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TOPICS IN ALGEBRAIC GEOMETRY

JÁNOS KOLLÁR

0.1. Grassmannians. Study the family of all linear subspaces of a vector space.
Especially recommended if you are interested in representations of groups like GLn

etc.
Ref. [Has07, Chap.11]
Extensions: [LB09].

0.2. Riemann–Roch on curves. Give a formula for the dimension of the space
of functions with preassigned poles. Much of algebraic geometry starts here.

Ref. [Ful89, Chap.8]
Extensions: You should really learn some cohomology if you plan to go further.

The standard text is [Har77, Chap.III]. Good luck!

0.3. Groebner bases. As you will see, algebraic geometry is good with existence
theorems. Groebner bases give a method that allows one to do actual computations.

Ref: [CLO97, Chap.2]
Extensions: learn the program Macaulay and do some work with it. (With this

you will be mostly on your own since I never used it.)

0.4. Examples of algebraic group actions. Through examples, study algebraic
groups like GLn, PGLn and their actions.

Ref. [Har95, Lect.10]
Extensions: This is a vast topic, one can start with [Hum75] or [Bor91].

0.5. Curve singularities. Local study of plane curves, that is, given a plane curve
C := (f(x, y) = 0), we try to understand C in a small neighborhood of the origin.
First step: near the origin we try to write y as a function of x and give some kind
of infinite series expansion.

Applications: resolution of singularities and understanding the topology of C ∩
(|x|2 + |y|2 = ǫ2) as a subset of the 3-sphere (|x|2 + |y|2 = ǫ2) of radius ǫ.

Ref: [BK86, Sec.8]
Extensions: This is long enough, but one can do other resolution methods

[Kol07b, Chap.1] or higher dimensional singularities [AGZV85].

0.6. Rational varieties. Mostly through examples like plane conics, quadrics and
cubics in P3 study the geometry and arithmetic of rational varieties.

Ref: [KSC04, Chap.1]
Extensions: [Kol08, Secs.1–3] or [Kol02] or [KSC04, Chap.2].

0.7. Elliptic curves. Essentially the study of plane cubic curves and their other
incarnations. The geometry is well understood; many deep open number theoretic
questions remain.

Refs. The most elementary is [Rei88, §2]. You should also go through [Cas91,
Secs.6–9].

Extensions: [Sil09] and much that lies beyond.
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0.8. Elliptic functions. A beautiful treatment is in [Sie88, Chap.1]. Needs only
the basics of 1-variable complex analytic functions.

Extensions. You can continue with [Sie88].

0.9. Hasse principle. First prove that a quadric over Q has a point iff it has a
point over Qp for every p. Then show that the analogous statement fails for cubic
surfaces.

Ref. [Cas91, Secs.1–5], [Ser73, Chap.IV] and [SD62, Mor65].
Extensions: (I am still looking.)

0.10. Tarski-Seidenberg Theorem. A subset X ⊂ Rn is basic semialgebraic if
it is given by conditions pi(x1, . . . , xn) ≥ 0 where the pi are polynomials. Taking
finite unions, intersections, complements we get semialgebraic sets.

Theorem. The projection of a semialgebraic set is again a semialgebraic set.
Start with the complex case: Chevalley’s theorem that images of algebraic vari-

eties are constructible sets.
Ref: [BCR98, Chap.2]
Possible extension: What should be the right notion for subsets of Qn

p?

0.11. Chevalley’s theorem on invariants of finite groups. Let G ⊂ GL(n, k)
be a finite group. We get an action on k[x1, . . . , xn]. The question is: what is the
subring of invariants k[x1, . . . , xn]G ⊂ k[x1, . . . , xn].

Theorem. If k = R and G is generated by reflections then k[x1, . . . , xn]G is again
a polynomial ring.

Ref: [Che55]
Extensions: You should work out the corresponding result for k = C and other

fields. Other directions: [Ben93, Chaps.1–3].

0.12. Simple singularities. We work with power series f(x1, . . . , xn). Two power
series f, g are considered equivalent if there is a coordinate change given by power
series xi 7→ φi(x) such that f(φ1(x), . . . , φn(x)) = g(x).

Given two power series f, g, we can view f + ǫg as perturbations of f . A very
fruitful question of singularity theory asks: what can we say about the perturbations
of a polynomial or power series f?

The aim is to classify those power series f(x1, . . . , xn) that have only finitely
many inequivalent perturbations.

Ref. Probably the best is to think about this and then get the proof from
[KM98, 4.24–25] by replacing Steps 6 and 9. Or you can look at the general case
in [AGZV85, Secs.11–].

Extensions: More than you want is in [AGZV85, Secs.11–15].

0.13. Chow’s theorem. This is the following.
Theorem. Let Z ⊂ CPn be a Euclidean closed subset that is locally definable as

a common zero set of analytic functions. Then Z is algebraic, that is, globally the
common zero set of polynomials.

It is helpful if you are somewhat familiar with several variable complex analytic
functions.

Ref: [Mum95, Chap.4].
Extensions. If you are up to it, read [Ser56].
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0.14. Minimal degree varieties. The aim is to classify irreducible subvarieties
of Pn that are not contained in any linear subspace and whose degree is as small
as possible. Nice concrete geometry.

Ref: [EH87]
Extensions: minimal multiplicity local rings [Sal79]; Castelnuovo bound for space

curves [ACGH85, Sec.III.2]; other extremal examples [Rus00, CMR04].

0.15. Pointless varieties and large fields. The aim is to show that if k is a
field such that there is a geometrically irreducible k-variety without k-points (for
instance if k = R then the conic (x2 + y2 + z2 = 0) ⊂ P2 is such) then there is also
such a plane projective curve.

Ref. [Kol07a, Sec.1]
Extensions. Best is to study the Weil estimates for points over finite fields (I am

still looking for an elementary introduction.).
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