrices of deter-
minant 1, and the matrix I6 − Q/3, where Q is the 6 × 6 matrix with all entries equal to
1.

MAGMA Implementation:

//Construction of largest primitive subgroup of GL_6(C); source is

//Lindsay’s "On a six-dimensional projective representation of PSU_4(3)"

K<z> := CyclotomicField(3);

M1 := Matrix(K,6,6,[0,1,0,0,0,0, 1,0,0,0,0,0, 0,0,1,0,0,0,

0,0,0,1,0,0, 0,0,0,0,1,0, 0,0,0,0,0,1]);

M2 := Matrix(K,6,6,[0,1,0,0,0,0, 0,0,1,0,0,0, 0,0,0,1,0,0,

0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0]);

M3 := DiagonalMatrix(K,6, [z,1,1,1,1,z^2]);

M4 := DiagonalMatrix(K,6, [1,z,1,1,1,z^2]);

M5 := DiagonalMatrix(K,6, [1,1,z,1,1,z^2]);

M6 := DiagonalMatrix(K,6, [1,1,1,z,1,z^2]);

M7 := DiagonalMatrix(K,6, [1,1,1,1,z,z^2]);

M8 := 1/3*Matrix(K,6,6, [2,-1,-1,-1,-1,-1, -1,2,-1,-1,-1,-1,

-1,-1,2,-1,-1,-1, -1,-1,-1,2,-1,-1, -1,-1,-1,-1,2,-1, -1,-1,-1,-1,-1,2]);

G := MatrixGroup<6,K|[M1,M2,M3,M4,M5,M6,M7,M8]>;

MAGMA confirms that the smallest degree semi-invariant polynomial for this group has
degree 6. The unique semi-invariant polynomial of this degree is:

5∑
i=0

x6
i − 10

∑
0≤i<j≤5

x3
ix

3
j − 180x0x1x2x3x4x5.

The group constructed above already has center of order 6, so it equals Lin(f) for the
polynomial f above. This gives a new exceptional example!
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6. N = 8

For N = 8, there are again only two groups large enough to require study, and it turns
out neither of them will yield exceptional examples. All we really need for our paper is
that the groups have semi-invariant polynomials only in even degree. For explicitness,
here is a description of the largest group 2.O+

8 (2).2: it is the group generated by all 8 × 8
permutation matrices, all 8 × 8 matrices of determinant 1 and order 2, and the matrix
I8 − P/4, where P is the matrix with all entries equal to 1.

MAGMA Implementation:

//Construction of largest primitive subgroup of GL_8(C); source is

//Lindsay’s "On a six-dimensional projective representation of PSU_4(3)"

K := Rationals();

M1 := Matrix(K,8,8,[0,1,0,0,0,0,0,0, 1,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,

0,0,0,1,0,0,0,0, 0,0,0,0,1,0,0,0, 0,0,0,0,0,1,0,0, 0,0,0,0,0,0,1,0, 0,0,0,0,0,0,0,1]);

M2 := Matrix(K,8,8,[0,1,0,0,0,0,0,0, 0,0,1,0,0,0,0,0, 0,0,0,1,0,0,0,0,

0,0,0,0,1,0,0,0, 0,0,0,0,0,1,0,0, 0,0,0,0,0,0,1,0, 0,0,0,0,0,0,0,1, 1,0,0,0,0,0,0,0]);

M3 := DiagonalMatrix(K,8, [-1,1,1,1,1,1,1,-1]);

M4 := DiagonalMatrix(K,8, [1,-1,1,1,1,1,1,-1]);

M5 := DiagonalMatrix(K,8, [1,1,-1,1,1,1,1,-1]);

M6 := DiagonalMatrix(K,8, [1,1,1,-1,1,1,1,-1]);

M7 := DiagonalMatrix(K,8, [1,1,1,1,-1,1,1,-1]);

M8 := DiagonalMatrix(K,8, [1,1,1,1,1,-1,1,-1]);

M9 := DiagonalMatrix(K,8, [1,1,1,1,1,1,-1,-1]);

M10 := 1/4*Matrix(K,8,8, [3,-1,-1,-1,-1,-1,-1,-1, -1,3,-1,-1,-1,-1,-1,-1,

-1,-1,3,-1,-1,-1,-1,-1, -1,-1,-1,3,-1,-1,-1,-1, -1,-1,-1,-1,3,-1,-1,-1,

-1,-1,-1,-1,-1,3,-1,-1, -1,-1,-1,-1,-1,-1,3,-1, -1,-1,-1,-1,-1,-1,-1,3]);

G := MatrixGroup<8,K|[M1,M2,M3,M4,M5,M6,M7,M8,M9,M10]>;

MAGMA confirms that this only has semi-invariants of even degree.
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