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Preface

The aim of this book is to generalize the moduli theory of algebraic curves—
developed by Riemann, Cayley, Klein, Teichmüller, Deligne and Mumford—to
higher dimensional algebraic varieties.

Starting with the theory of algebraic surfaces worked out by Castelnuovo,
Enriques, Severi, Kodaira, and ending with Mori’s program, it became clear
that the correct higher dimensional analog of a smooth projective curve of
genus ≥ 2 is a smooth projective variety with ample canonical class. We estab-
lish a moduli theory for these objects, their limits and generalizations.

The first attempt to write a book on higher dimensional moduli theory was
the 1993 Summer School in Salt Lake City, Utah. Some notes were written, but
it soon became evident that, while the general aims of a theory were clear, most
of the theorems were open and even many of the basic definitions unsettled.

The project was taken up again at an AIM conference in 2004, which eventu-
ally resulted in solving the moduli-theoretic problems related to singularities;
these were written up in Kollár (2013b). After 30 years, we now have a com-
plete theory, the result of the work of numerous people.

While much of the early work focused on the construction of moduli spaces,
later developments in the theory of stacks emphasized families. We also follow
this approach and spend most of the time understanding families. Once this
is done at the right level, the existence of moduli spaces becomes a natural
consequence.

Acknowledgments. Throughout the years, I learned a lot from my teachers,
colleagues and students. My interest in moduli theory was kindled by my thesis
advisor T. Matsusaka, and the early influences of S. Mori and N.I. Shepherd-
Barron have been crucial to my understanding of the subject.

The original 1993 group included D. Abramovich, V. Alexeev, A. Corti,
A. Grassi, B. Hassett, S. Keel, S. Kovács, T. Luo, K. Matsuki, J. McKernan,
G. Megyesi and D. Morrison; many of them have been active in this area since.
My students A. Corti, S. Kovács, T. Kuwata, E. Szabó, N. Tziolas worked on
various aspects of the early theory.
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Preface 7

I gave several lecture series about moduli. The many comments and correc-
tions of colleagues K. Ascher, G. Farkas, M. Fulger, S. Grushevsky, J. Huh,
J. Li, M. Lieblich, J. Moraga, T. Murayama, A. Okounkov, R. Pandharipande,
Zs. Patakfalvi, C. Raicu, J. Waldron, J. Witaszek, and students C. Araujo,
G. Di Cerbo, A. Hogadi, L. Ji, D. Kim, Y. Liu, A. Sengupta, C. Stibitz, Y-C. Tu,
D. Villalobos-Paz, C. Xu, Z. Zhuang, R. H. Zong have been very helpful.

My collaborators on these topics—K. Altmann, F. Ambro, V. Balaji, F. Ber-
nasconi, J. Bochnak, J. Carvajal-Rojas, P. Cascini, B. Claudon, R. Cluckers,
A. Corti, H. Dao, T. de Fernex, J.-P. Demailly, S. Ejiri, J. Fernandez de Boba-
dilla, A. Ghigi, P. Hacking, B. Hassett, A, Höring, S. Ishii, Y. Kachi, M. Kapov-
ich, S. Kovács, W. Kucharz, K. Kurdyka, M. Larsen, R. Laza, R. Lazars-
feld, B. Lehmann, M. Lieblich, F. Mangolte, M. Mella, S. Mori, M. Mustaţă,
A. Némethi, J. Nicaise, K. Nowak, M. Olsson, J. Pardon, G. Saccà, W. Sawin,
K. Smith, A. Stäbler, Y. Tschinkel, C. Voisin, J. Witaszek, L. Zhang—shared
many of their ideas.

A.J. de Jong, M. Olsson, C. Skinner and T.Y. Yu helped with several issues.
M. Kim, J. Moraga, J. Peng, B. Totaro, F. Zamora and the referees gave many
comments on earlier versions of the manuscript.

Moduli theory has been developed and shaped by the works of many people.
Advances in minimal model theory—especially the series of papers by C. Ha-
con, J. McKernan, and C. Xu—made it possible to extend the theory from
surfaces to all dimensions. The projectivity of moduli spaces was gradually
proved by E. Viehweg, O. Fujino, S. Kovács and Zs. Patakfalvi. After early
works of V. Alexeev and P. Hacking, many examples have been worked out
by V. Alexeev and his co-authors, A. Brunyate, P. Engel, A. Knutson, R. Par-
dini and A. Thompson. Recent works of K. Ascher, D. Bejleri, K. DeVleming,
S. Filipazzi, G. Inchiostro and Y. Liu give very detailed information on impor-
tant examples.

The influences of V. Alexeev, A. Corti, S. Kovács and C. Xu have been
especially significant for me.

Sections 6.5–6.6 were written with K. Altmann, while S. Kovács contributed
to the writing and editing of the whole book.

Financial support was provided by the NSF grant DMS-1901855.



Introduction

In the moduli theory of curves, the main objects—stable curves—are projec-
tive curves C that satisfy two conditions:
• (local) the singularities are nodes, and
• (global) KC is ample.

Generalizing this, Kollár and Shepherd-Barron (1988) posited that in higher
dimensions the objects of the moduli theory—stable varieties—are projective
varieties X, such that
• (local) the singularities are semi-log-canonical, and
• (global) KX is ample.

The theory of semi-log-canonical singularities is treated in Kollár (2013b).
Once the objects of a moduli theory are established, we need to describe the
families that we aim to understand. For curves, the answer is clear: flat, pro-
jective morphisms whose fibers are stable curves.

By contrast, there are too many flat, projective morphisms whose fibers are
stable surfaces; basic numerical invariants are not always constant in such fam-
ilies. The correct notion of (locally) stable families of surfaces was defined
in Kollár and Shepherd-Barron (1988). We describe these in all dimensions,
first for 1-parameter families in Chapter 2, and then over an arbitrary base in
Chapter 3, where seven equivalent definitions of local stability are given in
Definition and Theorem 3.1.

Stable curves with weighted points also appeared in many contexts, and, cor-
respondingly, the general objects in higher dimensions are pairs (X,∆), where
X is a variety and ∆ =

∑
aiDi is a formal linear combination of divisors with

rational or real coefficients. Such a pair (X,∆) is stable iff
• (local) the singularities are semi-log-canonical, and
• (global) KX + ∆ is ample.

The main aim of this book is to complete the moduli theory of stable pairs in
characteristic 0.

Defining the right notion of (locally) stable families of pairs turned out to be
very challenging. The reason is that the divisorial part ∆ is not necessarily flat
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Introduction 9

over the base. Flatness was built into the foundations of algebraic geometry by
Grothendieck, and many new results had to be developed.

Our solution goes back to the works of Cayley (1860, 1862), who associated
a divisor in Gr(1, 3)—the Grassmannian of lines in P3—to any space curve.
More generally, given any subvariety Xd ⊂ Pn and a divisor D on X, there is
a Cayley hypersurface Ca(D) ⊂ Gr(n − d, n). We declare a family of divisors
{Ds : s ∈ S } C-flat if the corresponding Cayley hypersurfaces {Ca(Ds) : s ∈ S }
form a flat family. This turns out to work very well over reduced base schemes,
leading to a complete moduli theory of stable families of pairs over such bases.
This is done in Chapter 4. For the rest of the book the key result is Theo-
rem 4.76, which constructs the universal family of C-flat Mumford divisors
over an arbitrary base. While C-flatness is defined using a projective embed-
ding, it is independent of it over reduced bases, but most likely not in general.

Chapter 5 contains numerical criteria for various fiber-wise constructions to
fit together into a flat family. For moduli theory the most important result is
Theorem 5.1: A flat, projective morphism f : X → S is stable iff the fibers are
stable and the volume of the fibers

(
Kn

Xs

)
is locally constant on S .

Chapter 6 discusses several special cases where flatness is the right no-
tion for the divisor part of a family of stable pairs. This includes all the pairs
(X,∆ :=

∑
aiDi) with ai >

1
2 for every i; see Theorem 6.29.

The technical core of the book is Chapter 7. We develop the notion of K-
flatness, which is a version of C-flatness that is independent of the projective
embedding; see Definition 7.1. It has surprisingly many good properties, listed
in Theorems 7.3–7.5. We believe that this is the ‘correct’ concept for moduli
purposes. However, the proofs are rather nuts-and-bolts; a more conceptual
approach would be very desirable.

All of these methods and results are put together in Chapter 8 to arrive at
Theorem 8.1, which is the main result of the book: The notion of Kollár–
Shepherd-Barron–Alexeev stability for families of stable pairs yields a good
moduli theory, with projective coarse moduli spaces.

Section 8.8 discusses problems that complicate the moduli theory of pairs in
positive characteristic; some of these appear quite challenging.

The remaining chapters are devoted to auxiliary results. Chapter 9 discusses
hulls and husk, a generalization of Quot schemes, that was developed to suit the
needs of higher dimensional moduli theory. Chapter 10 collects sundry results
for which we could not find good references, while Chapter 11 summarizes the
key concepts and theorems of Kollár (2013b), as well as the main results of the
Minimal Model Program that we need.



Notation

We follow the notation and conventions of Hartshorne (1977); Kollár and Mori
(1998); Kollár (2013b). Our schemes are Noetherian and separated. At the
beginning of each chapter we state further assumptions. Many of the results
should work over excellent base schemes, but most of the current proofs apply
only in characteristic 0.

A variety is usually an integral scheme of finite type over a field. However,
following standard usage, a stable variety or a locally stable variety is reduced,
pure dimensional, but possibly reducible.

Affine n-space over a field k is denoted by An
k , or by An(x1, . . . , xn) or An

x
if we emphasize that the coordinates are x1, . . . , xn. Same conventions for pro-
jective n-space Pn.

The canonical class of X is denoted by KX , and the canonical sheaf or du-
alizing sheaf by ωX; see (1.23) for varieties and (11.2) for schemes. Since
OX(KX) ' ωX , we switch between the divisor and sheaf versions whenever it
is convenient. KX is more frequently used on normal varieties, and ωX in more
general settings. Functorial properties work better for ωX .

A smooth proper variety X is of general type if |mKX | defines a birational
map for m � 1, see (1.30). The Kodaira dimension of X, denoted by κ(X), is
the dimension of the image of |mKX | for m sufficiently large and divisible.

Notation commonly used in birational geometry

A map or rational map is defined on a dense set; it is denoted by d. A mor-
phism is everywhere defined; it is denoted by →. A contraction is a proper
morphism g : X → Y such that g∗OX = OY .

A map g : X d Y between (possibly reducible) schemes is birational if there
are nowhere dense closed subsets ZX ⊂ X and ZY ⊂ Y , such that g restricts to
an isomorphism (X \ ZX) ' (Y \ ZY ). The smallest such ZX is the exceptional
set of g, denoted by Ex(g). A birational map g : X d Y is small if Ex(g) has
codimension ≥ 2 in X.

A resolution of X is a proper, birational morphism p : X′ → X, where X′ is
nonsingular. X has rational singularities if p∗OX′ = OX and Ri p∗OX′ = 0 for

10



Notation 11

i > 0; see (Kollár and Mori, 1998, Sec.5.1). Rational implies Cohen-Macaulay,
abbreviated as CM; see (10.4).

Let g : X d Y be a birational map defined on the open set X◦ ⊂ X. For a
subscheme W ⊂ X, the closure of g(W ∩ X◦) ⊂ Y is the birational transform,
provided W ∩ X◦ is dense in W. It is denoted by g∗(W)

Following the confusion established in the literature, a divisor on X is either
a prime divisor or a Weil divisor; the context makes it usually clear which one.

We use divisor over X to mean a prime divisor on some π : X′ → X that is
birational to X. The center of E on X, denoted by centerX E, is (the closure of)
π(E) ⊂ X.

A Z-, Q- or R-divisor (more precisely, Weil Z-, Q- or R-divisor) is a finite
linear combinations of prime divisors

∑
aiDi, where ai ∈ Z, Q or R. A divisor

is reduced of ai = 1 for every i. See Section 4.3 for various versions of divisors
(Weil, Cartier, etc.).

A Z- or Q-divisor D on a normal variety is Q-Cartier if mD is Cartier for
some m > 0. (See (11.43) for the R version.) The smallest m ∈ N such that mD
is Cartier is called the Cartier index or simply index of D. On a non-normal
variety Y these notions make sense if Y is non-singular at the generic points of
Supp D; we call these Mumford divisors, see (4.16.4) and Section 4.8.

The index of a variety Y , denoted by index(Y), is the Cartier index of KY .
Linear equivalence of Z-divisors is denoted by D1 ∼ D2. Two Q-divisors

are Q-linearly equivalent if mD1 ∼ mD2 for some m > 0. It is denoted by
D1 ∼Q D2. (See (11.43) for the R version.)

Numerical equivalence of divisors Di or curves Ci is denoted by D1 ≡ D2

and C1 ≡ C2.
The intersection number of R-Cartier divisors D1, . . . ,Dr on X with a proper

subscheme Z ⊂ X of dimension r is denoted by (D1 · · ·Dr · Z) or (D1 · · ·Dr)Z .
We omit Z if Z = X, and for self-intersections we use (Dr).

An R-Cartier divisor D (resp. line bundle L) on a proper scheme X is nef, if
(D ·C) ≥ 0 (resp. deg(L|C) ≥ 0) for every integral curve C ⊂ X.

Let g : X → S be a proper morphism. For a Q-Cartier divisor we use g-
ample and relatively ample interchangeably; see (11.51) for R-Cartier divisors.

The rounding down (resp. up) of a real number d is denoted by bdc (resp.
dde). For a divisor D =

∑
diDi we use bDc :=

∑
bdicDi, where the Di are

distinct, irreducible divisors. The fractional part is {D} := D − bDc.
An R-divisor D on a proper, irreducible variety is big if bmDc defines a

birational map for m � 1.
A pair (X,∆ =

∑
aiDi) consist of a scheme X and a Weil divisor ∆ on it, the

coefficients can be in Z,Q or R. The divisor part of a pair is frequently called
the boundary of the pair. (Some authors call ∆ a boundary only if 0 ≤ ai ≤ 1
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for every i.) When we start with a scheme X and a compactification X∗ ⊃ X,
frequently X∗ \ X is also called a boundary; this usage is well entrenched for
moduli spaces. (Neither agrees with the notion of ‘boundary’ in topology.)

A simple normal crossing pair—usually abbreviated as snc pair—is a pair
(X,D), where X is regular, and at each p ∈ X there are local coordinates
x1, . . . , xn and an open neighborhood x ∈ U ⊂ X, such that U ∩ Supp D ⊂
(x1 · · · xn = 0). We also say that D is an snc divisor. A scheme Y has simple
normal crossing singularities if every point y ∈ Y has an open neighborhood
y ∈ V ⊂ Y that is isomorphic to an snc divisor.

A log resolution of (X,∆) is a proper, birational morphism p : X′ → X,
where X′ is nonsingular and Supp π−1(∆) ∪ Ex(π) is an snc divisor.

We are mostly interested in proper pairs (X,∆) with log canonical singu-
larities (11.5). Such a pair is of general type if KX + ∆ is big. In examples
we encounter pairs with KX + ∆ ≡ 0 (called (log)-Calabi-Yau pairs) or with
−(KX + ∆) ample (called (log)-Fano pairs).

In the literature, ‘canonical model’ can refer to 3 different notions. We dis-
tinguish them as follows. (See Section 11.2 for pairs and for relative versions.)

Given a smooth, proper variety X, its canonical model is a proper variety Xc

that is birational to X, has canonical singularities and ample canonical class.
Given a variety X, its canonical modification is a proper, birational mor-

phism π : Xcm → X, such that Xcm has canonical singularities and its canonical
class is π-ample.

Given a variety X with resolution Y → X, the canonical model of Y is the
canonical model of resolutions of X, denoted by Xcr. This is independent of Y .

Additional conventions used in this book

These we follow most of the time, but define them at each occurrence.
The normalization of a scheme X is usually denoted by X̄ or Xn. However, if

D is a divisor on X, then usually D̄ denotes its preimage in X̄. Then D̄n denotes
the normalization of D̄. Unfortunately, a bar is also frequently used to denote
the compactification of a scheme or moduli space.

S ◦ ⊂ S usually denotes an open, dense subset. Then sheaves or divisors
on S ◦ are usually indicated by F◦ or D◦. If G is an algebraic group, then G◦

denotes the identity component.
We write moduli functors in caligraphic and moduli spaces in roman. Thus

for stable varieties we have SV (functor) and SV (moduli space).
Let F,G be quasi-coherent sheaves on a scheme X. Then HomX(F,G) is the

set of OX-linear sheaf homomorphisms (it is also an H0(X,OX)-module), and
HomX(F,G) is the sheaf of OX-linear sheaf homomorphisms. See (9.34) for
the hom-scheme HomS (F,G).
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MorS (X,Y) denotes the set of S -morphisms from X to Y , and MorS (X,Y)
the scheme that represents the functor T 7→ MorS (X×S T,Y ×S T ) (if it exists);
see (8.63). Same conventions for IsomS (X,Y) and AutS (X). If X is a proper
C-scheme, then one can pretty much identify AutC(X) with AutC(X).

We distinguish the Picard group Pic(X) (as in Hartshorne (1977)), and the
Picard scheme Pic(X) (as in Mumford (1966)).

Base change. Given morphisms f : X → S and q : T → S , we write the base
change diagram as

XT

fT
��

qX // X

f
��

T
q // S .

Objects obtained by pull-back to XT are usually denoted either by a subscript T
or by q∗X . The fiber over a point s ∈ S is denoted by a subscript s. However, we
frequently encounter the situation that the fiber product is not the ‘right’ pull-
back, it needs to be ‘corrected.’ Roughly speaking, this happens when the fiber
product picks up some embedded subscheme/sheaf, and the ‘correct’ pull-back
is the quotient by it.

Thus, for divisors D on X, we let DT denote the divisorial pull-back or re-
striction, which is the divisorial part of X ×T D; see (4.6). We write Ddiv

T if we
want to emphasize this (2.73). For coherent sheaves F on X we frequently use
the hull bull-back, denoted by FH

T or q[∗]
X F; see (3.27).

Brackets are used to denote something naturally associated to an object. We
use it to denote the cycle associated to a subscheme (1.3) and the point in the
moduli space corresponding to a variety/pair.

The completion of a pointed scheme (x ∈ X) is denoted by X̂, or X̂x if we
want to emphasize the point. For Ân, the point is assumed the origin, unless
otherwise noted. See also (10.52.6).

Numbering. We number everything consecutively. Thus, for example, (2.3)
refers to item 3 in chapter 2. Refereces to sections are given as ‘Section 2.3.’
Tertiary numbering is consecutive within items, including lists and formulas.
For example, (2.3.2) is subitem 2 in item (2.3), but within (2.3) we may use
only (2) as reference.



Chapter 1

History of moduli problems

The moduli spaces of smooth or stable projective curves of genus g ≥ 2 are,
quite possibly, the most studied of all algebraic varieties.

The aim of this book is to generalize the moduli theory of curves to surfaces
and to higher dimensional varieties. In this chapter we aim to outline how this
is done, and, more importantly, to explain why the answer for surfaces is much
more complicated than for curves. On the positive side, once we get the moduli
theory of surfaces right, the higher dimensional theory works the same.

Section 1.1 is a quick review of the history of moduli problems, culminat-
ing in an outline of the basic moduli theory of curves. A’Campo et al. (2016)
is a very good overview. Reading some the early works on moduli, including
Riemann, Cayley, Klein, Hilbert, Siegel, Teichmüller, Weil, Grothendieck, and
Mumford gives an understanding of how the modern theory relates to the ear-
lier works. See Kollár (2021b) for an account that emphasizes the historical
connections.

In Section 1.2 we outline how the theory should unfold for higher dimen-
sional varieties. Details of going from curves to higher dimensions are given in
the next 2 sections. Section 1.3 introduces canonical models, which are the ba-
sic objects of moduli theory in higher dimensions. Starting from stable curves,
Section 1.4 leads up to the definition of stable varieties, their higher dimen-
sional analogs. Then we show, by a series of examples, why flat families of
stable varieties are not the correct higher dimensional analogs of flat families
of stable curves. Finding the correct replacement has been one of the main
difficulties of the whole theory.

While the moduli theory of curves serves as our guideline, it also has many
good properties that do not generalize. Sections 1.5–1.8 are devoted to exam-
ples that show what can go wrong with moduli theory in general, or with stable
varieties in particular.

First in Section 1.5 we show that, the simple combinatorial recipe of going
from a nodal curve to a stable curve, has no analog for surfaces. Next we

14
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give a collection of examples showing how easy it is to end up with rather
horrible moduli problems. Hypersurfaces and other interesting examples are
discussed in Section 1.6, and alternative compactifications of the moduli of
curves in Section 1.7. Section 1.8 illustrates the differences between fine and
coarse moduli spaces.

Two major approaches to moduli—the geometric invariant theory of Mum-
ford, and the Hodge theory of Griffiths—are mostly absent from this book.
Both of these are very powerful, and give a lot of information in the cases
when they apply. They each deserve a full, updated treatment of their own.
However, so far neither gave a full description of the moduli of surfaces, much
less of higher dimensional varieties. It would be very interesting to develop a
synthesis of the three methods and gain better understanding in the future.

1.1 Riemann, Cayley, Hilbert, and Mumford

Let V be a ‘reasonable’ class of objects in algebraic geometry, for instance, V
could be all subvarieties of Pn, all coherent sheaves on Pn, all smooth curves
or all projective varieties. The aim of the theory of moduli is to understand
all ‘reasonable’ families of objects in V, and to construct an algebraic variety
(or scheme, or algebraic space) whose points are in ‘natural’ one-to-one corre-
spondence with the objects in V. If such a variety exists, we call it the moduli
space of V, and denote it by MV. The simplest, classical examples are given
by the theory of linear systems and families of linear systems.

1.1 (Linear systems). Let X be a smooth, projective variety over an alge-
braically closed field k and L a line bundle on X. The corresponding linear
system is

LinSys(X,L) = {effective divisors D such that OX(D) ' L}.

The objects in LinSys(X,L) are in natural one-to-one correspondence with the
points of the projective space P

(
H0(X, L)∨

)
which is traditionally denoted by

|L|. (We follow the Grothendieck convention for P as in (Hartshorne, 1977,
Sec.II.7).) Thus, for every effective divisor D such that OX(D) ' L, there is a
unique point [D] ∈ |L|.

Moreover, this correspondence between divisors and points is given by a
universal family of divisors over |L|. That is, there is an effective Cartier divisor
UnivL ⊂ |L|×X with projection π : UnivL → |L| such that π−1[D] = D for every
effective divisor D linearly equivalent to L.

The classical literature never differentiates between the linear system as a
set and the linear system as a projective space. There are, indeed, few reasons
to distinguish them as long as we work over a fixed base field k. If, however,
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we pass to a field extension K ⊃ k, the advantages of viewing |L| as a k-variety
appear. For any K ⊃ k, the set of effective divisors D defined over K such
that OX(D) ' L corresponds to the K-points of |L|. Thus the scheme theoretic
version automatically gives the right answer over every field.

1.2 (Jacobians of curves). Let C be a smooth projective curve (or Riemann sur-
face) of genus g. As discovered by Abel and Jacobi, there is a variety Jac◦(C)
of dimension g whose points are in natural one-to-one correspondence with
degree 0 line bundles on C. As before, the correspondence is given by a uni-
versal line bundle Luniv → C × Jac◦(C), called the Poincaré bundle, That is, for
any point p ∈ Jac◦(C), the restriction of Luniv to C × {p} is the degree 0 line
bundle corresponding to p.

Unlike in (1.1), the universal line bundle Luniv is not unique (and need not
exist if the base field is not algebraically closed). This has to do with the fact
that while an automorphism of the pair D ⊂ X that is trivial on X is also trivial
on D, any line bundle L → C has automorphisms that are trivial on C: we can
multiply every fiber of L by the same nonzero constant.

1.3 (Cayley forms and Chow varieties). Cayley (1860, 1862) developed a
method to associate a hypersurface in the Grassmannian Gr(P1,P3) to a curve
in P3. The resulting moduli spaces have been used, but did not seem to have
acquired a name. Chow understood how to deal with reducible and multi-
ple varieties, and proved that one gets a projective moduli space, see Chow
and van der Waerden (1937). The name Chow variety seems standard, we use
Cayley-Chow for the correspondence that was discovered by Cayley. See Sec-
tion 3.1 for an outline and (Kollár, 1996, Secs.I.3–4) for a modern treatment.

Let k be an algebraically closed field and X a normal, projective k-variety.
Fix a natural number m. An m-cycle on X is a finite, formal linear combination∑

aiZi where the Zi are irreducible, reduced subvarieties of dimension m and
ai ∈ Z. We usually assume tacitly that all the Zi are distinct. An m-cycle is
called effective if ai ≥ 0 for every i.

The points of the Chow variety Chowm(X) are in ‘natural’ one-to-one cor-
respondence with the set of effective m-cycles on X. (Since we did not fix
the degree of the cycles, Chowm(X) is not actually a variety, but a countable
disjoint union of projective, reduced k-schemes.) The point of Chowm(X) cor-
responding to a cycle Z =

∑
aiZi is also usually denoted by [Z].

As for linear systems, it is best to describe the ‘natural correspondence’ by
a universal family. The situation is, however, more complicated than before.

There is a family (or rather an effective cycle) Univm(X) on Chowm(X) × X
with projection π : Univm(X) → Chowm(X) such that for every effective m-
cycle Z =

∑
aiZi,



1.1 Riemann, Cayley, Hilbert, and Mumford 17

(1.3.1) the support of π−1[Z] is ∪iZi, and
(1.3.2) the fundamental cycle (4.61.1) of π−1[Z] equals Z if ai = 1 for every i.

If the characteristic of k is 0, then the only problem in (2) is a clash between
the traditional cycle-theoretic definition of the Chow variety and the scheme-
theoretic definition of the fiber, but in positive characteristic the situation is
more problematic; see (Kollár, 1996, Secs.I.3–4).

An example of a ‘perfect’ moduli problem is the theory of Hilbert schemes,
introduced in (Grothendieck, 1962, Lect.IV). See Mumford (1966), (Kollár,
1996, I.1–2) or (Sernesi, 2006, Sec.4.3) or Section 3.1 for a summary.

1.4 (Hilbert schemes). Let k be an algebraically closed field and X a projective
k-scheme. Set

Hilb(X) = {closed subschemes of X}.

Then there is a k-scheme Hilb(X), called the Hilbert scheme of X, whose points
are in a ‘natural’ one-to-one correspondence with closed subschemes of X. The
point of Hilb(X) corresponding to a subscheme Y ⊂ X is frequently denoted
by [Y]. There is a universal family Univ(X) ⊂ Hilb(X) × X such that
(1.4.1) the first projection π : Univ(X)→ Hilb(X) is flat, and
(1.4.2) π−1[Y] = Y for every closed subscheme Y ⊂ X.

The beauty of the Hilbert scheme is that it describes not just subschemes, but
all flat families of subschemes as well. To see what this means, note that for any
morphism g : T → Hilb(X), by pull-back we obtain a flat family of subschemes
T ×Hilb(X) Univ(X) ⊂ T × X. It turns out that every family is obtained this way:
(1.4.3) For every T and closed subscheme Z ⊂ T × X that is flat over T , there

is a unique gZ : T → Hilb(X) such that Z = T ×Hilb(X) Univ(X).

This takes us to the next, functorial approach to moduli problems.

1.5 (Hilbert functor and Hilbert scheme). Let X → S be a morphism of
schemes. Define the Hilbert functor of X/S as a functor that associates to a
scheme T → S the set

HilbX/S(T) =
{
subschemes Z ⊂ T ×S X that are flat and proper over T

}
.

The basic existence theorem of Hilbert schemes then says that, if X → S is
quasi-projective, there is a scheme HilbX/S such that for any S scheme T ,

HilbX/S(T) = MorS
(
T ,HilbX/S

)
.

Moreover, there is a universal family π : UnivX/S → HilbX/S such that the
above isomorphism is given by pulling back the universal family.

We can summarize these results as follows
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Principle 1.6. π : UnivX/S → HilbX/S contains all the information about
proper, flat families of subschemes of X/S , in the most succinct way.

This example leads us to a general definition:

Definition 1.7 (Fine moduli spaces). Let V be a ‘reasonable’ class of pro-
jective varieties (or schemes, or sheaves, or ...). In practice ‘reasonable’ may
mean several restrictions, but for the definition we only need the following
weak assumption:
(1.7.1) Let K ⊃ k be a field extension. Then a k-variety Xk is in V iff XK :=

Xk ×Spec k Spec K is in V.
Following (1.5), define the corresponding moduli functor that associates to a
scheme T the set

VarietiesV(T) :=


Flat families X → T such that

every fiber is in V,
modulo isomorphisms over T .

 (1.7.2)

We say that a scheme ModuliV is a fine moduli space for the functorVarietiesV,
if the following holds:
(1.7.3) For every scheme T , pulling back gives an equality

VarietiesV(T) = Mor
(
T ,ModuliV

)
.

Applying the definition to T = ModuliV gives a unversal family u : UnivV →

ModuliV. Setting T = Spec K, where K is a field, we see that the K-points of
ModuliV correspond to the K-isomorphism classes of objects in V.

We consider the existence of a fine moduli space as the ideal possibility.
Unfortunately, it is rarely achieved.

Next we see what happens with the simplest case, for smooth curves.

1.8 (Moduli functor and moduli space of smooth curves). Following (1.7) we
define the moduli functor of smooth curves of genus g as

Curvesg(T) :=


Smooth, proper families S → T ,
every fiber is a curve of genus g,
modulo isomorphisms over T .


It turns out that there is no fine moduli space for curves of genus g. Every

curve C with nontrivial automorphisms causes problems; there cannot be any
point [C] corresponding to it in a fine moduli space, see Section 1.8.

It was gradually understood that there is some kind of an object, denoted by
Mg, and called the coarse moduli space (or simply moduli space) of curves of
genus g, that comes close to being a fine moduli space.
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For elliptic curves we get M1 ' A
1, and the moduli map is given by the

j-invariant, as was known to Dedekind and Klein; see Klein and Fricke (1892).
They also knew that there is no universal family over M1. The theory of Abelian
integrals due to Abel, Jacobi and Riemann does the same for all curves, though
in this case a clear moduli theoretic interpretation seems to have been done
only later; see the historical sketch at the end of Shafarevich (1974), (Siegel,
1969, Chap.4) or (Griffiths and Harris, 1978, Chap.2) for modern treatments.
For smooth plane curves, and more generally for smooth hypersurfaces in any
dimension, the invariant theory of Hilbert produces coarse moduli spaces. Still,
a precise definition and proof of existence of Mg appeared only in Teichmüller
(1944) in the analytic case and in Mumford (1965) in the algebraic case. See
A’Campo et al. (2016) or Kollár (2021b) for historical accounts.

1.9 (Coarse moduli spaces). Mumford (1965)
As in (1.7), let V be a ‘reasonable’ class. When there is no fine moduli space,

we still can ask for a scheme that best approximates its properties.
We look for schemes M for which there is a natural transformation

TM : Varietiesg(∗) −→ Mor(∗,M).

Such schemes certainly exist, for instance, if we work over a field k, then we
can take M = Spec k. All schemes M for which TM exists form an inverse
system which is closed under fiber products. Thus, as long as we are not un-
lucky, there is a universal (or largest) scheme with this property. Though it is
not usually done, it should be called the categorical moduli space.

This object can be rather useless in general. For instance, fix n, d and let Hn,d

be the class of all hypersurfaces of degree d in Pn+1
k , up to isomorphisms. We

see in (1.56) that a categorical moduli space exists and it is Spec k.
To get something more like a fine moduli space, we require that it give a one-

to-one parametrization, at least set theoretically. Thus we say that a scheme
ModuliV is a coarse moduli space for V if the following hold.
(1.9.1) There is a natural transformation of functors

ModMap: VarietiesV(∗) −→ Mor(∗,ModuliV),

(1.9.2) ModuliV is universal satisfying (1), and
(1.9.3) for any algebraically closed field K ⊃ k, we get a bijection

ModMap: VarietiesV(Spec K)
'
−→ Mor(Spec K,ModuliV) = ModuliV(K).

1.10 (Moduli functors versus moduli spaces). While much of the early work
on moduli, especially since Mumford (1965), put the emphasis on the con-
struction of fine or coarse moduli spaces, recently the focus shifted towards
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the study of the families of varieties, that is, towards moduli functors and mod-
uli stacks. The main task is to understand all ‘reasonable’ families. Once this is
done, the existence of a coarse moduli space should be nearly automatic. The
coarse moduli space is not the fundamental object any longer, rather it is only
a convenient way to keep track of certain information that is only latent in the
moduli functor or stack.

1.11 (Compactifying Mg). While the basic theory of algebraic geometry is
local, that is, it concerns affine varieties, most really interesting and important
objects in algebraic geometry and its applications are global, that is, projective
or at least proper.

The moduli spaces Mg are not compact, in fact the moduli functor of smooth
curves discussed so far has a definitely local flavor. Most naturally occurring
smooth families of curves live over affine schemes, and it is not obvious how
to write down any family of smooth curves over a projective base. For many
reasons it is useful to find geometrically meaningful compactifications of Mg.
The answer to this situation is to allow not just smooth curves, but also certain
singular curves in our families.

Concentrating on 1-parameter families, we have the following:

Question 1.11.1. Let B be a smooth curve, B◦ ⊂ B an open subset and π◦ : S ◦ →
B◦ a smooth family of genus g curves. Is there a ‘natural’ extension

S ◦

π◦
��

� � // S
π
��

B◦ �
� // B,

where π : S → B is a flat family of (possibly singular) curves?
There is no reason to think that there is a unique such extension. Deligne and

Mumford (1969) construct one after a base change B′ → B, and by now it is
hard to imagine a time when their choice was not the ‘obviously best’ solution.
We review their definition next. In Section 1.6 we see, by examples, why this
concept has not been so obvious.

Definition 1.12 (Stable curve). A stable curve over an algebraically closed
field k is a proper, geometrically connected k-curve C such that

(Local property) the only singularities of C are ordinary nodes, and

(Global property) the canonical class KC is ample.

A stable curve over a scheme T is a flat, proper morphism π : S → T such
that every geometric fiber of π is a stable curve. (The arithmetic genus of the
fibers is a locally constant function on T , but we usually also tacitly assume
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that it is constant.) The moduli functor of stable curves of genus g is

Curvesg(T ) :=
{

Stable curves of genus g over T ,
modulo isomorphisms over T .

}
Theorem 1.13. Deligne and Mumford (1969) For every g ≥ 2, the moduli
functor of stable curves of genus g has a coarse moduli space Mg. Moreover,
Mg is projective, normal, has only quotient singularities, and contains Mg as
an open dense subset.

Mg has a rich and intriguing geometry, which is related to major questions in
many branches of mathematics and physics; see Farkas and Morrison (2013)
for a collection of surveys and Pandharipande (2018a,b) for overviews.

1.2 Moduli for varieties of general type
The aim of this book is to use the moduli of stable curves as guideline, and
develop a moduli theory for varieties of general type (1.30). (See (1.22) for
some comments on the non-general type cases.)

Here we outline the main steps of the plan with some comments. Most of
the rest of the book is then devoted to accomplish these goals.

Step 1.14 (Higher dimensional analogs of smooth curves). It has been un-
derstood since the beginnings of the theory of surfaces that, for surfaces of
Kodaira dimension ≥ 0 (p.10), the correct moduli theory should be birational,
not biregular. That is, the points of the moduli space should correspond not
to isomorphism classes of surfaces, but to birational equivalence classes of
surfaces. There are two ways to deal with this problem.

First, one can work with smooth families, but consider two families V → B
and W → B equivalent if there is a fiberwise birational map between them;
that is, a rational map V d W that induces a birational equivalence of the
fibers Vb d Wb for every b ∈ B. This seems rather complicated technically.

The second, much more useful method relies on the observation that every
birational equivalence class of surfaces of Kodaira dimension ≥ 0 contains a
unique minimal model, that is, a smooth projective surface S m whose canonical
class is nef (p.11). Therefore, one can work with families of minimal models,
modulo isomorphisms. With the works of Mumford (1965); Artin (1974) it
became clear that, for surfaces of general type, it is even better to work with
the canonical model, which is a mildly singular projective surface S c whose
canonical class is ample. The resulting class of singularities has been since
established in all dimensions; they are called canonical singularities (1.33).

Principle 1.14.1. In moduli theory, the main objects of study are projective
varieties with ample canonical class and with canonical singularities.
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Implicit in this claim is that every smooth family of varieties of general type
produces a flat family of canonical models, we discuss this in (1.36).

See Section 1.3 for more details on this step.

Step 1.15 (Higher dimensional analogs of stable curves). The correct defini-
tion of the higher dimensional analogs of stable curves was much less clear.
An approach through geometric invariant theory was investigated Mumford
(1977), but never fully developed. In essence, the GIT approach starts with a
particular method of construction of moduli spaces, and then tries to see for
which class of varieties does it work. The examples of Wang and Xu (2014)
suggest that geometric invariant theory is unlikely to give a good compactifi-
cation for the moduli of surfaces.

A different framework was proposed in Kollár and Shepherd-Barron (1988).
Instead of building on geometric invariant theory, it focuses on 1-parameter
families, and uses Mori’s program as its basic tool.

Before we give the definition, recall a key step of the proof of (1.13) that
establishes separatedness and properness of Mg. (The traditional name is stable
‘reduction,’ but ‘extension’ is more descriptive.)

1.15.1 (Stable extension for curves). Let B be a smooth curve, B◦ ⊂ B a dense,
open subset and π◦ : S ◦ → B◦ a flat family of smooth, projective curves of
genus ≥ 2. Then there is a finite surjection p : A→ B and a diagram

S ◦ ×B A

��

� � // S ss
A

πss
A
��

τ // S stab
A

πstab
A
��

B◦ ×B A �
� // A A.

where

(a) πss
A : S ss

A → A is a flat family of reduced, nodal curves,
(b) τ : S ss

A → S stab
A is the relative canonical model (11.26), and

(c) πstab
A : S stab

A → A is a flat family of stable curves.
A detailed proof is given in (2.51), for now we build on this to state the main
theses of Kollár and Shepherd-Barron (1988) about moduli problems.

Principle 1.15.2. We should follow the proof of the Stable extension theorem
(1.15.1). The resulting fibers give the right class of stable varieties.

Principle 1.15.3. As in (1.12), a connected k-scheme X is stable iff it satisfies
two conditions, whose precise definitions are not important for now:
(Local property) Semi-log-canonical singularities, see (1.41).
(Global property) The canonical class KX is ample, see (1.23).
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1.15.4 (Warning about positive characteristic). The examples of Kollár (2022)
suggest that, in positive characteristic, (1.15.2) gives the right families, but not
quite the right objects in dimensions ≥ 3; see Section 8.8 for details.

Step 1.16 (Higher dimensional analogs of families of stable curves I). The def-
inition (1.7) is very natural within our usual framework of algebraic geometry,
but it hides a very strong supposition:

1.16.1 (Unwarranted assumption). If V is a ‘reasonable’ class of varieties, then
any flat family whose fibers are in V is a ‘reasonable’ family.

In Grothendieck’s foundations of algebraic geometry, flatness is one of the
cornerstones, and there are many ‘reasonable’ classes for which flat families
are indeed the ‘reasonable’ families. Nonetheless, even when the base of the
family is a smooth curve, (1.16.1) needs arguing, but the assumption is espe-
cially surprising when applied to families over non-reduced schemes T . Con-
sider, for instance, the case when T is the spectrum of an Artinian k-algebra.
Then T has only one closed point t ∈ T . A flat family p : X → T has only
one fiber Xt, and our only restriction is that Xt be in our class V. Thus (1.16.1)
declares that we care only about Xt. Once Xt is in V, every flat deformation of
Xt over T is automatically ‘reasonable.’

A crucial conceptual point in the moduli theory of higher dimensional va-
rieties is the realization that, starting with families of surfaces, flatness of the
map X → T is not enough: allowing all flat families whose fibers are stable
varieties leads to the wrong moduli problem.

The simple fact is that basic numerical invariants, like the self intersection of
the canonical class, or even the Kodaira dimension, fail to be locally constant in
flat families of stable varieties, even when the singularities are quite mild and
the base is a smooth curve. We give a series of such examples in (1.42–1.47).

The difficulty of working out the correct concept has been one of the main
stumbling blocks of the general theory.

Principle 1.16.2. Flat families of stable varieties X → T are not the correct
higher dimensional analogs of flat families of stable curves (1.12).

For families over smooth curves, the Stable extension theorem (1.15.1) is
again our guide to the correct definition.

1.16.3 (Stable morphisms). Let p : Y → B be a proper morphism from a
normal variety to a smooth curve. Then p is stable iff, for every b ∈ B,

(a) Yb has semi-log-canonical singularities,
(b) KYb = KY |Yb is ample, and
(c) mKY is Cartier for some m > 0, that is, KY is Q-Cartier (p.11).
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This is a direct generalization of the notion of stable family of curves (1.12),
except that here we have to add condition (c) for KY . If the KYb are Cartier,
then so is KY (2.6), this is why (c) was not necessary for curves. See (2.3) for
other versions and (2.4) for comments on the positive characteristic cases.

Note that the KYb areQ-Cartier by (1.15.3), but this does not imply that KY is
Q-Cartier; this is a quite subtle issue with restrictions of non-Cartier divisors.
We discuss this in detail in Section 2.4.

Step 1.17 (Higher dimensional analogs of families of stable curves II). Ex-
tending the definition (1.16.3) to general base schemes turned out to be very
difficult. There were two main proposals in Kollár and Shepherd-Barron (1988)
and Viehweg (1995). They are equivalent over reduced base schemes; we ex-
plain this in Section 3.4. However, the two versions differ for families of sur-
faces with quotient singularities over SpecC[ε] by Altmann and Kollár (2019).
We treat these topics in Sections 6.2–6.3 and 6.6.

The problem becomes even harder when we treat not just stable varieties, but
stable pairs. Finding the correct definition turned out to be the longest-standing
open question of the theory. An answer was developed in Kollár (2019), we
devote Chapter 7 to explaining it.

Step 1.18 (Representability of moduli functors). The question is the following.
Let p : X → S be an arbitrary projective morphism. Can we understand all
morphisms q : T → S such that X ×S T → T is a family in our moduli theory?

A moduli theory M is representable if, for every projective morphism p :
X → S , there is a morphism j : S M → S with the following property:

Given any q : T → S , the pulled-back family X ×S T → T is in M iff q
factors uniquely as q : T → S M → S .

That is, X ×S S M → S M is in M and S M is universal with this property.
Representability is rarely mentioned for the moduli of curves, since it easily

follows from general principles. The Flattening decomposition theorem (3.19)
says that flatness is representable, and for proper, flat morphisms, being a fam-
ily of stable curves is represented by an open subscheme.

Both of these become quite complicated in higher dimensions. Since flat-
ness is only part of our assumptions, we need a different way of pulling back
families. The theory of hulls and husks Kollár (2008a) was developed for this
reason, leading to the notion of generically Cartier pull-back, defined in Sec-
tion 4.1. With these, representability is proved in Sections 3.5, 4.6 and 7.6 in
increasing generality.

Representability also implies that being a stable family can be tested on 0-
dimensional subschemes of T , that is, on spectra of Artinian rings. This is the
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reason why formal deformation theory is such a powerful tool Illusie (1971);
Artin (1976); Sernesi (2006).

The previous steps form the basis of a good moduli theory. Once we have
them, it is quite straightforward to construct the corresponding moduli space.

Step 1.19 (Two moduli spaces). Let C be a stable curve of genus g ≥ 2.
Then rKC is very ample for r ≥ 3, and any basis of its global sections gives
an embedding C ↪→ Pr(2g−2)−g. Thus all stable curves of genus g appear in
the Chow variety or Hilbert scheme of Pr(2g−2)−g. Representability (1.18) then
implies that we get a moduli space of all r-canonically embedded stable curves

EmbStabg ⊂ Hilb(Pr(2g−2)−g). (1.19.1)

For a fixed C, the embedding C ↪→ Pr(2g−2)−g gives an orbit of Aut(Pr(2g−2)−g),
thus we should get the moduli space as

Mg = EmbStabg /Aut(Pr(2g−2)−g). (1.19.2)

Starting with Mumford (1965) and Matsusaka (1964), much effort was de-
voted to understanding quotients like (1.19.2). Already for curves the method
of Mumford (1965) is quite subtle, generalizations to surfaces Gieseker (1977)
and to higher dimensions Viehweg (1995) are quite hard. For surfaces and in
higher dimensions, these approaches handle only the interior of the moduli
space (where we have only canonical singularities). When GIT works, it au-
tomatically gives a quasi-projective moduli space, but Wang and Xu (2014)
suggest that GIT methods do not work for the whole moduli space.

It turns out to be much easier to obtain quotients that are algebraic spaces.
The general quotient theorems of Kollár (1997); Keel and Mori (1997) take
care of this question completely; see Section 8.6 for details.

The same approach works in all dimensions. We fix r > 0 such that rKX is
very ample, and the rest of the proof works without changes.

For curves any r ≥ 3 works, but, starting with surfaces, a uniform choice of
r is no longer possible. The strongest results say that if we fix the dimension
n and the volume v (10.31), then there is an r = r(n, v) such that rKX is very
ample. We discuss this in (1.21).

Once we have our moduli spaces, we start to investigate their properties. We
should not expect to get moduli spaces that are as nice as those for curves.
For instance, even for smooth surfaces with ample canonical class, the mod-
uli spaces can have arbitrarily complicated singularities and scheme structures
Vakil (2006). Nonetheless, we have two types of basic positive results.
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Step 1.20 (Separatedness and properness). The valuative criteria of separated-
ness and properness translate to functors as follows.

We start with a smooth curve B, an open subset B◦ ⊂ B, and a stable family
π◦ : X◦ → B◦.

1.20.1 (Separatedness). There is at most one stable extension to

X◦

π◦

��

� � // X

π

��
B◦ �
� // B.

We obtain a similar translation of properness, but here we have to pay atten-
tion to the difference between coarse and fine moduli spaces.

1.20.2 (Valuative-properness). There is a finite surjection p : A → B such that
there is a unique stable extension

X◦ ×B A

π◦A
��

� � // XA

πA

��
B◦ ×B A �

� // A.

Thus the valuative criterion of properness is exactly the general version of the
Stable extension theorem (1.15.1).

Step 1.21 (Discrete invariants, boundedness and projectivity). The most im-
portant discrete invariant of a smooth projective curve C is its genus. The
genus is unchanged under smooth deformations, and all smooth curves with
the same genus form a single family Mg. Thus, in effect, the genus is the only
discrete invariant of a smooth projective curve; it completely determines the
other ones, like the Euler characteristic χ(C,OC) = 1 − g, or the Hilbert poly-
nomial χ

(
C,OC(mKC)

)
= (2g − 2)m + (1 − g).

In a similar manner, we would like to find discrete invariants of (locally)
stable varieties that are unchanged by (locally) stable deformations.

The basic such invariant is the Hilbert ‘polynomial’ of KX . We have to keep
in mind that KX need not be Cartier. Therefore m 7→ χ

(
X,OX(mKX)

)
is not a

polynomial, rather a polynomial with periodic coefficients.
For stable varieties the most important invariant is vol(X) := (Kn

X) (where
n = dim X), called the volume (10.31) of X. This is also the leading coefficient
of the Hilbert polynomial (times n!). The volume is positive, but it is frequently
a rational number since KX is onlyQ-Cartier; it can be quite small, see Alexeev
and Liu (2019a); Esser et al. (2021).

For m = 0 we get the Euler characteristic χ(X,OX), but it turns out that
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the individual groups hi(X,OX) are also deformation invariants by Kollár and
Kovács (2010); see Section 2.5.

Next we would like to show that all stable varieties with fixed volume can
be ‘parametrized’ by a scheme of finite type; this is called boundedness. To
state it, let SVset(n, v) denote the set of all stable varieties of dimension n and
volume v. There are three, roughly equivalent versions.
• There is an m = m(n, v) such that mKX is very ample for X ∈ SVset(n, v).
• There is a D = D(n, v) such that every X ∈ SVset(n, v) is isomorphic to a

subvariety of PD of degree ≤ D.
• There is a morphism π : U → S of schemes of finite type such that every

X ∈ SVset(n, v) is isomorphic to a fiber of π.
Proving these three turned out to be extremely difficult. For smooth varieties
this was solved by Matsusaka (1972), for stable surfaces by Alexeev (1993),
and the general stable case is settled in Hacon et al. (2018).

Our moduli spaces satisfy the valuative criterion of properness. Together
with boundedness this implies that our moduli spaces are proper.

Once we have a proper moduli space, one would like to prove that it is
projective. For surfaces this was done in Kollár (1990), and extended to higher
dimensions in Fujino (2018) and Kovács and Patakfalvi (2017).

These last two topics each deserve a detailed treatment of their own; we
make only a few more comments in (6.5).

1.22 (Moduli for varieties of non-general type).
The moduli theory of varieties of non-general type is quite complicated.

A general problem, illustrated by Abelian, elliptic and K3 surfaces is that
a typical deformation of such an algebraic surface over C is a non-algebraic
complex analytic surface. Thus any algebraic theory captures only a small part
of the full analytic deformation theory.

The moduli question for analytic surfaces has been studied, especially for
complex tori and K3 surfaces. In both cases it seems that one needs to add
some extra structure (for instance, fixing a basis in some topological homology
group) in order to get a sensible moduli space. (As an example of what could
happen, note that the 3-dimensional space of Kummer surfaces is dense in the
20-dimensional space of all K3 surfaces.)

Even if one restricts to the algebraic case, compactifying the moduli space
seems rather difficult. Detailed studies of Abelian varieties and K3 surfaces
show that there are many different compactifications depending on additional
choices, see Kempf et al. (1973); Ash et al. (1975).

It is only with the works of Alexeev (2002) that a geometrically meaningful
compactification of the moduli of principally polarized Abelian varieties be-
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came available. This relies on the observation that a pair (A,Θ) consisting of a
principally polarized Abelian variety A and its theta divisor Θ behaves as if it
were a variety of general type.

A moduli theory for K-stable Fano varieties was developed quite recently,
see Xu (2020) for an overview.

Definition 1.23 (Canonical class, bundle and sheaf I). Let X be a smooth va-
riety over a field k. As in (Shafarevich, 1974, III.6.3) or (Hartshorne, 1977,
p.180), the canonical line bundle of X is ωX := ∧dim XΩX/k. Any divisor D
such that OX(D) ' ωX is called a canonical divisor. Their linear equivalence
class is called the canonical class, denoted by KX . (Both books tacitly assume
that k is algebraically closed. The definition, however, works over any field k,
as long as X is smooth over k.)

Let X be a normal variety over a perfect field k. Let j : Xsm ↪→ X be the
inclusion of the locus of smooth points. Then X \ Xsm has codimension ≥ 2,
therefore, restriction from X to Xsm is a bijection on Weil divisors and on linear
equivalence classes of Weil divisors. Thus there is a unique linear equivalence
class KX of Weil divisors on X such that KX |Xsm = KXsm . It is called the canoni-
cal class of X. The divisors in KX need not be Cartier.

The push-forward ωX := j∗ωXsm is a rank 1 coherent sheaf on X, called the
canonical sheaf of X. The canonical sheaf ωX agrees with the dualizing sheaf
ω◦X as defined in (Hartshorne, 1977, p.241). (Note that Hartshorne (1977) de-
fines the dualizing sheaf only if X is proper. In general, take a normal compact-
ification X̄ ⊃ X and use ω◦

X̄
|X instead. For more details, see (Kollár and Mori,

1998, Sec.5.5), Hartshorne (1966) or Conrad (2000).) Note that ωX satisfies
Serre’s condition S 2 (10.3.2), but frequently it is not locally free.

More generally, as long as X itself is normal or S 2, and ωX is locally free
outside a codimension ≥ 2 subset of X, we can work with ωX and KX as in the
normal case. Then

OX(mKX) ' ω[m]
X := (ω⊗m

X )∗∗. (1.23.1)

We use this mostly when X has at worst nodes at codimension 1 points (11.35).

1.3 From smooth curves to canonical models
Here we discuss the considerations that led to Principle 1.14.1.

In the theory of curves, the basic objects are smooth projective curves. We
frequently study any other curve by relating it to smooth projective curves. As
a close analog, in higher dimensions the moduli functor of smooth varieties is

Smooth(S) :=
{

Smooth, proper families X → S ,
modulo isomorphisms over S .

}
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This, however, gives a rather badly behaved and mostly useless moduli func-
tor already for surfaces. First of all, it is very non-separated.

1.24 (Non-separatedness of the moduli of smooth surfaces of general type).
We construct two smooth families of projective surfaces fi : Xi → B over a
pointed smooth curve b ∈ B such that

(1.24.1) all the fibers are smooth, projective surfaces of general type,
(1.24.2) X1 → B and X2 → B are isomorphic over B \ {b},
(1.24.3) the fibers X1

b and X2
b are not isomorphic.

As the construction shows, this type of behavior happens every time we look
at deformations of a surface that contains at least three (−1)-curves.

Let f : X → B be a smooth family of projective surfaces over a smooth
(affine) pointed curve b ∈ B. Let C1,C2,C3 ⊂ X be three sections of f , all
passing through a point xb ∈ Xb with independent tangent directions and dis-
joint elsewhere.

Set X1 := BC1 BC2 BC3 X, where we first blow-up C3 ⊂ X, then the birational
transform of C2 in BC3 X, and finally the birational transform of C1 in BC2 BC3 X.
Similarly, set X2 := BC1 BC3 BC2 X. Since the Ci are sections, all these blow-ups
give smooth families of projective surfaces over B.

Over B \ {b} the curves Ci are disjoint, thus X1 and X2 are both isomorphic
to BC1+C2+C3 X, the blow-up of C1 + C2 + C3 ⊂ X.

We claim that, by contrast, the fibers of X1
b and X2

b are not isomorphic to
each other for a general choice of the Ci.

To see this, choose local analytic coordinates t at b ∈ B and (x, y, t) at xb ∈ X.
The curves Ci are defined by equations

Ci =
(
x − ait − (higher terms) = y − bit − (higher terms) = 0

)
.

The blow-up BCi X is given by

BCi X =
(
ui(x − ait − (higher terms)) = vi(y − bit − (higher terms))

)
⊂ X × P1

uivi
.

On the fiber over b these give the same blow-up

Bxb

(
Xb

)
= (ux = vy) ⊂ Xb × P

1
uv

Thus we see that the birational transform of C j intersects the central fiber(
BCi X

)
b = Bxb

(
Xb

)
at the point

v
u

=
a j − ai

b j − bi
∈ {xb} × P

1
uv.

The fibers
(
BC2 BC3 X

)
b and

(
BC3 BC2 X

)
b are isomorphic to each other since they
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are obtained from Bxb

(
Xb

)
by blowing up the same point

v
u

=
a2 − a3

b2 − b3
resp.

v
u

=
a3 − a2

b3 − b2
.

When we next blow up the birational transform of C1 on
(
BC2 BC3 X

)
b (resp. on(

BC3 BC2 X
)
b) this gives the blow-up of the point

a1 − a3

b1 − b3
resp.

a1 − a2

b1 − b2
, (1.24.4)

and these are different, unless C1 + C2 + C3 is locally planar at xb.
So far we have seen that the identity Xb = Xb does not extend to an isomor-

phism between the fibers X1
b and X2

b .
If Xb is of general type, then Aut Xb is finite, hence, to ensure that X1

b and X2
b

are not isomorphic, we need to avoid finitely many other possible coincidences
in (1.24.4).

The main reason, however, why we do not study the moduli functor of
smooth varieties up to isomorphism is that, in dimension two, smooth projec-
tive surfaces do not form the smallest basic class. Given any smooth projective
surface S , one can blow up any set of points Z ⊂ S to get another smooth
projective surface BZS , which is very similar to S . Therefore, the basic ob-
ject is not a single smooth, projective surface, but a whole birational equiva-
lence class of smooth, projective surfaces. Thus it would be better to work with
smooth, proper families X → S modulo birational equivalence over S . That is,
with the moduli functor

GenTypebir(S) :=


Smooth, proper families X → S ,

every fiber is of general type,
modulo birational equivalences over S .

 (1.24.5)

In essence this is what we end up doing, see (1.36), but it is very cumbersome
to deal with birational equivalence over a base scheme. Nonetheless, working
with birational equivalence classes leads to a separated moduli functor.

Proposition 1.25. Let fi : Xi → B be two smooth families of projective va-
rieties over a smooth curve B. Assume that the generic fibers X1

k(B) and X2
k(B)

are birational, and the pluricanonical system |mKX1
k(B)
| is nonempty for some

m > 0. Then, for every b ∈ B, the fibers X1
b and X2

b are birational.

Proof Pick a birational map φ : X1
k(B) d X2

k(B), and let Γ ⊂ X1 ×B X2 be the
closure of the graph of φ. Let Y → Γ be the normalization with projections
pi : Y → Xi. Note that both of the pi are open embeddings on Y \

(
Ex(p1) ∪

Ex(p2)
)
. Thus if we prove that neither p1

(
Ex(p1) ∪ Ex(p2)

)
nor p2

(
Ex(p1) ∪

Ex(p2)
)

contains a fiber of f1 or f2, then p2 ◦ p−1
1 : X1 d X2 restricts to a
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birational map X1
b d X2

b for every b ∈ B. (Thus the fiber Yb contains an
irreducible component that is the graph of the birational map X1

b d X2
b , but

it may have other components too; see (1.27.1) for such an example.)
We use the canonical class to compare Ex(p1) and Ex(p2). Since the Xi are

smooth,

KY ∼ p∗i KXi + Ei, where Ei ≥ 0 and Supp Ei = Ex(pi). (1.25.1)

We may assume that B is affine and let Bs |mKXi | denote the set-theoretic base
locus. By assumption, |mKXi | is not empty. Since B is affine, Bs |mKXi | does not
contain any of the fibers of fi.

Every section of OY (mKY ) pulls back from Xi, thus

Bs |mKY | = p−1
i

(
Bs |mKXi |

)
+ Supp Ei.

Comparing these for i = 1, 2, we conclude that

p−1
1

(
Bs |mKX1 |

)
+ Supp E1 = p−1

2

(
Bs |mKX2 |

)
+ Supp E2.

Therefore, p1
(
Supp E2

)
⊂ p1

(
Supp E1

)
+ Bs |mKX1 |.

Since E1 is p1-exceptional, p1
(
E1

)
has codimension ≥ 2 in X1, hence it does

not contain any of the fibers of f1. We saw that Bs |mKX1 | does not contain any
of the fibers either. Thus p1

(
Ex(p1)∪Ex(p2)

)
does not contain any of the fibers,

and similarly for p2
(
Ex(p1) ∪ Ex(p2)

)
. �

Remark 1.26. By Matsusaka and Mumford (1964); Kontsevich and Tschinkel
(2019) the conclusion holds even if the pluricanonical systems are empty.

The above proof focuses on the role of the canonical class. It is worthwhile
to go back and check that the proof works if the Xi are normal, as long as
(1.25.1) holds; the latter is essentially the definition of terminal singularities.

It is precisely the property (1.25.1) and its closely related variants that lead
us to the correct class of singular varieties for moduli purposes.

Since it is much harder to work with a whole equivalence class, it would
be desirable to find a particularly nice surface in every birational equivalence
class. This is achieved by the theory of minimal models of algebraic surfaces.
By a result of Enriques (Barth et al., 1984, III.4.5), every birational equiva-
lence class of surfaces S contains a unique smooth projective surface whose
canonical class is nef, except when S contains a ruled surface C × P1 for some
curve C. This unique surface is called the minimal model of S.

It would seem at first sight that (1.25) implies that the moduli functor of
minimal models is separated. There are, however, quite subtle problems.

1.27 (Families of minimal models). Let Y be a projective 3-fold whose only
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singularities are ordinary nodes. Take a general pencil and blow up its base
locus to get f : X → P1. The general fiber is a smooth surface. At the nodes,
in local coordinates we can write it as(

xy + z2 − t2 = (higher terms)
) � � //

f ��

A4
xyzt

��
A1

t A1
t .

By the Morse lemma, with a suitable analytic coordinate change we can elim-
inate the higher terms (10.43). Then we can blow up either of the the 2-planes
(x = z ± t = 0) to get π± : X± → X.

By explicit computation as in (10.45), we get smooth morphisms f ± : X± →
A1, and the fiber over the origin X±0 is the blow-up of X0 at the origin. How-
ever, the composite map X+ → X d X− is not an isomorphism. Also, the
exceptional set of π± is a smooth rational curve C± ⊂ X±.

To get a concrete example, start with a general sextic hypersurface Y ⊂ P4

that contains a 2-plane P. Let P+ Q be a general hyperplane section containing
P. Blow up the birational transforms of P and Q in X to get X± → X.

1.27.1 (Non-separatedness in the moduli of minimal models). We get two pro-
jective morphisms f ± : X± → P1 and a finite set B ⊂ P1 such that

(a) general fibers are smooth, canonical models,

(b) the X± are isomorphic over P1 \ B,

(c) the fibers X+
b and X−b are isomorphic minimal models for b ∈ B, but

(d) X+ → P1 and X− → P1 are not isomorphic to each other. �

Starting with a general sextic hypersurface Y ⊂ CP4 that has a single node,
and using that every divisor on Y is Cartier by Cheltsov (2010), gives the next
example.

1.27.2 (Non-projective families of projective surfaces). We get two smooth,
compact, complex manifolds X± and morphisms f ± : X± → P1 such that every
fiber is a projective minimal model, yet the X± are not projective.

Proof If X± is projective, let S ± be an ample divisor. We claim that S :=
f ±(S ±) is not Cartier at the node. Indeed, since f ± has no exceptional divisors,
we must have S ± = ( f ±)∗(S ). This is impossible since (S ± · C±) > 0, but(
S ± · ( f ±)∗(S )

)
= 0. Thus, if every divisor on Y is Cartier, then the X± can not

be projective. �

All such problems go away when the canonical class is ample.
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Proposition 1.28. Let fi : Xi → B be two smooth families of projective va-
rieties over a smooth curve B. Assume that the canonical classes KXi are fi-
ample. Let φ : X1

k(B) ' X2
k(B) be an isomorphism of the generic fibers.

Then φ extends to an isomorphism Φ : X1 ' X2.

Proof Let Γ ⊂ X1 ×B X2 be the closure of the graph of φ. Let Y → Γ be the
normalization, with projections pi : Y → Xi and f : Y → B. As in (1.25), we
use the canonical class to compare the Xi. Since the Xi are smooth,

KY ∼ p∗i KXi + Ei where Ei is effective and pi-exceptional. (1.28.1)

Since (pi)∗OY (mEi) = OXi for every m ≥ 0, we get that

( fi)∗OXi
(
mKXi

)
= ( fi)∗(pi)∗OY

(
mp∗i KXi

)
= ( fi)∗(pi)∗OY

(
mp∗i KXi + mEi

)
= ( fi)∗(pi)∗OY

(
mKY

)
= f∗OY

(
mKY

)
.

Since the KXi are fi-ample, Xi = ProjB⊕m≥0( fi)∗OXi
(
mKXi

)
. Putting these to-

gether, we get the isomorphism

Φ : X1 ' ProjB⊕m≥0( f1)∗OX1
(
mKX1

)
' ProjB⊕m≥0 f∗OY

(
mKY

)
' ProjB⊕m≥0( f2)∗OX2

(
mKX2

)
' X2. �

Remark 1.29. As in (1.26), it is again worthwhile to investigate the precise
assumptions behind the proof. The smoothness of the Xi is used only through
the pull-back formula (1.28.1), which is weaker than (1.25.1).

If (1.28.1) holds, then, even if the KXi are not fi-ample, we obtain an iso-
morphism

ProjB⊕m≥0( f1)∗OX1
(
mKX1

)
' ProjB⊕m≥0( f2)∗OX2

(
mKX2

)
. (1.29.1)

Thus it is of interest to study objects as in (1.29.1) in general.
Let us start with the absolute case, when X is a smooth projective variety

over a field k. Its canonical ring is the graded ring

R(X,KX) := ⊕m≥0H0(X,OX(mKX)
)
. (1.29.2)

In some cases the canonical ring tells us very little about X. For instance, if
X is rational or Fano then R(X,KX) is the base field k; if X is Calabi-Yau then
R(X,KX) is isomorphic to the polynomial ring k[t]. One should thus focus on
the cases when the canonical ring is large. The following notion is due to Iitaka
(1971). See (Lazarsfeld, 2004, Sec.2.1.C) for a detailed treatment.

Definition 1.30. Let X be a smooth proper variety. Its Kodaira dimension,
denoted by κ(X), is the dimension of the image of |mKX | : X d Pdim |mKX | for m
sufficiently large and divisible. One can also define κ(X) by the property: the
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limsup of h0(X,OX(mKX)
)
/mκ(X) is positive and finite. We set κ(X) = −∞ if

|mKX | is empty for all m > 0.
If κ(X) = dim X, we say that X is of general type. In this case |mKX | defines

a birational map for all m � 1, and the limit of h0(X,OX(mKX)
)
/mdim(X) is

positive and finite. See (3.34) for more on h0(X,OX(mKX)
)
.

Definition 1.31 (Canonical models). Let X be a smooth projective variety of
general type over a field k such that its canonical ring R(X,KX) (1.29.2) is
finitely generated. We define its canonical model as

Xc := Projk R(X,KX).

If Y is a smooth projective variety birational to X, then Yc is isomorphic to
Xc. Thus Xc is also the canonical model of the whole birational equivalence
class containing X. (Taking Proj of a non-finitely generated ring may result in
a quite complicated scheme. It does not seem profitable to contemplate what
would happen in our case.)

The canonical ring R(X,KX) is always finitely generated in characteristic 0
(11.28), thus Xc is an irreducible, projective variety. On the other hand, Xc can
be singular. Originally this was viewed as a major obstacle, but now it seems
only a technical problem.

We can now give an abstract characterization of canonical models.

Theorem 1.32. A normal proper variety Y is a canonical model iff
(1.32.1) KY is Q-Cartier (p.11) and ample, and
(1.32.2) there is a resolution f : X → Y (p.10) and an effective, f -exceptional
Q-divisor E, such that KX ∼Q f ∗KY + E.

Proof For now we prove only the ‘if’ part. For the converse, see Reid (1980)
or (Kollár, 2013b, 1.15) or (11.62.2).

Choose m0 such that m0KX is Cartier, then so is m0E. Note that for any r > 0,
f∗OX(rm0E) = OY since E is effective and f -exceptional. Thus

H0(X,OX(rm0KX)
)

= H0(Y, f∗OX(rm0KX)
)

=

= H0(Y,OY (rm0KY ) ⊗ f∗OX(rm0E)
)

= H0(Y,OY (rm0KY )
)
.

Therefore

Proj⊕mH0(X,OX(mKX)
)

= Proj⊕rH0(X,OX(rm0KX)
)

=

= Proj⊕rH0(Y,OY (rm0KY )
)

= Y. �

This makes it possible to give a local definition of the singularities that occur
on canonical models, using Q-linear equivalence ∼Q as in (p.11).
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Definition 1.33. A normal variety Y has canonical singularities if
(1.33.1) KY is Q-Cartier, and
(1.33.2) there is a resolution f : X → Y and an effective, f -exceptional Q-

divisor E, such that KX ∼Q f ∗KY + E.
It is easy to show that this is independent of the resolution f : X → Y; see (Kol-
lár, 2013b, 2.12). (One can define canonical singularities without resolutions,
see (Kollár, 2013b, Sec.2.1) or Luo (1987).)

Equivalently, Y has canonical singularities iff every point y ∈ Y has an étale
neighborhood which is an open subset on some canonical model.

A complete list of canonical singularities is known in dimension 2 and al-
most known in dimension 3, see Reid (1980). The following examples are
useful to keep in mind.
(1.33.3)

(
x1x2 + f (x3, . . . , xn) = 0

)
is canonical iff f is not identically 0.

(1.33.4) The quotient singularity An/ 1
m (1,m− 1, a3, . . . , an) (1.40.2) is canon-

ical for n ≥ 3 if gcd(m, a3, . . . , an) = 1. Its canonical class is Cartier iff
m | a3 + · · · + an.

(1.33.5) The cone Cd(Pn) over the d-uple Veronese embedding has a canonical
singularity iff d ≤ n+1. Its canonical class is Cartier iff d|n+1. (See (2.35)
or (Kollár, 2013b, 3.1) for the case of general cones.)

Warning 1.34 (Q-Cartier condition). While (1.33.1) may seem like a small
technical condition, in many cases it turns out to be extremely important.

First of all, one cannot pull back arbitrary divisors, so (1.33.2) does not even
make sense if KY is not Q-Cartier. This is a substantial problem starting with
dimension 3; cf. (11.57) and (11.58).

The issue becomes more serious for families of varieties. Unexpected jumps
of the Kodaira dimension happen precisely when the canonical class of the
total space is not Q-Cartier, see (1.43–1.46).

The most difficult aspects appear for non-normal varieties. The gluing theory
of (Kollár, 2013b, Chap.5) is almost entirely devoted to proving that in some
cases the canonical divisor is Q-Cartier; see (11.38) for a key consequence.

Definition 1.35. The moduli functor of canonical models is

CanMod(S) :=


Flat, proper families X → S ,

every fiber is a canonical model,
modulo isomorphisms over S .

 (1.35.1)

This is an improved version of GenTypebir defined in (1.24.5).
Warning. In retrospect, it seems only by luck that this definition gives the

correct functor. See (1.16.2), the examples in (1.42–1.47) and (2.8).
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1.36 (FromGenType to CanMod). Let p : Y → S be a smooth, projective mor-
phism of varieties over a field of characteristic 0. Assume that S is reduced and
the fibers Ys are of general type. By (1.37), we get the flat family of canonical
models pc : Yc → S . This gives a natural transformation TCanMod which, for
any reduced scheme S gives a map of sets

TCanMod(S ) : GenTypebir(S)→ CanMod(S). (1.36.1)

By definition, if Xi → S are two smooth, proper families of varieties of general
type such that TCanMod(S )(X1) = TCanMod(S )(X2), then X1 and X2 are birational,
thus TCanMod(S ) is injective. It is not surjective, but we have the following
partial surjectivity statement.

Claim 1.36.2. Let Y → S be a flat family of canonical models. Then there is a
dense open subset S ◦ ⊂ S and a smooth, proper family of varieties of general
type Y◦ → S ◦ such that TCanMod(S ◦)(Y◦) =

[
Y |S ◦

]
. �

Theorem 1.37. Let p : Y → S be a flat, projective morphism, whose fibers are
of general type and have canonical singularities. Assume that S is reduced.
Then the canonical models of the fibers form a flat, projective morphism pstab :
Ystab → S , and the natural map Y d Ystab is fiberwise birational.

For surfaces this goes back to Kodaira and Spencer (1958), the 3-fold case is
proved in (Kollár and Mori, 1992, 12.5.1). See (2.48) for a proof using MMP.
The complex analytic case is in Kollár (2021a).

The theorem implies the deformation invariance of plurigenera as in (5.1.3).
Conversely, the deformation invariance of plurigenera, due to Siu (1998) and
(Nakayama, 2004, Chap.VI), shows that, if the Ys have canonical models, then
they form a flat family pstab : Ystab → S .

The case when S is nonreduced is open.

1.4 From stable curves to stable varieties

Next we discuss the reasoning behind Step 1.15.
Let C be a nodal curve with normalized irreducible components Ci. We fre-

quently view C as an object assembled from the pieces Ci. Note that the pull-
back of KC to Ci is not KCi , rather KCi + Pi, where Pi ⊂ Ci are the preimages
of the nodes of C.

Similarly, if X is a scheme with simple normal crossing singularities (p.12)
and normalized irreducible components Xi, then the pull-back of KX to Xi is
not KXi , rather KXi + Di, where Di ⊂ Xi is the divisorial part of the preimage of
Sing X on Xi.

This suggests that we should develop a theory of ‘canonical models’ where
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the role of the canonical class is played by a divisor of the form KX + D, where
D is a simple normal crossing divisor (p.12).

Definition 1.38 (Canonical models of pairs). Let (X,D) be a projective snc
pair (p.12). We define the canonical ring1 of the pair (X,D) as

R(X,KX + D) := ⊕m≥0H0(X,OX(mKX + mD)
)
.

It is conjectured (but known only for dim X ≤ 4 in characteristic 0) that the
canonical ring of a pair (X,D) is finitely generated. If this holds then Xc :=
Projk R(X,KX + D) is a normal projective variety. We say that (X,D) is of gen-
eral type if the natural map π : X d Xc is birational, and then

(
Xc,Dc := π∗D

)
is called the canonical model of (X,D).

The proof of the ‘if’ part of the following goes exactly as in (1.32).

Theorem 1.39. A pair (Y, B), consisting of a proper normal variety Y and an
effective, reduced, Weil divisor B, is the canonical model of a simple normal
crossing pair iff
(1.39.1) KY + B is Q-Cartier, ample, and
(1.39.2) there is a resolution f : X → Y, an effective, reduced, simple normal

crossing divisor D ⊂ X such that f (D) = B, and an effective, f -exceptional
Q-divisor E, such that KX + D ∼Q f ∗(KY + B) + E.

Warning 1.39.3. If B = 0, it can happen that (X, 0) is the canonical model of
a pair, but X is not a canonical model (1.32). To see this, choose a resolution
f : X → Y and let Ei ⊂ X be the f -exceptional divisors. Although B = 0, in
(1.39.2) we can still take D =

∑
Ei. Thus (1.39.2) can be rewritten as

KX ∼ f ∗KY + E −
∑

Ei.

This looks like (1.32.2), but E −
∑

Ei need not be effective; it can contain
divisors with coefficients ≥ −1.

This is the source of some terminological problems. Originally R(X,KX +D)
was called the ‘log canonical ring’ and Projk R(X,KX + D) the ‘log canonical
model.’ Since the canonical ring is just the D = 0 special case of the ‘log
canonical ring,’ it seems more convenient to drop the prefix ‘log.’ However,
log canonical singularities are quite different from canonical singularities, so
‘log’ cannot be omitted there. (See also p.12 for other inconsistencies in the
usage of ‘canonical model.’)

As in (1.33), this can be reformulated as a definition. (For now we assume

1 Log canonical ring and log general type is also frequently used, see (1.39.3).



38 History of moduli problems

that every irreducible component of B appears in B with coefficient 1; later we
also consider cases when the coefficients are rational or real.)

Definition 1.40. Let (Y, B) be a pair consisting of a normal variety Y and a
reduced Weil divisor B. Then (Y, B) is log canonical, or has log canonical
singularities, iff the conditions (1.39.1–2) are satisfied. We say that Y is log
canonical if (Y, ∅) is.

If (Y, B) is log canonical and B is Q-Cartier then Y is also log canonical
(11.5.1). However, if B is not Q-Cartier, then KY is also not Q-Cartier, so Y is
not log canonical.

A complete list of log canonical singularities is known in dimension 2, see
Section 2.2 or (Kollár, 2013b, Sec.2.2). The following examples of log canon-
ical singularities are useful to keep in mind.
1.40.1 (Simple normal crossing).

(
An, (x1 · · · xr = 0)

)
for any r ≤ n.

1.40.2 (Quotient singularities).An/ 1
m (a1, . . . , an) denotes the quotient ofAn

x by
the action xi 7→ εai xi where ε is a primitive mth root of unity. The canonical
class is Cartier iff m |

∑
ai. These are even log terminal.

1.40.3 (Cones). A cone C(X) over a Calabi-Yau variety, see (2.35).

We are now ready to define the higher dimensional analogs of stable curves.

Definition 1.41 (Stable varieties). Let k be a field and Y a reduced, proper,
pure dimensional scheme over k. Let Yi → Y be the irreducible components of
the normalization of Y , and Di ⊂ Yi the divisorial part of the preimage of the
non-normal locus of Y . Then Y is semi-log-canonical—usually abbreviated as
slc—or locally stable iff
(1.41.1) at codimension 1 points, Y is either smooth or has a node (11.35),
(1.41.2) each (Yi,Di) is log canonical, and
(1.41.3) KY is Q-Cartier.
Y is a stable variety iff, in addition
(1.41.4) Y is projective and KY is ample.
As we noted in (1.34), the Q-Cartier condition for KY is quite hard to inter-
pret in terms of the (Yi,Di). See (11.38) or the more detailed (Kollár, 2013b,
Chap.5). For now we only deal with examples where KY is obviously Cartier
or Q-Cartier.

1.41.5 (Note on terminology). This usage of ‘stable’ has very little to do with
the GIT notion of ‘stable’ in Mumford (1965). They agree for curves, and
originally there was hope of a close relationship in all dimensions. The two
versions aim to answer the same question, but from different viewpoints. They
ended up quite different.
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Jump of K2 and of the Kodaira dimension

We give examples of flat families of projective surfaces {S t : t ∈ C}, such
that S 0 has quotient singularities and the S t are smooth for general t , 0, but
the self intersection of the canonical class

(
K2

S t

)
jumps at t = 0. We also give

examples where KS t is ample for t = 0, but not even big for t , 0. Among log
canonical singularities, quotient singularities (1.40.2) are the mildest.

As we already noted in (1.34), such jumps happen when the canonical class
of the total space is not Q-Cartier.

Example 1.42 (Degree 4 surfaces in P5). There are 2 families of nondegen-
erate degree 4 smooth surfaces in P5. These were classified by Del Pezzo, see
Eisenbud and Harris (1987) for a modern treatment.

One family consists of Veronese surfaces P2 ⊂ P5 embedded by O(2). The
general member of the other family is P1 × P1 ⊂ P5 embedded by O(2, 1),
special members are embeddings of the ruled surface F2. The two families are
distinct since

(
K2
P2

)
= 9 and

(
K2
P1×P1

)
= 8. For both of these surfaces, a smooth

hyperplane section is a degree 4 rational normal curve in P4.
Let T0 ⊂ P

5 denote the cone over the degree 4 rational normal curve in P4.
The minimal resolution of T0 is the ruled surface p : F4 → T0. Let E, F ⊂ F4

be the exceptional curve and the fiber of the ruling. Then KF4 = −2E − 6F and
p∗(2KT0 ) = −3E − 12F. Thus 2

(
KF4 + E

)
= p∗(2KT0 ) + E shows that T0 has

log canonical singularities. We also get that
(
K2

T0

)
= 9.

A key feature is that one can write T0 as a limit of smooth surfaces in two
distinct ways, corresponding to the two ways of writing the degree 4 rational
normal curve in P4 as a hyperplane section of a surface, see (2.36).

From the first family, we get T0 as the special fiber of a flat family whose
general fiber is P2. This family is denoted by {Tt : t ∈ C}. From the second
family, we get T0 as the special fiber of a flat family whose general fiber is
P1 × P1. This family is denoted by {T ′t : t ∈ C}. Note that (K2) is constant
in the family {Tt : t ∈ C}, but jumps at t = 0 in the family {T ′t : t ∈ C}. (In
general, one needs to worry about the possibility of getting embedded points
at the vertex. However, by (2.36), in both cases the special fiber is indeed T0.)

Alternatively, the degree 4 rational normal curve (s:t) 7→ (s4:s3t:s2t2:st3:t4)
can be given by determinantal equations in 2 ways, giving the families

T ′t =

(
rank

(
x0 x1 x2 x3

x1 x2 + tx5 x3 x4

)
≤ 1

)
, and

Tt =

rank


x0 x1 x2

x1 x2 + tx5 x3

x2 x3 x4

 ≤ 1

 .
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These are, however, families of rational surfaces with negative canonical
class, but we are interested in stable varieties.

Next we take a suitable cyclic cover (11.24) of the two families to get similar
examples with ample canonical class.

Example 1.43 (Jump of Kodaira dimension I).
We give two flat families of projective surfaces S t and S ′t such that

(1.43.1) S 0 ' S ′0 has log canonical singularities and ample canonical class,
(1.43.2) S t is a smooth surface with ample canonical class for t , 0, and
(1.43.3) S ′t is a smooth, elliptic surface with

(
K2

S ′t

)
= 0 for t , 0.

With T0 as in (1.42), let π0 : S 0 → T0 be a double cover, ramified along the
intersection of T0 with a general quartic hypersurface. Note that KT0 ∼Q −

3
2 H,

where H is the hyperplane class. Thus, by the Hurwitz formula,

KS 0 ∼Q π
∗
0
(
KT0 + 2H

)
∼Q

1
2π
∗
0H.

So S 0 has ample canonical class and
(
K2

S 0

)
= 2. Since π0 is étale over the

vertex of T0, S 0 has 2 singular points, locally (in the analytic or étale topology)
isomorphic to the singularity on T0. Thus S 0 is a stable surface.

Both of the smoothings in (1.42) lift to smoothings of S 0.
From Tt we get a smoothing S t where πt : S t → P

2 is a double cover, ram-
ified along a smooth octic. Thus S t is smooth, KS t ∼Q π

∗
t OP2 (1) is ample and(

K2
S t

)
= 2.

From T ′t we get a smoothing S ′t where π′t : S ′t → P
1 × P1 is a double cover,

ramified along a smooth curve of bidegree (8, 4). One of the families of lines
on P1 × P1 pulls back to an elliptic pencil on S ′t and

(
K2

S ′t

)
= 0. Thus S ′t is not

of general type for t , 0.

Example 1.44 (Jump of Kodaira dimension II). A similar pair of examples
is obtained by working with triple covers ramified along a cubic hypersur-
face section of the surface families in (1.42). The family over Tt has ample
canonical class and (K2) = 3. As before, the family over T ′t is elliptic and has
(K2) = 0.

Example 1.45 (Jump of Kodaira dimension III).
We construct a flat family of surfaces whose central fiber is the quotient of

the square of the Fermat cubic curve by Z/3:

S ∗F '
(
u3

1 = v3
1 + w3

1
)
×

(
u3

2 = v3
2 + w3

2
)
/ 1

3 (1, 0, 0; 1, 0, 0), (1.45.1)

thus it has Kodaira dimension 0. The general fiber is P2 blown up at 12 points.
In P3 consider two lines L1 = (x0 = x1 = 0) and L2 = (x2 = x3 = 0). The

linear system |OP2 (2)(−L1 − L2)| is spanned by the 4 reducible quadrics xix j
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for i ∈ {0, 1} and j ∈ {2, 3}. They satisfy a relation (x0x2)(x1x3) = (x0x3)(x1x2).
Thus we get a morphism π : BL1+L2P

3 → P1 × P1, which is a P1-bundle whose
fibers are the birational transforms of lines that intersect both of the Li.

Let S ⊂ P3 be a cubic surface such that p := S ∩ (L1 + L2) is 6 distinct
points. Then we get πS : BpS → P1 × P1.

In general, none of the lines connecting 2 points of p is contained in S ; in
this case πS is a finite triple cover.

At the other extreme we have the Fermat-type surface

S F :=
(
x3

0 + x3
1 = x3

2 + x3
3
)
⊂ P3.

We can factor both sides and write its equation as m1m2m3 = n1n2n3. The 9
lines Li j := (mi = n j = 0) are all contained in S F . Let L′i j ⊂ BpS F denote
their birational transforms. Then the self-intersections

(
L′i j · L

′
i j
)

equal −3 and
πS F contracts these 9 curves L′i j. Thus the Stein factorization of πS F gives a
triple cover S ∗F → P

1 ×P1. S ∗F has 9 singular points of type A2/ 1
3 (1, 1). We see

furthermore that −3KS F ∼
∑

i jLi j and −3KBPS F ∼
∑

i jL′i j. Thus −3KS ∗F ∼ 0.
To see that the two surfaces denoted by S ∗F are isomorphic, use the map of

the surface (1.45.1) to P1 × P1 given by

(u1:v1:w1) × (u2:v2:w2) 7→ (v1:w1) × (v2:w2),

and the rational map to the cubic surface is given by

(u1:v1:w1) × (u2:v2:w2) 7→
(
u1v2:u1w2:v1u2:w1u2

)
.

Example 1.46 (Jump of Kodaira dimension IV). The previous examples are
quite typical in some sense. If S 0 is any projective rational surface with quo-
tient singularities, then there is a flat family of surfaces {S t} such that S t is a
smooth rational surface for t , 0.

To see this, take a minimal resolution S ′0 → S 0. Since S ′0 is a smooth rational
surface, it can be obtained from a minimal smooth rational surface by blowing
up points. We can deform S ′0 by moving these points into general position
(and also deforming the minimal smooth rational surface if necessary). Thus
we see that if S 0 is singular, then a general deformation S ′t of S ′0 is obtained
by blowing up points in P2 or P1 × P1 in general position. In the second case,
if we blow up at least 1 point, it is also a blow up of P2. There are no curves
with negative self-intersection on P1 × P1, and on a blow-up of P2 at general
points, every smooth rational curve with negative self-intersection is a (−1)-
curve by (de Fernex, 2005, 2.4). In particular, none of the exceptional curves
of S ′0 → S 0 lift to S ′t .

Let H′0 be the pull-back of a very ample Cartier divisor from S 0 whose
higher cohomologies vanish. Since S ′0 is a smooth rational surface, Pic(S ′0) =
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H2(S ′0,Z), so H′0 lifts to a family of semi-ample Cartier divisors H′t . As we
discussed, none of the exceptional curves of S ′0 → S 0 lift to S ′t for general t,
so H′t is ample for general t. As before, we get a flat deformation {S t} such that
S t ' S ′t for t , 0.

Many recent constructions of surfaces of general type start with a particular
rational surface S 0 with quotient singularities, and show that it has a flat de-
formation to a smooth surface with ample canonical class; see Lee and Park
(2007); Park et al. (2009a,b). Thus such an S 0 has flat deformations of general
type and also flat deformations that are rational.

Even more surprisingly, a surface with ample canonical class can have non-
algebraic deformations.

Example 1.47 (Non-algebraic deformations). Kollár (2021a) We construct a
projective surface X0 with a quotient singularity, ample canonical class and two
deformations. An algebraic one galg : Xalg → D, where galg is flat, projective,
and a complex analytic one gan : Xan → D over the unit disc D ⊂ C, where gan

is flat, proper, such that

(1.47.3) Xalg
s is a smooth, algebraic, K3 surface blown up at 3 points for s , 0,

(1.47.4) Xan
s is a smooth, non-algebraic, K3 surface blown up at 3 points for

very general s ∈ D.
Let us start with a K3 surface Y ⊂ P3 with a hyperplane section C ⊂ Y and
3 points pi ∈ C. Blow up these points to get π : Z → Y with exceptional
curves E = E1 + E2 + E3. Let CZ ⊂ Z be the birational transform of C and
H = π∗C − 2

3 E.
If the pi are smooth points on C, then π∗C = CZ + E, hence H = CZ + 1

3 E.
Since (H ·CZ) = 2, (H · Ei) = 2

3 and Z \ (CZ + E) ' Y \C is affine, we see that
H is ample by the Nakai-Moishezon criterion.

If the pi are double points on C, then π∗C = CZ + 2E, hence H = CZ + 4
3 E.

Then (CZ · Ei) = 2, (H · CZ) = 0 and (H · Ei) = 2
3 . So 3H is semiample and it

contracts CZ . Let the resulting surface be X0 and Fi ⊂ X0 the images of the Ei.
Note that in this case CZ is a smooth, rational curve and (C2

Z) = −8. Thus X0

has a single quotient singularity of type C2/ 1
8 (1, 1). We also get that (F2

i ) = − 1
2

and (Fi · F j) = 1
2 for i , j. Furthermore, KX0 ∼ F1 + F2 + F3 is ample.

In order to construct the algebraic family, start with C ⊂ Y where C is a
rational curve with 3 nodes. The deformation is obtained by moving the points
into general position. Blowing up the points we get H that is ample on the
general fibers and contracts the birational transform of C in the special fiber.
Thus we get galg : Xalg → D.

For the analytic case, we choose a deformation Y → D of Y0 whose very
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general fibers are non-algebraic K3 surfaces. Take 3 sections Bi ⊂ Y that pass
through the 3 nodes of C. Blow them up and then contract the birational trans-
form of C. The contraction extends to the total space by (Kollár and Mori,
1992, 11.4). We get gan : Xan → D whose central fiber is X0. The other fibers
are non-algebraic, K3 surfaces blown up at 3 points.

Example 1.48 (More rational surfaces with ample canonical class). (Kollár,
2008b, Sec.5) Given natural numbers a1, a2, a3, a4, consider the surface

S = S (a1, a2, a3, a4) := (xa1
1 x2 + xa2

2 x3 + xa3
3 x4 + xa4

4 x1 = 0) ⊂ P(w1,w2,w3,w4),

where w′i = ai+1ai+2ai+3 − ai+2ai+3 + ai+3 − 1 (with indices modulo 4) and wi =

w′i/ gcd(w′1,w
′
2,w

′
3,w

′
4). It is easy to see that S has only quotient singularities

(at the 4 coordinate vertices). It is proved in (Kollár, 2008b, Thm.39) that S is
rational if gcd(w′1,w

′
2,w

′
3,w

′
4) = 1. (By (Kollár, 2008b, 38), this happens with

probability ≥ 0.75.)
P(w1,w2,w3,w4) has isolated singularities iff the {wi} are pairwise relatively

prime. (It is easy to see that for 1 ≤ ai ≤ N, this happens for at least c · N4−ε

of the 4-tuples.) In this case KS = OP
(∏

ai − 1 −
∑

wi
)
|S . From this it is easy

to see that if a1, a2, a3, a4 ≥ 4 then KS is ample and (K2
S ) converges to 1 as

a1, a2, a3, a4 → ∞. See Urzúa and Yáñez (2018) for more on these surfaces.

1.5 From nodal curves to stable curves and surfaces
We discussed stable extension for families of curves C → B over a smooth
curve B in (1.15.1). Similarly, working over a higher dimensional reduced base
C → S involves 2 main steps.
• First we transform a given proper family of curves C → S into a proper, flat

family C1 → S 1, whose fibers are reduced, nodal curves. This needs a base
change S 1 → S that involves choices, and then a sequence of blow-ups that
again involves choices. We can choose S 1 to be smooth.

• Once we have a proper, flat family C1 → S 1 whose fibers are reduced, nodal
curves, and whose base is smooth, we take the relative canonical model
(11.28) to get the stable family Cstab

1 → S 1. For MMP to work, we need S 1

to have at worst log canonical singularities.
Nonetheless, we show that one can go from flat families of nodal curves to

flat families of stable curves in a functorial way over an arbitrary base.

Theorem 1.49. For every g ≥ 2 there is a natural transformation C 7→ Cstab{
proper, flat families of

reduced, nodal, genus g curves

}
−→

{
stable families of
genus g curves

}
,

such that that if C is a smooth, projective curve, then Cstab = C. (We assume
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that the curves are geometrically connected. By the genus of a proper nodal
curve C we mean h1(C,OC).)

Proof We outline the main steps, leaving some details to the reader. We use
C′ to denote any irreducible component of the curve that we work with.

First let C be a proper, reduced, nodal curve over an algebraically closed
field. We start with two recipes to construct Cstab. With both approaches, we
first obtain the largest semistable subcurve Css ⊂ C.
Step 1.a. (Using MMP) Find C′ ⊂ C on which KC has negative degree. Equiv-
alently, C′ ' P1 and it meets the rest of C in 1 point only. Contract (or discard)
this component. Repeat if possible.
Step 1.b. (Using KC) Css is the support of the global sections of OC(KC).

Once we have Css we continue to get Cstab as follows.
Step 2.a. Find C′ ⊂ Css on which KCss has degree 0. Equivalently, C′ ' P1 and
it meets the rest of Css in 2 points only; call them p, q. Contract this component.
Equivalently, discard C′ and identify the points p, q. Repeat if possible.
Step 2.b. (Using the canonical ring) Cstab = Proj⊕mH0(Css,OCss (mKCss )

)
.

Once we know Cstab, we can also recover it in one step as follows.
Step 3. Let {Ci ⊂ C : i ∈ I} be the irreducible components that are kept in
the above process; call them stable. Pick non-nodal points pi ∈ Ci and set
L := OC(

∑
pi). Then, for m � 1, H1(C, Lm) = 0, Lm is globally generated and

maps C onto Cstab.
Step 4. Over an arbitrary field k with algebraic closure k̄, we show that if C is
defined over k, then (Ck̄)stab is also defined over k, giving us Cstab.

Now to the general case. Let g : CS → S be a proper, flat family of re-
duced, nodal curves over an arbitrary base. We construct the stable family
étale-locally; uniqueness then implies that we get a family over S .

Pick a point s ∈ S . By the above arguments, we have the stable irreducible
components Ci

s ⊂ Cs. Pick non-nodal points pi ∈ Ci
s and let Di ⊂ CS be

sections that meet Cs only at pi. (Usually this needs an étale base change.) Set
LS := OCS (

∑
Di). Then Step 3 shows that, for m � 1,

Step 5. R1g∗Lm = 0, g∗Lm is locally free, and maps CS onto Cstab
S . �

Warning. Note that Step 2.b works only for semistable curves. As an example,
let C = C1 ∪ C2 be a curve with a single node p with g(C1) ≥ 2 and C2 ' P

1.
Then we have a non-finitely generated ring

⊕m≥0H0(C,OC(mKC)
)

= ⊕m≥0H0(C1,OC1 (mKC1 + (m − 1)[p])
)
.

Definition 1.50 (Stabilization functor). Trying to generalize (1.49) to higher
dimensions, the best would be to have a functor from proper, flat locally stable
families to stable families, that agrees with X → Xc on smooth varieties of
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general type. One can further restrict the singularities of the fibers and talk
about stabilization functors for families of smooth varieties, simple normal
crossing varieties (p.12), and so on.

We see below that such a stabilization functor does exist for smooth families,
but not for more complicated singularities. We discuss this phenomenon in
detail in Section 5.2; see especially (5.11). This is another reason why the
moduli theory of higher dimensional varieties is much more complicated.

Theorem 1.51 (Stabilization functor for surfaces).
(1.51.1) For smooth, projective surfaces of general type, S 7→ S c is a stabi-

lization functor.

(1.51.2) For projective surfaces of general type with quotient singularities,
S 7→ S c is not a stabilization functor.

(1.51.3) For projective surfaces with normal crossing singularities, S 7→ S c

is not a stabilization functor.

(1.51.4) For irreducible projective surfaces with normal crossing singulari-
ties, S c does not even make sense in general.

Proof For the first part, see (1.36) and (2.48). As in (1.49), more work is
needed for nonreduced bases.

For (2) and (3) we run into problems even for families over smooth curves.
Consider the simplest case when we have a flat, projective morphism p :

X → A1 to a smooth curve such that KX isQ-Cartier, and the fibers are surfaces
with quotient singularities only. Then we get the stable model pstab : Xstab →

A1 as the relative canonical model (11.28).
We claim that as soon as the process involves a flip, we have an example for

(2): the canonical ring of X0 is strictly larger than the canonical ring of (Xc)0.
The flip is a diagram

(C ⊂ X)
φ //_______

π ''PP
PPP

PP
(C+ ⊂ X+)

π+vvmmm
mmm

m

Z

(1.51.5)

where −KX is π-ample and −KX+ is π+-ample.
Restricting it to the fiber over 0 ∈ A1 we get a similar looking diagram of

surfaces with quotient singularities

(C ⊂ X0)
φ0 //_______

π0 ''PP
PPP

PP
(C+ ⊂ X+

0 )

π+
0vvnnnn

nnn

Z0

(1.51.6)
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where −KX0 is π0-ample and −KX+
0

is π+
0 -ample. The difference is that now the

exceptional curves C,C+ of (1.51.5) are exceptional divisors.
Using (1.51.8) we get the following.

Problem 1.51.7. X0 7→ X+
0 is not a step of the MMP for X0. In fact, the canon-

ical ring of X+
0 is strictly smaller than the canonical ring of X0.

Taking a suitable resolution shows that similar examples happen for families
with simple normal crossing fibers.

Claim (4) is not a precise assertion, but we expect that, even over alge-
braically closed fields, there is no ‘sensible’ way to associate a stable surface
to every projective, normal crossing surface. For example, Kollár (2011c) con-
structs irreducible, projective surfaces S with normal crossing singularities for
which the canonical ring ⊕m≥0H0(S ,OS (mKS )

)
is not finitely generated. We

present a similar example in (1.53). �

Claim 1.51.8. Let p : Y → T be a proper, birational morphism of normal
surfaces and E := Ex(p). Let D be a Cartier divisor on Y and set DT := p(D).
The following is an easy to see.

(a) If −D|E is ample then p∗OY (mD) = OT (mDT ) for m ≥ 1.
(b) If D|E is ample then p∗OY (mD) ( OT (mDT ) for m � 1.
(c) If D is ample then H0(Y,OY (mD)) ( H0(T,OT (mDT )) for m � 1. �

We saw that if p : X → A1 is a flat, projective family of surfaces with
quotient singularities, then the relative canonical model (11.28) gives a stable
family, although this is not a fiber-wise construction. The next example shows
that, for families over nodal curves, there may not be any stable family.

Example 1.52. Consider any family X → A1
u as in (1.51.7), and glue it to the

trivial family q : Y := X0 × A
1
v → A

1
v along the central fibers to get a locally

stable family r : X qX0 Y → (uv = 0). Then
(1.52.1) pstab : Xstab → A1

u and qstab : Ystab → A1
v both exists, yet

(1.52.2) their central fibers (Xc)0 and (Yc)0 are not isomorphic, so
(1.52.3) r : X qX0 Y → (uv = 0) does not have a stable model.

Example 1.53. Following Kollár (2011c), we give an example of a projective,
normal crossing surface whose canonical ring is not finitely generated. The key
point is the following observation.

Let T be a projective surface, C1,C2 ⊂ T disjoint smooth curves and τ :
C1 → C2 an isomorphism. Assume that T \ C1 is smooth, T has a single node
at a point p1 ∈ C1 and KT + C1 + C2 is ample. Let T/(τ) be obtained from T
by identifying C1 with C2 using τ.
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Claim 1.53.1. The canonical class of T/(τ) is not Q-Cartier. Thus its canonical
ring is not finitely generated.

Proof T is smooth along C2, hence the usual adjunction gives that

(KT + C1 + C1)|C1 = KC1 .

T has a node along C1. This modifies the adjunction formula to

(KT + C1 + C2)|C1 = KC1 + 1
2 [p1];

see (Kollár, 2013b, 4.3) for this computation. This means that we cannot match
up local generating sections of the sheaf OT (mKT +mC1 +mC2) at the points p1

and τ(p1); see (Kollár, 2013b, 5.12) for the precise statement and proof. This
easily implies that finite generation fails, see (Kollár, 2010, Exc.97). �

This is almost what we want, except that T is not a normal crossing surface
at the image of p1. So next we construct a normal crossing surface and check
that trying to construct its minimal model leads to a surface as above.

We start with a smooth plane curve C ⊂ P2 of degree d and a line L inter-
secting C transversally. Let c ∈ C ∩ L be one of the intersection points. Fix
distinct points p, q ∈ P1. In P2

p := {p} × P2 we get Cp, Lp, and similarly for
Cq, Lq ⊂ P

2
q. We have the ‘identity’ τ : Cp ' Cq.

Let S̄ ⊂ P1×P2 be a surface of bidegree (e, d +1) such that S̄ ∩P2
p = Cp∪Lp

and S̄ ∩ P2
q = Cq ∪ Lq. We can further arrange that S̄ is smooth, except for an

ordinary node at cp ∈ Cp ∩ Lp.
Let S̄ ′ → S̄ be obtained by blowing up cp and cq. We get exceptional curves

E′p, E
′
q and birational transforms C′p and C′q. Note that S̄ ′ is smooth and E′p +

E′q + C′p + C′q is an snc divisor. We can now glue C′p to C′q using the ‘identity’
τ′ : C′p ' C′q to obtain the non-normal surface S ′ := S̄ ′/(τ′). It has normal
crossing self-intersection along a curve C ' C′p ' C′q. Note that KS ′ + Ep + Eq

is a Cartier divisor.

Claim 1.53.2. The projective, normal crossing pair (S ′, Ep + Eq) does not have
a canonical model.

Proof The normalization of (S ′, Ep + Eq) is (S̄ ′, E′p + E′q + C′p + C′q), thus
the only ‘sensible’ thing to do is to construct its the canonical model, and then
glue the images of C′p and C′q together. We compute that

(KS̄ ′ + E′p + E′q +C′p +C′q) ·E′p = −1 and (KS̄ ′ + E′p + E′q +C′p +C′q) ·E′q = −1.

Thus we need to contract E′p and E′q to get (S̄ ,Cp + Cq). Note that

OS̄ (KS̄ ) ' OP1×P2 (e − 2, d + 1 − 3)|S̄ ,
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which is ample for e ≥ 3, d ≥ 3. This shows that if d ≥ 4, then KS̄ + Cp +

Cq is ample. Therefore the only possible choice for the canonical model of
(S ′, E′p +E′q) is S̄ /(τ). Now (1.53.1) shows that the canonical ring is not finitely
generated. �

1.6 Examples of bad moduli problems

Now we turn to a more general overview of moduli problems. The aim of this
section is to present examples of moduli problems that seem quite reasonable
at first sight, but turn out to have rather bad properties. We start with the moduli
of hypersurfaces.

The Chow and Hilbert varieties describe families of hypersurfaces in a fixed
projective space Pn. For many purposes it is more natural to consider the mod-
uli functor of hypersurfaces modulo isomorphisms. We consider what kind of
‘moduli spaces’ one can obtain in various cases.

Definition 1.54 (Hypersurfaces modulo linear isomorphisms). Over an alge-
braically closed field k, we consider hypersurfaces X ⊂ Pn

k where X1, X2 ⊂ P
n
k

are considered isomorphic if there is an automorphism φ ∈ Aut(Pn
k) such that

φ(X1) = X2.
Over an arbitrary base scheme S , we consider pairs (X ⊂ P) where P/S is

a Pn-bundle for some n and X ⊂ P is a closed subscheme, flat over S such
that every fiber is a hypersurface. There are two natural invariants, the relative
dimension of P and the degree of X. Thus for any given n, d we get a functor

HypSurn,d(S ) :=


Flat families X ⊂ P

such that dimS P = n, deg X = d,
modulo isomorphisms over S .


One can also consider subfunctors, where we allow only reduced, normal,

canonical, log canonical or smooth hypersurfaces; these are indicated by the
superscripts red, norm, c, lc or sm.

Our aim is to investigate what the ‘coarse moduli spaces’ of these functors
look like. Our conclusion is that in many cases there cannot be any scheme or
algebraic space that is a coarse moduli space: any ‘coarse moduli space’ would
have to have very strange topology.

Let HypSur∗n,d be any subfunctor of HypSurn,d, and assume that it has a
coarse moduli space HypSur∗n,d. By definition, the set of k-points of HypSur∗n,d
isHypSur∗n,d(Spec k). We can also get some idea about the Zariski topology of
HypSur∗n,d using various families of hypersurfaces.

For instance, we can study the closure Ū of a subset U ⊂ HypSur∗n,d(Spec k)
using the following observation:
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• Assume that there is a flat family of hypersurfaces π : X → S and a dense
open subset S ◦ ⊂ S such that [Xs] ∈ U for every s ∈ S ◦(k). Then [Xs] ∈ Ū
for every s ∈ S (k).
Next we write down flat families of hypersurfaces π : X → A1 inHypSur∗n,d

such that for t , 0 the fibers Xt are isomorphic to each other, but X0 is
not isomorphic to them. Such a family corresponds to a morphism τ : A1 →

HypSur∗n,d such that τ
(
A1 \ {0}

)
= [X1], but τ

(
{0}

)
= [X0]. This implies that the

point [X1] is not closed, and its closure contains [X0].
This is not very surprising in a scheme, but note that X1 itself is defined over

our base field k, so [X1] is supposed to be a k-point. On a k-scheme, k-points
are closed. Thus we conclude that if there is any family as above, the moduli
space HypSur∗n,d cannot be a k-scheme, not even a quasi-separated algebraic
space (Stacks, 2022, Tag 08AL).

The simplest way to get such families is by the following construction.

Example 1.55 (Deformation to cones I). Let f (x0, . . . , xn) be a homogeneous
polynomial of degree d and X := ( f = 0) the corresponding hypersurface. For
some 0 ≤ i < n consider the family of hypersurfaces

X := ( f (x0, . . . , xi, txi+1, . . . txn) = 0) ⊂ Pn × A1
t (1.55.1)

with projection π : X→ A1
t . If t , 0 then the substitution

x j 7→ x j for j ≤ i, and x j 7→ t−1x j for j > i

shows that the fiber Xt is isomorphic to X. If t = 0 then we get the cone over
X ∩ (xi+1 = · · · = xn = 0):

X0 = ( f (x0, . . . , xi, 0, . . . , 0) = 0) ⊂ Pn.

This is a hypersurface iff f (x0, . . . , xi, 0, . . . , 0) is not identically 0.
More generally, any algebraic variety has a similar deformation to a cone

over its hyperplane section, see (2.36).

Already these simple deformations show that various moduli spaces of hy-
persurfaces have very few closed points.

Corollary 1.56. The sole closed point of HypSurd,n is [(xd
0 = 0)].

Proof Take any X = ( f = 0) ⊂ Pn. After a general change of coordinates, we
can assume that xd

0 appears in f with nonzero coefficient. For i = 0 consider
the family (1.55.1).

Then X0 = (xd
0 = 0), hence [X] cannot be a closed point unless X ' X0.

It is quite easy to see that if X → S is a flat family of hypersurfaces whose

https://stacks.math.columbia.edu/tag/08AL
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generic fiber is a d-fold plane, then every fiber is a d-fold plane. This shows
that [(xd

0 = 0)] is a closed point. �

Corollary 1.57. The only closed points of HypSurred
d,n are [( f (x0, x1) = 0)]

where f has no multiple roots.

Proof If X is a reduced hypersurface of degree d, there is a line that intersects
it in d distinct points. We can assume that this is the line (x2 = · · · = xn = 0).
For i = 1 consider the family (1.55.1).

Then X0 = ( f (x0, x1, 0, . . . , 0) = 0) where f (x0, x1) has d distinct roots.
Since X0 is reduced, we see that none of the other hypersurfaces correspond to
closed points.

It is not obvious that the points corresponding to ( f (x0, x1, 0, . . . , 0) = 0) are
closed, but this can be established by studying the moduli of d points in P1; see
(Mumford, 1965, Chap.3) or (Dolgachev, 2003, Sec.10.2). �

A similar argument establishes the normal case:

Corollary 1.58. The only closed points of HypSurnorm
d,n are [( f (x0, x1, x2) = 0)]

where ( f (x0, x1, x2) = 0) ⊂ P2 is a nonsingular curve. �

In the above examples the trouble comes from cones. Cones can be nor-
mal, but they are very singular by other measures; they have a singular point
whose multiplicity equals the degree of the variety. So one could hope that
high multiplicity points cause the problems. This is true to some extent as the
next theorems and examples show. For proofs see (Mumford, 1965, Sec.4.2)
and (Dolgachev, 2003, Sec.10.1).

Theorem 1.59. Each of the following functors has a coarse moduli space
which is a quasi-projective variety.

(1.59.1) The functor of smooth hypersurfacesHypSursm
n,d.

(1.59.2) For d ≥ n + 1, the functorHypSurc
n,d of hypersurfaces with canonical

singularities.

(1.59.3) For d > n+1, the functorHypSurlc
n,d of hypersurfaces with log canon-

ical singularities.

(1.59.4) For d > n + 1, the functorHypSurlow−mult
n,d of those hypersurfaces that

have only points of multiplicity < d
n+1 .

Example 1.60. Consider the family of even degree d hypersurfaces(
(xd/2

0 + td xd/2
1 )xd/2

1 + xd
2 + · · · + xd

n = 0
)
⊂ Pn × A1

t .
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For t , 0 the substitution (x0:x1:x2: · · · :xn) 7→ (tx0:t−1x1:x2: · · · :xn). trans-
forms the equation of Xt to

X :=
(
(xd/2

0 + xd/2
1 )xd/2

1 + xd
2 + · · · + xd

n = 0
)
⊂ Pn.

X has a single singular point which is at (1:0: · · · :0) and has multiplicity d/2.
For t = 0 we obtain the hypersurface

X0 :=
(
xd/2

0 xd/2
1 + xd

2 + · · · + xd
n = 0

)
.

X0 has 2 singular points of multiplicity d/2, hence it is not isomorphic to X.
Thus we conclude that [X] is not a closed point of the ‘moduli space’ of

those hypersurfaces of degree d that have only points of multiplicity ≤ d/2.
This is especially interesting when d ≤ n since in this case X0 has canonical

singularities (1.33).
Thus we see that for d ≤ n, the functor HypSurc

n,d parametrizing hyper-
surfaces with canonical singularities does not have a coarse moduli space. By
contrast, for d > n the coarse moduli scheme HypSurc

n,d exists and is quasi-
projective by (1.59).

Example 1.61. One could also consider hypersurfaces modulo isomorphisms
which do not necessarily extend to an isomorphism of the ambient projective
space. It is easy to see that smooth hypersurfaces can have such nonlinear iso-
morphisms only for (d, n) ∈ {(3, 2), (4, 3)}. A smooth cubic curve in P2 has
an infinite automorphism group, but only finitely many extend to an automor-
phism of P2. Similarly, a smooth quartic surface in P3 can have an infinite
automorphism group as in (1.66), but only finitely many extend to an auto-
morphism of P3. See (1.66) or Shimada and Shioda (2017); Oguiso (2017) for
examples of isomorphisms of smooth quartic surfaces in P3.

The non-separated examples produced so far all involved ruled or at uniruled
varieties. Next we consider some examples where the varieties are not uniruled.
The bad behavior is due to the singularities, not to the global structure.

Example 1.62 (Double covers of P1). Let f (x, y) and g(x, y) be two cubic
forms without multiple roots, neither divisible by x or y. Set

S 1 :=
(
f (x1, y1)g(t2x1, y1) = z2

1
)
⊂ P(1, 1, 3) × A1, and

S 2 :=
(
f (x2, t2y2)g(x2, y2) = z2

2
)
⊂ P(1, 1, 3) × A1.

Note that KS i/A1 is relatively ample and the general fiber of π1 : S i → A
1 is a

smooth curve of genus 2.
The central fibers are

(
f (x1, y1)g(0, y1) = z2

1
)

resp.
(
f (x2, 0)g(x2, y2) = z2

2
)
.

By assumption g(0, y1) = a1y3
1 and f (x2, 0) = a2x3

2 where the ai , 0. Setting
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z1 = a1/2
1 w1y1 and z2 = a1/2

2 w2x2 gives the normalizations. Hence the cen-
tral fibers are elliptic curves with a cusp. Their normalization is isomorphic to(
f (x1, y1)y1 = w2

1
)

resp.
(
x2g(x2, y2) = w2

2
)
. These are, in general, not isomor-

phic to each other.
This also shows that along the central fibers, the only singularities are at

(1:0:0; 0) and at (0:1:0; 0), with local equations g(t2, y1) = z2
1 and f (x2, t2) =

z2
2. (These are simple elliptic with minimal resolution a single smooth elliptic

curve of self intersection −1.) Hence the S i are normal surfaces, each having 1
simple elliptic singular point.

Finally, the substitution (x1 : y1 : z1; t) = (x2 : t2y2 : t3z2; t) transforms
f (x1, y1)g(t2x1, y1) − z2

1 into

f (x2, t2y2)g(t2x2, t2y2) − t6z2
2 = t6( f (x2, t2y2)g(x2, y2) − z2

2
)
,

thus the two families are isomorphic over A1 \ {0}.

Let us end our study of hypersurfaces with a different type of example. This
shows that the moduli problem for hypersurfaces usually includes smooth lim-
its that are not hypersurfaces. These pose no problem for the general theory, but
they show that it is not always easy to see what schemes one needs to include
in a moduli space.

Example 1.63 (Smooth limits of hypersurfaces). Mori (1975)
Fix integers a, b > 1 and n ≥ 2. We construct a family of smooth n-folds

Xt such that Xt is a smooth hypersurface of degree ab for t , 0 and X0 is not
isomorphic to a smooth hypersurface.

It is not known if similar examples exist for n ≥ 3 and deg X a prime number;
see Ottem and Schreieder (2020) for the cases deg X ≤ 7.

Start with the weighted projective space P(1n+1, a)x,z. Let fa, gab be general
homogeneous forms of degree a (resp. ab) in x0, . . . , xn. Consider the family
of complete intersections

Xt :=
(
tz − fa(x0, . . . , xn) = zb − gab(x0, . . . , xn) = 0

)
⊂ P(1n+1, a).

For t , 0 we can eliminate z to obtain a degree ab smooth hypersurface

Xt '
(
f b
a (x0, . . . , xn) = tbgab(x0, . . . , xn)

)
⊂ Pn+1.

For t = 0 we see that OX0 (1) is not very ample, but realizes X0 as a b-fold
cyclic cover (11.24) of the degree a smooth hypersurface

(
fa(x0, . . . , xn) = 0

)
.

In particular, X0 is not isomorphic to a smooth hypersurface.

The next example shows that seemingly equivalent moduli problems may
lead to different moduli spaces.
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Example 1.64. We start with the moduli space Pn+1 of n + 1 points in C up to
translations. We can view such a point set as the zeros of a unique polynomial
of degree n + 1 whose leading term is xn+1. We can use a translation to kill the
coefficient of xn, and the universal polynomial is then given by

xn+1 + a2xn−1 + · · · + an+1.

Thus Pn+1 ' C
n with coordinates a2, . . . , an+1.

Let us now look at those point sets where n of the points coincide. There are
two ways to formulate this as a moduli problem:

(1.64.1) unordered point sets p0, . . . , pn ∈ C where at least n of the points
coincide, up to translations, or

(1.64.2) unordered point sets p0, . . . , pn ∈ C plus a point q ∈ C such that
pi = q at least n-times, up to translations.

If n ≥ 2 then q is uniquely determined by the points p0, . . . , pn, so it would
seem that the two formulations are equivalent. We claim, however, that the two
versions have non-isomorphic moduli spaces.

If the n-fold point is at t then the corresponding polynomial is (x− t)n(x+nt).
By expanding it we get that

ai = ti
[
(−1)i

(
n
i

)
+ (−1)i−1n

(
n

i−1

)]
for i=2,. . . , n+1.

This shows that the space Rn+1 ⊂ Pn+1 of polynomials with an n-fold root is a
cuspidal rational curve given as the image of the map

t 7→
(
ai = ti

[
(−1)i

(
n
i

)
+ (−1)i−1n

(
n

i−1

)]
: i = 2, . . . , n + 1

)
.

So the moduli space Rn+1 of the first variant (1) is a cuspidal rational curve.
By contrast, the space R̄n+1 of the second variant (2) is a smooth rational

curve, the isomorphism is given by

(p0, . . . , pn; q) 7→
∑

i(pi − q) ∈ C.

Not surprisingly, the map that forgets the n-fold root gives π : R̄n+1 → Rn+1

which is the normalization map.

Next we have two examples of moduli functors that are not representable
(1.18). They suggest that varieties whose canonical class is not ample present
special challenges.

Example 1.65. Let S ⊂ P3 be a smooth surface of degree 4 over C, with
infinite discrete automorphism group, for example as in (1.66).

Let S → W be the universal family of smooth degree 4 surfaces in P3.
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The isomorphisms classes of the pairs
(
S ,OS (1)

)
correspond to the Aut(P3)-

orbits in W. We see below that the fibers isomorphic to S form countably many
Aut(P3)-orbits.

For any g ∈ Aut(S ), g∗OS (1) gives another embedding of S into P3. Two
such embedding are projectively equivalent iff g∗OS (1) ' OS (1), that is, when
g ∈ Aut

(
S ,OS (1)

)
. The latter can be viewed as the group of automorphisms of

P3 that map S to itself. Thus Aut
(
S ,OS (1)

)
is a closed subvariety of Aut(P3) '

PGL4. Since Aut(S ) is discrete, this implies that Aut
(
S ,OS (1)

)
is finite. Hence

the fibers of S→ W that are isomorphic to S lie over countably many Aut(P3)-
orbits, corresponding to Aut(S )/Aut

(
S ,OS (1)

)
.

Example 1.66 (Surfaces with infinite discrete automorphism group). Let us
start with a smooth genus 1 curve E defined over a field K. Any point q ∈
E(K) defines an involution τq where τq(p) is the unique point such that p +

τq(p) ∼ 2q. (Equivalently, we can set q as the origin, then τq(p) = −p.) The
first formulation shows that if L/K is a quadratic extension, then any Q ∈
E(L) also defines an involution τQ where τQ(p) is the unique point such that
p + τQ(p) ∼ Q.

Given points q1, q2 ∈ E(K), we see that p 7→ τq2 ◦ τq1 (p) is translation by
2q1 − 2q2. Similarly, given Qi ∈ E(Li), p 7→ τQ2 ◦ τQ1 (p) is translation by
Q1 − Q2. Usually these translations have infinite order.

Let g : S → C be a smooth, minimal, elliptic surface. By the above, any
section or double section of g gives an involution of S , and two involutions
usually generate an infinite group of automorphisms of S .

As a concrete example, let S ⊂ P3 be a smooth quartic that contains 3 lines
Li. The pencil of planes through L1 gives an elliptic fibration with L2, L3 as
sections. Thus these K3 surfaces usually have an infinite automorphism group.

1.7 Compactifications of Mg

Here we consider what happens if we try to define other compactifications of
Mg. First we give a complete study of a compactified moduli functor of genus
2 curves that uses only irreducible curves.

Definition 1.67. Working over C, letMirr
2 be the moduli functor of flat families

of irreducible curves of arithmetic genus 2 that are either

(1.67.1) smooth,
(1.67.2) nodal,
(1.67.3) rational with 2 cusps or
(1.67.4) rational with a triple point whose complete local ring is isomorphic

to C[[x, y, z]]/(xy, yz, zx).
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The aim of this subsection is to prove the following; see (Mumford, 1965,
Chap.3) or (Dolgachev, 2003, Sec.10.2) for the relevant background on GIT
quotients.

Proposition 1.68. LetMirr
2 be the moduli functor defined above. Then

(1.68.1) the coarse moduli space Mirr
2 exists and equals the geometric invari-

ant theory quotient (8.59) of the symmetric power Sym6 P1//Aut(P1), but
(1.68.2) Mirr

2 is a very bad moduli functor.

Proof A smooth curve of genus 2 can be uniquely written as a double cover
τ : C → P1, ramified at 6 distinct points p1, . . . , p6 ∈ P

1, up to automorphisms
of P1. Thus, M2 is isomorphic to the space of 6 distinct points in P1, modulo
the action of Aut(P1). If some of the 6 points coincide, we get singular curves
as double covers.

It is easy to see the following; see (Mumford, 1965, Chap.3), (Dolgachev,
2003, Sec.10.2).
(1.68.3) A point set is semi-stable iff it does not contain any point with multi-

plicity ≥ 4. Equivalently, if the genus 2 cover has only nodes and cusps.
(1.68.4) The properly semistable point sets are of the form 3p1 + p2 + p3 + p4

where the p2, p3, p4 are different from p1, but may coincide with each
other. Equivalently, the corresponding genus 2 cover has at least one cusp.

(1.68.5) Point sets 2p1+2p2+2p3, where the p1, p2, p3 are different from each
other. The double cover is reducible, with two smooth rational components
meeting each other at 3 points.

In the properly semistable case, generically the double cover is an elliptic
curve with a cusp over p1. As a special case we can have 3p1 + 3p2, giving
as double cover a rational curve with 2 cusps. Note that the curves of this
type have a 1-dimensional moduli (the cross ratio of the points p1, p2, p3, p4

or the j-invariant of the elliptic curve), but they all correspond to the same
point in Sym6 P1//Aut(P1). (See (1.62) for an explicit construction.) Our def-
inition (1.67) aims to remedy this non-uniqueness by always taking the most
degenerate case; a rational curve with 2 cusps (1.67.3).

In case (5), write the reducible double cover as C = C1 + C2. The only
obvious candidate to get an irreducible curve is to contract one of the two
components Ci. We get an irreducible rational curve; denote it by C′j where
j = 3 − i. Note that C′j has one singular point which is analytically isomorphic
to the 3 coordinate axes in A3. The resulting singular rational curves C′j are
isomorphic to each other. These are listed in (1.67.4).

Let p : X → S be any flat family of irreducible, reduced curves of arithmetic
genus 2. The trace map (Barth et al., 1984, III.12.2) shows that R1 p∗ωX/S '
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OS . Thus, by Cohomology and Base Change, p∗ωX/S is locally free of rank 2.
Set P := PS

(
p∗ωX/S

)
. Then P is a P1-bundle over S , and we have a rational

map π : X → P. If Xs has only nodes and cusps, then ωXs is locally free and
generated by global sections, thus π is a morphism along Xs.

If Xs is as in (1.67.4), then ωXs is not locally free, and π is not defined at the
singular point. π|Xs is birational and the 3 local branches of Xs at the singular
point correspond to 3 points on P

(
H0(Xs, ωXs )

)
.

The branch divisor of π is a degree 6 multisection of P → S , all of whose
fibers are stable point sets. Thus we have a natural transformation

Mirr
2 (∗)→ Mor

(
∗,Sym6 P1//Aut(P1)

)
.

We have already seen that we get a bijection

Mirr
2 (C) '

(
Sym6 P1//Aut(P1)

)
(C).

Since Sym6 P1//Aut(P1) is normal, we conclude that it is the coarse moduli
space. This completes the proof of (1.68.1).

The assertion (1.68.2) is more a personal opinion. There are three main
things ‘wrong’ with the functorMirr

2 (∗). Let us consider them one at a time.

1.68.6 (Stable extension questions).
At the set-theoretic level, we have Mirr

2 = Sym6 P1//Aut(P1), but what about
at the level of families?

The first indications are good. Let πB : S B → B be a stable family of genus
2 curves. Assume that no fiber is of type (1.68.5). Let bi ∈ B be the points
corresponding to fibers with 2 components of arithmetic genus 1. Let p : A →
B be a double cover ramified at the points bi. Consider the pull-back family
πA : S A → A. Set ai = p−1(bi) and let si ∈ π

−1
A (ai) be the point where the 2

components meet. Since we took a ramified double cover, each si ∈ S A is a
double point. Thus if we blow up every si, the exceptional curves appear in the
fiber with multiplicity 1. We can now contract the birational transforms of the
elliptic curves to get a family where all these reducible fibers are replaced by a
rational curve with 2 cusps. We have proved the following analog of (1.15.1):

Claim 1.68.6.a. Let π : S → B be a stable family of genus 2 curves such that
no fiber has 2 smooth rational components. Then, after a suitable double cover
A → B, the pull-back S ×B A is birational to another family where each re-
ducible fiber is replaced by a rational curve with 2 cusps. �

This solved our problem for 1-parameter families, but, as it turns out, not
over higher dimensional bases. In particular, there is no universal family over
any base scheme Y that finitely dominates Sym6 P1//Aut(P1), not even locally
in any neighborhood of the properly semistable point. Indeed, this would give
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a proper, flat family of curves of arithmetic genus 2 over a 3-dimensional base
π : X → Y where only finitely many of the fibers (the ones over the unique
properly semistable point) have cusps. However, there is no such family.

To see this we use that, by (2.27), every flat deformation of a cusp is induced
by pull-back from the 2-parameter family

(y2 = x3 + ux + v)
p
��

� � // A2
xy × A

2
uv

��
A2

uv A2
uv.

(1.68.6.b)

Thus our family π gives an analytic morphism τ : Y → A2
uv (defined in some

neighborhood of 0 ∈ Y), and C = τ−1(0, 0) ⊂ Y is a curve along which the fiber
has a cusp.

1.68.7 (Failure of representability).
Following (1.68.6.b), consider the universal deformation of the rational curve
with 2 cusps. This is given as(

z2 = (x3 + uxy2 + vy3)(y3 + syx2 + tx3)
)

p ��

� � // P2(1, 1, 3) × A4
uvst

��
A4

uvst A4
uvst.

Let us work in a neighborhood of (0, 0, 0, 0) ∈ A4, where the 2 factors x3 +

uxy2+vy3 and y3+syx2+tx3 have no common roots. There are 3 types of fibers:
p−1(0, 0, 0, 0) is a rational curve with 2 cusps, p−1(a, b, 0, 0) and p−1(0, 0, a, b)
are irreducible with exactly 1 cusp if (a, b) , (0, 0), and p−1(a, b, c, d) is irre-
ducible with at worst nodes otherwise.

Thus the curves that we allow in our moduli functor Mirr
2 do not form a

representable family. Even worse, the subfamily(
z2 = (x3 + uxy2 + vy3)y3)→ Spec k[[u, v]]

is not allowed in our moduli functorMirr
2 , but the family(

z2 = (x3 + uxy2 + vy3)(y3 + unyx2 + vnx3)
)
→ Spec k[[u, v]]

is allowed. Over Spec k[u, v]/(un, vn) the two families are isomorphic. Since
deformation theory is essentially a study of families over Artinian rings, this
means that the usual methods cannot be applied to understand the functorMirr

2 .

1.68.8 (Unusual non-separatedness). A quite different type of problem arises
at the curve corresponding to 2p1 + 2p2 + 2p3.

Write the double cover as C = C1 + C2. As before, if we contract one of the
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two components Ci, we get an irreducible rational curve C′j, where j = 3− i as
in (1.67.4).

Since the curves C′1 and C′2 are isomorphic, from the set-theoretic point of
view this is a good solution. However, as in (1.27), something strange happens
with families. Let p : S → A1 be a family of stable curves whose central fiber
S 0 := p−1(0) is isomorphic to C = C1 + C2. We have two ways to construct a
family with an irreducible central fiber: contract either of the two irreducible
components Ci. Thus we get two families

S
πi
−→ S i

pi
−→ A1 with p−1

i (0) ' C′3−i.

Over A1 \ {0} the two families are naturally isomorphic to S → A1, hence to
each other, yet this isomorphism does not extend to an isomorphism of S 1 and
S 2. Indeed, the closure of the graph of the resulting birational map is given by
the image (π1, π2) : S → S 1 ×A1 S 2. Thus the corresponding moduli functor is
not separated.

We claimed above that, by contrast, the coarse moduli space is M2, hence
separated. A closer study reveals the source of this discrepancy: we have been
thinking of schemes instead of algebraic spaces. The occurrence of such prob-
lems in moduli theory was first observed by Artin (1974). The aim of the next
paragraph is to show how such examples arise.

1.68.9 (Bug-eyed covers). Artin (1974); Kollár (1992a)
A non-separated scheme always has ‘extra’ points. The typical example is

when we take two copies of a scheme X × {i} for i = 0, 1, an open dense
subscheme U ( X, and glue U × {0} to U × {1} to get X qU X. The non-
separatedness arises from having 2 points in X qU X for each point in X \ U.

By contrast, an algebraic space can be non-separated by having no extra
points, only extra tangent directions. The simplest example is the following.

On A1
t consider two equivalence relations. The first is R1 ⇒ A

1 given by

(t1 = t2) ∪ (t1 = −t2) ⊂ A1
t1 × A

1
t2 .

Then A1
t /R1 ' A

1
u where u = t2.

The second is the étale equivalence relation R2 ⇒ A
1 given by

A1 (1,1)
−→ A1 × A1 and A1 \ {0}

(1,−1)
−→ A1 × A1.

(Note that we take the disconnected union of the two components, instead of
their union as 2 lines in A1 × A1 intersecting at the origin.)

One can also obtain A1
t /R2 by taking the quotient of the non-separated

scheme A1 qA1\{0} A
1 by the (fixed point free) involution that interchanges

(t, 0) and (−t, 1).
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The morphism A1
t → A

1
t /R2 is étale, thus A1

t /R2 , A
1
t /R1. Nonetheless,

there is a natural morphism A1
t /R2 → A

1
t /R1 which is one-to-one and onto on

closed points. The difference between the two spaces is seen by the tangent
spaces. The tangent space of A1

t /R2 at the origin is spanned by ∂/∂t while the
tangent space of A1

t /R1 at the origin is spanned by ∂/∂u = (2t)−1∂/∂t.

1.69. Our attempt to replace the moduli functor of stable curves of genus 2
with another one that parametrizes only irreducible curves was not successful,
but some of the problems seemed to have arisen from the symmetry that forced
us to make artificial choices. We can avoid such choices for other values of the
genus using the following observation.

Let π : S → B be a flat family of curves with smooth general fiber and
reduced special fibers. If Cb := π−1(b) is a singular fiber and Cbi are the irre-
ducible components of its normalization, then∑

ih1(Cbi,OCbi

)
≤ h1(Cb,OCb

)
= h1(Cgen,OCgen

)
,

where Cgen is the general smooth fiber. In particular, there can be at most 1
irreducible component with geometric genus > 1

2 g(Cgen).
From this it is easy to prove the following:

Claim 1.69.1. Let B be a smooth curve and S ◦ → B◦ a smooth family of genus
g curves over an open subset of B. Then there is at most one normal surface
S → B extending S ◦ such that every fiber of S → B is irreducible and of
geometric genus > 1

2 g(Cgen).
Moreover, if S stab → B is a stable family extending S ◦ and every fiber of

S stab → B contains an irreducible curve of geometric genus > 1
2 g(Cgen), then

we obtain S from S stab by contracting all connected components of curves of
geometric genus < 1

2 g(Cgen) that are contained in the fibers. (It is not hard to
show that S → B exists, at least as an algebraic space.)

In fact, this way we obtain a partial compactification Mg ⊂ M′g such that

• M′g parametrizes smoothable irreducible curves of arithmetic genus g and
geometric genus > 1

2 g.

• Let Mg ⊂ M′′g ⊂ Mg be the largest open subset parametrizing curves that
contain an irreducible component of geometric genus > 1

2 g. Then there is a
natural morphism M′′g → M′g.
So far so good, but, as we see next, we cannot extend M′g to a compactifi-

cation in a geometrically meaningful way. This happens for every g ≥ 3; the
following example with g = 13 is given by simple equations.

This illustrates a general pattern: one can easily propose partial compactifi-
cations that work well for some families, but lead to contradictions for some
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others. (See Schubert (1991); Hassett and Hyeon (2013); Smyth (2013) for a
search for geometrically meaningful compactifications of Mg.)

Example 1.70. Consider the surface F :=
(
x8 + y8 + z8 = t2) ⊂ P3(1, 1, 1, 4)

and on it the curve C := F ∩ (xyz = 0). C has 3 irreducible components
Cx = (x = 0),Cy = (y = 0),Cz = (z = 0), which are smooth curves of genus 3.
C itself has arithmetic genus 13.

We work with a 3-parameter family of deformations

T :=
(
xyz − ux3 − vy3 − wz3 = 0

)
⊂ F × A3

uvw. (1.70.1)

For general uvw , 0 the fiber of the projection π : T → A3 is a smooth curve
of genus 13. If one of the u, v,w is zero, then generically we get a curve with 2
nodes hence with geometric genus 11.

If two of the coordinates are zero, say v = w = 0, then we have a family

Tx :=
(
x(yz − ux2) = 0

)
⊂ F × A1

u.

For u , 0, the fiber C(u,0,0) has 2 irreducible components. One is Cx = (x = 0),
the other is (yz − ux2 = 0) which is a smooth genus 7 curve.

Thus the proposed rule says that we should contract Cx ⊂ C(u,0,0).
Similarly, by working over the v and the w-axes, the rule tells us to contract

Cy ⊂ C(0,v,0) for v , 0 and Cz ⊂ C(0,0,w) for w , 0.
It is easy to see that over A3 \ {(0, 0, 0)} these contractions can be performed

(at least among algebraic spaces). Thus we obtain

T \ {π−1(0, 0, 0)}

��

p◦ // S ◦

τ◦

��
A3 \ {(0, 0, 0)} A3 \ {(0, 0, 0)}

(1.70.2)

where τ◦ is flat with irreducible fibers.

Claim 1.70.3. There is no proper family of curves τ : S → A3 that extends τ◦.
(We do not require τ to be flat.)

Proof Assume to the contrary that τ : S → A3 exists, and let Γ ⊂ T ×A3 S be
the closure of the graph of p◦. Since p◦ is a morphism on T \ {π−1(0, 0, 0)},
we see that the first projection π1 : Γ → T is an isomorphism away from
π−1(0, 0, 0). Since T ×A3 S → A3 has 2-dimensional fibers, we conclude that
dim π−1

1
(
π−1(0, 0, 0)

)
≤ 2. T is, however, a smooth 4-fold, hence the excep-

tional set of any birational map to T has pure dimension 3. Thus Γ ' T and so
p◦ extends to a morphism p : T → S .

Now the rule lands us in a contradiction over the origin (0, 0, 0). Here all 3
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components Cx,Cy,Cz ⊂ C(0,0,0) = C should be contracted. This is impossible
to do since this would give that the central fiber of S → A3 is a point. �

1.8 Coarse and fine moduli spaces
As in (1.7), let V be a ‘reasonable’ class of projective varieties andVarietiesV

the corresponding functor. The aim of this section is to study the difference
between coarse and fine moduli spaces, mostly through a few examples. We
are guided by the following:

Principle 1.71. Let V be a ‘reasonable’ class as above, and assume that it
has a coarse moduli space ModuliV. Then ModuliV is a fine moduli space iff
Aut(V), the group of automorphisms of V (8.63), is trivial for every V ∈ V,

From the point of view of algebraic stacks, a precise version is given in
(Laumon and Moret-Bailly, 2000, 8.1.1). In positive characteristic one should
pay attention to the scheme structure of Aut(V). Our construction of the moduli
spaces shows that this principle is true for polarized varieties, see Section 8.7,
but a precise version needs careful attention to the difference between schemes
and algebraic spaces.

Let L be a field and XL ∈ V an L-variety. Let [X] ∈ ModuliV be the cor-
responding point with residue field K := k

(
[X]

)
. If ModuliV is fine, then the

resulting map Spec K → ModuliV corresponds to a K-variety XK such that
XL ' XK × Spec L. Moreover, XK is the unique K-variety with this property.

If ModuliV is not a fine moduli space, then it is not clear how to define this
field K. XK may not be unique and may not exist. We study these questions,
mostly through examples.

1.72 (Field of moduli). Let X ⊂ Pn be a projective variety defined over an al-
gebraically closed field K. Any set of defining equations involves only finitely
many elements of K, thus X can be defined over a finitely generated subfield of
K. It is a natural question to ask: Is there a smallest subfield F ⊂ K such that
X can be defined by equations over F? There are two variants of this question.

1.72.1 (Embedded version). Fix coordinates on Pn
K and view X as a specific

subvariety. In this case a smallest subfield F exists; see (Weil, 1946, Sec.I.7)
or (Kollár et al., 2004, Sec.3.4). This is a special case of the existence of
Hilbert schemes (1.5). More generally, the same holds if Pn is replaced by
any Z-scheme. We can also think of this as a Galois invariance property. If
σ ∈ Aut(K) then σ(X) = X iff σ is the identity on F. If char K = 0, this prop-
erty characterizes F, but otherwise only its purely inseparable closure F ins.

1.72.2 (Absolute version). No embedding of X is fixed. Thus we are looking for
a field F ⊂ K and an F-variety XF such that X ' (XF)K . It turns out that there
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is no smallest field in general. As a first approximation, we call the intersection
of all such fields F the field of moduli of X. As the examples (1.76) show, this
naive version can be unexpectedly small.

The situation is better if KX is ample, but in (1.75) we construct a hyperel-
liptic curve whose field of moduli is Q, yet it cannot be defined over R. The
first such examples are in Earle (1971); Shimura (1972).

To get the right notion, we instead look for isotrivial families with fiber X,
defined over some subfield F ⊂ K. That is, flat, projective morphisms u :
UZ → Z (defined over F), whose every geometric fiber is isomorphic to X.

We say that u : UZ → Z is universal if every isotrivial family v : US → S
with fiber X is locally the pull-back of u : UZ → Z. That is, there is an open
cover S = ∪iS i and morphisms σi : S i → Z, such that the restriction vi :
US i → S i is isomorphic to the pull-back U ×u,σi S i → S i.

We see in (1.73) that universal isotrivial families exist and they are defined
over the same subfield FX ⊂ K, giving the right notion of field of moduli.

How is this connected with moduli theory?
Let V be a class of varieties with a coarse moduli space ModuliV. Let u :

UZ → Z is be an isotrivial family with fiber X defined over F ⊂ K. By the
definition of a coarse moduli space, there is a morphism Z → ModuliV, whose
image must be the point [X] ∈ ModuliV corresponding to X. In particular, we
get an injection of the residue field k([X]) into F.

If ModuliV is a fine moduli space, then X can be defined over k([X]), and
(1.73.2) shows that k([X]) = FX .

The construction of the moduli spaces of stable varieties shows that the ex-
tension FX/k([X]) is purely inseparable, hence trivial in characteristic 0.

Proposition 1.73. Let K be an algebraically closed field of characteristic
0 and X a projective K-variety with ample canonical class. Then there is a
unique smallest field FX ⊂ K—called the field of moduli of X–such that there
is a geometrically irreducible, universal, isotrivial family u : U → Z with fiber
X, defined over FX . Moreover, X ' Xσ for every σ ∈ Gal(K/FX).

Proof Fix m such that |mKX | is very ample, giving an embedding X ↪→ PN .
The image depends on a choice of a basis in H0(X,OX(mKX)

)
, so instead of

getting a point in Chow(PN) or Hilb(PN), we get a whole Aut(PN)-orbit. Denote
it by Z (it depends on X and m). Over it we have a universal family u : UZ → Z,
which is isotrivial with fiber X.

The closure of Z is now a closed subvariety of the Z-schemes Chow(PN) or
Hilb(PN), thus it has a smallest field of definition by (1.72.1). This is our FX .

To see that u : UZ → Z is universal, let v : VS → S be an isotrivial family
with fiber X. Then v∗OVS (mKVS /S ) is locally free. Choose an open trivializing
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cover S = ∪iS i. These define embeddings VS i ↪→ P
N × S i, hence morphisms

σi : S i → Z.
For a subvariety X ⊂ Pn

K , let [X] ∈ Hilb(PN) denote the corresponding point.
Then [Xσ] = σ[X], hence the last claim is a reformulation of the Galois invari-
ance property noted in (1.72.1). �

1.74 (Field of moduli for hyperelliptic curves). Let A be a smooth hyperelliptic
curve of genus ≥ 2. Over an algebraically closed field, A has a unique degree 2
map to P1. Let B ⊂ P1 be the branch locus, that is, a collection of 2g + 2 points
in P1. If the base field k is not closed, then A has a unique degree 2 map to a
smooth genus 0 curve Q. (One can always think of Q as a conic in P2.) Thus A
is defined over a field k iff the pair (B ⊂ P1) can be defined over k.

The latter problem is especially transparent if A is defined over C, and we
want to know if it is defined over R or if its field of moduli is contained in R.

Up to isomorphism, there are 2 real forms of P1. One is P1, corresponding
to the anti-holomorphic involution (x:y) 7→ (x̄:ȳ), which, after a coordinate
change, can also be written as σ1 : (x:y) 7→ (ȳ:x̄). (In the latter, the real points
are the unit circle.) The other is the ‘empty’ conic, corresponding to the anti-
holomorphic involution σ2 : (x:y) 7→ (−ȳ:x̄).

Thus let A→ CP1 be a smooth hyperelliptic curve of genus ≥ 2 over C with
branch locus B ⊂ CP1. Then (1.72.5) gives that
(1.74.1) A can be defined over R iff there is a g ∈ Aut(CP1) such that gB is

invariant under σ1 or σ2, and
(1.74.2) the field of moduli of A is contained in R iff there is an h ∈ Aut(CP1)

such that hB equals Bσ1 or Bσ2 .

Note that if (gB)σ = gB then Bσ =
(
gσ

)−1gB shows that (1) ⇒ (2). Con-
versely, if Bσ = hB and we can write h =

(
gσ

)−1g then (gB)σ = gB.

Example 1.75. Here is an example of a hyperelliptic curve C whose field of
moduli is Q, but C cannot be defined over R.

Pick α = a + ib where a, b are rational. Consider the hyperelliptic curve

C(α) :=
(
z2 −

(
x8 − y8)(x2 − αy2)(ᾱx2 + y2) = 0

)
⊂ P2(1, 1, 6).

Its complex conjugate is

C(ᾱ) :=
(
z2 −

(
x8 − y8)(x2 − ᾱy2)(αx2 + y2) = 0

)
⊂ P2(1, 1, 6).

C(α) and C(ᾱ) are isomorphic, as shown by the substitution (x, y, z) 7→ (iy, x, z).
So, over SpecQ Q[t]/(t2 + 1) we have a curve

C(a, b) :=
(
z2 −

(
x8 − y8)(x2 − (a + tb)y2)((a − tb)x2 + y2) = 0

)
⊂ P2(1, 1, 6)



64 History of moduli problems

whose geometric fibers are isomorphic to C(α). Thus the field of moduli of
C(α) is Q by (1.72.5).

We claim that, for sufficiently general a, b, the curve C(α) cannot be defined
over Q, not even over R. By (1.74) we need to show that there is no anti-
holomorphic involution that maps the branch locus to itself. In the affine chart
y , 0, the ramification points of C(α)→ P1 are:

(1.75.1) the 8th roots of unity corresponding to x8 − y8, and

(1.75.2) the 4 points ±β,±i/β̄ where β2 = α.
The anti-holomorphic automorphisms of the Riemann sphere map circles to

circles. Out of our 12 points, the 8th roots of unity lie on the circle |z| = 1, but
no other 8 can lie on a circle. Thus any anti-holomorphic automorphism that
maps our configuration to itself, must fix the unit circle |z| = 1 and map the 8th
roots of unity to each other.

The only such anti-holomorphic involutions are

(1.75.3) reflection on the line R · ε, where ε is a 16th root of unity, and

(1.75.4) z 7→ 1/z̄ or z 7→ −1/z̄.
A short analysis shows that C(α) is not isomorphic (over C) to a real curve, as
long as β16 is not a positive real number.

Example 1.76. We give an example of a smooth projective surface S such
that if S is defined over a field extension K/C then trdegC K = 2, but the
intersection of all such fields of definition is C.

Let X be a projective surface such that Aut(X) is discrete and contains finite
subgroups G1,G2 such that 〈G1,G2〉 has a Zariski dense orbit on X.

One such example is B0(E×E), the blow up of the square of an elliptic curve
at a point, as shown by the subgroups generated by the matrices(

0 −1
1 1

)
and

(
0 −1
1 0

)
.

There are also K3 surfaces with infinite automorphism group generated by 2
involutions (1.66).

Let ∆ ⊂ X×X be the diagonal and, using one of the projections, consider the
family of smooth varieties f : Y := B∆(X × X)→ X. Our example is K = C(X)
and YK the generic fiber of Y → X.

Note that Y → X is the universal family of the varieties of the form BxX for
x ∈ X. This shows that YK cannot be obtained by base change from a variety
over a field of smaller transcendence degree over C.

Let G ⊂ Aut(X) be a finite subgroup. There is an open subset UG ⊂ X
such that G operates on UG without fixed points. Thus f /G : Y/G → X/G is a
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family of smooth varieties over UG/G and Y |UG ' Y/G ×X/G UG. Thus YK can
be defined over C(X/G) = KG for every finite subgroup G ⊂ Aut(X).

On the other hand, the intersection KG1 ∩ KG2 is C. Indeed, any function in
KG1 ∩ KG2 is constant on every G1-orbit and also on every G2-orbit, hence on
a dense set by our assumptions.

This phenomenon is also connected with the behavior of ample line bundles
on πi : X → X/Gi. Although both of the X/Gi are projective, there are no ample
line bundles Li on X/Gi such that π∗1L1 ' π

∗
2L2.

1.77 (Openness of the fine locus). Let V be a ‘reasonable’ class of varieties
with a coarse moduli space ModuliV.

If Aut(X) = {1} is an open condition in flat families with fibers in V, then
there is an open subscheme Modulirigid

V ⊂ ModuliV that is a coarse moduli
space for varieties in V without automorphisms. By (1.71) Modulirigid

V should
be a fine moduli space. In many cases Modulirigid

V is dense in ModuliV, thus one
can understand much about the whole ModuliV by studying the fine moduli
space Modulirigid

V .
Let X → S be a flat family with fibers in V and π : AutS (X)→ S the scheme

representing automorphisms of the fibers (8.63). If V satisfies the valuative
criterion of separatedness (1.20), and all automorphism groups are finite, then
π is proper. More careful attention to the scheme structure of the automorphism
groups shows that in fact Aut(X) = {1} is an open condition.

However, automorphism groups of smooth, projective surfaces can jump un-
expectedly. For example, the automorphism group of a general Enriques sur-
face is infinite, but there are special Enriques surfaces with finite automorphism
group. A more elementary example is the following.

Example 1.77.1. Let ζ be a primitive mth root of unity. Then τ(x:y:z) = (ζx:y:z)
defines a Z/m-action on P2. For t , 0 let S t be the surface obtained by blowing
up the m points (ζ it:t:1).

What should limt→0 S t be? A natural candidate is to blow up first (0:0:1) and
then the m intersection points pi of the exceptional curve E with the birational
transforms of the lines Li := (x = ζ iy). The resulting S 0 has a Z/m-action, but
we blew up m + 1-times, so there is no family of smooth surfaces with fibers
{S t : t ∈ C}.

As in (1.24), for any j ∈ Z/m we can get a smooth family of surfaces with
central fiber S j

0, obtained by blowing up first (0:0:1) and then all the pi for
i , j. These give m distinct families, and we do not have a Z/m-action on any
of these S j

0.



Chapter 2

One-parameter families

In Kollár (2013b) we studied in detail canonical and semi-log-canonical vari-
eties, especially their singularities; a summary of the main results is given in
Section 11.1. These are the objects that correspond to the points in a moduli
functor/stack of canonical and semi-log-canonical varieties. We start the study
of the general moduli problem with 1-parameter families.

In traditional moduli theory, for instance for curves, smooth varieties or
sheaves, the description of all families over 1-dimensional regular schemes
pretty much completes the story: the definitions and theorems have obvious
generalizations to families over an arbitrary base. The best examples are the
valuative criteria of separatedness and properness; we discussed these in (1.20).
In our case, however, much remains to be done in order to work over arbitrary
base schemes.

Two notions of locally stable or semi-log-canonical families are introduced
in Section 2.1; their equivalence is proved in characteristic 0. For surfaces, one
can give a rather complete étale-local description of all locally stable families;
this is worked out in Section 2.2.

A series of higher dimensional examples is presented in Section 2.3. These
show that stable degenerations of smooth projective varieties can get rather
complicated.

Next we turn to global questions and define our main objects, stable families
in Section 2.4. The main result says that stable families satisfy the valuative
criteria of separatedness and properness.

Cohomological properties of stable families are studied in Section 2.5. In
particular, we show that in a proper, locally stable family f : X → C, the basic
numerical invariants hi(Xc,OXc ) and hi(Xc, ωXc ) are independent of c ∈ C. We
also show that Xc being Cohen-Macaulay (10.4) is also independent of c ∈ C.

In the next two sections we turn to a key problem of the theory: under-
standing the difference between the divisor-theoretic and the scheme-theoretic
restriction of divisors, equivalently, the role of embedded points. The general
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theory is outlined in Section 2.6. Then in Section 2.7 we show that if all the
coefficients of the boundary divisor are > 1

2 , then we need not worry about
embedded points in moduli questions.

Checking local stability is easier in codimension ≥ 3, we discuss this and its
relation to Grothendieck–Lefschetz-type theorems in Section 2.8.

From now on we use many definitions and results about log canonical and
semi-log canonical pairs as in Kollár (2013b). The most important ones are
summarized in Section 11.1.

Assumptions. The basic definitions in Section 2.1 are formulated for schemes.
In the rest of Sections 2.1–2.5 and 2.7 we work in characteristic 0, unless a
more general set-up is specified.

In Section 2.6 we work with arbitrary Noetherian schemes.

2.1 Locally stable families
Following the pattern established in Section 1.4, we expect that the definition
of a stable family f : (X,∆) → S consists of some local conditions describing
the singularities of f , and a global condition, that KX/S + ∆ be f -ample. We
are now ready to formulate the correct local condition, at least for 1-parameter
families.

Note on R-divisors. From now on, we state definitions and results for R-
divisors, which seems the natural level of generality; see Section 11.4 for a
detailed treatment. However, there will be no major differences in the proofs
between Q- and R-divisors until Chapter 6.

We already defined stable varieties in (1.41). The basic objects of our moduli
theory are their generalizations.

Definition 2.1 (Stable and locally stable pairs). A locally stable pair (X,∆)
over a field k consists of a pure dimensional, geometrically reduced k-scheme
X and an effective R-divisor ∆, such that (X,∆) has semi-log-canonical (abbre-
viated as slc) singularities (11.37).

(X,∆) is a stable pair if, in addition, X is proper and KX + ∆ is an ample
R-Cartier divisor (11.51). Thus a locally stable pair is the same as an slc pair;
we usually use the former terminology for fibers of families.

If ∆ = 0, we have a stable variety as in (1.41).

Definition 2.2. Let C be a regular 1-dimensional scheme. A family of varieties
over C is a flat morphism of finite type f : X → C, whose fibers are pure
dimensional and geometrically reduced. We also call this a 1-parameter family.
For c ∈ C, let Xc := f −1(c) denote the fiber of f over c.

A family of pairs over C is a family of varieties f : X → C plus an effective
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Mumford R-divisor ∆ (p.11) on X, That is, for every c ∈ C, the support of ∆

does not contain any irreducible component of Xc and none of the irreducible
components of Xc∩Supp ∆ is contained in Sing Xc; see (4.16.4) and Section 4.8
for details. This condition holds if the fibers are slc pairs. It turns out to be
technically crucial, so it is much easier to assume it from the beginning.

The assumptions imply that X is regular at the generic points of Xc∩Supp ∆.
We can thus define ∆c as the closure of the restriction of ∆ to Xc \ Sing Xc.

Warning. For non-Cartier divisors, the above divisor-theoretic restriction is a
divisor, but the scheme-theoretic restriction ∆ ∩ Xc may have extra embedded
points. This becomes quite important starting Section 2.6.

Our main interest is in families with demi-normal (11.36) fibers, but we
also want to understand to what extent this follows from other assumptions.
However, we do not wish to get bogged down in technicalities, so we almost
always assume the following conditions, both of which hold if the fibers are
demi-normal.

(2.2.1) X satisfies Serre’s condition S 2. Since the fibers are assumed reduced,
X is S 2 iff the generic fiber Xg is S 2.

(2.2.2) The canonical sheaf ωXc of the fiber Xc is locally free at codimension 1
points for every c ∈ C. Equivalently, the relative canonical sheaf ωX/C (2.5)
is locally free at codimension 1 points of Xc. Thus the relative canonical
class exists; we denote it by KX/C (2.5).

We can now define local stability for 1-parameter families in characteristic
zero. (We define stable families in (2.46).)

Definition–Theorem 2.3. Let C be a 1-dimensional, regular scheme over a
field of characteristic zero and f : (X,∆) → C a family of pairs satisfying
(2.2.1–2). We say that f is locally stable or semi-log-canonical (abbreviated as
slc) at a point p ∈ Xc, if the following equivalent conditions hold.

(2.3.1) KX/C + ∆ is R-Cartier at p and
(
Xc,∆c

)
is semi-log-canonical at p.

(2.3.2) KX/C + ∆ is R-Cartier at p and
(
X̄c,Diff X̄c

(∆)
)

(11.14) is log canonical
at π−1(p), where π : X̄c → Xc denotes the normalization.

(2.3.3) (X, Xc + ∆) is semi-log-canonical at p.
(2.3.4) There is an open neighborhood p ∈ X◦ ⊂ X, such that (X, X f (q) + ∆) is

semi-log-canonical at q for every q ∈ X◦.

Proof If (2) holds, then inversion of adjunction (11.17) shows that (X, Xc +∆)
is semi-log-canonical at p. The converse also holds since (11.17) works both
ways. Thus (2)⇔ (3) and (Kollár, 2013b, 4.10) shows that (3)⇔ (4).
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Since Xc is a Cartier divisor in X, the restriction ∆c equals the different
DiffXc (∆) by (11.15). Furthermore, by (11.14.5)

KX̄c
+ Diff X̄c

(∆) = π∗
(
KXc + DiffXc (∆)

)
.

Thus (11.37) shows that (1)⇒ (2). Note that (11.37) is an equivalence, but in
order to apply it we need to know that Xc is demi-normal.

By assumption Xc is geometrically reduced. An local computation shows
that Xc is either smooth or has nodes at codimension 1 points; see (Kollár,
2013b, 2.33). Thus it remains to prove that Xc is S 2.

This is actually quite subtle. We outline three different approaches, all of
which provide valuable insight.

First, if the generic fiber is klt, then, by (2.15), (X,∆) is klt. Thus X is CM
(10.4) by (11.18), so is every fiber Xc. In general, however, (X,∆) is not klt and
X is not CM. However, CM is much more than we need.

We should look carefully at weaker versions of CM that still imply that the
fibers are S 2. Since the Xc are Cartier divisors in X, it would be enough to
prove that X is S 3. However, as noted in (Kollár, 2013b, 3.6), X is not S 3 in
general. Fortunately this is not a problem for us. If g ∈ C is the generic point,
then a local ring of Xg is also a local ring of X, hence Xg is S 2 if X is S 2.
Therefore

(
Xg,∆g

)
is semi-log-canonical. If c ∈ C is a closed point and p ∈ Xc

has codimension ≥ 2, then p ∈ X has codimension ≥ 3, thus depthp OX ≥ 3 by
(11.21), hence depthp OXc ≥ 2. Thus again Xc is S 2.

Third, we know that Xc is a Cartier divisor on a demi-normal scheme. A local
version of the Enriques-Severi-Zariski lemma (2.93) implies that if p ∈ Xc is a
point of codimension ≥ 2, then X̂c,p \ {p} is connected, where X̂c,p denotes the
completion of Xc at p.

Furthermore, Xc is the union of log canonical centers of
(
X, Xc + ∆

)
. There-

fore, Xc is seminormal by (11.12.2). These two observations together imply
that Xc is S 2, hence demi-normal. �

Comment 2.3.5. For proofs the versions (2.3.3–4) are the most useful, but it is
not clear how they could be generalized to families over higher dimensional
bases. By contrast, the variants (2.3.1–2) are harder to use directly, but they
make sense in general. This observation leads to the general definition of our
moduli functor in Chapters 6–8.

2.4 (Positive characteristic). For arbitrary regular, 1-dimensional schemes C,
the conditions (2.3.1–4) are equivalent if the relative dimension of X/C is 1,
and are expected to be equivalent if the relative dimension of X/C is 2. How-
ever, the examples of Kollár (2022) show that they are not equivalent if the
relative dimension of X/C is ≥ 3. We discuss this in Section 8.8.
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Here we adopt (2.3.4) as the definition of local stability in positive and mixed
characteristics. This is dictated by the proof of (2.51), but few of the arguments
work in full generality; see (2.15), (2.50), and (2.55).

2.5 (The relative canonical or dualizing sheaf I). Let C be a regular scheme of
dimension 1 and f : X → C a flat morphism of finite type. Then the relative
canonical or dualizing sheaf ωX/C exists, see (2.68) or (11.2) for discussions.

If C is a smooth curve over a field, then ωX/C = ωX ⊗ f ∗ω−1
C .

If each ωXc is locally free in codimension 1 (for example, the fibers are
normal or demi-normal) then ωX/C is also locally free in codimension 1 and
determines the relative canonical class KX/C .

By (11.13), for c ∈ C there is a Poincaré residue (or adjunction) map

R : ωX/C |Xc → ωXc . (2.5.1)

The map exists for any flat morphism f : X → C. General duality theory im-
plies that it is an isomorphism if the fibers are CM, see (2.68.2). It is, however,
not an isomorphism in general, but we prove in (2.67) that, for locally stable
morphisms, the adjunction map is an isomorphism. Thus ωX/C can be thought
of as a flat family of the canonical sheaves of the fibers.

The isomorphism in (2.5.1) is easy to prove if the fibers are dlt, or if KX/C is
Q-Cartier (2.79.2). For the general case, see Section 2.5.

It is also worth noting that the reflexive powers (3.25) of the residue map

Rm : ω[m]
X/C |Xc → ω[m]

Xc
(2.5.2)

are isomorphisms for locally stable maps if ∆ = 0, but not in general; see
(2.79.2) and (2.44).

In (2.3.1) we make a fiber-wise assumption, that (Xc,∆c) be slc, and a total
space assumption, that KX/C +∆ be R-Cartier. As in Section 1.4, usually (2.3.1)
can not be reformulated as a condition about the fibers of f only.

However, if ωXc is locally free then (2.5.1) implies that ωX/C is also locally
free along Xc. Thus (2.67) and (2.3) imply the following.

Lemma 2.6. Let C be a smooth curve over a field of characteristic 0 and
f : X → C a flat morphism of finite type such that Xc is slc and ωXc is locally
free for some c ∈ C. Then ωX/C is locally free along Xc and f is locally stable
near Xc. �

Note that (2.6) is a special property of slc varieties. Analogous claims fail
both for normal varieties (2.45) and for pairs (X,D). To see the latter, consider
a flat family Xc of smooth quadrics in P3 becoming a quadric cone for c = 0.
Let Dc ⊂ Xc be two disjoint lines that degenerate to a pair of distinct lines on
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X0. Then KXc and Dc are both Cartier divisors for every c, but on the total space
X they give a divisor KX + D that is not even Q-Cartier.

In Section 1.4 we saw families of surfaces with quotient singularities where
KX/C is not R-Cartier, but the situation gets better in dimension ≥ 3.

Theorem 2.7. (Kollár, 2013a, Thm.18) Let C be a smooth curve over a field
of characteristic zero and f : (X,∆) → C a family of pairs over C satisfying
(2.2.1–2). Let c ∈ C be a closed point and Zc ⊂ Xc a closed subset of codimen-
sion ≥ 3. Assume that
(2.7.1) f is locally stable along Xc \ Zc, and
(2.7.2)

(
X̄c,Diff X̄c

(∆)
)

(11.14) is log canonical.
Then f is locally stable along Xc.

Note that Diff X̄c
(∆) is the closure of Diff X̄c\Z̄c

(∆), which is defined by (2.7.1).
We prove this in Section 2.8; see (5.6) for higher dimensonal base spaces.

If Xc is canonical then KXc is Cartier in codimension 2. We can thus use (2.6)
in codimension 2 and then (2.7) to obtain the next result.

Corollary 2.8 (Families with canonical fibers). Let C be a smooth curve over
a field of characteristic 0 and f : X → C a flat morphism of finite type such that
Xc has canonical singularities for some c ∈ C. Then KX is Q-Cartier along Xc

and f is locally stable near Xc. �

Next we study permanence properties of local stability. We start with the
invariance of local stability for morphisms that are quasi-étale, that is, étale
outside a subset of codimension ≥ 2.

Lemma 2.9. Let C be a smooth curve over a field of characteristic zero and
f : (X,∆) → C a family of pairs over C satisfying (2.2.1). Let π : Y → X be
quasi-étale, where Y is S 2. If f is locally stable then so is f ◦ π. The converse
also holds if π is surjective.

Proof This follows directly from (2.3) and (11.23.3). �

Note that πc : Yc → Xc need not be quasi-étale, but codimension 1 ramifica-
tion can occur only along the singular locus of Xc. A typical example is given
by A2

xy
π
−→ A2/ 1

n (1,−1)
τ
−→ A1, where π ◦ τ(x, y) = xy.

Next we consider base changes C′ → C.

Proposition 2.10. Let C be a smooth curve over a field of characteristic zero
and g : C′ → C a quasi-finite morphism. If f : (X,∆) → C is locally stable,
then so is the pull-back

g∗ f : (X′,∆′) :=
(
X ×C C′,∆ ×C C′

)
→ C′.
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Proof We may assume that g : (c′,C′) → (c,C) is a finite, local morphism,
étale away from c′. Set D := Xc and D′ := X′c′ . By (11.23.5), (X,D + ∆) is lc
iff (X′,D′ + ∆′) is. The rest follows from (2.3). �

The following is useful for dimension induction.

Lemma 2.11. Let C be a smooth curve over a field of char 0 and f : (X,D +

∆)→ C a locally stable morphism, where D is a Z-divisor with normalization
n : D̄→ D. Then f ◦ n : (D̄,DiffD̄ ∆)→ C is also locally stable.

Proof For any c ∈ C, the fiber Xc is a Cartier divisor, thus

DiffD̄(∆ + Xc) =
(
DiffD̄ ∆

)
+ Xc|D̄ =

(
DiffD̄ ∆

)
+ D̄c.

Together with adjunction (11.17), this shows that fD : (D̄,DiffD̄ ∆) → C is
locally stable. �

Complement 2.11.1. Since KD̄ + DiffD̄ ∆ ∼Q n∗(KX + D + ∆) and D̄ → D is
finite, if KX + D + ∆ is f -ample, then KD̄ + DiffD̄ is f ◦ n-ample. Thus if f is
stable (2.46), then so is f ◦ n.

The following result shows that one can usually reduce questions about lo-
cally stable families to the special case when X is normal; see also (2.54).

Proposition 2.12. Let C be a smooth curve over a field of characteristic zero
and f : (X,∆) → C a family of pairs over C. Assume that X is demi-normal
and let π : X̄ → X denote the normalization with conductor D̄ ⊂ X̄ (11.36).
(2.12.1) If f : (X,∆)→ C is locally stable, then so is f ◦ π :

(
X̄, D̄ + ∆̄

)
→ C.

(2.12.2) If KX + ∆ is R-Cartier and f ◦ π :
(
X̄, D̄ + ∆̄

)
→ C is locally stable,

then so is f : (X,∆)→ C.

Proof Fix a closed point c ∈ C. By (11.38) or (Kollár, 2013b, 5.38), if KX +∆

is R-Cartier, then
(
X, Xc + ∆

)
is slc iff

(
X̄, X̄c + D̄ + ∆̄

)
is lc. �

The next result allows us to pass to hyperplane sections. This is quite useful
in proofs that use induction on the dimension. (As with many Bertini-type
theorems, the characteristic 0 assumption is essential.)

Proposition 2.13 (Bertini theorem for local stability). Let C be a smooth curve
over a field of char 0 and f : (X,∆)→ C a locally stable morphism. Fix a point
c ∈ C and let H be a general divisor in a basepoint-free linear system on X.
Then there is an open c ∈ C◦ ⊂ C such that the following morphisms are also
locally stable over C◦.
(2.13.1) f : (X,H + ∆)→ C,
(2.13.2) f |H : (H,∆|H)→ C, and
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(2.13.3) the composite f ◦ π :
(
Y, π−1(∆)

)
→ C where π : Y → X is a µm-cover

ramified along H; see (11.24).

Proof As we noted in (2.12), we can assume that X is normal. Let p : Y → X
be a log resolution (p.12) of (X,∆) such that p−1(Supp ∆) + Ex(p) + Yc is an
snc divisor. Pick H such that p−1(H) = p−1

∗ (H) and

p−1(H) + p−1(Supp ∆) + Ex(p) + Yc

is an snc divisor. Then every exceptional divisor of p has the same discrepancy
with respect to (X, Xc +∆) and (X, Xc + H +∆). Therefore, (X, Xc + H +∆) is slc
near Xc. Thus f : (X,H + ∆)→ C is locally stable over some C◦ ⊂ C, proving
(1). By adjunction, this implies that (H,Hc′ + ∆|H) is slc for every c′ ∈ C◦,
proving (2). By (11.23),(

Y,Yc′ + π−1(∆)
)

is slc ⇔
(
X, Xc′ +

(
1 − 1

m
)
H + ∆

)
is slc.

The latter holds since even (X, Xc′ + H + ∆) is slc for every c′ ∈ C◦. �

2.14 (Inverse Bertini theorem, weak form). Let H ⊂ X be any Cartier divisor.
If f |H : (H,∆|H)→ C is locally stable, then f : (X,H + ∆)→ S , and hence also
f : (X,∆)→ S , are locally stable in a neighborhood of H by (11.17). Stronger
result are in (2.7) and (5.7).

The following simple result shows that if f : (X,∆) → C is locally stable,
then (X,∆) behaves as if it were canonical, as far as divisors over closed fibers
are concerned. In some situations, for instance in (2.50), this is a very useful
observation, but at other times the technical problems caused by log canonical
centers in the generic fiber are hard to overcome.

Proposition 2.15. Let f : (X,∆) → C be a locally stable morphism. Let E be
a divisor over X (p.11) such that centerX E ⊂ Xc for some closed point c ∈ C.
Then a(E, X,∆) ≥ 0. Therefore every log center (11.11) of (X,∆) dominates C.
In particular, if the generic fiber is klt (resp. canonical) then (X,∆) is also klt
(resp. canonical).

Proof Since (X, Xc + ∆) is semi-log-canonical, a(E, X, Xc + ∆) ≥ −1. Let
π : Y → X be a proper birational morphism such that E is a divisor on Y and
let bE denote the coefficient of E in π∗(Xc). Then bE is an integer and it is
positive since centerX E ⊂ Xc. Thus,

a(E, X,∆) = a(E, X, Xc + ∆) + bE ≥ −1 + bE ≥ 0.

In particular, none of the log centers of (X,∆) are contained in Xc. �
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2.16 (Some results in positive characteristic). As we already noted, very few
of the previous theorems are known in positive characteristic, but the following
partial results are sometimes helpful.

(2.16.1) Let (X,∆) be a pair and g : Y → X a smooth morphism. By (Kollár,
2013b, 2.14.2), if (X,∆) is slc, lc, klt, . . . then so is (Y, g∗∆).

(2.16.2) As a special case of (Kollár, 2013b, 2.14.4) we see that if (X,∆) is slc
then, for every smooth curve C, the trivial family (X,∆)×C → C is locally
stable.

(2.16.3) The proof of (2.15) works in any characteristic. Applying this to a
trivial family will have useful consequences in (8.64).

(2.16.4) Let (Xi,∆i) be two pairs that are slc, lc, klt, . . . . Then their product(
X1 × X2, X1 ×∆2 + ∆1 × X2

)
is also slc, lc, klt, . . . . This is a generalization

of (2.16.2) and can be proved by the same method as in (Kollár, 2013b,
2.14.2), using (Kollár, 2013b, 2.22).

(2.16.5) Assume that f : (X,∆) → C is locally stable and let g : C′ → C be
a tamely ramified morphism. Then g∗ f :

(
X ×C C′,∆ ×C C′

)
→ C′ is also

locally stable. This follows from (11.23.3) as in (2.10); see (Kollár, 2013b,
2.42) for details.

(2.16.6) Neither the wildly ramified nor the inseparable case of (2.16.5) is
known. By Hu and Zong (2020), the inseparable case would imply the
wildly ramified one. The case when all fibers are snc divisors is treated in
(2.55).

The dualizing sheaf plays a very special role in algebraic geometry, thus it
is natural to focus on understanding the powers of the relative dualizing sheaf.
The next result, closely related to (Lee and Nakayama, 2018, 7.18), says that
the relative dualizing sheaf is the ‘best’ deformation of the dualizing sheaf.

Proposition 2.17. Let C be a smooth curve over a field of characteristic 0 and
f : X → C a flat morphism of finite type such that Xc is slc for some c ∈ C.

Let L be a rank 1, reflexive sheaf on X such that a reflexive power L[n] (3.25)
is locally free for some n > 0 and L|Xc\Z ' ωXc\Z for some closed subset Z ⊂ Xc

of codimension ≥ 2.
Then there is a line bundle M such that L ' ωX/C ⊗ M, near Xc.

Proof We may assume that X is local, hence L[n] is free. By (11.24) we can
take a cyclic cover π : Y → X, giving direct sum decompositions into µn-
eigensheaves π∗OY = ⊕n−1

i=0 L[−i] and

π∗ωY/C ' HomX
(
π∗OY , ωX/C

)
= ⊕n−1

i=0 L[i] [⊗]ωX/C ,

where [⊗] is the reflexive tensor product (3.25.1).



2.2 Locally stable families of surfaces 75

The resulting g : Y → C is locally stable by (2.9) and ωYc is locally free.
Therefore ωY/C is locally free by (2.6), hence free since Y is semilocal. Thus
π∗ωY/C ' π∗OY , so one of the summands L[i] [⊗]ωX/C is free. Restriction to Xc

tells us that in fact i = n − 1. Next note that

ωX/C ' ωX/C [⊗] L[n−1] [⊗] L [⊗] L[−n] ' OX ⊗ L ⊗ OX ' L,

where at the end we changed to the usual tensor product, since the tensor prod-
uct of a reflexive sheaf and of a line bundle is reflexive. �

2.2 Locally stable families of surfaces

In this section we develop a rather complete local picture of slc families of
surfaces. That is, we start with a pointed, local slc pair (x ∈ X0,∆0) and aim to
describe all locally stable deformations over local schemes 0 ∈ S

(X0,∆0) �
� //

��

(XS ,∆S )

��
0 ∈ S .

In the study of singularities it is natural to work étale-locally.

Definition 2.18. Following (Stacks, 2022, Tag 02LD), an étale morphism π :
(s′, S ′) → (s, S ) is called elementary étale if the induced map on the residue
fields π∗ : k(s) → k(s′) is an isomorphism. (This notion is also called strictly
étale or strongly étale in the literature.) The inverse limit of all elementary étale
morphisms is the Henselisation of (s, S ), denoted by (sh, S h). The inverse limit
of all étale morphisms is the strict Henselisation of (s, S ), denoted by (ssh, S sh).
See (Stacks, 2022, Tag 0BSK) for details.

For deformation purposes, two pointed schemes (x1 ∈ X1) and (x2 ∈ X2) are
considered the ‘same’ if they have isomorphic Henselisations. Equivalently,
there is a third pointed scheme (x3 ∈ X3) and elementary étale morphisms

(x1 ∈ X1)
π1
← (x3 ∈ X3)

π2
→ (x2 ∈ X2).

Since we have not yet defined the notion of a locally stable family in general,
we concentrate on the case when S is the spectrum of a DVR.

We start by recalling the classification of lc surface singularities. This has a
long history, starting with Du Val (1934). For simplicity we work over an alge-
braically closed field. It turns out that lc surface singularities have a very clear
description using their dual graphs and this is independent of the characteristic.
(By contrast, the equations of the singularities depend on the characteristic.)

https://stacks.math.columbia.edu/tag/02LD
https://stacks.math.columbia.edu/tag/0BSK
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Definition 2.19 (Dual graph). Let (0 ∈ S ) be a normal surface singularity
over an algebraically closed field and f : S ′ → S the minimal resolution with
irreducible exceptional curves {Ci}. We associate to this a dual graph Γ =

Γ(0 ∈ S ) whose vertices correspond to the Ci. We use the negative of the self-
intersection number (Ci · Ci) to represent a vertex and connect two vertices
Ci,C j by r edges iff (Ci · C j) = r. In the lc cases, the Ci are almost always
smooth rational curves and (Ci ·C j) ≤ 1, so we get a very transparent picture.

The intersection matrix of the resolution is
(
−(Ci · C j)

)
. This matrix is pos-

itive definite (essentially by the Hodge index theorem). Its determinant is de-
noted by det(Γ) := det

(
−(Ci ·C j)

)
.

Let B be a curve on S and Bi the local analytic branches of B that pass
through 0 ∈ S . The extended dual graph (Γ, B) has an additional vertex for each
Bi, represented by •, and it is connected to C j by r edges if

(
f −1
∗ Bi ·C j

)
= r.

Definition 2.20. A connected graph is a twig if all vertices have ≤ 2 edges.
Thus such a graph is of the form

c1 c2 · · · cn

Here det(Γ) is also the numerator of the continued fraction (6.70.4).
A connected graph is a tree with 1 fork if there is a vertex (the root) with 3

edges and all other vertices have ≤ 2 edges. Such a dual graph is of the form

Γ1 c0 Γ2

Γ3

where each Γi is a twig joined to c0 at an end vertex.

Next we list the dual graphs of all lc pairs (0 ∈ S , B), starting with the
terminal and canonical ones. For proofs see Alexeev (1993) or (Kollár, 2013b,
Sec.3.3).

2.21 (List of log canonical surface singularities). Here (0 ∈ S ) is a normal
surface singularity over an algebraically closed field and B ⊂ S a curve (with
coefficient 1).
Case 2.21.1 (Terminal). (0 ∈ S , B) is terminal iff B = ∅ and S is smooth.
Case 2.21.2 (Canonical). (0 ∈ S , B) is canonical iff either B and S are both
smooth at 0, or B = ∅ and Γ is one of the following. The corresponding sin-
gularities are called Du Val singularities or rational double points or simple
surface singularities. See Durfee (1979) for more information. The equations
below are correct only in characteristic zero; see Artin (1977) in general.
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An: x2 + y2 + zn+1 = 0, with n ≥ 1 curves in the dual graph:

2 2 · · · 2 2

Dn: x2 + y2z + zn−1 = 0, with n ≥ 4 curves in the dual graph:

2

2 2 · · · 2 2

En: with n curves in the dual graph:

2

2 2 2 Γ

There are 3 possibilities:

E6: x2 + y3 + z4 = 0 and Γ = 2 − 2,

E7: x2 + y3 + yz3 = 0 and Γ = 2 − 2 − 2,

E8: x2 + y3 + z5 = 0 and Γ = 2 − 2 − 2 − 2.

Case 2.21.3 (Purely log terminal0. The names below reflect that, at least in
characteristic 0, these singularities are obtained as the quotient of C2 by the
indicated type of group. See Brieskorn (1967/1968) and (6.65).
Subcase 2.21.3.1 (Cyclic quotient). B is smooth at 0 (or empty) and (Γ, B) is

• c1 · · · cn or c1 · · · cn

We discuss these in detail in (6.65–6.70).
Subcase 2.21.3.2 (Dihedral quotient).

2

c1 · · · cn 2

Subcase 2.21.3.3 (Other quotient). The dual graph is a tree with 1 fork (2.20)
with 3 possibilities for

(
det(Γ1), det(Γ2), det(Γ3)

)
:

(Tetrahedral) (2,3,3)

(Octahedral) (2,3,4)

(Icosahedral) (2,3,5).
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Case 2.21.4 (Log canonical with B = 0).
Subcase 2.21.4.1 (Simple elliptic). There is a unique exceptional curve E, it
is smooth and of genus 1. If the self-intersection r := −(E2) is ≥ 3 then the
singularity is isomorphic to the cone over the elliptic normal curve E ⊂ Pr−1

of degree r.
Subcase 2.21.4.2 (Cusp). The dual graph is a circle of smooth rational curves

cn · · · cm+1

EE
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EE
EE
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}}}}}}}}
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c2 · · · cm−1

yyyyyyyy

The cases n = 1, 2 are exceptional. For n = 2 we have 2 smooth rational curves
meeting at 2 points and for n = 1 the unique exceptional curve is a rational
curve with a single node. We can draw the dual graphs as

c1 c2 and c1.

For example the dual graphs of the three singularities
(
z(xy − z2) = x4 + y4),(

z2 = x2(x + y2) + y7) and
(
z2 = x2(x2 + y2) + y5) are

3 4, 1 and 2.

Subcase 2.21.4.3 (Z/2-quotient of a cusp).

2 2

2 c1 · · · cn 2

(For n = 1 it is a Z/2-quotient of a simple elliptic singularity.)
Subcase 2.21.4.4 (Simple elliptic quotient). The dual graph is a tree with 1 fork
(2.20) with 3 possibilities for

(
det(Γ1), det(Γ2), det(Γ3)

)
:

(Z/3-quotient) (3,3,3)
(Z/4-quotient) (2,4,4)
(Z/6-quotient) (2,3,6).

Case 2.21.5 (Log canonical with B , 0).
Subcase 2.21.5.1 (Cyclic). B has 2 smooth branches meeting transversally at 0
and (Γ, B) is

• c1 · · · cn •
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Subcase 2.21.5.2 (Dihedral).

2

• c1 · · · cn 2

2.22 (List of semi-log-canonical surface singularities). The dual graphs are
very similar to the previous ones, but there are two possible changes due to the
double curve of the surface S passing through the chosen point 0 ∈ S .

In the normal case, the local picture represented by an edge is

(xy = 0) ⊂ A2, denoted by ◦ −− ◦ or • −− ◦,

where (y = 0) is an exceptional curve and (x = 0) is either an exceptional curve
or a component of B. We can now have a non-normal variant

(xy = z = 0) ⊂ (xy = 0) ⊂ A3, denoted by ◦
d
−− ◦ or •

d
−− ◦,

where the d over the edge signifies that the 2 curves denoted by ◦ or • (here
(x = z = 0) and (y = z = 0)) meet at a point that is also on a double curve of
the surface (here (x = y = 0)).

The local picture represented by • −− ◦ also has another non-normal variant
where (as long as char , 2) we create a pinch point by identifying the points
(0, y)↔ (0,−y). The local equation is

(xy = z = 0) ⊂ (z2 = xy2) ⊂ A3, denoted by p −− ◦,

where (y = z = 0) is the double curve of the surface and (x = z = 0) an
exceptional curve.

Case 2.22.1 (Semi-plt).
Subcase 2.22.1.1 (Higher pinch points). These are obtained from the cyclic
dual graph of (2.21.3.1) by replacing • −− ◦ by p −− ◦.

The simplest one is the pinch point, whose dual graph is p −− 1. The equa-
tion of the pinch point is (x2 = zy2); it is its own semi-resolution (Kollár,
2013b, Sec.10.4).

As another example, start with the An singularity (xy = zn+1) and pinch it
along the line (x = z = 0). The dual graph is

p −− 2 −− · · · −− 2

with 2 occurring n-times. As a subring of k[x, y, z]/(xy − zn+1) the coordinate
ring is generated by (x, z, y2, xy, yz), but xy = zn+1. Thus u1 = x, u2 = z, u3 =
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y2, u4 = yz gives an embedding into A4. The image is a triple point whose
equations can be written as

rank
(

un
2 u4 u3

u1 u2
2 u4

)
≤ 1.

Subcase 2.22.1.2. The dual graph is Γ1
d
−− Γ2,where the Γi are twigs such that

det(Γ1) = det(Γ2). Note that here we allow Γi = {1} and 1
d
−− 1 corresponds

to (xy = 0) ⊂ A3. Similarly 2
d
−− 2 corresponds to

(x1y − z2
1 = x2 = z2 = 0) ∪ (x2y − z2

2 = x1 = z1 = 0) ⊂ A5.

Aside. It is a good exercise to check that if det(Γ1) , det(Γ2) then the canonical

class of the resulting surface is not Q-Cartier. The case 2
d
−− 1 is easy to

compute by hand. The key in general is to compute the different (11.14) on the
double curve; see (Kollár, 2013b, 5.18) for details. This is one of the special
cases of (11.38).

Case 2.22.2 (Slc and KS + B Cartier).
Subcase 2.22.2.1 (Degenerate cusp). Here B = 0 and these are obtained from
the dual graph of a cusp (2.21.4.2) by replacing some of the edges ◦ −− ◦ with

◦
d
−− ◦.
The cases n = 1, 2 are again exceptional. For n = 2 we can replace either of

the edges ◦ −− ◦ with ◦
d
−− ◦. For example, (z2 = x2y2) and (z2 = x2y2 + y5)

correspond to the dual graphs

1
d
d 1 and 2 d 2.

For n = 1 the unique exceptional curve is a rational curve with a single node.
We can think of the dual graph as

c1.d

For example the singularities
(
z2 = x2(x + y2)

)
and

(
z2 = x2(x2 + y2)

)
give the

dual graphs

1d and 2.d

Subcase 2.22.2.2. These are obtained from the cyclic dual graph of (2.21.5.1)

by replacing some of the edges ◦ −− ◦ with ◦
d
−− ◦.

Case 2.22.3 (Slc and 2(KS + B) Cartier).
Subcase 2.22.3.1. Here B = 0 and these are obtained from the dual graph of
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a Z/2-quotient of a cusp (2.21.4.3) by replacing some of the horizontal edges

◦ −− ◦ with ◦
d
−− ◦.

Subcase 2.22.3.2. These are obtained from the cyclic dual graph of (2.21.5.1)
by replacing at least one of • −− ◦ by p −− ◦ and replacing some of the edges

◦ −− ◦ with ◦
d
−− ◦.

Subcase 2.22.3.3. These are obtained from the dual graph of (2.21.5.2) by re-
placing • −− ◦ by p −− ◦ and replacing some of the horizontal edges ◦ −− ◦

with ◦
d
−− ◦.

This completes the list of all slc surface singularities and now we turn to
describing their locally stable deformations. An slc surface can be singular
along a curve and the transversal hyperplane sections are nodes. Deformations
of nodes are described in (11.35).

The situation is much more complicated for surfaces, so we start with the
case ∆0 = 0. It would be natural to first try to understand all flat deformations
of (x ∈ X0) and then decide which of these are locally stable. However, in
many interesting cases, flat deformations are rather complicated, but a good
description of all locally stable deformations can be obtained by relating them
to locally stable deformations of certain cyclic covers of X (11.24).

Proposition 2.23. Let k be a field and (X,D) a local, slc scheme over k with D
reduced. Assume that ω[m]

X (mD) ' OX for some m ≥ 1 that is not divisible by
char k. Let π :

(
X̃, D̃

)
→ (X,D) be a corresponding µm-cover (11.24). Let R be

a complete DVR with residue field k and set S = Spec R.
Taking µm-invariants establishes a bijection between the sets:

(2.23.1) Flat, local, slc morphisms f̃ :
(
X̃S , D̃S

)
→ S such that

(
X̃0, D̃0

)
'(

X̃, D̃
)
, plus a µm-action on

(
X̃S , D̃S

)
extending the µm-action on

(
X̃, D̃

)
.

(2.23.2) Flat, local, slc morphisms f :
(
XS ,DS

)
→ S such that

(
X0,D0

)
'

(X,D).

Note that ωX̃
(
D̃
)

is locally free, and, in many cases, this makes
(
X̃, D̃

)
much

simpler than (X,D). This reduction step is especially useful when D = 0, in
which case ωX̃ is locally free. As we saw in (2.6), then all flat deformations of
X̃ are slc. For surfaces, this leads to an almost complete description of all slc
deformations.

Aside 2.24 (Deformations of quotients). Let X̃ be a scheme and G a finite
group acting on it. The proof of (2.23) shows that G-equivariant deformations
of X̃ always induce flat deformations of X := X̃/G provided the characteristic
does not divide |G|.

The converse is, however, quite subtle, and usually deformations of X are



82 One-parameter families

not related to any deformation of X̃. As an example, consider the family (xy −
zn − tzm = 0) for m < n. For t = 0 the fiber is isomorphic to C2/Zn and for
t , 0 the fiber has a singularity (analytically) isomorphic to C2/Zm. There is
no relation between the corresponding degree n cover of the central fiber and
the (local analytic) degree m cover of a general fiber. However, if G acts freely
outside a subset of codimension ≥ 3 and X̃ is S 3, then every deformation of X
arises from a deformation of X̃ (Kollár, 1995a, 12.7).

The following two examples show that the codimension ≥ 3 condition is not
enough, not even for µm-covers.
(2.24.1) Let E be an elliptic curve and S a K3 surface with a fixed point free
involution τ. Set Y = E × S and X = Y/σ where σ is the involution (−1, τ).
Note that p : Y → X is an étale double cover, h1(Y,OY ) = 1 and h1(X,OX) = 0.
Let HX be a smooth ample divisor on X and HY its pull-back to Y . Consider
the cones (2.35) and general projections

Ca(Y,HY )

πY
��

pC // Ca(X,HX)

πX
��

A1 A1

Since h1(X,OX) = 0, the central fiber of πX is the cone over HX by (2.36).
By contrast, the central fiber F0 of πY is not S 2 since h1(Y,OY ) , 0, again by
(2.36). Thus, although the normalization of F0 is the cone over HY , it is not
isomorphic to it.
(2.24.2) Let g : X → B be a smooth projective morphism to a smooth curve,
H an ample line bundle on X and choose m large enough. Then the direct
images g∗OX(rmH) commute with base change for every r ∈ N, hence the
cones Ca

(
Xb,OXb (mH|Xb )

)
form a flat family.

The cones Ca
(
Xb,OXb (H|Xb )

)
are µm-covers of the cones Ca

(
Xb,OXb (mH|Xb )

)
,

but they form a flat family only if g∗OX(rH) commutes with base change for
every r. That is, we get the required examples whenever H0(Xb,OXb (H|Xb )

)
jumps for special values of b. The latter is easy to arrange, even on a family of
smooth curves, as long as deg H|Xb < 2g − 2.

Proof of 2.23 Let us start with f :
(
XS ,DS

)
→ S . Since ω[m]

XS
(mDS ) is locally

free, the restriction map

ω[m]
XS

(mDS )� ω[m]
X0

(mD0) ' OX0

is surjective. Since XS is affine, the constant 1 section lifts to a nowhere zero
section s : OXS ' ω

[m]
XS

(mDS ). Let f̃ :
(
X̃S , D̃S

)
→ S be the corresponding µm-

cover (11.24).
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The map f̃ is also locally stable by (2.9). By (2.3), this implies that X̃0 is S 2,
hence it agrees with the µm-cover of (X0,D0).

To see the converse, let g : Y → S be any flat, affine morphism and G a
reductive group (or group scheme) acting on Y with quotient g/G : Y/G → S .
Then (g/G)∗OY/G =

(
g∗OY

)G is a direct summand of g∗OY , hence g/G is also
flat. Taking invariants commutes with base change since G is reductive. This
shows that (1)⇒ (2). �

Assumptions. For the rest of this section, we work in characteristic 0, though
almost everything works in general as long as the characteristic does not divide
m in (2.25), but very little has been proved otherwise.

2.25 (Classification plan). We establish an étale-local description of all slc
deformations of surface singularities in four steps.
(2.25.1) Classify all slc surface singularities (0, S̃ ) with ωS̃ locally free.
(2.25.2) Classify all flat deformations of these (0, S̃ ).
(2.25.3) Classify all µm-actions on these surfaces and decide which ones cor-

respond to our µm-covers.
(2.25.4) Describe the µm-actions on the deformation spaces of the (0, S̃ ).

The first task was already accomplished in (2.21–2.22); we have Du Val
singularities (2.21.2), simple elliptic singularities and cusps (2.21.4.1–2) and
degenerate cusps (2.22.1). We can thus proceed to the next step (2.25.2).

2.26 (Deformations of slc surface singularities with KS Cartier).
2.26.1 (Du Val singularities). It is easy to work out the miniversal deformation
space from the equations and (2.27). For each of the An,Dn, En cases the di-
mension of the miniversal deformation space is exactly n. For instance, for An

we get (in char 0)

(xy + zn+1 = 0) �
� //

��

(
xy + zn+1 +

∑n−1
i=0 tizi = 0

) � � //

��

A3
xyz × A

n
t

��
0 ∈ An

t An
t .

2.26.2 (Elliptic/cusp/degenerate cusp). Let (0 ∈ S ) be one of these singu-
larities and Ci the exceptional curves of the minimal (semi)resolution. Set
m = −(

∑
Ci)2 and write (0 ∈ S m) to indicate such a singularity.

If m = 1, 2, 3 then (0 ∈ S m) is (isomorphic to) a singular point on a sur-
face in A3 by Saito (1974); Laufer (1977). Their deformations are completely
described by (2.27).

If m = 4 then (0 ∈ S 4) is (isomorphic to) a singular point on a surface in A4
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that is a complete intersection of 2 hypersurfaces. The miniversal deformation
space of a complete intersection can be described in a manner similar to (2.27);
see Artin (1976); Looijenga (1984) or Hartshorne (2010).

If m = 5 then the deformations are fully described by the method of Buchs-
baum and Eisenbud (1977); see (Hartshorne, 2010, Sec.9).

If m ≥ 3 and (0 ∈ S m) is simple elliptic, then it is (isomorphic to) the singular
point of a projective cone S̄ m ⊂ P

m over an elliptic normal curve Em ⊂ P
m−1.

By (Pinkham, 1974, Sec.9), every deformation of (0 ∈ S m) is the restriction
of a deformation of S̄ m ⊂ P

m. In particular, any smoothing corresponds to
a smooth surface of degree m in Pm. The latter have been fully understood
classically: these are the del Pezzo surfaces embedded by | − K|. In particular,
a simple elliptic singularity (0 ∈ S m) is smoothable only for m ≤ 9 (Pinkham,
1974, Sec.9).

The m = 9 case is especially interesting. Given an elliptic curve E, a degree
9 embedding E9 ↪→ P

8 is given by global sections of a line bundle L9 of degree
9 on E. Embeddings of E into P2 are given by line bundles L3 of degree 3. If
we take (E ↪→ P2) given by L3, and then embed P2 into P9 by OP2 (3), then E
is mapped to E9 iff L⊗3

3 ' L9. For a fixed L9 this gives 9 choices of L3. Thus a
given E9 ↪→ P

8 is a hyperplane section of a P2 ↪→ P9 in 9 different ways. Cor-
respondingly, the deformation space (0 ∈ S 9) has 9 smoothing components.
(This was overlooked in (Pinkham, 1974, Sec.9).) The automorphism group of
(0 ∈ S 9) permutes these 9 components. See (Looijenga and Wahl, 1986, Sec.6)
for another description.

For m ≥ 6 the deformation theory of cusps is much harder, see Gross et al.
(2015). Degenerate cusps are all smoothable Stevens (1998).

2.27 (Deformations of hypersurface singularities). For general references, see
Artin (1976); Looijenga (1984); Arnol′d et al. (1985); Hartshorne (2010),

Let 0 ∈ X ⊂ An
x be a hypersurface singularity defined by an equation

(
f (x) =

0
)
. Choose polynomials pi that give a basis of

k[[x1, . . . , xn]]/
(

f , ∂ f
∂x1
, . . . , ∂ f

∂xn

)
. (2.27.1)

If (0 ∈ X) is an isolated singularity, then the quotient has finite length, say N.
In this case, the miniversal deformation of (0 ∈ X) is given by

X

��

� � // ( f (x) +
∑

iti pi(x) = 0
)

��

� � // An
x × A

N
t

��
0 ∈ An

t An
t .

In particular, the miniversal deformation space Def(X) is smooth.
If the quotient in (2.27.1) has infinite length, then it is best to think of the



2.2 Locally stable families of surfaces 85

resulting infinite dimensional deformation space as an inverse system of defor-
mations over Artinian rings whose embedding dimension goes to infinity.

The next step (2.25.3) in the classification is to describe all µm-actions, but
it is more transparent to consider reductive commutative groups. These are of
the form G × Gr

m where G is a finite, commutative group and Gm = GL(1) the
multiplicative group of scalars, see (Humphreys, 1975, Sec.16).

2.28 (Commutative groups acting on Du Val singularities). The action of a
reductive commutative group on An can be diagonalized. Thus let S ⊂ A3 be
a Du Val singularity that is invariant under a diagonal group action on A3. It
is easy to work through any one of the standard classification methods (for
instance, the one in (Kollár and Mori, 1998, 4.24)) to obtain the following
normal forms. In each case we describe first the maximal connected group
actions and then the maximal non-connected group actions.

Main series: Gm-actions.

An (xy + zn+1 = 0) and G2
m acts with character (1,−1, 0), (0, n + 1, 1).

Dn (x2 + y2z + zn−1 = 0) and Gm acts with character (n − 1, n − 2, 2).
E6 (x2 + y3 + z4 = 0) and Gm acts with character (6, 4, 3).
E7 (x2 + y3 + yz3 = 0) and Gm acts with character (9, 6, 4).
E8 (x2 + y3 + z5 = 0) and Gm acts with character (15, 10, 6).

Twisted versions: µr × Gm-actions.

An (x2 +y2 +zn+1 = 0). If n+1 is odd thenGm acts with character (n+1, n+1, 2)
and µ2 acts with character (0, 1, 0). If n+1 is even thenGm acts with character
( n+1

2 , n+1
2 , 1) and µ2 acts with character (0, 1, 0).

Dn (x2 + y2z + zn−1 = 0), Gm acts with character (n − 1, n − 2, 2) and µ2 acts
with character (1, 1, 0).

D4 (x2 +y3 +z3 = 0),Gm acts with character (3, 2, 2) and µ3 acts with character
(0, 1, 0).

E6 (x2 + y3 + z4 = 0) and Gm acts with character (6, 4, 3) and µ2 acts with
character (1, 0, 0).

Example 2.29 (Locally stable deformations of surface quotient singularities).
Let (0 ∈ S ) be a surface quotient singularity with Du Val cover (0 ∈ S̃ )→ (0 ∈
S ). By (2.23), the classification of locally stable deformations of all such (0 ∈
S ) is equivalent to classifying all cyclic group actions on Du Val singularities
(0 ∈ S̃ ) that are free outside the origin and whose action onωS̃ ⊗k(0) is faithful.
This is straightforward, though somewhat tedious, using (2.28). Alternatively,
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one can use the classification of finite subgroups of GL(2) as in Brieskorn
(1967/1968).

Thus the miniversal locally stable deformation space, which we denote by
DefKSB(S ) (6.64), is the fixed point set of the corresponding cyclic group action
on Def(S̃ ), hence it is also smooth.

An-series
(
xy+zn+1 = 0

)
/ 1

m (1, (n+1)c−1, c) for any m where ((n+1)c−1,m) =

1. These are equivariantly smoothable only if m|(n + 1)c.
Dn-series

(
x2 + y2z + zn−1 = 0

)
/ 1

2k+1 (n − 1, n − 2, 2) where (2k + 1, n − 2) = 1.
These are not equivariantly smoothable, but, for instance, if 2k+1|n−1, they
deform to the quotient singularity A2/ 1

2k+1 (−1, 2).
E6-series

(
x2 + y3 + z4 = 0

)
/ 1

m (6, 4, 3) for (m, 6) = 1. For m > 1 all equivariant
deformations are trivial, save for m = 5, when there is a 1-parameter family(
x2 + y3 + z4 + λyz = 0

)
/ 1

5 (1, 4, 3).
E7-series

(
x2+y3+yz3 = 0

)
/ 1

m (9, 6, 4) for (m, 6) = 1. For m > 1 all equivariant
deformations are trivial, save for m = 5 and m = 7, when there are 1-
parameter families

(
x2 +y3 +yz3 +λxz = 0

)
/ 1

5 (4, 1, 4) and
(
x2 +y3 +yz3 +λz =

0
)
/ 1

7 (2, 6, 4).
E8-series

(
x2 + y3 + z5 = 0

)
/ 1

m (15, 10, 6) for (m, 30) = 1. For m > 1 all
equivariant deformations are trivial, save for m = 7, when there is a 1-
parameter family

(
x2 + y3 + z5 + λyz = 0

)
/ 1

7 (1, 3, 6).
An-twisted

(
x2 +y2 + zn+1 = 0

)
/ 1

4m (n+1, n+1+2m, 2) for any (2m, n+1) = 1.
These are never equivariantly smoothable.

D4-twisted
(
x2 + y3 + z3 = 0

)
/ 1

18k+9 (9k + 6, 1, 6k + 4). All equivariant defor-
mations are trivial.

Example 2.30 (Quotients of simple elliptic and cusp singularities). Let (0 ∈
S ) be a simple elliptic, cusp or degenerate cusp singularity with minimal reso-
lution (or semi-resolution) f : T → S and exceptional curves C =

∑
Ci. Then

ωT (C) ' f ∗ωS , which gives a canonical isomorphism ωS ⊗ k(0) ' H0(C, ωC).
Since C is either a smooth elliptic curve or a cycle of rational curves, Aut(C)
is infinite, but a finite index subgroup acts trivially on H0(C, ωC).

For cusps and for most simple elliptic singularities this leaves only µ2-
actions. The corresponding quotients are listed in (2.21.4.3), see Simonetti
(2022) for their deformations. When the elliptic curves have extra automor-
phisms, one can have µ3, µ4 and µ6-actions as in (2.21.4.4).

The following is one of the simplest degenerate cusp quotients.

Example 2.31 (Deformations of the double pinch point). Let (0 ∈ S ) be
the double pinch point singularity, defined by

(
S̄ = A2, D̄ = (xy = 0), τ =
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(−1,−1)
)
. Here ωS is not locally free, but ω[2]

S is,

S ' S̃ / 1
2 (1, 1, 1), where S̃ =

(
z2 − x2y2 = 0

)
⊂ A3.

A local generator of ωS̃ is given by z−1dx ∧ dy, which is anti-invariant. Thus
ωS has index 2 and S̃ → S is the index 1 cover. Thus every locally stable
deformation of S is obtained as the µ2-quotient of an equivariant deformation
of S̃ . By (2.27) the miniversal deformation space is given by(

z2 − x2y2 + u0 + u1xy +
∑

i≥1vix2i +
∑

j≥1w jy2 j = 0
)
/ 1

2 (1, 1, 1).

When u0 = u1 = v1 = w1 = 0, we get equimultiple deformations to µ2-
quotients of cusps.

The slc deformations of pairs (X,∆) are more complicated, even if ∆ is a
Z-divisor. One difficulty is that ωS (D) is locally free for every pair

(S ,D) :=
(
A2, (xy = 0)

)
/ 1

n (1, q)

since dx
x ∧

dy
y is invariant. Thus we would need to describe the deformations of

every such pair (S ,D) by hand. The following is one of the simplest examples,
and it already shows that the answer is likely to be subtle.

Example 2.32 (Deformations of
(
A2, (xy = 0)

)
/ 1

n (1, 1)). Flat deformations
of the quotient singularity Hn := A2/ 1

n (1, 1) are quite well understood; see
Pinkham (1974). Hn can be realized as the affine cone over the rational nor-
mal curve Cn ⊂ P

n and all local deformations are induced by deformations
of the projective cone Cp

(
Cn

)
⊂ Pn+1. If n , 4 then the deformation space is

irreducible and the smooth surfaces in it are minimal ruled surfaces of degree
n in Pn+1. We describe these completely below. (For n = 4 there is another
component, corresponding to the Veronese embedding P2 ↪→ P5.)

Since (xy)−1dx ∧ dy is invariant under the group action, it descends to a 2-
form on Hn with poles along the curve Dn := (xy = 0)/ 1

n (1, 1). Thus KHn +Dn ∼

0 and the pair (Hn,Dn) is lc. Our aim is to understand which deformations of
Hn extend to a deformation of the pair (Hn,Dn).

Claim 2.32.1. Fix n ≥ 7 and let π : X → A1 be a general smoothing of Hn. Then
the divisor Dn can not be extended to a divisor DX such that π :

(
X,DX

)
→ A1

is locally stable. However, there are special smoothings π : X′ → A1 for which
such a divisor D′X exists.

Proof For m ∈ N, let Fm denote the ruled surface ProjP1
(
OP1 + OP1 (−m)

)
. Let

Em ⊂ Fm denote the section with self intersection −m and F ⊂ Fm denote a
fiber. Note that KFm ∼ −

(
2Em + (m + 2)F

)
.

For a ≥ 1 set Ama := E + (m + a)F. Then Ama is very ample with self
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intersection n := m + 2a and it embeds Fm into Pn+1 as a surface of degree n.
Denote the image by S ma. A general hyperplane section of S ma is a rational
normal curve Cn ⊂ P

n. Consider the affine cones Xma := Ca
(
S ma

)
and Hn :=

Ca
(
Cn

)
. We can choose coordinates such that

Xma ⊂ A
n+2
x1,...,xn+2

and Hn = (xn+2 = 0).

The last coordinate projection gives π : Xma → A
1 which is a flat deformation

(in fact a smoothing) of Hn. By (Kollár, 2013b, 3.14.5)

H0(Xma,OXma (−KXma )
)

=
∑

i∈Zxi
0 · H

0(S ma,OS ma (−KS ma + iAma)
)

=
∑

i∈Zxi
0 · H

0(S ma,OS ma

(
(2 + i)Em + (m + 2 + im + ia)F

))
.

The lowest degree terms in the sum depend on m and a. For i < −2, we get 0.
For i = −2 we have

H0(S ma,OS ma

(
(2 − m − 2a)F

))
= H0(S ma,OS ma

(
(2 − n)F

))
.

This is 0, unless n = 2, that is, when X is the quadric cone in A3. Then D2 is a
Cartier divisor H2 and so every deformation of H2 extends to a deformation of
the pair (H2,D2). Thus assume next that n ≥ 3.

For i = −1 we have the summand H0(S ma,OS ma

(
Em + (2 − a)F

))
. This is

again zero if a ≥ 3, but for a = 1 we get a pencil |Em + F| (whose members are
pairs of intersecting lines) and for a = 2 we get a unique member Em (which
is a smooth conic in Pn+1). This shows the following.

Claim 2.32.2. For a = 1, 2 and any m ≥ 0, the anticanonical class of the 3-fold
Xma contains a (possibly reducible) quadric cone D ⊂ Xma and π :

(
Xma,D

)
→

A1 is locally stable. �

For a ≥ 3, we have to look at the next term H0(S ma,OS ma

(
2Em + (m + 2)F

))
for a nonzero section. The corresponding linear system consists of reducible
curves of the form Em + Gm where Gm ∈ |Em + (m + 2)F|. These curves have
2 nodes and arithmetic genus 1. Let B ⊂ Xma denote the cone over any such
curve. Then

(
Xma, B

)
is log canonical, but π :

(
Xma, B

)
→ A1 is not locally

stable since the restriction of B to Hn consists of n + 2 lines through the vertex.
Thus we have proved:

Claim 2.32.3. For a ≥ 3 and m ≥ 0, the anticanonical class of Xma does not
contain any divisor D for which π :

(
Xma,D

)
→ A1 is locally stable. �

Note finally that the surfaces S ma with n = m+2a form an irreducible family.
General points correspond to the largest possible value a = b(n − 1)/2c. The
surfaces with a ≤ 2 correspond to a closed subset, which is a 2-dimensional
subspace of the versal deformation space of Hn.
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2.3 Examples of locally stable families
The aim of this section is to investigate, mostly through examples, fibers of
locally stable morphisms. If (S ,∆) is slc then, for any smooth curve C, the
projection π : (S × C,∆ × C) → C is locally stable with fiber (S ,∆). Thus, in
general we can only say that fibers of locally stable morphisms are exactly the
slc pairs.

The question becomes, however, quite interesting, if we look at special
fibers of locally stable morphisms whose general fibers are ‘nice,’ for instance
smooth or canonical. The main point is thus to probe the difference between
arbitrary slc pairs and those slc pairs that occur on locally stable degenerations
of smooth varieties. We focus on two main questions.

Question 2.33. Let f : X → T be a locally stable morphism over a pointed
curve (0 ∈ T ) such that Xt is smooth for t , 0.
(2.33.1) Is X0 CM (10.4)?
(2.33.2) Are the irreducible components of X0 CM?
(2.33.3) Is the normalization of X0 CM?

Question 2.34. Let f : (X,∆)→ T be a locally stable morphism over a pointed
curve (0 ∈ T ) such that Xt is smooth and ∆t is snc for t , 0.
(2.34.1) Do the supports of {∆t : t ∈ T } form a flat family of divisors?
(2.34.2) Are the sheaves OX0 (mKX0 + bm∆0c) CM?
(2.34.3) Do the sheaves {OXt (mKXt + bm∆tc) : t ∈ T } form a flat family?

A normal surface is always CM, and the (local analytic) irreducible compo-
nents of an slc surface are CM. The latter follows from the classification of slc
surfaces given in (Kollár, 2013b, Sec.2.2). Starting with dimension 3, there are
lc singularities that are not CM. The simplest examples are cones over Abelian
varieties; see (2.35). On the other hand, canonical and log terminal singularities
are CM and rational (p.10) in characteristic 0 by (11.18).

Let us note next that the answer to (2.33.1) is positive, that is, X0 is CM.
Indeed, X is canonical by (2.15) and hence CM by (11.18). Therefore X0 is
also CM. A more complete answer to (2.33.1), without assuming that Xt is
smooth or canonical for t , 0, is given in (2.66).

For locally stable families of pairs, the boundary provides additional sheaves
whose CM properties are important to understand; this motivates (2.34). Un-
like for (2.33), the answers to all of these are negative already for surfaces.
The first convincing examples were discovered by Hassett (2.41). As a con-
sequence, we see that we can not think of the deformations of (S ,∆) as a flat
deformation of S and a flat deformation of ∆ that are compatible in certain
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ways. In general it is imperative to view (S ,∆) as a single object. See, how-
ever, Section 2.7 for many cases where viewing (S ,∆) as a pair does work
well.

Our examples will be either locally or globally cones and we need some
basic information about them.

2.35 (Cones). Let X be a projective scheme with an ample line bundle L. The
affine cone over X with conormal bundle L is

Ca(X, L) := Speck⊕m≥0H0(X, Lm).

Away from the vertex v ∈ Ca(X, L), the cone is locally isomorphic to X × A1,
but the vertex is usually more complicated. If X is normal then so is Ca(X, L)
and its canonical class is Cartier (resp. Q-Cartier) iff OX(KX) ∼ Lm for some
m ∈ Z (resp. OX(rKX) ∼ Lm for some r,m ∈ Z with r , 0).

The following results are straightforward, see (Kollár, 2013b, Sec.3.1).

(2.35.1) Hi+1
v (Ca(X, L),OCa(X,L)) ' ⊕m∈ZHi(X,OX(Lm)

)
for every i.

Over a field of char 0, assume that X has rational singularities.

(2.35.2) If −KX is ample then Ca(X, L) is CM and has rational singularities. If
−KX is nef (for instance, KX ≡ 0), then Ca(X, L) is CM⇔ Hi(X,OX) = 0
for 0 < i < dim X, and Ca(X, L) has rational singularities⇔ Hi(X,OX) = 0
for 0 < i ≤ dim X.

Next let (X,∆) be a projective, slc pair and L an ample line bundle on X. Let
∆Ca(X,L) denote the R-divisor corresponding to ∆ on Ca(X, L). Assume that KX +

∆ ∼Q r · L for some r ∈ R. Then
(
Ca(X, L),∆Ca(X,L)

)
is

(2.35.3) terminal iff r < −1 and (X,∆) is terminal,
(2.35.4) canonical iff r ≤ −1 and (X,∆) is canonical,
(2.35.5) klt iff r < 0 (that is, −(KX + ∆) is ample) and (X,∆) is klt,
(2.35.6) dlt iff either r < 0 and (X,∆) is dlt or (X,∆) '

(
Pn, (

∏
xi = 0)

)
and

the cone is
(
An+1, (

∏
xi = 0)

)
.

(2.35.7) lc iff r ≤ 0 (that is, −(KX + ∆) is nef) and (X,∆) is lc,
(2.35.8) semi-log-canonical iff r ≤ 0 and X is semi-log-canonical.
Aside. The failure of (2.35.2) in positive characteristic has significant conse-
quences for the moduli problem; see Section 8.8.

2.36 (Deformation to cones II). Let X ⊂ Pn be a closed subscheme and H ⊂ Pn

a hyperplane. Thinking of Pn ⊂ Pn+1 as the hyperplane at infinity, let Cp(X) ⊂
Pn+1 be the projective cone over X with vertex v.

If H0(Pn,OPn (r)
)
→ H0(X,OX(r)

)
is surjective for every r, then Cp(X) \ X is

the affine cone Ca(X).
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Let |L| be the pencil of hyperplanes in Pn+1 that contain H ⊂ Pn. If v < Lt

then projection from v shows that Cp(X) ∩ Lt ' X.
There is a unique L0 ∈ |L| such that v ∈ L0. Then Cp(X) ∩ L0 is isomorphic

to Cp(X ∩ H) away from v. If X is pure and dim(X ∩ H) = dim X − 1, then the
two are isomorphic iff H1(X,OX(r)

)
= 0 for every r; see (2.35.1) or (Kollár,

2013b, 3.10).
If all these hold then blowing up H we get a flat morphism π : BHCp(X) →

P1. There is a unique fiber of π that is isomorphic to Cp(X∩H), all other fibers
are isomorphic to X.

Example 2.37 (Counterexample to 2.33.2). Let Q0 ⊂ P
4 be the quadric cone

(xy−uv = 0). Let |A| and |B| be the two families of planes on Q0 and H ∼ A+ B
the hyperplane class. Let S 1 ∈ |2A + H| be a general member. Note that S 1 is
smooth away from the vertex of Q0 and at the vertex it has 2 local analytic
components intersecting at a single point. In particular, S 1 is non-normal and
non-CM. (The easiest way to see these is to blow up a plane B1 ∈ |B|. Then
BB1 Q0 → Q0 is a small resolution whose exceptional set E is a smooth rational
curve. The birational transform of |2A+H| is a very ample linear system whose
general member is a smooth surface that intersects E in 2 points. This is the
normalization of the surface S 1.)

Let B1, B2 be planes in the other family. Then X0 := S 1 + B1 + B2 ∼ 3H,
thus X0 is a (2) ∩ (3) complete intersection in P4. We can thus write X0 as the
limit of a smooth family of (2) ∩ (3) complete intersections Xt. The general Xt

is a smooth K3 surface.
On the other hand, X0 can also be viewed as a general member of a flat

family whose special fiber is A1 + A2 + B1 + B2 + H. The latter is slc by (2.35),
thus X0 is also slc. Hence {Xt : t ∈ T } is a locally stable family such that Xt is a
smooth K3 surface for t , 0. Moreover, the irreducible component S 1 ⊂ X0 is
not CM.

In this case, the source of the problem is easy to explain. At its singular
point, S 1 is analytically reducible. The local analytic branches of S 1 and the
normalization of S 1 are both smooth.

One can, however, modify this example to get analytically irreducible non-
CM examples, albeit in dimension 3. To see this, let

Y0 := C(X0) = C(S 1) + C(B1) + C(B2) ⊂ P5

be the cone over X0. It is still a (2) ∩ (3) complete intersection, thus we can
write Y0 as the limit of a smooth family of (2) ∩ (3) complete intersections Yt.
The general Yt is a smooth Fano 3-fold.

By (2.35), Y0 is slc, thus {Yt : t ∈ T } is a stable family such that Yt is a
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smooth 3-fold for t , 0. Since S 1 is irreducible, the cone C(S 1) is analytically
irreducible at its vertex. It is non-normal along a line and non-CM.

One can check that the normalization of C(S 1) is CM.

Example 2.38 (Counterexample to 2.33.3). As in (2.37), let Q0 ⊂ P
4 be the

singular quadric (xy − uv = 0). On it, take a divisor

D0 := A1 + A2 + 1
2 (B1 + · · · + B4) + 1

2 H4

where the Ai are planes in one family, the Bi are planes in the other family and
H4 is a general quartic section.

Note that (Q0,D0) is lc (2.35) and 2D0 is the intersection of Q0 with an octic
hypersurface. We can thus write (Q0,D0) as the limit of a family (Qt,Dt) where
Qt is a smooth quadric and 2Dt a smooth octic hypersurface section of Qt.

Let us now take the double covers of Qt ramified along 2Dt (11.24). We get
a family of (2) ∩ (8) complete intersections Xt ⊂ P(15, 4). The general Xt is
smooth with ample canonical class. The special fiber is irreducible, slc, but not
normal along A1 + A2, which is the union of 2 planes meeting at a point.

Let π : X̄0 → Q0 denote the projection of the normalization of X0. Then

π∗OX̄0
= OQ0 + OQ0 (4H − A1 − A2).

It is easy to compute that OQ0 (4H − A1 − A2) is not CM (see, for instance,
(Kollár, 2013b, 3.15)), so we conclude that X̄0 is not CM.

It is also interesting to note that the preimage of A1 + A2 in X̄0 is the union of
2 elliptic cones meeting at their common vertex. These are quite complicated
lc centers.

Example 2.39 (Counterexample to 2.33.2–3). Here is an example of a locally
stable family of smooth projective varieties {Yt : t ∈ T } such that
(2.39.1) the canonical class KYt is ample and Cartier for every t,
(2.39.2) Y0 is slc and CM,
(2.39.3) the irreducible components of Y0 are normal, but
(2.39.4) one of the irreducible components of Y0 is not CM.

Let Z be a smooth Fano variety of dimension n ≥ 2 such that −KZ is very
ample, for instance Z = P2. Set X := P1 ×Z and view it as embedded by | −KX |

into PN for suitable N. Let C(X) ⊂ PN+1 be the cone over X.
Let M ∈ | − KZ | be a smooth member and consider the following divisors

D0 := {(0 : 1)} × Z, D1 := {(1 : 0)} × Z, and D2 := P1 × M.

Note that D0 + D1 + D2 ∼ −KX . Let Ei ⊂ C(X) denote the cone over Di. Then
E0 + E1 + E2 is a hyperplane section of C(X) and

(
C(X), E0 + E1 + E2

)
is lc by
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(2.35). For some m > 0, let Hm ⊂ C(X) be a general intersection with a degree
m hypersurface. Then (

C(X), E0 + E1 + E2 + Hm
)

is snc outside the vertex and is lc at the vertex. Set Y0 := E0 + E1 + E2 + Hm.
Since OC(X)(Y0) ∼ OC(X)(m + 1), as in (2.36), we can view Y0 as an slc limit of
a family of smooth hypersurface sections Yt ⊂ C(X).

The cone over X is CM by (2.35), hence its hyperplane section E0 + E1 +

E2 + Hm is also CM. However, E2 is not CM. To see this, note that E2 is the
cone over P1 × M and, by the Künneth formula,

Hi(P1 × M,OP1×M) = Hi(M,OM) =

{
k if i = 0, n − 1,
0 otherwise.

Thus E2 is not CM by (2.35).

Example 2.40 (Easy counterexamples to 2.34). There are some obvious prob-
lems with all of the questions in (2.34) if the Dt contain divisors with different
coefficients. For instance, let C be a smooth curve and D′,D′′ ⊂ A1 × C =: S
two sections of the 1st projection π1. Set D := 1

2 (D′ + D′′). Then π1 :
(
S ,D

)
→

A1 is a stable family of 1-dimensional pairs. For general t, the sections D′,D′′

intersect Ct at two different points and then OCt (KCt + bDtc) ' OC(KC). If,
however, D′,D′′ intersect Ct at the same point pt ∈ Ct, then OCt (KCt + bDtc) '
OC(KC)(pt).

Similarly, the support of Dt is 2 points for general t, but only 1 point for
special values of t.

One can correct for these problems in relative dimension 1 by a more care-
ful bookkeeping of the different parts of the divisor Dt. However, starting with
relative dimension 2, no correction seems possible, except when all the coeffi-
cients are > 1

2 (2.81).

The following example is due to Hassett (unpublished).

Example 2.41 (Counterexample to 2.34.1–3). We start with the already stud-
ied example of deformations of the cone S ⊂ P5 over the degree 4 rational
normal curve (1.42), but here we add a boundary to it. Fix r ≥ 1 and let DS be
the sum of 2r lines. Then (S , 1

r DS ) is lc and
(
KS + 1

r DS
)2

= 4.
As in (1.42), there are two different deformations of the pair (S ,DS ).

(2.41.1) First, set P := P2 and let DP be the sum of r general lines. Then
(P, 1

r DP) is lc (even canonical if r ≥ 2) and
(
KP + 1

r DP
)2

= 4. The usual
smoothing of S ⊂ P5 to the Veronese surface gives a family f : (X,DX) → P1

with general fiber (P,DP) and special fiber (S ,DS ). We can concretely realize
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this as deforming (P,DP) ⊂ P5 to the cone over a general hyperplane section.
Note that for any general DS there is a choice of lines DP such that the above
limit is exactly DS .

The total space (X,DX) is the cone over (P,DP) (blown up along curve) and
X is Q-factorial. Thus by (11.18) the structure sheaf of an effective divisor on
X is CM. In particular, DS is a flat limit of DP. Since the DP is a plane curve
of degree r, we conclude that

χ(ODS ) = χ(ODP ) = −
r(r−3)

2 .

(2.41.2) Second, set Q := P1×P1 and let A, B denote the classes of the 2 rulings.
Let DQ be the sum of r lines from the A-family. Then (Q, 1

r DQ) is canonical
and

(
KQ + 1

r DQ
)2

= 4. The usual smoothing of S ⊂ P5 to P1 × P1 embedded
by H := A + 2B gives a family g : (Y,DY )→ P1 with general fiber (Q,DQ) and
special fiber (S ,DS ). We can concretely realize this as deforming (Q,DQ) ⊂ P5

to the cone over a general hyperplane section.
The total space (Y,DY ) is the cone over (Q,DQ) (blown up along curve) and

Y is not Q-factorial. However, KQ + 1
r DQ ∼Q −H, thus KY + 1

r DY is Q-Cartier
and (Y, S + 1

r DY ) is lc by inversion of adjunction (11.17) and so is (Y, 1
r DY ).

In this case, however, DS is not a flat limit of DQ for r > 1. This follows, for
instance, from comparing their Euler characteristic:

χ(ODS ) = −
r(r−3)

2 and χ(ODQ ) = r.

(2.41.3) Because of their role in the canonical ring, we are also interested in
the sheaves O(mK + bm

r Dc).
Let HP be the hyperplane class of P ⊂ P5 (that is, OP2 (2)) and write m =

br + a where 0 ≤ a < r. Then mKP + bm
r DPc + nHP ∼ (2n − 2m − a)L, so

χ(P,OP(mKP + bm
r DPc + nHP)) =(

2n−2m−a+2
2

)
=

(
2n−2m+2

2

)
− a(2n − 2m + 1) +

(
a
2

)
.

Again by (11.18), OX(mKX + bm
r DXc) is CM, hence its restriction to the

central fiber S is OS (mKS + bm
r DS c) as in (2.75). In particular,

χ(S ,OS (mKS + bm
r DS c + nHS )) =

(
2n−2m+2

2

)
− a(2n − 2m + 1) +

(
a
2

)
.

The other deformation again behaves differently. Write m = br + a where
0 ≤ a < r. Then, for HQ ∼ A + 2B, we see that

mKQ + bm
r DQc + nHQ ∼ (n − m − a)A + (2n − 2m)B,

and therefore

χ
(
Q,O(mKQ + bm

r DQc + nHQ)
)

=
(

2n−2m+2
2

)
− a(2n − 2m + 1).
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From this we conclude that the restriction of OY (mKY +bmDYc) to the central
fiber S agrees with OS (mKS + bmDS c) only if a ∈ {0, 1}, that is when m ≡
0, 1 mod r. The if part was clear from the beginning. Indeed, if a = 0 then
OY (mKY + bmDYc) = OY (mKY + mDY ) is locally free and if a = 1 then

OY (mKY + bmDYc) = OY (KY ) ⊗ OY
(
(m − 1)KY + (m − 1)DY

)
is OY (KY ) tensored with a locally free sheaf. Both of these commute with re-
strictions. In the other cases we only get an injection

OY (mKY + bmDYc)|S ↪→ OS (mKS + bmDS c)

whose quotient is a torsion sheaf of length
(

a
2

)
supported at the vertex.

In the next example, non-flatness appears in codimension 3.

Example 2.42. On P5 denote coordinates by x1, x2, x3, x′1, x
′
2, x
′
3. Set

S := (x1x′1 = x2x′2 = x3x′3 = 0) ⊂ P5.

It is a reducible K3 surface, a union of 8 planes.
Pick constants a1, a2, a3 and a′1, a

′
2, a
′
3 such that aia′j , a ja′i for i , j. Set

X :=
(∑

aixix′i =
∑

a′i xix′i = 0
)
⊂ P5.

By direct computation, X is singular only at the 6 coordinate vertices, and it
has ordinary double points there. Furthermore, S ∼ −KX .

Set Y := X ∩
(∑

(xi + x′i ) = 0
)
⊂ P4 and C := Y ∩ S . Then Y is a smooth,

degree 4 Del Pezzo surface and C ∼ −2KY . Thus (Y, 1
2C) is a log CY pair. Let

(X0,
1
2 S 0) ⊂ P5 denote the cone over (Y, 1

2C). Deformation to the cone (2.36)
gives π :

(
X, 1

2 S
)
→ A1, whose central fiber is (X0,

1
2 S 0). The other fibers are

isomorphic to (X, 1
2 S ).

Note that S contains the pair of disjoint planes P := (x1 = x2 = x3 = 0) and
P′ := (x′1 = x′2 = x′3 = 0). Their specializations P0, P′0 meet only at the vertex.
This is a non-flat deformation of P ∪ P′.

Example 2.43 (Counterexample to 2.34.1). As in (2.39), let Z be a smooth
Fano variety of dimension n ≥ 2 such that −KZ is very ample. Set X := P1 ×Z,
but now view it as embedded by global sections of OP1 (1) ⊗ OZ(−KZ) into PN

for suitable N. Let C(X) ⊂ PN+1 be the cone over X.
Fix r ≥ 1 and let Dr be the sum of r distinct divisors of the form {point}×Z ⊂

X. Let H ⊂ X be a general hyperplane section. Then H ∼Q −
(
KX + 1

r Dr
)
,

that is, (X, 1
r Dr) is (numerically) anticanonically embedded. Thus, by (2.35),(

C(H), 1
r C(H ∩ Dr)

)
is lc and there is a locally stable family with general fiber

(X, 1
r Dr) and special fiber

(
C(H), 1

r C(H ∩ Dr)
)
.
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However, C(H ∩ Dr) is not a flat deformation of Dr. Indeed, if Dri(' Z)
is any irreducible component of Dr, then C(H ∩ Dri) is a flat deformation of
Dri. Thus qiC(H ∩ Dri) is a flat deformation of Dr = qiDri. Note further that
qiC(H ∩Dri) is the normalization of C(H ∩Dr), and the normalization map is
r : 1 over the vertex of the cone. Thus

χ
(
Dr,ODr

)
=

∑
iχ

(
Dri,ODri

)
=

∑
iχ

(
C(H ∩ Dri),OC(H∩Dri)

)
≥ χ

(
C(H ∩ Dr),OC(H∩Dr)

)
+ (r − 1).

Therefore C(H ∩Dr) can not be a flat deformation of Dr for r > 1. We pick up
at least r − 1 embedded points.

Example 2.44 (Counterexample to 2.34.3). Set X := Ca
(
P1 × Pn,OP1×Pn (1, a)

)
for some 0 < a < n + 1. Let D ⊂ X be the cone over a smooth divisor in
|OP1×Pn (1, n + 1 − a)|. Then (X,D) is canonical and KX + D is Cartier.

Let π : (X,D) → A1 be a general projection. Then π is locally stable and its
central fiber is the cone X0 = Ca

(
H,OP1×Pn (1, a)|H

)
where H ∈ |OP1×Pn (1, a)| is

a smooth divisor.
We claim that if 2a > n + 1 then Rm : ω[m]

X/A1

∣∣∣
X0
→ ω[m]

X0
is not surjective for

m � 1. Indeed, Rm is a sum, for r ≥ 0 of the restriction maps

H0(P1 × Pn,O(r − 2m, ra − (n + 1)m)
)
→ H0(H,O(r − 2m, ra − (n + 1)m)|H

)
,

and Rm is surjective iff H1(P1×Pn,OP1×Pn (r−2m, ra− (n + 1)m)
)

= 0 for every
r ≥ −1. Choose r = 2m − 2. By the Künneth formula, this group is

H1(P1,OP1 (−2)
)
⊗ H0(Pn,OPn (2a(m − 1) − m(n − 1))

)
.

This is nonzero iff 2a ≥ m
m−1 (n − 1).

The following example, related to Patakfalvi (2013), shows that the relative
dualizing sheaf does not commute with base change in general.

Example 2.45. Let S be a smooth, projective surface with KS ample and pg =

q = 0. Let C be a smooth, projective curve with KC ample. For [L] ∈ Pic◦(C)
set LX := ωS×C ⊗ π

∗
C L, where πC is the projection to C. Note that H0(S ×

C, LX) = 0 and, for m ≥ 2, h0(S × C, Lm
X ) = χ(S × C, Lm

X ) is independent of L.
Thus the cones XL := Spec⊕m≥0H0(S ×C, Lm

X
)

form a flat family over Pic◦(C).
By (2.35), KXL is Cartier iff L ' OC and Q-Cartier iff [L] ∈ Pic◦(C) is a

torsion point.

2.4 Stable families
Next we define the notion of stable families over regular, 1-dimensional base
schemes and establish the valuative criteria of separatedness and properness.
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Definition 2.46. Let f : (X,∆)→ C be a family of pairs (2.2) over a regular 1-
dimensional scheme C of characteristic 0. We say that f : (X,∆)→ C is stable
if f is locally stable (2.3), proper and KX/C + ∆ is f -ample.

Note that if f is locally stable then KX + ∆ is R-Cartier, so f -ampleness
makes sense. By (2.10), being stable is preserved by base change C′ → C.

More generally, whenever the notion of local stability is defined later over
a scheme S , then f : (X,∆) → S is called stable if the above conditions are
satisfied. (Thus we have to make sure that local stability implies that KX/S + ∆

makes sense and is R-Cartier.)

The relationship between locally stable morphisms and stable morphisms
parallels the connection between smooth varieties and their canonical models.

Proposition 2.47. Let f :
(
Y,∆

)
→ B be a locally stable, proper morphism

over a 1-dimensional regular scheme B of characteristic zero. Assume that the
generic fibers are normal, of general type and f has a relative canonical model
f c :

(
Yc,∆c)→ B. Then f c :

(
Yc,∆c)→ B is stable.

Furthermore, taking the relative canonical model commutes with flat base
changes π : B′ → B.

Proof First, KYc + ∆c is f c-ample by definition (1.38) and
(
Yc,∆c) is lc.

Let b ∈ B be any closed point and Yb (resp. Yc
b) the fibers over b. Since

f is locally stable,
(
Y,Yb + ∆Y

)
is lc. Since any fiber is f -linearly trivial, we

conclude using (Kollár, 2013b, 1.28) that
(
Yc,Yc

b + ∆c) is also lc. Thus f c is
locally stable, hence stable.

In characteristic 0, being locally stable is preserved by base change (2.10),
thus the last assertion follows from (11.40). �

Remark 2.48. In most cases, the fibers of f c are not the canonical models of
the fibers of f ; see Section 1.5 and (5.10).

A significant exception is when ∆ = 0 and Yb has canonical singularities.
Then (Y,Yb) is canonical by (11.17) and so is (Yc,Yc

b) by (Kollár and Mori,
1998, 3.51). Thus Yc

b also has canonical singularities by (11.17), it is thus the
canonical model of Yb.

2.49 (Separatedness and Properness). Let C be a regular scheme of dimension
1, and C◦ ⊂ C an open and dense subscheme. Let f ◦ : (X◦,∆◦) → C◦ be a
stable morphism. We aim to prove the following two properties.

Separatedness f ◦ : (X◦,∆◦) → C◦ has at most one extension to a stable mor-
phism f : (X,∆)→ C.
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Properness There is a finite surjection π : B→ C such that the pull back

π∗ f ◦ : (X◦ ×C B,∆◦ ×C B)→ B◦ := π−1(C◦)

extends to a stable morphism fB : (XB,∆B)→ B.

Next we show that separatedness holds in general and properness holds in
characteristic 0. In both cases the proof relies on theorems that we state in
general forms in Section 11.3.

Proposition 2.50 (Separatedness for stable maps). Let fi :
(
Xi,∆i)→ B be two

stable morphisms over a 1-dimensional, regular scheme B. Let

φ :
(
X1

k(B),∆
1
k(B)

)
'

(
X2

k(B),∆
2
k(B)

)
be an isomorphism of the generic fibers. Then φ extends to an isomorphism

Φ :
(
X1,∆1) ' (

X2,∆2).
Proof Note that φ always extends to an isomorphism over an open, dense
subset B◦ ⊂ B. We can now apply (11.40), whose assumptions are satisfied by
(2.15). �

Example 2.50.1. Regularity of B is needed above. As a simple example, let B̄ be
a smooth curve and f̄ : S̄ → B̄ a smooth, projective family of curves of genus
≥ 2. Assume that we have points b1, b2 ∈ B̄ such that the fibers Ci := f̄ −1(bi)
are isomorphic. Let B be the nodal curve obtained by identifying b1 and b2.
We can then descend the family to f : S → B using an isomorphism C1 ' C2.
The number of different choices is |Aut(C1)|. Thus the family over B̄ \ {b1, b2}

may have several stable extensions over the nodal curve B.

Remark 2.50.2. As a consequence of (2.50) we obtain that Aut(X,∆) is finite
for a stable pair (X,∆) in arbitrary characteristic, using (2.16.2). We prove a
more general form of it in (8.64).

Theorem 2.51 (Valuative-properness for stable maps). Let C be a smooth
curve over a field of characteristic 0 and C◦ ⊂ C an open and dense subset.
Let f ◦ : (X◦,∆◦)→ C◦ be a stable morphism.

Then there is a finite surjection π : B→ C such that the pull back

f ◦B := π∗ f ◦ : (X◦ ×C B,∆◦ ×C B)→ π−1(C◦)

extends to a stable morphism fB : (XB,∆B)→ B.

Proof We begin with the case when X◦ is normal. Start with f ◦ : (X◦,∆◦) →
C◦ and extend it to a proper flat morphism f1 : (X1,∆1) → C where X1 is
normal. In general (X1,∆1) is no longer lc.
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By (Kollár, 2013b, 10.46), there is a log resolution (p.12) g1 : Y1 → X1 such
that

(
g−1

1
)
∗∆1 + Ex(g1) + Y1c is an snc divisor for every c ∈ C. In general, the

fibers of f1 ◦g1 : Y1 → C are not reduced, hence g1 :
(
Y1,

(
g−1

1
)
∗∆1 +Ex(g1)

)
→

C is not locally stable.
Let B be a smooth curve and π : B→ C a finite surjection. Let X2 → X1×C B

and Y2 → Y1 ×C B denote the normalizations and g2 : Y2 → X2 the induced
morphism. Let ∆2 be the pull back of ∆1 ×C B to X2. Note that

f2 ◦ g2 :
(
Y2,

(
g−1

2
)
∗∆2 + Ex(g2)

)
→ B

is a log resolution over the points where π is étale, but Y2 need not be smooth.
However, by (2.52),

(
Y2,

(
g−1

2
)
∗∆2 + Ex(g2) + red Y2b

)
is lc for every b ∈ B.

By (2.53), one can choose π : B → C such that every fiber of f2 ◦ g2 is
reduced. With such a choice, f2 ◦ g2 is locally stable.

If the generic fiber (X◦g ,∆
◦
g) is klt, then, using (2.15) and after shrinking C◦,

we may assume that (X◦,∆◦) is klt. Pick 0 < ε � 1. Then
(
Y2,∆2 + (1 −

ε) Ex(g2)
)

is also klt and so it has a canonical model fB : (XB,∆B) → B by
(11.28.1), which is stable by (2.47).

We are almost done, except that, by construction, fB : (XB,∆B) → B is iso-
morphic to the pull-back of f ◦ : (X◦,∆◦) → C◦ only over a possibly smaller
dense open subset. However, by (2.50), this implies that this isomorphism
holds over the entire C◦.

The argument is the same if (X◦,∆◦) is lc, but we need to take the canonical
model of

(
Y2,∆2 + Ex(g2)

)
. Here we rely on (11.28.2).

Next we show how the semi-log-canonical case can be reduced to the log
canonical case.

Let X̄◦ → X◦ be the normalization with conductor D̄◦ ⊂ X̄◦. As we noted in
(2.12), we get a stable morphism

f̄ ◦ : (X̄◦, ∆̄◦ + D̄◦)→ C◦. (2.51.4)

By the already completed normal case, we get B → C such that the pull-back
of (2.51.4) extends to a stable morphism

f̄B :
(
X̄B, ∆̄B + D̄B

)
→ B. (2.51.5)

Finally, (2.54) shows that (2.51.5) is the normalization of a stable morphism
fB : (XB,∆B)→ B, which is the required extension of f ◦B . �

We have used the following 3 lemmas during the proof.

Lemma 2.52. Let C be a smooth curve over a field of characteristic 0, f : X →
C a flat morphism and ∆ an R-divisor on X. Assume that (X, red Xc + ∆) is lc
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for every c ∈ C. Let B be a smooth curve, g : B → C a quasi-finite morphism,
gY : Y → X ×C B the normalization and ∆Y := g∗Y∆.

Then (Y, red Yb + ∆Y ) is lc for every b ∈ B.

Proof Pick c ∈ C and let bi ∈ B be its preimages. By the Hurwitz formula

KY + ∆Y +
∑

i red Ybi = g∗X(KX + ∆ + red Xc).

By assumption, (X,∆ + red Xc) is lc for every c ∈ C. Hence, by (11.23.3),
(Y,∆Y +

∑
i red Ybi ) is also lc. �

Lemma 2.53. Let f : X → T be a flat morphism from a normal scheme to
a 1-dimensional regular scheme T . Let S be another 1-dimensional regular
scheme and π : S → T a quasi-finite morphism. Let Y → X ×T S be the
normalization and fY : Y → S the projection. Assume that π is tamely ramified
and, for every s ∈ S , the multiplicity of every irreducible component of Xπ(s)

divides the ramification index of π at s.
Then every fiber of fY : Y → S is reduced.

Proof The claim is local, so pick points 0S ∈ S and 0T := π(0S ) ∈ T with
local parameters t ∈ OT and s ∈ OS .

We want to study how the multiplicities of the irreducible components of
the fiber over 0T change under base extension. We can focus on one such irre-
ducible component and pass to any open subset of X that is not disjoint from
the chosen component. By Noether normalization (10.51), we can think of X as
a hypersurface X ⊂ An

T defined by an equation f ∈ OT [x1, . . . , xn]. The central
fiber X0 is defined by f̄ = 0 where f̄ is the mod t reduction of f . By focusing
at a generic point of X0, after an étale coordinate change we may assume that
f̄ = xm

1 where m is the multiplicity of X0. We can thus write f = xm
1 − t · u(x, t).

Since X is normal (hence regular) at the generic point of X0, we see that u is
not identically zero along X0.

We can write π∗t = sev(s) where e is the ramification index of π at 0S and v
is a unit at 0S . Consider now the fiber product XS := X ×T S → S . It is defined
by the equation xm

1 = se · u
(
x, sev(s)

)
· v(s). Note that XS is not normal along

(s = x1 = 0) if m, e > 1.
Constructing the normalization is especially simple if e is a multiple of m.

Write e = md and set x′1 := xs−d. Then we get Y ⊂ An
S (with coordinates

x′1, x2, . . . , xn) defined by x′1
m = u

(
x′1sd, x2, . . . , xn, sev(s)

)
· v(s), and the central

fiber Y0 is defined by the equation x′1
m = u

(
0, x2, . . . , xn, 0

)
· v(0), where the

right hand side is not identically zero.
If the characteristic of k(0S ) does not divide m, then the projection Y0 →

An−1
x2,...,xn

is generically étale and Y0 is smooth at its generic points. In this case,
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Y is the normalization of XS (at least generically along Y0) and the central fiber
of Y → S has multiplicity 1. �

Aside 2.53.1. If p := char k(0S ) divides m, then Y0 → A
n−1
x2,...,xn

is inseparable. If
u
(
0, x2, . . . , xn, 0

)
is not a pth power over the algebraic closure of k(0S ), then

Y0 is geometrically integral, hence generically nonsingular. In this case, Y is
the normalization of XS and the central fiber of Y → S has multiplicity 1.

If u
(
0, x2, . . . , xn, 0

)
is a pth power, then Y0 is not generically reduced. In this

case Y need not be normal and further blow-ups may be needed to reach the
normalization. The situation is rather complicated, even for families of curves.
A weaker result is in (2.60).

At the end of the proof of (2.51) we needed to construct an slc pair from its
normalization. The following is a special case of (11.41), whose assumptions
hold by (2.15).

Lemma 2.54. Let B be a smooth curve over a field of characteristic 0 and
B◦ ⊂ B a dense open subset. Let f ◦ : (X◦,∆◦)→ B◦ be a stable morphism. Let
f̄ ◦ : (X̄◦, ∆̄◦ + D̄◦)→ B◦ be the normalization with conductor D̄◦ ⊂ X̄◦.

Assume that f̄ ◦ extends to a stable morphism f̄ :
(
X̄, ∆̄ + D̄

)
→ B.

Then f ◦ also extends to a stable morphism f : (X,∆)→ B. �

As we noted in (2.16), it is not known whether being locally stable is pre-
served by base change in positive characteristic. However, the next result shows
that this holds for all families obtained as in (2.51).

Theorem 2.55. Let h : C′ → C be a quasi-finite morphisms of regular schemes
of dimension 1 and f : X → C a proper morphism from a regular scheme X
to C whose fibers are geometrically reduced, simple normal crossing divisors.
Then X′ := X ×C C′ has canonical singularities and

⊕m≥0 f ′∗ω
⊗m
X′/C′ ' h∗⊕m≥0 f∗ω⊗m

X/C . (2.55.1)

Proof Note that (2.55.1) is just the claim that push-forward commutes with
flat base change h : C′ → C. The substantial part is the assertion that X′

has canonical singularities, hence the proj of ⊕m≥0 f ′∗ω
⊗m
X′/C′ is also the relative

canonical model of any resolution of X′.
Pick a point x ∈ X and set c = f (x). We may assume that C and C′ are the

spectra of DVRs with local parameters t and s. Thus the Henselisation of (x, X)
can be given as a hypersurface (x1 · · · xm = t) ⊂

(
0,An

C
)
, where An

C denotes the
Henselisation of An

C at (0, 0).
If h∗t = φ(s) then (x′, X′) can be given as a hypersurface

(x1 · · · xm = φ(s)) ⊂
(
0,An

C′
)
. (2.55.2)
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Thus the main claim is that the singularity defined by (2.55.2) is canonical.
If we are over a field then (2.55.3) defines a toric singularity. We check

below that although there is no torus action on the base C, we can compute
the simplest blow-ups suggested by toric geometry and everything works out
as expected.

(Note that, although the pair
(
An

k , (x1 · · · xn = 0)
)

is lc, this is not a com-
pletely toric question. We need to understand all exceptional divisors over An

k ,
not just the toric ones; see (Kollár, 2013b, 2.11).) �

Lemma 2.56. Let T be a DVR with local parameter t, residue field k and An
T

the Henselisation of An
T at (0, 0). Let m ≤ n and e be natural numbers and φ a

regular function on An
T . Set

X := X(m, n, e, φ) =
(
x1 · · · xm = te + te+1φ(x1, . . . , xn)

)
⊂

(
0,An

T
)
, (2.56.1)

and let D be the divisor (t = 0) ⊂ X. Then the pair (X,D) is log canonical and
X is canonical.

Proof If char k = 0, this immediately follows from (2.10), so the main point
is that it also holds for any DVR.

If m = 0 or e = 0 then X is empty and we are done. Otherwise we can set
x′m := xm(1 + tφ)−1 to get the simpler equation x1 · · · xm = te. For inductive
purposes we introduce a new variable s and work with

X :=
(
x1 · · · xm − se = xm+1 · · · xm+r s − t = 0

)
⊂

(
0,An+1

T
)

D := (t = 0), where 0 ≤ r ≤ n − m.
(2.56.2)

The case r = 0 corresponds to (2.56.1). We use induction on m and e.
Let E be an exceptional divisor over X and v the corresponding valuation.

Assume first that v(x1) ≥ v(s). We blow up (x1 = s = 0). In the affine chart
where x′1 := x1/s we get the new equations

x′1x2 · · · xm − se−1 = xm+1 · · · xm+r s − t = 0

defining (X′,D′). A local generator of ωX/T (D) is

1
t
·

dx2 ∧ · · · ∧ dxn

x2 · · · xm+r
, (2.56.3)

which is unchanged by pull-back.
Such operations reduce e, until we reach a situation where v(xi) < v(s) for

every i. If v(xi) = 0 for some i and i , m then xi is nonzero at the generic point
of centerX E. Thus we can set x′m := xixm and reduce the value of m. Thus
we may assume that v(xi) > 0 for i = 1, . . . ,m. Since

∑
v(xi) = e · v(s), we
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conclude that e < m. If e ≥ 2 then we may assume that v(xe) is the smallest.
Set x′i = xi/xe for i = 1, . . . , e − 1 and s′ := s/xe. We get new equations

x′1 · · · x
′
e−1xe+1 · · · xm − (s′)e = xexm+1 · · · xm+r s′ − t = 0 (2.56.4)

defining (X′,D′) and the value of m dropped. The pull-back of (2.56.3) is

1
t
·

d(xex′2) ∧ · · · ∧ d(xex′e−1) ∧ dxe ∧ · · · ∧ dxn

(xex′2) · · · (xex′e−1)xe · · · xm+r

=
1
t
·

dx′2 ∧ · · · dx′e−1 ∧ dxe ∧ · · · ∧ dxn

x′2 · · · x
′
e−1xe · · · xm+r

,

(2.56.5)

which is again a local generator of ωX′/T (D′).
Eventually we reach the situation where e = 1. We can now eliminate s and,

after setting r + m 7→ m, rewrite the system as

X :=
(
x1 · · · xm = t

)
⊂

(
0,An

T
)

D := (t = 0).
(2.56.6)

Now X is regular, this case was treated in (Kollár, 2013b, 2.11). �

We discuss a collection of other results about extending 1-parameter families
of varieties or pairs. These can be useful in many situations.

2.57 (Extending a stable family without base change). Let C be a smooth
curve over a field of characteristic 0, C◦ ⊂ C an open and dense subscheme,
and f ◦ : (X◦,∆◦) → C◦ a stable morphism. Here we consider the question of
how to extend f ◦ to a proper morphism f : X → C in a ‘nice’ way without a
base change. For simplicity assume that X◦ is normal.

We can take any extension of f ◦ to a proper morphism f1 : X1 → C, then
take a log resolution of (X2,∆2)→ (X1,∆1) and finally the canonical model of
(X2,∆2) using (11.28). We have proved:

Claim 2.57.1. There is a unique extension f : (X,∆)→ C such that (X,∆) is lc
and KX + ∆ is f -ample. �

This model has the problem that its fibers over C \C◦ =: {c1, . . . , cr} can be
pretty complicated. A slight twist improves the fibers considerably. Instead of
starting with the above (X1,∆1), we take a log resolution

(
X2,∆2+

∑
red X2,ci

)
of(

X1,∆1 +
∑

red X1,ci

)
and its canonical model over C. We need to apply (11.28)

to
(
X2,∆2 +

∑
red X2,ci − ε

∑
X2,ci

)
and use (11.28.2) to obtain the following.

Claim 2.57.2. There is a unique extension f : (X,∆) → C such that (X,∆ +∑
red Xci ) is lc and KX + ∆ +

∑
red Xci is f -ample. By adjunction, in this case(

red Xci ,Diff ∆
)

is slc. �
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A variant of this starts with any extension (X1,∆1) and then takes a dlt mod-
ification of (X1,∆1 +

∑
red X1,ci ) as in (Kollár, 2013b, 1.36).

Claim 2.57.3. There is a dlt modification (Y◦,∆◦Y )→ (X◦,∆◦) and an extension
of it to g : (Y,∆Y )→ C such that (Y,∆ +

∑
red Yci ) is dlt. �

Taking a minimal model of g : (Y,∆Y +
∑

red Yci )→ C yields another useful
version.

Claim 2.57.4. There is a dlt modification (Y◦,∆◦Y )→ (X◦,∆◦) and an extension
of it to g : (X,∆X) → C such that (X,∆X +

∑
red Xci ) is dlt and KX + ∆X +∑

red Xci is f -nef. �

Finally, if we are willing to change X◦ drastically, (Kollár, 2013b, 10.46)
gives the following.

Claim 2.57.5. There is a log resolution (Y◦,∆◦Y ) → (X◦,∆◦) and an extension
of it to g : (Y,∆Y )→ C such that (Y,∆Y + red Yc) is snc for every c ∈ C. �

Let us also mention the following very strong variant of (2.57.5), tradition-
ally called the ‘semistable reduction theorem.’ We do not use it, and one of the
points of our proof of (2.51) was to show that the much easier (2.52) and (2.53)
are enough for our purposes.

Theorem 2.58. Kempf et al. (1973) Let C be a smooth curve over a field of
characteristic 0, f : X → C a flat morphism of finite type and D a divisor on
X. Then there is a smooth curve B, a finite surjection π : B → C and a log
resolution g : Y → X ×C B such that for every b ∈ B,
(2.58.1) g−1

∗ (D ×C B) + Ex(g) + Yb is an snc divisor and
(2.58.2) Yb is reduced. �

The positive or mixed characteristic analogs of (2.58) are not known, but the
following result on ‘semi-stable alterations’ holds in general.

Theorem 2.59. de Jong (1996) Let T be a 1-dimensional regular scheme and
f : X → T a flat morphism of finite type whose generic fiber is geometrically
reduced. Then there is a 1-dimensional regular scheme S , a finite surjection
π : S → T and a generically finite, separable, proper morphism g : Y → X×T S
such that Ys is a reduced snc divisor for every s ∈ S . �

The following variant of (2.53) is an easy consequence of (2.59).

Corollary 2.60. Let f : X → T be a flat morphism of finite type from a pure
dimensional scheme to a 1-dimensional regular scheme T . Then there is a 1-
dimensional regular scheme S and a finite morphism π : S → T such that
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every fiber of the projection of the normalization X ×T S → S is generically
reduced. �

2.5 Cohomology of the structure sheaf

In studying moduli questions, it is very useful to know that certain numerical
invariants are locally constant. In this section we study the deformation invari-
ance of (the dimension of) certain cohomology groups. The key to this is the
Du Bois property of slc pairs. The definition of Du Bois singularities is rather
complicated, but fortunately for our applications we need to know only the
following two facts.

2.61 (Properties of Du Bois singularities). Let M be a complex analytic variety.
Since constant functions are analytic, there is an injection of sheaves CM ↪→

Oan
M . Taking cohomologies we get

Hi(M,C)→ Hi(M,Oan
M
)
.

If X is projective over C and Xan is the corresponding analytic variety, then, by
the GAGA theorems of Serre (1955–1956), Hi(Xan,Oan

X
)
' Hi(X,OX).

If X is also smooth, Hodge theory tells us that

Hi(Xan,C)→ Hi(Xan,Oan
X ) ' Hi(X,OX)

is surjective. Du Bois singularities were essentially defined to preserve this sur-
jectivity, see Du Bois (1981); Steenbrink (1983). (There does not seem to be a
good definition of Du Bois singularities in positive characteristic; see however
Kollár and Kovács (2020).) Thus we have the following.

Property 2.61.1. Du Bois (1981) Let X be a proper variety over Cwith Du Bois
singularities. Then the natural maps

Hi(Xan,C
)
→ Hi(Xan,Oan

X
)
' Hi(X,OX) are surjective. �

Next we need to know which singularities are Du Bois. Over a field of char-
acteristic 0, rational singularities are Du Bois; see (Kollár, 1995b, 12.9) and
Kovács (1999), but for our applications the key result is the following.

Property 2.61.2. Kollár and Kovács (2010, 2020) Let (X,∆) be an slc pair over
C. Then X has Du Bois singularities. �

These are the only facts we need to know about Du Bois singularities.
The main use of (2.61.1) is through the following base-change theorem, due

to Du Bois and Jarraud (1974); Du Bois (1981).



106 One-parameter families

Theorem 2.62. Let S be a Noetherian scheme over a field of characteristic 0
and f : X → S a flat, proper morphism. Assume that the fiber Xs is Du Bois
for some s ∈ S . Then there is an open s ∈ S ◦ ⊂ S such that, for all i,
(2.62.1) Ri f∗OX is locally free and commutes with base change over S ◦, and
(2.62.2) s 7→ hi(Xs,OXs

)
is a locally constant function on S ◦.

Proof By Cohomology and Base Change, the theorem is equivalent to prov-
ing that the restriction maps

φi
s : Ri f∗OX → Hi(Xs,OXs

)
(2.62.3)

are surjective for every i. By the Theorem on Formal Functions, it is enough to
prove this when S is replaced by any Artinian local scheme S n, whose closed
point is s.

Thus assume from now on that we have a flat, proper morphism fn : Xn →

S n, s ∈ S n is the only closed point and Xs is Du Bois. Then H0(S n,Ri f∗OX
)

=

Hi(Xn,OXn

)
, hence we can identify the φi

s with the maps

ψi : Hi(Xn,OXn

)
→ Hi(Xs,OXs

)
. (2.62.4)

By the Lefschetz principle we may assume that k(s) ' C. Then both sides of
(2.62.4) are unchanged if we replace Xn by the corresponding analytic space
Xan

n . Let CXn (resp. CXs ) denote the sheaf of locally constant functions on Xn

(resp. Xs) and jn : CXn → OXn (resp. js : CXs → OXs ) the natural inclusions.
We have a commutative diagram

Hi(Xn,CXn

) αi
//

jin
��

Hi(Xs,CXs

)
jis
��

Hi(Xn,OXn

) ψi
// Hi(Xs,OXs

)
.

Note that αi is an isomorphism since the inclusion Xs ↪→ Xn is a homeomor-
phism, and jis is surjective since Xs is Du Bois. Thus ψi is also surjective. �

Complement 2.62.5. The above proof also works if f : X → S is a flat,
proper morphism of complex analytic spaces and Xs is an algebraic space with
Du Bois singularities.

Definition 2.63. A scheme Y is said to be potentially slc or slc-type if, for
every y ∈ Y , there is an effective R-divisor ∆y on Y such that (Y,∆y) is slc at y.

Let f : X → S be a flat morphism. We say that f has potentially slc fibers
over closed points if the fiber Xs is potentially slc for every closed point s ∈ S .

One can similarly define the notion potentially klt, and so on.
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In our final applications, the ∆s usually come as the restriction of a global
divisor ∆ to Xs, but we do not assume this.

If (Xs,∆s) is semi-log-canonical then Xs is Du Bois by (2.61.2), hence (2.62)
implies the following.

Corollary 2.64. Let S be a Noetherian scheme over a field of characteristic
0, and f : X → S a proper and flat morphism with potentially slc fibers over
closed points. Then, for all i,
(2.64.1) Ri f∗OX is locally free and compatible with base change, and
(2.64.2) if S is connected, then hi(Xs,OXs

)
is independent of s ∈ S . �

We can derive similar results for other line bundles from (2.64). A line bun-
dle L on X is called f -semi-ample if there is an m > 0 such that Lm is f -
generated by global sections. That is, the natural map f ∗

(
f∗(Lm)

)
→ Lm is

surjective. Equivalently, Lm is the pull-back of a relatively ample line bundle
by a suitable morphism X → Y .

Corollary 2.65. Let S be a Noetherian, connected scheme over a field of char-
acteristic 0 and f : X → S a proper and flat morphism with potentially slc
fibers over closed points. Let L be an f -semi-ample line bundle on X. Then
(2.65.1) Ri f∗

(
L−1) is locally free and compatible with base change, and

(2.65.2) hi(Xs, L−1
Xs

)
is independent of s ∈ S for all i.

Proof The question is local on S , thus we may assume that S is local with
closed point s. Chose m > 0 such that Lm is f -generated by global sections.
Since S is local, Lm is generated by global sections. By (2.13), there is a finite
morphism π : Y → X such that π∗OY = ⊕m−1

r=0 L−r and f ◦π :
(
Y, π−1∆

)
→ S also

has potentially slc fiber over s. Thus, by (2.64),

Ri( f ◦ π)∗OY = ⊕m−1
r=0 Ri f∗

(
L−r)

is locally free and compatible with arbitrary base change. Thus the same holds
for every summand. �

Warning 2.65.4. Note that we assume that L is f -semi-ample, not only that L is
semi-ample on fibers over closed points. The Poincaré bundle on E × Ê0 → Ê0

shows that the latter is not enough, where E is an elliptic curve and Ê0 is the
localization of its dual at 0 = [OE].

Corollary 2.66. Kollár and Kovács (2010, 2020) Let S be a Noetherian, con-
nected scheme over a field of characteristic 0 and f : X → S a proper, flat
morphism of finite type. Assume that all fibers are potentially slc and Xs is CM
for some s ∈ S . Then all fibers of f are CM.
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For an arbitrary flat morphisms π : X → S , the set of points x ∈ X such that
the fiber Xπ(x) is CM at x is open (10.11), but usually not closed. (Many such
examples can be constructed using (Kollár, 2013b, 3.9–11).) If π is proper, then
the set

{
s ∈ S : Xs is CM

}
is open in S (10.12). Thus the key point of (2.66) is

to show that, in our case, this set is also closed.
More generally, under the assumptions of (2.66), if one fiber of f is S k

(10.3.2) for some k, then all fibers of f are S k, see Kollár and Kovács (2020).

Proof We prove the projective case; see Kollár and Kovács (2020) for the
proper one.

Let L be an f -ample line bundle on X. If Xs is CM for some s ∈ S , then, by
(Kollár and Mori, 1998, 5.72), Hi(Xs, L−r

Xs

)
= 0 for r � 1 and i < dim Xs. Thus

by (2.65), the same vanishing holds for every s ∈ S . Hence, using (Kollár and
Mori, 1998, 5.72) again, we conclude that Xs is CM for every s ∈ S . �

Theorem 2.67. Kollár and Kovács (2010, 2020) Let S be a Noetherian scheme
over a field of characteristic 0 and f : X → S a flat morphism of finite type
with potentially slc fibers over closed points. Then ωX/S is
(2.67.1) flat over S with S 2 fibers, and
(2.67.2) compatible with base change. That is, for any g : T → S , the natural

map g∗XωX/S → ωXT /T is an isomorphism, where gX : XT := X ×S T → X
is the first projection.

We give a detailed proof of the projective case below; this is sufficient for
almost all applications in this book. For the general case we refer to Kollár and
Kovács (2020).

The existence of ωX/S is easy and, as we see in (2.68.1–3), it holds under
rather weak restrictions. Compatibility with base change is not automatic; see
Patakfalvi (2013) and (2.45) for some examples.

As we explain in (2.68.4–5), once the definition of ωX/S is set up right,
(2.67.2) and the flatness claim in (2.67.1) become easy consequences of (2.65).
Once these hold, the fiber of ωX/S over s ∈ S is ωXs ; and the latter is S 2 as in
(Kollár and Mori, 1998, 5.69).

2.68 (The relative dualizing sheaf II). The best way to define the relative dual-
izing sheaf is via general duality theory as in Hartshorne (1966); Conrad (2000)
or (Stacks, 2022, Tag 0DWE); see also (11.2). It is, however, worthwhile to ob-
serve that a slight modification of the treatment in Hartshorne (1977) gives the
relative dualizing sheaf in the following cases.

Assumptions. S is an arbitrary Noetherian scheme and f : X → S a projective
morphism of pure relative dimension n (2.71). (We do not assume flatness.)

https://stacks.math.columbia.edu/tag/0DWE
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2.68.1 (Weak duality for Pn
S ). Let P = Pn

S with projection g : P → S and set
ωP/S := ∧nΩP/S .

The proof of (Hartshorne, 1977, III.7.1 or III.Exc.8.4) shows that there is
a natural isomorphism, called the trace map, t : Rng∗ωP/S ' OS and, for any
coherent sheaf F on X, there is a natural isomorphism

g∗HomP
(
F, ωP/S

)
' HomS

(
Rng∗F,OS

)
.

Note that if S is a point then g∗HomP = HomP, thus we recover the usual
formulation of (Hartshorne, 1977, III.7.1).

2.68.2 (Construction of ωX/S ). Let f : X → S be a projective morphism of
pure relative dimension n. We construct ωX/S first locally over S . Once we
establish weak duality, the proof of (Hartshorne, 1977, III.7.2) shows that a
relative dualizing sheaf is unique up to unique isomorphism, hence the local
pieces glue together to produce ωX/S . Working locally over S , we can assume
that there is a finite morphism π : X → P = Pn

S . Set

ωX/S := HomP
(
π∗OX , ωP/S

)
.

If f is flat with CM fibers over S then π∗OX is locally free and so is π∗ωX/S .
ThusωX/S is also flat over S with CM fibers and it commutes with base change.
We discuss a local version of this in (2.68.7).

2.68.3 (Weak duality for X/S ). Let f : X → S be a projective morphism of
pure relative dimension n (2.71). Use (Hartshorne, 1977, Exc.III.6.10) to show
that there is a trace map t : Rn f∗ωX/S → OS , and for any coherent sheaf F on
X there is a natural isomorphism

f∗HomX
(
F, ωX/S

)
' HomS

(
Rn f∗F,OS

)
.

If F is locally free, this is equivalent to the isomorphism

f∗
(
ωX/S ⊗ F−1) ' HomS

(
Rn f∗F,OS

)
.

(Note that M 7→ HomS (M,OS ) is a duality for locally free, coherent OS -
sheaves, but not for all coherent sheaves. In particular, the torsion in Rn f∗F
is invisible on the left hand side f∗

(
ωX/S ⊗ F−1).)

2.68.4 (Flatness of ωX/S ). Let L be relatively ample on X/S . By (3.20) ωX/S is
flat over S iff f∗

(
ωX/S ⊗ Lm)

is locally free for m � 1. If this holds then ωX/S

is the coherent OX-sheaf associated to ⊕m≥m0 f∗
(
ωX/S ⊗ Lm)

, as a module over
the OS -algebra

∑
m≥0 f∗

(
Lm)

.
Applying weak duality with F = L−m, we see that these hold if Rn f∗

(
L−m)

is
locally free for m � 1. The latter is satisfied in two important cases.
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(a) f : X → S is flat with CM fibers. Then Ri f∗
(
L−m)

= 0 for i < n and m �
1, hence Rn f∗

(
L−m)

is locally free of rank (−1)nχ
(
Xs, L−m

s
)

for m � 1.
(b) f : X → S is flat with potentially slc fibers. Then Rn f∗

(
L−m)

is locally
free for m ≥ 0 by (2.65).

2.68.5 (Base change properties of ωX/S ). Let f : X → S be a projective mor-
phism of pure relative dimension n and L relatively ample. We claim that the
following are equivalent.

(a) ωX/S commutes with base change as in (2.67.2).
(b) Rn f∗

(
L−m)

is locally free for m � 0.
By (2.68.3–4) ωX/S commutes with base change iff HomS

(
Rn f∗

(
L−m)

,OS
)

is locally free and commutes with base change for m � 0. Finally show that a
coherent sheaf M is locally free iffHomS

(
M,OS

)
is locally free and commutes

with base change.

2.68.6 (Warning on general duality). If F is locally free, then we get

Ri f∗
(
ωX/S ⊗ F−1) × Rn−i f∗

(
F
)
→ Rn f∗ωX/S → OS ,

but this is not a perfect pairing, unless both sheaves on the left are locally free
and commute with base change.

2.68.7 (More on the CM case). Let f : X → S be a projective morphism of
pure relative dimension n. We already noted in (2.68.2) that if f is flat with
CM fibers over S , then the same holds for ωX/S . We consider what happens if
f is not everywhere CM. By (10.11) there is a largest open subset Xcm ⊂ X
such that f |Xcm is flat with CM fibers. Assume for simplicity that Xs ∩ Xcm is
dense in Xs and s ∈ S is local. Then, for every x ∈ Xs ∩ Xcm one can choose
a finite morphism π : X → P = Pn

S such that π−1(π(x)
)
⊂ Xcm. Thus π∗OX is

locally free at π(x) and so is π∗ωX/S . Thus we have proved that the restriction
of ωX/S to Xcm is flat over S with CM fibers and commutes with base change.

This is actually true for all finite type morphisms, one just needs to find a
local analog of the projection π (see Section 10.6) and show that (2.68.2.a)
holds if π is finite; see Conrad (2000) for details.

Corollary 2.69. Let S be a connected, Noetherian scheme over a field of char-
acteristic 0 and f : X → S a proper and flat morphism with potentially slc
fibers over closed points. Let L be an f -semi-ample line bundle on X. Then
(2.69.1) Ri f∗

(
ωX/S ⊗ L

)
is locally free and compatible with base change, and

(2.69.2) hi(Xs, ωXs ⊗ Ls
)

is independent of s ∈ S for all i.
In particular, for L = OX we get that
(2.69.3) Ri f∗ωX/S is locally free and compatible with base change, and
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(2.69.4) hi(Xs, ωXs

)
is independent of s ∈ S for all i.

If the fibers Xs are CM, then Hi(Xs, ωXs ⊗ Ls
)

is dual to Hn−i(Xs, L−1
s

)
, so

(2.69) follows from (2.65). If the fibers Xs are not CM, the relationship between
(2.69) and (2.65) is not so clear. See (8.16) for a more general version.

Proof Let us start with the case i = 0. By weak duality (2.68.3),

f∗
(
ωX/S ⊗ L

)
' HomS

(
Rn f∗

(
L−1),OS

)
,

where n = dim(X/S ). By (2.65), Rn f∗
(
L−1) is locally free and compatible with

base change, hence so is f∗
(
ωX/S ⊗ L

)
. Thus (2.69.1) holds for i = 0. Next we

use this and induction on n to get the i > 0 cases.
Choose M very ample on X such that Ri f∗

(
ωX/S ⊗ L ⊗M

)
= 0 for i > 0, and

this also holds after any base change. Working locally on S , as in the proof of
(2.65), let H ⊂ X be a general member of |M| such that H → S is also flat with
potentially slc fibers (2.13). The push-forward of the sequence

0→ ωX/S ⊗ L→ ωX/S ⊗ L ⊗ M → ωH/S ⊗ L→ 0

gives isomorphisms

Ri f∗
(
ωX/S ⊗ L

)
' Ri−1 f∗

(
ωH/S ⊗ L

)
for i ≥ 2.

Using induction, these imply that (2.69.1) holds for i ≥ 2.
The beginning of the push-forward is an exact sequence

0→ f∗
(
ωX/S ⊗L

)
→ f∗

(
ωX/S ⊗L⊗M

)
→ f∗

(
ωH/S ⊗L

)
→ R1 f∗

(
ωX/S ⊗L

)
→ 0.

We already proved that the first 3 terms are locally free. In general, this does
not imply that the last term is locally free, but this implication holds if S is the
spectrum of an Artinian ring (2.70).

In general, pick any point s ∈ S with maximal ideal sheaf ms. Set An :=
Os,S /mn

s and Xn := Spec
(
OX/ f ∗mn

s
)
. Then H1(Xn,

(
ωX/S ⊗ L

)
|Xn

)
is a free An-

module by the above considerations, and the restriction maps

H1(Xn,
(
ωX/S ⊗ L

)
|Xn

)
⊗An k(s)→ H1(Xs, ωXs ⊗ Ls

)
are isomorphisms. By the Theorem on Formal Functions, this implies that
R1 f∗

(
ωX/S ⊗ L

)
is locally free and commutes with base change. �

2.70. Let (A,m) be a local Artinian ring. Let F be a free A-module and j : A ↪→

F an injection. We claim that j(A) is a direct summand of F. Indeed, let r ≥ 1
be the smallest natural number such that mrA = 0. Note that mr−1m = 0. If
j(A) ⊂ mF then mr−1A = 0, a contradiction. Thus j(A) is a direct summand of
F. By induction this shows that any injection between free A-modules is split.
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This also implies that if 0 → M1 → · · · → Mn → 0 is an exact sequence of
A-modules and all but one of them are free, then they are all free.

2.71 (Pure dimensional morphisms). A finite type morphism f : X → S is
said to have pure relative dimension n if, for every integral scheme T and every
h : T → S , every irreducible component of X ×S T has dimension dim T + n.
We also say that f is pure dimensional if it is pure of relative dimension n for
some n. It is enough to check this property for all cases when T is the spectrum
of a DVR.

Applying the definition when T is a point shows that if f has pure relative
dimension n, then every fiber of f has pure dimension n, but the converse
does not always hold. For instance, let C be a curve and π : C̄ → C the
normalization. If C is nodal then π does not have pure relative dimension 0
since C̄ ×C C̄ contains 2 isolated points. However, the converse does hold in
several important cases.

Claim 2.71.1. Let f : X → S be a finite type morphism whose fibers have pure
dimension n. Then f has pure relative dimension n iff it is universally open.
Thus both properties hold if f is flat.

Proof Both properties can be checked after base change to spectra of DVRs.
In the latter case the equivalence is clear and flatness implies both. �

2.71.2 (Chevalley’s criterion). (Grothendieck, 1960, IV.14.4.1) Let f : X →
S be a finite type morphism whose fibers have pure dimension n. Assume
that S is normal (or geometrically unibranch) and X is irreducible. Then f is
universally open.

Proof By an easy limit argument, it is enough to check openness after base
change for finite type, affine morphisms S ′ → S ; see (Grothendieck, 1960,
IV.8.10.1). We may thus assume that S ′ ⊂ An

S for some n. The restriction of
an open morphism to the preimage of a closed subset is also open, thus it is
enough to show that the natural morphism f (n) : An

Y → A
n
S is open for every

n. If S is normal then so is An
S , thus it is enough to show that all maps as in

(2.71.2) are open.
To see openness, let U ⊂ X be an open set and x ∈ U a closed point.

We need to show that f (U) contains an open neighborhood of s := f (x). Let
x ∈ W ⊂ X be an irreducible component of a complete intersection of n Cartier
divisors such that x is an isolated point of W ∩ Xs. It is enough to prove that
f (U ∩ W) contains an open neighborhood of s. After extending W → S to
a proper morphism and Stein factorization, we are reduced to showing that
(2.71.2) holds for finite morphisms.
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Since f (U) is constructible, it is open iff it is closed under generalization.
The latter holds by the going-down theorem. �

2.6 Families of divisors I
We saw in (2.67) that for locally stable morphisms g : (X,∆)→ C, the relative
dualizing sheaf ωX/C commutes with base change. We also saw in (2.44) that
its powers ω[m]

X/C usually do not commute with base change. Here we consider
this question for a general divisor D: What does it mean to restrict a divisor D
on X to a fiber Xc? How are the two sheaves OX(D)|Xc and OXc

(
D|Xc

)
related?

2.72 (Comments on Serre’s conditions). For the definition of S m, see (10.3) or
(Stacks, 2022, Tag 033P). The following variant will be useful for us.

Let X be a scheme, Z ⊂ X a closed subset and F a coherent sheaf on X. We
say that F is S m along Z if (10.3.2) holds whenever x ∈ Z.

The following is the key example for us. Let T be a regular 1-dimensional
scheme, f : X → T a proper morphism and F a coherent sheaf on X, flat over
T . Assume that every fiber Ft is S m. If x ∈ X is contained in a closed fiber, then
depthx F ≥ min{m+1, codim(x,Supp F)}, but for points in the generic fiber we
can only guarantee that depthx F ≥ min{m, codim(x,Supp F)}. Thus F is not
S m+1, but it is S m+1 along closed fibers.

2.73 (One-parameter families of divisors). Let T be a regular, 1-dimensional
scheme and f : X → T a flat, proper morphism. For simplicity assume for
now that X is normal. Let D be an effective Weil divisor on X. Under what
conditions can we view D as giving a ‘reasonable’ family of Weil divisors on
the fibers of f ?

We can view D as a subscheme of X and, if Supp D does not contain any
irreducible component of any fiber Xt, then f |D : D → T is flat, hence the
fibers D|Xt form a flat family of subschemes of the fibers Xt. The D|Xt may have
embedded points, ignoring them gives a well-defined effective Weil divisor on
the fiber Xt. We will eventually denote it by Dt, but use Ddiv

t or the more precise
D|div

Xt
if we want to emphasize its construction; see also (2.77).

Understanding the difference between the subscheme D|Xt and the divisor
Ddiv

t is the key to dealing with many issues. As a rule of thumb, D defines a
‘nice’ family of divisors iff Ddiv

t = D|Xt for every t ∈ T .
It can happen that D ∩ Xt is contained in Sing Xt for some t. These are the

cases when the correspondence between Weil divisors and rank 1 reflexive
sheaves breaks down. Fortunately, this does not happen for locally stable fam-
ilies. Thus we can focus on the cases when D is a relative Mumford divisor
(p.11).

It is now time to drop the normality assumption and work with divisorial

https://stacks.math.columbia.edu/tag/033P
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subschemes (4.16.2) in one of the following general settings. (Further general-
izations will be considered in Sections 5.4 and 9.3.) We start with the absolute
version.
(1.a) X is a pure dimensional, reduced scheme and H ⊂ X a Cartier divisor.
Assume that H is S 2, equivalently, X is S 3 along H (2.72).

(1.b) There is a closed subscheme Z ⊂ X such that D|X\Z is a Cartier divisor
and codimH

(
H ∩ Z

)
≥ 2.

(1.c) D is a Mumford divisor along H, that is, Supp D does not contain any
irreducible component of H, and H is regular at generic points of H ∩ D; see
(4.16.4).

In the relative version, we assume the following.
(2.a) T is a regular, 1-dimensional, irreducible scheme and f : X → T is a flat,
pure dimensional morphism whose fibers are reduced and S 2.

(2.b) There is a closed subscheme Z ⊂ X such that D|X\Z is a Cartier divisor
and codimXt

(
Xt ∩ Z

)
≥ 2 for every t ∈ T .

(2.c) D is a relative Mumford divisor (4.68).
Under these conditions, the divisorial restriction Ddiv

H (resp. Ddiv
t ) is defined as

the unique divisorial subscheme (4.16.2) on H (resp. Xt) that agrees with the
restriction of the Cartier divisor D|X\Z to H \ Z (resp. Xt \ Z).

Proposition 2.74. Notation and assumptions as in (2.73.1.a–c). The following
conditions are equivalent.
(2.74.1) OX(−D) is S 3 along H ∩ Z.
(2.74.2) OX(−D) is S 3 along H.
(2.74.3) The restriction map rH : OX(−D)|H → OH

(
−Ddiv

H
)

is an isomorphism.
(2.74.4) The following sequence is exact

0→ OX(−D − H)→ OX(−D)→ OH
(
−Ddiv

H
)
→ 0.

If D is effective, these are further equivalent to:
(2.74.5) OD has depth ≥ 2 at every point of H ∩ Z.
(2.74.6) OD is S 2 along H.
(2.74.7) D ∩ H = Ddiv

H (as schemes).

Proof Since we assume that X is S 3 along H, (2) and (6) hold outside Z, Thus
(1)⇔ (2) and (5)⇔ (6).

Since OX(−D) is S 2, rH is an injection and an isomorphism outside Z. Since
OH

(
−Ddiv

H
)

is S 2 by definition, it is the S 2-hull of OX(−D)|H; see (9.3.4). Thus
rH is surjective ⇔ rH is an isomorphism ⇔ OX(−D)|H is S 2. This proves (2)
⇔ (3) while (3)⇔ (4) is clear.
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Since OX has depth ≥ 3 at codimension ≥ 2 points of H, the sequence

0→ OX(−D)→ OX → OD → 0,

and an easy lemma (10.28) show that (5)⇔ (1).
Let s be a local equation of H. Then s is not a zero divisor on OD and

OD∩H = OD/(s). Thus (6)⇔ (7). �

Proposition 2.75 (Relative version). Using the notation and assumptions of
(2.73.2.a–c), let 0 ∈ T be a closed point and g ∈ T the generic point.
(2.75.1) The conditions (2.74.1–7) are equivalent for H = X0.
If f is projective and L is f -ample, then these are also equivalent to:
(2.75.2) χ

(
X0, Lm

0 (−Ddiv
0 )

)
= χ

(
Xg, Lm

g (−Dg)
)

for all m ∈ Z.
If dim(X0 ∩ Z) = 0, then these are further equivalent to:
(2.75.3) χ

(
X0,OX0 (−Ddiv

0 )
)

= χ
(
Xg,OXg

(
−Dg

))
.

Proof The first claim follows from (2.74). If f is projective and OX(−D) is
flat over T , then

χ
(
Xg, Lm

g (−Dg)
)

= χ
(
X0, Lm(−D)|X0

)
.

Hence the difference of the two sides in (2) is χ
(
X0, Lm

0 ⊗ Q
)
, where Q is the

cokernel of r0 : OX(−D)|X0 → OX0

(
−Ddiv

0
)
. Thus Q = 0 iff equality holds in

(2). If dim(X0 ∩ Z) = 0 then Q has 0-dimensional support, thus

χ
(
X0, Lm

0 ⊗ Q
)

= χ(X0,Q) = H0(X0,Q),

so, in this case, (2) is equivalent to (3). �

Note that (2.75) shows that one can go rather freely between effective di-
visors and their ideal sheaves when studying restrictions. Much of the above
results on ideal sheaves generalize to arbitrary sheaves; these are worked out
in Sections 5.4 and 9.3.

The conditions (2.75) are all preserved by linear equivalence. However, they
are not preserved by sums of divisors.

Example 2.76. Consider a family of smooth quadrics Q ⊂ P3 × A1 degen-
erating to the quadric cone Q0. Take four families of lines Li,Mi such that
L1

0, L
2
0,M

1
0 ,M

2
0 are 4 distinct lines in Q0, L1

c , L2
c are in one family of lines on

Qc and M1
c , M2

c are in the other family for c , 0. Note that(
Q, 1

2 (L1 + L2 + M1 + M2)
)
→ A1

is a locally stable family.
Each of the 4 families of lines Li,Mi is a flat family of Weil divisors.
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For pairs of lines, flatness is more complicated. L1 + L2 is not a flat family
(the flat limit has an embedded point at the vertex), but Li + M j is a flat family
for every i, j. The union of any 3 of them, for instance L1 + L2 + M1 is again a
flat family, and so is L1 + L2 + M1 + M2.

Notation 2.77. Let C be a regular, 1-dimensional scheme and f : X → C a
flat, pure dimensional morphism with reduced, S 2 fibers. Let ∆ be a relative
Mumford R-divisor (4.68). From now on we use ∆c to denote the divisorial
fiber (instead of ∆div

c or ∆|div
Xc

as in (2.73)).
Thus the fiber of a pair (X,∆) over c ∈ C is denoted by (Xc,∆c).
This notation is harmless forR-divisors, but there is a potential for confusion

when used for prime divisors. Then we use the longer D|Xc for the scheme
theoretic fiber and Ddiv

c or D|div
Xc

for the divisor theoretic fiber.

2.78. The main source of divisors D and divisorial sheaves OX(D) that satisfy
the equivalent conditions of (2.75) is (11.20).

Let (X,∆) be an slc pair. The conditions of (2.75) are local on X, we can thus
assume that KX + ∆ ∼R 0. Then

mKX + bm∆c + {m∆} ∼R 0 (2.78.1)

for any m ∈ Z. If ∆ =
∑

aiDi and {mai} ≤ ai for every i, then {m∆} ≤ ∆, hence
−mKX − bm∆c satisfies the assumptions of (11.20).

Furthermore, if B ≤ b∆c is an effective Z-divisor, then we can also work with(
mKX + bm∆c − B

)
+

(
{m∆} + B

)
∼R 0. (2.78.2)

If a1 + a2 = 1 and the ai are irrational, then {ma1} ≤ a1 and {ma2} ≤ a2 hold
only for m = 0, but (2.78.2) can be useful, relying on (11.50).

However, the numerical conditions {mai} ≤ ai hold in many other cases;
we list some of them in (2.79). These results are generalized to reduced base
schemes in (4.33). They influence the definition of various moduli theories in
Chapters 6 and 8.

Proposition 2.79. Let f : (X,∆ =
∑

aiDi) → C be a locally stable morphism
to a smooth curve over a field of characteristic 0 and c ∈ C a closed point. Let
D be a relative Mumford Z-divisor (4.68). Then

OX(D)|Xc ' OXc (Dc) := OXc

(
Ddiv

c
)

(∗)

in any of the following cases.
(2.79.1) D is Q-Cartier.
(2.79.2) ∆ = 0 and D ∼Q mKX/C for any m ∈ Z.
(2.79.3) m∆ is a Z-divisor and D ∼Q mKX/C + m∆.
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(2.79.4) m∆ is a Z-divisor and D ∼Q (m + 1)KX/C + m∆.
(2.79.5) ∆ =

∑(
1 − 1

ri

)
Di for some ri ∈ N, and D ∼Q mKX/C + bm∆c for any

m ∈ Z.
(2.79.6) ∆ =

∑
ciDi, D ∼Q mKX/C + bm∆c and 1 − 1

m ≤ ci ≤ 1 for every i.
(2.79.7) The set {m ∈ N : (∗) holds for D ∼Q mKX/C +

∑
bmaicDi} has positive

density.
(2.79.8) In (1–6) we may replaced D by D− B for any effective relative Mum-

ford Z-divisor B ≤ b∆c.

Proof Let D be a Weil divisor on X as in (2.73.2–4). Assume that there is an
effective R-divisor ∆′ ≤ ∆ and an R-Cartier R-divisor L such that D ∼R ∆′ + L.
Then OX(−D) satisfies the equivalent conditions of (2.75) by (11.20).

For (1) we can use ∆′ = L = 0, in cases (1–3) we can take ∆′ = 0 and
L := −m

(
KX/C +∆

)
and in case (4) we use ∆′ = ∆ and L := −(m+1)

(
KX/C +∆

)
.

For (5–6) we employ ∆′ = m∆−bm∆c and L := −m
(
KX/C +∆

)
. The assump-

tions on the coefficients of ∆ ensure that ∆′ ≤ ∆. (Note that if m∆ − bm∆c ≤ ∆

for every m then in fact every coefficient of ∆ is of the form 1 − 1
r for some

r ∈ N.) Claim (7) follows from (11.50).
Finally, if B ≤ b∆c then {m∆} + B ≤ ∆, giving (8). �

These results are close to being optimal. For instance, under the assumptions
of (2.79.3), if n is different from m and m + 1 then the two sheaves(

ω[n]
X/C(mD)

)∣∣∣
Xc

and ω[n]
Xc

(
mD|Xc

)
are frequently different, see (2.41.3). In general, as shown by (2.44), even the
two sheaves

(
ω[m]

X/C
)∣∣∣

Xc
and ω[m]

Xc
can be different if ∆ , 0. However, a consider-

able generalization of the cases (2.79.5–6) is proved in Section 2.7.

2.7 Boundary with coefficients > 1
2

Consider a locally stable morphism f : (X,∆ =
∑

aiDi)→ C to a smooth curve
C. It is very tempting to think of each fiber

(
Xc,∆c

)
as a compound object(

Xc,Di
c : i ∈ I, ai : i ∈ I

)
consisting of the scheme Xc, the divisors Di

c, and their
coefficients ai. Two questions muddy up this simple picture.
• Different Di

c may have an irreducible component Ec in common. The def-
inition of a pair treats Ec as a divisor with coefficient

∑
i∈I coeffEc Di

c. The
individual Di

c do not seem to be part of the data any more.
• Should we just ignore the embedded points of Xc ∩ Di?

One could hope that the first is just a matter of bookkeeping, but this does
not seem to be the case, as shown by the examples (2.76) and (2.41). In both
cases the coefficients in ∆ were ≤ 1

2 .



118 One-parameter families

The aim of this section is to show that these examples were optimal; these
complications do not occur if the coefficients in ∆ are all > 1

2 . We start with
the case when the coefficients are 1.

Given a locally stable map f : (X,∆) → C, usually the lc centers of the
fibers (Xc,∆c) do not form a flat family. Indeed, there are many cases when
the generic fiber is smooth, but a special fiber is not klt. However, as we show
next, the specialization of an lc center on the generic fiber becomes a union
of lc centers on a special fiber. Set theoretically this follows from adjunction
(11.17) and (11.12.4), but now we prove this even scheme theoretically.

Theorem 2.80. Let C be a smooth curve over a field of characteristic 0,
f : (X,∆) → C a locally stable morphism and Z ⊂ X any union of lc cen-
ters of (X,∆). Then f |Z : Z → C is flat with reduced fibers and the fiber Zc is a
union of lc centers of (Xc,∆c) for every c ∈ C.

Proof Z is reduced and every irreducible component of Z dominates C by
(2.15). Thus f |Z : Z → C is flat. We can write its fibers as Zc = Xc ∩ Z. Since
Xc + Z is a union of lc centers of (X, Xc + ∆), it is seminormal (11.12.2), so
Xc ∩ Z is reduced by (11.12.3). The last claim follows from (11.10.3). �

When the coefficients are in ( 1
2 , 1], we start with a simple result.

2.81 (Restriction and rounding down). Let f : (X,∆ =
∑

i∈I aiDi) → C be a
locally stable family over a 1-dimensional, regular scheme.

By (2.3),
(
Xc,∆c

)
is slc, hence every component of ∆c appears with coeffi-

cient ≤ 1. For a divisor A ⊂ Xc,

1 ≥ coeffA ∆c =
∑

i∈Iai · coeffA Di
c.

Since the coeffA Di
c are natural numbers, we get the following properties.

(2.81.1) If ai >
1
2 then every irreducible component of Di

c has multiplicity 1.
(2.81.2) If ai+a j > 1 and i , j then the divisors Di

c and D j
c have no irreducible

components in common.
Next let Θ =

∑
j b jB j be an R-divisor on X. If every irreducible compo-

nent of B j
c has multiplicity 1 and the different restrictions have no irreducible

components in common, then combining (1–2) we get:

Claim 2.81.3. Assume that Supp Θ ⊂ Supp
(
∆>1/2) (11.1). Then coeff(Θ|H) ⊂

coeff Θ and bΘ|Hc = bΘc|H . �

Applying this to Θ = m∆ gives the following.

Corollary 2.81.4. If coeff ∆ ⊂ ( 1
2 , 1] then bm∆cc = bm∆cc for every m. �
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The next result of Kollár (2014) solves the embedded point question when
all the occurring coefficients are > 1

2 . Examples (2.41–2.42) show that the strict
inequality is necessary.

Theorem 2.82. Let f : (X,∆ =
∑

i∈I aiDi) → C be a locally stable morphism
to a smooth curve over a field of characteristic 0. Let J ⊂ I be any subset such
that a j >

1
2 for every j ∈ J. Set DJ := ∪ j∈J D j. Then

(2.82.1) f |DJ : DJ → C is flat with reduced fibers,
(2.82.2) DJ is S 2 along every closed fiber, and
(2.82.3) OX(−DJ) is S 3 along every closed fiber.

Proof Note that each Di is a log center of (X,∆) (11.11) and mld(Di, X,∆) =

1 − ai by (11.8). Thus mld(DJ , X,∆) < 1
2 .

Let Xc be any fiber of f . Then (X, Xc + ∆) is slc and

mld(Di, X, Xc + ∆) = mld(Di, X,∆) < 1
2 ,

since none of the Di is contained in Xc. Each irreducible component of Xc is
a log canonical center of (X, Xc + ∆) (11.10), thus mld(Xc, X, Xc + ∆) = 0.
Therefore, mld(DJ , X, Xc + ∆) + mld(Xc, X, Xc + ∆) < 1

2 .
We can apply (11.12.3) to (X, Xc + ∆) with W = DJ and Z = Xc to conclude

that Xc ∩ DJ is reduced. This proves (1) which implies (2–3) by (2.75). �

For the plurigenera, we have the following generalization of (2.79.5–6).

Theorem 2.83. Kollár (2018a) Let C be a smooth curve over a field of char-
acteristic 0 and f : (X,∆)→ C a locally stable morphism with normal generic
fiber. Assume that coeff ∆ ⊂ ( 1

2 , 1]. Then, for every c ∈ C and m ∈ Z,

ω[m]
X/C

(
bm∆c

)
|Xc ' ω

[m]
Xc

(
bm∆cc

)
. (2.83.1)

Complement 2.83.2. If coeff ∆ ⊂ [ 1
2 , 1] then (2.83.1) still holds, but needs a

more careful case analysis, see Kollár (2018a). Note also that bm∆cc = bm∆cc

if coeff ∆ ⊂ ( 1
2 , 1] by (2.81.3), but they may be different if some coefficients

equal 1
2 and m is odd.

Method of proof If mKX + bm∆c is Q-Cartier, then this follows from (2.79.1).
Thus we aim to construct a birational modification X′ → X such that mKX′ +

bm∆′c is Q-Cartier, and then descend from X′ to X.
More generally, let g : Y → X be a proper morphism of normal varieties, F

a coherent sheaf on Y , H ⊂ X a Cartier divisor and HY := g∗H. Assuming that
F is S m along HY , we would like to understand when g∗F is S m along H. If
(the local equation of) HY is not a zero divisor on F, then the sequence

0→ F(−HY )→ F → F|HY → 0 (2.83.3)
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is exact. By push-forward we get the exact sequence

0→ g∗F(−HY )→ g∗F → g∗
(
F|HY

)
→ R1g∗F(−HY ), (2.83.4)

and R1g∗F(−HY ) ' OX(−H) ⊗ R1g∗F. Thus, by (10.28), g∗F is S m along H if
R1g∗F = 0, and g∗

(
F|HY

)
is S m−1 along H. (In many cases, for instance if g is

an isomorphism outside HY , these conditions are also necessary.)
We choose F = OX′

(
mKX′ + bm∆′c

)
. Then we need that

(5.a) R1g∗OX′
(
mKX′ + bm∆′c

)
= 0,

(5.b) g∗
(
OX′

(
mKX′ + bm∆′c

)
|HY

)
is S 2 along H, and

(5.c) g∗OX′
(
mKX′ + bm∆′c

)
' OX

(
mKX + bm∆c

)
.

For us (5.c) will be easy to satisfy. Using a Kodaira-type vanishing theorem,
(5.a) needs some semipositivity condition on (m − 1)KX′ + bm∆′c. By contrast,
(11.61) suggests that (5.b) needs some negativity condition on mKX′ + bm∆′c.

The next result grew out of trying to satisfy the assumptions of both the
relative Kodaira-type vanishing theorem and (11.61). The proof of (2.83) is
then given in (2.85).

Proposition 2.84. Let (X, S + ∆) be an lc pair where S is Q-Cartier. Let B be
a Weil Z-divisor that is Mumford along S (4.68) and Θ an effective R-divisor
such that

(2.84.1) B ∼R −Θ,

(2.84.2) Supp Θ ≤ Supp
(
∆(>1/2)), and

(2.84.3) bΘc ≤ b∆c.
Then OX(B) is S 3 along S .

Proof Assume first that bΘc = 0. A suitable cyclic cover, as in (11.25), re-
duces us to the case when S is Cartier. We assume this from now on.

(X,∆) is also an slc pair and none of its lc centers are contained in S by
(11.10.7). If B is Q-Cartier then OX(B) is S 3 along S by (11.20), applied with
∆′ = 0.

If B is not Q-Cartier, we use (11.32) to obtain π : (X′, S ′ + ∆′)→ (X, S + ∆).
Note that B′ is Q-Cartier by (11.32.1), (X′, S ′ + ∆′) is lc and none of the lc

centers of (X′, S ′+∆′−εΘ′) are contained in Ex(π). In particular, S ′ is smooth
at the generic points of all exceptional divisors of πS := π|S ′ : S ′ → S . Thus
B′ is also Mumford along S ′, hence, as we proved at the beginning, OX′ (B′) is
S 3 along S ′. Thus the sequence

0→ OX′ (B′ − S ′)→OX′ (B′)→ OS ′
(
B′|S ′

)
→ 0 (2.84.4)

is exact by (2.74). Since R1π∗OX′ (B′) = 0 by (11.32.5), pushing (2.84.4) for-
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ward and using (11.32.4) gives an exact sequence

0→ OX(B − S )→OX(B)→ (πS )∗OS ′
(
B′|S ′

)
→ 0. (2.84.5)

Again by (2.74), OX(B) is S 3 along S iff (πS )∗OS ′
(
B′|S ′

)
is S 2. The latter is

equivalent to

(πS )∗OS ′
(
B′|S ′

) ?
= OS

(
B|S

)
. (2.84.6)

Now we apply (11.61) with −N := B′|S ′+Θ′|S ′ , which is numerically πS -trivial.
This gives that

(πS )∗OS ′
(
B′|S ′ + bΘ′|S ′c

)
= OS

(
B|S

)
. (2.84.7)

We are done if bΘ′|S ′c = 0. This is where assumption (2) enters, in a seemingly
innocent way. Indeed, (2.81.3) guarantees that bΘ′|S ′c = bΘ′c|S ′ = 0 and bΘ′c =

0 by our assumption (3).
The proof is similar if bΘc , 0, see (Kollár, 2018a, Prop.28). �

2.85 (Proof of 2.83). We may assume that X is affine and KX + ∆ ∼R 0. Pick a
fiber Xc and let x ∈ Xc be a point of codimension 1. Then either Xc and X are
both smooth at x or Xc has a node and x < Supp ∆. Thus mKX + bm∆c is Cartier
at x, hence a general divisor B ∼ mKX + bm∆c is Mumford along Xc.

We apply (2.84) to B with Θ := m∆ − bm∆c. Thus

B ∼ mKX + bm∆c = m(KX + ∆) − Θ ∼R −Θ.

By assumption Θ ≤ d∆(>1/2)e = Supp ∆. So the assumptions of (2.84) are
satisfied and OX

(
mKX + bm∆c

)
' OX(B) is S 3 along Xc. By (2.75) this implies

(2.83). �

2.8 Local stability in codimension ≥ 3

In this section we prove (2.7). If KX + D + ∆ is R-Cartier, then (11.17) implies
that f is locally stable. The R-divisor case is reduced to the Q-divisor case
using (11.47). So from now on we may assume that ∆ is a Q-divisor. We need
to show that KX + D + ∆ is Q-Cartier.

We discuss three, increasingly general cases. The last one, treated in (2.88.5),
implies (2.7).

2.86. Using the notation of (2.7), assume also that (Xc,DiffXc ∆) is slc. (This
holds for flat families of stable pairs.)

After localizing at a generic point of Zc, we may assume that Zc = {x} is a
point. Thus there is an m > 0 such that m(KX + D + ∆) is a Cartier divisor on
X \ {x}, whose whose restriction to Xc \ {x} extends to a Cartier divisor on Xc.
Since codimXc {x} ≥ 3, (2.91) implies that m(KX + D + ∆) is a Cartier divisor.
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2.87. Here we assume (2.7.2) and apply (11.42) to
(
X̄c,Diff X̄c

∆
)
→ Xc. The

conclusion is that there is an slc pair (X′c,∆
′
c) and a finite morphism τ : X′c →

Xc, that is an isomorphism over Xc \ Zc.
If Xc is S 2, then X′c ' Xc, so (Xc,DiffXc ∆) is slc, as in (2.86).
If Xc is not S 2, then, after localizing, we may assume that τ is an isomor-

phism, except at a point x ∈ Xc. Since τ−1(x) ⊂ X′c is finite, m(KX′c + DiffX′c ∆)
is trivial in a neighborhood of τ−1(x) for some m > 0. Thus m(KXc + DiffXc ∆)
is trivial in a punctured neighborhood of x.

As before, m(KX + D + ∆) is in the kernel of Picloc(x, X)→ Picloc(x, Xc), but
(2.91) guarantees its triviality only if depthx Xc ≥ 2.

If depthx Xc = 1 then typically the kernel of Picloc(x, X) → Picloc(x, Xc) is
a positive dimensional vector space; see (Bhatt and de Jong, 2014, 1.14) and
(Kollár, 2016a, Thm.7) for precise statements. Thus the kernel is p-torsion in
char p > 0, but torsion free in char 0.

It is better to discuss this case in the more general setting of the following
conjecture, where Xc is replaced by D.

Conjecture 2.88. Let (X,D + ∆) be a demi-normal pair, where D is a reduced,
Q-Cartier divisor that is demi-normal in codimension 1, whose normalization(
D̄,DiffD̄ ∆

)
is lc. Let W ⊂ X be a closed subset such that codimD(W ∩D) ≥ 3

and
(
X \W, (D + ∆)X\W

)
is slc. Then the following are equivalent.

(2.88.1)
(
X,D + ∆

)
is slc in a neighborhood of D.

(2.88.2)
(
D,DiffD ∆

)
is slc.

(2.88.3)
(
D̄,DiffD̄ ∆

)
is lc.

The main difference between (2.7) and (2.88) is that in the latter we do not
assume that KX + D + ∆ is R-Cartier on X \ D.

Known implications. Note that (1) ⇒ (2) ⇒ (3) follow from (11.17). If KX +

D + ∆ is R-Cartier, then (3) ⇒ (1) also follows from (11.17). The arguments
of (2.87) show that (3)⇒ (2) if D is S 2.

Thus it remains to show that if (3) holds then KX + D + ∆ is R-Cartier. As
above, the R-divisor case is reduced to the Q-divisor case using (11.47), so
from now on we assume that ∆ is a Q-divisor.

Special case 2.88.5. Assume that KX + D + ∆ is R-Cartier on X \ D. Applying
(5.41) gives a small, birational morphism f : Y → X such that DY := f −1(D)→
D is birational, f

(
Ex( f )

)
⊂ D, and it has codimension ≥ 3. There are two ways

to get a contradiction from this.
First, note that the relative canonical divisor of DY/D̄ is ample and is sup-

ported on the exceptional divisor of DY → D. This can not happen by (2.90).
Second, we use reduction to char p as in Bhatt and de Jong (2014) or (Kollár
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and Mori, 1998, p.14). In char p > 0 (Bhatt and de Jong, 2014, 1.14) shows
that KXp + Dp + ∆p is Q-Cartier. By itself, this does not imply that KX + D + ∆

is Q-Cartier.
However, if KX + D + ∆ is not Q-Cartier, then f : Y → X is not an isomor-

phism. So fp : Yp → Xp is also not an isomorphism. By (2.89) this implies that
KXp + Dp + ∆p is not Q-Cartier, a contradiction. �

Special case 2.88.6. Assume that we are in a situation where the conclusion of
(5.41) holds and X is a variety over a field of char 0.

As before, (5.41) gives a small, birational morphism f : Y → X, such that
f
(
Ex( f )

)
∩ D has codimension ≥ 3. The relative canonical divisor of DY/D̄ is

ample and is supported on the exceptional divisor of DY → D. This gives a
contradiction using (2.90). �

Lemma 2.89. Let π : Y → X be a proper birational morphism of normal
schemes. Assume that Z := Ex(π) ⊂ Y has codimension ≥ 2. Let MY be a
π-ample line bundle on Y and MX a line bundle on X such that MY |Y\Z '

π∗MX |Y\Z . Then π is an isomorphism.

Proof Since Z has codimension ≥ 2, the assumed isomorphism extends to
MY ' π

∗MX . If π contracts any curve C, then 0 < (C · MY ) = (C · π∗MX) = 0
gives a contradiction. �

We have used the following two theorems. The methods of the proofs would
take us in other directions, so we give only some comments and references.

Proposition 2.90. (Kollár, 2013a, Prop.22) Let f : Y → X be a projective,
birational morphism of varieties over a field of char 0. Let D ⊂ X be a Cartier
divisor. Assume that f −1(D) → D is birational and there is a nonzero (but
not necessarily effective) Q-Cartier divisor E such that Supp E ⊂ f −1(D) and
dim f (Supp E) ≤ dim D − 3. Then Ex( f ) has codimension 1 in Y.

Outline of proof The argument is topological over C. Since the claim is alge-
braic, it would be very good to find a proof that works for arbitrary schemes.

We may assume that x := f (Supp E) is a point. Let V denote an open neigh-
borhood of f −1(x) ⊂ f −1(D) that retracts to f −1(x). The assumptions imply
that, for n := dim D, the cup product pairing

H2(V, ∂V,Q) × H2n−2(V,Q)→ H2n(V, ∂V,Q) (2.90.1)

is nonzero. If Ex( f ) has codimension ≥ 2, then f is small over a small de-
formation of D. This can be used to compute that (2.90.1) is zero, giving a
contradiction. �
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We have the following Grothendieck–Lefschetz-type theorem, where, for a
pointed scheme (x, X), we set Picloc(x, X) := Pic

(
SpecX Ox,X \ {x}

)
.

Theorem 2.91. Let (x ∈ X) be an excellent, local scheme of pure dimension
≥ 4 such that depthx OX ≥ 3. Let x ∈ D ⊂ X be a Cartier divisor. Then we
have an injective restriction map

rX
D : Picloc(x, X) ↪→ Picloc(x,D). (2.91.1)

The original version (Grothendieck, 1968, XI.3.16) applies if depthx OX ≥

4. The current form was conjectured in Kollár (2013a) and proved there in the
lc case. After Bhatt and de Jong (2014) and Kollár (2016a), the most general
version is (Stacks, 2022, Tag 0F2B).

The next results are very useful when dealing with Cartier divisors.

2.92 (Flat maps and Cartier divisors). Let p : X → Y be a morphism and D
an effective Cartier divisor on Y . Under mild conditions p∗D is an effective
Cartier divisor on Y . The converse also holds for flat morphisms.

Claim 2.92.1. Let (R,mR) → (S ,mS ) be a flat extension of local rings and
IR ⊂ R an ideal. Then IR is principal iff IRS is principal.

Proof One direction is clear. Conversely, assume that IRS is principal, thus
IRS/mS IRS ' S/mS . Let r1, . . . , rn be generators of IR. They also generate IRS
hence at least one of them, say r1, is not contained in mS IRS . Thus (r1) ⊂ IR is
a sub-ideal such that r1S = IRS . Since (R,mR)→ (S ,mS ) is faithfully flat, this
implies that (r1) = IR. �

Pushing forward Cartier divisors is more problematic. For example, consider
the natural map P1

Q(i) → P
1
Q. The points (1:1) and (i:1) are linearly equivalent,

but their scheme theoretic images have different degrees.
It is better to work with line bundles. Let π : X → Y be a finite, flat mor-

phism of degree d. Let L be a line bundle on X. There are 2 natural ways of
getting a line bundle on Y: the determinant of π∗L and the norm, denoted by
normX/Y (L) as in (Stacks, 2022, Tag 0BCX). The two are related by

det(π∗L) ' (normX/Y L) ⊗Y det(π∗OX).

The norm gives a group homomorphism normX/Y : Pic(X)→ Pic(Y) and there
is a natural isomorphism normX/Y (π∗M) ' Md for any line bundle M on Y .

Lemma 2.93. (Grothendieck, 1968, XIII.2.1) Let (x ∈ X) be a Noetherian,
local scheme and x ∈ D ⊂ X the support of a Cartier divisor. Assume that
X \ Z is connected for every closed subset Z of dimension ≤ i + 1. Then D \ Z
is connected for every closed subset Z of dimension ≤ i. �

https://stacks.math.columbia.edu/tag/0F2B
https://stacks.math.columbia.edu/tag/0BCX


Chapter 3

Families of stable varieties

We have defined stable and locally stable families over 1-dimensional regular
schemes in Sections 2.1 and 2.4. The first task in this chapter is to define these
notions for families over more general base schemes. It turns out that this is
much easier if there is no boundary divisor ∆. Since this case is of consid-
erable interest, we treat it here before delving into the general setting in the
next chapter. While restricting to the special case saves quite a lot of founda-
tional work, the key parts of the proofs of the main theorems stay the same. To
avoid repetition, we outline the proofs here, but leave detailed discussions to
Chapter 4.

In Section 3.1 we review the theory of Chow varieties and Hilbert schemes.
In general these suggest different answers to what a ‘family of varieties’ or a
‘family of divisors’ should be. The main conclusions, (3.11) and (3.13), can be
summarized in the following principles.

• A family of S 2 varieties should be a flat morphism whose geometric fibers
are reduced, connected and satisfy Serre’s condition S 2.

• Flatness is not the right condition for divisors on the fibers.
As in (2.46), a morphism f : (X,∆) → S is stable iff it is locally stable,

proper and KX/S + ∆ is f -ample. Thus the key question is the right concept of
local stability. There are many equivalent ways to define it when ∆ = 0.

Definition–Theorem 3.1 (Local stability over reduced schemes). Let S be a
reduced scheme over a field of characteristic 0 and f : X → S a flat morphism
of finite type whose fibers are semi-log-canonical. Then f is locally stable iff
the following equivalent conditions are satisfied.

(3.1.1) KX/S is Q-Cartier.
(3.1.2) ω[m]

X/S is an invertible sheaf for some m > 0.

(3.1.3) ω[m]
X/S is flat with S 2 fibers for every m ∈ Z.

(3.1.4) The restriction ω[m]
X/S → ω[m]

Xs
is surjective for every s ∈ S and m ∈ Z.
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(3.1.5) For every reduced W and morphism q : W → S , the natural map

q∗X
(
ω[m]

X/S
)
→ ω[m]

XW/W
is an isomorphism for every m ∈ Z.

(3.1.6) For every spectrum of a DVR T and morphism q : T → S , the pull-
back fT : XT → T satisfies the above (1–5).

(3.1.7) There is a closed subset Z ⊂ X such that codim(Z ∩ Xs, Xs) ≥ 3 for
every s ∈ S , and f |X\Z : (X \ Z)→ S satisfies the above (1–6).

We prove the equivalence in (3.37). Over non-reduced bases, local stability
is defined by (3.1.3); see (3.40). It implies all the other properties in (3.1), but is
not equivalent to them; see Section 6.6 for such examples. The situation turns
out to be much more complicated when ∆ , 0. Chapters 4 and 7 are entirely
devoted to finding the right answers.

Let now f : X → S be a flat, projective family of S 2 varieties. It turns out
that, starting in relative dimension 3, the set of points{

s ∈ S : Xs is semi-log-canonical
}

is not even locally closed; see (3.41) for an example. In order to describe the
situation, in Section 3.2 we study functors that are representable by a locally
closed decomposition (10.83).

We start the study of families of non-Cartier divisors in Section 3.3. As we
noted above, this is one of the key new technical issues of the theory.

In Section 3.4 we use a representability theorem (3.36) to clarify the def-
inition of stable and locally stable families, leading to the proof of (3.1). In
Section 3.5 we bring these results together in (3.42) to prove the next main
theorem of the chapter.

Theorem 3.2 (Local stability is representable). Let S be a scheme over a field
of characteristic 0 and f : X → S a projective morphism. Then there is a lo-
cally closed partial decomposition (10.83) j : S ls → S such that the following
holds.

Let W be a scheme and q : W → S a morphism. Then the family obtained by
base change fW : XW → W is locally stable iff q factors as q : W → S ls → S .

Since ampleness is an open condition for a Q-Cartier divisor, (3.2) implies
the following.

Corollary 3.3 (Stability is representable). Let S be a scheme over a field of
characteristic 0 and f : X → S a projective morphism. Then there is a locally
closed partial decomposition j : S stab → S such that the following holds.

Let W be a reduced scheme and q : W → S a morphism. Then the family
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obtained by base change fW : XW → W is stable iff q factors as q : W →

S stab → S . �

Aside from some generalities, we have all the ingredients in place to con-
struct the coarse moduli space of stable varieties. To formulate it, let SV (for
stable varieties) denote the functor that associates to a scheme S the set of all
stable families f : X → S , up to isomorphism.

In order to get a moduli space of finite type, we fix the relative dimension n
and the volume v = vol(KXs ) :=

(
Kn

Xs

)
of the fibers. This gives the subfunctor

SV(n, v). The proof of the following is given in (6.18).

Theorem 3.4 (Moduli space of stable varieties). Let S be a base scheme of
characteristic 0 and fix n, v. Then the functor SV(n, v) has a coarse moduli
space SV(n, v)→ S , which is projective over S .

Assumptions. We work over arbitrary schemes in Sections 3.1–3.3, but over a
field of characteristic 0 starting with Section 3.4.

3.1 Chow varieties and Hilbert schemes
What is a good family of algebraic varieties? Historically two answers emerged
to this question. The first one originates with Cayley (1860, 1862)1. The cor-
responding moduli space is usually called the Chow variety. The second one
is due to Grothendieck (1962); it is the theory of Hilbert schemes. For both
of them, see (Kollár, 1996, Chap.I), Sernesi (2006) or the original sources for
details.

For the purposes of the following general discussion, a variety is a proper,
geometrically reduced and pure dimensional k-scheme.

The theory of Chow varieties suggests the following.

Definition 3.5. A Cayley-Chow family of varieties over a reduced base scheme
S is a proper, pure dimensional (2.71) morphism f : X → S , whose fibers Xs

are generically geometrically reduced for every s ∈ S .
This is called an algebraic family of varieties in (Hartshorne, 1977, p.263).

More general Cayley-Chow families are defined in (Kollár, 1996, Sec.I.3).
It seems hard to make a precise statement, but one can think of Cayley-Chow

families as being ‘topologically flat.’ That is, any topological consequence of
flatness also holds for Cayley-Chow families. This holds for the Zariski topol-
ogy, but also for the Euclidean topology if we are over C.

There are two disadvantages of Cayley-Chow families. First, basic numer-
ical invariants, for example, the arithmetic genus of curves, can jump in a

1 The two papers have identical titles
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Cayley-Chow family. Second, the topological nature of the definition implies
that we completely ignore the nilpotent structure of S . In fact, it really does not
seem possible to define what a Cayley-Chow family should be over an Artinian
base scheme S .

The theory of Hilbert schemes was introduced to solve these problems. It
suggests the following definition.

Definition 3.6. A Hilbert-Grothendieck family of varieties is a proper, flat
morphism f : X → S whose fibers Xs are geometrically reduced and pure
dimensional. (Here S is allowed to be non-reduced.)

Every Hilbert-Grothendieck family is also a Cayley-Chow family, and tech-
nically it is much better to have a Hilbert-Grothendieck family than a Cayley-
Chow family. However, there are many Cayley-Chow families that are not flat.

3.7 (Universal families). Both Cayley-Chow and Hilbert-Grothendieck fami-
lies are preserved by pull-backs, thus they form a functor. In both cases this
functor has a fine moduli space if we work with families that are subvarieties
of a given scheme Y/S .

Let us thus fix a scheme Y that is projective over a base scheme S . For gen-
eral existence questions the key case is Y = PN

S . For any closed subscheme
Y ⊂ PN

S , the Chow variety (resp. the Hilbert scheme) of Y is naturally a subva-
riety (resp. subscheme) of the Chow variety (resp. the Hilbert scheme) of PN

S .
The corresponding universal family is obtained by restriction. (See (3.15) or
(Kollár, 1996, Secs.I.5) for some cases when Y/S is not projective.)

3.7.1 (Chow variety). (See Section 4.8 or (Kollár, 1996, Sec.I.3) for details,
and (3.14) for comments on seminormality.) There is a seminormal S -scheme
Chow◦(Y/S ) and a universal family Univ◦(Y/S ) → Chow◦(Y/S ) that repre-
sents the functor

Chow◦(Y/S)(T) :=
{

closed subsets X ⊂ Y ×S T such that
X → T is a Cayley-Chow family of varieties

}
on seminormal S -schemes q : T → S . (Chow◦(Y/S ) is the ‘open’ part of the
full Chow(Y/S ), as defined in (Kollár, 1996, Sec.I.3).) If we also fix a relatively
very ample line bundle OY (1) then we can write

Chow◦(Y/S ) = qn Chow◦n(Y/S ) = qn,d Chow◦n,d(Y/S ).

Here Chow◦n parametrizes varieties of dimension n and Chow◦n,d varieties of
dimension n and of degree d. Each Chow◦n,d(Y/S ) is of finite type, but usually
still reducible.

3.7.2 (Hilbert scheme). (See (Kollár, 1996, Sec.I.1) or Sernesi (2006).) There
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is a universal family Univ◦(Y/S ) → Hilb◦(Y/S ) that represents the functor of
Hilbert-Grothendieck families

Hilb◦(Y/S)(T) :=
{

closed subschemes X ⊂ Y ×S T such that
X → T is a flat family of varieties

}
.

More generally, there is a universal family Univ(Y/S ) → Hilb(Y/S ) that rep-
resents the functor

Hilb(Y/S)(T) :=
{

closed subschemes X ⊂ Y ×S T
such that X → T is flat

}
.

We can write Hilb(Y/S ) = qn Hilbn(Y/S ) = qH HilbH(Y/S ). Here Hilbn pa-
rametrizes subschemes of (not necessarily pure) dimension n, and HilbH sub-
schemes with Hilbert polynomial H(t). Each HilbH(Y/S ) is projective, but usu-
ally still reducible.

3.8 (Comparing Chow and Hilb). Given a subscheme X ⊂ Y of dimension ≤ n,
we get an n dimensional cycle [X] =

∑
i mi[Xi], where Xi are the n-dimensional

irreducible components and mi is the length of OX at the generic point of Xi.
(Thus we completely ignore the lower dimensional irreducible components.)

If mi = 1 for every i then [X] =
∑

i[Xi] can be identified with a point in
Chow◦(Y/S ). In order to make this map everywhere defined, we need to ex-
tend the notion of Cayley-Chow families to allow fibers that are formal linear
combinations of varieties; see (Kollár, 1996, Sec.I.3) for details. The end result
is an everywhere defined, set-theoretic map Hilbn(Y/S )d Chown(Y/S ). Since
Hilbn(Y/S ) is a scheme, but Chown(Y/S ) is a seminormal variety, it is better to
think of it as a morphism defined on the seminormalization

RH
C : Hilbn(Y/S )sn → Chown(Y/S ). (3.8.1)

This is a very complicated morphism. As written, its fibers have infinitely many
irreducible components for n ≥ 1, since we can just add disjoint 0-dimensional
subschemes to any variety X ⊂ Y to get new subschemes with the same under-
lying variety. Even if we restrict to pure dimensional subschemes we get fibers
with infinitely many irreducible components. This happens for instance for the
fiber over m[L] ∈ Chow1,m(P3), where L ⊂ P3 is a line and m ≥ 2.

It is much more interesting to understand what happens on

Hilb◦n(Y/S ) := closure of Hilb◦n(Y/S ) in Hilbn(Y/S ). (3.8.2)

That is, Hilb◦n(Y/S ) parametrizes n-dimensional subschemes that occur as lim-
its of varieties. It turns out that the restriction of the Hilbert-to-Chow map

RH
C : Hilb◦n(Y/S )sn → Chown(Y/S ) (3.8.3)
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is a local isomorphism at many points. For smooth varieties this is quite clear
from the definition of Chow-forms. Classical writers seem to have been fully
aware of various equivalent versions, but I did not find an explicit formulation.
The normal case, due to Hironaka (1958), is quite surprising; see (Hartshorne,
1977, III.9.11) for its usual form and (10.72) for a stronger version. These
imply the following comparison of Hilbert schemes and Chow varieties.

Theorem 3.9. Using the notation of (3.8), let s ∈ S be a point and Xs ⊂ Ys a
geometrically normal, projective subvariety of dimension n. Then the Hilbert-
to-Chow morphism

RH
C : Hilb◦n(Y/S )sn → Chown(Y/S )

is a local isomorphism over [Xs] ∈ Chown(Y/S ). �

Informally speaking, for normal varieties the Cayley-Chow theory is equiva-
lent to the Hilbert-Grothendieck theory, at least over seminormal base schemes.

By contrast, Hilb(Y/S ) and Chow(Y/S ) are different near the class of a
singular curve. For example, let B ⊂ P3 be a planar, nodal cubic. Then [B]
is contained in 1 irreducible component of Hilb1(P3), but in 2 different irre-
ducible components of Chow1(P3). A general member of one component is a
planar, smooth cubic. This component parametrizes flat deformations. A gen-
eral member of the other component is a smooth, rational, non-planar cubic.
The arithmetic genus jumps, so these deformations are not flat. RH

C is not a
local isomorphism over [B] ∈ Chow1(P3), but this is explained by the change
of the genus. Once we correct for the genus change, (3.9) becomes stronger.

Definition 3.10. Let X ⊂ PN be a closed subscheme of pure dimension n. The
sectional genus of X is 1−χ

(
X∩L,OX∩L

)
, where X∩L is the intersection of X

with n−1 general hyperplanes. Knowing the degree of X and its sectional genus
is equivalent to knowing the 2 highest coefficients of its Hilbert polynomial.

It is easy to see that the sectional genus is a constructible and upper semi-
continuous function on Chow◦n(Y/S ); see (5.36). Thus there are locally closed
subschemes Chow◦n,∗,g(Y/S ) ⊂ Chow◦n(Y/S ) that parametrize geometrically re-
duced cycles with sectional genus g; see (10.83). (The ∗ stands for the de-
gree which we ignore in these formulas.) We can now define the Chow variety
parametrizing families with locally constant sectional genus as

Chowsg
n (Y/S ) := qn,g Chow◦n,∗,g(Y/S )sn,

the disjoint union of the seminormalizations of the Chow◦n,∗,g(Y/S ).

The sectional genus is constant in a flat family, thus we get the following
strengthening of (3.9); see (5.36) and (10.71).
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Theorem 3.11. Using the notation of (3.8), let s ∈ S be a point and Xs ⊂ Ys

a geometrically reduced, projective, S 2 subvariety of pure dimension n. Then
the Hilbert-to-Chow map

RH
C : Hilb◦n(Y/S )sn → Chowsg

n (Y/S )

is a local isomorphism over [Xs] ∈ Chowsg
n (Y/S ).

We can informally summarize these considerations as follows.

Principle 3.12. For geometrically reduced, pure dimensional, projective, S 2

varieties, the Cayley-Chow theory is equivalent to the Hilbert-Grothendieck
theory over seminormal base schemes, once we correct for the sectional genus.

We are studying not just varieties, but semi-log-canonical pairs (X,∆). The
underlying variety is demi-normal, hence geometrically reduced and S 2. Thus
(3.12) says that even if we start with the more general Cayley-Chow families,
we end up with flat morphisms f : X → S with S 2 fibers. The latter is a class
that is well behaved over arbitrary base schemes.

However, the divisorial part is harder to understand. Although we have seen
only a few examples supporting it, the following counterpart of (3.12) turns
out to give the right picture.

Principle 3.13. For stable families of semi-log-canonical pairs (X,∆), the
Hilbert-Grothendieck theory is optimal for the underlying variety X, but the
Cayley-Chow theory is the ‘right’ one for the divisorial part ∆.

3.14 (Comment on seminormality). Hilbert schemes work well over any base
scheme, but in Kollár (1996) the theory of Cayley-Chow families is developed
only over seminormal bases. Following the methods of Section 4.8, it is possi-
ble to work out the Cayley-Chow theory of geometrically reduced cycles over
reduced bases. In characteristic 0 this works for all cycles by Barlet (1975);
Barlet and Magnússon (2020), but examples of Nagata (1955) suggest that, in
positive characteristic, the restriction to seminormal bases may be necessary.

3.15 (Non-projective cases). Let Y be an algebraic space over S . We define
Hilb(Y/S)(T) as the set of all subspaces X ⊂ Y ×S T that are proper and flat
over T . Artin (1969) proves that if Y → S is locally of finite presentation then
the Hilbert functor is represented by an algebraic space Hilb(Y/S )→ S that is
also locally of finite presentation.

Most likely similar results hold for Chow(Y/S ), see (Kollár, 1996, Sec.I.5).
The complex analytic case is worked out in Barlet and Magnússon (2020).
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3.2 Representable properties

Let P be a property of schemes. For a morphism f : X → S consider the set
S (P) := {s ∈ S : Xs satisfies P}. Note that S (P) depends on f : X → S , so we
use the notation S (P, X/S ) if the choice of f : X → S is not clear.

In nice situations, S (P) is an open or closed subset of S . For example satis-
fying Serre’s condition S m is an open condition for proper, flat morphisms by
(10.12), and being singular is a closed condition.

Similarly, if f : X → S is a proper morphism of relative dimension 1, then
{s ∈ S : Xs is a stable curve} is an open subset of S . However, we see in (3.41),
that if f : X → S is a proper, flat morphism of relative dimension ≥ 3 then
{s ∈ S : Xs is a stable variety} is not even a locally closed subset of S .

We already noted in Section 1.4 that flat morphisms with stable fibers do not
give the right moduli problem in higher dimensions. One should look at stable
families instead. Thus our main interest is in the class of morphisms q : T → S
for which the pulled-back family fT : XT → T is stable. We then hope to prove
that this happens in a predictable way. The following definition formalizes this.

Definition 3.16. Let P be a property of morphisms that is preserved by pull-
back. That is, if X → S satisfies P and q : T → S is a morphism then
fT : XT → T also satisfies P. Depending on the situation, pull–back can mean
the usual fiber product XT := X×S T , the hull pull-back to be defined in (3.27),
the divisorial pull-back to be defined in (4.6), or the Cayley-Chow pull-back
of (Kollár, 1996, I.3.18).

The functor of P-pull-backs is defined for morphisms T → S by setting

Property(P)(T ) :=

{∅} if XT → T satisfies P, and

∅ otherwise.
(3.16.1)

(That is, Property(P)(T ) is either empty or consists of a single element.) Thus
a morphism iP : S P → S represents P-pull-backs iff the following hold.

(3.16.2) f P : XP := XS p → S P satisfies P, and

(3.16.3) if fT : XT → T satisfies P, then q factors as q : T → S P → S , and
the factorization is unique.

It is also of interest to understand what happens if we focus on special classes
of bases. Let R be a property of schemes. We say that iP : S P → S repre-
sents P-pull-backs for R-schemes if S P satisfies R and (3.16.3) holds when-
ever T satisfies R. In this section we are mostly interested in the properties
R = (reduced), R = (seminormal) and R = (normal).

If (3.16.3) holds for all T = (spectrum of a field) then iP : S P → S is
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geometrically injective (10.82). If (3.16.3) holds for all Artinian schemes, then
iP is a monomorphism (10.82).

In many cases of interest P is invariant under base field extensions. Then
iP : S P → S is also preserves residue fields (10.82).

If X → S is projective then we are frequently able to prove that iP : S P → S
is a locally closed partial decomposition (10.83).

If iP : S P → S represents P-pull-backs and iP is of finite type (this will
always be the case for us) then S (P) = {s : Xs satisfies P} = iP(S P) is a con-
structible subset of S . Constructibility is much weaker than representability,
but we frequently need it in our proofs of representability.

Example 3.17 (Simultaneous normalization). Sometimes it is best to focus not
on a property of a morphism, but on a property of its “improvement.” We say
that f : X → S has simultaneous normalization if there is a finite morphism
π : X̄ → X such that πs : X̄s → Xs is the normalization for every s ∈ S and
f ◦ π : X̄ → S is flat. For example, consider the family of quadrics

X :=
(
x2

0 − x2
1 + u2x2

2 + u3x2
3 = 0) ⊂ P3

x × A
2
u.

Then {(0, 0)} q
(
A2

u \ {(0, 0)}
)
→ A2

u represents the functor of simultaneous
normalizations. In general, we have the following result, due to Chiang-Hsieh
and Lipman (2006); Kollár (2011b).

Claim 3.17.1. Let f : X → S be a proper morphism whose fibers Xs are
generically geometrically reduced. Then there is a morphism π : S sn → S
such that, for any g : T → S , the fiber product X×S T → T has a simultaneous
normalization iff g factors through π : S sn → S . �

Definition 3.18. Let f : X → S be a morphism and F a coherent sheaf on X.
Given any q : W → S , we get

X ×S W =: XW

fW
��

qX // X

f
��

W
q // S .

(3.18.1)

As in (3.16.1), we have the functor of flat pull-backs Flat(F)(∗).

One of the most useful representation theorems is the following; see (Mum-
ford, 1966, Lect.8) and Artin (1969).

Theorem 3.19 (Flattening decomposition). Let f : X → S be a proper
morphism and F a coherent sheaf on X. Then the functor of flat pull-backs
Flat(F)(∗) is represented by a monomorphism iflat : S flat → S that is locally of
finite type. If f is projective then iflat is a locally closed decomposition. �
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Example 3.19.1. As a trivial special case, assume that X = S is affine. Write F
as the cokernel of a map of free sheaves g : On

S → Om
S . Then F is free of rank

m − r precisely on the subscheme (rank g ≤ r) \ (rank g ≤ r − 1).

One can frequently check flatness using the following numerical criterion
which is proved, but not fully stated, in (Hartshorne, 1977, III.9.9).

Theorem 3.20. Let f : X → S be a projective morphism with relatively ample
OX(1) and F a coherent sheaf on X. The following are equivalent.
(3.20.1) F is flat over S .
(3.20.2) f∗

(
F(m)

)
is locally free for m � 1.

If S is reduced then these are also equivalent to the following.
(3.20.3) s 7→ χ

(
Xs, Fs(m)

)
is a locally constant function on S . �

In Chapter 8 we need the following results.

Proposition 3.21. Let f : X → S be a proper morphism and G a coherent
sheaf on X, flat over S . The following properties of morphisms q : T → S are
representable by locally closed subschemes.
(3.21.1) ( fT )∗q∗XG is locally free of rank r and commutes with base change.
(3.21.2) ( fT )∗q∗XG is locally free of rank r, commutes with base change, and

q∗XG is relatively globally generated.

Proof Using the notation of (3.24.1), locally we can write d1 in as a matrix
with entries in OS . Then

(
rank d1 ≤ r

)
⊂ S is the subscheme defined by the

vanishing of the determinants of all (r+1)× (r+1)-minors. With this definition
we see that

(
rank d1 ≤ rank K0 − r

)
\
(
rank d1 ≤ rank K0 − r − 1

)
represents the

functor (3.21.1).
For (3.21.2) we may assume that f∗G is locally free of rank r. Then (2) is

represented by the open subscheme S \ f
(
Supp coker( f ∗ f∗G → G)

)
. �

Corollary 3.22. Let f : X → S be a proper morphism and G a coherent sheaf
on X, flat over S . Assume that H0(Xs,OXs ) ' k(s) for s ∈ S .

Then there is a locally closed subscheme S ′ ↪→ S such that, a morphism
q : T → S factors through S ′ iff q∗XG is isomorphic to the pull-back of a line
bundle from T.

Proof If q∗XG is isomorphic to the the pull-back of a line bundle from T ,
then OXT is locally isomorphic to q∗XG, hence XT is flat over T . Thus S ′ fac-
tors through the flattening decomposition of f (3.19). We may thus assume
that f is flat and S is affine. Since H0(S ,OS ) → H0(Xs,OXs ) is surjectve, so
is H0(X,OX) → H0(Xs,OXs ), hence f∗OX ' OS by Cohomology and Base
Change. So we are in the r = 1 case of (3.21.2). �
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Remark 3.23. Being pure dimensional is an open property for flat, proper
morphisms. Thus, using (3.19) we obtain that for any projective morphism
f : X → S we have a locally closed partial decomposition S fp → S that
represents flat and pure dimensional pull-backs of f . Next let P be a property
that implies flat and pure dimensional. Assume that q : T → S is a morphism
such that fT : XT → T satisfies P. Then fT : XT → T is also flat and pure
dimensional, hence q : T → S factors through f fp. Thus S P = (S fp)P.

In particular, if we want to prove that S P → S exists for all projective mor-
phisms, then it is enough to show that it exists for all flat, pure dimensional and
projective morphisms. More generally, if P1 ⇒ P2 and S P2 exists, then

S P1 = (S P2 )P1 . (3.23.1)

3.24 (Semicontinuity). Let f : X → S be a proper morphism and G a coherent
sheaf on X, flat over S . By a version of the semicontinuity theorem, there is a
finite complex of locally free sheaves on S

K
q

:= 0→ K0 d1
→ K1 d2

→ · · ·
dn−1
→ Kn → 0, (3.24.1)

such that, for every morphism h : T → S ,

Ri( fT )∗h∗XG ' Hi(h∗K q)
. (3.24.2)

(This form is stated and proved in (Mumford, 1970, §5); (Hartshorne, 1977,
III.12.2) has a weaker statement, but the proof works to give this.)

This can be used to define

det R
q
f∗G :=

(∏
even det Ki) ⊗ (∏

odd det Ki)−1
. (3.24.3)

This is independent of the choices made. If Ri f∗G = 0 for i > 0, then
det R q f∗G = det f∗G. This is the main case that we use.

3.3 Divisorial sheaves
We frequently have to deal with divisors D ⊂ X that are not Cartier, hence
the corresponding sheaves OX(D) are not always locally free. Understanding
families of such sheaves is a key aspect of the moduli problem. Many of the
results proved here are developed for arbitrary coherent sheaves in Chapter 9.

Definition 3.25 (Divisorial sheaves). A coherent sheaf L on a scheme X is
called a divisorial sheaf if L is S 2 and there is a closed subset Z ⊂ X of codi-
mension ≥ 2 such that L|X\Z is locally free of rank 1.

We are mostly interested in the cases when X itself is demi-normal, but the
definition makes sense in general, although with unexpected properties. For
example, OX is a divisorial sheaf iff X is S 2.
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Set U := X \ Z and let j : U ↪→ X denote the natural injection. Then
L = j∗(L|U) by (10.6), thus L is uniquely determined by L|U .

If dim X = 1, then Z = ∅, so a divisorial sheaf is invertible. If D is a Mumford
divisor, then OX(D) is a divisorial sheaf. If X is demi-normal, then the ω[m]

X are
divisorial sheaves. Divisorial sheaves form a group, with

L [⊗] M := j∗(L|U ⊗ M|U) (3.25.1)

For powers we use the notation L[m] := (L⊗m)[∗∗].
Let H ⊂ X be a general member (depending on L,M) of a base point free lin-

ear system. Then L|H ,M|H are divisorial sheaves and (L [⊗] M)|H = L|H [⊗] M|H;
see (10.18).

Let f : X → S be a morphism. A coherent sheaf L on X is a flat family of
divisorial sheaves, if L is flat over S and its fibers are divisorial sheaves. (L
need not be divisorial sheaf on X.)

Given any q : T → S with induced qX : X ×S T → X, the pull-back q∗XL is
again a flat family of divisorial sheaves.

Let f : X → S be a morphism. We frequently need to deal with properties
that hold not everywhere, but only on open subsets of each fiber.

Definition 3.26. Let f : X → S be a morphism and F a coherent sheaf on X.
We say that F is generically flat (resp. mostly flat) over S , if there is a dense,
open subset j : U ↪→ X such that

(3.26.1) F|U is flat over S , and

(3.26.2) Supp Fs \ U has codimension ≥ 1 (resp. ≥ 2) in Supp Fs for s ∈ S .
We usually set Z := X \ U.

A subscheme Y ⊂ X is generically (resp. mostly) flat iff OY is.

Definition 3.27 (Hull and hull pull-back). With j : U ↪→ X as in (3.26), let
F be a mostly flat family of coherent sheaves. Assume that F|U has S 2 fibers.
We imagine that F is the ‘correct’ object over U, but a mistake may have been
made over Z = X \ U. We correct F by replacing it with its hull

FH := j∗
(
F|U

)
. (3.27.1)

Under mild conditions (for example, when X is excellent), FH is a coherent
sheaf on X; see Chapter 9 for a detailed treatment of hulls.

Let q : W → S be a morphism. We get a fiber product diagram as in (3.18.1).
Then FW := q∗XF has S 2 fibers over q−1

X (U). Its hull FH
W is called the hull

pull-back of F. If confusion is likely, we use (FW )H to denote the hull of the
pull-back and (FH)W to denote pull-back of the hull FH .
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We are especially interested in the maps

rS
W : (FH)W → (FW )H . (3.27.2)

We have already encountered these in (2.75) when W = {s} is a point. For
applications the key is to understand when FH is flat. The following basic
observations guide us.
(3.27.3) FH is flat with S 2 fibers over a dense, open S ◦ ⊂ S by (10.11).
(3.27.4) We see in (9.36) that FH is flat with S 2 fibers ⇔ rS

W is an isomor-
phisms for every q : W → S ⇔ rS

s is surjective for every s ∈ S .

Definition 3.28. Using the notation of (3.26), F is a mostly flat family of S 2

sheaves if F|U is flat with S 2 fibers and F = FH .
L is a mostly flat family of divisorial sheaves if L is invertible on U.

For now, we study these problems for divisorial sheaves. The first main re-
sult is the following special case of (9.40), the second is (4.32).

Theorem 3.29. Let f : X → S be a projective morphism and L a mostly
flat family of divisorial sheaves on X (3.28). Then there is a locally closed
decomposition j : S H−flat → S such that, for every morphism q : W → S ,
the hull pull-back LH

W is a flat family of divisorial sheaves (3.25) on XW , iff q
factors as q : W → S H−flat → S . �

Corollary 3.30. Let f : X → S be a flat, projective morphism with S 2 fibers
and L a mostly flat family of divisorial sheaves on X. Then there is a locally
closed partial decomposition j : S inv → S such that, for every morphism q :
W → S , the hull pull-back LH

W is invertible, iff q factors as q : W → S inv → S .

Proof For flat morphisms with S 2 fibers, an invertible sheaf is also a flat
family of divisorial sheaves. Thus if LH

W is invertible, then q factors through
S H−flat → S . So, by (3.23.1), S inv =

(
S H−flat)inv. For a flat family of sheaves,

being invertible is an open condition, thus S inv is open in S H−flat. �

The following variant turns out to be very useful in (3.42) and (6.24).

Proposition 3.31. Let f : X → S be a flat, projective morphism with S 2 fibers
and N1, . . . ,Ns, L1, . . . , Lr mostly flat families of divisorial sheaves. Then there
is a locally closed partial decomposition S NL → S such that, a morphism
q : T → S factors through S NL iff the following hold.
(3.31.1) The hull pull-backs (L j)H

T are invertible, and
(3.31.2) the

(
Ni [⊗] L[m1]

1 [⊗] · · · [⊗] L[mr]
r

)H
T are flat families of divisorial sheaves

for every mi ∈ Z.
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Proof We apply (3.29) to each Ni and (3.30) to each L j to get locally closed
partial decompositions S Ni → S and S L j → S that represent the functors of
flat hull pull-backs with S 2 fibers for Ni and L j, plus invertibility for the L j.
Let S ∗ → S denote the fiber product of all of them.

It is clear that S NL factors through S ∗. Tensoring with an ivertible sheaf
preserves flat families of divisorial sheaves, thus S NL = S ∗. �

The following analog of (3.20) is a special case of (9.36), where for polyno-
mials we use the ordering f (∗) � g(∗) ⇔ f (t) ≤ g(t) ∀t � 1 as in (5.14).

Theorem 3.32. Let S be a reduced scheme, f : X → S a projective morphism
with ample OX(1) and L a mostly flat family of divisorial sheaves on X. Then
(3.32.1) s 7→ h0(Xs, LH

s ) is constructible and upper semi-continuous,
(3.32.2) s 7→ χ

(
Xs, LH

s (∗)
)

is constructible, upper semi-continuous, and
(3.32.3) L is a flat family of divisorial sheaves (3.25) iff s 7→ χ

(
Xs, LH

s (∗)
)

is
locally constant on S . �

Remark 3.32.4. Recall that by (3.20) a coherent sheaf G is flat over S iff s 7→
χ
(
Xs,Gs(∗)

)
is locally constant on S . However, the assumptions of (3.32) are

quite different since LH
s is not assumed to be the fiber of L over s. In fact,

usually there is no coherent sheaf on X whose fiber over s is isomorphic to LH
s

for every s ∈ S . The map rS
s : Ls → LH

s is an isomorphism over Us, but both
its kernel and the cokernel can be nontrivial. They have opposite contributions
to the Euler characteristic.

3.33 (Hilbert function of divisorial sheaves). Let X be a proper scheme of
dimension n and L,M line bundles on X. The Hirzebruch-Riemann-Roch the-
orem computes χ(X, L ⊗ Mr) as a polynomial of r. Its leading terms are

χ(X, L ⊗Mr) =
rn

n!
(Mn) +

rn−1

2(n − 1)!

((
τ1(X) + 2L

)
·Mn−1

)
+ O(rn−2), (3.33.1)

where τ1 is the first Todd class.
Assume next that L isinvertible only outside a subset Z ⊂ X of codimension

≥ 2. By blowing up L, we get a proper birational morphism π : X′ → X and
a line bundle L′ such that π∗L′ = L. Thus we can compute χ(X, L ⊗ Mr) as
χ(X′, L′ ⊗ π∗Mr), modulo an error term which involves the sheaves Riπ∗L′.
These are supported on Z, hence the χ(X,Riπ∗L′ ⊗Mr) all have degree ≤ n− 2.
Thus we again obtain (3.33.1), and, if X is demi-normal, then τ1(X) = −KX .

If, in addition, L[m] is locally free for some m > 0, then applying (3.33.1) to
L 7→ L[a] for all 0 ≤ a < m and M = L[m] we end up with the expected formula

χ(X, L[r]) =
rn

n!
(Ln) −

rn−1

2(n − 1)!
(
KX · Ln−1) + O(rn−2). (3.33.2)
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Further note that χ(X, L[r]) is a polynomial on any translate of mZ, so one
can write the O(rn−2) summand as

∑n−2
i=0 ai(r)ri, where the ai(r) are periodic

functions that depend on X and L.

3.34 (Hilbert function of slc varieties). Let X be a proper, slc variety of di-
mension n. We are especially interested in r 7→ χ

(
X, ω[r]

X
)
, which we call the

Hilbert function of ωX . By (3.33) we can write it as

χ
(
X, ω[r]

X
)

=
rn

n!
(Kn

X) −
rn−1

2(n − 1)!
(Kn

X) +
∑n−2

i=0 ai(r)ri, (3.34.1)

where the ai(r) are periodic functions with period = index(X).
By (11.34), if ωX is ample and the characteristic is 0, then, for i, r ≥ 2,

h0(X, ω[r]
X

)
= χ

(
X, ω[r]

X
)
, and hi(X, ω[r]

X
)

= 0. (3.34.2)

Comment on the terminology. It might seem natural to call r 7→ h0(X, ω[r]
X

)
the

Hilbert function. However, (3.34.1) is not a polynomial in general. For stable
varieties the two variants differ only for r = 1 by (3.34.2).

3.4 Local stability
Definition 3.35 (Relative canonical class). Let f : X → S be a flat, projec-
tive morphism with demi-normal fibers. The relative canonical sheaf ωX/S was
constructed in (2.68).

Let Z ⊂ X be the subset where the fibers are neither smooth nor nodal. Set
j : U := X \ Z ↪→ X. Then Xs ∩ Z has codimension ≥ 2 for every fiber Xs and
ωU/S is locally free. Thus ωX/S is a mostly flat family of divisorial sheaves.
The corresponding divisor class is denoted by KX/S . As in (3.25), we define its
reflexive powers by the formula

ω[m]
X/S := j∗

(
ωm

U/S
)
' OX(mKX/S ). (3.35.1)

All these also hold for flat, finite type morphisms (that are not necessarily
projective) by (2.68.7).

If the fibers of f : X → S are slc, then ωX/S is a flat family of divisorial
sheaves by (2.67). However, its reflexive powers are usually only mostly flat
over S . Applying (3.30) to ω[m]

X/S gives the following, which turns out to be the
key to our treatment of local stability over reduced schemes.

Corollary 3.36. Let f : X → S be a flat, projective family of demi-normal
varieties and fix m ∈ Z. Then there is a locally closed decomposition j : S [m] →

S such that the following holds.
Let q : W → S be a morphism. Then ω[m]

XW/W
is a flat family of divisorial

sheaves iff q factors as q : W → S [m] → S . �
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In applications of (3.36) a frequent problem is that S [m] depends on m, even
if we choose m to be large and divisible; see (2.45) for such an example.

3.37 (Proof of 3.1). Assertions (3.1.1) and (3.1.2) say the same using different
terminology. The equivalences of (3.1.3–5) follow from (9.17).

Assume (3.1.3) and pick s ∈ S . Since Xs is slc, ω[ms]
Xs

is locally free for some
ms > 0. In a flat family of sheaves being invertible is an open condition, thus
ω[ms]

X/S is invertible in an open neighborhood Xs ⊂ Us ⊂ X. Finitely many of
these Usi cover X. Then m = lcm{msi } works for (3.1.2).

It is clear that (3.1.1) implies (3.1.6) and for (3.1.6) ⇒ (3.1.3) we argue as
follows. We need to prove that ω[m]

X/S is a flat family of divisorial sheaves. This
is a local question on S , hence we may assume that (0 ∈ S ) is local.

Let us discuss first the case when f is projective. By (3.36) the property

P[m](W) :=
(
ω[m]

XW/W
is a flat family of divisorial sheaves

)
is representable by a locally closed decomposition im : S [m] → S . We aim to
prove that im is an isomorphism.

For each generic point gi ∈ S choose a local morphism qi : (0i ∈ Ti)→ (0 ∈
S ) that maps the generic point ti ∈ Ti to gi. By assumption XTi → Ti is locally
stable, hence ω[m]

XTi /Ti
is a flat family of divisorial sheaves by (2.79.2). Thus qi

factors through im : S [m] → S . Therefore im : S [m] → S is an isomorphism by
(10.83.2), completing the proof for projective morphisms.

The above argument also works in the non-projective case, provided im :
S [m] → S exists. As we discuss in Section 9.8, the latter is unlikely. However,
if S is local, complete, and we aim to represent flat hull pull-backs for local
morphisms, then im : S [m] → S exists, see (9.44) for details. The rest of the
argument now works as before, see also (3.38).

Finally, if any of the properties (3.1.1–6) holds for X, then it also holds for
X \ Z. The surprising part is the converse. By using (3.1.6) both for X and for
X \ Z, it is enough to see that (3.1.7)⇒ (3.1.1) holds when S is the spectrum
of a DVR. The latter is proved in (2.7). �

Corollary 3.38. Let S be a reduced scheme over a field of characteristic 0 and
f : X → S a flat family of demi-normal varieties. Let T → S be faithfully flat.
Then X → S is locally stable iff XT → T is. �

Corollary 3.39. Let f : X → S be a flat, proper morphism of finite type with
demi-normal fibers, such that KX/S is Q-Cartier. Then

S slc := {s : Xs is slc } ⊂ S is open. (3.39.1)
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Proof By (10.14), a set U ⊂ S is open iff it is closed under generalization
and U contains a dense open subset of s̄ for every s ∈ U.

For S slc, the first of these follows from (2.3). In order to see the second,
assume first that Xs is lc. Then mKXs is Cartier for some m > 0 hence mKX/S

is Cartier over an open neighborhood of s ∈ Us ⊂ s̄. Next consider a log
resolution ps : Ys → Xs. It extends to a simultaneous log resolution p◦ : Y◦ →
X◦ over a suitable U◦s ⊂ s̄. Thus, if E◦ ⊂ Y◦ is any exceptional divisor, then
a(Et, Xt) = a(E◦, X◦) = a(Es, Xs) for every t ∈ U◦s . This shows that all fibers
over U◦s are lc.

If Xs is not normal, one can use either a simultaneous semi-log-resolution
(Kollár, 2013b, Sec.10.4) or normalize first, apply the above argument and
descend to X, essentially by definition (11.37). �

3.5 Stability is representable I

Focusing on the property (3.1.3), over non-reduced bases we get the definition
of local stability, due to Kollár and Shepherd-Barron (1988).

Definition 3.40 (Local stability and stability II). Let S be a scheme over a
field of characteristic 0 and f : X → S a flat morphism of finite type with
demi-normal fibers. Then f is locally stable iff the fibers Xs are slc and ω[m]

X/S
is a flat family of divisorial sheaves (3.25) for every m ∈ Z.

Furthermore, f is stable iff, in addition f is proper and ωX/S is f -ample.

The next example shows that being stable is not a locally closed condition.

Example 3.41. In P5
x × A

2
st consider the family of varieties

X :=
(
rank

(
x0 x1 x2

x1 + sx4 x2 + tx5 x3

)
≤ 1

)
.

We claim that the fibers Xst are normal, projective with rational singularities
and for every s, t the following equivalences hold:
(3.41.1) Xst is lc⇔ Xst is klt⇔ KXst is Q-Cartier⇔ 3KXst is Cartier⇔ either
(s, t) = (0, 0) or st , 0.

All these become clear once we show that there are 3 types of fibers.
(3.41.2) If st , 0 then, after a linear coordinate change, we get that

Xst ' X11 '

(
rank

(
x0 x1 x2

x4 x5 x3

)
≤ 1

)
.

This is the Segre embedding of P1 ×P2, hence smooth. The self-intersection of
its canonical class is −54.
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(3.41.3) If s = t = 0 then we get the fiber

X00 :=
(
rank

(
x0 x1 x2

x1 x2 x3

)
≤ 1

)
.

This is the cone (with P1 as vertex-line) over the rational normal curve C3 ⊂ P
3.

The singularity along the vertex-line is isomorphic to A2/ 1
3 (1, 1) × A1, hence

log terminal. The canonical class of X00 is − 8
3 H, where H is the hyperplane

class and its self-intersection is −512/9 < −54.
(3.41.4) Otherwise either s or t (but not both) are zero. After possibly permut-
ing s, t and a linear coordinate change we get the fiber

X0t ' X01 '

(
rank

(
x0 x1 x2

x1 x4 x3

)
≤ 1

)
.

This is the cone over the degree 3 surface S 3 ' F1 ↪→ P
4. Its canonical class is

not Q-Cartier at the vertex, so this is not lc.
This is a locally stable example. Taking a general double cover ramified

along a general, sufficiently ample hypersurface gives a stable example.

Thus the best one can hope for is that local stability is representable. From
now on the base scheme is assumed to be over a field of characteristic 0.

3.42 (Proof of 3.2). Being flat is representable by (3.19) and being demi-
normal is an open condition for flat morphisms by (10.42). So, using (3.23.1),
we may assume that f : X → S is flat, of pure relative dimension n and its
fibers are demi-normal.

Now we come to a surprisingly subtle part of the argument. If Xs is slc then
KXs is Q-Cartier, thus the next natural step would be the following.

Question 3.42.1. Is {s ∈ S : KXs is Q-Cartier} a constructible subset of S ?

We saw in (2.45) that this is not the case, not even for families of normal
varieties. The key turns out to be the following immediate consequence of
(4.44); the latter is the hardest part of the proof.

Claim 3.42.2. Let f : X → S be a flat, proper family of demi-normal varieties.
Then {index(Xs) : Xs is slc} is a finite set. �

We can now complete (3.2). Let M be a common multiple of the indices of
the slc fibers. We apply (3.31) with Ni := ω[i]

X/S for 1 ≤ i < M and L1 := ω[M]
X/S .

We get S NL → S such that the ω[m]
XNL/S NL are flat families of divisorial sheaves

for every m, and ω[M]
XNL/S NL is invertible. Finally (3.39) gives that S ls is an open

subscheme of S NL. �



Chapter 4

Stable pairs over reduced base schemes

So far we have identified stable pairs (X,∆) as the basic objects of our moduli
problem, defined stable and locally stable families of pairs over 1-dimensional
regular schemes in Chapter 2 and in Chapter 3 we treated families of varieties
over reduced base schemes. Here we unite the two by discussing stable and
locally stable families over reduced base schemes.

After stating the main results in Section 4.1 we give a series of examples in
Section 4.2. The technical core of the chapter is the treatment of various no-
tions of families of divisors given in Section 4.3. Valuative criteria are proved
in Section 4.4 and the behavior of generically R-Cartier divisors is studied in
Section 4.5.

In Section 4.6 we finally define stable and locally stable families over re-
duced base schemes (4.7) and prove that local stability is a representable prop-
erty. Families over a smooth base scheme are especially well behaved; their
properties are discussed in the short Section 4.7.

The universal family of Mumford divisors is constructed in Section 4.8;
this is probably the main technical result of the chapter. The correspondence
between (not necessarily flat) families of Mumford divisors and flat fami-
lies of Cayley-Chow hypersurfaces—established over reduced bases in The-
orem 4.69—leads to the fundamental notion of Cayley flatness in Chapter 7.

At the end we have all the ingredients needed to treat the moduli functor
SP

red, which associates to a reduced scheme S the set of all stable families
f : (X,∆) → S , up to isomorphism. (Here the superscript red indicates that we
work with reduced base schemes only.)

To be precise, we fix the dimension n of the fibers, a finite set of allowed
coefficients c ⊂ [0, 1] and the volume v. Our families are f : (X,∆)→ S , where
X → S is flat and projective, ∆ is a Weil R-divisor on X whose coefficients are
in c, KX/S + ∆ is R-Cartier, and the fibers (Xs,∆s) are stable pairs of dimension
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n with vol(KXs + ∆s) :=
(
(KXs + ∆s)n) = v. This gives the functor

SP
red(c, n, v) : {reduced S -schemes} → {sets}.

We can now state one of the main consequence of the results of this Chapter.

Theorem 4.1 (Moduli theory of stable pairs I). Let S be an excellent base
scheme of characteristic 0 and fix n, c, v. Then SPred(c, n, v) is a good moduli
theory (6.10), which has a projective, coarse moduli space SPred(c, n, v)→ S .

Moreover, SPred(c, n, v) is the reduced subscheme of the ‘true’ moduli space
SP(c, n, v) of marked, stable pairs, to be constructed in Chapter 8.

Assumptions. In the foundational Sections 4.1–4.5 we work with arbitrary
schemes, but for Sections 4.6 and 4.7 we need to assume that the base scheme
is over a field of characteristic 0.

4.1 Statement of the main results
In the study of locally stable families of pairs over reduced base schemes, the
key step is to give the ‘correct’ definition for the divisorial component

Temporary Definition 4.2. A family of pairs (with Z-coefficients) of dimen-
sion n over a reduced scheme is an object

f : (X,D)→ S , (4.2.1)

consisting of a morphism of schemes f : X → S and an effective Weil divisor
D satisfying the following properties.

4.2.2 (Flatness for X). The morphism f : X → S is flat, of finite type, of pure
relative dimension n, with geometrically reduced fibers. This is the expected
condition from the point of view of moduli theory, following the Principles
(3.12) and (3.13).

4.2.3 (Equidimensionality for Supp D). Every irreducible component Di ⊂

Supp D dominates an irreducible component of S and all nonempty fibers of
Supp D→ S have pure dimension n−1. In particular, Supp D does not contain
any irreducible component of any fiber of f . If S is normal then Supp D → S
has pure relative dimension n − 1 by (2.71.2), but in general our assumption
is weaker. We noted in (2.41) that D → S need not be flat for locally stable
families. So we start with the above weak assumption and strengthen it later.

4.2.4 (Mumford condition). The morphism f is smooth at generic points of Xs∩

Supp D for every s ∈ S . Equivalently, for each s ∈ S , none of the irreducible
components of Xs ∩ Supp D is contained in Sing(Xs).

This condition was first codified in Mumford’s observation that, in order
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to get a good moduli theory of pointed curves (C, P), the marked points P =

{p1, . . . , pn} should be smooth points of C; see Section 4.8 for details.
If (X,∆) is an slc pair, then X is smooth at all generic points of Supp ∆. So if

D is an effective divisor supported on Supp ∆, then this conditions is satisfied.
It turns out that such generic smoothness is a crucial condition technically.

So we make it part of the definition for families of pairs.
A big advantage is that, if S is reduced, then X is regular at the generic points

of Supp D. Thus, as for normal varieties, we can harmlessly identify Mumford
divisors with divisorial subschemes; see (4.16.6–7) for details.

Next we come to the heart of the matter: we would like the notion of families
of pairs to give a functor. So, for any morphism g : W → S , we need to define
the pulled-back family. We have a fiber product diagram

X ×S W
fW
��

qX // X
f
��

W
q // S .

(4.2.5)

It is clear that we should take XW := X ×S W, with morphism fW : XW → W.
The definition of the divisor part DW is less clear, since pull-backs of Cartier
and of Weil divisors are not compatible in general.

4.2.6 (Weil-divisor pull-back). For any subscheme Z ⊂ X and morphism h :
Y → X, define the Weil-divisor pull-back as the Weil divisor Weil

(
h−1(Z)

)
associated to the subscheme h−1(Z) ⊂ Y; see (4.16.6) for formal definitions.

Let D, X be as in (4.2.1) and g : W → S a morphism. Using the Mumford
condition we can view D as a subscheme of X. Then set

g∗Wdiv(D) := Weil
(
g−1

X (D)
)
.

In particular, if τ : {s} → S is a point, we get the Weil-divisor fiber, denoted by
τ∗Wdiv(D).

If H ⊂ X is a relative Cartier divisor and g∗XH does not contain any codi-
mension ≤ 1 associated points of g−1

X (D), then

g∗Wdiv(D ∩ H) = g∗Wdiv(D) ∩ g∗XH.

Warning. The Weil-divisor fiber is always defined, but frequently not functo-
rial, not even additive. If D′,D′′ are 2 divisors on X then τ∗Wdiv(D′ + D′′) and
τ∗Wdiv(D′) + τ∗Wdiv(D′′) have the same support, but the multiplicities can be dif-
ferent, even in étale locally trivial families as in (4.14). If D′,D′′ satisfy (4.2.4),
then τ∗Wdiv(D′ + D′′) ≤ τ∗Wdiv(D′) + τ∗Wdiv(D′′), but otherwise the inequality can
go the other way; see (4.12) and (4.13).
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4.2.7 (Generically Cartier divisor and pull-back). Assume that D is a relative
Cartier divisor (4.20) on an open subset U ⊂ X such that g−1

X (U ∩ D) is dense
in g−1

X (D). We can then define the generically Cartier pull-back of D as

g[∗](D) := the closure of g−1
X (D|U) ⊂ XW .

If f has S 2 fibers then OXW

(
−g[∗](D)

)
is the hull pull-back of OX(−D) (3.27).

The generically Cartier pull-back is clearly functorial, but not always defined.
If it is defined, then g∗Wdiv(D) is the Weil divisor corresponding to g[∗](D), so

the 2 notions are equivalent; see (4.6).

4.2.8 (Well-defined pull-backs). We say that f : (X,D) → S has well-defined
Weil-divisor pull-backs if it satisfies the assumptions (4.2.2–4) and the Weil-
divisor pull-back (4.2.6) is a functor for reduced schemes. That is

h∗Wdiv
(
g∗Wdiv(D)

)
= (g ◦ h)∗Wdiv(D),

for all morphisms of reduced schemes h : V → W and g : W → S .

In any concrete situation the conditions (4.2.2–4) should be easy to check,
but (4.2.8) requires computing g∗Wdiv(D) for all morphisms W → S . The fol-
lowing variant is much easier to verify.

4.2.9 (Well-defined specializations). We say that f : (X,D) → S has well-
defined specializations if (4.2.8) holds whenever W is the spectrum of a DVR.

The good news is that, over reduced schemes, the 3 versions (4.2.6–9) are
equivalent to each other and also to other natural conditions. The common
theme is that we need to understand only the codimension 1 behavior of f :
(X,D)→ S .

Theorem-Definition 4.3 (Well-defined families of pairs I). Let S be a reduced
scheme. A family of pairs f : (X,D)→ S satisfying (4.2.2–4) is well defined if
the following equivalent conditions hold.
(4.3.1) The family has well-defined Weil-divisor pull-backs (4.2.8).
(4.3.2) The family has well-defined specializations (4.2.9).
(4.3.3) D is a relative, generically Cartier divisor (4.2.7).
(4.3.4) D→ S is flat at the generic points of Xs ∩ Supp D for every s ∈ S .
If f is projective then these are also equivalent to
(4.3.5) s 7→ deg(Xs ∩ D) is a locally constant function on S .

The above theorem is proved in (4.25). The next result says that, if S is nor-
mal, then the conditions (4.2.2–4) imply that f : (X,D)→ S is well defined. It
follows from (4.21) by setting W := Sing S .
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Theorem 4.4. Ramanujam (1963); Samuel (1962) Let S be a normal scheme,
f : X → S a smooth morphism and D a Weil divisor on X. Assume that D does
not contain any irreducible component of a fiber. Then D is a Cartier divisor,
hence a relative Cartier divisor.

Over non-normal base schemes it is usually easy to check well-definedness
using the normalization.

Corollary 4.5. Let S be a reduced scheme with normalization S̄ → S . Let
f : (X,D) → S be a projective family of pairs satisfying the assumptions
(4.2.2–4) and

f̄ :
(
X̄, D̄

)
:= (X,D) ×S S̄ → S̄

the corresponding family over S̄ . Then D is a relative, generically Cartier
divisor in either of the following cases.
(4.5.1) τ∗Wdiv(D) = τ̄∗Wdiv(D̄) = τ̄[∗](D̄) for every geometric point τ : {s} → S

and for every lifting τ̄ : {s} → S̄ .
(4.5.2) S is weakly normal and τ̄∗Wdiv(D̄) = τ̄[∗](D̄) is independent of the lifting
τ̄ : s→ S̄ for every geometric point τ : {s} → S .

Proof Note first that D̄ is a relative, generically Cartier divisor by (4.4), so
τ̄∗Wdiv(D̄) = τ̄[∗](D̄).

Let g ∈ S be a generic point. Then (D̄)g = Dg and deg τ̄∗Wdiv(D̄) = deg(D̄)g

by (4.3) applied to f̄ :
(
X̄, D̄

)
→ S̄ . Together with (1) this shows that (4.3.5)

holds for f : (X,D)→ S .
For (2), we explain in (4.25) how to reduce everything to the special case

when f has relative dimension 1. Then (10.64) shows that D is flat over S . �

Next we turn to the case that we are really interested in, when the boundary
∆ is a Q or R-divisor. The right choice is to work with the relative, generically
Cartier condition.

Definition 4.6 (Divisorial pull-back). Let S be a scheme, f : X → S a mor-
phism and ∆ a Z,Q or R-divisor on X. For q : W → S , consider the fiber
product as in (4.2.5). We define relatively, generically Cartier divisors and
their divisorial pull-backs, denoted by ∆W , in three steps as follows.

(4.6.1) ∆ is a relatively, generically Cartier Z-divisor if it is Cartier at the
generic points of Xs ∩ Supp D for every s ∈ S . ∆W is then defined as in (4.2.7).

(4.6.2) ∆ is a relatively, generically Q-Cartier Q-divisor iff m∆ is a relatively,
generically Cartier Z-divisor for some m > 0. Then we set ∆W := 1

m
(
(m∆)W

)
.

This is independent of m, but there is a subtle point. We prove in (4.39) that,
if the characteristic is 0, then a Z-divisor is relatively, generically Q-Cartier
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iff it is relatively, generically Cartier. So we can choose m to be the common
denominator of the coefficients in ∆. However, this is not true in positive char-
acteristic; see (8.75–8.76).

(4.6.3) ∆ is a relatively, generically R-Cartier R-divisor iff one can write ∆ =∑
ci∆i where the ∆i are relatively, generically Q-Cartier Q-divisors. Then we

set ∆W :=
∑

ci(∆i)W .
This is independent of the choice of ci and ∆i. We may assume that the ci

are Q-linearly independent. Then ∆ is relatively, generically R-Cartier iff the
∆i are relatively, generically Q-Cartier by (11.43.2).

Let f : (X,∆) → S be a well-defined family of pairs as in (4.3). In (3.1)
we gave 7 equivalent definitions of locally stable families of varieties. Some
of these extend to families of pairs. See (2.41) for some negative examples and
Section 8.2 for some solutions.

Definition–Theorem 4.7. Let S be a reduced scheme, f : X → S a flat mor-
phism of finite type and f : (X,∆)→ S a well-defined family of pairs. Assume
that (Xs,∆s) is slc for every s ∈ S . Then f : (X,∆)→ S is locally stable or slc
if the following equivalent conditions hold.

(4.7.1) KX/S + ∆ is R-Cartier.

(4.7.2) For every spectrum of a DVR T and morphism q : T → S , the pull-
back fT : (XT ,∆T )→ T is locally stable, as in (2.3).

(4.7.3) There is a closed subset Z ⊂ X such that codim(Z ∩ Xs, Xs) ≥ 3 for
every s ∈ S and f |X\Z : (X \ Z)→ S satisfies the above (1–2).

Such a family is called stable if, in addition, KX/S + ∆ is f -ample.

Proof The arguments are essentially the same as in (3.37). It is clear that
(4.7.1)⇒ (4.7.2). If (4.7.2) holds then KXT + ∆T is R-Cartier for every q : T →
S . Thus KX/S + ∆ is R-Cartier by (4.35).

Finally, if any of the properties (4.7.1–2) holds for X, then it also holds for
X \ Z. Using (4.7.2) both for X and for X \ Z, reduces us to checking (4.7.3)⇒
(4.7.2) when S is the spectrum of a DVR; which is (2.7). �

Let f :
(
X,∆

)
→ S be a family of pairs. It turns out that, starting in relative

dimension 3, the set of points
{
s ∈ S :

(
Xs,∆s

)
is semi-log-canonical

}
is neither

open nor closed; see (3.41) for an example. Thus the strongest result one can
hope for is the following.

Theorem 4.8 (Local stability is representable). Let S be a reduced, excellent
scheme over a field of characteristic 0 and f :

(
X,∆

)
→ S a well-defined,
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projective family of pairs. Assume that ∆ is an effective, relative, generically R-
Cartier divisor. Then there is a locally closed partial decomposition j : S ls →

S such that the following holds.
Let W be any reduced scheme and q : W → S a morphism. Then the family

obtained by base change fW :
(
XW ,∆W

)
→ W is locally stable iff q factors as

q : W → S ls → S .

A stable morphism is locally stable and stability is an open condition for a
locally stable morphism. Thus (4.8) implies the following.

Corollary 4.9 (Stability is representable). Using the notation and assumptions
as in (4.8), there is a locally closed partial decomposition j : S stab → S such
that the following holds.

Let W be any reduced scheme and q : W → S a morphism. Then the family
obtained by base change fW :

(
XW ,∆W

)
→ W is stable iff q factors as q : W →

S stab → S . �

4.2 Examples

We start with a series of examples related to (4.3).

Example 4.10. Let S = (xy = 0) ⊂ A2 and X = (xy = 0) ⊂ A3. Consider the
divisors Dx :=

(
y = z − 1 = 0

)
and Dy :=

(
x = z + 1 = 0

)
. We get a family

f :
(
X,Dx + Dy

)
→ S that satisfies the assumptions (4.2.2–4).

We compute the ‘fiber’ of the above family over the origin in 3 different
ways and get 3 different results.

First restrict the family to the x-axis. The pull back of X becomes the plane
A2

xz. The divisor Dx pulls back to (z−1 = 0), but the pull back of the ideal sheaf
of Dy is the maximal ideal (x, z + 1). It has no divisorial part, so restriction to
the x-axis gives the pair

(
A2

xz, (z − 1 = 0)
)
→ A1

x. Similarly, restriction to the
y-axis gives the pair

(
A2

yz, (z + 1 = 0)
)
→ A1

y . If we restrict these to the origin,
we get

(
A1

z , (z − 1 = 0)
)

and
(
A1

z , (z + 1 = 0)
)
.

Finally, if we restrict to the origin of S in one step then we get the pair(
A1

z , (z − 1 = 0) + (z + 1 = 0)
)
. Thus we have 3 different pairs that can claim to

be the fiber of f :
(
X,Dx + Dy

)
→ S over the origin.

In the above example the problem is visibly set-theoretic, but there can be
problems even when the set theory works out.

Example 4.11. Set C := (xy(x−y) = 0) ⊂ A2
xy and X := (xy(x−y) = 0) ⊂ A3

xyz.
For any c ∈ k consider the divisor

Dc := (x = z = 0) + (y = z = 0) + (x − y = z − cx = 0).
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The pull-back of Dc to any of the irreducible components of X is Cartier, it
intersects the central fiber at the origin of the z-axis and with multiplicity 1.
Nonetheless, we claim that Dc is Cartier only for c = 0.

Indeed, assume that h(x, y, z) = 0 is a local equation of Dc. Then h(x, 0, z) =

0 is a local equation of the x-axis and h(0, y, z) = 0 is a local equation of the
y-axis. Thus h = az + (higher terms). Restricting to the (x − y = 0) plane we
get that c = 0.

Note also that if char k = 0 and c , 0 then no multiple of Dc is a Cartier
divisor. To see this note that if f (x, y, z) = 0 is a local defining equation of mDc

on X then ∂m−1 f /∂zm−1 vanishes on Dc. Its restriction to the z-axis vanishes at
the origin with multiplicity 1. We proved above that this is not possible.

However, if char k = p > 0, then zp − cpxyp−1 = 0 shows that pDc is a
Cartier divisor.

Example 4.12. Consider the cusp C := (x2 = y3) ⊂ A2
xy and the trivial curve

family Y := C × A1
z → C. Let D ⊂ Y be the Cartier divisor given by the

equation y = z2. Then D → C is flat of degree 2. Furthermore, D is reducible
with irreducible components D± := image of t 7→ (t3, t2,±t).

Note that D± ' A1
t and the projections D± → C corresponds to the ring

extension k[t3, t2] ↪→ k[t]. Thus the projections D± → C are not flat and the
Weil-divisorial fiber of D± → C over the origin has length 2.

However, the Weil-divisorial fiber of D = D+ ∪ D− → C over the origin is
again the point (0, 0, 0) with multiplicity 2.

Arguing as in (4.11) shows that the D± are not Q-Cartier in characteristic 0,
but pD+ =

(
xy(p−3)/2 = zp) shows that it is Q-Cartier in characteristic p > 0.

The next example shows the importance of the Mumford condition.

Example 4.13. Set X = (x2 − y2 = u2 − v2) ⊂ A4, D = (x − u = y − v =

0) ∪ (x + u = y + v = 0) and f : (X,D) → A2
uv the coordinate projection. The

fiber Xuv is a pair of intersecting lines if u2 = v2 and a smooth conic otherwise.
The irreducible components of D intersect only at the origin and D is not

Cartier there. The divisorial fiber Duv consists of 2 distinct smooth points if
(u, v) , (0, 0), but D00 is the origin with multiplicity 3.

Let Lc be the line (v = cu) for some c , ±1. Restricting the family to Lc we
get Xc = (x2 − y2 = (1 − c2)u2) ⊂ A3 and the divisor becomes Dc = (x − u =

y − cu = 0) ∪ (x + u = y + cu = 0). Observe that Dc is a Cartier divisor
with defining equation cx = y. (Note that base change does not commute with
union, so D ×A2 Lc has an embedded point at the origin.)

Thus although D is not Cartier at the origin, after base change to a general
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line we get a Cartier divisor. For all of these base changes, Dc has multiplicity
2 at the origin. (These also hold after base change to any smooth curve.)

However, the origin is a singular point of the fiber. If we restrict Dc to the
fiber over the origin, the resulting scheme structure varies with c.

This would be a very difficult problem to deal with, but for a stable pair
(X,∆) we are in a better situation since the irreducible components of ∆ are not
contained in Sing X.

Example 4.14. Let B be a smooth projective curve of genus ≥ 1 with an
involution σ and b1, b2 ∈ B a pair of points interchanged by σ. Let C′ be
another smooth curve with two points c′1, c

′
2 ∈ C′. Start with the trivial family

(B × C′, {b1} × C′ + {b2} × C′) → C′ and then identify c′1 ∼ c′2 and (b, c′1) ∼
(σ(b), c′2) for every b ∈ B. We get an étale locally trivial stable morphism
(S ,D1 + D2) → C. Here C is a nodal curve with node τ : {c} → C. The
fiber over the node is

(
B, [b1] + [b2]

)
. However, the fiber of each Di over c is

[b1] + [b2], hence

τ∗Wdiv(D1) + τ∗Wdiv(D1) =
(
B, 2[b1] + 2[b2]

)
,

(
B, [b1] + [b2]

)
= τ∗Wdiv(D1 + D2).

The next examples discuss the variation of theQ-Cartier property in families
of divisors. Related positive results are in Section 4.6.

Example 4.15. Let C ⊂ P2 be a smooth cubic curve and S C ⊂ P
3 the cone over

it. For p ∈ C let Lp ⊂ S C denote the ruling over p. Note that Lp is Q-Cartier
iff p is a torsion point, that is, 3m[p] ∼ OC(m) for some m > 0. The latter is a
countable dense subset of the moduli space of the lines Chow1,1(S C) ' C.

In the above example the surface is notQ-factorial and the curve Lp is some-
timesQ-Cartier, sometimes not. Next we give a similar example of a flat family
of lc surfaces S → B such that {b : S b is Q-factorial} ⊂ B is a countable set of
points. Thus being Q-factorial is not a constructible condition.

Let C ⊂ P2 be a smooth cubic curve. Pick 11 points P1, . . . , P11 ∈ C and set
P12 = −(P1 + · · · + P11). Then there is a quartic curve D such that C ∩ D =

P1 + · · · + P12. Thus the linear system
∣∣∣OP2 (4)(−P1 − · · · − P12)

∣∣∣ blows up the
points Pi and contracts C. Its image is a degree 4 surface S = S (P1, . . . , P11)
in P3 with a single simple elliptic singularity. If C = ( f3(x, y, z) = 0) and
D = ( f4(x, y, z) = 0) then

S '
(
f3(x, y, z)w + f4(x, y, z) = 0

)
⊂ P3.

At the point (x = y = z = 0) the singularity of S is analytically isomorphic to
the cone S C and S is smooth elsewhere iff the points P1, . . . , P12 are distinct. If
this holds then the class group of S is generated by the image L of a line in P2
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and the images E1, . . . , E12 of the 12 exceptional curves. They satisfy a single
relation 3L = E1 + · · · + E12. Note that Ei is Q-Cartier iff Pi is a torsion point.

If we vary P1, . . . , P11 ∈ C, we get a flat family of lc surfaces parametrized
by π : S→ C11 \ (diagonals), with universal divisors Ei ⊂ S. We see that
(4.15.1) Ei(P1, . . . , P11) is Q-Cartier iff Pi is a torsion point and
(4.15.2) S (P1, . . . , P11) is Q-factorial iff Pi is a torsion point for every i.

4.3 Families of divisors II
At least 3 different notions of effective divisors are commonly used in algebraic
geometry, but our discussions show that other variants are also necessary.

4.16 (Five notions of effective divisors). Let X be an arbitrary scheme.
(4.16.1) An effective Cartier divisor is a subscheme D ⊂ X such that, for ev-

ery x ∈ D, the ideal sheaf OX(−D) is locally generated by a non-zerodivi-
sor sx ∈ Ox,X , called a local equation of D.

(4.16.2) A divisorial subscheme is a subscheme D ⊂ X such that OD has no
embedded points and Supp D has pure codimension 1 in X.

(4.16.3) A divisorial subscheme D is called an effective, generically Cartier
divisor if it is Cartier at its generic points. These are called almost Cartier
divisors in Hartshorne (1986); Hartshorne and Polini (2015).

(4.16.4) A divisorial subscheme D is called an effective Mumford divisor if X
is regular at generic points of D. More generally, D is Mumford along Z,
if X and Z are both regular at every generic point of Z ∩ Supp D.

(4.16.5) A Weil divisor is a formal, finite linear combination D =
∑

i miDi

where mi ∈ Z and the Di are integral subschemes of codimension 1 in X.
We say that D is effective if mi ≥ 0 for every i.

If A is an abelian group then a Weil A-divisor is a formal, finite linear com-
bination D =

∑
i aiDi where ai ∈ A. We will only use the cases A = Z,Q,R.

Thus Weil Z-divisor = traditional Weil divisor; we use the terminology ‘Weil
Z-divisor’ if the coefficient group is not clear. (A Weil Z-divisor is sometimes
called an integral Weil divisor, but the latter could also mean the Weil divisor
corresponding to an integral subscheme of codimension 1.)

Note that usually divisorial subschemes and Weil divisors are used only
when X is irreducible or at least pure dimensional, but the definition makes
sense in general.

If X is smooth then the 5 variants are equivalent to each other, but in general
they are different.

Usually we think of Cartier divisor as the most restrictive notion. If X is S 2

then every effective Cartier divisor is a divisorial subscheme. However, if X is
not S 2, then there are Cartier divisors D ⊂ X such that D is not a divisorial
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subscheme, and the natural map from Cartier divisors to divisorial subschemes
is not injective; see (4.16.9). These are good to keep in mind, but they will not
cause problems for us.

Let W ⊂ X be a closed subscheme. We can associate to it both a divisorial
subscheme and a Weil divisor by the rules

Div(W) := pure W := Spec
(
OW/(torsion)

)
, and

Weil(W) :=
∑

i lengthgi

(
Ogi,W

)
· [Di],

(4.16.6)

where in the first case we take the quotient by the subsheaf of those sec-
tions whose support has codimension ≥ 2 in X (see also (10.1)). In the second
case Di ⊂ Supp W are the irreducible components of codimension 1 in X with
generic points gi ∈ Di. In particular, this associates an effective Weil divisor to
any effective Cartier divisor or divisorial subscheme.

Thus, if X is S 2 then we have the basic relations among effective divisors(
Cartier
divisors

)
⊂

(
Mumford
divisors

)
⊂

(
generically

Cartier divisors

)
⊂

(
divisorial

subschemes

)
.

Assume next that X is regular at a codimension 1 point g ∈ X. Then Og,X is
a DVR, hence an ideal in it is uniquely determined by its colength. Thus we
have the following.

Claim 4.16.7. If X is a normal scheme then 4 of the notions agree for effective
divisors(

Mumford
divisors

)
=

(
generically

Cartier divisors

)
=

(
divisorial

subschemes

)
=

(
Weil

divisors

)
.

We are mainly interested in slc pairs (X,∆), thus the underlying schemes X are
deminormal. Fortunately, X is smooth at the generic points of ∆. Thus, for our
purposes, we can always imagine that the identifications (4.16.7) hold.

Convention 4.16.8. Let X be a scheme and W ⊂ X a subscheme. Assume that X
is regular at all generic points of W. Then we will frequently identify Div(W),
the divisorial subscheme associated to W and Weil(W), the Weil divisor asso-
ciated to W. We denote this common object by [W].

We can thus usually harmlessly identify divisorial subschemes and Weil di-
visors. However—and this is one of the basic difficulties of the theory—it is
quite problematic to keep the identification between families of divisorial sub-
schemes and families of Weil divisors.

Example 4.16.9. Let S ⊂ A4 be the union of the planes (x1 = x2 = 0) and
(x3 = x4 = 0). For c , 0 consider the Cartier divisors Dc := (x1 + cx3 = 0).
For any c, the corresponding divisorial subscheme is the union of 2 lines (x1 =
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x2 = x3 = 0) ∪ (x1 = x3 = x4 = 0), hence independent of c. However the Dc

are different Cartier divisors for different c ∈ k. Indeed, (x1 + c′x3)/(x1 + cx3)
is a non-regular rational function that is constant c′/c on the first plane and 1
on the second. Note that S is seminormal and the Dc are Mumford.

Corresponding to the 5 notions of divisors, there are 5 notions of families.
We discuss 4 of these next, leaving Mumford divisors to Section 4.8.

Relative Weil divisors

Definition 4.17. Let f : X → S be a morphism whose fibers have pure dimen-
sion n. A Weil divisor W =

∑
miWi is called a relative Weil divisor if the fibers

of f |Wi : Wi → f (Wi) have pure dimension n−1 for every i.

We are interested in defining the divisorial fibers of W → S . A typical
example is (4.13), where the multiplicity of the scheme-theoretic fiber jumps
over the origin. It is, however, quite natural to say that the ‘correct’ fiber is
the origin with multiplicity 2, the only problem we have is that scheme theory
miscounts the multiplicity. The following theorem, proved in (Kollár, 1996,
3.17), says that this is indeed frequently the case.

Theorem 4.18. Let S be a normal scheme, f : X → S a projective morphism
and Z ⊂ X a closed subscheme such that f |Z : Z → S has pure relative di-
mension m. Then there is a section σZ : S → Chowm(X/S ) with the following
properties.
(4.18.1) Let g ∈ S be the generic point. Then σZ(g) = [Zg], the cycle associ-

ated to the generic fiber of f |Z : Z → S as in (3.8).
(4.18.2) Supp

(
σZ(s)

)
= Supp(Zs) for every s ∈ S .

(4.18.3) σZ(s) = [Zs] if f |Z is flat at all generic points of Zs.
(4.18.4) s 7→

(
σZ(s) · Lm)

is a locally constant function of s ∈ S , for any line
bundle L on X. �

Example (4.10) shows that (4.18) does not hold if S is only seminormal. The
notion of well-defined families of algebraic cycles is designed to avoid similar
problems, leading to the definition of the Cayley-Chow functor; see (Kollár,
1996, Sec.I.3–4) for details.

Flat families of divisorial subschemes

Let X → S be a morphism and D ⊂ X a subscheme. If Supp D does not contain
any irreducible component of a fiber Xs, then OD∩Xs/(torsion) is (the structure
sheaf of) a divisorial subscheme of Xs. This notion, however, frequently does
not have good continuity properties, as illustrated by (4.13).

We would like to have a notion of flat families of divisorial subschemes,
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where both the structure sheaf OD and the ideal sheaf OX(−D) are ‘well be-
haved.’ This seems possible only if X → S is ‘well behaved,’ but then the two
aspects turn out to be equivalent.

Definition–Lemma 4.19. Let f : X → S be a flat morphism of pure rela-
tive dimension n with S 2 fibers and D ⊂ X a closed subscheme of relative
dimension n−1 over S . We say that f |D : D → S is a flat family of divisorial
subschemes if the following equivalent conditions hold.
(4.19.1) f |D : D→ S is flat with pure fibers of dimension n−1 (10.1).
(4.19.2) OX(−D) is flat over S with S 2 fibers.
If f is projective and pure Ds denotes the largest pure subscheme as in (10.1),
these are further equivalent to:
(4.19.3) s 7→ χ

(
Xs,Opure Ds (∗)

)
is locally constant on S .

(4.19.4) s 7→ χ
(
Xs,OXs (− pure Ds)(∗)

)
is locally constant on S .

Proof We have a surjection OX → OD and if both of these sheaves are flat
then so is the kernel OX(−D). If the kernel is flat then OXs (−Ds) ' OX(−D)|Xs

is also the kernel of OXs → ODs . Since OXs is S 2, we see that OXs (−Ds) is S 2

iff ODs is pure of dimension n−1.
Conversely, assume (2). For any T → S the pull-back map q∗T OX(−D) →

q∗T OX is an isomorphism over XT \ DT . Since OX(−D) is flat with S 2 fibers,
q∗T OX(−D) does not have any sections supported on DT . Thus the pulled-back
sequence

0→ q∗T OX(−D)→ q∗T OX → q∗T OD → 0

is exact. Therefore TorS
1 (OT ,OD) = 0 hence OD is flat over S and we already

noted that then it has pure fibers of dimension n−1.
The last 2 claims are proved as in (2.75). �

Relative Cartier divisors

Definition–Lemma 4.20. Let f : X → S be a flat morphism with S 2 fibers,
x ∈ X a point and s := f (x). A subscheme D ⊂ X is a relative Cartier divisor
at x ∈ X if the following equivalent conditions hold.
(4.20.1) D is flat over S at x and Ds := D|Xs is a Cartier divisor on Xs at x.
(4.20.2) D is a Cartier divisor on X at x and a local equation gx ∈ Ox,X of D

restricts to a non-zerodivisor on the fiber Xs.
(4.20.3) D is a Cartier divisor on X at x and it does not contain any irreducible

component of Xs that passes through x.
If these hold for all x ∈ D then D is a relative Cartier divisor. If f : X → S
is also proper then the functor of relative Cartier divisors is represented by an
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open subscheme of the Hilbert scheme CDiv(X/S ) ⊂ Hilb(X/S ); see (Kollár,
1996, I.1.13) for the easy details.

If (2) holds then D is flat by (4.19). The other nontrivial claim is that (1)
implies that D is a Cartier divisor on X at x. We may assume that (x ∈ X) is
local. A defining equation gs of Ds lifts to an equation g of D. We have the
exact sequence

0→ ID/(g)→ OX/(g)→ OD → 0.

Here OX/(g) and OD are both flat, hence so is ID/(g). Restricting to Xs we get

0→
(
ID/(g)

)
s → OXs/(gs)

'
−→ ODs → 0.

Thus ID/(g) = 0 by Nakayama’s lemma and g is a defining equation of D. �

Relative Cartier divisors form a very well behaved class, but in applications
we frequently have to handle 2 problems. It is not always easy to see which
divisors are Cartier, and we also need to deal with divisors that are not Cartier.

On a smooth variety every divisor is Cartier, thus if X itself is smooth then a
divisor D is relatively Cartier iff its support does not contain any of the fibers.
In the relative setting, we usually focus on properties of the morphism f . Thus
we would like to have similar results for smooth morphisms. (See (4.36) and
(4.41) for closely related results.)

Theorem 4.21. Let f : X → S be a smooth morphism and W ⊂ S a closed
subset such that depthW S ≥ 2. Let D◦ be a Cartier divisor on X \ f −1(W)
and D ⊂ X its closure. Assume that Supp D does not contain any irreducible
component of any fiber. Then D is Cartier, hence a relative Cartier divisor.

Proof Assume first that f has relative dimension 1. Then f |D : D → S is
quasi-finite, so f |D is flat by (10.63), so D is a Cartier divisor by (4.20.1).

For the general case, pick a closed point x ∈ D. Since f is smooth, locally it
factors through an étale morphism τ : (x, X) →

(
(0, s),An

S
)
. Composing with

any linear projection we locally factor f as

f : (x, X)
g
→

(
(0, s),An−1

S
)
→ S ,

where g is smooth of relative dimension 1. If D does not contain the fiber
of g passing through x, then D is a Cartier divisor by the already discussed
1-dimensional case.

To find such a g, assume first that k(s) is infinite. Let L ⊂ An
s be a general

line through the origin. Then π−1
s (L) 1 Ds. Thus if we choose the projection

An
S → A

n−1
S to have kernel L over s, then the argument proves that D is a

Cartier divisor at x.
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If k(s) is finite then consider the trivial lifting f (1) : X×A1 → S ×A1. By the
previous argument D × A1 is a Cartier divisor at the generic point of {x} × A1,
hence D is a Cartier divisor at x by (2.92.1). �

Examples 4.22. We give 2 examples showing that in (4.21) we do need depth
assumptions on S .

Set S n := Spec k[x, y]/(xy) and Xn = Spec k[x, y, z]/(xy). Then (x, z) defines
a Weil divisor which is not Cartier.

Set S c := Spec k[x2, x3] and Xc = Spec k[x2, x3, y]. Then (y2 − x2, y3 − x3)
defines a Weil divisor which is not Cartier.

Lemma 4.23. Let X be a pure dimensional, S 2 scheme, D ⊂ X a Cartier
divisor and W ⊂ D a subscheme such that codimD W ≥ 2. Let L be a rank 1,
torsion-free sheaf on X that is locally free along D \ W. Let s be a section of
L such that s|D\W is nowhere zero. Then L is trivial and s is nowhere zero in a
neighborhood of D.

Proof The section s gives an exact sequence

0→ OX
s
→ L→ Q→ 0.

By (10.7) every associated prime of Q has codimension 1 in X. Thus D ∩
Supp Q has codimension 1 in D. Therefore D is disjoint from Supp Q and L is
trivial on X \ Supp Q. �

Relative generically Cartier divisors

This is the most important class for moduli purposes.

Definition 4.24. Let f : X → S be a morphism. A subscheme D ⊂ X is a
relative, generically Cartier, effective divisor or a family of generically Cartier,
effective divisors over S if there is an open subset U ⊂ X such that
(4.24.1) f is flat over U with S 2 fibers,
(4.24.2) codimXs (Xs \ U) ≥ 2 for every s ∈ S ,
(4.24.3) D|U is a relative Cartier divisor (4.20), and
(4.24.4) D is the closure of D|U .
If U ⊂ X denotes the largest open set with these properties then Z := X \ U is
the non-Cartier locus of D.

Thus OX(mD) is a mostly flat family of divisorial sheaves on X (3.28) for
any m ∈ Z. Conversely, if L is a mostly flat family of divisorial sheaves on X
and h a global section of it that does not vanish on any irreducible component
of any fiber, then (h = 0) is a family of generically Cartier, effective divisors
over S .
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4.25 (Proof of 4.3). All 5 conditions are local on S , the first 4 are local on X.
All of them can be checked on a general relative hyperplane section of X; see
(4.2.6), (4.26) and (10.56).

Thus we may assume that X → S has relative dimension 1, hence f is
smooth along Supp D. We view D as a divisorial subscheme of X. After an
étale base change we may assume that D→ S is finite.

Applying (3.20) to F := f∗OD (with X = S ) we see that (4.3.5) holds iff OD

is flat over S . By (4.20) the latter holds iff D a relative Cartier divisor. Thus
(4.3.3)⇔ (4.3.4)⇔ (4.3.5).

As we noted in (4.24), these imply (4.3.1), and (4.3.1) ⇒(4.3.2) is clear. It
remains to show that (4.3.2)⇒(4.3.4).

To see this, fix a point τ : {s} → S and let T be the spectrum of a DVR and
h : T → S a morphism that maps the closed point to τ(s) and the generic point
of T to a generic point g ∈ S . Then h∗WdivD is flat over T of degree degk(g) ODg .
Thus if τ̄ : s̄→ T is a lifting of τ and (4.3.2) holds, then

deg τ∗WdivD = deg τ̄∗Wdivh∗WdivD = degk(g) ODg .

Thus D→ S is flat by (3.20). �

The following Bertini-type results are frequently useful. The first claim is
an immediate consequence of (10.56) and the second follows from (10.20).

Proposition 4.26. Let (0 ∈ S ) be a local scheme, X ⊂ PN
S a quasi-projective

S -scheme with fibers of pure dimension ≥ 2 and D ⊂ X a relative divisorial
subscheme. Then, for general H ∈ |OX(1)|,

(4.26.1) D is a generically Cartier family of divisors on X iff D|H is a generi-
cally Cartier family of divisors on H, and

(4.26.2) OX(D)|H ' OH(D|H). �

Representability theorems

4.27 (Representability of the generically Cartier condition). There are 2 ver-
sions of this question. Let f : X → S be a flat, projective morphism and D ⊂ X
a divisorial subscheme.

The traditional problem is to study those morphisms q : W → S for which
q∗D is a generically Cartier divisor on XW . This gives a representable functor.
This will be used during the construction of the moduli of Mumford divisors,
so we treat it there (4.77).

From the point of view of Section 4.1, it may seem more natural to study
those morphisms q : W → S for which the Weil-divisor pull-back q∗WdivD is a
generically Cartier divisor on XW . This, however, does not give a representable
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functor; see (4.13). This variant is actually not well posed, since the Weil-
divisor pull-back is not functorial in general.

Fortunately, it turns out to be relatively easy to ensure the generically Cartier
condition. So we focus on studying additional properties of such families.

As a first problem, we start with a family of generically Cartier divisors, and
study those morphisms q : W → S for which the generically Cartier pull-back
DW is flat or relatively Cartier.

The first result is a reformulation of (3.29) and (3.30).

Theorem 4.28. Let S be a scheme, f : X → S a flat, projective morphism
with S 2 fibers and D ⊂ X a family of generically Cartier divisors. Then there
is a locally closed decomposition jH−flat : S H−flat → S (resp. a locally closed
partial decomposition jcar : S car → S ), such that, for every morphism q :
W → S , the divisorial pull-back DW = q[∗]D is flat (resp. Cartier) iff q factors
through S H−flat (resp. S car). �

This leads to a valuative criterion for Cartier divisors in (4.34).
As we saw in (4.15), the set of fibers where a divisor is Q-Cartier need

not be constructible. So the straightforward Q-Cartier version of (4.28) fails.
However, this failure of constructibility is the only obstruction.

Proposition 4.29. Let S be a reduced scheme, f : X → S a flat, projective
morphism with S 2 fibers and D a family of generically Q-Cartier (resp. R-
Cartier) divisors on X. Let S ∗ ⊂ S be a constructible subset. Assume that Ds

is Q-Cartier (resp. R-Cartier) for every point s ∈ S ∗.
Then there is a locally closed partial decomposition jqcar : S qcar → S (resp.

jrcar : S rcar → S ) such that the following holds.

(4.29.1) Let q : W → S be a reduced S -scheme such that q(W) ⊂ S ∗. Then the
divisorial pull-back DW ⊂ XW is Q-Cartier (resp. R-Cartier) iff q factors
though S qcar (resp. S rcar).

Proof We may assume that S ∗ is dense in S and start with the Q-Cartier case.
By (4.28) there are maximal open subsets S car

1 ⊂ S car
2 ⊂ · · · such that r! · D is

Cartier over S car
r . By assumption S car

r is dense for r � 1 and the union of all
of them is the open stratum of S qcar → S . Noetherian induction then gives the
other strata.

In the R-Cartier case we write D =
∑

diDi where the Di are Q-divisors and
the di ∈ R are linearly independent over Q. We already have locally closed
partial decompositions jqcar

i : S qcar
i → S using Di, and jrcar : S rcar → S is their

fiber product over S using (11.43.2). �
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4.4 Valuative criteria

We aim to show that various properties of morphisms can be checked after base
change to 1-dimensional, regular schemes, equivalently, to spectra of DVR’s.
We aim to use as few DVR’s as possible.

Definition 4.30. A morphism q : (x, X) → (y,Y) of local schemes is local
if q(x) = y. A morphism of schemes q : X → Y is component-wise domi-
nant if every generic point of X is mapped to a generic point of Y . If X,Y are
irreducible, then component-wise dominant is the same as dominant.

We are especially interested in local, component-wise dominant morphisms
q : (t,T ) → (s, S ) from the spectrum of a DVR to S . To construct these, let
S 1 ⊂ S be an irreducible component and π : BsS 1 → S 1 the blow-up of s. The
exceptional divisor has pure codimension 1. Let η ∈ Ex(π) be a generic point
and Oη its local ring. If S is excellent, we can take T to be the normalization of
Spec Oη. Then (η,T )→ (s, S 1) is essentially of finite type. In general, we need
to take T to be one of the irreducible components of the normalization of the
completion of Oη. Then T is excellent, but q is not essentially of finite type.

Lemma 4.31. Let (s, S ) be a local scheme and g : S ′ → S a locally closed
partial decomposition (10.83). Then g is an isomorphism iff every local, com-
ponent-wise dominant morphism q : (t,T ) → (s, S ) from the spectrum of an
excellent DVR to S factors through g.

Proof We see that g is proper and dominant by (10.78.1), hence an isomor-
phism by (10.83.2). �

Theorem 4.32 (Valuative criterion for divisorial sheaves). Let (s, S ) be a re-
duced, local scheme and f : X → S a flat morphism of finite type with S 2

fibers. Let L be a mostly flat family of divisorial sheaves on X (3.28). Assume
that either f is projective or S is excellent. The following are equivalent.

(4.32.1) L is flat over S with S 2 fibers.

(4.32.2) For every local, component-wise dominant morphism q : (t,T ) →
(s, S ) from the spectrum of an excellent DVR to S , the hull pull-back (3.27)
LH

T is flat over T with S 2 fibers.

Proof It is clear that (1) implies (2). For the converse, we use the theory of
hulls and husks from Chapter 9.

Assume first that f is projective. Consider the locally closed decomposition
j : Hull(L) → S given by (9.40). By assumption every q : (t,T ) → (s, S )
factors through j, so j is an isomorphism by (4.31). Thus L is its own hull,
hence it is flat over S with S 2 fibers.
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This is the main case that we use. The argument in the non-projective case
is similar, but relies on (9.44).

Pick any point x ∈ X and its image s := f (x). Let Ŝ denote the completion
of S at s; it is reduced since S is excellent. Then L is flat over S with S 2 fibers
at x iff this holds after base change to Ŝ . Thus it is enough to show that (2)⇒
(1) whenever s ∈ S is complete, in which case the hull of L is represented by a
subscheme i : S u ↪→ S for local, Artinian S -algebras by (9.44).

Let (R,m) be a complete DVR and q : Spec R → (s, S ) a local morphism.
By assumption (2), the hull pull-back LH

R is flat over R with S 2 fibers. Thus the
same holds for Spec(R/mn) for every n, hence the restriction of q to Spec(R/mn)
factors through i : S u ↪→ S . Since this holds for every n ∈ N, q factors through
i : S u ↪→ S . We conclude that S u = S . So, as before, L is its own hull, hence it
is flat over S with S 2 fibers. �

Putting together (2.79), (2.82) and (4.32) gives the following higher dimen-
sional version.

Corollary 4.33. Let f : (X,∆)→ S be a locally stable morphism to a reduced
scheme over a field of characteristic 0. Let D be a relative Mumford Z-divisor
(4.68). Assume that either f is projective or S is excellent. Then, in any of the
cases (2.79.1–8) and (2.82),
(4.33.1) OX(D) is flat over S with S 2 fibers, and
(4.33.2) OX(D)|Xs ' OXs (Ds) for s ∈ S . �

We can restate (4.32) for Cartier divisors as follows.

Corollary 4.34 (Valuative criterion for Cartier divisors). Let (s, S ) be a re-
duced, local scheme, f : X → S a flat morphism of finite type with S 2 fibers
and D a relative, generically Cartier divisor on X. Assume that either f is
projective or S is excellent. Then following are equivalent.
(4.34.1) D is a relative Cartier divisor.
(4.34.2) For every local, component-wise dominant morphism q : (t,T ) →

(s, S ) from the spectrum of an excellent DVR to S , the divisorial pull-back
DT ⊂ XT is a Cartier divisor. �

Reduction to the Cartier case as in (4.29) gives the following.

Corollary 4.35 (Valuative criterion for Q- and R-Cartier divisors). Let (s, S )
be a reduced, local scheme, f : X → S a flat morphism of finite type with
S 2 fibers and D a family of generically Q-Cartier (resp. R-Cartier) divisors
on X. Assume that either f is projective or S is excellent. Then following are
equivalent.
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(4.35.1) D is a Q-Cartier (resp. R-Cartier) divisor.
(4.35.2) For every local, component-wise dominant morphism q : (t,T ) →

(s, S ) from the spectrum of an excellent DVR to S , the divisorial pull-back
DT is Q-Cartier (resp. R-Cartier). �

The following two consequences of (4.34) are important; see (4.41.1) for a
more direct proof of the first one.

Corollary 4.36. Let S be a reduced scheme, f : X → S a smooth morphism
and D a relative, generically Cartier divisor on X. Assume that either f is
projective or S is excellent. Then D is a relative Cartier divisor.

Proof Let q : T → S be a morphism from the spectrum of a DVR to S . Then
XT is regular, hence DT is Cartier. So D is Cartier by (4.34). �

Theorem 4.37. Let (s, S ) be a reduced, local, excellent scheme, f : X → S a
flat morphism of finite type with S 2 fibers and D a relative, generically Cartier
divisor on X. Then D is Cartier ⇔ D is Q-Cartier, Ds is Cartier and Dg is
Cartier for all generic points g ∈ S .

Proof The necessity is clear. By (4.34) it is enough to prove the converse
after base change to T whenever q : (t,T ) → (s, S ) is a local, component-
wise dominant morphism from the spectrum of an excellent DVR to S . The
assumptions are preserved.

Let Z ⊂ Xt be the locus where DT is not known to be Cartier. After localizing
at the generic point of Z, we are in the situation of (2.91). Thus DT is Cartier
and so is D. �

Another valuative criterion is the following local version of (3.20).

Theorem 4.38. (Grothendieck, 1960, IV.11.6, IV.11.8) Let (s, S ) be a reduced,
local scheme, f : X → S a morphism of finite type and F a coherent sheaf on
X. Let T be a disjoint union of spectra of DVR’s and q : T → S a dominant,
local morphism. Then F is flat over S at x ∈ Xs iff q∗XF is flat over T along
q−1

X (x). �

4.5 Generically Q-Cartier divisors
In the study of lc and slc pairs, Q-Cartier divisors are more important than
Cartier divisors. We have seen many examples of Weil Z-divisors that are Q-
Cartier, but not Cartier. By contrast, we show that if a relative Weil Z-divisor
is generically Q-Cartier, then it is generically Cartier in characteristic 0.

Let f : (X,D)→ S be a family of pairs and D a relative Weil Z-divisor.
Since we are interested in generic properties, we can focus on a generic point
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x of D ∩ Xs. If the assumption (4.2.4) holds then f is smooth at x. Thus we
may as well assume that f is smooth (but not proper).

If S is normal then D is a Cartier divisor by (4.4), thus here our main interest
is in those cases where S is reduced, but not normal. As (4.10) shows, D need
not be Cartier in general. However, the next result shows that if some multiple
of D is Cartier, then so is D, at least in characteristic 0.

Positive characteristic counter examples are given in (4.11) and (4.12).

Theorem 4.39. Let S be a reduced scheme, f : X → S a smooth morphism of
relative dimension ≥ 1 and D a relative Weil Z-divisor on X. Assume that mD
is Cartier at a point x ∈ X and char k(x) - m. Then D is Cartier at x.

Proof By Noetherian induction and shrinking X we may assume that D is
Cartier on X \ {x} and mD ∼ 0.

By (11.24), mD ∼ 0 determines a cyclic cover X̃ → X that is étale over
X \ {x} whenever char k(x) - m. This gives a correspondence between torsion
in Picloc(x, X) and torsion in the abelian quotient of the fundamental group
π̂1

(
X \ {x}

)
. There are now two ways to finish the proof.

In characteristic 0 we may work over C. After replacing X with a suitable
Euclidean neighborhood x ∈ U ⊂ X, it is enough to prove that π1

(
U \ {x}

)
is

trivial. We do this in (4.40).
In general, let Xwn → X be the weak normalization (10.74). We prove

in (4.41) that Picloc(xwn, Xwn) is free of finite rank. It remains to show that
Kwn := ker

[
Picloc(x, X) → Picloc(xwn, Xwn)

]
does not contain prime-to-p tor-

sion in characteristic p > 0.
Since Xwn → X is finite and purely inseparable, it is a factor of a power Fq

of the Frobenius (10.78.2). This gives pull-back maps

Picloc(x, X)→ Picloc(xwn, Xwn)→ Picloc(xq, Xq),

where the composite is L 7→ Lq. So Kwn is q-torsion.
Alternatively, one can use (Grothendieck, 1971, I.11), which implies that

Xwn \ {xwn} → X \ {x} induces an isomorphism of the fundamental groups. �

4.40 (Links and smooth morphisms). Let f : X → S be a smooth morphism
of complex spaces of relative dimension n ≥ 1. We describe the topology of
the link of a point x ∈ X in terms of the topology of the link of s := f (x) ∈ S .

We can write S ⊂ CN
z such that s is the origin and X ⊂ S × Cn

t where x is
the origin. Intersecting S with a sphere of radius ε centered at s we get LS , the
link of s ∈ S . The intersection of S with the corresponding ball of radius ε is
homeomorphic to the cone CS over LS .

The link LX of x ∈ X can be obtained as the intersection of X with the level
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set max{
∑
|zi|

2,
∑
|t j|

2} = ε2. Thus LX is homeomorphic to the amalgamation of

LS × D
2n =

{
(z, t) :

∑
|zi|

2 = ε2,
∑
|t j|

2 ≤ ε2} and of
CS × S

2n−1 =
{
(z, t) :

∑
|zi|

2 ≤ ε2,
∑
|t j|

2 = ε2}, glued along
LS × S

2n−1 =
{
(z, t) :

∑
|zi|

2 = ε2,
∑
|t j|

2 = ε2}.
Let Li

S be the connected components of LS . Note that π1
(
Li

S ×S
2n−1) ' π1(Li

S )×
π1(S2n−1). The first factor gets killed in π1

(
CS × S

2n−1), the second is trivial if
n ≥ 2 and gets killed in π1

(
Li

S ×D
2n) if n = 1. Thus LX is simply connected for

n ≥ 1.
The cohomology of LX can be computed from the Mayer-Vietoris sequence.

Using that Hi(LS × D
2n,Z

)
= Hi(LS ,Z

)
and Hi(CS × S

2n−1,Z
)

= Hi(S2n−1,Z
)
,

for H2 the key pieces are

// H1(LS ,Z
)
⊕H1(S2n−1,Z

) σ1
// H1(LS × S

2n−1,Z
)

// H2(LX ,Z
) // H2(LS ,Z

)
⊕H2(S2n−1,Z

) σ2
// H2(LS × S

2n−1,Z
)
.

The Künneth formula gives that the σi are injections and σ1 is an isomorphism
if n ≥ 2. In this case H2(LX ,Z

)
= 0. If n = 1 then

H2(LX ,Z
)
' coker

[
H1(S1,Z

)
→ H0(LS ,Z

)
⊗ H1(S1,Z

)]
' H0(LS ,Z

)
/Z.

(4.40.1)

We have thus proved the following.

Claim 4.40.2. f : X → S be a smooth morphism of complex spaces, LX the
link of a point x ∈ X and s := f (x). Assume that dimx X > dims S ≥ 1.

Then LX is simply connected. Furthermore, H2(LX ,Z) = 0 iff either n ≥ 2
or the link of s ∈ S is connected. �

Next we compute the local Picard groups in more detail in the weakly nor-
mal case.

Theorem 4.41. Let (s ∈ S ) be a local, weakly normal pair (10.74) and f :
X → S a smooth morphism. Let x ∈ Xs be a point. Then,
(4.41.1) if codim(x ∈ Xs) ≥ 2 then Picloc(x, X) = 0, and
(4.41.2) if codim(x ∈ Xs) = 1 then Picloc(x, X) is free of finite rank.

Proof Set d = dim Xs and let π : X → Ad−1
S be a general projection. Then

π is generically quasi-finite along the closure of x. Let (w,W) be the strict
Henselization of π(x) ∈ Ad−1

S (2.18). By base change we have a smooth mor-
phism π′ : (x′, X′) → (w,W) of relative dimension 1, where x′ ∈ X′,w ∈ W
are closed points.
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By (2.92.1), Picloc(x, X) ↪→ Picloc(x′, X′), thus it is enough to prove (1–2)
for Picloc(x′, X′).

Every class in Picloc(x′, X′) can be represented by an effective divisor D that
does not contain X′w. Then π′|D : D→ W is finite and flat over W \ {w}.

Let {Wi : i ∈ I} be the connected components of W \ {w}. Then [D] 7→(
rankWi π

′
∗OD : i ∈ I

)
gives a map

Picloc(x′, X′)→ Z|I| → Z|I|/Z(1, . . . , 1).

We claim that it is an injection. Indeed, if π′∗OD has constant rank d then π′|D
is flat by (10.64), hence D is Cartier by (4.20). This proves (2).

If codim(x ∈ Xs) ≥ 2 then g(x) is not the generic point ηs ∈ A
d−1
s . Thus

every irreducible component of Ad−1
S contains ηs, and this continues to hold

after strict Henselization. Thus W \ {w} is connected and we get (1). �

Complement 4.41.3. The proof shows that in case (2) the rank is bounded by
r − 1, where r is the maximum number of connected components of S ′ \ {s′}
for all étale (s′, S ′) → (s, S ). It is ≤ the number of geometric points over s on
the normalization of S .

4.6 Stability is representable II
Assumption. In this section we work over a field of characteristic 0.

The main result of this section is the following. Eventually we remove the
reduced assumption by introducing the notion of K-flatness in Chapter 7.

Theorem 4.42. Let f : (X,∆) → S be a projective, well-defined family of
pairs. Then the functor of locally stable pull-backs is represented, for reduced
schemes, by a locally closed partial decomposition ilst : S lst → S .

Since ampleness is an open condition for an R-Cartier divisor (11.54.2),
(4.42) implies the analogous result for stable morphisms.

Corollary 4.43. Let f : (X,∆) → S be a projective, well-defined family
of pairs. Then the functor of stable pull-backs is represented, for reduced
schemes, by a locally closed partial decomposition istab : S stab → S . �

We start the proof of (4.42), which will be completed in (4.46), with a
weaker version.

Lemma 4.44. Let f : (X,∆) → S be a proper, well-defined family of pairs.
Then there is a finite collection of locally closed subschemes S i ⊂ S such that
(4.44.1) fi : (XS i ,∆S i )→ S i is locally stable for every i, and
(4.44.2) a fiber (Xs,∆s) is slc iff s ∈ ∪iS i.
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In particular, {s : (Xs,∆s) is slc} ⊂ S is constructible.

Proof Being demi-normal is an open condition by (10.42) and slc implies
demi-normal by definition. So we may assume that all fibers are demi-normal
and S is irreducible with generic point g. Throughout the proof we use S ◦ ⊂ S
to denote a dense open subset which we shrink whenever necessary.

First we treat morphisms whose generic fiber Xg is normal.
Case 1: (Xg,∆g) is lc. Then KXg + ∆g is R-Cartier, hence KX/S + ∆ is R-Cartier
over an open neighborhood of g. Next consider a log resolution pg : Yg → Xg.
It extends to a simultaneous log resolution p◦ : Y◦ → X◦ over a suitable
S ◦ ⊂ S . Thus, if E◦ ⊂ Y◦ is any exceptional divisor, then a(Es, Xs,∆s) =

a(E◦, X◦,∆◦) = a(Eg, Xg,∆g). This shows that all fibers over S ◦ are lc.
Case 2: (Xg,∆g) is not lc. Note that the previous argument works if KXg + ∆g

is R-Cartier. Indeed, then there is a divisor E with a(Eg, Xg,∆g) < −1 and
this shows that a(Es, Xs,∆s) < −1 for s ∈ S ◦. However, if KXg + ∆g is not
R-Cartier, then the discrepancy a(Eg, Xg,∆g) is not defined. We could try to
prove that KXs + ∆s is not R-Cartier for s ∈ S ◦, but this is not true in general;
see (4.15).

Thus we use the notion of numerically Cartier divisors (4.48) instead. If
KXg + ∆g is not numerically Cartier then, by (4.51), KXs + ∆s is also not numer-
ically Cartier over an open subset S ◦ 3 g. Thus (Xs,∆s) is not lc for s ∈ S ◦.

If KXg + ∆g is numerically Cartier, then the notion of discrepancy makes
sense (4.48) and, again using (4.51), the above arguments show that if (Xg,∆g)
is numerically lc (resp. not numerically lc) then the same holds for (Xs,∆s) for
s in a suitable open subset S ◦ 3 g. We complete Case 2 by noting that being
numerically lc is equivalent to being lc by (4.50).

An alternative approach to the previous case is the following. By (11.30)
the log canonical modification (5.15) πg : (Yg,Θg) → (Xg,∆g) exists and it
extends to a simultaneous log canonical modification π : (Y,Θ) → (X,∆) over
an open subset S ◦ ⊂ S . By the arguments of Case 1, (Ys,Θs) is lc for s ∈ S ◦

and the relative ampleness of the log canonical class is also an open condition.
Thus πs : (Ys,Θs) → (Xs,∆s) is the log canonical modification for s ∈ S ◦.
By assumption πg is not an isomorphism, so none of the πs are isomorphisms.
Therefore none of the fibers over S ◦ are lc.

If Xg is not normal, the proofs mostly work the same using a simultaneous
semi-log-resolution (Kollár, 2013b, Sec.10.4). However, for Case 2 it is more
convenient to use the following argument.

Let πg : X̄g → Xg denote the normalization. Over an open subset S ◦ 3 g it
extends to a simultaneous normalization

(
X̄, D̄+∆̄

)
→ S . If

(
X̄g, D̄g +∆̄g

)
is not
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lc then
(
X̄s, D̄s + ∆̄s

)
is not lc for s ∈ S ◦, hence (Xs,∆s) is not slc, essentially

by definition; see (Kollár, 2013b, 5.10).
Using the already settled normal case, it remains to deal with the situation

when (X̄s, D̄s + ∆̄s) is lc for every s ∈ S ◦. By (Kollár, 2013b, 5.38), (Xs,∆s) is
slc iff DiffD̄n

s
∆̄s is τs-invariant. The different can be computed on any log reso-

lution as the intersection of the birational transform of D̄s with the discrepancy
divisor. Thus DiffD̄n

s
∆̄s is also locally constant over an open set S ◦. Therefore,

if DiffD̄n
g
∆̄g is not τg-invariant then DiffD̄n

s
∆̄s is also not τs-invariant for s ∈ S ◦.

Hence (Xs,∆s) is not slc for every s ∈ S ◦.
In both cases we complete the proof by Noetherian induction. �

The following consequence of (4.44) is quite useful, though it could have
been proved before it as in (3.39).

Corollary 4.45. Let f : (X,∆) → S be a proper, well-defined family of pairs
such that KX/S + ∆ is R-Cartier. Then {s : (Xs,∆s) is slc } ⊂ S is open.

Proof By (4.44) this set is constructible. A constructible set U ⊂ S is open
iff it is closed under generalization, that is, x ∈ U and x ∈ ȳ implies that y ∈ U.
This follows from (2.3). �

4.46 (Proof of 4.42). Let S i ⊂ S be as in (4.44). We apply (4.29) to the family
f : (X,KX/S + ∆) → S to obtain S rcar → S such that, for every reduced S -
scheme q : T → S satisfying q(T ) ⊂ ∪iS i, the pulled-back divisor KXT /T + ∆T

is R-Cartier iff q factors as q : T → S rcar → S .
Assume now that fT : (XT ,∆T ) → T is slc. Then KXT /T + ∆T is R-Cartier,

hence q factors through S rcar → S . As we observed in (3.23), this implies that
S slc = (S rcar)slc. By definition KXrcar/S rcar + ∆ is R-Cartier, thus (4.45) implies
that S slc = (S rcar)slc is an open subscheme of S rcar. �

We showed in (4.15) that being Q-Cartier or R-Cartier is not a constructible
condition. The next result shows that the situation is better for boundary divi-
sors of lc pairs.

Corollary 4.47. Let f : (X,∆) → S be a proper, flat family of pairs with slc
fibers. Let D be an effective divisor on X. Assume that
(4.47.1) either Supp D ⊂ Supp ∆,
(4.47.2) or Supp D does not contain any of the log canonical centers of any of

the fibers (Xs,∆s).
Then {s : Ds is R-Cartier} ⊂ S is constructible.

Proof Over an open subset, we have a simultaneous log resolution of (X,D +

∆). Choose 0 < ε � 1. In the first case (Xs,∆s − εDs) is slc iff Ds is R-Cartier.
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In the second case (Xs,∆s + εDs) is slc iff Ds is R-Cartier. Thus, in both cases,
(4.44) implies our claim. �

Numerically Cartier divisors

Definition 4.48. Let g : Y → S be a proper morphism. An R-Cartier divisor
D is called numerically g-trivial if (C · D) = 0 for every curve C ⊂ Y that is
contracted by g.

Let X be a demi-normal scheme. A Mumford R-divisor D on X is called
numerically R-Cartier if there is a proper, birational contraction p : Y →
X and a numerically p-trivial R-Cartier Mumford divisor DY on Y , such that
p∗(DY ) = D.

It follows from (11.60) that such a DY is unique. If D is a Q-divisor then
DY is also a Q-divisor since its coefficients are solutions of a linear system of
equations. Such a D is called numerically Q-Cartier.

If p′ : Y ′ → X is a proper, birational contraction and Y ′ is Q-factorial, then
being numerically R-Cartier can be checked on Y ′.

Being numerically R-Cartier is preserved by R-linear equivalence, but the
exceptional part DY − p−1

∗ D depends on D ∈ |D|.
For KX + ∆ we can make a canonical choice. Thus we see that KX + ∆

is numerically R-Cartier iff there is a p-exceptional R-divisor EK+∆ such that
EK+∆ + KY + p−1

∗ ∆ is numerically p-trivial.
If KX + ∆ is numerically R-Cartier, then one can define the discrepancy of

any divisor E over X by

a(E, X,∆) := a(E,Y, EK+∆ + p−1
∗ ∆).

We can thus define when a demi-normal pair (X,∆) is numerically lc or slc.
If g : X → S is proper, then a numerically R-Cartier divisor D is called

numerically g-trivial if DY is numerically (g ◦ p)-trivial on Y .

Examples 4.49. On a normal surface, every divisor is numerically R-Cartier.
The divisor (x = z = 0) is not numerically R-Cartier on the demi-normal

surface (xy = 0) ⊂ A3.
If X has rational singularities, then a numerically R-Cartier divisor is also

R-Cartier by (Kollár and Mori, 1992, 12.1.4).
Assume that dim X ≥ 3 and D is Cartier except at a point x ∈ X. There is a

local Picard scheme Picloc(x, X), which is an extension of a finitely generated
local Néron-Severi group with a connected algebraic group Picloc−◦(x, X); see
Boutot (1978) or Kollár (2016a) for details. Then D is numerically R-Cartier iff
[D] ∈ Picloc−τ(x, X) where Picloc−τ(x, X)/Picloc−◦(x, X) is the torsion subgroup
of the local Néron-Severi group.



4.6 Stability is representable II 169

There are many divisors that are numerically R-Cartier, but not R-Cartier,
however, the next result says that the notion of numerically slc pairs does not
give anything new.

Theorem 4.50. (Hacon and Xu, 2016, 1.4) A numerically slc pair is slc.

Outline of the proof This is surprisingly complicated, using many different
ingredients. We start with the normal, numerically Q-Cartier case.

For clarity, let us concentrate on the very special case when (X,∆) is dlt,
except at a single point x ∈ X. All the key ideas appear in this case, but we
avoid a technical inductive argument.

Starting with a thrifty log resolution (Kollár, 2013b, 2.79), the method of
(Kollár, 2013b, 1.34) gives a Q-factorial, dlt modification f : (Y, E + ∆Y ) →
(X,∆) such that KY + E + ∆Y is numerically f -trivial, where E is the ex-
ceptional divisor dominating x and ∆Y is the birational transform of ∆. Let
∆E := DiffE ∆Y . Then (E,∆E) is a semi-dlt pair such that KE + ∆E is numeri-
cally trivial. Next we need a global version of the theorem.

Claim 4.50.1. Let (E,∆E) be a projective semi-slc pair such that KE + ∆E is
Q-Cartier and numerically trivial. Then KE + ∆E ∼Q 0.

The first general proof is in Gongyo (2013), but special cases go back to
Kawamata (1985); Fujino (2000). We discuss a very special case: E is smooth
and ∆ = 0. The following argument is from Campana et al. (2012); Kawamata
(2013).

We assume that OE(KE) ∈ Picτ(E), but after passing to an étale cover of E
we have that OE(KE) ∈ Pic◦(E). Serre duality shows that if [L] ∈ Picτ(E) and
hn(E, L) = 1 then L ' OE(KE).

Next we use a theorem of Simpson (1993) which says that the cohomol-
ogy groups of line bundles in Pic◦ jump precisely along torsion translates of
Abelian subvarieties. Thus [KE] is a torsion translate of a trivial Abelian sub-
variety, hence a torsion element of Pic◦(E). �

It remains to lift information from the exceptional divisor E to the dlt model
Y . To this end consider the exact sequence

0→ OY
(
m(KY +E +∆Y )−E

)
→ OY

(
m(KY +E +∆Y )

)
→ OE

(
m(KE +∆E)

)
→ 0.

Note that D := m(KY + E +∆Y )−E− (KY +∆Y ) ≡ f 0. We apply (Kollár, 2013b,
10.38.1) or the even stronger (Fujino, 2014, 1.10) to conclude that

R1 f∗
(
OY

(
m(KY + E + ∆Y ) − E

))
= R1 f∗

(
OY (D + KY + ∆Y )

)
= 0.

Hence a nowhere zero global section of OE
(
m(KE + ∆E)

)
lifts back to a global
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section of OY
(
m(KY + E + ∆Y )

)
that is nowhere zero near E. Thus OX

(
m(KX +

∆)
)
' f∗OY

(
m(KY + E + ∆Y )

)
is free in a neighborhood of x. Thus completes

the numerically Q-Cartier case.
The R-Cartier case is reduced to the numerically Q-Cartier setting using

(11.47) as follows.
Let f : (Y,∆Y ) → (X,∆) be a log resolution. Pick curves Cm that span

N1(Y/X) and apply (11.47) to (Y,∆Y ). Thus for n � 1 we get KY + ∆Y =∑
j λ j(KY + ∆

j
Y ) where the ∆

j
Y are Q-divisors and (Y,∆ j

Y ) is lc. Also, since
(
Cm ·

(KY + ∆Y )
)

= 0, (11.47.6.a) shows that
(
Cm · (KY + ∆

j
Y )

)
= 0. Thus each(

X, f (∆ j
Y )

)
is a numerically Q-Cartier lc pair. They are thus lc and so is (X,∆)

by (11.4.4). The demi-normal case now follows using (11.38). �

The advantage of the concept of numerically R-Cartier divisors is that we
have better behavior in families.

Proposition 4.51. Let f : X → S be a proper morphism with normal fibers
over a field of characteristic 0 and D a generically Cartier family of divisors
on X. Then there is a finite collection of locally closed subschemes S i ⊂ S such
that
(4.51.1) Ds is numerically R-Cartier iff s ∈ ∪iS i, and
(4.51.2) the pull-back of D to X ×S S i is numerically R-Cartier for every i.
In particular, {s ∈ S : Ds is numerically R-Cartier} ⊂ S is constructible.

Proof Let g ∈ S be a generic point. We show that if Dg is numerically R-
Cartier (resp. not numerically R-Cartier) then the same holds for all Ds in an
open neighborhood g ∈ S ◦ ⊂ S . Then we finish by Noetherian induction.

To see our claim, consider a log resolution pg : Yg → Xg. It extends to a
simultaneous log resolution p◦ : Y◦ → X◦ over a suitable open neighborhood
g ∈ S ◦ ⊂ S .

If Dg is numerically R-Cartier then there is a pg-exceptional R-divisor Eg

such that Eg + (pg)−1
∗ Dg is numerically pg-trivial. This Eg extends to a p-

exceptional R-divisor E and E + p−1
∗ D is numerically p-trivial over an open

neighborhood g ∈ S ◦ ⊂ S by (4.52). Thus Ds is numerically R-Cartier for
s ∈ S ◦.

Assume next that Dg is not numericallyR-Cartier. Let Ei
g be the p-exception-

al divisors. Then there are proper curves C j
g ⊂ Yg that are contracted by pg and

such that (pg)−1
∗ Dg, viewed as a linear function on ⊕ jR[C j

g], is linearly in-
dependent of the Ei

g. Both the divisors Ei
g and the curves C j

g extend to give
divisors Ei

s and curves C j
s over an open neighborhood g ∈ S ◦ ⊂ S . Thus

(ps)−1
∗ Ds, viewed as a linear function on ⊕ jR[C j

s], is linearly independent of
the Ei

s, hence Ds is not numerically R-Cartier for s ∈ S ◦. �
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Lemma 4.52. Let p : Y → X be a morphism of proper S -schemes and D an
R-Cartier divisor on Y. Then

S nt := {s ∈ S : Ds is numerically ps-trivial}

is an open subset of S .

Proof We check Nagata’s openness criterion (10.14)
Let us start with the special case when X = S . Pick points s1 ∈ s2 ⊂ S . A

curve C2 ⊂ Ys2 specializes to C1 ⊂ Ys1 and if (Ds1 ·C1) = 0 then (Ds2 ·C2) = 0.
Next assume that Ds2 is numerically ps2 -trivial. By (11.43.2), Ds2 =

∑
aiAi

s2

where the Ai
s2

are numerically ps2 -trivial Q-divisors. Thus each mAi
s2

is alge-
braically equivalent to 0 for some m > 0; see (Lazarsfeld, 2004, I.4.38). We
can spread out this algebraic equivalence to obtain that there is an open subset
U ⊂ s2 such that mDs is algebraically (and hence numerically) equivalent to 0
on all fibers s ∈ U.

Applying this to Y → X shows that

Xnt := {x ∈ X : Dx is numerically trivial on Yx}

is an open subset of X. Thus S nt = S \πX
(
X \Xnt) is an open subset of S , where

πX : X → S is the structure map. �

4.53 (Warning on intersection numbers). In general, one can not define in-
tersection numbers of numerically R-Cartier divisors with curves. This would
need the stronger property:

(
Z · DY

)
= 0 for every (not necessarily effective)

1-cycle Z on Y such that p∗[Z] = 0.
To see that this is indeed a stronger requirement, let E ⊂ P2 be a smooth

cubic and S ⊂ P3 the cone over it. For x ∈ E let Lx ⊂ S denote the line over x.
Set X := S × E and consider the divisors D1, swept out by the lines Lx0 × {x}
for some fixed x0 ∈ E, and D2, swept out by the lines Lx × {x} for x ∈ E. Let
p : Y → X be the resolution obtained by blowing up the singular set, with
exceptional divisor F ' E × E. Then p−1

∗ (D1 − D2) shows that D1 − D2 is
numerically Cartier.

Set C := F∩ p−1
∗ (D1−D2). It is a section minus the diagonal on E×E. Thus

p∗[C] = 0, but
(
C · p−1

∗ (D1 − D2)
)

= −2.

4.7 Stable families over smooth base schemes
All the results of the previous sections apply to families p : (X,∆) → S over
a smooth base scheme, but the smooth case has other interesting features as
well. The following can be viewed as a direct generalization of (2.3).

Theorem 4.54. Let (0 ∈ S ) be a smooth, local scheme and D1 + · · · + Dr ⊂ S
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an snc divisor such that D1∩· · ·∩Dr = {0}. Let p : (X,∆)→ (0 ∈ S ) be a pure
dimensional morphism and ∆ an R-divisor on X such that Supp ∆ ∩ Sing X0

has codimension ≥ 2 in X0. The following are equivalent.
(4.54.1) p : (X,∆)→ S is slc.
(4.54.2) KX/S + ∆ is R-Cartier, p is flat and

(
X0,∆0) is slc.

(4.54.3) KX/S + ∆ is R-Cartier, X is S 2 and
(
pure(X0),∆0

)
(10.1) is slc.

(4.54.4)
(
X,∆ + p∗D1 + · · · + p∗Dr

)
is slc.

Proof (1)⇒ (2) holds by definition and (2)⇒ (3) since both S and X0 are S 2

(10.10). If (3) holds then (10.72) shows that p is flat and X0 is pure, hence (3)
⇒ (2). Next we show that (2) ⇔ (4) using induction on r. Both implications
are trivial if r = 0.

Assume (4) and pick a point x ∈ X0. Then KX + ∆ + p∗D1 + · · · + p∗Dr is
R-Cartier at x hence so is KX + ∆. Set DY := p∗Dr. By (11.17)(

DY ,∆|DY + p∗D1|DY + · · · + p∗Dr−1|DY

)
is slc at x, hence

(
X0,∆0) is slc at x by induction. The local equations of the

p∗Di form a regular sequence at x by (4.58), hence p is flat at x.
Conversely, assume that (2) holds. By induction(

DY ,∆|DY + p∗D1|DY + · · · + p∗Dr−1|DY

)
is slc at x hence inversion of adjunction (11.17) shows that

(
X,∆+ p∗D1 + · · ·+

p∗Dr
)

is slc at x. �

Corollary 4.55. Let S be a smooth scheme and p : (X,∆) → S a morphism.
Then p : (X,∆) → S is locally stable iff the pair (X,∆ + p∗D) is slc for every
snc divisor D ⊂ S . �

Corollary 4.56. Let S be a smooth, irreducible scheme and p : (X,∆) → S a
locally stable morphism. Then every log center of (X,∆) dominates S .

Proof Let E be a divisor over X such that a(E, X,∆) < 0 and let Z ⊂ S denote
the image of E in S . If Z , S then, possibly after replacing S by an open
subset, we may assume that Z is contained in a smooth divisor D ⊂ S . Thus
(X,∆+ p∗D) is slc by (4.55). However, a(E, X,∆+ p∗D) ≤ a(E, X,∆)−1 < −1,
a contradiction. �

Corollary 4.57. Let S be a smooth scheme and p : (X,∆) → S a projective,
locally stable morphism with normal generic fiber. Let pc : (Xc,∆c) → S
denote the canonical model of p : (X,∆) → S and pw : (Xw,∆w) → S a weak
canonical model as in (Kollár and Mori, 1998, 3.50). Then
(4.57.1) pw : (Xw,∆w)→ S is locally stable and
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(4.57.2) pc : (Xc,∆c)→ S is stable.

Warning 4.57.3. As in (2.47.1), the fibers of pc are not necessarily the canonical
models of the fibers of p.

Proof Let D ⊂ S be an snc divisor. By (4.55) (X,∆ + p∗D) is lc and pw :(
Xw,∆w + (p∗D)w)

→ S is also a weak canonical model over S by (Kollár,
2013b, 1.28). Thus

(
Xw,∆w + (p∗D)w)

is also slc, where (p∗D)w is the push-
forward of p∗D. Next we claim that (p∗D)w = (pw)∗D. This is clear away from
the exceptional set of (pw)−1 which has codimension ≥ 2 in Xw. Thus (p∗D)w

and (pw)∗D are 2 divisors that agree outside a codimension ≥ 2 subset, hence
they agree. Now we can use (4.55) again to conclude that pw : (Xw,∆w) → S
is locally stable.

A weak canonical model is a canonical model iff KXw/S + ∆w is pw-ample
and the latter is also what makes a locally stable morphism stable. �

Lemma 4.58. Let
(
y ∈ Y,∆+D1+· · ·+Dr

)
be slc. Assume that the Di are Cartier

divisors with local equations (si = 0). Then the si form a regular sequence.

Proof We use induction on r. Since Y is S 2, sr is a non-zerodivisor at y. By
adjunction

(
y ∈ Dr,∆|Dr + D1|Dr + · · · + Dr−1|Dr

)
is slc, hence the restrictions

s1|Dr , . . . , sr−1|Dr form a regular sequence at x. Thus s1, . . . , sr is a regular se-
quence at y. �

The following result of Karu (2000) is a generalization of (2.51) from 1-
dimensional to higher dimensional bases.

Theorem 4.59. Let U be a k-variety and fU : (XU ,∆U) → U a stable mor-
phism. Then there is projective, generically finite, dominant morphism π : V →
U and a compactification V ↪→ V̄ such that the pull-back (XU ,∆U) ×U V ex-
tends to a stable morphism fV̄ : (XV̄ ,∆V̄ )→ V̄.

Proof We may assume that U is irreducible with generic point g.
Assume first that the generic fiber of fU is normal and geometrically irre-

ducible. Let (Yg,∆
Y
g ) → (Xg,∆g) be a log resolution. It extends to a simulta-

neous log resolution (YU0 ,∆
Y
U0

) → (XU0 ,∆U0 ) over an open subset U0 ⊂ U.
By Abramovich and Karu (2000) (see also Adiprasito et al. (2019)), there is a
projective, generically finite, dominant morphism π : V0 → U0 and a compact-
ification V0 ↪→ V̄ such that the pull-back (YU0 ,∆

Y
U0

)×U0 V0 extends to a locally
stable morphism gV̄ : (YV̄ ,∆

Y
V̄

)→ V̄ .
We can harmlessly replace V̄ by a resolution of it. Thus we may assume

that V̄ is smooth and there is an open subset V ⊂ V̄ such that the rational map
π̄|V : V d U is a proper morphism.



174 Stable pairs over reduced base schemes

Since gV̄ is a projective, locally stable morphism, the relative canonical
model fV̄ : (XV̄ ,∆V̄ ) → V̄ of gV̄ : (YV̄ ,∆

Y
V̄

) → V̄ exists by Hacon and Xu
(2013) and it is stable by (4.57.2).

By construction (XV̄ ,∆V̄ ) and (XU ,∆U) ×U V are isomorphic over V0 ⊂ V ,
but (11.40) implies that in fact they are isomorphic over V . This completes the
case when the generic fiber of fU is normal.

In general, we can first pull back everything to the Stein factorization of
Xn → U where Xn is the normalization of X. The previous step now gives
fV̄ : (Xn

V̄
,∆n

V̄
) → V̄ . Finally (4.56) shows that (11.41) applies and we get

fV̄ : (XV̄ ,∆V̄ )→ V̄ . �

Corollary 4.60. Let k be a field of characteristic 0 and assume that the coarse
moduli space of stable pairs SP exists, is separated and locally of finite type.

Then every irreducible component of SP is proper over k.

Proof Let M be an irreducible component of SP with generic point gM . By
assumption there is a field extension K ⊃ k(gM) and a stable K-variety

(
XK ,∆K

)
corresponding to gM .

Since it takes only finitely many equations to define a stable pair, we may
also assume that K/k(gM) is finitely generated, hence so is K/k.

By (4.59) there is a smooth, projective k-variety V̄ and a stable family f̄ :(
Ȳ , ∆̄Y

)
→ V̄ such that k(V̄) is a finite field extension of K and the generic fiber

of f̄ is isomorphic to (XK ,∆K)k(V̄).
The image of the corresponding moduli morphism φ : Ȳ → SP contains gM

and it is proper. It is thus the closure of gM , which is M. So M is proper. �

4.8 Mumford divisors
On a normal variety, our basic objects are Weil divisors. On a non-normal va-
riety, we work with Weil divisors whose irreducible components are not con-
tained in the singular locus. It has been long understood that these give the
correct theory of generalized Jacobians of curves, see Serre (1959). Their first
appearance in the moduli theory of curves may be Mumford’s definition of
pointed stable curves given in (Knudsen, 1983, Def.1.1).

Here we consider the relative version that is compatible with Cayley-Chow
forms in a very strong way (4.69). This enables us to construct a universal
family of Mumford divisors (4.76), which is a key step in the construction of
the moduli space of stable pairs.

We start by recalling the foundational properties of Chow varieties, as treated
in (Kollár, 1996, Secs.I.3–4), and then discuss the ideal of Chow equations. We
focus on the classical theory, which is over fields. A closer inspection reveals
that the theory works for Mumford divisors over arbitrary bases. The end re-
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sult is that the functor of Mumford divisors (4.69) is representable over reduced
bases (4.76).

Definition 4.61. A d-cycle on a scheme X is a finite linear combination Z :=∑
i mi[Vi], where mi ∈ Z and the Vi are d-dimensional irreducible, reduced sub-

schemes. We usually tacitly assume that the Vi are distinct and mi , 0. Then
the Vi are called the irreducible components of Z and the mi the multiplici-
ties. A d-cycle is called effective if mi ≥ 0 for every i and reduced if all its
multiplicities equal 1.

To a subscheme W ⊂ X of dimension ≤ d, we associate a d-cycle, called the
fundamental cycle

[W] :=
∑

i(lengthwi
OW ) · [Wi], (4.61.1)

where Wi ⊂ W are the d-dimensional irreducible components with generic
points wi ∈ Wi. If W is reduced and pure dimensional then [W] determines W;
we will not always distinguish them clearly. However, if W is nonreduced, then
it carries much more information than [W]. The only exception is when W is a
Mumford divisor.

If X is projective and L is an ample line bundle on X, then the degree of a
d-cycle Z =

∑
i mi[Vi] is defined as degL Z :=

∑
i mi degL Vi =

∑
i mi(Ld · Vi).

Assume that X is a scheme of finite type over a field k and K/k a field exten-
sion. If V ⊂ X is a d-dimensional irreducible, reduced subvariety then VK ⊂ XK

is a d-dimensional subscheme which may be reducible and, if char k > 0, may
be non-reduced. If Z =

∑
miVi is a d-cycle, we set

ZK :=
∑

mi[(Vi)K]. (4.61.2)

Z is called geometrically reduced if Zk̄ is reduced. If char k = 0 then reduced
is the same as geometrically reduced.

Given an embedding X ↪→ Pn, every d-cycle on X is also a d-cycle on Pn.
Thus Cayley-Chow theory focuses primarily on cycles in Pn

4.62 (Cayley-Chow correspondence over fields I). Fix a projective space Pn

over a field k with dual projective space P̌n. Points in P̌n are hyperplanes in Pn.
For d ≤ n − 1 we have an incidence correspondence

I(n,d) :=
{
(p,H0, . . . ,Hd) : p ∈ H0 ∩ · · · ∩ Hd

}
⊂ Pn × (P̌n)d+1, (4.62.1)

which comes with the coordinate projections

Pn π1
←− I(n,d) π2

−→ (P̌n)d+1 σi
−→ (P̌n)d, (4.62.2)

where π1 is a (P̌n−1)d+1-bundle andσi deletes the ith component. The projection
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π2 is a Pn−d−1-bundle over a dense open subset. For a closed subscheme Y ⊂ Pn

set I(n,d)
Y := π−1

1 (Y).
Let Z ⊂ Pn be an irreducible, geometrically reduced, closed subvariety of

dimension d. Its Cayley-Chow hypersurface is defined as

Ch(Z) := π2
(
I(n,d)

Z
)

=
{
(H0, . . . ,Hd) ∈ (P̌n)d+1 : Z ∩ H0 ∩ · · · ∩ Hd , ∅

}
.

(4.62.3)

An equation of Ch(Z) is called a Cayley-Chow form. Next note that

I(n,d)
Z ∩ π−1

2 (H0, . . . ,Hd) = Z ∩ H0 ∩ · · · ∩ Hd. (4.62.4)

In particular, a general H0∩· · ·∩Hd is disjoint from Z and a general H0∩· · ·∩Hd

containing a smooth point p ∈ Z meets Z only at p (scheme theoretically). Thus
we see the following.

Claim 4.62.5. Let Z be a geometrically reduced d-cycle. Then π2 : I(n,d)
Z →

Ch(Z) is birational and Ch(Z) is a hypersurface in (P̌n)d+1. �

For any H0, . . . ,Hd−1 the fiber of the coordinate projection σd : Ch(Z) →
(P̌n)d is P̌n if dim(Z∩H0∩· · ·∩Hd−1) ≥ 1; otherwise it is the set of hyperplanes
that contain one of the points of Z ∩H0 ∩ · · · ∩Hd−1. Similarly for all the other
σi. Thus we proved the following.

Claim 4.62.6. Let Z be a geometrically reduced d-cycle of degree r. Then a
general geometric fiber of any of the projections σi : Ch(Z) → (P̌n)d is the
union of r distinct hyperplanes in P̌n. In particular, the projections are geomet-
rically reduced and Ch(Z) has multidegree (r, . . . , r). �

For p ∈ Pn let p̌ denote the set of hyperplanes passing through p. Then
p ∈ Z iff p̌ × · · · × p̌ ⊂ Ch(Z). This leads us to the definition of the inverse of
the map Z 7→ Ch(Z). Let D ⊂ (P̌n)d+1 be a geometrically reduced subscheme.
(In practice, D will always be a hypersurface.) Define

Ch−1
set(D) := {p : p̌ × · · · × p̌ ⊂ D} ⊂ Pn. (4.62.7)

For now we we view Ch−1
set(D) as a reduced subscheme; scheme theoretic ver-

sions will be discussed in (4.71).
It is easy to see that dim Ch−1

set(D) ≤ d and an irreducible hypersurface D is
of Cayley-Chow type if dim Ch−1

set(D) = d. An arbitrary hypersurface D is of
Cayley-Chow type if all of its irreducible components are. The basic correspon-
dence of Cayley-Chow theory is the following, see (Kollár, 1996, I.3.24.5).

Claim 4.62.8. Fix n, d, r and a base field k. Then the maps Ch and Ch−1
set provide
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a one-to-one correspondence between

{
geometrically reduced

d-cycles of degree r in Pn

}
⇔


geometrically reduced

Cayley-Chow type hypersurfaces of
degree (r, . . . , r) in (P̌n)d+1

 .
Proof We already saw the⇒ part. To see the converse, observe the inclusion
Ch

(
Ch−1

set(D)
)
⊂ D. Thus if Z ⊂ Ch−1

set(D) is any subvariety of dimension d
then Ch(Z) ⊂ D, hence Ch(Z) is an irreducible component of D. Thus D =

Ch
(
Ch−1

set(D)
)
. �

Let Z ⊂ Pn be a pure dimensional subscheme or a cycle. The Chow equations
are the ‘most obvious’ equations of Z. They generate a homogeneous ideal (or
an ideal sheaf) which was studied in various forms in Catanese (1992); Dalbec
and Sturmfels (1995); Kollár (1999). Its relationship with the scheme-theoretic
Ch−1

sch will be given in (4.73).

4.63 (Element-wise power). Let R be a ring, I ⊂ R an ideal and m ∈ N. Set

I[m] := (rm : r ∈ I)1.

These ideals have been studied mostly when char k = p > 0 and q is a power of
p; one of the early occurrences is in Kunz (1976). In these cases I[q] is called a
Frobenius power of I. Other values of the exponent are also interesting. Of the
following properties (1) is clear and (4.63.2–3) are implied by (4.63.4–5). We
assume for simplicity that R is a k-algebra.
(4.63.1) If I is principal then I[m] = Im.
(4.63.2) If char k = 0 then I[m] = Im.
(4.63.3) If m < char k then I[m] = Im.
(4.63.4) If k is infinite then (r1, . . . , rn)[m] =

(
(
∑

ciri)m : ci ∈ k
)
.

Note that (3) is close to being optimal. For example, if I = (x, y) ⊂ k[x, y] and
char k = p ≥ 3 then (x, y)[p+1] = (xp+1, xpy, xyp, yp+1) ( (x, y)p+1.

Claim 4.63.5. Let k be an infinite field. Then〈
(c1x1 + · · · + cnxn)m : ci ∈ k

〉
=

〈
xi1

1 · · · x
in
n :

(
m

i1...in

)
, 0

〉
.

Here
(

m
i1...in

)
denotes the coefficient of xi1

1 · · · x
in
n in (x1 + · · · + xn)m.

Proof The containment ⊂ is clear. If the 2 sides are not equal then the left
hand side is contained in some hyperplane of the form

∑
λI xI = 0, but this

would give a nontrivial polynomial identity
∑(

m
i1...in

)
λIcI = 0 for the ci. �

1 This is not related to the symbolic power, frequently denoted by I(m).
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4.64 (Ideal of Chow equations). Let Z be a d-cycle of degree r in Pn. Let
% : Pn d Pd+1 be a projection that is defined along Z. Then %∗(Z) is a d-cycle
in Pd+1, thus it can be identified with a hypersurface; hence with a homoge-
neous polynomial φ(Z, %) of degree r. Its pull-back to Pn is a homogeneous
polynomial Φ(Z, %) of degree r. Together they generate the ideal sheaf of Chow
equations Ich(Z) ⊂ OPn .

Over a finite field k there may not be any projections defined along Z. The
above definition gives Ich(Z) over k̄ and it is clearly defined over k.

The embedded primes of Ich(Z) are quite hard to understand, so frequently
we focus on the Chow hull of the cycle Z:

CHull(Z) := pure
(
Spec OPn/Ich(Z)

)
.

Any Zariski dense set of projections generate Ich(Z). That is, if P ⊂ Gr(n −
d, n + 1) is Zariski dense then Ich(Z) =

(
Φ(Z, %) : % ∈ P

)
. It is enough to show

that this holds in every Artinian quotient σ : OPn � A. Let B ⊂ A be the ideal
generated by σ

(
Φ(Z, %) : % ∈ P

)
. All the σ(Φ(Z, %)) are points of an irreducible

subvariety G ⊂ A obtained as an image of Gr(n − d, n + 1). By assumption
G ∩ B contains the points σ

(
Φ(Z, %) : % ∈ P

)
, hence it is dense in G. So G ⊂ B,

since B is Zariski closed, if we think of A as a k-vectorspace.

Claim 4.64.1. Let Z be a geometrically reduced cycle. Then Ich(Z) ⊂ IZ and
the two agree along the smooth locus of Z.

Proof Let p ∈ Z be a smooth point and v ∈ TpP
n \ TpZ. A general projection

% : Pn d Pd+1 maps 〈TpZ, v〉 isomorphically onto T%(p)P
d+1. Then dΦ(Z, %) is

nonzero on v. Thus the Φ(Z, %) generate IZ in a neighborhood of p. �

For the nonreduced case, we need a definition.

Definition–Lemma 4.65. Let Z ⊂ Pn be an irreducible, d-dimensional sub-
scheme such that red Z is geometrically reduced. Its width is defined in the
following equivalent ways.
(4.65.1) The projection width of Z is the generic multiplicity of π(Z) for a

general projection π : Pn d Pd+1.
(4.65.2) The power width of Z is the smallest m such that I[m]

red Z · OZ is generi-
cally 0 along Z.

In general, we first take a purely inseparable field extension K/k such that
red(ZK) is geometrically reduced and define the width of Z as the width of ZK .

For example, it is easy to see that the width of Spec k[x, y]/(x, y)m is m and
the width of Spec k[x, y]/(xm, ym) is 2m − 1.

Proof For a general projection π : Pn d Pd+1 let φπ be an equation of π(red Z)
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and Φπ its pull-back to Pn. Then Z has projection width m iff Φm
π ·OZ is gener-

ically 0 for every π, and m is the smallest such. Since the Φπ generically gen-
erate Ired Z , this holds iff I[m]

red Z · OZ is generically 0 and m is the smallest. Thus
the projection width equals the power width. �

Proposition 4.66. Let Zi ⊂ P
n be distinct, geometrically irreducible cycles of

the same dimension. Then CHull(
∑

miZi) = pure
(
Spec OPn/ ∩i I(Zi)[mi]

)
.

Proof The equations of the projections φ(
∑

Zi, %) (as in (4.64)) generate I∑ Z

at its smooth points. So if p ∈ Zi is a smooth point of
∑

Z, then I(Zi)[mi] agrees
with Ich(

∑
miZi) at p by (4.63.4). �

The following consequence of (4.66) is key to our study of Mumford divisors.

Corollary 4.67. Let k be an infinite field, X ⊂ Pn
k a reduced subscheme of

pure dimension d + 1 and D ⊂ X a Mumford divisor, viewed as a divisorial
subscheme. Then pure

(
X ∩ CHull(D)

)
= D.

Proof The containment ⊃ is clear, hence equality can be checked after a field
extension. Write D =

∑
miDi where the Di are geometrically irreducible and

reduced. Then CHull(D) = pure
(
Spec OPn

k
/ ∩i I(Di)[mi]

)
by (4.66). Let gi ∈ Di

be the generic point and Ri its local ring in Pn
k . Let Ji ⊂ Ri be the ideal defining

X and (Ji, hi) the ideal defining Di. The ideal defining the left hand side of
(4.67.1) is then

(
Ji + (Ji, hi)[mi]

)
/Ji. This is the same as (hi)[mi], as an ideal in

Ri/Ji, which equals (hmi
i ) by (4.63.1). �

Relative Mumford divisors

Definition 4.68. Let S be a scheme and f : X → S a morphism of pure
relative dimension n that is mostly flat (3.26). A relative Mumford divisor on
X is a relative, generically Cartier divisor D (4.24) such that, for every s ∈ S ,
the fiber Xs is smooth at all generic points of Ds.

Let S ′ be another scheme and h : S ′ → S a morphism. Then the pull-back
h[∗]D is again a relative Mumford divisor on X ×S S ′ → S ′. This gives the
functor of Mumford divisors, denoted by

MDiv(X/S)(∗) : {S -schemes} → {sets}. (4.68.1)

We prove in (4.76) that if f is projective, then the functor of effective Mumford
divisors is represented by an S -scheme

Univmd(X/S )→ MDiv(X/S ), (4.68.2)

whose connected components are quasi-projective over S .
We will see that relative, effective Mumford divisors form the right class for
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moduli purposes over a reduced base, but not in general. Fixing this problem
leads to the notion of K-flatness in Chapter 7.

The following result—whose proof will be given after (4.76.5)—turns a rel-
ative, effective Mumford divisor into a flat family of Cartier divisors on another
morphism, leading to the existence of MDiv(X/S ) in (4.76).

Theorem 4.69. Let S be a reduced scheme, f : X → S a projective morphism
that is mostly flat (3.26) and j : X ↪→ PS an embedding into a PN-bundle.
Then the maps Ch and Ch−1

X —to be defined in (4.70) and (4.75.2)—provide a
one-to-one correspondence{

relative Mumford
divisors on X

}
↔

{
flat Cayley-Chow forms of

Mumford divisors on X

}
(4.69.1)

Comments 4.69.2. There are two remarkable aspects of this equivalence. First,
the left hand side depends only on X → S , while the right hand side is defined
in terms of an embedding j : X ↪→ PS .

Second, on the left we have families that are usually not flat, on the right
families of hypersurfaces in a product of projective spaces; these are the sim-
plest possible flat families.

The correspondence (4.69.1) fails very badly over non-reduced bases. We
see in (7.14) that, in an analogous local setting, the left hand side is locally
infinite dimensional for S = SpecC[ε], but the right hand side is locally finite
dimensional. Nonetheless, we will be guided by (4.69.1). The rough plan is
that we declare the right hand side to give the correct answer and then work
backwards to see what additional conditions this imposes on relative Mumford
divisors. This leads us to the notion of C-flatness (7.37). Independence of the
embedding j : X ↪→ PS then becomes a major issue in Chapter 7.

4.70 (Definition of Ch). In order to construct Chowd,r(Pn
S ), the Chow variety

of degree r cycles of dimension d in Pn
S , we start with the incidence correspon-

dence as in (4.62)

IncS
(
point, (P̌n)d+1)

σ

vvmmm
mmm

mmm
mm τ

))SSS
SSS

SSS
S

Pn
S (P̌n)d+1

S .

(4.70.1)

Note that here σ = σn,d,r is a (P̌n−1)d+1-bundle. The fibers of τ = τn,d,r are
linear spaces of dimension ≥ n − d − 1 and τ is a Pn−d−1-bundle over a dense
open subset.

Let now D ⊂ Pn
S be a generically flat family of d-dimensional subschemes
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(3.26). Assume also that the generic embedding dimension of Ds is ≤ d + 1
for every s ∈ S . (This is satisfied iff each Ds is a Mumford divisor on some
X ⊂ Pn

s ; a more general definition is in (7.46).) Set Ch(D) := τ∗
(
σ−1(D)

)
.

Claim 4.70.2. With the above assumptions, τ : σ−1(D) → Ch(D) is a local
isomorphism on the preimage of a dense open subset U ⊂ D such that U ∩ Ds

is dense in Ds for every s ∈ S .

Proof Pick p ∈ Ds such that TDs has dimension d + 1 at p. If Ls ⊃ p is a gen-
eral linear subspace of dimension n−d−1, then Ls∩Ds = {p}, scheme theoret-
ically. This is exactly the fiber of τ : σ−1(D) → Ch(D) over any (H0, . . . ,Hd)
for which Ls = H0 ∩ · · · ∩ Hn. �

Corollary 4.70.3. With the above assumptions, Ch(D) is a generically flat fam-
ily of Cartier divisors. If S is reduced, then Ch(D) is flat over S .

Proof By assumption, D is a generically flat family, hence so is σ−1(D) since
σ is smooth. The first part is now immediate from (4.70.2). The second claim
then follows from (4.36). �

4.71 (Definition of Ch−1
sch). Although Ch(D) is not a flat family of Cartier divi-

sor in general, we decide that from now on we are only interested in the cases
when it is flat. Thus let Hcc ⊂ (P̌n

S )d+1 be a relative hypersurface of multidegree
(r, . . . , r). We first define its scheme-theoretic Cayley-Chow inverse, denoted by
Ch−1

sch(Hcc). It is a first approximation of the ‘correct’ Cayley-Chow inverse.
Working with (4.70.1) consider the restriction of the left hand projection

σcc :
(
IncS ∩τ

−1(Hcc)
)
→ Pn

S . (4.71.1)

Fix s ∈ S and a point ps ∈ P
n
s . Note that the preimage of ps consists of all

(d+1)-tuples (H0, . . . ,Hd) such that ps ∈ Hi for every i and (H0, . . . ,Hd) ∈ Hcc
s .

In particular, if Z is a d-cycle of degree r on Pn
S and Hcc = Ch(Z) is its Cayley-

Chow hypersurface, then σcc is a (P̌n−1
S )d+1-bundle over Supp Z.

The key observation is that this property alone is enough to define Ch−1
sch and

to construct the Chow variety. So we define Ch−1
sch(Hcc) ⊂ Pn

S as the unique,
largest, closed subscheme over which σcc is a (P̌n−1)d+1-bundle. (Its existence
is a special case of (3.19), but we derive its equations in (4.72.2).)

The set-theoretic behavior of the projection % : Ch−1
sch(Hcc)→ S is described

in (4.62). The fibers have dimension ≤ d and Zs ⊂ P
n
s is a d-dimensional

irreducible component iff Ch(Zs) is an irreducible component of Hcc
s . It is not

hard to see that there is a maximal closed subset S (Hcc) ⊂ S over which Hcc

is the Cayley-Chow hypersurface of a family of d-cycles; see (Kollár, 1996,
I.3.25.1).
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However, we do not yet have the ‘correct’ scheme structure on S (Hcc), since
the scheme structure of the fibers of % : Ch−1

sch(Hcc) → S is not the ‘correct’
one. Before we move ahead, we need to understand this scheme structure.

4.72 (Scheme structure of Ch−1
sch(Hcc)). Let S be a scheme and Hcc := (F =

0) ⊂ (P̌n)d+1
S a hypersurface of multidegree (r, . . . , r). We aim to write down

equations for Ch−1
sch(F = 0).

Choose coordinates (x0: · · · :xn) on Pn
S and dual coordinates (x̌0 j: · · · :x̌n j) on

the jth copy of P̌n
S for j = 0, . . . , d. So F = F(x̌i j) if a homogeneous polynomial

of multidegree (r, . . . , r). For notational simplicity we compute in the affine
chart An

S = Pn
S \ (x0 = 0).

For (x1, . . . , xn) ∈ An
S , the hyperplanes H in the jth copy of P̌n

S that pass
through (x1, . . . , xn) are all written as

(
−
∑n

i=1xi x̌i j : x̌1 j : · · · : x̌n j
)
.

Let M(x̌i j) be all the monomials in the x̌i j and write

F
(
−
∑n

i=1xi x̌i0 : x̌10 : · · · : x̌n0; · · · ;−
∑n

i=1xi x̌id : x̌1d : · · · : x̌nd
)

=:
∑

MFM(x1, . . . , xn)M(x̌i j).
(4.72.1)

Since the monomials M(x̌i j) are linearly independent, this vanishes for all x̌i j

iff FM = 0 for every M. Equivalently:

Claim 4.72.2. The subscheme Ch−1
sch(F = 0) ∩ An

S is given by the equations
FM(x1, . . . , xn) = 0 for all monomials M, with FM as in (4.72.1). �

Assume that (F = 0) = Ch(Y). If we fix x̌i j = ci j, then these give the matrix
of a linear projection πc : An

S → A
d+1
S . The corresponding Chow equation of Y

is
∑

MFM(x1, . . . , xn)M(ci j) = 0. Thus we proved the following.

Theorem 4.73. Let Z ⊂ Pn
k be a d-cycle of degree r. Then Ch−1

sch
(
Ch(Z)

)
⊂ Pn

k
is the subscheme defined by the ideal of Chow equations Ich(Z). �

Note that we proved a little more. If the residue field of S is infinite, then
Ich(Y)|An

S
is generated by the Chow equations of the linear projections πc :

An
S → An+1

S . A priori we would need to use the more general projections
(7.34.4), but this is just a matter of choosing the hyperplane at infinity.

Combining (4.73) and (4.67) gives the following.

Corollary 4.74. Let k be a field, X ⊂ Pn
k a subscheme of pure dimension d + 1

and D ⊂ X a Mumford divisor. Then pure
(
X ∩ Ch−1

sch(Ch(D))
)

= D. �

4.75 (Construction of MDiv(X/S )). As we noted in (4.69.2), we construct
MDiv(X/S ) by starting on the right hand side of (4.69.1)

Let S be a scheme, f : X → S a mostly flat, projective morphism of pure
dimension d and j : X ↪→ Pn

S an embedding.
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We fix the intended degree to be r and let Pn,d,r = |O(P̌n)d+1 (r, . . . , r)| be the
linear system of hypersurfaces of multidegree (r, . . . , r) in (P̌n)d+1, with univer-
sal hypersurface Hcc

n,d,r ⊂ (P̌n)d+1 × Pn,d,r. Thus (4.70.1) extends to

IncS
(
point, (P̌n)d+1) ×S Pn,d,r

σn,d,ruukkkk
kkkk

kkk
τn,d,r **TTT

TTTT
TTT

Pn
S ×S Pn,d,r (P̌n)d+1

S ×S Pn,d,r

(4.75.1)

As in (4.71) we get Ch−1
sch

(
Hcc

n,d,r
)
⊂ Pn

S ×S Pn,d,r. We are interested in d-cycles
that lie on X, so we should take

Ch−1
X (Hcc

n,d,r) := Ch−1
sch

(
Hcc

n,d,r
)
∩

(
X ×S Pn,d,r

)
⊂ Pn

S ×S Pn,d,r. (4.75.2)

By (4.74), if Ds ⊂ Xs is a Mumford divisor of degree r then the fiber of the
coordinate projection %n,d,r : Ch−1

X (Hcc
n,d,r) → Pn,d,r over [Ch(Ds)] is Ds (aside

from possible embedded points).

This leads us to the following. Recall the difference between mostly flat (in
codimension ≤ 1) and generically flat (in codimension 0) as in (3.26).

Theorem 4.76. Let S be a scheme, f : X → S a mostly flat, projective mor-
phism of pure relative dimension d + 1 and j : X ↪→ Pn

S an embedding. Then
the functor of generically flat families of degree r Mumford divisors on X is
represented by a locally closed subscheme MDivr(X/S ) of Pn,d,r (4.75). Over
MDivr(X) we have
(4.76.1) Univmd

r (X/S ) ⊂ X×S MDivr(X/S ), a universal, generically flat family
of degree r Mumford divisors on X, and

(4.76.2) Hcc
r ⊂ (P̌n)d+1 ×S MDivr(X/S ), a flat family of multidegree (r, . . . , r)

hypersurfaces,
that correspond to each other under Ch and Ch−1

X .

Proof As we noted in (4.62), every fiber of %n,d,r has dimension ≤ d. So{
Hcc

s : dim
(
Sing Xs ∩ Supp Ch−1

X (Hcc
s )

)
≤ d − 1

}
defines a closed subset of Pn,d,r, let P◦n,d,r denote its complement. Thus [Hcc

s ] ∈
P◦n,d,r iff the divisorial part of Ch−1

X (Hcc
s ) satisfies the Mumford condition.

Now apply (4.77) to Ch−1
X (Hcc) over P◦n,d,r get a locally closed decomposition

jflat : Pflat
n,d,r → P◦n,d,r, representing the functor of generically flat pull-backs of

Ch−1
X (Hcc) as in (4.77). Over each connected components of Pflat

n,d,r, the degree
of the d-dimensional part is locally constant. The union of those connected
components where this degree equals r is MDivr(X/S ). �
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Warning 4.76.3. In the non-reduced case the resulting MDiv(X) a priori de-
pends on the projective embedding j : X ↪→ Pn

S . We write MDiv(X ⊂ Pn
S ) if

we want to emphasize this. In Chapter 7 we construct a subscheme KDiv(X) ⊂
MDiv(X ⊂ Pn

S ), that does not depend on the embedding. The two have the same
underlying reduced structure and a positive answer to Question 7.42 would im-
ply that in fact MDiv(X ⊂ Pn

S ) = KDiv(X).

We have used the following variant of (3.19).

Proposition 4.77. Let f : X → S be a projective morphisms and F a coherent
sheaf on X such that Supp F → S has fiber dimension ≤ d. Then there is
a locally closed decomposition jflat

F : S flat
F → S such that FW is flat at d-

dimensional points of the fibers iff W → S factors through jflat
F .

Proof We may replace X by the scheme-theoretic support SSupp F. The ques-
tion is local on S . By (10.46.1) we may assume that there is a finite morphism
π : X → Pd

S . Note that FW is flat at d-dimensional points iff the same holds
for (πW )∗FW . We may thus assume that X = Pd

S ; the important property is that
now f : X → S is flat with integral geometric fibers. By (3.19.1) we get a
decomposition qiXi → X, where F|Xi is locally free of rank i.

Let Z ⊂ X be a closed subscheme. Applying (3.19) to the projection OZ , we
see that there is a unique largest subscheme S (Z) ⊂ S such that f −1(S (Z)

)
⊂

Z, scheme theoretically. For a locally closed subscheme Z ⊂ X set S (Z) =

S (Z̄) \ S (Z̄ \ Z), where Z̄ denotes the closure of Z. Note that S (Z) is the largest
subscheme T ⊂ S with the following property:
(4.77.1) There is an open subscheme X◦T ⊂ XT that contains the generic point

of Xt for every t ∈ T and X◦T ⊂ Z, scheme theoretically.
We claim that S flat

F = qiS (Xi). One direction is clear. F|Xi is locally free of
rank i, so the restriction of F to S (Xi) ×S X is locally free, hence flat, at the
generic point of every fiber.

Conversely, let W be a connected scheme and q : W → S a morphism such
that FW is generically flat over W the fiber dimension of Supp FW → S is n.
Since Xw is integral, Fw is generically free for every w ∈ W, so FW is locally
free at the generic point of every fiber. Let X◦W ⊂ XW be the open set where FW

is locally free.
By assumption X◦W contains the generic point of every fiber Xw, so X◦W is

connected. Thus FW has constant rank, say i, on X◦W . Therefore, the restriction
of qX : XW → X to X◦W lifts to q◦X : X◦W → Xi. By (4.77.1) this means that q
factors as q : W → S (Xi)→ S . �



Chapter 5

Numerical flatness and stability criteria

The aim of this chapter is to prove several characterizations of stable and lo-
cally stable families f : (X,∆) → S . An earlier result, established in (3.1), has
two assumptions:
• every fiber

(
Xs,∆s

)
is semi-log-canonical, and

• KX/S + ∆ is Q-Cartier.
In many applications the first of these is given, but the second one can be quite
subtle.

Note that such difficulties arise already for surfaces, even if ∆ = 0. Indeed,
we saw in Section 1.4 that there are flat, projective families g : X → C of
surfaces with quotient singularities that are not locally stable. In these cases
every fiber is log terminal, but KX/C is not Q-Cartier, although its restriction to
every fiber KX/C |Xc = KXc is Q-Cartier.

In all the examples in Section 1.4, this unexpected behavior coincides with a
jump in the self-intersection number of the canonical class of the fiber. Our aim
is to prove that this is always the case, as shown by the following simplified
version of (5.4). The main part of its proof is in Section 5.4.

Theorem 5.1 (Numerical criteria of stability). Let S be a connected, reduced
scheme over a field of characteristic 0, and f : X → S a flat, proper morphism
of pure relative dimension n. Assume that all fibers are semi-log-canonical
with ample canonical class KXs . The following are equivalent.
(5.1.1) f is stable.
(5.1.2) KX/S is Q-Cartier and f -ample.
(5.1.3) h0(Xs, ω

[m]
Xs

)
is independent of s ∈ S for every m > 0.

(5.1.4) f∗
(
ω[m]

X/S
)

is locally free for every m > 0.
(5.1.5) (Kn

Xs
) is independent of s ∈ S .

Proof Note that once KX/S isQ-Cartier, it is f -ample since the KXs are ample.
Then (5.1.1)⇒ (5.1.2) follows from (3.1.1).

185
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The m = 1 case of (5.1.3) is proved in (2.69), the m ≥ 2 cases follow
from (3.1.3) and the vanishing of higher cohomologies (11.34). Next (5.1.3)
⇒ (5.1.4) by Grauert’s theorem. By Riemann-Roch (3.33), (Kn

Xs
) is the leading

term of h0(Xs, ω
[m]
Xs

)
, thus (5.1.3)⇒ (5.1.5).

Finally (5.1.5)⇒ (5.1.1) is a special case of (5.4). �

If f : X → S is stable then KX/S is Q-Cartier, hence
(
Kn

Xs

)
is clearly indepen-

dent of s ∈ S , but the converse is surprising. General theory says that stability
holds iff the Hilbert function χ

(
Xs,OXs (mKXs )

)
is independent of s ∈ S . Thus

(5.1.2) asserts that if the leading coefficient of the Hilbert function is indepen-
dent of s, then the same holds for the whole Hilbert function. We collect many
similar results in this chapter; see Kollár (2015) for other such examples.

The main theorems are stated in Section 5.1. Related results on simultane-
ous canonical models and modifications are discussed in Section 5.2. The key
claim is that, for families of slc pairs, local stability can fail only in relative
codimension two, and it can be characterized by the constancy of just 1 inter-
section number. A similar numerical condition characterizes Cartier divisors
on flat families.

A series of examples in Section 5.3 shows that the assumptions of the theo-
rems are likely to be optimal in characteristic 0.

Numerical criteria for stability in codimension ≤ 1 are discussed in Sec-
tion 5.5. For all of the main theorems the key step is to establish them for
families over smooth curves. This is done in Section 5.6. The numerical cri-
terion of global stability, and a weaker version of local stability are derived
in Section 5.6. The existence of simultaneous canonical models is studied in
Section 5.7, and we treat simultaneous canonical modifications in Section 5.8.

Going from families over smooth curves to families over higher dimensional
singular bases turns out to be quite quick, but several of the arguments, pre-
sented in Section 5.9, rely heavily on the techniques and results of Chapter 9.

Assumptions. For all the main theorems of this chapter we work with vari-
eties over a field of characteristic 0, but the background results worked out in
Section 5.4 are established for excellent schemes.

5.1 Statements of the main theorems
We develop a series of criteria to characterize stable and locally stable (4.7)
morphisms using a few, simple, numerical invariants of the fibers.

We follow the general set-up of (5.1), but we strengthen it in 3 ways:
•We add a boundary divisor ∆.
• We assume only that f is flat in codimension 1 on each fiber. The rea-

son for this is that many natural constructions (for instance flips, taking cones
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or ramified covers) do not preserve flatness. Thus we frequently end up with
morphisms that are not known to be flat everywhere.
• We deal with local stability as well. A weak variant, involving several

intersection numbers, is quite similar to the global case, but the sharper form
requires different considerations.

For the main results of this Chapter we work with the following set-up,
which is a slight generalization of (3.28) and (4.2).

Notation 5.2. Let f : X → S be a proper morphism of pure relative dimension
n (2.71), and Z ⊂ X a closed subset with complement U := X \ Z such that
(5.2.1) codimXs (Z ∩ Xs) ≥ 2 for every s ∈ S ,
(5.2.2) f |U : U → S is flat, and
(5.2.3) depthZ X ≥ 2.
We also consider effective R-divisors ∆ =

∑
biBi on X, where the Bi are gener-

ically Cartier divisors (4.24). (Sheaf versions are studied in Section 5.4.)

We are mainly interested in cases where each fiber (Xs,∆s) is slc, but it turns
out to be very useful to work with the following more general set-up.

Assumption 5.3. Given f : (X,∆)→ S as in (5.2), we assume the following.
(5.3.1) f |U : (U,∆|U)→ S is locally stable,
(5.3.2)

(
Xg,∆g

)
is slc for all generic points g ∈ S , and

(5.3.3) every fiber has lc normalization πs :
(
X̄s, D̄s + ∆̄s

)
→

(
Xs,∆s

)
.

Note that
(
X̄s, D̄s + ∆̄s

)
is defined over Us by (1), and this determines D̄s +

∆̄s since Xs \ Us has codimension ≥ 2. Thus it makes sense to ask whether(
X̄s, D̄s + ∆̄s

)
is lc or not.

The next result generalizes (5.1) to pairs. Its proof is given in (5.42).

Theorem 5.4 (Numerical criterion of stability). We use the notation of (5.2). In
addition to (5.3.1–3) assume that S is a reduced scheme over a field of char 0,
and KX̄s

+ D̄s + ∆̄s is ample for every s ∈ S . Then
(5.4.1) v(s) :=

(
(KX̄s

+ D̄s + ∆̄s)n) is an upper semi-continuous function, and
(5.4.2) f : (X,∆)→ S is stable iff v(s) is locally constant on S .

The local version is the following, to be proved in (5.27) and (5.54).

Theorem 5.5 (Numerical criterion of local stability). We use the notation of
(5.2). In addition to (5.3.1–3) assume that S is a reduced scheme over a field
of char 0, and H is a relatively ample Cartier divisor class on X. Then
(5.5.1) v2(s) :=

(
π∗sHn−2 · (KX̄s

+ D̄s + ∆̄s)2) is upper semi-continuous, and
(5.5.2) f : (X,∆)→ S is locally stable iff v2(s) is locally constant on S .
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Note that the functions
(
π∗sHn) and

(
π∗sHn−1 · (KX̄s

+ D̄s + ∆̄s)
)

are always
locally constant, but

(
π∗sHn−i · (KX̄s

+ D̄s + ∆̄s)i) are neither upper nor lower
semi-continuous for i ≥ 3.

A key part of the proof of (5.5) is to show that local stability is essentially a
2-dimensional question. The following, proved in (5.54), generalizes (2.7).

Theorem 5.6 (Local stability in codimension ≥ 3). (Kollár, 2013a, Thm.18)
Using the notation and assumptions of (5.2–5.3), let S be a reduced scheme of
char 0. Assume also that codimXs (Z ∩ Xs) ≥ 3 for every s ∈ S .

Then f : (X,∆)→ S is locally stable.

One can also restate this as a converse of the Bertini-type result (2.13).

Corollary 5.7. Notation and assumptions as in (5.2–5.3), let S be a reduced
scheme of char 0. Assume in addition that the relative dimension is n ≥ 3 and
f |H : (H,∆|H)→ S is locally stable, where H ⊂ X is a relatively ample Cartier
divisor. Then f : (X,∆)→ S is also locally stable. �

Comment. As we noted in (2.14), (11.17) implies that f : (X,H + ∆) → S ,
and hence also f : (X,∆) → S , are locally stable in a neighborhood of H. The
unexpected new claim is that local stability holds everywhere.

A variant of (5.4) holds for arbitrary divisors and for non-slc fibers, but we
have to assume that f is flat with S 2 fibers. On the other hand, this holds over
any base scheme.

Theorem 5.8 (Numerical criterion for relative line bundles). Kollár (2016a)
Let S be a reduced scheme, f : X → S a flat, proper morphism of pure relative
dimension n with S 2 fibers, and Z ⊂ X a closed subset such that codimXs (Z ∩
Xs) ≥ 2 for every s ∈ S . Let A be an f -ample line bundle on X.

Let LU be a line bundle on U := X \ Z and assume that, for every s ∈ S , the
restriction LU |Us extends to a line bundle Ls on Xs. Then
(5.8.1) d2(s) :=

(
An−2

s · L2
s) is an upper semi-continuous function on S , and

(5.8.2) LU extends to a line bundle on X iff d2(s) is locally constant on S .
Furthermore, if Ls is ample for every s, then
(5.8.3) d(s) := (Ln

s) is an upper semi-continuous function on S , and
(5.8.4) LU extends to a line bundle on X iff d(s) is locally constant on S .

5.2 Simultaneous canonical models and modifications
Given a morphism f : X → S , we would like to know when the canonical
models (or the canonical modifications) of the fibers form a flat family; see
(5.9) and (5.15) for the precise definitions.
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As we discussed in Section 1.5, the canonical models of the fibers need not
form a flat family, not even for locally stable morphisms. We develop numeri-
cal criteria, after some definitions.

Definition 5.9 (Simultaneous canonical model). Let f : (X,∆)→ S be a mor-
phism as in (5.2). Assume that (5.3.1) holds, and every fiber has log canonical
normalization πs :

(
X̄s, ∆̄s

)
→

(
Xs,∆s

)
.1 Its simultaneous canonical model is a

diagram

X

f !!B
BB

BB
BB

φ //_______ Xsc

f sc
||yy
yy
yy
y

S

(5.9.1)

where f sc :
(
Xsc,∆sc) → S is stable, and φs ◦ πs :

(
X̄s, ∆̄s

)
d

(
Xsc

s ,∆
sc
s
)

is the
canonical model (over s), as in (11.26), for every s ∈ S .

Warning. A ‘simultaneous’ canonical model is not the same as a ‘relative’
canonical model (11.26). For both notions K + ∆ is relatively ample, but the
former requires the singularities of the fibers to be lc, the latter the singularities
of the total space to be lc. Neither implies the other.

For a pure dimensional, proper morphism f : X → S the simultaneous
canonical model of resolutions f scr : Xscr → S is defined analogously. Here
we require that each φs : Xs d Xscr

s be obtained by first taking a resolution
Xr → red X, and then the disjoint union of the canonical models of those irre-
ducible components that are of general type.

5.9.2 (Some known cases). Let f : X → S be flat, projective with S reduced.
Assume that Xs is of general type and has canonical singularities for some
s ∈ S . Then a simultaneous canonical model exists over an open neighborhood
s ∈ S ◦ ⊂ S ; see (1.37). The ∆ , 0 case is more subtle, see (5.20) and (5.48).

5.9.3 (Comment on the conductor). Note that we do not add the conductor of πs

to ∆̄s. If the fibers are normal in codimension 1 then Ds (the divisorial part of
the conductor) is 0, hence the above notion is the only sensible one. In general,
however, one has a choice, and the simultaneous slc model, to be defined in
(5.51), seems a better concept when Ds , 0.

We give criteria for the existence of simultaneous canonical models in terms
of the volume (10.31) of the canonical class of the fibers. Note that if Y is a
proper scheme of dimension n then vol(KY r ) is independent of the choice of
the resolution Y r → Y , and it equals the self-intersection number

(
(KYcr )n).

Similarly, if (Y,∆) is log canonical then vol(KY + ∆) =
(
(KYc + ∆c)n).

1 See Comment 5.9.3.
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Theorem 5.10 (Numerical criterion for simultaneous canonical models I). Let
S be a seminormal scheme of char 0, and f : X → S a proper morphism of
pure relative dimension n. Then
(5.10.1) v(s) := vol(K(Xs)r ) is a lower semi-continuous function on S , and
(5.10.2) f : X → S has a simultaneous canonical model of resolutions iff v(s)

is locally constant (and positive).

The key case, when S is a smooth curve, is settled in (5.44), the general
case is in (5.55). This is a surprising result on two accounts. First, cohomology
groups almost always vary upper semi-continuously; the lower semicontinu-
ity in this setting was first observed and proved in Nakayama (1986, 1987).
Second, usually it is easy to generalize similar proofs from smooth varieties
to klt or lc pairs, but here adding any boundary can ruin the argument and the
conclusion. Example 5.19 shows that S needs to be seminormal.

The following is a similar result for normal lc pairs, but the lower semicon-
tinuity of (5.10) changes to upper semicontinuity.

Theorem 5.11 (Numerical criterion for simultaneous canonical models II). Let
S be a seminormal scheme of char 0, and f : (X,∆) → S as in (5.2). Assume
furthermore that
(5.11.1) f |U : U → S is smooth with irreducible fibers,
(5.11.2) every fiber has lc normalization πs :

(
X̄s, ∆̄s

)
→

(
Xs,∆s

)
, and

(5.11.3) the canonical models φs :
(
X̄s, ∆̄s

)
d

(
X̄c

s , ∆̄
c
s
)

exist.
Then
(5.11.4) v(s) := vol(KX̄s

+ ∆̄s) is an upper semi-continuous function on S , and
(5.11.5) f : (X,∆)→ S has a simultaneous canonical model iff v(s) is locally

constant.

The proof is given in (5.46), and (5.55).
One should think of (5.11) as a generalization of (5.4), but there are differ-

ences. In (5.11) we allow only fibers that are smooth in codimension 1, and S
is assumed seminormal. (The extra assumption (3) is expected to hold always.)
However, the key difference is in the proofs given in Section 5.9. While the
proof of (5.4) uses only the basic theory of hulls and husks, we rely on the
existence of moduli spaces of pairs in order to establish (5.11).

Both (5.10) and (5.11) apply to f : X → S iff the normalizations of the
fibers have canonical singularities. In this case f is locally stable (2.8), and the
plurigenera—and hence the volume—are locally constant (1.37).

A key ingredient of the proofs of (5.10–5.11) is the following characteriza-
tion of canonical models. We prove a more general version of it in (10.36).
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Proposition 5.12. Let X be a smooth proper variety of dimension n. Let Y be a
normal, proper variety birational to X, and D an effective R-divisor on Y such
that KY + D is R-Cartier, nef and big. Then
(5.12.1) vol(KX) ≤ vol(KY + D) =

(
(KY + D)n), and

(5.12.2) equality holds iff D = 0 and Y has canonical singularities

For surfaces, the existence criterion of simultaneous canonical modifications
is proved in (Kollár and Shepherd-Barron, 1988, Sec.2). In higher dimensions
we need to work with a sequence of intersection numbers and with their lexi-
cographic ordering.

Definition 5.13. Let X be a proper scheme of dimension n, and A, B R-Cartier
divisors on X. Their sequence of intersection numbers is

I(A, B) :=
(
(An), . . . , (An−i · Bi), . . . , (Bn)

)
∈ Rn+1.

Definition 5.14. The lexicographic ordering of length n + 1 real sequences is

(a0, . . . , an) � (b0, . . . , bn).

This holds if either ai = bi for every i, or there is an r ≤ n such that ai = bi for
i < r, but ar < br. For polynomials we define an ordering

f (t) � g(t) ⇔ f (t) ≤ g(t) ∀t � 0.

We use ≡ to denote identity of sequences or polynomials. Note that∑
iaitn−i �

∑
ibitn−i ⇔ (a0, . . . , an) � (b0, . . . , bn).

If we have proper schemes X, X′ of dimension n, R-Cartier divisors A, B on X
and A′, B′ on X′, then

I(A, B) � I(A′, B′) ⇔ (tA + B)n � (tA′ + B′)n.

We will consider functions that associate a sequence or a polynomial to all
points of a scheme X. Using the above definitions it makes sense to ask if such
a function is upper/lower semi-continuous for � or not.

Definition 5.15 (Simultaneous canonical modification). Let f : X → S be a
morphism of pure relative dimension n, and ∆ =

∑
aiDi a genericallyQ-Cartier

effective divisor on X. A simultaneous canonical modification is a proper mor-
phism pscm : (Xscm,∆scm) → (X,∆) such that f ◦ pscm : (Xscm,∆scm) → S is
locally stable, and

pscm
s :

(
(Xscm)s, (∆scm)s

)
→ (Xs,∆s)

is the canonical modification (11.29) for every s ∈ S .
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A simultaneous log canonical modification pslcm : (Xslcm,∆slcm) → (X,∆) is
defined analogously.

In the following result we need to assume that the base scheme is seminor-
mal; see (5.21) for some examples.

Theorem 5.16 (Numerical criterion for simultaneous canonical modification).
We use the notation of (5.2). In addition to (5.3.1) assume that S is a seminor-
mal scheme of char 0, and H is a relatively ample Cartier divisor class on X.
For s ∈ S let pcm

s :
(
Xcm

s ,∆cm
s

)
→ (Xs,∆s) denote the canonical modification of

the fiber (Xs,∆s). Then
(5.16.1) I(s) := I

(
π∗sHs,KXcm

s + ∆cm
s

)
is lower semi-continuous for �, and

(5.16.2) f : (X,∆) → S has a simultaneous canonical modification iff I(s) is
locally constant.

There is also a similar condition for simultaneous log canonical and semi-
log-canonical modifications (5.52), but these only apply when KX/S + ∆ is
Q-Cartier.

5.3 Examples
Here we present a series of examples that show that the assumptions of the
Theorems in Sections 5.1–5.2 are close to being optimal, except that the char-
acteristic 0 assumption is probably superfluous.

The following is the simplest example illustrating the difference between
being Cartier and fiber-wise Cartier.

Example 5.17. Consider the family of quadrics

X = (x2 − y2 + z2 − t2w2 = 0) ⊂ P3
xyzw × At and D = (x − y = z − tw = 0).

Here X0 is a quadric cone, and Xt is a smooth quadric for t , 0. The divisor D
is Cartier, except at the origin, where it is not even Q-Cartier. However D0 is
a line on a quadric cone, hence 2D0 = (x − y = t = 0) is Cartier. It is easy to
compute that

L = OX(−2D) = (x − y, z − tw)2 · OX

is locally free outside the origin, not locally free at the origin, but the reflexive
hull of its restriction

LH
0 := OX0 (−2D0) = (x − y) · OX0

is locally free. The natural restriction map gives an identification

OX(−2D)|X0 = (x, y, z) · OX0 (−2D0) ⊂ OX0 (−2D0).
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Note that the self-intersection number of the fibers of D also jumps. For t , 0
we have (D2

t ) = 0, but (D2
0) = 1/2.

It is harder to get examples where the self-intersections in (5.8) are locally
constant, yet the divisor is not Cartier, but, as we see next, this can happen even
for the canonical class. Thus in (5.8) one needs to assume that the fibers of f
are S 2, and in (5.4) that the fibers are slc.

Example 5.18. (See (2.35) or (Kollár, 2013b, 3.8–14) for the notation and ba-
sic results on cones.) Let X ⊂ PN be a smooth, projective variety of dimension
n and LX = OX(1). Let C(X) := Cp(X, LX) denote the projective cone over X
with vertex v and natural ample line bundle LC(X). Let H ⊂ X be a smooth
hyperplane section, and C(H) := Cp(H, LH) the projective cone over H. Note
that (

Ln
X
)

=
(
Ln+1

C(X)
)

=
(
Ln−1

H
)

=
(
Ln

C(H)
)
.

The canonical class of C(X) is Cartier iff KX ∼ mc1(LX) for some m ∈ Z. In
this case KC(X) ∼ (m − 1)c1(LC(X)).

We can think of H as sitting in X ⊂ C(X). The pencil of hyperplanes contain-
ing H ⊂ C(X) gives a morphism of the blow-up p : Y := BHC(X) → P1 such
that Yt ' X for t , 0, and the normalization Ȳ0 of Y0 is isomorphic to C(H).
However, if H1(X,OX) , 0 then Y0 is not normal. For instance, this happens
if X is the product of non-hyperelliptic curves of genus ≥ 2 with its canonical
embedding. Thus, if these hold, then
(5.18.1) Yt is smooth and KYt is ample for t , 0,
(5.18.2) Y0 is not normal, the normalization Ȳ0 → Y0 is an isomorphism ex-

cept at v, KȲ0
is locally free and ample,

(5.18.3)
(
Kn

Yt

)
=

(
Kn

Ȳ0

)
(where n = dim X).

The next example shows that (5.10) fails if S is not seminormal.

Example 5.19. Let S be a local, reduced, non-seminormal scheme with semi-
normalization S ′ → S . Choose an embedding of S ′ into the moduli space of
automorphism-free curves of genus g for some g. Let p′ : X′ → S ′ be the re-
sulting smooth family. This induces a family p : X′ → S ′ → S that satisfies
the assumptions of (5.10). However, there is no simultaneous canonical model
since p′ : X′ → S ′ does not descend to p : X → S .

The next examples show that there does not seem to be a log version of
(5.10) for families with reducible fibers, not even for families of curves.

Example 5.20. Let g : S → C be a smooth family of curves, and Di ⊂ S a set
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of n disjoint sections. Set ∆ :=
∑

diDi. Pick a point 0 ∈ C, the fiber over it is
(S 0,

∑
di[pi]) where pi = S 0 ∩ Di. The ‘log volume’ is 2g(S 0) − 2 +

∑
di.

Let π : S 1 → S be the blow up of all the points pi with exceptional curves
Ei and set ∆1 := π−1

∗ ∆. The central fiber of g1 : (S ,1 ,∆1) → C is (S 1
0, 0) +∑

i(Ei, di[p′i]). Its normalization consists of S 0 (with no boundary points) and
Ei ' P

1, each with one marked point of multiplicity di. Thus the ‘log volume’
of the central fiber is now 2g(S 0) − 2; the effect of the boundary vanished.

One can try to compensate for this by adding the double point divisor D̄0.
This variant of the ‘log volume’ is now 2g(S 0)−2+n. This formula remembers
only the number of the sections, not their coefficients. Even worse, we can blow
up m other points on S 0, then the ‘log volume’ formula gives 2g(S 0)−2+n+m.

In general, there does not seem to be a sensible and birationally invariant
way do define the ‘log volume’ of degenerations.

In (5.16) the base scheme is assumed to be seminormal. The reason for this
is that canonical modifications do have unexpected infinitesimal deformations.

Example 5.21 (Deformation of canonical modifications). We give an example
of a normal, projective variety with isolated singularities and canonical mod-
ification Xcm → X, such that the trivial deformation of X can be lifted to a
nontrivial deformation of Xcm.

Consider the isolated hypersurface singularity

X := Xn,r :=
(
xr

1 + · · · + xr
n + xr+1

n+1 = 0
)
⊂ An+1

k .

Let p : Y := B0X → X denote the blow-up of the origin. Then Y is smooth,
the exceptional divisor is the cone E ' (xr

1 + · · · + xr
n = 0) ⊂ Pn and NE|Y '

OE(−1). We compute that a(E, Xn,r, 0) = n− r. Thus Xn,r is canonical iff r ≤ n,
and Y is the canonical modification for r > n.

We claim that p : Y → X has a nontrivial deformation over X ×k Spec k[ε].
The trivial deformation is obtained by blowing up

(x1 = · · · = xn+1 = 0) ⊂ X ×k Spec k[ε].

The nontrivial deformation is obtained by blowing up

Z := (x1 = · · · = xn = xn+1 − ε = 0) ⊂ X ×k Spec k[ε].

We need to check that X is equimultiple along the blow-up center. Introducing
a new coordinate y := xn+1 − ε, the equations become

Z := (x1 = · · · = xn = y = 0) ⊂
(
xr

1 + · · · + xr
n + yr+1 + (r + 1)εyr = 0

)
,

thus X ×k Spec k[ε] is clearly equimultiple along Z.
Note that E ⊂ Y has a unique extension Eε to a deformation Yε of Y since
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H1(E,NE|Y ) = 0. The blow-up ideal is then the push-forward of the ideal sheaf
of Eε. Thus different blow-up ideals give different deformations of Y .

The following examples show that the existence of simultaneous canonical
modifications is more complicated for pairs.

Example 5.22. In P2 consider a line L ⊂ P2 and a family of degree 8 curves
Ct such that C0 has 4 nodes on L plus an ordinary 6-fold point outside L, and
Ct is smooth and tangent to L at 4 points for t , 0.

Let πt : S t → P
2 denote the double cover of P2 ramified along Ct. Note that

KS t = π∗t O(1), thus (K2
S t

) = 2. For each t, the preimage π−1
t (L) is a union of 2

curves Dt + D′t . Our example is the family of pairs (S t,Dt). We claim that,

(5.22.1) there is a log canonical modification
(
S lcm

t ,Dlcm
t

)
→ (S t,Dt), and

(5.22.2)
(
(KS lcm

t
+ Dlcm

t )2) = 1, yet

(5.22.3) there is no simultaneous log canonical modification.
If t , 0 then S t and Dt are smooth. Furthermore Dt,D′t meet transversally at

4 points, thus (Dt · D′t) = 4. Using
(
(Dt + D′t)

2) = 2, we obtain that (D2
t ) = −3.

Thus
(
(KS t + Dt)2) = 1.

If t = 0 then S 0 is singular at 5 points. D0,D′0 meet transversally at 4 singular
points of type A1, thus (D0 · D′0) = 2. This gives that (D2

0) = −1. Thus
(
(KS 0 +

D0)2) = 3. The pair (S 0,D0) is lc away from the preimage of the 6-fold point.
Let q : T0 → S 0 denote the minimal resolution of this point. The exceptional
curve E is smooth, has genus 2 and (E2) = −2. Thus KT0 = q∗KS 0 − 2E hence
(T0, E + D0) is the log canonical modification of (S 0,D0), and(

(KT0 + E + D0)2) =
(
(q∗KS 0 − E + D0)2) =

(
(KS 0 + D0)2) + (E2) = 1.

Thus
(
(KS lcm

t
+ Dlcm

t )2) = 1 for every t.
Nonetheless, the log canonical modifications do not form a flat family. In-

deed, such a family would be a family of surfaces with ordinary nodes, so the
relative canonical class would be a Cartier divisor. However, (K2

S t
) = 2 for

t , 0, but (K2
T0

) =
(
(q∗KS 0 − 2E)2) = −6.

Example 5.23. We start with a family of quadric surfaces Qt ⊂ P
3 where Q0

is a cone, and Qt is smooth for t , 0. We take 6 families of lines Li
t such that

for t = 0 we have 6 distinct lines, and for t , 0 two of them L1
t , L

2
t are from one

ruling of the quadric, the other 4 from the other ruling. S t denotes the double
cover of Qt ramified along the 6 lines L1

t + · · · + L6
t .

For t , 0 the surface S t has ordinary nodes and (K2
S t

) = 0. For t = 0 the
surface S 0 has a unique singular point. Its minimal resolution q : T0 → S 0 is a
double cover of F2 ramified along 6 fibers. Thus (K2

T0
) = −4. Thus the canoni-
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cal modifications do not form a flat family. The log canonical modification of
S 0 is (T0, E0) where E0 is the q-exceptional curve. Thus

(
(KT0 + E0)2) = 0.

The numerical condition is satisfied, but the log canonical modifications do
not form a flat family since T0 = S lcm

0 is smooth, but S lcm
t = S t is singular for

t , 0. However, there is a flat family that is a weaker variant of a simultaneous
log canonical modification.

This is obtained by replacing the singular quadric Q0 with its resolution
Q′0 ' F2. Let E ⊂ F2 denote the −2-section, and |F| the ruling. One can arrange
that L1

t , L
2
t degenerate to F i + E for F i ∈ |F|, and the others degenerate to fibers

F j. This way a flat limit of the double covers S t is obtained as the double cover
of F2 ramified along F1 + · · · + F6 + 2E. This is a semi-log-canonical surface
whose normalization is the log canonical modification of S 0.

5.4 Mostly flat families of line bundles
We investigate sheaves that are known to be invertible in codimension 1; a
topic we already encountered in Section 2.6. This leads to the proofs of (5.5)
and (5.8). Many of the results proved here are developed for arbitrary coherent
sheaves in Chapter 9.

Definition 5.24 (Mostly flat family of line bundles). Let f : X → S be a mor-
phism and L a mostly flat divisorial sheaf (3.28). We say that L is a mostly flat
family of line bundles if the hull LH

s of Ls (3.27.1) is locally free over the hull
OH

Xs
of OXs . (In most cases of interest f has S 2 fibers, and then OH

Xs
= OXs .)

A mostly flat family of line bundles L on X is called fiber-wise ample if LH
s

is ample for every s ∈ S . See (5.17) for typical examples.

Our aim is to find conditions to ensure that a mostly flat family of line bun-
dles is a flat family of line bundles.

Lemma 5.25. Let f : X → S be a proper morphism of pure relative dimension
n, A a relatively ample line bundle on X, and L a mostly flat family of fiber-wise
ample line bundles. Then
(5.25.1) s 7→

(
Ai

s · (L
H
s )n−i) is upper semi-continuous for every i, and

(5.25.2) if s 7→
(
(LH

s )n) is constant, then so is every
(
Ai

s · (L
H
s )n−i).

Proof As we noted in (5.24), there is a dense open subset S ◦ ⊂ red S such
that L|S ◦ is a line bundle. Thus the functions s 7→

(
Ai

s · (L
H
s )n−i) are locally

constant on S ◦, hence constructible on S by Noetherian induction.
It remains to check upper semicontinuity when (0 ∈ S ) is the spectrum of a

DVR. We may assume that X is S 2.
L0 is also S 1, hence L0 → LH

0 is an injection. By semicontinuity we have
h0(X0, LH

0
)
≥ h0(X0, L0

)
≥ h0(Xg, Lg

)
. Applying this to powers of L and taking
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the limit we obtain that vol(LH
0 ) ≥ vol(Lg) by (10.31). If L is fiber-wise ample,

then volume equals the self-intersection number, so
(
(LH

0 )n) ≥ (
(LH

g )n). This
shows upper semicontinuity for i = 0.

For i > 0 we prove (1) by induction on n. We may assume that S is local, and
A is relatively very ample. Let Y ⊂ X be a hypersurface cut out by a general
section of A. By (4.26) the restriction L|Y is a mostly flat family of fiber-wise
ample line bundles on Y → S . Furthermore(

Ai
s · (L

H
s )n−i) =

(
Ys · Ai−1

s · (L
H
s )n−i) =

(
(A|Y )i−1

s ·
(
(L|Y )H

s
)n−i)

, (5.25.3)

the latter is constructible and upper semi-continuous by induction.
In order to see (2) note that Lm⊗A−1 is also a mostly flat family of fiber-wise

ample line bundles for m � 1, and

mn((LH
s )n) =

∑
i

(
n
i

)(
Ai

s ·
(
(Lm ⊗ A−1)H

s
)n−i)

. (5.25.4)

By (1) all summands on the right are constructible and upper semi-continuous.
Therefore, if the sum is constant as a function of s, then so is every summand.
Finally note that((

(Lm ⊗ A−1)H
s
)n)

=
∑

i(−1)imn−i
(

n
i

)(
Ai

s · (L
H
s )n−i). (5.25.5)

If the left side is constant for m � 1, as a function of s, then every summand
on the right is constant. �

Remark 5.25.6. Let f : X → S be a proper morphism of pure relative dimen-
sion n, and L a line bundle on X. It is not well understood when the function
s 7→ vol(Ls) is constructible; see Lesieutre (2014); Pan and Shen (2013).

5.26 (Proof of 5.8). The assertions (5.8.1) and (5.8.3) are proved in (5.25.1).
Furthermore, (5.25.2) shows that (5.8.2) implies (5.8.4).

Thus it remains to prove (5.8.2). We start with the case when S is the spec-
trum of a DVR; this implies the general case by (4.34).

Our argument has three parts. The first step, when the relative dimension is
2, is done in (5.28).

The next step is induction on the dimension. We may assume that S is local
and A is relatively very ample. Let Y ⊂ X be a general hypersurface cut out by
a general section of A. Then (4.26) ensures that LH |Y = (L|Y )H . The restriction
L|Y is a mostly flat family of fiber-wise ample line bundles on Y → S and, as
we noted in (5.25.3),(

An−2
s · (LH

s )2) =
(
(A|Y )n−3

s ·
(
(L|Y )H

s
)2)
.

Thus, by induction, LH |Y is a line bundle. This implies that LH is a line bundle
along Y . So LH is a line bundle, except possibly at finitely many points Z ⊂ X.
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Finally we need to exclude this finite set Z when the fiber dimension is at
least 3. This follows from (2.91). �

5.27 (Start of the proof of 5.5). Note that (5.5.1) follows from (5.25.1). For
(5.5.2), the general setting is postponed to (5.54). Here we consider the case
when S = C is 1-dimensional and regular.

As a first step, we replace (X,∆) by its normalization. This leaves the as-
sumptions and the numerical conclusion unchanged. By (2.54), a demi-normal
pair (X,∆) → C with slc generic fibers is slc iff its normalization is lc. Thus
the conclusion is also unchanged.

It would seem that we should use (5.8). However, a key assumption of (5.8)
is that every fiber is S 2; this is true, but not obvious in our case. Thus we
consider two separate cases.

If n = 2 then the weak numerical criterion (5.43) implies (5.5). For n ≥ 3
the weak numerical criterion involves the terms

(
π∗cHn−i · (KX̄c

+ D̄c + ∆̄c)i) for
i ≥ 3; these are unknown to us.

Instead, using the already established n = 2 case and (4.26) as in (5.26), we
may assume that f : (X,∆) → C is locally stable outside a subset of codimen-
sion ≥ 3. We can now apply (2.7) to complete the argument. �

Proposition 5.28. Let T be an irreducible, regular, 1-dimensional scheme, and
f : X → T a flat, proper morphism of relative dimension 2 with S 2 fibers. Let
L be a mostly flat family of line bundles on X. Then

(5.28.1) d(t) :=
(
LH

t · L
H
t
)

is upper semi-continuous, and

(5.28.2) L is locally free on X iff d(t) is constant on T .

Proof If L is locally free then
(
LH

t ·L
H
t
)

=
(
L ·L · [Xt]

)
is independent of t ∈ T .

To see the converse we may assume that T is local with closed point 0 ∈ T and
generic point g ∈ T . Note that L is locally free, except possibly at a finite set
Z0 ⊂ X0, and LH

g ' Lg.
For each t ∈ T , the Euler characteristic is a quadratic polynomial

χ
(
Xt, (LH

t )⊗m)
= atm2 + btm + ct,

and we know from Riemann–Roch that at = 1
2
(
LH

t · L
H
t
)

and ct = χ
(
Xt,OXt

)
.

Furthermore, (9.36.4) implies that

a0m2 + b0m + c0 ≥ agm2 + bgm + cg for every m ∈ Z. (5.28.3)

For m � 1 the quadratic terms dominate, which gives that(
LH

0 · L
H
0
)

= 2a0 ≥ 2ag =
(
Lg · Lg

)
. (5.28.4)
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Assume now that (LH
0 · L

H
0 ) = (Lg · Lg). Then a0 = ag thus (5.28.3) implies that

b0m + c0 ≥ bgm + cg for every m ∈ Z. (5.28.5)

For m � 1 this implies that b0 ≥ bg, and for m � −1 that −b0 ≥ −bg. Thus
b0 = bg and c0 = cg also holds since f is flat. Therefore we have equality in
(5.28.3). Thus L is a flat family of locally free sheaves by (3.32). �

We are now ready to complete the proof of (5.8). The only remaining case is
when some reflexive power L[m] is locally free on X. This turns out to be quite
elementary; see (Stacks, 2022, Tag 0F29) for a subtle local version.

Proposition 5.29. Let T be the spectrum of a DVR with closed point 0 ∈ T and
generic point g ∈ T. Let f : X → T be a projective morphism with S 2 fibers,
and L a mostly flat family of line bundles such that L[m] is locally free for some
m > 0. Then L is locally free.

Proof We claim an equality of the Hilbert polynomials

χ
(
X0, (LH

0 )⊗r) = χ
(
Xg, L⊗r

g
)
. (5.29.1)

Since both sides are polynomials in r, it is sufficient to prove that they are equal
for all multiples of m.

Note that L[m]|X0 and (LH
0 )⊗m are both locally free sheaves that agree outside

a codimension 2 subset, hence they are isomorphic. Thus

χ
(
X0, (LH

0 )⊗rm)
= χ

(
X0,

(
L[m]|X0

)⊗r)
=

= χ
(
Xg,

(
L[m]|Xg

)⊗r)
= χ

(
Xg, L⊗rm

g
)
,

(5.29.2)

where the last equality holds since Lg is a line bundle (5.24). In particular
we conclude that χ

(
X0, LH

0
)

= χ
(
Xg, Lg

)
. Let OX/S (1) be an f -ample invertible

sheaf. We can apply the same argument to any L(t) to obtain that χ
(
X0, LH

0 (t)
)

=

χ
(
Xg, Lg(t)

)
for every t. By (3.32) this implies that L is locally free. �

5.5 Flatness criteria in codimension 1

Let f : X → S be a projective morphism with f -ample OX(1), and F a coher-
ent sheaf on X. Assume that S is reduced. By (3.20), the polynomial valued
function s 7→ χ

(
Xs, Fs(∗)

)
is

• upper semi-continuous on S , and
• it is locally constant iff F is flat over S .
In Sections 5.1–5.2 we discussed numerous situations where we first associate
some other object to each (Xs, Fs), and then compute a numerical invariant.
Usually these objects can not be realized as fibers of some morphism. How-
ever, we still would like to show that the numerical invariant is an upper or

https://stacks.math.columbia.edu/tag/0F29
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lower semi-continuous function on S . Furthermore, if the numerical invariant
is locally constant on S , then we would like to prove that the objects fit together
into a flat family over S .

As a typical example—generalizing (5.8)—consider the Hilbert polynomial
of the reflexive hulls χ

(
Xs, (Fs)[∗∗](∗)

)
. Assume that X, S are normal, and so

are the fibers of f . Note that (3.20) does not apply, since usually there is no
coherent sheaf on X whose fibers are (Fs)[∗∗]. There is a natural map

rs : (F[∗∗])s → (Fs)[∗∗],

but frequently it is neither injective nor surjective. So we do not get any com-
parison between the Hilbert polynomials of (F[∗∗])s and (Fs)[∗∗]. It is also not
clear what should happen if s 7→ χ

(
Xs, (Fs)[∗∗](∗)

)
is locally constant.

Next we outline a method to study such problems in three steps.
• Show that the numerical function is upper or lower semi-continuous.
• If the function is locally constant, construct a candidate f ′ : (X′, F′) → S ′

for the flat model.
• Prove that, under suitable assumptions, S ′ ' S and (X′, F′) as expected.

The details are simple, but at the end they lead to interesting consequences.

5.30 (How to prove semicontinuity?). Let φ( ) be a function that associates
to certain pairs (X, F) (consisting of a proper scheme over a field k, and a
coherent sheaf on it, plus possibly some other data) an element in a partially
ordered set. Typical examples for us are φ1(X) := (Kn

X), φ2(X, F) := χ(X, F),
or φ3(X, F) := χ(X, pure F(∗)) (if we also have an ample line bundle OX(1)).
We always assume that φ( ) is invariant under base field extensions.

Let f : X → S be a morphism, and F a coherent sheaf on X. We would like
to prove that s 7→ φ(Xs, Fs) is upper or lower semi-continuous. In many cases
this can be done in 2 stages.
(5.30.1) Prove that s 7→ φ(Xs, Fs) is constant on a nonempty open subset S ◦ ⊂
S . If this works inductively for closed subsets of S , then Noetherian induction
shows that s 7→ φ(Xs, Fs) is constructible.

A constructible function is upper (resp. lower) semi-continuous iff it is upper
(resp. lower) semi-continuous after base change to any DVR T → S . Thus it
remains to do:
(5.30.2) Let T be the spectrum of a DVR with closed point 0T , generic point
gT , and π : T → S a morphism. Prove that

φ
(
X0T , F0T

)
≥ (resp. ≤) φ

(
XgT , FgT

)
.

(Frequently k(0T ) , k(π(0T )), this is why φ( ) should be invariant under base
field extensions.)
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If we want to prove that s 7→ φ(Xs, Fs) is locally constant, then we need only
the following.
(5.30.3) Let T be the spectrum of a DVR with closed point 0T , generic point
gT , and π : T → S a morphism that maps gT to a generic point of S . Prove that

φ
(
X0T , F0T

)
= φ

(
XgT , FgT

)
.

The generic point property of π is helpful if we have extra information about
the generic fibers of X → S .

5.31 (How to construct a candidate?). This is usually the hard part. If our
objects φ( ) are subvarieties, then φ(Xs, Fs) is a point in the Hilbert scheme or
the Chow variety. Thus we have a set-theoretic map

σset : (points of S )→
{

(points of Hilb(X/S )), or
(points of Chow(X/S )).

If the objects φ( ) are non-embedded varieties, we get a point in some moduli
space. For the case of reflexive hulls considered above, we need the moduli
space of husks, which we discuss in Section 9.5.

Usually there are several choices for the moduli theory, and the proofs need
the ‘correct’ one to work. At the end we have a set-theoretic map

σset : (points of S )→ (points of some moduli space M).

Then the only sensible thing is to let S ′ be the closure of the image if σset; it
comes with a natural map π : S ′ → S .

If M is a coarse moduli space, then we have to make sure that there is a uni-
versal family over S ′, which usually means that we have to eliminate possible
automorphisms (1.71); see (5.55–5.56) for such examples.

If this works out, then we have our candidate family f ′ : (X′, F′)→ S ′, and
a natural morphism π : S ′ → S .

Then we need to show that S ′ ' S , and X′, F′ are as expected. The key is
usually the isomorphism S ′ ' S . We typically know that π is proper, and an
isomorphism over the generic points of S .

5.32 (How to check isomorphism?). Let π : S ′ → S be a proper morphism,
W ⊂ S a nowhere dense, closed subset, and W ′ := π−1(W) ⊂ S ′. Assume that
π : (S ′ \W ′)→ (S \W) is an isomorphism, and S ′ (resp. S ) has no associated
points in W ′ (resp. W). Then π is an isomorphism in the following cases.
(5.32.1) π−1(w) ' w for w ∈ W (by Nakayama’s lemma),
(5.32.2) k(red π−1(w))/k(w) is purely inseparable for w ∈ W, and (W, S ) is

weakly normal (by definition (10.74)),
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(5.32.3) k(red π−1(w)) = k(w) for w ∈ W, and (W, S ) is seminormal (by defi-
nition (10.74)),

(5.32.4) depthW S ≥ 2 (by (10.6)),
(5.32.5) S is normal.

We illustrate the method in the simplest case, when we look at the reduced
structure of the fibers of a morphism. Being reduced is invariant under sepa-
rable ground field extensions. Thus working with Xs 7→ red(Xs) is sensible in
characteristic 0, but in general it is better to work with the reduced structure of
the geometric fibers.

Theorem 5.33. Let f : X → S be a projective morphism of pure relative di-
mension n with f -ample OX(1). Assume that X is reduced, and S is weakly
normal. For s ∈ S let Xs̄ denote the corresponding geometric fiber. Then
(5.33.1) χ(s) := χ

(
red(Xs̄),O(∗)

)
is lower semi-continuous, and

(5.33.2) f is flat with geometrically reduced fibers iff the generic fibers are
geometrically reduced, and χ(s) is locally constant on S .

We prove this in (5.37), but first some consequences and variants. If we
understand only the leading coefficient of χ

(
red(Xs̄),O(∗)

)
, we still get very

useful information about f as in (Kollár, 1996, I.6.5).

Corollary 5.34 (Smoothness criterion in codimension 0). Let f : X → S be a
projective morphism of pure relative dimension n, and H an f -ample divisor
class. Assume that X is reduced and S is weakly normal. For s ∈ S let Xs̄

denote the geometric fiber. Then
(5.34.1) s 7→ degH

(
red(Xs̄)

)
is lower semi-continuous, and

(5.34.2) f is smooth on a dense subset of each fiber iff s 7→ degH
(
red(Xs̄)

)
is

locally constant and f is generically smooth. (The latter is automatic in
characteristic 0.)

Proof Repeated application of (10.56) reduces the proof to n = 0, which is a
special case of (5.33). �

It turns out that codimension 0 is the hardest part of (5.33), and we have
stronger results in higher codimensions. The following is proved in (5.37).

Theorem 5.35. Let f : X → S be a projective morphism of pure relative di-
mension n with f -ample OX(1). Assume that X, S are reduced, and f is smooth
at the generic points of each fiber. Then f is flat with geometrically reduced
fibers iff s 7→ χ

(
red(Xs),O(∗)

)
is locally constant.

As a consequence, we get one part of (3.11) about the Hilbert-to-Chow map.
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Corollary 5.36 (Flatness criterion in codimension 1). Let f : X → S be a
projective morphism of pure relative dimension n, and H an f -ample divisor
class. Assume that X, S are reduced, and f is smooth at the generic points of
each fiber. Then
(5.36.1) the sectional genus (3.10) of the fibers is a lower semi-continuous

function on S , and
(5.36.2) f is flat with reduced fibers at codimension 1 points of each fiber iff

the sectional genus is locally constant.

Proof Repeated application of (10.56) reduces the proof to the case n = 1,
which is a special case of (5.35). �

We can thus expect that, for families that are locally stable in codimension
1, there are results connecting the intersection numbers

(
(π∗0H)n−i · (KX̄0

+ D̄0)i)
with the higher codimension behavior of f . There are two surprising twists.
• The lower semicontinuity in (5.34) and (5.36) switches to upper semiconti-

nuity for i = 2.
• In most cases we need only one more intersection number to take care of all

codimensions.

5.37 (Proof of 5.33 and 5.35). For (5.33.1) we follow (5.30). After a purely
inseparable base change S ′ → S , the generic fiber of red(X ×S S ′) → S
is geometrically reduced, hence s 7→ χ

(
red Xs̄,O(∗)

)
is locally constant on a

dense open set by generic flatness. This gives constructibility as in (5.30.1).
Continuing with (5.30.2), let T be the spectrum of a DVR with closed point

t, generic point g, and π : T → S a morphism mapping t to s ∈ S . Set Y :=
red(X ×S T ), and assume that Yg is geometrically reduced. Since f has pure
relative dimension, Y → T is flat, hence

χ
(
red(Yt̄),O(∗)

)
� χ

(
red(Yt),O(∗)

)
� χ

(
Yt,O(∗)

)
= χ

(
Yg,O(∗)

)
. (5.37.1)

By (5.30) this proves (5.33.1) since χ
(
red(Yt̄),O(∗)

)
= χ

(
red(Xs̄),O(∗)

)
. We

also see that the 2 sides of (5.37.1) are equal iff Yt is also geometrically re-
duced.

If f is flat with geometrically reduced fibers then (5.33.2) is clear. For the
converse we may assume that S is connected, so p(∗) := χ

(
red Xs̄,O(∗)

)
is

independent of s.
For both (5.33) and (5.35), the relative Hilbert scheme now gives a clear

choice for the candidate as in (5.31). Indeed, π : Hilbp(X/S )→ S parametrizes
subschemes of the fibers with Hilbert polynomial p(∗).

We claim that π : Hilbp(X/S ) → S is an isomorphism. In both theorems
we assume that the generic fibers are generically smooth, hence geometrically
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generically reduced. They are also S 1, hence geometrically S 1. A generically
reduced S 1 scheme is reduced, so the generic fibers are geometrically reduced.
The latter is an open property by (10.12). Thus π is an isomorphism over the
dense open subset S ◦ ⊂ S where f is flat with geometrically reduced fibers.
The question is, what happens over other points.

The easy case is (5.35). By (5.38.4) π−1(s) = Hilbp(Xs) ' s, thus π is an
isomorphism by (5.32.1).

For (5.33) the argument is more circuituous. Let Hilb′p(X/S ) ⊂ Hilbp(X/S )
denote the closure of π−1(S ◦) with projection π′ : Hilb′p(X/S ) → S . First we
claim that π′ is geometrically injective.

To see this pick any s ∈ S , and let τ : T → S be a DVR that maps the closed
point t ∈ T to s and the generic point g ∈ T to S ◦. We have a lifting τ′ : T →
Hilb′p(X/S ), and we check in (5.38.5) that τ′(t) =

[
red(Xt)

]
∈ Hilb′p(X/S ).

Since S is assumed weakly normal, (5.31.2) implies that π′ : Hilb′p(X/S )→
S is an isomorphism.

We have Univ′p(X/S ) → Hilb′p(X/S ), and u′ : Univ′p(X/S ) → X, which is
a closed embedding on each fiber. Thus u′ is a closed embedding by (10.54),
hence an isomorphism since X is reduced.

Therefore X ' Univ′d(X/S ) is flat over S . In particular, Hilbp(X/S ) =

Hilb′p(X/S ) ' S . �

5.38 (Uniqueness of red X). A scheme X uniquely determines red X, but what
about in families? What if we know only the Hilbert polynomial of red X?

We start with two negative examples, followed by two positive results.

Example 5.38.1. Let X be the scheme Spec k[x, y]/(x2, xy, y2(y − 1)). Then
red X = Spec k[x, y]/(x, y(y − 1)) has length 2, but so are the subschemes
Spec k[x, y]/(x2, xy, y2, x − cy). Thus Hilb2 X ' P1

k q Spec k.

Example 5.38.2. Spec k is the only subscheme of length 1 of Spec k[x]/(x2).
However, consider the trivial family π : Spec k[x, t]/(x2, t2) → Spec k[t]/(t2).
Then for every c ∈ k, the subscheme Spec k[x, t]/(x2, t2, x + ct) is flat over
Spec k[t]/(t2). Thus Hilb1 Spec k[x]/(x2) ' Spec k[t]/(t2).

Claim 5.38.3. Let (0 ∈ A) be the spectrum of a local Artinian k-algebra, and
f : Y → A a projective morphism with f -ample OX(1). Let F be a coherent
sheaf on Y , and set p(∗) := χ

(
Y0, pure(F0)(∗)

)
. Then F has at most 1 quotient

q : F � Q that is flat over A with Hilbert polynomial p(∗). If Q exists then
Q = pure F.

Proof Set n = dim F0. If q′ : F0 → Q′ is any map that is surjective at n-
dimensional points, then χ

(
Y0, F0(∗)

)
and χ

(
Y0,Q′(∗)

)
have the same leading
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coefficient iff dim(ker q′) < n. Also, if χ
(
Y0,Q′(∗)

)
= χ

(
Y0, pure(F0)(∗)

)
, then

Q′ = pure(F0).
Thus, if Q is flat over A with Hilbert polynomial p(∗), then ker q ⊂ F is the

largest subsheaf whose support has dimension < n. This shows that Q = pure F
is the only possibility. �

Corollary 5.38.4. Let X be a proper scheme of pure dimension n over a field
k. Assume that X is geometrically reduced at its generic points. Set p(∗) :=
χ
(
red X,Ored X(∗)

)
. Then Hilbp(X) ' Spec k.

Proof In this case red(XK) = SpecXK
(pure OXK ) for any field extension K ⊃ k.

The rest follows from (5.38.3). �

Claim 5.38.5. Let T be the spectrum of a DVR, and f : Y → T a projective
morphism of pure relative dimension n with f -ample OX(1). Assume that Yg is
reduced and set p(∗) := χ

(
Yg,O(∗)

)
.

If χ
(
red(Y0),O(∗)

)
= p(∗), then red Y ⊂ Y is the unique subscheme that is

flat over T with Hilbert polynomial p(∗).

Proof Let Z ⊂ Y be such a subscheme. Then Zg = Yg. Since f has pure
relative dimension, the closure of Yg contains Y0, thus red Y0 ⊂ Z0. These have
the same Hilbert polynomial p(∗), hence they are equal. �

Examples 5.39. The following series of examples show that the assumptions
in (5.33–5.35) are necessary.
(5.39.1) Let C be a cuspidal curve with normalization p : C̄ → C. Then p is
not flat, but red p−1(c) ' c for every c ∈ C. Here C is not seminormal. Over
imperfect fields, (10.75.3) gives similar examples where C is seminormal, but
not weakly normal.
(5.39.2) Set S := (uv = 0) and let X ⊂ S × A1

w be the union of 2 curves
(u = v − (w − 1)2 = 0) ∪ (v = u − (w + 1)2 = 0), with projection π : X → S .
Then deg

(
k[red Xs]/k(s)

)
= 2 for every s ∈ S , but π is not flat, and it does not

have pure relative dimension 0.
(5.39.3) A more complicated example of relative dimension 1 is the following.
Set S := (uv = 0) and let X ⊂ S ×P3

x be a reduced subscheme with 3 irreducible
components as follows.

Over the u-axis we take a planar smooth cubic Eu degenerating to a cuspidal
cubic E0, for example X1 := (x1 = ux3

0 + x3
2 − x0x2

3 = 0). We also add the line
X3 := (u; 0:1:0:0).

Over the v-axis we take a smooth twisted cubic Cv degenerating to E0. For
example, X2 can be the image of (v; s:t) 7→ (s3:vs2t:st2:t3). (The flat limit C0

has an embedded point at the cusp.)
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If v , 0 then X0,v is a smooth rational cubic, so χ
(
X0,v,O(m)

)
= 3m + 1.

If u , 0 then Xu,0 is a smooth elliptic cubic plus a disjoint point, so again
χ
(
Xu,v,O(m)

)
= 3m + 1. Finally, X0,0 is nonreduced, but red X0,0 is a singular

planar cubic plus a disjoint point, so χ
(
red Xu,v,O(m)

)
= 3m + 1.

However, the projection π : X → S is not flat. Here π is not pure dimen-
sional, and X0,0 has 2 subschemes with Hilbert polynomial 3m + 1. One is
red X0,0 the other is the 1-dimensional irreducible component of X0,0.

It is straightforward to generalize (5.35) from OX to an arbitrary coherent
sheaf F. The only change is that, instead of the Hilbert scheme Hilb(X/S ), we
use the quot-scheme Quot(F) (9.33). Thus we get the following.

Theorem 5.40. Let f : X → S be a projective morphism with f -ample OX(1)
with S is reduced. Let F be a coherent sheaf on X that is generically flat
(3.26) over S . Assume that Supp F → S has pure relative dimension n, and
F does not have embedded points. Then F is flat over S with pure fibers iff
s 7→ χ

(
Xs, pure(Fs)(∗)

)
is locally constant. �

5.6 Deformations of slc pairs

So far we have focused on locally stable deformations of slc pairs. The next
result, due to Kollár and Shepherd-Barron (1988), connects arbitrary flat defor-
mations (Xt,∆t) of an slc pair (X0,∆0) to locally stable deformations of a suit-
able birational modification f0 :

(
Y0,∆

Y
0
)
→ (X0,∆0). We then compare various

numerical invariants of (X0,∆0) and of (Xt,∆t) by going through
(
Y0,∆

Y
0
)
. This

implies a weaker version of (5.5).

Theorem 5.41. Kollár and Shepherd-Barron (1988) Let (X,D+∆) be a normal
pair, where D is a reduced, Q-Cartier divisor that is demi-normal in codimen-
sion 1, and whose normalization

(
D̄,DiffD̄ ∆

)
is lc. Assume also2 that

(5.41.1) either
(
D̄,DiffD̄ ∆

)
is klt,

(5.41.2) or KX + ∆ is R-Cartier on X \ D.
Then, in a neighborhood of D, the following hold.

(5.41.3) The log canonical modification f : (Y,DY + ∆Y + E) → (X,D + ∆)
exists, and it is small, that is, E = 0.

(5.41.4) (Y,DY + ∆Y ) is lc.

(5.41.5) DY is normal at the generic point of every f0-exceptional divisor F ⊂
DY , and a

(
F, D̄,DiffD̄ ∆

)
< 0.

(5.41.6) f
(
Ex( f )

)
is precisely the locus where KX + ∆ is not R-Cartier.

2 Conjecturally these are not needed; see (11.29).
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Proof Let h : X′ → X be a log resolution with exceptional divisor E′. Set
discrep

(
D̄,DiffD̄ ∆

)
= −1 + ε. Let f : (Y,DY + ∆Y + (1 − ε)E)→ (X,D + ∆) be

the relative canonical model of
(
X′, h−1

∗ (D + ∆) + (1 − ε)E′
)
. This is the same

as the relative canonical model of
(
X′, h−1

∗ (D + ∆) + (1 − ε)E′ − ηh∗D
)

since
h∗D is numerically h-trivial.

If
(
D̄,DiffD̄ ∆

)
is klt then ε > 0, hence

(
X′, h−1

∗ (D + ∆) + (1 − ε)E′ − ηh∗D
)

is klt, and the relative canonical model exists by (11.28.2).
If ε = 0 then we note that

(
X′, h−1

∗ (D + ∆) + (1 − ε)E′ − ηh∗D
)

has no lc
centers over D for η > 0, hence the relative canonical model exists by (11.30)
and (11.28.2).

Let πX : D̄ → D and πY : D̄Y → DY be the normalizations. Then f0 lifts to
f̄0 : D̄Y → D̄. Write KD̄Y

+ ∆D̄Y
∼R f̄ ∗0

(
KD̄ + DiffD̄ ∆

)
. By adjunction,

π∗Y
(
KY + DY + ∆Y + (1 − ε)E

)
∼R KD̄Y

+ DiffD̄Y

(
∆Y + (1 − ε)E

)
∼R f̄ ∗0

(
KD̄ + DiffD̄ ∆

)
+

(
DiffD̄Y

(
∆Y + (1 − ε)E

)
− ∆D̄Y

)
.

Since D has only nodes at codimension 1 points, X is canonical at codimen-
sion 1 points of D (11.35), and f is an isomorphism near these points. Thus
DiffD̄Y

(
∆Y + (1 − ε)E

)
− ∆D̄Y

is f̄0-exceptional, and f̄0-ample. By (11.60) this
implies that every f̄0-exceptional divisor appears in DiffD̄Y

(
∆Y +(1−ε)E

)
−∆D̄Y

with strictly negative coefficient.
Every divisor in DY ∩ E appears in DiffD̄Y

(
∆Y + (1 − ε)E

)
with coefficient

≥ 1−ε by (11.16). On the other hand, every exceptional divisor appears in ∆D̄Y

with coefficient ≤ 1− ε by our choice of ε. Thus the divisors in DY ∩ E appear
in DiffD̄Y

(
∆Y + (1 − ε)E

)
− ∆D̄Y

with coefficient ≥ (1 − ε) − (1 − ε) = 0. We
noted above that these coefficients are strictly negative, so DY ∩ E = ∅.

Hence, after shrinking X, there are no exceptional divisors in f : Y → X, so
f is small, DY = f ∗D, and (Y,∆Y + DY ) is lc,

Let F̄ ⊂ D̄Y be any f̄0-exceptional divisor. Since it appears in DiffD̄Y

(
∆Y

)
−

∆D̄Y
with negative coefficient, it must appear in ∆D̄Y

with positive coefficient,
and in DiffD̄Y

(
∆Y

)
with coefficient < 1. By (11.16) the latter implies that DY is

smooth at the generic point of πY
(
F̄
)
, proving (5).

Finally let x ∈ X \ D be a point where KX + ∆ is R-Cartier. Since f is small,
KY + ∆Y ∼R f ∗(KX + ∆) over a neighborhood of x. Since KY + ∆Y is f -ample,
f is an isomorphism over a neighborhood of x. �

Complement 5.41.7. If
(
D̄,DiffD̄ ∆

)
is klt then D is normal. This was used

in Kollár and Shepherd-Barron (1988) to get a description of the deformation
space of log terminal surface singularities. The cone over an elliptic scroll gives
examples where D is not normal, but its normalization has a simple elliptic
singularity, see Mumford (1978).
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See also Sato and Takagi (2022) for closely related results.

5.42 (Proof of 5.4). We prove (5.4) when the base S is the spectrum of a DVR.
By (4.7), this implies the case when S is higher dimensional, provided f is
assumed to be flat with S 2 fibers.

As a preliminary step, we replace (X,∆) by its normalization. This leaves
the assumptions and the numerical conclusion (5.4.1) unchanged. Then (2.54),
shows that the conclusion in (5.4.2) is also unchanged.

Thus assume that X is normal. The conclusions are local on C, so pick a
point 0 ∈ C, and let f : (Y,∆Y + Y0) → (X, X0 + ∆) be the log canonical mod-
ification as in (5.41). Let πY : Ȳ0 → Y0 be the normalization and f̄0 : Ȳ0 → X̄0

the induced birational morphism. We apply (10.32.3–4) to

DY := KȲ0
+ DiffȲ0

∆Y and DX := KX̄0
+ Diff X̄0

∆ = KX̄0
+ D̄0 + ∆̄0.

The assumptions are satisfied since ( f̄0)∗
(
KȲ0

+ DiffȲ0
∆Y ) = KX̄0

+ Diff X̄0
∆,

and KȲ0
+ DiffȲ0

∆Y is f̄0-ample. Using the volume (10.31), this implies that(
KX̄0

+ Diff X̄0
∆
)n

= vol
(
KX̄0

+ Diff X̄0
∆
)
≥ vol

(
KȲ0

+ DiffȲ0
∆Y ),

and equality holds iff f̄0 is an isomorphism. Since KY + ∆Y is Q-Cartier,

vol
(
KȲ0

+ DiffȲ0
∆Y ) ≥ vol

(
KȲc

+ ∆Y |Ȳc

)
=

(
(KȲc

+ ∆̄c)n)
for general c , 0, and (Ȳc, ∆̄c) = (Xc,∆c) by (5.41.4). Combining the inequal-
ities shows that

(
(KX̄0

+ D̄0 + ∆̄0)n) ≥ (
(KX̄c

+ ∆c)n) for general c , 0, and
equality holds iff f̄0, and hence f , are isomorphisms over 0 ∈ C. �

The same method can be used to prove a weaker version of the numerical
criterion of local stability over smooth curves. This establishes (5.5) for fami-
lies of surfaces over a smooth curve. It is not clear how to use these methods
to complete the proof of (5.5) for higher dimensional families. We will derive
(5.5) from (5.8) instead; see (5.27) for the key step.

Proposition 5.43 (Weak numerical criterion of local stability). Let C be a
smooth curve of char 0, and f : (X,∆)→ C a morphism satisfying the assump-
tions (5.5.1–3). Then
(5.43.1) I(c) := I

(
π∗cH,KX̄c

+ D̄c + ∆̄c
)

is upper semi-continuous for �, and
(5.43.2) f : (X,∆)→ C is locally stable iff I(c) is locally constant on C.

Note that the first two numbers in the sequence I
(
π∗cH,KX̄c

+ D̄c + ∆̄c
)

equal(
Hn ·Xc

)
and

(
Hn−1 · (KX + ∆) ·Xc

)
, hence they are always locally constant. The

first interesting number is
(
π∗cHn−2 · (KX̄c

+ D̄c + ∆̄c)2) which is thus an upper
semi-continuous function on C by (1).
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Proof As in (5.42) we may assume that X is normal. Let f : (Y,∆Y + Y0) →
(X, X0 + ∆) be the log canonical modification, and f̄0 : X̄0 → Ȳ0 the induced
birational morphism between the normalizations. Here we apply (10.32.1–2)
to KȲ0

+ DiffȲ0
∆Y and KX̄0

+ Diff X̄0
∆ to obtain that

I
(
π∗0H,KX̄0

+ Diff X̄0
∆
)
� I

(
f̄ ∗0 π
∗
0H,KȲ0

+ DiffȲ0
∆Y ),

and equality holds iff f̄0 is an isomorphism. Since KY+∆Y is aQ-Cartier divisor,

I
(
f̄ ∗0 π
∗
0H,KȲ0

+ DiffȲ0
∆Y ) = I

(
π∗cH,KȲc

+ ∆Y |Ȳc

)
= I

(
π∗cH,KX̄c

+ ∆̄c
)

for general c , 0. Thus I
(
π∗0H,KX̄0

+ D̄0 + ∆̄0
)
� I

(
π∗cH,KX̄c

+ ∆̄c
)

for general
c , 0, and equality holds iff f̄0, and hence f , are isomorphisms. �

5.7 Simultaneous canonical models
In this section we consider the existence of simultaneous canonical models.

5.44 (Proof of (5.10) over curves). Let B be a smooth curve of char 0, and
f : X → B a morphism of pure relative dimension n.

First we prove that b 7→ vol(KXr
b
) is a lower semi-continuous function on B.

If we replace X by a resolution Xr → X then vol(KXr
b
) is unchanged for

general fibers, and it can only increase for special fibers. There are two sources
for an increase. First, the resolution may introduce new divisors of general
type. Second, if X is not normal, an irreducible component of a fiber may be
replaced by a finite cover of it. The latter increases the volume by (10.38).

Thus it is enough to check lower semicontinuity when X is smooth, and all
fibers are snc. If the volume of the general fiber is 0, then the volume of every
fiber is 0 by (5.45), so assume that general fibers are of general type.

Fix a fiber F = Xb. By shrinking B we may assume that all other fibers are
smooth. Let f c : Xc → B the relative canonical model of (X, red F) → B as
in (2.57.2). An irreducible component E ⊂ F may get contracted. However,
when this happens, then KE + (red F − E)|E = (KX + red F)|E is negative on
the fibers of the contraction, and so is KE . Such divisors contribute 0 to the
volume. Thus we can check lower semicontinuity on f c : Xc → B.

Write Fc =
∑

eiEi, and let πi : Ēi → Ei be the normalizations. As in (11.14)
write π∗i (KXc + red Fc) = KĒi

+ D̄i, where D̄i = Diff Ēi

(∑
j,i E j

)
. Let g ∈ B be a

general point. Then Fc is disjoint from Xc
g, and we have(

KXc
g

)n
=

(
(KXc + red Fc)n · Xc

g
)

=
(
(KXc + red Fc)n · Fc)

=
∑

iei
(
(KĒi

+ D̄i)n) ≥ ∑
i
(
(KĒi

+ D̄i)n). (5.44.1)

Next we use (5.12) to obtain that
(
(KĒi

+ D̄i)n) ≥ vol(KEr
i
), hence

vol(KXg ) =
(
(KXc

g )n) ≥ ∑
i vol(KEr

i
) = vol(red Fr),
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proving the lower semicontinuity assertion. Furthermore, by (5.12), equality
holds iff Di = 0, the Ei have canonical singularities and ei = 1 for every i. If
Di = 0 then Ei is the only irreducible component of its fiber by (11.16). Thus
Fc is reduced, irreducible and has canonical singularities. So f c : Xc → B is
the simultaneous canonical model of f : X → B. �

Lemma 5.45. Let f : X → B be a projective morphism to a smooth curve B
such that vol(KXr

g ) is zero for the generic fiber Xg. Then vol(KFr ) is zero for
every fiber F of f .

Proof The proof in (5.44) gives this if a resolution of X has a minimal model
over B. This is not fully known, so we have to find a way to go around it.

As in (5.44), we can reduce to the case when X is smooth and F is an snc
divisor. Let H be a general, smooth relatively ample divisor such that KX +H is
f -ample. Using the continuity of the volume (Lazarsfeld, 2004, 2.2.44), there
is a largest 0 ≤ c < 1 such that vol(KXg +cHg) = 0. Fix some c′ > c and run the
MMP for (X, red F + c′H) → B. KXg + c′Hg is big, so (11.28) applies, and we
get a relative canonical model

(
Xc, red Fc + c′Hc) → B. Let π : F̄c → red Fc

denote the normalization, and set H̄c = π∗Hc. As in (5.44.1) we get that

vol(KXg + c′Hc
g) ≥ vol(KF̄c + c′H̄c) ≥ vol(KF̄c ).

Letting c′ → c gives that 0 = vol
(
KXc

g + cHc
g
)
≥ vol(KFr ), as required. �

5.46 (Proof of (5.11) over curves). Let B be a smooth curve over a field of
char 0, and f : (X,∆) → B a flat morphism whose fibers are irreducible and
smooth outside a codimension ≥ 2 subset. We may replace X by its normaliza-
tion. Thus we may assume that X is normal, and the generic fiber is lc.

Assume first that f is locally stable. We prove that b 7→ vol(KXb + ∆b) is an
upper semi-continuous function on S , and f : (X,∆) → B has a simultaneous
canonical model iff this function is locally constant.

To see these let f c : (Xc,∆c)→ B denote the canonical model of f : (X,∆)→
B (11.28). For every b ∈ B we need to understand the difference between

•
(
(Xc)b, (∆c)b

)
, the fiber of f c over b, and

•
(
(Xb)c, (∆b)c), the canonical model of the fiber (Xb,∆b) of f .

These two are the same for general g ∈ B, but they can be different for some
special points in B.

Let φ : X d Xc denote the natural birational map. Since the fibers of f
are irreducible, they can not be contracted, thus φ induces birational maps
φb : Xb d (Xc)b. Let Zb denote the normalization of the closure of the graph of

φb with projections Xb
g
← Zb

h
→ (Xc)b. The key computation in (5.47), shows
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that g∗
(
KXb + ∆b

)
∼R h∗

(
K(Xc)b + (∆c)b

)
+ Fb, where Fb is effective. Thus

vol(KXb +∆b) = vol
(
g∗(KXb +∆b)

)
≥ vol

(
h∗(K(Xc)b +(∆c)b)

)
= vol

(
K(Xc)b +(∆c)b

)
.

Note further that since f c : (Xc,∆c) → B is flat, and KXc + ∆c is f c-ample, its
restrictions to the various fibers have the same volume. Therefore

vol
(
K(Xc)b + (∆c)b

)
= vol

(
K(Xc)g + (∆c)g

)
= vol(KXg + ∆g)

for generic g ∈ B. Thus vol(KXb +∆b) ≥ vol(KXg +∆g), and, by (10.39), equality
holds iff Fb is h-exceptional. Then

(
(Xc)b, (∆c)b

)
is the canonical model of

(Xb,∆b). This proves both claims.
In the general case, when f : (X,∆) → B is not locally stable, we first use

(5.41) to construct h : (X̄, ∆̄)→ (X,∆) such that the composite f ◦ h : (X̄, ∆̄)→
B is locally stable. Thus vol(KX̄b

+ ∆̄b) ≥ vol(KXg + ∆g) as above.
Note that hb : (X̄b, ∆̄b) → (Xb,∆b) is birational by (5.41), and KX̄b

+ ∆̄b is
hb-ample. Thus vol

(
Xb,∆b

)
≥ vol(X̄b, ∆̄b) by (10.32.1). Putting these together

shows the upper semicontinuity of the volume.
It remains to show that if equality holds then there is a simultaneous canon-

ical model. We already proved that if vol(KX̄b
+ ∆̄b) = vol(KXg + ∆g) then

f ◦ h : (X̄, ∆̄) → B has a simultaneous canonical model, which is also the si-
multaneous canonical model of f : (X,∆) → B if vol

(
Xb,∆b

)
= vol(X̄b, ∆̄b).

Then (X̄b, ∆̄b) and (Xb,∆b) have isomorphic canonical models. The latter fol-
lows from (10.39), but it can also be obtained by applying the simpler (10.32)
to the (normalization of the closure of the) graph of

(
X̄b, ∆̄b

)
d

(
Xc

b,∆
c
b
)
. �

Lemma 5.47. Let (X,D + ∆) be lc where D is a reduced Weil divisor, and ∆ =∑
aiDi is an R-divisor. Let f : X → S be a proper morphism, and φ : (X,D +

∆) d (Xc,Dc + ∆c) the relative canonical model. If none of the irreducible
components of D are contracted by φ, we get a birational map

φD̄ :
(
D̄,DiffD̄ ∆

)
d

(
D̄c,DiffD̄c ∆c).

Moreover, a
(
E, D̄,DiffD̄ ∆

)
≤ a

(
E, D̄c,DiffD̄c ∆c) for every divisor E over D̄

and
(
φD̄

)
∗ DiffD̄ ∆ ≥ DiffD̄c ∆c.

Proof Let Y be the normalization of the main component of the fiber product

X ×S Xc with projections X
g
← Y

h
→ Xc. By definition,

g∗(KX + D + ∆) ∼R h∗
(
KXc + Dc + ∆c) + F

where F is effective. Let DY denote the birational transform of D on Y . Re-
stricting to DY we get that

(g|DY )∗(KD + DiffD ∆) ∼R (h|DY )∗
(
KDc + DiffDc ∆c) + F|DY
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and F|DY is also effective. This proves (1) and (2) is a special case. �

The existence of simultaneous canonical models is part of the following.

Question 5.48. Let (X,D + ∆) be an lc pair, and
(
Xc,Dc + ∆c) its canonical

model. What is the relationship between the canonical model of (D,DiffD ∆)
and

(
Dc,DiffDc ∆c)?

The following smooth example shows that these two are usually different.
Start with a smooth variety X′, a smooth divisor D′ ⊂ X′, and another

smooth divisor C′ ⊂ D′. Assume that KX′ + D′ is ample. Set X := BC′X′

with exceptional divisor E, and let D ⊂ X denote the birational transform of
D′. Then (X,D + E) is an lc pair whose canonical model is (X′,D′), and (D′, 0)
is its own canonical model. However, (D,DiffD E) ' (D′,C′) , (D′, 0).

The following is proved in (Ambro and Kollár, 2019, Thm.7).

Theorem 5.49. Let (X,D + ∆) be an lc pair that is projective over a base
scheme S with relatively ample divisor H, where all divisors in D appear with
coefficient 1. Set (X0,D0 + ∆0) := (X,D + ∆), and, for i = 1, . . . ,m, let

φi : (Xi−1,Di−1 + ∆i−1)d (Xi,Di + ∆i)

be the steps of the (X,D+∆)-MMP with scaling of H. Assume that the intersec-
tion of D with the exceptional locus of φm ◦ · · · ◦ φ1 : X d Xm does not contain
any log center (11.11) of (X,D + ∆). Let % : D̄→ D be the normalization.

Then the induced maps

φi
D̄ : (D̄i−1,DiffD̄ ∆i−1)d (D̄i,DiffD̄ ∆i)

form the steps of the MMP starting with (D̄0,DiffD̄ ∆0) := (D̄,DiffD̄ ∆) and
with scaling of %∗H. �

5.8 Simultaneous canonical modifications
If S is smooth then the simultaneous canonical modification of f : (X,∆)→ S
is also the canonical modification of (X,∆) by (4.56). Thus, over a smooth
curve, we consider the canonical modification of (X,∆), and aim to prove that
it is a simultaneous canonical modification.

5.50 (Proof of (5.16) over curves). Let C be a smooth curve, and f : (X,∆)→
C a flat, projective morphism of pure relative dimension n that satisfies the
assumptions of (5.16).

Each c 7→
(
π∗cHn−i

c · (KXcm
c + ∆cm

c )i) is a constructible function on C. Thus, in
order to prove (5.16.1) we may assume that C is the spectrum of a DVR with
closed point 0 ∈ C and generic point g ∈ C. We may also assume that X is
reduced, thus f is flat.
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By (5.34),
(
π∗0Hn

0
)
≤

(
π∗gHn

g
)
, and equality holds iff X0 is generically reduced.

It is thus enough to deal with the latter case. Then X is generically normal
along X0, and we can replace X by its normalization without changing any of
the assumptions or conclusions. We may now also assume that X is irreducible.

Let π :
(
Y,∆Y = π−1

∗ ∆
)
→ (X,∆) denote the canonical modification.

Write Y0 =
∑

i eiEi where e0 = 1, and E0 is the birational transform of
X0. (For now E0 is allowed to be reducible.) Set E := red Y0 =

∑
Ei. Let

τ : Ē0 → E0 denote the normalization, and write τ∗
(
KY + E + ∆Y ) = KĒ0

+ D0

where D0 = Diff Ē0

(
E − E0 + ∆Y ) as in (11.14). Choose m ≥ 0 such that

KY + E + ∆Y + mπ∗H is ample over C. We claim that

(
(KXcm

g + ∆cm
g + mπ∗gH)n)

=
(
(KYg + ∆Y

g + mπ∗gH)n) =
(
(KY + ∆Y + mπ∗H)n · [Yg]

)
=

(
(KY + E + ∆Y + mπ∗H

)n
· [Yg]

)
=

(
(KY + E + ∆Y + mπ∗H

)n
· [Y0]

)
=

∑
iei

((
(KY + E + ∆Y + mπ∗H)|Ei

)n)
≥

(
(KĒ0

+ D0 + mπ∗0H)n)
≥ vol

(
KXcm

0
+ ∆cm

0 + mπ∗0H
)

=
(
(KXcm

0
+ ∆cm

0 + mπ∗0H)n).
The first equality holds since (Yg,∆

Y
g ) is the canonical modification of (Xg,∆g),

hence ∆cm
g = ∆Y

g . The second equality is clear. We are allowed to add E in the
fourth row since it is disjoint from Yg. We can then replace Yg by Y0 since they
are algebraically equivalent, and compute the latter one component at a time.
KY +E+∆Y +mπ∗H is ample, thus if we keep only the summands corresponding
to E0, we get the first inequality, which is an equality iff Y0 = E0.

The second inequality follows from (10.36), once we check that σ−1
∗ ∆0 ≤

D0 where σ := π0 ◦ τ : Ē0 → X̄0 is the natural map. Since D0 is effective,
this is clear for σ-exceptional divisors. Otherwise, either π is an isomorphism
over the generic point of a divisor Di

0 (hence Di
0 has the same coefficients

in σ−1
∗ ∆0 and D0) or σ−1

∗ Di
0 is contained in another irreducible component

of red Y0. In this case σ−1
∗ Di

0 appears in D0 with coefficient 1, and in σ−1
∗ ∆0

with coefficient ≤ 1 by assumption. This proves the second inequality and,
by (10.36), if equality holds then D0 = σ−1

∗ ∆0. The last equality is a general
property of ample divisors.

As we noted in (5.14), the inequality proved in (5.50.1) is equivalent to
I
(
π∗gHg,KXcm

g + ∆cm
g

)
� I

(
π∗0H0,KXcm

0
+ ∆cm

0
)
, which proves (5.16.1).

If equality holds everywhere in (5.50.1) then Y0 = E0, D0 = σ−1
∗ ∆0, and(

Ē0,D0
)

is canonical. On the other hand, D0 is the sum of σ−1
∗ ∆0 and of the

conductor of Ē0 → E0 = Y0. So the conductor is 0, Y0 is normal in codimension
1, D0 = (π0)−1

∗ ∆0, and
(
Y0, (π0)−1

∗ ∆0
)

is canonical in codimension 1. Thus Y0 is
normal and

(
Y0, (π0)−1

∗ ∆0
)

is canonical by (2.3). Since KY0 + D0 is ample over
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X0, these show that
(
Y0, (π0)−1

∗ ∆0
)

is the canonical modification of (X0,∆0).
Thus the canonical modification of (X,∆) is also the simultaneous canonical
modification, proving (5.16.2) over curves. �

In analogy with (5.15), we can define simultaneous slc modifications.

Definition 5.51. Let (X,∆) be a pair over a field k that is slc in codimen-
sion 1. Its semi-log-canonical modification is a proper, birational morphism
π :

(
Xslcm,∆slcm)

→ (X,∆) such that π is an isomorphism over codimension 1
points of X, ∆slcm = π−1

∗ ∆ + E where E contains every π-exceptional divisor
with coefficient 1, KXslcm + ∆slcm is π-ample, and

(
Xslcm,∆slcm)

is slc.
If X is normal, then the semi-log-canonical modification is automatically

normal, and it agrees with the log canonical modification.
In general lc modifications are conjectured to exist, but there are slc pairs

without slc modification, see (Kollár, 2013b, 1.40). In both cases existence is
known when KX + ∆ is R-Cartier, see Odaka and Xu (2012).

Let f : (X,∆) → S be a morphism as in (5.2) that satisfies the condition
(5.3.1). A simultaneous slc modification is a proper morphism π : (Y,∆Y ) →
(X,∆) such that f ◦π : (Y,∆Y )→ S is locally stable, and πs : (Ys,∆

Y
s )→ (Xs,∆s)

is the slc modification for every s ∈ S .

We get the following variant of (5.16).

Theorem 5.52. Let C be a smooth curve, f : (X,∆) → C a projective mor-
phism as in (5.2) that satisfies the condition (5.3.1). Assume that KX + ∆ is
R-Cartier, and the slc modification πc :

(
Xslcm

c ,∆slcm
c

)
→ (Xc,∆c) exists for ev-

ery c ∈ C. Then
(5.52.1) c 7→ I

(
π∗cHn−2

c ,KXslcm
c

+ ∆slcm
c

)
is lower semi-continuous for �, and

(5.52.2) f : (X,∆)→ C has a simultaneous slc modification iff this function is
locally constant.

Proof Using (2.54) we may assume that X is normal. Next we closely follow
the proof of (5.50).

Let π : (Y,∆Y )→ (X,∆) denote the log canonical modification; this exists by
(11.29). Note that here ∆Y = π−1

∗ ∆ + F where F is the sum of all π-exceptional
divisors that dominate C.

Write Y0 =
∑

i eiEi where e0 = 1 and E0 is the birational transform of X0. Let
τ : Ē0 → E0 denote the normalization, and write τ∗

(
KY + Y0 + ∆Y ) = KĒ0

+ D0.
Choose m ≥ 0 such that KY + Y0 + ∆Y + mπ∗H is ample over C. As in the proof
of (5.50) we get that(

(KXlcm
g

+ ∆lcm
g + mπ∗gH)n) ≥

(
(KĒ0

+ D0 + mπ∗0H)n) and
vol

(
KXlcm

0
+ ∆lcm

0 + mπ∗0H
)

=
(
KXlcm

0
+ ∆lcm

0 + mπ∗0H
)n
.
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It remains to prove that
(
KĒ0

+ D0 + mπ∗0H
)n
≥ vol

(
KXlcm

0
+ ∆lcm

0 + mπ∗0H
)
.

We have σ : Ē0 → X0, and we can apply (10.37) if every σ-exceptional
divisor F̄0 ⊂ Ē0 appears in D0 with coefficient 1.

By the definition of lc modifications, every divisor Fi that is exceptional for
Y → X appears in ∆Y with coefficient 1. If KX + ∆ is R-Cartier then the excep-
tional set of Y → X has pure codimension 1. In this case τ(F̄0) is contained in
a divisor that is exceptional for Y → X. Thus, by adjunction, F̄0 appears in D0

with coefficient 1.
If (X0,∆0) is slc at a point x0 then (X,∆) is also slc at x0 by inversion of ad-

junction (11.17) hence π is a local isomorphism over x0. Thus π0 : (Y0,∆
Y
0 ) →

(X0,∆0) is an isomorphism over codimension 1 points of X0.
The rest of the proof works as before. �

If KX + ∆ is not R-Cartier then it can happen that an exceptional divisor
F̄0 ⊂ Ē0 is not contained in any exceptional divisor of Xlcm → X. In such cases
we lose control of the coefficient of F̄ in D0. This occurs in (5.22) over the 4
singular points that lie on D0.

5.9 Families over higher dimensional bases
Here we complete the proofs of Theorems 5.4–5.16. In all cases the first part
asserts that a certain constructible function on the base scheme S is upper or
lower semi-continuous. As in (5.30), for constructible functions semicontinuity
can be checked along spectra of DVRs, and this was already done in all cases.

The remaining part is to show that if our functions are locally constant on S ,
then certain constructions produce a flat family of varieties or sheaves. In all
cases we have already checked that this holds when the base is a smooth curve.

Going to arbitrary reduced bases is quickest in the following example.

5.53 (Proof of 5.1). We already proved the case when S is the spectrum of
a DVR in (5.42). As we noted above, this implies (5.1.1) in general. Thus it
remains to prove that if s 7→

(
Kn

Xs

)
is constant then f : X → S is stable.

In view of (5.42) we know that fT : XT → T is stable for every T → S
where T is the spectrum of a DVR. Thus f : X → S is stable by (4.7). �

We aim to argue similarly for Theorems 5.4, 5.5 and 5.6. Note that in these
cases we can not apply (5.8) since f is not assumed to be flat, and its fibers are
not assumed to be S 2. We follow (5.31). For (5.4–5.6) this needs the theory of
hulls and husks, to be explained in Chapter 9.

5.54 (Proof of 5.4–5.6). Let π : Hull(OX/S ) → S denote the hull (9.39) of
OX . We aim to show that π is an isomorphism.

By (9.40), π is a locally closed decomposition (10.83).
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Let T be the spectrum of a DVR, and g : T → S a morphism that maps
the generic point of T to a generic point of S . We apply (5.42) or (5.27) to
the divisorial pull-back fT : (XT ,∆T ) → T to conclude that it is stable (resp.
locally stable). For (5.6) we use (2.88.5).

Thus g : T → S factors uniquely through π : Hull(OX/S ) → S , hence π is
proper. π : H → S is an isomorphism by (10.83.2). In particular, f : X → S is
flat with S 2 fibers. Thus the fibers are slc by assumption and (11.37).

Now we can apply (4.35) to conclude that KX/S + ∆ is R-Cartier, hence
f : (X,∆)→ S is stable (resp. locally stable). �

For the remaining cases, (5.31) needs the moduli space of pairs with an
artificial, but efficient, rigidification.

5.55 (Proof of 5.10–5.11). Both claims were already established over the spec-
trum of a DVR, see (5.44) and (5.46). This implies the semicontinuity asser-
tions in both cases.

It remains to show that if the volume is constant then f : X → S (resp.
f : (X,∆)→ S ) has a simultaneous canonical model.

Consider the moduli space of marked stable pairs π : SPred → S ; since S is
reduced, the version in (4.1) is sufficient for our purposes. Set

S ′ :=
{
(Xc

s ,∆
c
s) : s ∈ S

}
⊂ SPred .

In order to prove that S ′ is a closed subset, first we claim that it is constructible.
This is clear since the canonical model over a generic point of S extends to a
canonical model over an open subset of S , and we can finish by Noetherian
induction. Thus closedness needs to be checked over spectra of DVRs, and the
latter follows from (5.44) and (5.46).

Thus S ′ is a scheme, and the projection π induces a geometric bijection
S ′ → S which is finite by (5.44) and (5.46). Thus S ′ → S is an isomorphism
since we assumed that S is seminormal.

If each (Xc
s ,∆

c
s) is rigid, then S ′ ⊂ SPrigid, and there is a universal family

Univrigid → SPrigid by (8.71). Therefore the pull-back of the universal family
Univrigid to S ′ gives the simultaneous canonical model over S ' S ′.

We have no reason to assume that the (Xc
s ,∆

c
s) are rigid, but we can make the

proof work by rigidifying f : (X,∆)→ S .
The simultaneous canonical model is unique, hence it is enough to con-

struct it étale locally. After replacing S by an étale neighborhood of a point
0 ∈ S , we may assume that there are r sections σi : S → X such that(
X0,∆0, σ1(0), . . . , σr(0)

)
is rigid, and the σi(0) are smooth points of X0 \

Supp ∆0 such that (X0,∆0)d (Xc
0,∆

c
0) is a local isomorphism at these points.

By (8.65), after further shrinking S we may assume that the same holds at
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every point s ∈ S . Using the moduli of marked, pointed stable pairs MpSP
(8.44) and (8.71.1), we can run the previous argument for

S ′ :=
{
(Xc

s ,∆
c
s, σ1(s), . . . , σr(s)) : s ∈ S

}
⊂ MpSPrigid,

to prove that the simultaneous canonical model exists over S . �

5.56 (Proof of 5.16). The proof follows very closely the arguments in (5.55).
Both claims were already established over the spectrum of a DVR, see (5.50).
This implies the semicontinuity assertion in general.

It remains to show that if I(s) = I
(
π∗sHs,KXcm

s

)
is constant, then f : (X,∆)→

S has a simultaneous canonical modification. Since the simultaneous canoni-
cal modification is unique, it is sufficient to construct it étale locally over S . So
pick a point s0 ∈ S , in the sequel we are free to replace S by smaller neighbor-
hoods of s0.

Choose m > 0 such that KXcm
s + mπ∗sHs is ample for every s ∈ S . Next

choose a general D ∈ |mH| such that
(
Xcm

s0
,∆cm

s0
+ π∗s0

Ds0

)
is log canonical.

We claim that, possibly after shrinking S ,
(
Xcm

s ,∆cm
s + π∗sDs

)
is log canonical

for every s ∈ S . By (4.44) this condition defines a constructible subset of S
and, by (5.50), it contains every generalization of s0. Thus it contains an open
neighborhood of s0. Thus

(
Xcm

s ,∆cm
s + π∗sDs

)
is a stable pair for every s ∈ S .

Consider the moduli space of marked stable pairs π : SP→ S , and set

S ′ :=
{
(Xcm

s ,∆cm
s + π∗sDs) : s ∈ S

}
⊂ SP .

In order to prove that S ′ is a closed subset, first we claim that it is constructible.
This is clear since the canonical modification over a generic point of S extends
to a canonical modification over an open subset of S , and we can finish by
Noetherian induction. Thus closedness needs to be checked over spectra of
DVRs, and the latter follows from (5.50).

Thus S ′ is a scheme, and the projection π induces a geometric bijection
S ′ → S which is finite by (5.50). Thus S ′ → S is an isomorphism since S is
assumed seminormal.

For general D the pairs (Xcm
s ,∆cm

s + π∗sDs) should be rigid, and then the
pull-back of the universal family to S ′ gives the simultaneous canonical mod-
ification over S ' S ′. Technically it may be easier to rigidify using étale-local
sections as in (5.55). �



Chapter 6

Moduli problems with flat divisorial part

So far we have identified stable pairs (X,∆) as the basic objects of our moduli
problem, the 1-parameter families that we want to allow, and worked out the
reduced part of the moduli spaces. Now we come to the next step of identifying
the stable families over an arbitrary base scheme.

In this Chapter we consider several special cases that are easier to handle,
since we are able to treat the underlying variety X and the boundary divisor ∆ as
separate objects, that are both flat over the base. This is achieved by imposing
one of 4 different types of restrictions on the coefficients occurring in ∆.

• (No boundary) Stable varieties X with ∆ = 0.

• (Standard coefficients) The coefficients in ∆ are in the ‘diminished standard
coefficient’ set {1 − 1

3 , 1 −
1
4 , 1 −

1
5 , . . . , 1}.

• (Major coefficients) The coefficients in ∆ are all > 1
2 .

• (Generic coefficients) The coefficients in ∆ are Q-linearly independent.
These examples cover many cases; the most jarring omission is that none of
these allow 1

2 as a coefficient.
After a general discussion of moduli problems in Section 6.1, we treat two

notions of stability for stable varieties in Sections 6.2–6.3. The first of these—
introduced in Kollár and Shepherd-Barron (1988)—starts with the proposal
that all plurigenera should be deformation invariant. The second—introduced
in Viehweg (1995)—posits that all sufficiently divisible plurigenera should be
deformation invariant. The two versions agree over reduced base schemes.

Both of these versions can be extended to pairs (X,∆), as long as ∆ is a
standard or major boundary as above.

In Section 6.4 we discuss another variant—due to Alexeev (2006, 2015)—
that works if the coefficients in ∆ are sufficiently general. This is especially
natural when the boundary arises as a small perturbation of a basic situation.

The infinitesimal deformation theory of stable varieties is not yet well un-
derstood, but a large part of the first order theory for surfaces is treated in
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Altmann and Kollár (2019). After a general discussion of first order defor-
mations of singular varieties in Section 6.5, we work out in detail the theory
for cyclic quotient surface singularities in Section 6.6. These are the simplest
non-canonical singularities and they show that the 2 versions outlined in Sec-
tions 6.2–6.3 differ from each other already over Spec k[ε].

Assumptions. In this Chapter we work over a Q-scheme, but the definitions
are set up in full generality. See Section 8.8 for a discussion of some problems
in positive characteristic.

6.1 Introduction to moduli of stable pairs
Based on the outline in Section 1.2, we discuss the plan that we use to treat
many moduli problems in algebraic geometry. The following version is de-
signed to work best for the moduli of stable pairs (X,∆).

The method first deals with stable pairs with an embedding into a fixed pro-
jective space and then removes the effect of the embedding.

Step 6.1 (Objects of the moduli problem). At the beginning we have to decide
which objects and families our moduli problem should cover. This is usually
done in 3 stages.

6.1.1 (Interior objects over algebraically closed fields). As the very first step
we have to decide what kind of objects we want to parametrize. Probably the
first non-linear moduli problem considered was elliptic curves, followed by
smooth projective curves of higher genus and their close relatives, Abelian
varieties. The study of the moduli of higher dimensional smooth projective va-
rieties was systematically undertaken first by Matsusaka. His approach focuses
on polarized pairs (X, L), where X is a variety and L an ample divisor or divisor
class. Here our main aim is to study canonical models of varieties and pairs of
general type.

It is expected that, once we understand the moduli of varieties, it should
be relatively easy to work out the moduli theory of related compound objects.
For example varieties with a group action, pointed varieties, maps between
varieties, or various combinations of these.

6.1.2 (Boundary objects over algebraically closed fields). By now the answers
are mostly well-established, but historically this was a difficult and very non-
trivial step. The compactification of the moduli of smooth curves by stable
curves was discovered by Deligne and Mumford (1969).

For surfaces the need to work with canonical models (instead of minimal
models) seems to have become clear early, but the choice of stable surfaces for
boundary points was proposed only in Kollár and Shepherd-Barron (1988).
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It should be noted that the distinction between interior and boundary points
is not always clear cut. While everyone agrees that smooth curves give the
interior points and nodal curves the boundary points of Mg, for surfaces one
may view either canonical models or only smooth canonical models as interior
points.

Although historically the development went in the other direction, for a log-
ical treatment of a moduli problem it is better to settle on the right class of
interior and boundary objects at the beginning. Then gradually prove that they
have the required properties.

6.1.3 (Objects over arbitrary fields). For stable pairs, the definitions of (6.1.1–
2) carry over to arbitrary fields, but in a few examples new questions emerge.

For pointed schemes (X, p1, . . . , pr) it may be better to replace the set of
closed points {p1, . . . , pr} by a zero dimensional subscheme Z ⊂ X of length r.
A more subtle problem appears for polarizations, due to the difference between
Pic(Xk) and Pic(Xk)(k), where Pic(Xk)(k) is the set of k-points of the Picard
scheme of Xk; see (Bosch et al., 1990, Sec.8.1) for a discussion. This will
not be a major issue for us. There are also problems caused by inseparable
extensions in positive characteristic.

Conclusion 6.1.4. We are working with stable varieties (1.41) and, more gen-
erally, with stable pairs (X,∆) as defined in (2.1). There seems to be full agree-
ment about these being the right objects in characteristic 0.

Step 6.2 (Families of the moduli problem). In many moduli problems, it is
considered obvious that the families are determined by the objects: one should
work with flat families whose fibers are among our objects. Then the tradi-
tional approach is to determine families over Spec k[ε], and, more generally,
over Artinian base schemes. This is usually called obstruction theory, see Artin
(1976); Sernesi (2006); Hartshorne (2010) for introductions to various cases.

However, for stable varieties and pairs, flat families with stable fibers do not
give a sensible moduli theory. We need to proceed differently.

6.2.1 (Families over DVRs). In Chapter 2 we defined and described stable fam-
ilies over smooth curves and 1-dimensional regular schemes. The advantage
of this setting is that the total space of a family is also a locally stable pair, so
minimal model theory can be applied both to the fibers and to the total space.

6.2.2 (Families over reduced bases). For stable varieties, we proved in (3.1)
that stable families over DVRs determine stable families over reduced base
schemes. We needed to work quite a bit harder to extend the theory to stable
families of pairs over reduced base schemes in Chapter 4, but the end result
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is the same, at least in characteristic 0: the families over DVRs determine the
families over reduced base schemes.

6.2.3 (Families over arbitrary bases). This is where the picture becomes rather
complicated. For stable varieties there have been different proposals for about
30 years, we discuss these in Sections 6.2–6.3. These were proved to be non-
equivalent in Altmann and Kollár (2019), see Section 6.6.

We believe that the notion of KSB stability—to be treated in Section 6.2—
gives the optimal answer for stable varieties.

For pairs the problem is that, while KSB stability has a natural generalization
to pairs, not all stable families over smooth curves satisfy it; see (2.41). Thus
insisting on it frequently gives non-proper moduli spaces. Still, the strongest
version of KSB stability is expected to work well for pairs (X,∆) if all the
coefficients in ∆ are > 1

2 ; we discuss these in (6.24) and (6.29).
Another approach, outlined in Alexeev (2006, 2015), gives a good theory if

the coefficients in ∆ are sufficiently general real numbers, see (6.40).
However, there was not even a plausible proposal for the general theory

before Kollár (2019). We work out the details of it in Chapter 7.

Conclusion 6.2.4. We are not aware of any other proposed definition that might
work in general, but it is too soon to tell whether the theory of Chapter 7 is the
final word on the subject. We comment on some of the issues next.

Once we have settled on the right objects and families, we need to start
working on producing all families and constructing the moduli spaces.

We would like to have a ‘sensible’ way to obtain all stable varieties, pairs,
and their stable families. It is not a priori clear what this means.

For example, every variety of dimension n is obtained as the normalization
of a hypersurface in Pn+1. We can thus start working through all hypersurfaces
and describe their normalizations.

For curves this is not a bad approach. Classical authors developed much of
the theory by thinking of smooth curves as normalizations of plane curves with
nodes. However, this becomes harder as the genus increases. The problem is
that even if a curve is general, the nodal sets of its plane representatives are
always in special position.

There are some cases of surfaces where such a description is useful. For
example, Enriques obtained his namesake surfaces in 1896 as sextics in P3

that are double along the edges of a tetrahedron. However, for most surfaces,
projection to P3 introduces very complicated singular sets that hide the geom-
etry of the surface. There is no ‘optimal’ representation and it is quite hard to
decide when the normalizations of two hypersurfaces are isomorphic to each
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other. This approach does not seem very helpful in general; see, however, the
proof of Noether’s formula in (Griffiths and Harris, 1978, Sec.4.6).

Thus we aim to find projective embeddings of varieties that do not depend
on too many auxiliary choices.

Step 6.3 (Rigidification by embedding). A global coordinate system on a space
V is a way of associating a string of numbers (called coordinates) to any point
of V . Equivalently, a choice of a map from V to Rn or Cn. We prefer to work
with projective objects, so for us the natural choice is to use homogeneous
coordinates. Equivalently, we fix an algebraic morphism X → PN . (There is
a slight notational issue here. Although we almost always construct PN as
Proj k[x0, . . . , xN], we usually emphasize that there are no natural coordinates
on it. By contrast, with rigidification we do think of the target PN as having
fixed coordinates.)

For varieties the most frequently used approach is to use an embedding
(X ↪→ PN), though sometimes finite maps X → PN or maps to other targets—
weighted projective spaces or PN-bundles over curves—give better insight.

Thus we choose a very ample line bundle L on X, a subspace VN+1 ⊂

H0(X, L) and a basis of VN+1 (up to a multiplicative constant). In practice it is
much better to eliminate the second of these choices by taking V = H0(X, L).
That is, we work with embeddings (X ↪→ PN) whose image is linearly normal.
The rigidification involves two types of choices.

6.3.1 (Discrete choice). A very ample line bundle L. (We use this terminology
although Pic(X) is not always discrete).

If C is a stable curve then ωr
C is very ample for r ≥ 3. If S is a canonical

model of a surface of general type, then ωS is an ample line bundle and ωr
S is

very ample for r ≥ 5 by Bombieri (1973); Ekedahl (1988). Thus again we get
an embedding of S into a projective space whose dimension depends only on
the coefficients of the Hilbert polynomial χ(ωr

S ), namely (K2
S ) and χ(OS ).

The situation is more complicated for stable surfaces. These can have sin-
gularities where ωS is not locally free. Even worse, for any m ∈ N there are
stable surfaces S m and canonical 3-folds Xm, such that ω[m]

S m
(resp. ω[m]

Xm
) is not

locally free at some point xm ∈ S m. Thus every section of ω[m]
S m

vanishes at xm

and H0(X, ω[m]
S m

)
gives a rational map that is not defined at xm.

We skirt this problem by fixing m > 0 and aiming to construct a moduli
space for those stable varieties for which ω[m]

S is locally free, very ample and
has no higher cohomologies. Similarly, if (X,∆) is a stable pair and ∆ is a Q-
divisor, we can take L = ω[m]

X (m∆) for some m > 0. Thus L is indeed a discrete
choice for us.
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Then we show in Step 6.8 that, if m is sufficiently divisible (depending on
other numerical invariants), then the theory we get is independent of m.

There does not seem to be a similarly natural choice of L if ∆ is an R-divisor.
We have to work around this in Section 8.2.

6.3.2 (Continuous choice). Different bases in H0(X, L) are equivalent to each
other under the natural group action by GL

(
H0(X, L)

)
. We eliminate the effect

of this choice in Step 6.5.

Aside. For smooth varieties overC, the use of topological rigidifiers can be very
powerful; leading to the Teichmüller space for curves and to Griffiths’s theory
of period domains. These work well for smooth varieties, but have many prob-
lems for their degenerations. For flat families of stable varieties f : X → S ,
the topological type, or even dimension of H∗

(
Xs(C),C

)
need not be a locally

constant function on S . It does not seem to be possible to make sense of a
topological rigidification in general.

6.3.3 (Moduli of embedded varieties). Once we have a rigidification, we con-
struct moduli spaces of more general embedded objects. Instead of embedded
stable varieties (X ↪→ PN) of dimension n, one can work either with n-cycles
(Cayley-Chow approach) or, which works better for us, with all subschemes
(X ⊂ PN) (Hilbert-Grothendieck approach). Thus we start with the universal
family over the Hilbert scheme of n-dimensional subschemes

π : Univn(PN)→ Hilbn(PN).

We encounter a severe difficulty when we try to work with pairs (X,∆).

6.3.4 (Moduli of embedded pairs). We need to construct the universal family
of relative Mumford divisors (6.13)

MDiv
(
Univn(PN)/Hilbn(PN)

)
→ Hilbn(PN).

The traditional approaches try to obtain this as a subscheme of either
• Hilbn−1

(
Univn(PN)/Hilbn(PN)

)
, or of

• Chown−1
(
Univn(PN)/Hilbn(PN)

)
.

By (4.76), the Chow version works over reduced schemes, but neither works
in general.

Conclusion 6.3.5. We have the universal family of embedded varieties, but we
hit a problem with pairs. This was a long-standing conundrum in the theory.
K-flatness—to be worked out in Chapter 7—was introduced to solve it.

Here we take an easier path, and in Sections 6.2–6.4 we consider several
cases when the Hilbert scheme variant works in (6.3.4); see (6.13) for details.
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Assume now that the above steps have been completed. Then, instead of
our original moduli problem, we have solved a related one that also includes a
rigidification and has many more objects. In order to get back to our original
problem, we need to remove the non-stable objects and then see how to undo
the effects of rigidification.

Step 6.4 (Representability). Assume first that ∆ = 0 and let us go back to
Hilbn(PN) as in (6.3.3). As we saw in Section 3.5, the set of stable fibers of π
is not even a locally closed subset of Hilbn(PN). Nonetheless, as we proved in
Section 3.5, stable families are parametrized by a locally closed partial decom-
position of Hilb(PN). By the choice we made in Step 6.3.1, we aim to work
only with those stable subvarieties X ⊂ PN for which OX(1) ' ω[m]

X . This is
again a representable condition by (9.42). Thus we get the moduli space of
m-canonically embedded stable subvarieties of dimension n in PN

CmESV(n, ∗,PN)→ Hilbn(PN). (6.4.1)

(Here ∗ stands for the not yet specified volume.)
For pairs, we start with the case when ∆ is a Q-divisor, which we write

as ∆ =
∑

aiDi for some fixed a := (a1, . . . , ar), where the Di are effective
Z-divisors. (This will be called a marking in Section 8.1; see (8.21) for real
coefficients.) Once we solve the questions raised in Step 6.3.4, the results of
Section 4.6 give the moduli space of m-canonically embedded stable pairs

CmESP(a, n, ∗,PN)→ Hilbn(PN). (6.4.2)

Conclusion 6.4.3. For each m > 0 we have obtained universal families of m-
canonically embedded stable varieties and pairs. However, m and the embed-
ding are artificial choices, we still need to undo their effect.

(In practice we need to be more precise here and control various proper-
ties of the embedding (like linear normality, vanishing of certain cohomology
groups), but these turn out to be technical issues, see Section 8.4.)

Step 6.5 (Quotients by group actions). Let us deal next with the continuous
choice in the rigidification, which is a basis in H0(X, L). As we noted in (6.3.2),
the different continuous choices are equivalent to each other under a GL-action.
This gives a group action on the moduli of rigidified objects, and the moduli
space of the non-rigidified objects is the space of orbits of this action

CmESP(a, n, ∗,PN)/PGLN+1. (6.5.1)

We discuss in Section 8.6 that such quotients have a natural algebraic space
structure. So, aside from the slight difference between schemes and algebraic
spaces, we consider the quotient problem solved.
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6.6 (Conclusion of Steps 6.1–6.5). As in Step 6.4 fix a rational coefficient
vector a. Let SP(a, n, v) denote the functor of stable pairs (X,∆ =

∑
aiDi) of

dimension n and volume v.
We check in Step 6.8 that there is an m = m(a, n, v) such that ω[m]

X (m∆) is
locally free, very ample, and has no higher cohomologies. Thus Pm(X,∆) :=
H0(X, ω[m]

X (m∆)
)

is a locally constant function on stable families in SP(a, n, v).
Using (8.62), we obtain the coarse moduli space of SP(a, n, v) as the union of
geometric quotients

SP(a, n, v) = qi CmESP(a, n, v,PNi )//PGLNi+1,

where Ni + 1 runs through the possible values of Pm(X,∆). (See (8.21) for real
coefficients.)

Now that we have constructed our moduli spaces SP(a, n, v), we should
study their properties.

Step 6.7 (Separatedness and valuative-properness). Since these notions de-
pend only on families over DVRs, these will always hold for us. The discussion
in (1.20) needs no amplification.

The next two topics merit a treatment of their own; here we give only a few
comments and the main references to the literature.

Step 6.8 (Boundedness). We aim to prove that SP(a, n, v) is actually of finite
type, hence proper. Equivalently, that SP(a, n, v) = SP(a, n, v,m) for some m
(depending on a, n, v).

We discussed stable varieties in (1.21), but there are some changes for pairs.
The Hilbert function χ

(
X, ω[r]

X (br∆c)
)

is no longer deformation invariant, but
its (rescaled) leading coefficient vol(X,∆) = (KX + ∆)dim X , and the constant
coefficient χ(X,OX) are. This is why we use only the volume in the definition
of SP(a, n, v) in (6.5.1).

An infinite union is of finite type only if it eventually stabilizes, so one can
formulate our question independent of moduli theory as follows. It was proved
by Alexeev (1993) for surfaces and by Hacon et al. (2018) in general.

6.8.1 (Boundedness theorem, rational coefficients). Assume that the ai are ra-
tional. Then there is an m = m(a, n, v) such that mKX + m∆ is a very ample
Cartier divisor for every (X,∆) ∈ SP(a, n, v).

If some of the ai are irrational, then usually mKX + m∆ is never a Z-divisor.
The natural correction would be to use mKX + bm∆c, but there are examples
when it is never Cartier (11.50.3). Thus we need a different form.

6.8.2 (Boundedness theorem, real coefficients). Assume that the ai are real. Fix
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an algebraically closed field k of characteristic 0. Then there is a k-scheme of
finite type S and a stable morphism p : (XS ,∆S ) → S such that every (X,∆) ∈
SP(a, n, v)(k) appears among the fibers of p.

The two versions are equivalent for rational coefficients by (6.14).
The following variant is much easier to prove (4.60) and is sufficient for

most applications.

6.8.3 (Weak boundedness theorem). Every irreducible component of SP(a, n, v)
is of finite type. �

6.8.4 (Hints to the proof for real coefficients). (Based on suggestions of C. Xu.)
Hacon et al. (2014) proves that there is a smooth k-scheme of finite type S and
a projective, log smooth morphism p : (Y, E + D) → S such that, for every
(X,∆) ∈ SP(a, n, v)(k), there is a log resolution (X′, E′ + ∆′) → (X,∆) and an
s ∈ S , such that (Ys, Es + Ds) ' (X′, E′ + ∆′). Therefore, if p : (Y, E + D)→ S
has a simultaneous canonical model pc : (Yc,Dc) → S , then every (X,∆) ∈
SP(a, n, v)(k) appears among the fibers of pc, proving boundedness. If a ⊂ Q,
the latter is proved in Hacon et al. (2018).

In the irrational case, we argue as follows. Pick any (X,∆) and choose convex
rational approximations (X,∆ j) for j = 1, . . . , r as in (11.47), so that they have
the same dlt modifications (11.47.9).

Choose s ∈ S such that (Ys, Es + Ds) ' (X′, E′ + ∆′). Working in an étale
neighborhood of s, there is a bijection between the irreducible components of
D and the irreducible components of Ds, hence the irreducible components of
∆. Thus the ∆ j determine Q-divisors D j.

The aim is to show that applying Hacon et al. (2018) to any one of the
p : (Y, E + D j)→ S , we get pc : (Yc,Dc)→ S .

To see this, note that the fiber of p : (Y, E+D1)→ S over s is a log resolution
of (X,∆1). Thus Hacon et al. (2018) gives a simultaneous, minimal, Q-factorial
model pm : (Ym, Em + Dm

1 )→ S .
By our choice, the fiber over s is also a Q-factorial, dlt model for the other

(X,∆ j). Since Ym is Q-factorial, the other pm : (Ym, Em + Dm
j ) → S are also

locally stable, possibly after shrinking S .
The contraction Ym

s → X now extends to a neighborhood of Ym
s , giving a

morphism pc : Yc → S , such that, pc : (Yc,Dc
j)→ S is stable for every j, again

possibly after shrinking S . Thus all the KYc/S + Dc
j are Q-Cartier.

Since ∆ is a convex linear combination of the ∆ j, KYc/S + ∆c is R-Cartier,
hence pc : (Yc,∆c)→ S is stable by (11.4.4), as needed.

This takes care of an open neighborhood of s ∈ S ; we finish by Noetherian
induction. �
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Step 6.9 (Projectivity). Once we know that the connected (or irreducible) com-
ponents are proper, we would like to show that they are projective. In cases
when GIT works, it gives (quasi)projectivity right away, but the general quo-
tient theorems of Kollár (1997); Keel and Mori (1997) do not give projectivity,
in fact there are many quotients that are not quasi-projective Kollár (2006).

So we need to find some ample line bundles on our moduli spaces. Let
f : X → S be a stable morphism. The only divisorial sheaves that we can
always write down on X are ω[m]

X/S ; these give the sheaves det f∗ω
[m]
X/S on S . It

is not hard to work out that these are actually line bundles, so let us hope that
some of these are ample.

It was Iitaka who realized that the sheaves f∗ω
[m]
X/S should always have semi-

positivity properties, at least in characteristic 0, Iitaka (1972). These properties
were established and applied to prove Iitaka’s conjectures by many authors;
see Mori (1987) for a survey. These methods were used to prove projectivity
statements for the moduli of stable surfaces in Kollár (1990). Extending these
results to higher dimensions turned out to be quite difficult. It was done by
Fujino (2018) for stable varieties and by Kovács and Patakfalvi (2017) for sta-
ble pairs. The situation is more complicated in positive characteristic, but the
surface case was settled by Patakfalvi (2014, 2017).

Conclusion 6.9.1. In all cases the outcome is that every proper subset of the
moduli space is projective. Thus we consider the projectivity question solved.

Let us now summarize the properties that we would like to see.

6.10 (Good moduli theories). A moduli theory M is given by specifying the
objects over fields and the families. We are mainly studying those cases whose
objects are various subsets of all stable pairs.

For example, the most classical example is M = Curves, whose objects are
stable curves and whose families are all flat, proper morphisms with stable
curves as fibers.

In Chapter 4 we established the optimal definitions for families of stable
pairs over reduced base spaces and proved many properties. However, unlike
for curves, there seem to be several natural, but non-equivalent, moduli theories
of stable pairs over non-reduced base schemes.

We say that M is a good moduli theory if the following hold.
(6.10.1) M is separated (1.20). Since this depends only on families over DVRs,

this always holds for us by (2.50).
(6.10.2) M is valuative-proper (1.20). The positive answer is given by (2.51),

but we need to check that the central fiber also satisfies the additional
assumptions that we have in M.
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(6.10.3) Embedded moduli spaces exist (6.3.3–4). Having a flat divisorial part
makes this much simpler; see (6.12–6.13) for details.

(6.10.4) Representability as in (6.4).
(6.10.5) Boundedness in the weaker form (6.8.3). Together with valuative-

properness, this means that the irreducible components of the correspond-
ing moduli spaces are proper.

For the main results of this chapter we work with the following set-up, which
is a slight generalization of (3.28) and (4.2).

6.11 (Basic set-up for Chapter 6). We consider flat families of demi-normal
schemes with flat families of Mumford divisors. That is, our objects are proper
morphisms f : X → S of pure relative dimension n and subschemes {Di ⊂

X : i ∈ I} satisfying the following conditions.
(6.11.1) f is flat with demi-normal (11.36) fibers,
(6.11.2) the Di are relative Mumford divisors (4.68), and
(6.11.3) the Di → S are flat with divisorial subschemes (4.16) as fibers.

Next, fix distinct, positive real numbers {ai : i ∈ I}. Then f :
(
X,

∑
aiDi

)
→ S

is family of pairs as in (5.2).
We already treated stable families over reduced bases in Chapter 4, so as-

sume that f :
(
X,

∑
aiDi

)
→ S is stable or locally stable over red S . The main

question we aim to address is the following.

Question 6.11.4. If S is non-reduced, what additional restrictions should be
imposed in order to get a stable (resp. locally stable) family over S ?

Comments 6.11.5. There may be several different good answers to this ques-
tion. These in turn give different moduli spaces, though all of them have the
same underlying reduced subspace.

Also, as we noted in (2.41–2.44), requiring the Di to be flat over S means
that we do not even get all stable families over smooth curves when ai <

1
2 .

So, while our answers cover many important special cases, substantially new
ideas will be needed to get the full theory.

6.12 (Advantages of flat divisorial parts). The cases considered in this chap-
ter have four major technical advantages. The first three come from using the
flatness option for the divisorial part in (6.3.4).
(6.12.1) One can define the families using only flatness; thus we avoid the

notion of K-flatness, which is defined and studied in Chapter 7.
(6.12.2) Hilbert schemes give a quick way to write down the universal family

of Mumford divisors.
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(6.12.3) The pluricanonical sheaves commute with base change, as in (2.79)
and (4.33). This is not crucial, but it helps us avoid some artificial choices.

The last one may be an accidental consequence of our choices.
(6.12.4) There is a natural way of writing the boundary as a linear combination

of Z-divisors, thus we avoid the notion of marking, to be introduced in
Section 8.5.

The key advantage turns out to be (6.12.2), which takes care of Step 6.3.4.
So let us discuss it in detail.

6.13 (Universal family of flat Mumford divisors). Let g : X → S be a flat, pro-
jective morphism. Consider the relative Hilbert scheme Hilb(X/S ). It paramet-
rizes flat families of closed subschemes of X → S . Thus it has a largest open
subscheme that parametrizes subschemes Bs ⊂ Xs of pure codimension 1,
without embedded points, such that Xs is regular at the generic points of Bs.
This is the universal family of flat, Mumford divisors on X/S , denoted by

MDiv(X/S )→ S .

When we wish to parametrize r such divisors, the universal family is given by
the r-fold fiber product

MDiv(X/S ) ×S · · · ×S MDiv(X/S ),

which we abbreviate as ×r
S MDiv(X/S ).

We want to apply this to the Hilbert scheme of n-dimensional subschemes
of PN , with its universal family

u : Univn(PN
S )→ Hilbn(PN

S ).

Although not strictly necessary, it is convenient to pass to the largest open
subscheme Hilb◦(PN

S ) ⊂ Hilb(PN
S ) over which the fibers of u are demi-normal

and of pure dimension n. Thus we have

u◦ : Univ◦n(PN
S )→ Hilb◦n(PN

S ). (6.13.1)

The universal family of flat, Mumford divisors is

MDiv
(
Univ◦n(PN

S )/Hilb◦n(PN
S )

)
→ Hilb◦n(PN

S ). (6.13.2)

If we need r such divisors, the universal family we want is given by the r-fold
fiber product

×r
Hilb◦n(PN

S ) MDiv
(
Univ◦n(PN

S )/Hilb◦n(PN
S )

)
→ Hilb◦n(PN

S ). (6.13.3)

As in (6.3.3), we can now use (4.43) to show that the functor of stable pairs is
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representable by a monomorphism. (9.42) takes care of the condition of being
embedded by a given multiple of KX + ∆.

The schemes in (6.13.3) have infinitely many irreducible components, but
once we bound the degrees of the underlying varieties and of the divisors, we
get a quasi-projective parameter space.

The following was used in (6.8).

Lemma 6.14. Fix n, v, a rational vector a and the characteristic p ≥ 0. For
SP(a, n, v), the following are equivalent.
(6.14.1) There is an m = m(a, n, v) such that m(KX +∆) is very ample for every

(X,∆) ∈ SP(a, n, v)(k) where char k = p.
(6.14.2) There are N = N(a, n, v) and D = D(a, n, v), such that every (X,∆) ∈
SP(a, n, v)(k) is isomorphic to an embedded pair (X,∆) in PN satisfying
deg X ≤ D and deg ∆ ≤ D.

(6.14.3) Then there is a Q-scheme (resp. Fp-scheme) of finite type S and a
stable morphism π : (XS ,∆S ) → S such that every (X,∆) ∈ SP(a, n, v)(k)
is obtained from π be base change.

Proof Assume (1). Then dim |mKX + m∆| ≤ mnv + n =: N by Matsusaka’s
inequality (11.52.3). Hence all pairs inSP(a, n, v) are isomorphic to an embed-
ded pair (X,∆) in PN such that deg X = mnv. We also know that deg(KX + ∆) =

mn−1v. A lower bound for deg KX can be obtained by looking at a general curve
section. This gives an upper bound for deg ∆.

(2)⇒ (3) was treated in (6.13).
Finally assume (3) and let g ∈ S be a generic point. By assumption there is

an mg such that mg(KXg + ∆g) is very ample. Then the same holds over an open
neighborhood g ∈ S ◦ ⊂ S . We finish by y Noetherian induction. �

In the next three sections we give various stability notions and then check
that they all give a good moduli theory as in (6.10).

6.2 Kollár–Shepherd-Barron stability
This notion of stability is obtained by imposing the strongest possible prop-
erties that are satisfied by 1-parameter stable families. For surfaces, this was
accomplished in Kollár and Shepherd-Barron (1988). There were two reasons
why the original paper dealt only with surfaces. First, the existence of stable
limits relies on the minimal model program, which was only available for fam-
ilies of surfaces at that time. It was, however, clear that this part should work
in all dimensions. Second, the proof of the representability (6.18) relied on de-
tailed properties of lc singularities of surfaces. The theory of hulls and husks,
to be discussed in Chapter 9, was developed to prove representability.
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We discuss three versions. First the classical setting of stable varieties with-
out boundary divisors, then a generalization where we allow standard coeffi-
cients, and finally arbitrary coefficients in ( 1

2 , 1].

Kollár–Shepherd-Barron stability without boundary

6.15 (Stable objects). The stable objects are geometrically reduced, proper k-
schemes X with slc singularities, such that KX is ample.

6.16 (Stable families). A family f : X → S is KSB-stable if
(6.16.1) f is flat with slc fibers,
(6.16.2) ω[m]

X/S is a flat family of divisorial sheaves (3.25) for m ∈ Z,

(6.16.3) f is proper and ω[M]
X/S is an f -ample line bundle for some M > 0.

The first 2 of these conditions define locally KSB-stable families.

6.17 (Explanation). This definition restates (3.40). It imposes the strongest
restrictions on stable families, thus it gives the smallest scheme structure on
the moduli space of stable varieties.

We see in Section 6.3 that assumption (6.16.2) can be weakened, leading
to a moduli space with the same underlying reduced space, but with a larger
nilpotent structure. The difference between the 2 versions is explored in Sec-
tion 6.6.

Theorem 6.18. KSB-stability, as in (6.15–6.16) is a good moduli theory (6.10).

Proof As we already noted, only the conditions (6.10.2–4) need checking.
For valuative-properness, the stable extension exists by (2.51) and (2.79.2)
shows that it satisfies (6.10.3). The existence of embedded moduli spaces is
a trivial special case of (6.13). Representability is a restatement of (3.3).

The coarse moduli space exists by (6.6). �

Let us also note another good property of this case.

Proposition 6.19. For KSB-stable families as in (6.15–6.16), the Hilbert func-
tion χ

(
X, ω[m]

X
)

and the plurigenera h0(X, ω[m]
X

)
are deformation invariant.

Proof For the Hilbert function, this follows from the assumption (6.16.2).
If m ≥ 2 then the higher cohomologies of ω[m]

X vanish by (11.34). For m = 1
we use (2.69). �

Kollár–Shepherd-Barron stability with standard coefficients

Definition 6.20. Let ∆ be an effective R-divisor such that coeff ∆ ⊂ ( 1
2 , 1], that

is, 1
2 < coeffD ∆ ≤ 1 for every irreducible D ⊂ Supp ∆. There is a unique way

of writing ∆ =
∑

i aiDi where the Di are effective Z-divisors, ai >
1
2 for every i

and ai , a j for i , j. We call this the reduced normal form of ∆.
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6.21 (Stable objects). We parametrize pairs
(
X,∆ =

∑
i aiDi

)
in reduced normal

form such that
(6.21.1)

(
X,∆

)
is slc,

(6.21.2) ai ∈ {1 − 1
3 , 1 −

1
4 , . . . , 1} (diminished standard coefficient set),

(6.21.3) X is projective and KX + ∆ is ample.

6.22 (Stable families). A family f :
(
X,∆ =

∑
i aiDi

)
→ S is KSB-stable if

(6.22.1) f :
(
X,∆

)
→ S is a flat family of pairs as in (6.11),

(6.22.2) the fibers
(
Xs,∆s

)
satisfy (6.21.1–2),

(6.22.3) the ω[m]
X/S

(
bm∆c − B

)
are flat families of divisorial sheaves (3.25) for

every m ∈ Z and for every B =
∑

j∈J D j where a j = 1 for j ∈ J, and
(6.22.4) f is proper and ω[M]

X/S (M∆) is an f -ample line bundle for some M > 0.
The first three of these conditions define locally KSB-stable families.

6.23 (Explanation). These conditions are rather straightforward generaliza-
tions of (6.16.1–3), but why the restriction on the coefficients?

It follows from (2.79.5) and (4.33) that the B = 0 parts of condition (6.22.3)
are satisfied if the coefficients of ∆ are all 1 − 1

m and S is reduced. For the
B , 0 cases we use (2.79.8) and (4.33). Note that the conditions on B imply
that B ≤ b∆c. If S is unibranch, then we could have required (6.22.3) to hold
for every B ≤ b∆c. However, B has to be a generically Cartier divisor; this is
assured if B is a sum of some of the Di. This is the reason of the somewhat
awkward formulation of (6.22.3).

We proved in (2.82) that, if the coefficients are > 1
2 , then the scheme-

theoretic specializations of the boundary divisors are reduced and the different
(Di)s have no common irreducible components. In particular, bm∆cs = bm∆sc

for every s ∈ S . That is, valuative-properness holds. Imposing both of these
restrictions gives the coefficient set {1 − 1

3 , 1 −
1
4 , . . . , 1}.

Pairs satisfying 1
2 < ai ≤ 1 are studied in (6.26–6.27).

Theorem 6.24. KSB-stability with standard coefficients, as defined in (6.21–
6.22) is a good moduli theory (6.10).

Proof As before, only (6.10.2–4) need checking. We already noted above that
valuative-properness holds. The existence of embedded moduli spaces follows
from (6.13). For representability, the proof of (3.3)—given in (3.42)—carries
over with minor changes.

We apply (3.31) with Ni := ω[i]
X/S

(
bi∆c

)
for 1 ≤ i < M and L1 := ω[M]

X/S . We
get S NL → S such that all the ω[m]

XNL/S NL

(
bm∆NLc

)
are flat families of divisorial

sheaves and ω[M]
XNL/S NL

(
bM∆NLc

)
is invertible.

Then (4.45) shows that S KSB is an open subscheme of S NL. �
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Proposition 6.25. (Kollár, 2018a, Cor.3) For KSB-stable families with stan-
dard coefficients as in (6.21–6.22), the Hilbert function χ

(
X, ω[m]

X (bm∆c)
)

and
the plurigenera h0(X, ω[m]

X (bm∆c)
)

are deformation invariant.

Proof For the Hilbert function, this follows from (6.22.3). For the plurigen-
era, write mKX + bm∆c = KX +

(
bm∆c − (m− 1)∆

)
+ (m− 1)(KX + ∆). Since the

coefficients are standard, 0 ≤ bm∆c − (m − 1)∆ ≤ ∆, hence (11.34) applies, so
the higher cohomologies vanish for m ≥ 2. For m = 1 we use (2.69). �

Kollár–Shepherd-Barron stability with major coefficients

6.26 (Stable objects). We parametrize pairs
(
X,∆ =

∑
i aiDi

)
in reduced normal

form (6.20) such that

(6.26.1)
(
X,∆

)
is slc,

(6.26.2) ai ∈ ( 1
2 , 1],

(6.26.3) X is projective and KX + ∆ is ample.

6.27 (Stable families). A family f :
(
X,∆ =

∑
i aiDi

)
→ S is KSB-stable if

(6.27.1) f :
(
X,∆

)
→ S is a flat family of pairs as in (6.11),

(6.27.2) the fibers
(
Xs,∆s

)
satisfy (6.26.1–2),

(6.27.3) the ω[m]
X/S

(
bm∆c − B

)
are flat families of divisorial sheaves (3.25) for

every m ∈ Z and for every B =
∑

j∈J D j where a j = 1 for j ∈ J, and

(6.27.4) f is proper and KX/S + ∆ is an f -ample R-divisor.
The first three of these conditions define locally KSB-stable families.

For technical reasons we introduce a weakening of (3):

(6.27.3’) The ω[m]
X/S

(
bm∆c

)
are flat families of divisorial sheaves over S for m ∈

M(a1, . . . , ar, n) ⊂ Z; a set of positive density defined in (11.49).

6.28 (Explanation). The restriction that the coefficients be in ( 1
2 , 1] is dictated

by (2.82). Example (2.41) shows that flatness of the divisorial part fails with
coefficient = 1

2 . The requirement (6.27.3) is dictated by (2.83). The choice of
B is discussed in (6.23).

We conjecture that (6.27.3) is always the right assumption. However, (2.83)
is known only if the general fiber is normal, so we can not guarantee that
(6.27.3) holds for all families of relative dimension ≥ 3.

Theorem 6.29. KSB-stability with major coefficients, as defined in (6.26–6.27)
is a good moduli theory (6.10), satisfying (6.27.3’).

Furthermore, (6.27.3) is satisfied in relative dimension 2 and on those irre-
ducible components that generically parametrize normal varieties.
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Proof The proof closely follows (6.24). We proved in (2.82) that, if the coef-
ficients are > 1

2 , then the scheme-theoretic specializations of the boundary di-
visors are reduced, so assuming that the Di are flat divisorial sheaves is correct.
Following the proofs in (3.42) and (6.24), we can guarantee the requirements
(6.27.1–2) and (6.27.4).

The difficulty is with proving that (6.27.3) holds. Following Kollár (2018a),
we outlined a proof in (2.83) when the general fibers are normal. Kollár (2018b)
treats all families of surfaces. Thus (6.29) holds for surfaces and for those ir-
reducible components that generically parametrize normal varieties.

For the version (6.27.3’) we use (11.50).
The construction of the moduli space works as before if the ai are rational.

We leave the irrational case to the general theory in Chapter 8; see (8.15). �

Complement 6.29.1. The Hilbert function χ
(
X, ω[m]

X (bm∆c)
)

is deformation in-
variant if (6.27.3) holds. Unlike in the earlier cases, the plurigenera need not
be deformation invariant; see (Kollár, 2018a, 40–43).

6.3 Strict Viehweg stability
6.30 (Stable objects). The same as in (6.15): reduced, proper k-schemes X with
slc singularities such that KX is ample.

6.31 (Stable families). A family f : X → S is V+-stable if the following hold.
(6.31.1) f is flat with slc fibers.
(6.31.2) For every m ∈ Z and x ∈ X, ω[m]

X/S is locally free at x iff ω[m]
Xs

is locally
free at x, where s = f (x).

(6.31.3) f is proper and ω[M]
X/S is an f -ample line bundle for some M > 0.

The first two of these conditions define locally V+-stable families.

6.32 (Explanation). The original version in Viehweg (1995) assumes (6.31.2)
only for some m > 0. By (4.37) the latter is equivalent to V+-stability in char-
acteristic 0, but not in positive characteristic, see Section 8.8.

Already for families of surfaces with quotient singularities this definition
gives a large nilpotent structure on the moduli space of stable varieties, even
when KSB-stability gives a smooth moduli space, see Section 6.6.

Strict Viehweg stability with major coefficients

6.33 (Stable objects). We parametrize pairs
(
X,∆ =

∑
i aiDi

)
in reduced normal

form such that
(6.33.1)

(
X,∆

)
is slc,

(6.33.2) ai ∈ ( 1
2 , 1] ∩ Q for every i,

(6.33.3) X is projective and KX + ∆ is ample.
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The first two of these conditions define locally stable pairs.

6.34 (Stable families). A family f :
(
X,∆ =

∑
i aiDi

)
→ S is V+-stable if the

following hold.
(6.34.1) f : X → S is flat and the fibers of f |Di : Di → S are reduced sub-

schemes of pure codimension 1 for every i.
(6.34.2) The fibers

(
Xs,∆s

)
are stable as in (6.33).

(6.34.3) ω[m]
X/S (m∆) is locally free along Xs iff ω[m]

Xs
(m∆s) is locally free.

(6.34.4) f is proper and ω[M]
X/S (M∆) is an f -ample line bundle for some M > 0.

The first three of these conditions define locally V+-stable families.

6.35 (Explanation). These conditions are rather straightforward generaliza-
tions of (6.31) and (6.27).

Theorem 6.36. V+-stability with major coefficients, as defined in (6.33–6.34)
is a good moduli theory (6.10).

Proof The arguments given in (6.29) work since we no longer require the
condition (6.27.3) that gave us trouble there.

Representability is actually simpler, since we work only with the locally free
ω[M]

X/S (M∆) and ignore the other ω[m]
X/S

(
bm∆c

)
. �

6.4 Alexeev stability
6.37 (Stable objects). We parametrize pairs

(
X,∆ =

∑
i aiDi

)
in reduced normal

form (6.20) such that
(6.37.1)

(
X,∆

)
is slc,

(6.37.2) 1, a1, . . . , ar are Q-linearly independent,
(6.37.3) X is projective and KX + ∆ is ample.

6.38 (Stable families). A family f :
(
X,∆ =

∑
i aiDi

)
→ S is A-stable if the

following hold.
(6.38.1) f :

(
X,∆

)
→ S is a flat family of pairs as in (6.11).

(6.38.2) The fibers
(
Xs,∆s

)
are stable as in (6.37).

(6.38.3) The ω[m0]
X/S

(∑
miDi

)
are flat families of divisorial sheaves (3.25) over S

for every mi ∈ Z.
(6.38.4) f is proper and KX/S + ∆ is an f -ample R-divisor.

The first three of these conditions define locally A-stable families.

6.39 (Explanation). The two new features are the Q-linear independence in
(6.37) and (6.38.3).

Let us start with Q-linear independence. As a simple example, let X be a
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smooth, projective variety and
∑

Di an snc divisor with index set {i ∈ I}. Then
(X,

∑
aiDi) is an lc pair for every ai ∈ [0, 1]. So we can ask how the answers to

various questions—for example the ampleness of KX +
∑

aiDi, or the steps of
the MMP—depend on the ai.

In many cases the answer is that [0, 1]I admits a rational chamber decom-
position, such that the answers depend only on the chamber we are in, not the
particular choice of the {ai : i ∈ I} inside the chamber. There is reason to expect
that if a point {a′i : i ∈ I} lies in an open chamber, then KX +

∑
a′i Di exhibits

generic—hence simplest—behavior.
Since the chambers are polyhedra with rational vertices, a point {a′i : i ∈ I}

whose coordinates are Q-linearly independent, must lie in an open chamber.
Thus assumption (6.37.2) is a convenient way to guarantee that we encounter
the generic behavior.

By (6.38.4) KX/S +
∑

i aiDi is R-Cartier. By (11.43), the Q-linear indepen-
dence assumption implies that KX/S and the Di are Q-Cartier. Thus all the
m0KX/S +

∑
miDi areQ-Cartier Z-divisors. Therefore all the sheaves in (6.38.3)

should be flat over S with S 2 fibers by (2.79.1). This gives a moduli space with
many flat universal sheaves, and, as we see next, it also helps with the proof of
existence.

Finally note that, since the Di are not assumed irreducible, bm
∑

i aiDic may
not be a linear combination of the Di, so we do not assume anything about the
sheaves ω[m]

X/S
(
bm∆c

)
. If the ai <

1
2 , then these frequently do not have S 2 fibers

(2.41–2.44). Although (11.50) shows that infinitely many of them do, it is not
clear how to predict which ones.

Theorem 6.40. A-stability, as in (6.37–6.38) is a good moduli theory (6.10).

Proof As before, separatedness and valuative-properness holds. The idea of
the proof of the existence of embedded moduli spaces is the following. The
chamber structure mentioned in (6.39) suggests that, if we pick a rational
point (a′1, . . . , a

′
r) in the interior of the chamber, then the pairs (X,

∑
aiDi) and

(X,
∑

a′i Di) have the same moduli theory. We can thus work with the rational-
coefficient pairs (X,

∑
a′i Di) as in (6.13). This is basically what we do, but the

details are more complicated. See (8.21) for a full treatment.
Representability needs a somewhat different proof. The set of slc fibers is

constructible by (4.44), hence there are Mi > 0 such that M0KXs and the
MiDi|Xs are Cartier whenever (Xs,∆s) is slc.

We apply (3.31) where the set {N} consists of the sheaves ω[m0]
X/S

(∑
miDi

)
for

0 ≤ mi ≤ Mi and the set {L} of the sheaves ω[m0]
X/S ,OX(M1D1), . . . ,OX(MrDr).

We get S NL → S such that the ω[m0]
XNL/S NL

(∑
miDNL

i
)

are flat families of divisorial
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sheaves for all mi ∈ Z and ω[M0]
XNL/S NL ,OXNL (M1DNL

1 ), . . . ,OXNL (MrDNL
r ) are all

invertible. Then (4.45) shows that S A is an open subscheme of S NL. �

6.5 First order deformations
In this section we study first order infinitesimal deformations of normal vari-
eties. We describe the deformations of the smooth locus and then try to under-
stand when a deformation of the smooth locus extends to a deformation of the
whole variety. The final aim is to get an explicit obstruction theory for lifting
sections of powers of the dualizing sheaf. This turns out to be given by the
classical notion of divergence.

6.41 (First order thickening). Let k be a field and R a k-algebra. Consider the
algebra R[ε] where ε is a new variable satisfying ε2 = 0. It is flat over k[ε] and
R[ε] ⊗k[ε] k ' R. We think of R[ε] as the trivial first order deformation of R.

Let v : R→ R be a k-linear derivation. Then

αv : r1 + εr2 7→ r1 + ε
(
v(r1) + r2

)
(6.41.1)

defines an automorphism of R[ε] that is trivial modulo (ε). Conversely, every
automorphism of R[ε] that is trivial modulo (ε) arises this way. (The product
(or Leibniz) rule for v is equivalent to the multiplicativity of αv.)

Let X be a k-scheme. The trivial first order deformation of X is

X[ε] := X ×k Speck k[ε]. (6.41.2)

As in (6.41.1), every derivation v : OX → OX defines an automorphism αv of
X[ε] that is trivial modulo (ε). This gives an exact sequence

0→ Hom(Ω1
X ,OX)→ Aut(X[ε])→ Aut(X)→ 1. (6.41.3)

If X is smooth, or at least normal, then Hom(Ω1
X ,OX) is the tangent sheaf TX

of X, hence we can rewrite the sequence as

0→ H0(X,TX)
α
→ Aut(X[ε])→ Aut(X)→ 1. (6.41.4)

Aside. On a differentiable manifold M one can identify the Lie algebra of all
vector fields with the Lie algebra of the automorphism group. If X is a smooth
variety, then this identification works if X is proper, but not otherwise. For in-
stance, an affine curve C of genus ≥ 1 has only finitely many automorphisms,
but H0(C,TC) is infinite dimensional. Infinitesimal thickenings restore the con-
nection between vector fields and automorphisms.

6.42 (Locally trivial first order deformations). Let k be a field and X a k-
scheme. A deformation of X over A := Speck k[ε] is a flat A-scheme X′ to-
gether with an isomorphism X′ ×A Spec k ' X. The set of isomorphism classes



238 Moduli problems with flat divisorial part

of first order deformations is denoted by T 1(X). It is easy to see that T 1(X) is
naturally a k-vector space whose zero is the trivial deformation X[ε], but this
is not very important for us now. See Artin (1976) or Hartshorne (2010) for
detailed discussions.

We say that X′ is locally trivial if there is an affine cover X = ∪iXi such that
each X′i is a trivial deformation of Xi. We aim to classify all locally trivial first
order deformations of arbitrary k-schemes X, but our main interest is in cases
when X is smooth and quasi-projective.

Let X = ∪iXi be an affine cover. This gives an affine cover X′ = ∪iX′i
and we assume that each X′i is a trivial deformation of Xi. Fix trivializations
φi : X′i ' Xi[ε]. Over X′i j := X′i ∩ X′j we have 2 trivializations, these differ by
an automorphism

αi j := φ−1
j ◦ φi : X′i j → X′i j, (6.42.1)

which is the identity on Xi j. By (6.41.1) the automorphisms αi j correspond to
vi j ∈ Hom

(
Ω1

Xi j
,OXi j

)
and these form a 1-cocycle D := {vi j}. Changing the

trivializations changes the cocyle by a coboundary. Thus we get a well defined

D = D(X′) ∈ H1(X,Hom(Ω1
X ,OX)

)
. (6.42.2)

The construction can be reversed. It is left to the reader to check that D(X′)
is independent of the choices we made. The final outcome is the following.

Claim 6.42.3. Let X be a k-scheme. There is a one-to-one correspondence,
denoted by D 7→ XD, between

(a) elements of H1(X,Hom(Ω1
X ,OX)

)
, and

(b) locally trivial deformations of X over Speck k[ε], up-to isomorphism.
Furthermore, if X is normal then H1(X,Hom(Ω1

X ,OX)
)

= H1(X,TX). �

Next we check that every first order deformation of a smooth variety Y is
locally trivial. To see this we may assume that Y is affine. Then Y ′ is also affine
and we can fix a vector space isomorphism k[Y ′] ' k[Y] ⊗ k[ε]. Pick a point
p ∈ Y , local coordinates y1, . . . , yn. Then k(Y) is separable over k(y1, . . . , yn).
Choose arbitrary lifts y′1, . . . , y

′
n ∈ k[Y ′]. Any other z ∈ k[Y] satisfies a monic,

separable equation F(z, y) = 0. We claim that z has a unique lift z′ ∈ k(Y ′) such
that F(z′, y′) = 0. To see this pick any lift z∗. Then F

(
z∗, y′

)
= εG(z) for some

G(z) ∈ k[Y]. We are looking for z′ in the form z′ = z∗+εg where g ∈ k[Y]. Since
F
(
z∗ + εg, y′

)
= εG(z) + εg · ∂F(z, y)/∂z, we see that g = −G(z)

(
∂F(z, y)/∂z

)−1

is the unique solution. We do this for a finite set of generators {zi} of k[Y] to
get a trivialization in a neighborhood where all the ∂Fi(z, y)/∂z are invertible.

Combining with (6.42.3), this shows that every deformation of a smooth,
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affine variety over k[ε] is trivial. (See (Hartshorne, 1977, Exc.II.8.6) for a
slightly different proof.)

6.43 (Arbitrary first order deformations). Let k be a field and X a normal k-
variety. Let U ⊂ X be the smooth locus, Z ⊂ X the singular locus and j : U ↪→

X the natural injection.
Let X′ → Speck k[ε] be a flat deformation of X. By restriction it induces

a flat deformation U′ of U. Note that U′ uniquely determines X′. Indeed,
depthZ OX ≥ 2 since X is normal, hence depthZ OX′ ≥ 2 since OX′ is an ex-
tension of 2 copies of OX . Therefore OX′ = j∗OU′ by (10.6). Thus we have an
injection T 1(X) ↪→ T 1(U) = H1(U,TU).

Following Schlessinger (1971), our plan is to study T 1(X) by first describing
T 1(U) and then understanding which D ∈ H1(U,TU) correspond to a deforma-
tion of X; see also von Essen (1990). The second step is in (6.46).

Definition 6.44. Let X be a k-scheme. Given v ∈ Hom(Ω1
X ,OX), differentiation

by v is defined as the composite

v( ) : OX
d
→ Ω1

X
v
→ OX . (6.44.1)

Let x1, . . . , xn be (analytic or étale) local coordinates at a smooth point of X
and write v =

∑
i vi

∂
∂xi

. Then the above maps are

v : f 7→
∑

i
∂ f
∂xi

dxi 7→
∑

i vi
∂ f
∂xi
.

Thus if X is smooth and v is identified with a section of TX , then (6.44.1) agrees
with the usual definition.

Next let D ∈ H1(X,Hom(Ω1
X ,OX)

)
and choose a representative 1-cocyle

D = {vi j} using an affine cover X = ∪Xi. For any s ∈ H0(X,OX) the derivatives
{vi j

(
s|Xi j

)
} form a 1-cocycle with values in OX . This defines D(s) ∈ H1(X,OX).

We think of it either as a cohomological differentiation map

D : H0(X,OX)→ H1(X,OX), (6.44.2)

or as a k-bilinear map

H1(X,Hom(Ω1
X ,OX)

)
× H0(X,OX)→ H1(X,OX). (6.44.3)

If X is normal then we can rewrite this as

H1(X,TX) × H0(X,OX)→ H1(X,OX). (6.44.4)

Let XD be the deformation of X corresponding to D. Its structure sheaf sits in
an exact sequence

0→ εOX → OXD → OX → 0. (6.44.5)
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Taking cohomology we see that D in (6.44.2) is the connecting map

H0(XD,OXD

)
→ H0(X,OX)

D
→ H1(X,OX). (6.44.6)

Warning 6.44.7. Since the constant 1X ∈ H0(X,OX) always lifts, D(1X) = 0.
Thus D is an H0(X,OX)-module homomorphism iff it is identically 0.

We can summarize the above considerations as follows.

Lemma 6.45. Let X be a k-scheme, D ∈ H1(X,Hom(Ω1
X ,OX)

)
and XD the

corresponding deformation of X. Then a global section s ∈ H0(X,OX) lifts to
sD ∈ H0(XD,OXD ) iff D(s) ∈ H1(X,OX) is zero. �

Corollary 6.46. Let X be a normal, affine variety and U ⊂ X its smooth locus.
Let UD be the deformation of U corresponding to D ∈ H1(U,TU). Then
(6.46.1) UD extends to a flat deformation XD of X iff D (as in (6.44.2)) is

identically 0.
(6.46.2) T 1(X) is the left kernel of H1(U,TU) × H0(U,OU)→ H1(U,OU).

Proof Assume that UD extends to a flat deformation XD of X. Since X is
affine, so is XD and so H0(XD,OXD ) → H0(X,OX) is surjective. Thus D is
identically 0 by (6.45).

Conversely, if D is identically 0, then H0(UD,OUD ) → H0(U,OU) is sur-
jective and H0(U,OU) = H0(X,OX) since X is normal. We can then take
XD := Speck H0(UD,OUD ). This proves the first claim and the second is a
reformulation of it. �

Remark 6.47. If X is not affine, then D ∈ H1(U,TU) gives a k-linear map
D : OX = j∗OU → R1 j∗OU ' H 2

Z(OX) where Z := X \ U is the singular
locus. Then UD extends to a flat deformation XD of X iff D : OX → H 2

Z(OX)
is identically 0.

6.48 (Lie derivative). Let M be a smooth, real manifold and v a vector field on
M. By integrating v we get a 1-parameter family of diffeomorphisms φt of M.
The Lie derivative of a covariant tensor field S is defined as

LvS := d
dt
(
φ∗t S

)
t=0. (6.48.1)

In local coordinates {yi} write v =
∑

i vi
∂
∂yi

. The Lie derivatives of a function s
and of a 1-form dy j are given by the formulas

Lvs = v(s) =
∑

ivi
∂s
∂yi

and Lv(dy j) = dv j. (6.48.2)

Since functions and 1-forms generate the algebra of covariant tensors, the Lie
derivative is uniquely determined by the formulas (6.48.2). One can extend the
definition to all tensors by duality.
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We can transplant this definition to algebraic geometry as follows.
Let Y be a smooth variety over a field k and v ∈ H0(Y,TY ) a vector field. By

(6.41.4) v can be identified with an automorphism αv of Y[ε]. We write ΩY for
the module of derivations (frequently denoted by Ω1

Y ). The covariant tensors
are sections of the algebra

∑
m≥0 Ω⊗m

Y .
Let S ∈ H0(Y,∑m≥0 Ω⊗m

Y
)

be a covariant tensor on Y . It has a trivial extension
to Y[ε]; denote it by S [ε]. Thus α∗v

(
S [ε]

)
is a global section of

∑
m≥0 Ω⊗m

Y[ε].
Since αv is the identity on Y , α∗v

(
S [ε]

)
− S [ε] is divisible by ε and we can

define the Lie derivative of S by the formula

α∗v
(
S [ε]

)
= S [ε] + εLvS . (6.48.3)

Expanding the identity α∗v
(
S 1[ε] ⊗ S 2[ε]

)
= α∗v

(
S 1[ε]

)
⊗ α∗v

(
S 2[ε]

)
shows that

the Lie derivative is a k-linear derivation of the tensor algebra

Lv : ⊕m≥0 Ω⊗m
Y → ⊕m≥0 Ω⊗m

Y . (6.48.4)

The Lie derivative preserves natural quotient bundles of Ω⊗m
Y . Thus we get

similar maps Lv for symmetric and skew-symmetric tensors. Our main interest
is in powers of ωY . The corresponding map

Lv : ωm
Y → ωm

Y (6.48.5)

is obtained using the identification Ω⊗n
Y � Ωn

Y = ωY where n = dim Y .
From (6.41.1) we see that

α∗v
(
s[ε]

)
= s[ε] + εv(s) and α∗v(dy j) = d

(
α∗v(y j)

)
= dy j + εdv j. (6.48.6)

Comparing with (6.48.2) we see that the algebraic definition coincides with the
differential geometry definition.

6.49 (Cartan formula). This is an identity which holds for exterior forms S

Lv(S ) = d
(
vyS ) + vydS , (6.49.1)

where y denotes contraction or inner product by a vector field v ∈ H0(Y,TY )
obtained as follows. We have the contraction map TY ⊗Ωm

Y → Ωm−1
Y , thus every

v ∈ H0(Y,TY ) gives the OY -linear map

vy : Ωm
Y → Ωm−1

Y . (6.49.2)

In (analytic or étale) local coordinates y1, . . . , yn write v =
∑

i vi
∂
∂yi

. Then

vy
(
dy1 ∧ · · · ∧ dym

)
=

∑
r(−1)r−1vr · dy1 ∧ · · · ∧ d̂yr ∧ · · · ∧ dym, (6.49.3)

where the hat indicates that we omit that term.
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To prove (6.49.1), one first checks that S 7→ d
(
vyS ) + vydS is also a deriva-

tion. Thus it is sufficient to verify (6.49.1) for a generating set of exterior forms.
For functions and for dy j we recover the identities (6.48.2).

6.50. As in (6.44), let Y be a smooth k-variety. Pick D ∈ H1(Y,TY ) and choose
a representative 1-cocyle D = {vi j} using an affine cover Y = ∪Yi. For any
S ∈ H0(Y,Ω⊗m

Y
)

the Lie derivatives {Lvi j

(
S |Yi j

)
} form a 1-cocycle with values in

Ω⊗m
Y . This defines

LD(S ) ∈ H1(Y,Ω⊗m
Y

)
, (6.50.1)

which we view as a cohomological differentiation map

LD : ⊕H0(Y,Ω⊗m
Y

)
→ ⊕H1(Y,Ω⊗m

Y
)
. (6.50.2)

As we noted in (6.48), the map LD respects natural quotient bundles of Ω⊗m
Y .

Thus we get similar maps for symmetric and skew-symmetric tensors and for
powers of ωY

LD : ⊕H0(Y, ωm
Y
)
→ ⊕H1(Y, ωm

Y
)
. (6.50.3)

For m = 0 the map LD agrees with the map D defined in (6.44.2).
As in (6.44.7), LD is a k-linear differentiation which is usually not H0(Y,OY )-

linear. However, if D : H0(Y,OY ) → H1(Y,OY ) is zero, then LD is H0(Y,OY )-
linear; this holds both for (6.50.2) and (6.50.3).

Arguing as in (6.45) we obtain the following lifting criterion.

Lemma 6.51. Let Y be a smooth k-variety and YD a first order deformation of
Y. Then S ∈ H0(Y,Ω⊗m

Y
)

lifts to S D ∈ H0(YD,Ω
⊗m
YD

)
iff LD(S ) ∈ H1(Y,Ω⊗m

Y
)

is
zero. The same holds for all natural quotient bundles of Ω⊗m

Y . �

Next we consider what the previous method gives for ωY and its powers.
On M := Rn with coordinates yi, the divergence of a vector field v =

∑
vi

∂
∂yi

is ∇·v :=
∑ ∂vi

∂yi
. Note that the yi give an n-form σ = dy1∧· · ·∧dyn which gives

isomorphisms TM ' Hom(Ωn
M ,Ω

n−1
M ) ' Ωn−1

M . This identifies the divergence
with exterior derivation d : Ωn−1

M → Ωn
M .

6.52 (Divergence). More generally, let Y be a smooth k-variety, σ ∈ H0(Y, ωm
Y )

and v ∈ H0(Y,TY ). Then σ and Lvσ (6.48.5) are both sections of the line bundle
ωm

Y , hence their quotient is a rational function, called the divergence of v with
respect to σ,

∇σv :=
Lvσ

σ
. (6.52.1)

(Most books seem to use this terminology only when σ is a nowhere 0 section
of ωY , and σ is frequently suppressed in the notation.)
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In order to compute this, start with a section σ of ωY . Since dσ = 0, Cartan’s
formula (6.49) shows that Lv : ωY → ωY is the composite map

Lv : ωY = Ωn
Y

vy
−→ Ωn−1

Y
d
→ Ωn

Y = ωY . (6.52.2)

In local coordinates y1, . . . , yn assume that σ = dy1∧· · ·∧dyn and v =
∑

i vi
∂
∂yi

.
Contraction by v sends σ to∑

i (−1)i−1vi dy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn. (6.52.3)

Exterior differentiation now gives that

Lvσ = d(vyσ) =
∑

i
∂vi
∂yi
· σ, (6.52.4)

which is the usual formula for the divergence. Thus, if σ is a nowhere 0 section
of ωm

Y then we get the divergence as a k-linear map ∇σ : TY → OY . Thus it
induces a map on cohomologies; we are especially interested in

∇σ : H1(Y,TY )→ H1(Y,OY ). (6.52.5)

For powers of ωY we get the next formula.

Lemma 6.53. Let Y be a smooth k-variety of dimension n. Let v ∈ H0(Y,TY )
be a vector field, s ∈ H0(Y,OY ) a function and σ ∈ H0(Y, ωY ) an n-form. Then

∇(sσm)v =
v(s)

s + m∇σv. (6.53.1)

Proof This is really just the assertion that the Lie derivative is a derivation,
but it is instructive to do the local computations.

The claimed identities are local, so we use local coordinates y1, . . . , yn and
assume that σ = dy1 ∧ · · · ∧ dyn. Write v =

∑
i vi

∂
∂yi

. We need to compute how
the isomorphism αv acts on sσm. It sends yi to yi + εv(yi) = yi + εvi, thus

α∗v(dyi) =
(
1 + ε ∂vi

∂yi

)
dyi + ε

(∑
j,i

∂vi
∂y j

dy j
)
. (6.53.2)

Next we wedge these together. Any two epsilon terms wedge to 0 since ε2 = 0.
Thus ε

(∑
j,i

∂vi
∂y j

dy j
)

gets killed unless it is wedged with all the other dy j, but
the result is then zero in the exterior algebra. The only term that survives is∏

i
(
1 + ε ∂vi

∂yi

)
· dy1 ∧ · · · ∧ dyn =

(
1 + ε

∑
i
∂vi
∂yi

)
· dy1 ∧ · · · ∧ dyn

=
(
1 + ε∇yv

)
· dy1 ∧ · · · ∧ dyn.

(6.53.3)

Thus we get that sσm is mapped to(
s + εv(s)

)(
1 + mε∇yv

)
· σm =

(
s + εv(s) + mεs∇yv

)
· σm

= sσm + ε ·
( v(s)

s + m∇yv
)
· sσm. �
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Notation 6.54. Let X be a normal, affine k-variety and XD a flat deformation of
X over k[ε] corresponding to D ∈ T 1(X). Let U ⊂ X be the smooth locus. By
(6.43) we can think of D as a cohomology class D ∈ H1(U,TU). By (6.44.2) D
induces a map

D : H0(U,OU)→ H1(U,OU) (6.54.1)

which is identically zero by (6.46.2). There is a natural exact sequence

0→ ε · ωm
U → ωm

UD
→ ωm

U → 0. (6.54.2)

Taking cohomologies gives an exact sequence

H0(UD, ω
m
UD

)
→ H0(U, ωm

U
) δm
→ H1(U, ωm

U
)
. (6.54.3)

As we noted in (6.50), δm is H0(U,OU)-linear since D in (6.54.1) is 0.

It was observed in Stevens (1988) that, for cyclic quotients, the deformation
obstruction equals the divergence. The next result shows that this is a general
phenomenon.

Theorem 6.55. Let X, U ⊂ X, D = {vi j} ∈ H1(U,TU) and XD be as in (6.54).
Assume that ωm

U has a nowhere 0 section σm for some m > 0 such that char k -
m. As in (6.52.5) we get ∇σm D :=

{
∇σm (vi j)

}
∈ H1(U,OU). Then

(6.55.1) ∇D := 1
m∇σm D ∈ H1(U,OU) is independent of m and σm.

(6.55.2) The boundary map δm : H0(U, ωm
U
)
→H1(U, ωm

U
)

defined in (6.54.3) is
multiplication by m∇D.

(6.55.3) ωm
UD

is free⇔ ∇D = 0 in H1(U,OU).

Proof Choose affine charts {Ui} on U such that D = {vi j} and σm|Ui j = si jσ
m
i j

for some σi j ∈ H0(Ui j, ωUi j ). Any other section of ωm
U can be written as gσm

where g ∈ H0(U,OU). Using (6.53) we obtain that

∇σm D =
{
∇σm (vi j)

}
=

{
vi j(si j)

si j
+ m∇σi j (vi j)

}
. (6.55.4)

Similarly, we get that

∇gσm D =

{
vi j(gsi j)

gsi j
+ m∇σi j (vi j)

}
. (6.55.5)

Since
vi j(gsi j)

gsi j
=

vi j(g)
g

+
vi j(si j)

si j
, (6.55.6)

subtracting (6.55.4) from (6.55.5) yields

∇gσm D − ∇σm D = 1
g D(g) ∈ H1(U,OU). (6.55.7)
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As we noted in (6.54), D(g) = 0 in H1(U,OU). Thus∇gσm D = ∇σm D (as classes
in H1(U,OU)). Independence of the choice of m is shown by the formula

∇(σr
m)D =

vi j(sr
i j)

sr
i j

+ rm∇σi j (vi j)

 = r ·
{

vi j(si j)
si j

+ m∇σi j (vi j)
}
. (6.55.8)

Thus ∇D is well defined and this proves (1–2).
Finally, ωm

UD
is free iff σm lifts to a section of ωm

XD
, and ∇D ·σm is the lifting

obstruction. This implies (3). �

Remark 6.56. Let x ∈ X be an isolated normal singularity and U := X \ {x}.
Then H1(U,OU) = H2

x(X,OX) and H1(U,TU) = H2
x(X,TX). Thus if ωm

U ' OU

for some m > 0 then the divergence in (6.52.5) becomes a map

∇ : T 1(X)→ H2
x(X,OX).

If depthx OX ≥ 3 then H2
x(X,OX) = 0 by Grothendieck’s vanishing theorem

(10.29.5), thus in this case the divergence vanishes and sections of ωm
U lift to

all first order deformations. This, however, already follows from (6.54.3) since
H1(U, ωm

U) = H1(U,OU) = H2
x(X,OX) = 0.

If X is lc and ωX is locally free, then sections of ωX lift to any deforma-
tion by Kollár and Kovács (2020), see also (2.67). By (6.55) this implies that
∇ : T 1(X)→ H1(U,OU) is the zero map.

This should either have a direct proof or some interesting consequences.

Next we give explicit forms of the maps in the general theory for X := A2

and U := A2 \ {(0, 0)}. At first this seems quite foolish to do since we already
know that a smooth affine variety has only trivial infinitesimal deformations.
However, we will be able to use these computations to get very detailed infor-
mation about deformations of 2-dimensional cyclic quotient singularities.

Notation 6.57. Let k be a field, X = A2
xy and U := X \ {(0, 0)}. Using the affine

charts U0 := U \ (x = 0), U1 := U \ (y = 0) and U01 := U \ (xy = 0) we
compute that

H1(U,OU) =
〈

1
xiy j : i, j ≥ 1

〉
(6.57.1)

and also that

H1(U,TU) =
〈

1
xiy j ·

∂
∂x ,

1
xiy j ·

∂
∂y : i, j ≥ 1

〉
.

Note that H1(U,OU) is naturally a quotient of

H0(U01,OU01

)
= k

[
x−iy− j : i, j ∈ Z

]
;

but the basis in (6.57.1) depends on the choice of coordinates x, y. Similarly,
H1(U,TU) is naturally a quotient of H0(U01,TU01

)
.
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It is very convenient computationally that the diagonal subgroup G2
m ⊂

GL2 acts on these cohomology groups and subsequent constructions are G2
m-

equivariant. In order to keep track of this action it is better to use the G2
m-

invariant differential operators

∂x := x ∂
∂x and ∂y := y ∂

∂y . (6.57.2)

Thus ∂x(xrys) = rxrys, ∂y(xrys) = sxrys and

H1(U,TU) =
〈
∂x

xiy j : i ≥ 2, j ≥ 1
〉⊕〈

∂y

xiy j : i ≥ 1, j ≥ 2
〉
. (6.57.3)

The G2
m-eigenspaces in H1(U,TU) are usually 2-dimensional〈

∂x
xiy j ,

∂y

xiy j

〉
for i, j ≥ 2. (6.57.4.a)

The 1-dimensional eigenspaces are〈
∂x
xiy

〉
and

〈
∂y

xy j

〉
for i, j ≥ 2. (6.57.4.b)

The pairing H1(U,TU) × H0(U,OU) → H1(U,OU) defined in (6.44.3) is
especially transparent using the bases (6.57.1–4), since

a∂x−b∂y

xiy j

(
xrys) = (ar − bs) · xr−iys− j, (6.57.5)

where a, b ∈ k and i, j ≥ 1. This is identically 0 as an element of H0(U01,OU01 )
iff ar − bs = 0. It is more important to know when this is 0 as an element of
H1(U,OU). The latter holds iff

(6.a) either ar − bs = 0, or

(6.b) r ≥ i, or s ≥ j.
This easily implies that the left kernel of H1(U,TU)×H0(U,OU)→ H1(U,OU)
is trivial, hence T 1(A2) = 0 by (6.46.2); but this we already knew.

Combining (6.51) and (6.53) gives the following.

Lemma 6.58. Using the above notation, let D ∈ H1(U,TU) and UD the corre-
sponding deformation. Then f (dx ∧ dy)m lifts to a section of ωm

UD
iff

D( f ) + m f∇D ∈ H1(U,OU) vanishes. �

We are thus interested in computing the kernels of the operators

(D, f ) 7→ D( f ) + m f∇D.

We start by describing the kernel of ∇.
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6.59 (Computing the divergence). Set D := (a∂x − b∂y)x−iy− j. By explicit
computation,

∇
( a∂x−b∂y

xiy j

)
= −

a(i−1)−b( j−1)
xiy j . (6.59.1)

Thus ∇D is identically zero iff a(i−1)−b( j−1) = 0. If D is a nonzero element
of H1(U,TU) then i, j > 0 and then ∇D is 0 as an element of H1(U,OU) iff it is
identically zero.

If (i, j) = (1, 1) then ∇D = 0, but then D vanishes in H1(U,TU). If ∇D = 0
and i = 1, j > 1 then b = 0 and again D vanishes in H1(U,TU). Thus we
conclude that

ker
[
H1(U,TU)

∇
→ H1(U,OU)

]
=

〈 ( j−1)∂x−(i−1)∂y

xiy j : i, j ≥ 2
〉
. (6.59.2)

Corollary 6.60. Let D ∈ H1(U,TU). Then D(xy),∇D ∈ H1(U,OU) are both 0
iff D is contained in the subspace

KVW :=
〈
∂x−∂y

(xy)i : i ≥ 2
〉
⊂ H1(U,TU).

Proof Corresponding to the 2 cases in (6.57.6.a–b), the kernel of the map
D 7→ D(xy) ∈ H1(U,OU) is a direct sum of 2 subspaces

K1 :=
〈
∂x−∂y

xiy j : i, j ≥ 2
〉

and K2 :=
〈
∂y

xy j ,
∂x
xiy : i, j ≥ 2

〉
. (6.60.1)

Combining this with (6.59.2) gives the claim. �

6.6 Deformations of cyclic quotient singularities
We use the methods of the previous section to understand first order deforma-
tions of cyclic quotient singularities. It is based on Altmann and Kollár (2019),
which uses toric geometry. For cyclic quotients the 2 approaches are equiva-
lent, but they suggest different generalizations.

Notation 6.61. X is a pure dimensional, S 2 scheme over a field k such that ωX

is locally free outside a closed subset Z ⊂ X of codimension ≥ 2 and ω[m]
X is

locally free for some m > 0. The smallest such m > 0 is called the index of ωX .
Both of these conditions are satisfied by schemes with slc singularities.

Let (0,T ) be a local scheme such that k(0) ' k and p : XT → T a flat
deformation of X ' X0. As in (2.5), for every r ∈ Z we have maps

R[r] : ω[r]
XT /T
|X0 → ω[r]

X0
. (6.61.1)

These maps are isomorphisms over X\Z and we are interested in understanding
those cases when R[r] is an isomorphisms over X.

By (9.17), if T is Artinian, then R[r] is an isomorphism⇔ R[r] is surjective
⇔ ω[r]

XT /T
is flat over T .
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Definition 6.62. Let p : XT → T be a flat deformation as in (6.61).

(6.62.1) We call p : XT → T a KSB-deformation if R[r] is an isomorphism for
every r. It is enough to check these for r = 1, . . . , index(ωX). (These are also
called qG-deformations. The letter is short for ‘quotient of Gorenstein,’ but this
is misleading if dim X ≥ 3.) These appear on KSB-stable families (6.16).

(6.62.2) We call p : XT → T a Viehweg-type deformation (or V-deformation) if
R[r] is an isomorphism for every r divisible by index(ωX). It is enough to check
this for r = index(ωX). These appear on V+-stable families (6.31).

(6.62.3) We call p : XT → T a Wahl-type deformation (or W-deformation) if
R[r] is an isomorphism for r = −1. These deformations were considered in
Wahl (1980, 1981) and called ω∗-constant deformations there.

(6.62.4) We call p : XT → T a VW-deformation if it is both a V-deformation
and a W-deformation.

It is clear that every KSB-deformation is also a VW-deformation. Under-
standing the precise relationship between these four classes has been a long
standing open problem, especially for quotient singularities of surfaces. For
reduced base spaces we have the following, which is a combination of (4.33)
and (3.1).

Theorem 6.63. A flat deformation of an slc variety over a reduced, local
scheme of characteristic 0 is a V-deformation iff it is a KSB-deformation.

This raised the possibility that every V-deformation of an slc singularity is
also a KSB-deformation over arbitrary base schemes. It would be enough to
check this for Artinian bases. Here we focus on first order deformations and
prove that these 2 classes are quite different from each other.

Definition 6.64. Let X be a scheme such satisfying the assumptions of (6.61).
Let T 1(X) be the set of isomorphism classes of deformations of X over k[ε].
This is a (possibly infinite dimensional) k-vector space. Let T 1

KSB(X) ⊂ T 1(X)
denote the space of first order KSB-deformations, T 1

V (X) the space of first order
V-deformations, T 1

W (X) the space of first order W-deformations and T 1
VW (X)

the space of first order VW-deformations. We have obvious inclusions

T 1
KSB(X) ⊂ T 1

VW (X) ⊂ T 1
V (X),T 1

W (X) ⊂ T 1(X),

but the relationship between T 1
V (X) and T 1

W (X) is not clear.
These T 1

∗ (X) are the tangent spaces to the corresponding miniversal defor-
mation spaces; we denote these by DefKSB(X),DefV (X) and so on. See Artin
(1976) or Looijenga (1984) for precise definitions and introductions, or (2.25–
2.29) for details on surface quotient singularities.
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6.65 (Cyclic quotient singularities). Let 1
n (1, q) denote the cyclic group action

g : (x, y) 7→ (ηx, ηqy), where η is a primitive nth root of unity. We always as-
sume that char k - n and (n, q) = 1; then the action is free outside the origin on
A2 = Spec k[x, y]. The ring of invariants is

Rnq := k[x, y]G = k
[
xiy j : i, j ≥ 0, i + q j ≡ 0 mod n

]
, (6.65.1)

and the corresponding quotient singularity is

S n,q := A2/ 1
n (1, q) = Speck Rnq. (6.65.2)

While we work with this affine model, all the results apply to its localization,
Henselisation or completion at the origin.

We can also choose η′ = ηq as our primitive nth root of unity. This shows
the isomorphism S n,q ' S n,q′ if qq′ ≡ 1 mod n.

Various ways of studying such singularities go back a long time. The first
relevant work might be Jung (1908). See also Brieskorn (1967/1968).

In (6.70) we give an algorithm that yields an explicit, minimal generating
set of Rnq. The number of generators is the embedding dimension.

For us the embedding dimension is the most natural invariant, but tradition-
ally the multiplicity is considered the basic one. For cyclic quotients, more
generally, for rational surface singularities, these are related by the formula

embdim
(
S n,q

)
= mult

(
S n,q

)
+ 1. (6.65.3)

We completely describe first order KSB-, V- and W-deformations of cyclic
quotient singularities. The main conclusion is that KSB-deformations and V-
deformations are quite different over Artinian bases; see (6.82).

The An−1-singularity A2/ 1
n (1, n − 1) has embedding dimension 3, and all of

its deformations are KSB. In the other cases, we have the following.

Theorem 6.66. Let S n,q := A2/ 1
n (1, q) be as in (6.65) with q , n − 1. Then

dim T 1
V
(
S n,q

)
− dim T 1

VW
(
S n,q

)
= embdim

(
S n,q

)
− 4 or embdim

(
S n,q

)
− 5.

In particular, if embdim
(
S n,q

)
≥ 6 then S n,q has V-deformations that are not

VW-deformations, hence also not KSB-deformations.

Complement 6.66.1. In (6.85) we list all S n,q for which every V-deformation is
a KSB-deformation.

By contrast, KSB-deformations and VW-deformations are quite close to
each other, as shown by the next result, proved in (6.84).

Theorem 6.67. Let S n,q := A2/ 1
n (1, q) be as in (6.65).

(6.67.1) If (n, q + 1) = 1, then DefKSB
(
S n,q

)
= DefVW

(
S n,q

)
= {0}.
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(6.67.2) If S n,q admits a KSB-smoothing, then DefKSB
(
S n,q

)
= DefVW

(
S n,q

)
.

(6.67.3) In general, dim T 1
KSB

(
S n,q

)
≤ dim T 1

VW
(
S n,q

)
≤ dim T 1

KSB
(
S n,q

)
+ 1.

Next we discuss what the general theory of the previous section says about
deformations of 2-dimensional quotient singularities.

6.68 (Deformation of quotients). Let k be a field, X an affine k-scheme that is
S 2, x ∈ X a closed point and U := X \ {x}. Let G be a finite group acting on
X such that x is a G-fixed point and the action is free on U. The quotient map
πU : U → U/G is finite and étale. This extends to a finite map πX : X → X/G
which is ramified at x.

OU/G is identified with the G-invariant subsheaf (π∗OU)G and similarlyωU/G

is identified with (π∗ωU)G. (For the latter we need that the action is free). Thus

H0(U/G,OU/G) = H0(U,OU)G = H0(X,OX)G, and

H0(U/G, ω[m]
U/G) = H0(U, ω[m]

U )G = H0(X, ω[m]
X )G.

(6.68.1)

If char k - |G| then the G-invariant subsheaf is a direct summand, hence by
taking cohomologies we similarly see that

H1(U/G,OU/G) = H1(U,OU)G and H1(U/G,TU/G) = H1(U,TU)G.

If D ∈ H1(U,TU) is G-invariant, then UD descends to a deformation (U/G)D of
U/G; these give all first order deformations. If H0(U/G,OU/G) is flat over k[ε],
then its spectrum gives a flat deformation of X/G and every flat deformation
that is locally trivial on U/G arises this way.

Thus, using (6.46) we get the following fundamental observation.

Theorem 6.69. Schlessinger (1971) Let k be a field, X a smooth, affine k-
variety, x ∈ X a closed point and U := X \ {x}. Let G be a finite group acting
on X such that x is a G-fixed point, the action is free on U and char k - |G|.
Then T 1(X/G) is the left kernel of the pairing

H1(U,TU)G × H0(U,OU)G → H1(U,OU)G (6.69.1)

defined in (6.44). More generally, if X is normal, the left kernel corresponds to
those flat deformations of X/G that are locally trivial on U/G. �

Next we compute the terms in (6.69.1) for cyclic quotient singularities.

Notation 6.70. Our aim is to describe the generators of Rn,q as in (6.65.1). We
assume that char k - n and (n, q) = 1.

Most of the following formulas can be found in Riemenschneider (1974);
see Stevens (2013) for an introduction and many examples.

The group action preserves the monomials, hence Rnq has a generating set
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consisting of monomials. A non-minimal generating set can be constructed as
follows. For any 0 < j < n let 0 < γ j < n be the unique integer such that
γ j + q j ≡ 0 mod n. Then

xn, xγ1 y, xγ2 y2, . . . , xγn−1 yn−1, yn

is a generating set of Rnq. We know that γ1 = n − q and γn−1 = q. This is
a minimal generating set of Rnq as a k[xn, yn]-module, but usually not as a k-
algebra. Indeed, xγi yi divides xγ j y j if γi < γ j and i < j. In any concrete case
one can use this observation to get a minimal set of algebra generators.

We label the monomials of the minimal algebra generators as Mi = xai ybi ,
ordered by increasing y-powers

M0 = xn,M1 = xn−qy = xa1 yb1 ,M2 = xa2 yb2 , . . . ,Mr = yn. (6.70.1)

At the same time the ai form a decreasing sequence. Indeed, if bi < b j and
ai ≤ a j then Mi divides M j so the sequence would not be minimal.

From (6.71.2) we obtain that there are relations of the form

Mci
i = Mi−1Mi+1 for i = 1, . . . , r − 1. (6.70.2)

This tells us that the ai and the ci are recursively defined by

a0 = n, a1 = n − q, ci = dai−1/aie, ai+1 = ciai − ai−1. (6.70.3)

Similarly, b0 = 0, b1 = 1 and bi+1 = cibi − bi−1. These imply that (ai, ai+1) =

(bi, bi+1) = 1 for every i and that the ci ≥ 2 are computed by the modified
continued fraction expansion

n
n − q

= c1 −
1

c2 −
1

c3 − · · ·

(6.70.4)

The following observations about the ai, bi, ci are quite useful. The first 2 fol-
low from the original construction of the Mi, the 3rd from (6.70.5) and the last
one is equivalent to (6.71.3).

ai−1 = min{α > 0: ∃xαyβ ∈ Rnq such that β < bi} for i > 0.
bi+1 = min{β > 0: ∃xαyβ ∈ Rnq such that α < ai} for i < r.
ci − 1 = b ai−1

ai
c = b bi+1

bi
c for 0 < i < r.

aibi+1 − ai+1bi = n for 0 ≤ i < r.
Note that r + 1 is the embedding dimension of S nq and r is its multiplicity.

Thus r = 2 iff M1 = Mr−1 = xy and hence we have the An−1-singularity
A2/ 1

n (1,−1). These are exceptional for many of the subsequent formulas, so
we assume from now on that r ≥ 3.
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6.71 (Cones and semigroups). Let v0, v1 ∈ Z
2 be primitive vectors and C :=

R≥0v0 + R≥0v1 ⊂ R
2 the closed cone spanned by them. Let C̄(Z) be the closed,

convex hull of
(
Z2∩C

)
\{(0, 0)} and N(C) the part of the boundary of C̄(Z) that

connects v0 and v1. Let m0 = v0,m1, . . . ,mr−1,mr = v1 be the integral points in
N(C) as we move from v0 to v1. We leave it to the reader to prove that
(6.71.1) the mi generate the semigroup Z2 ∩C,
(6.71.2) there are c1, . . . , cr−1 ≥ 2 such that cimi = mi−1 + mi+1, and
(6.71.3) the triangles with vertices {(0, 0),mi,mi+1} all have the same area.
Thus R(C), the semigroup algebra of Z2 ∩C, is generated by m0, . . . ,ms.

For 1 ≤ q < n and (n, q) = 1 consider the cone Cnq spanned by v0 = (1, 0)
and v1 = (q, n). Then

Z2 ∩Cnq =
〈 i

n v0 +
j
n v1 : i, j ≥ 0, i + q j ≡ 0 mod n

〉
.

Thus we see that the semigroup algebra R(Cnq) is isomorphic to the algebra of
invariants Rnq defined in (6.65). (It is not hard to see that, up-to the action of
SL(2,Z), every rational cone in R2 is of the form Cnq.)

6.72 (Computing T 1(S nq)). Continuing with the notation of (6.68–6.70), we
see that D ∈ H1(U,TU)G is in T 1(S nq) iff D(Mi) = 0 ∈ H1(U,OU) for every i.

Since the pairing (6.69.1) is G2
m-equivariant, it is sufficient to consider one

eigenspace at a time. As in (6.57.4.a–b), the eigenspaces in H1(U,TU)G are
usually 2-dimensional and of the form〈

∂x
M ,

∂y

M

〉
, (6.72.1)

where M is a monomial in the Mi-s involving both x, y. The exceptions are
1-dimensional subspaces. For every s ≥ 0 we have two of them〈

∂x
Ms

0 M1

〉
and

〈
∂y

Mr−1 Ms
r

〉
. (6.72.2)

Thus we can write D = (α∂x − β∂y)/M. Note that

D(xayb) = (αa − βb) xayb

M , (6.72.3)

hence if a < ordx M and b < ordy M, then this is zero in H1(U,OU) iff β/α =

a/b. Thus if M is divisible by at least 2 different monomials Mi,M j for 0 <

i, j < r then D(Mi) = 0 and D(M j) = 0 imply that we need to satisfy both of
the equations β/α = ai/bi and β/α = a j/b j, a contradiction. We get a similar
contradiction for the eigenspaces (6.72.2) if s > 0. We are left with the cases
when M = Ms

i for some 0 < i < r. If s ≥ 2 then D(Mi) = 0 implies that
D = (bi∂x − ai∂y)/Ms

i . Then bia j − aib j , 0 for j , i hence D(M j) = (bia j −

aib j)(M j/Ms
i ) vanishes in H1(U,OU) iff sai ≤ a j or sbi ≤ b j. If j < i then

b j < bi, hence sai ≤ a j must hold. Since the a j form a decreasing sequence,
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we need sai ≤ ai−1. Similarly, sb j ≤ b j+1. By (6.70.5.c) these are equivalent
to s ≤ ci − 1. We have thus proved the following result of Riemenschneider
(1974); Pinkham (1977).

Proposition 6.73. Let Mi = xai ybi for i = 0, . . . , r be the generators of Rnq as
in (6.70.1). Then T 1(S nq) ⊂ H1(U,TU) has a basis consisting of{

∂x
M1
,

∂y

Mr−1

}
and

{
∂x
Mi
,
∂y

Mi
: 2 ≤ i ≤ r − 2

}
, (6.73.1)

plus the possibly empty set{
bi∂x−ai∂y

Ms
i

: 1 ≤ i ≤ r − 1, 2 ≤ s ≤ ci − 1
}

(6.73.2)

where ci = d ai−1
ai
e = d bi+1

bi
e is defined in (6.70.2).

6.74 (Powers of ω). Fix any m ∈ Z. Then H0(U, ωm
U) has a basis consisting of

M(dx∧dy)m where M is any monomial. Thus H0(S nq, ω
[m]
S nq

)
= H0(U/G, ωm

U/G
)

has a basis consisting of{
xayb(dx ∧ dy)m : a + qb ≡ −m(1 + q) mod n

}
. (6.74.1)

For D ∈ T 1(S nq) let S D denote the corresponding deformation. By (6.58)
xayb(dx ∧ dy)m f lifts to a section of ω[m]

S D
iff

D(xayb) + mxayb∇D = 0 ∈ H1(U,OU). (6.74.2)

It is enough to check (6.74.2) for a minimal generating set of H0(S nq, ω
[m]
S nq

)
as

an Rnq-module. In any given case this can be worked out by hand, but there are
two instances where the answer is simple.
(6.74.3) If n | (q + 1)m then H0(S nq, ω

m
S nq

)
is cyclic with generator (dx ∧ dy)m.

(6.74.4) If m = −1 then xy(dx∧dy)−1 is G-invariant and every xayb(dx∧dy)−1 is
a multiple of it, save for powers of x or y. Thus ω−1

S nq
has 3 generating sections:

xy
dx∧dy ,

xq+1

dx∧dy ,
yq′+1

dx∧dy .

6.75 (V-deformations). If n | (q+1)m then (dx∧dy)m is a generator by (6.74.3)
thus the condition (6.74.2) is equivalent to ∇D = 0.

Therefore T 1
V (S nq) equals the intersection of T 1(S nq) with the kernel of ∇.

The former was computed in (6.73), the latter in (6.59.2). Thus we see that a
basis of T 1

V (S nq) is { (bi−1)∂x−(ai−1)∂y

Mi
: 2 ≤ i ≤ r − 2

}
(6.75.1.a)

and, if Mi is a power of xy for some i, then we have to add{
∂x−∂y

Ms
i

: 2 ≤ s ≤ ci − 1
}
. (6.75.1.b)
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6.76 (W-deformations). By (6.74.4), ω−1
X/G has 3 generating sections. Thus, by

(6.74.2), D corresponds to a W-deformation iff D(xy) − xy∇D = 0,
D(xq+1) − xq+1∇D = 0 and D(yq′+1) − yq′+1∇D = 0.

The first of these conditions is especially strong. We do not compute it here,
rather go directly to the next case where the answer is simpler.

6.77 (VW-deformations). Combining (6.75) and (6.76) we get the description
of VW-deformations. These satisfy the conditions
(6.77.1) D(xy) = 0, D(xq+1) = 0 and D(yq′+1) = 0.
We computed the subspace KVW where then first two hold in (6.60). It is
spanned by the derivations (∂x−∂y)(xy)−i for i ≥ 2. Comparing this with (6.73)
we get the following.

Claim 6.77.2. If T 1
VW (S nq) , 0 then Rnq has a minimal generator of the form

Mi = (xy)a. �

In order to put this into a cleaner form, assume that (xy)s is the smallest G-
invariant power of xy. Note that (xy)n = M0Mr is G-invariant, but it is not one
of the Mi. We have s(q + 1) ≡ 0 mod n, thus if s < n then b := (n, q + 1) > 1.
We have thus shown the following.

Claim 6.77.3. Assume that (n, q + 1) = 1. Then T 1
KSB(S nq) = T 1

VW (S nq) = 0 and
dim T 1

V (S nq) = r − 3. �

Claim 6.77.4. Assume that Mi = (xy)a for some i (so ai = bi = a). Then the
space of VW-deformations is spanned by{

∂x−∂y

Ms
i

: 1 ≤ s ≤ min
{
ci − 1, q+1

a , q′+1
a

}}
.

Proof The first restriction on s we get from (6.73.2). Then D(xq+1) = 0 is
equivalent to sa ≤ q + 1 and D(yq′+1) = 0 is equivalent to sa ≤ q′ + 1. These
give the last 2 restrictions. �

We thus need to compare the two upper bounds occurring in (6.75.1.b) and
(6.77.4). The key is the following general estimate.

Lemma 6.78. Using the notation of (6.70) we have

n
aibi
≤

ai−1
ai
, bi+1

bi
< n

aibi
+ 1.

Proof Note that n = aibi+1−ai+1bi by (6.70.5.d). Dividing by aibi we get that

n
aibi

= bi+1
bi
−

ai+1
ai
.

Since the ai form a decreasing sequence, ai+1
ai
< 1. �
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The final estimate connecting (6.75.1.b) and (6.77.4) is easier to state using
a different system of indexing the singularities.

Notation 6.79. Set b = (n, q+1) and write n = ab, q+1 = bc where (a, c) = 1.
The inverse (modulo ab) of bc − 1 is written as bc′ − 1. We thus have the
singularity

S abc := S nq = A2/ 1
ab (1, bc − 1) ' A2/ 1

ab (1, bc′ − 1) (6.79.1)

Note that (xy)a is the smallest G-invariant power of xy, but it need not be among
the generators Mi; see (6.81).

Corollary 6.80. Assume in addition that Mi = (xy)a for some i. Then

b b
a c ≤ min

{
ci − 1, q+1

a , q′+1
a

}
≤ ci − 1 ≤ b b

a c + 1. (6.80.1)

Proof First we claim that

b
a ≤ min

{
ai−1
ai
, bi+1

bi
, q+1

a , q′+1
a

}
≤ min

{
ai−1
ai
, bi+1

bi

}
< b

a + 1. (6.80.2)

To see this note that q = bc − 1, q′ = bc′ − 1. Thus b ≤ q + 1, q′ + 1, so it is
enough to show that

b
a ≤ min

{
ai−1
ai
, bi+1

bi

}
< b

a + 1.

Since n = ab and a = ai = bi, the latter is equivalent to (6.78). Taking the
round-down gives (1) using (6.70.5.c). �

Example 6.81. Assume that xαyβ is G-invariant. From α + β(bc − 1) ≡ 0
mod ab we see that α ≡ β mod b. Thus if 0 < α, β ≤ 2b then either α = β or
α = β ± b.

It turns out that if a ≤ b then we can write down these invariants explicitly.
Corresponding to the first case we have (xy)a (and its square). In order to get the
other cases, let 0 < e < a (resp. 0 < e′ < a) be the unique solution of ec ≡ −1
mod a (resp. e′c′ ≡ −1 mod a). Then (b + e) + e(bc − 1) = b(ec + 1) ≡ 0
mod ab and e′(bc′ − 1) + (b + e′) = b(e′c′ + 1) ≡ 0 mod ab. Thus we get the
minimal generators

Mi−1 = xb+eye, Mi = xaya, Mi+1 = xe′yb+e′ .

This gives that ci − 1 = b b+e
a c = b b+e′

a c.
Fixing a, b we can choose any 0 < e < a such that (a, e) = 1 and then solve

for c. Thus we see that if b ≡ 0 mod a then b b
a c = ci − 1 for every e and if

b ≡ −1 mod a then b b
a c = ci − 2 for every e, but otherwise both are possible

for suitable choice of e.
We see in (6.83) that the condition a ≤ b holds iff S abc has a nontrivial

KSB-deformation, so this is a natural class to consider.
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6.82 (Proof of 6.66). Comparing (6.75) and (6.77) we see that the derivations
listed in (6.75.1) give V-deformations, but not W-deformations. The only pos-
sible exception occurs if Mi = (xy)a for some i. Thus we have 2 cases.

If Mi = (xy)a does not occur, then dim T 1
V (S nq) = dim T 1

VW (S nq) + r − 3.
If Mi = (xy)a for some i then (6.75.1) gives r − 4 basis vectors that give V-

deformations, but not W-deformations. By (6.80), there is at most 1 derivation
as in (6.75.2) that gives a V-deformation that is not a W-deformation. �

6.83 (KSB-deformations). From (6.58) and (6.70.2)) we see that D corre-
sponds to a KSB-deformation iff D(xiy j)+mxiy j∇D = 0 whenever i+ j(bc−1) ≡
−mbc mod ab.

First we use this for (dx ∧ dy)ab to conclude that ∇D = 0. Second, we note
that since (a, c) = 1, the congruence i + j(bc − 1) ≡ −mbc mod ab holds for
some m iff i ≡ j mod b. The ring of such monomials is generated by xb, xy, yb.
Thus D gives a first order KSB-deformation iff
(6.83.1) ∇D = 0, D(xy) = 0, D(xb) = 0 and D(yb) = 0.
We thus get that T 1

KSB(S abc) is spanned by the derivations{
∂x−∂y

(xy)as : 1 ≤ s ≤ bb/ac
}
. (6.83.2)

The corresponding deformations were written down in (Wahl, 1980, 2.7):

(uv − wb − t1wb−a − · · · − trwb−ra = 0)/ 1
a (1, bc − 1, c). (6.83.3)

To make this G2
m-equivariant, the G2

m-action on ti should be the same as on
(xy)ai. Thus (6.83.5) describes a smooth subscheme T of DefKSB(S abc) and
dim T = bb/ac. By (6.83.2), the tangent space of DefKSB(S abc) has dimension
bb/ac, so T = DefKSB(S abc) and DefKSB(S abc) is smooth.

In particular, there is a nontrivial 1-parameter KSB-deformation iff a ≤ b
and there is a KSB-smoothing iff a|b. Note that a ≤ b is equivalent to ab ≤ b2

and we have proved the following.

Claim 6.83.6. The singularity S nq has
(a) a KSB-smoothing iff n|(q + 1)2, and
(b) a nontrivial KSB-deformation iff n ≤ (n, q + 1)2. Furthermore,
(c) dim T 1

KSB(S nq) = bb/ac = b(n, q + 1)2/nc. �

If a|b then write b = ad. We get the singularities

Wadc := 1
a2d (1, adc − 1) ' (uv − wad = 0)/ 1

a (1,−1, c). (6.83.7)

In this case b/a = ci − 1 hence the above arguments give the following.

Claim 6.83.8. For the singularities Wadc = A2/ 1
a2d (1, adc − 1) every VW-

deformation is a KSB-deformation. �
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6.84 (Proof of 6.67). Note that (6.67.1) follows from (6.77.3) and (6.67.2)
from (6.83.8) for first order deformations. Since DefKSB

(
S n,q

)
is smooth by

(2.29) or by the explicit description (6.83.5), equality of the tangent spaces
T 1

KSB
(
S n,q

)
= T 1

VW
(
S n,q

)
implies that DefKSB

(
S n,q

)
= DefVW

(
S n,q

)
.

In order to prove (6.67.3) we consider 2 cases. If Rnq does not have a minimal
generator of the form Mi = (xy)a then T 1

VW (S nq) = T 1
KSB(S nq) = {0} by (6.77.4).

Otherwise, we have proved in (6.83) that

dim T 1
KSB

(
A2/ 1

ab (1, bc − 1)
)

= b b
a c

and (6.80) shows that

dim T 1
VW

(
A2/ 1

ab (1, bc − 1)
)

= min
{
ci − 1, q+1

a , q′+1
a

}
≤ b b

a c + 1. �

Examples 6.85. We work out (6.66.1), that is, list those cyclic quotients sin-
gularities for which every V-deformation is a KSB-deformation.

6.85.1 (Double points). These are the An singularities; every deformation is a
KSB-deformation.

6.85.2 (Triple points). For cyclic quotient triple points the minimal generators
of its coordinate ring are xn, xn−qy, xyn−q′ , yn. Thus n

n−q has a 2-step continued
fraction expansion involving c1, c2. Setting c1 = e, c2 = d we have the singu-
larities A2/ 1

ed−1 (1, ed − d − 1). with invariants xed−1, xdy, xye, yed−1. By (6.75)
we have T 1

V = T 1
KSB = 0.

6.85.3 (Quadruple points). By (6.66) and (6.82), every cyclic quotient singu-
larity of multiplicity 4 has a V-deformation that is not a KSB-deformation,
unless M2 (6.70.1) is a power of xy. Thus in this case the minimal generators
of its coordinate ring are xn, xn−qy, xaya, xyn−q′ , yn.

The equation Mc2
2 = M1M3 now implies that q = q′. Thus n

n−q has a 3-step
continued fraction expansion involving c1, c2, c3 = c1. By expanding it we see
that c1 = a. Setting c2 = d the singularity is A2/ 1

a(ad−2)
(
1, (ad − 2)(a − 1) − 1

)
,

and the ring of invariants is k[xa(ad−2), xad−1y, xaya, xyad−1, ya(ad−2)].
Thus b(ad − 2)/ac = d − 1 = c2 − 1 and hence, by (6.75) and (6.83), T 1

V =

T 1
KSB is spanned by

{
∂x−∂y

(xy)as : 1 ≤ s ≤ d − 1
}
. These singularities admit a KSB-

smoothing iff a = 2. Then, after replacing d−1 by d, the normal form becomes
A2/ 1

4d (1, 2d−1). Together with the An-series, these are the only cyclic quotient
singularities with a KSB-smoothing for which every V-deformation is a KSB-
deformation.

6.85.4 (Higher multiplicity points). By (6.66), every cyclic quotient singularity
of multiplicity ≥ 5 has V-deformations that are not KSB-deformations.



Chapter 7

Cayley flatness

There are 2 traditional notions of what a ‘family of varieties’ is: the older
Cayley-Chow variant (3.5) and the currently ubiquitous Hilbert-Grothendieck
variant (3.6), which puts flatness at the center.

For stable varieties, the Hilbert-Grothendieck approach gives the correct
moduli theory. That is, a stable morphism X → S is a flat morphism with
additional properties, as in Section 6.2.

A major problem in the moduli theory of stable pairs is that, while the un-
derlying varieties X form flat families, the divisorial parts ∆ do not. Neither of
the two main traditional methods of parametrizing varieties or schemes gives
the right answer for the divisorial part.

• Cayley-Chow theory works only over reduced base schemes.

• Hilbert-Grothendieck theory works only when the coefficients of ∆ satisfy
various restrictions, as in Sections 6.2 and 6.4.

In this chapter we develop a theory—called K-flatness—that interpolates be-
tween these two, managing to keep from both of them the properties that we
need. The objects that we parametrize are divisors—so the strong geometric
flavor of Cayley-Chow theory is preserved—but one can work over Artinian
base schemes. The latter is one of the key advantages of the theory of Hilbert
schemes. Quite unexpectedly, the new theory behaves better than either of the
classical approaches in several aspects; see especially (7.4–7.5).

One might say that the main new result is Definition 7.1; we discuss its
origin and relationship to the classical theory of Chow varieties in (7.2). The
rest of this chapter is then devoted to proving that it has all the hoped-for
properties. (Actually, we end up with several variants, but we conjecture them
to be equivalent; see Section 7.4.)

The definition of K-flatness and its main properties are discussed in Sec-
tion 7.1, while Section 7.2 reviews divisor theory over Artinian schemes. The
key notion of divisorial support is introduced and studied in Section 7.3.

258
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Several versions of K-flatness are investigated in Section 7.4. For our treat-
ment, technically the most important is C-flatness, which is treated in detail in
Section 7.5. The main results are proved in Section 7.6.

Sections 7.7–7.9 are devoted to examples. First we show that a K-flat defor-
mation of a normal variety is flat. Then we describe first order K-flat deforma-
tions of plane curves in Section 7.8 and of seminormal curves in Section 7.9.
While the computations are somewhat lengthy, the answers are quite nice.

Assumptions. In this Chapter we work over an arbitrary field k.

7.1 K-flatness

We eventually introduce several closely related (possibly equivalent) notions
in (7.37). The most natural one is C-flatness, which is closest to the ideas of
Cayley. Aiming to create a notion that is independent of projective embeddings
led to K-flatness. Conveniently, K is also the first syllable of Cayley.

Definition 7.1 (K-flatness). Let f : X → S be a projective morphism of pure
relative dimension n. A relative Mumford divisor D ⊂ X as in (4.68) is K-flat
over S iff one of the following—increasingly more general—conditions hold.

(7.1.1) (S local with infinite residue field) For every finite morphism π : X →
Pn

S , π∗D ⊂ Pn
S is a relative Cartier divisor.

(7.1.2) (S local) For some (equivalently every) flat, local morphism q : S ′ →
S , where S ′ has infinite residue field, the pull-back q∗D is K-flat over S ′.

(7.1.3) (S arbitrary) D is K-flat over every localization of S .
Let us start with some comments on the definition.

(7.1.4) The definition of π∗D is not always obvious; in essence Section 7.3 is
mainly devoted to establishing it. However, π∗D equals the scheme-theoretic
image of D if red D→ red(π(D)) is birational and π is étale at every generic
point of the closed fiber Ds (7.28.2). It is sufficient to check condition
(7.1.1) for such morphisms π : X → Pn

S .

(7.1.5) If S is not local, then there may not be any finite morphisms π : X →
Pn

S ; see (7.7.2) for an example. This is one reason for the 3 step definition.

(7.1.6) The residue field extension in (7.1.2) is necessary in some cases; see
for example (7.80.9).

(7.1.7) The definition of K-flatness is global in nature, but we show that it is
in fact local on X (7.52).

(7.1.8) We eventually define K-flatness also for families of coherent sheaves
in (7.37). This turns out to be quite convenient technically. However, while
the images π∗D carry a lot of information about a Mumford divisor D, much
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of the sheaf information is lost. Thus it is unlikely that K-flatness can be
useful for studying the moduli of sheaves.

7.2. (Why this definition?) The idea in the papers Cayley (1860, 1862) is to
associate to a subvariety Yn−1 ⊂ PN

k a hypersurface

Ch(Y) := {L ∈ Gr(N−n,PN
k ) : Y ∩ L , ∅} ⊂ Gr(N−n,PN

k ),

we call it the Cayley-Chow hypersurface. In modern terminology, the end re-
sult is that, over weakly normal bases, there is a one-to-one correspondence{

well defined families
of subvarieties

}
↔

{
flat families of

Cayley-Chow hypersurfaces

}
; (7.2.1)

see Section 4.8 or (Kollár, 1996, Sec.I.3) for details.
The correspondence (7.2.1) works well for geometrically reduced, pure di-

mensional subschemes, but for an arbitrary subscheme Z ⊂ PN , its Cayley-
Chow hypersurface Ch(Z) detects only red Z and the multiplicities of Z at the
maximal dimensional generic points. This is where the role of X and the Mum-
ford condition become crucial: a Mumford divisor D ⊂ X is uniquely deter-
mined by red D and the multiplicities.

We know how to define flatness in general, so we try to make the above
equivalence into a definition over an arbitrary base scheme. So let f : X → S
be a flat, projective morphism, say with reduced fibers of pure dimension n.
Fix an embedding X ↪→ PN

S and let D ⊂ X be a Mumford divisor. We say that
D is C-flat over S iff Ch(D/S ) is flat over S . (This needs a suitable extension
of the definition of Ch(D/S ) to allow for multiple fibers; see (7.37) for details.)

There are two immediate disadvantages of C-flatness. Cayley-Chow hyper-
surfaces are unwieldy objects and the resulting notion is very much tied to the
choice of an embedding Xn ↪→ PN

k .
One can think of a Cayley-Chow hypersurface Ch(D/S ) as encoding the

images π(D) for all linear projections π : PN
S d P

n
S . (This also goes back to

Cayley; it is worked out in Catanese (1992); Dalbec and Sturmfels (1995);
Kollár (1999).) One can show that the Cayley-Chow hypersurface Ch(D/S ) is
flat over S iff π(D) ⊂ Pn

S is flat over S , for all linear projections π : PN
S d P

n
S

that are finite on Supp D; see (7.47). (In fact, by (7.47), it is enough to check
this for a dense set of projections. We need S to be local with infinite residue
field to ensure that there are enough projections.)

This suggests three different generalizations of C-flatness. We can work with
• projective morphisms f : X → S and all finite π : X → Pn

S ,
• affine morphisms f : U → S and all finite π : U → An

S , or

• morphisms of complete, local schemes f : X̂ → Ŝ and all finite π : X̂ → Ân
S .
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The affine version has the problem that, even if S is local, there might not be
any finite morphisms π : U → An

S ; see (7.38.4) for more on this. Working with
complete, local schemes would be the best theoretically, but several of the tech-
nical problems remain unresolved. This leaves us with projective morphisms,
which is our definition of K-flatness.

The key technical result (7.40) shows that K-flatness is equivalent to C-
flatness for every Veronese embedding X ↪→ PN

S
vm
↪→ PM

S (where M =
(

N+m
m

)
−1);

we call the resulting notion stable C-flatness.
We conjecture that stable C-flatness, K-flatness, local K-flatness and formal

K-flatness are equivalent, giving a very robust concept. This would show that
our notion is truly about the singularities in families of divisors. The equiva-
lence of C-flatness and K-flatness would be very helpful computationally, but
does not seem to be theoretically significant.

Good properties of K-flatness

K-flat families have several good properties. Some of them are needed for the
moduli theory of stable pairs, but others, for example (7.5), come as bonus.

The functoriality of K-flatness is not obvious. Indeed, let T ⊂ S be a closed
subscheme, Then a finite morphism πT : XT → P

n
T need not extend to a finite

morphism πS : XS → P
n
S . Thus flatness of all πS (XS ) does not directly imply

that πT (XT ) is also flat.
Nonetheless, we prove in (7.40) and (7.50) that being K-flat is preserved by

arbitrary base changes and it descends from faithfully flat base changes. Thus
we get the functor KDiv(X/S) of K-flat, relative Mumford divisors on X/S . If
we have a fixed relatively ample divisor H on X, thenKDivd(X/S) denotes the
functor of K-flat, relative Mumford divisors of degree d.

We have a disjoint union decompositionKDiv(X/S) = ∪dKDivd(X/S). The
main result is the following, to be proved in (7.66).

Theorem 7.3. Let f : X → S be a projective morphism of pure relative dimen-
sion n. Then the functor KDivd(X/S) of K-flat, relative Mumford divisors of
degree d is representable by a separated S -scheme of finite type KDivd(X/S ).

Complement 7.3.1. If f is flat with normal fibers then KDivd(X/S ) is proper
over S , but otherwise usually not. This is not a problem for us.

7.4 (Properties of K-flatness). We list a series of good properties of K-flatness.
Let f : X → S be a projective morphism of pure relative dimension n and D or
Di relative Mumford divisors.

7.4.1 ( Comparison with flatness). K-flatness is a generalization of flatness and
it is equivalent to it for smooth morphisms and for normal divisors.
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• If f |D : D→ S is flat then D is K-flat; see (7.54).
• If f : X → S is smooth, then D is K-flat⇔ D is flat over S ⇔ D is a relative

Cartier divisor; see (7.53).
• Assume that D is K-flat, Ds ⊂ Xs has multiplicity 1 and red(Ds) is normal

for some s ∈ S . Then f |D : D→ S is flat along Ds by (7.67).
These properties also hold locally on X. Hence, the notion of K-flatness gives
something new only at the points where f is not smooth and f |D is not flat.

7.4.2 (Reduced base schemes). If S is reduced then every relative Mumford
divisor is K-flat; see (7.29). In retrospect, this is the reason why the moduli
theory of pairs could be developed over reduced base schemes without the
notion of K-flatness in Chapter 4.

7.4.3 ( Artinian base schemes). A divisor D ⊂ X is K-flat over S iff DA ⊂ XA

is K-flat over A for every Artinian subscheme A ⊂ S ; see (7.44).
Thus one can fully understand K-flatness by studying it over reduced bases

(as in Chapter 4) and over Artinian base schemes.

7.4.4 (Push-forward). Let g : Y → S be another projective morphisms of pure
relative dimension n, and τ : X → Y a finite morphism. Assume that D ⊂ X
is K-flat and τ∗D is also a relative Mumford divisor. (That is, g is smooth at
generic points of τ(Ds) for every s.) Then τ∗D is also K-flat, see (7.45). (See
Section 7.3 for the definition of τ∗D.)

A similar property fails for flatness; combine (7.7.3) and (7.45).

7.4.5 (Additivity). If D1,D2 are K-flat, then so is D1 +D2, see (7.45). This again
fails for flatness; see (7.7.3).

7.4.6 (Multiplicativity). Let m > 0 be relatively prime to the residue character-
istics. Then D is K-flat iff mD is K-flat, see (7.45).

By contrast, if A is Artinian, nonreduced, with residue field k of characteris-
tic p > 0, then the divisors D on P2

A such that pD is K-flat (= relative Cartier),
but D is not K-flat, span an infinite dimensional k-vectorspace; see (7.10.4–5).
This is an extra difficulty in positive characteristic, see Section 8.8.

7.4.7 (Linear equivalence). K-flatness is preserved by linear equivalence, see
(7.33). (Note that flatness is not preserved by linear equivalence (7.7.4).)

7.4.8 (K-flatness depends only on the divisor). It is well understood that in the
theory of pairs (X,∆) one can not separate the underlying variety X from the
divisorial part ∆. For example, if X is a surface with quotient singularities only
and D ⊂ X is a smooth curve, then the pair (X,D) is plt if D ∩ Sing X = ∅, but
not even lc in some other cases. It really matters how exactly D sits inside X.
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Thus it is unexpected that K-flatness depends only on the divisor D, not on
the ambient variety X, though maybe this is less surprising if one thinks of
K-flatness as a variant of flatness.

On the other hand, not all K-flat deformations (7.37) of D are realized on de-
formations of a given X. For example, for deformations of the pair

(
A2,D1 :=

(xy = 0)
)
, K-flatness is equivalent to flatness by (7.4.2). However, there are

deformations of the pair
(
(xy = z2), (z = 0)

)
that induce a K-flat, but non-flat

deformation of D2 := (xy − z2 = z = 0) ' D1. A typical example is(
(xy = z2 − t2), (x = z + t = 0) ∪ (y = z − t) = 0

)
⊂ A3

xyz × A
1
t .

Now we come to a property that is quite unexpected, but makes the whole
theory much easier to use: K-flatness is essentially a property of surface pairs
(S ,D). Thus K-flatness is mostly about families of singular curves.

Theorem 7.5 (Bertini theorems, up and down). Let f : X → S be a projective
morphism of pure relative dimension n, and D a Mumford divisor on X. Assume
that n ≥ 3, and let |H| be a linear system on X that is base point free in
characteristic 0 and very ample in general. Then D is K-flat iff D|Hλ

is K-flat
for general Hλ ∈ |H|.

This is established by combining (7.57–7.59) with (7.40). As a consequence,
K-flatness is really a question about families of surfaces and curves on them.

This reduction to surfaces is very helpful both conceptually and computa-
tionally, since we have rather complete lists of singularities of log canonical
surface pairs (X,∆), at least when the coefficients of ∆ are not too small.

Another variant of the phenomenon, that higher codimension points some-
times do not matter much, is the Hironaka-type flatness theorem (10.72).

7.6 (Problems and questions about K-flatness). There are also some difficulties
with K-flatness. We believe that they do not effect the general moduli theory
of stable pairs, but they make some of the proofs convoluted and explicit com-
putations lengthy.

7.6.1 (The definition is not formal-local). One expects K-flatness to be a formal-
local property on X, but there are some (hopefully only technical) problems
with this. See (7.41) and (7.60) for partial results. This is probably the main
open foundational question.

7.6.2 (Hard to compute). The definition of K-flatness is quite hard to check,
since for X ⊂ PN we need to check not just linear projections PN

S d P
n
S (7.36),

but all morphisms X → Pn
S involving all linear systems on X.

It is, however, possible that checking general linear projections is in fact
sufficient; see (7.47) and (7.42) for a precise formulation.
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In the examples in Sections 7.8–7.9, the computation of the restrictions im-
posed by general linear projections is the hard part. From the resulting answers
it is then easy read off what happens for all morphisms X → Pn

S . It would be
good to work out more examples of space curves C ⊂ A3.

7.6.3 (Tangent space and obstruction theory). We do not know how to write
down the tangent space of KDiv(X/S ). A handful of examples are computed
in Sections 7.8–7.9, but they do not seem to suggest any general pattern. The
obstruction theory of K-flatness is completely open.

7.6.4 (Universal deformations). Let D be a reduced, projective scheme over a
field k. Is there a universal deformation space for its K-flat deformations?

Examples 7.7. The first example shows that the space of first order deforma-
tions of the smooth divisor (x = 0) ⊂ A2, that are Cartier away from the origin,
is infinite dimensional. Thus working with generically flat divisors (3.26) does
not give a sensible moduli space.

(7.7.1) Start with X := Spec k[x, y, ε](x,y) over Spec k[ε] and set X◦ := X \ (x =

y = 0). Let g(y−1) ∈ y−1k[y−1] be a polynomial of degree n. Then

x + g(y−1)ε ∈ k[x, y, y−1, ε](x,y)

defines a relative Cartier divisor D◦g, whose restriction to the closed fiber is
(x = 0). One can check (7.14) that, if g1 , g2, then D◦g1

and D◦g2
give different

elements of Pic(X◦). Set

Ig :=
(
x2, xyn + yng(y−1)ε, εx

)
⊂ k[x, y, ε](x,y), and Dg := Spec k[x, y, ε]/Ig.

Note that yng(y−1) is invertible in k[x, y, ε](x,y), hence

k[x, y, ε](x,y)/
(
x2, xyn + yng(y−1)ε, εx

)
' k[x, y](x,y)/(x2).

Thus Dg is the scheme-theoretic closure of D◦g, (Ig, ε)/(ε) = (x2, xyn), Dg has
no embedded points, and Dg1 ∼ Dg2 iff g1 = g2. More general computations
are done in (7.20).

(7.7.2) To illustrate (7.1.5), let C be a smooth projective curve and E a vector
bundle over C of rank n + 1 ≥ 2 and of degree 0. We claim that usually there is
no finite morphism π : PC(E)→ Pn ×C.

Indeed, let p0, . . . , pn+1 ∈ P
n be the coordinate vertices plus (1: · · · :1). Then

Ci := π−1({pi}×C) are n+2 disjoint multi-sections of PC(E)→ C. Pick p : D→
C that factors through all of the Ci → C. Then PD(p∗E) has n + 2 disjoint
sections in linearly general position, hence PD(p∗E) ' Pn × D. Equivalently,
p∗D ' L ⊗ On+1

D for some line bundle L of degree 0.
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This can not happen for most line bundles. The simplest example is E =

OP1 (1)⊕OP1 (−1). More generally, such a line bundle has to be semi-stable. If
E is stable, hence comes from a representation π1(C) → U(n + 1), then its
image in PU(n + 1) must be finite.

(7.7.3) As an example for (7.4.5), set X := (xy = uv) and let π : X → A1
t be

given by t = x + y. Then D1 := (x = u = 0) and D2 := (y = v = 0) are both flat
over A1

t , but D1 ∪ D2 is not flat.

(7.7.4) As an example for (7.4.7), let A ⊂ Pn be a projectively normal Abelian
variety of dimension ≥ 2 and CA ⊂ P

n+1 the cone over it. Let π : Pn+1 d P2 be
a general projection. Let H ⊂ CA be a hyperplane section. If H does not pass
through the vertex then H ' A is smooth and π|H : H d P2 is flat.

If H does pass through the vertex v, then depthv H = 1 by (2.35), hence
π|H : H d P2 is not flat at v.

7.2 Infinitesimal study of Mumford divisors
In this section we review the divisor theory of nonreduced schemes. The stan-
dard reference books treat Cartier divisors in detail, but for us the interesting
cases are precisely when the divisors fail to be Cartier. We start with the general
theory. At the end give explicit formulas for some cases.

Definition 7.8 (Mumford class group). Let S be a scheme and f : X → S a
morphism of pure relative dimension n. Two relative Mumford divisors (4.68)
D1,D2 ⊂ X are linearly equivalent over S if OX(−D1) ' OX(−D2) ⊗ f ∗L for
some line bundle L on S . The linear equivalence classes generate the relative
Mumford class group MCl(X/S ).

This is a higher dimensional version of the generalized Jacobians, worked
out in Severi (1947); Rosenlicht (1954); Serre (1959). It is slightly different
from the theory of almost Cartier divisors of Hartshorne (1986); Hartshorne
and Polini (2015).

By definition, if D is a Mumford divisor then there is a closed subset Z ⊂ X
such that D|X\Z is Cartier and Z/S has relative dimension ≤ n − 2. This gives a
natural identification

MCl(X/S ) = limZ Pic
(
(X \ Z)/S

)
, (7.8.1)

where the limit is over all closed subsets Z ⊂ X such that Z/S has relative
dimension ≤ n − 2.

As with the Picard group, it may be better to sheafify MCl(X/S ) in the étale
topology as in (Bosch et al., 1990, Chap.8). However, we use this notion mostly
when S is local, so this is not important for our current purposes.
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7.9. The infinitesimal method to study families of objects in algebraic geome-
try posits that we should proceed in three broad steps.

• Study families over Artinian schemes.

• Inverse limits then give families over complete local schemes.

• For arbitrary local schemes, descend properties from the completion.
This approach has been very successful for proper varieties and for coherent
sheaves. One of the problems with general (possibly non-flat) families of divi-
sors is that the global and the infinitesimal computations do not match up; in
fact they say the opposite in some cases. We discuss two instances of this:

• Relative Cartier divisors on non-proper varieties.

• Generically flat families of divisors on surfaces.
The surprising feature is that the two behave quite differently. We state two
cases where the contrast between Artinian and DVR bases is striking.

Claim 7.9.1. Let π : X → (s, S ) be a smooth, affine morphism, S local.

(a) If S is Artinian, then the restriction map Pic(X) → Pic(Xs) is an isomor-
phism by (7.10.2).

(b) If S = Spec k[[t]], then Pic(X) can be infinite dimensional by (7.13.3).
That is, there can be many nontrivial line bundles on X over Spec k[[t]], but we
do not see them when working over Spec k[[t]]/(tm).

The opposite happens for the Mumford class group of projective surfaces.

Claim 7.9.2. MCl
(
P2

k[[t]]/(tm)
)
' Z + k∞ for m ≥ 2, but MCl

(
P2

k[[t]]
)
' Z.

Proof P2
k[[t]] is regular, so every Weil divisor on X is Cartier. The first part

follows from (7.8.1) and (7.10.3), since H1(P2 \ Z,OP2\Z) ' H2
Z(P2,OP2 ) is

infinite dimensional. �

7.10 (Picard group over Artinian schemes). Let (A,m, k) be a local Artinian
ring and XA → Spec A a flat morphism. Let (ε) ⊂ A be an ideal such that I ' k
and set B = A/(ε). We have an exact sequence

0 // OXk

e // O∗XA
// O∗XB

// 1, (7.10.1)

where e(h) = 1 + hε is the exponential map. We use its long exact cohomology
sequence and induction on length A to compute Pic(XA). There are three cases
that are especially interesting for us.

Claim 7.10.2. Let XA → Spec A be a flat, affine morphism. Then the restriction
map Pic(XA)→ Pic(Xk) is an isomorphism.
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Proof We use the exact sequence

H1(Xk,OXk )→ Pic(XA)→ Pic(XB)→ H2(Xk,OXk ). (7.10.2.a)

Since X is affine, the two groups at the ends vanish, hence we get an isomor-
phism in the middle. Induction completes the proof. �

Claim 7.10.3. Let XA → Spec A be a flat, proper morphism. If H0(Xk,OXk ) =

k, then the kernel of the restriction map Pic(XA) → Pic(Xk) is a unipotent
group scheme of dimension ≤ h1(Xk,OXk ) · (length A− 1) and equality holds if
H2(Xk,OXk ) = 0. (In fact, if char k = 0, then the kernel is a k-vector space and
equality holds even if H2(Xk,OXk ) , 0; see (Bosch et al., 1990, Chap.8).)

Proof By (Hartshorne, 1977, III.12.11), H0(XA,OXA ) → H0(XB,OXB ) is sur-
jective and so is H0(XA,O∗XA

)→ H0(XB,O∗XB
). Thus we get the exactness of

0→ H1(Xk,OXk )→ Pic(XA)→ Pic(XB)→ H2(Xk,OXk ). �

Claim 7.10.4. Let XA → Spec A be a flat morphism and Z ⊂ XA a closed
subset of codimension ≥ 2. Set X◦A := XA \ Z. Assume that Xk is S 2. Then the
kernel of the restriction map Pic(X◦A) → Pic(X◦k ) is a unipotent group scheme
of dimension ≤ h1(X◦k ,OX◦k ) · (length A − 1).

Proof Since Xk is S 2, H0(X◦k ,OX◦k ) ' H0(Xk,OXk ) and similarly for XA. Thus
H0(X◦A,O

∗
X◦A

) → H0(X◦B,O
∗
X◦B

) is surjective and the rest of the argument works
as in (7.10.3). �

Remark 7.10.5. Although (7.10.4) is very similar to (7.10.3), a key difference
is that in (7.10.4) the group H1(X◦k ,OX◦k ) can be infinite dimensional. Indeed,
H1(X◦k ,OX◦k ) ' H2

Z(Xk,OXk ) and it is

(a) infinite dimensional if dim Xk = 2,

(b) finite dimensional if Xk is S 2 and codimXk Z ≥ 3, and

(c) 0 if Xk is S 3 and codimXk Z ≥ 3.
See, for example, Section 10.3 for these claims.

The following immediate consequence of (7.10.5.c) is especially useful.

Corollary 7.10.6. Let X → S be a smooth morphism, D ⊂ X a closed sub-
scheme and Z ⊂ X a closed subset. Assume that D is a relative Cartier divisor
on X \ Z, D has no embedded points in Z and codimXs Zs ≥ 3 for every s ∈ S .

Then D is a relative Cartier divisor. �

The following is a special case of (4.28).
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Lemma 7.11. Let X → S be a flat morphism with S 2 fibers and D a diviso-
rial subscheme. Let U ⊂ X be an open subscheme such that D|U is relatively
Cartier and codimXs (Xs \ Us) ≥ 2 for every s ∈ S .

Then D is relatively Cartier iff the generically Cartier pull-back τ[∗]D (4.2.7)
is relatively Cartier for every Artinian subscheme τ : A ↪→ S . �

Relative Cartier divisors also have some unexpected properties over non-
reduced base schemes. These do not cause theoretical problems, but it is good
to keep them in mind.

Example 7.12 (Cartier divisors over k[ε]). Let R be an integral domain over a
field k. Relative principal ideals in R[ε] over k[ε] are given as ( f + gε) where
f , g ∈ R and f , 0. We list some properties of such principal ideals that hold
for any integral domain R.
(7.12.1) ( f + g1ε) = ( f + g2ε) iff g1 − g2 ∈ ( f ).
(7.12.2) If u ∈ R is a unit then so is u + gε since (u + gε)(u−1 − u−2gε) = 1.
(7.12.3) If f is irreducible then so is f + gε for every g.
(7.12.4) ( f + gε)( f − gε) = f 2 shows that there is no unique factorization.
(7.12.5) If R is a UFD and the fi are pairwise relatively prime, then∏

i( fi + giε) =
∏

i( fi + g′iε) iff gi − g′i ∈ ( fi) ∀i.

The following concrete example illustrates several of the above features.

Example 7.13 (Picard group of a constant elliptic curve). Let (0, E) be a
smooth, projective elliptic curve. Over any base S we have the constant family
π : E×S → S with the constant section s0 : S ' {0}×S . Let L be a line bundle
on E × S . Then L ⊗ π∗s∗0L−1 has a canonical trivialization along {0} × S , hence
it defines a morphism S → Pic(E). Thus

Pic(E × S/S ) ' Mor
(
S ,Pic(E)

)
. (7.13.1)

Corollary 7.13.2. Let (R,m) be a complete local ring. Set S = Spec R and
S n = Spec R/mn. Then Pic(E × S/S ) = lim

←−−
Pic(E × S n/S n). �

Corollary 7.13.3. Let S = Spec k[t](t) be the local ring of the affine line at the
origin and Ŝ = Spec k[[t]] its completion. Then Pic(E × S/S ) ' Pic(E), but
Pic(E × Ŝ /Ŝ ) is infinite dimensional. �

Next consider the affine elliptic curve E◦ = E \ {0} and the constant affine
family E◦ × S → S . Note that Pic(E◦) ' Pic◦(E).

If S is smooth and D◦ is a Cartier divisor on E◦×S then its closure D ⊂ E×S
is also Cartier. More generally, this also holds if S is normal, using (4.4). Thus
(7.13.1–2) give the following.
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Corollary 7.13.3. If S is normal then Pic(E◦ × S/S ) ' Mor
(
S ,Pic◦(E)

)
. �

Corollary 7.13.4. If S = Spec A is Artinian then Pic(E◦ × S/S ) ' Pic◦(E). So
Pic(E◦ × S/S ) has dimension 1, but dimk Mor

(
S ,Pic◦(E)

)
= length A. �

For the rest of the section we make some explicit computations about Mum-
ford divisors on schemes that are smooth over an Artinian ring.

Proposition 7.14. Let (A, k) be a local Artinian ring, k ' (ε) ⊂ A an ideal and
B = A/(ε). Let (RA,m) be a flat, local, S 2, A-algebra and set XA := SpecA RA.
Let fB ∈ RB be a non-zerodivisor and set DB := ( fB = 0) ⊂ XB.

Then the set of relative Mumford divisors DA ⊂ XA, such that pure
(
(DA)|B

)
=

DB, is a torsor under the k-vector space H1
m(Dk,ODk ).

Proof We can lift fB to fA ∈ RA. Choose y ∈ m that is not a zerodivisor on
DB and such that DA is a principal divisor on XA \ (y = 0). After inverting y,
we can write the ideal of DA as

(I, y−1) = ( fA + εy−rgk) where gk ∈ Rk, r ∈ N. (7.14.1)

We can multiply fA +εy−rgk by 1+εy−sv. This changes y−rgk to y−rgk +vy−s fA.
By (7.15) the relevant information is carried by the residue class

y−rgk ∈ H0(D◦k ,OD◦k ), (7.14.2)

where D◦k ⊂ Dk denotes the complement of the closed point.
If the residue class is in H0(Dk,ODk ), then we get a Cartier divisor. Thus the

non-Cartier divisors are parametrized by

H0(D◦k ,OD◦k )/H0(Dk,ODk ) ' H1
m(Dk,ODk ). (7.14.3)

We get distinct divisors by (7.17.2). �

Lemma 7.15. Let (A, k) be a local Artinian ring, k ' (ε) ⊂ A an ideal and
B = A/(ε). Let (RA,m) be a flat, local, S 2, A-algebra. Let fA ∈ RA and gk ∈ Rk

be non-zerodivisors and y a non-zerodivisor modulo both fA and gk.
For I := RA ∩ ( fA + εy−rgk)RA[y−1] the following are equivalent.

(7.15.1) I is a principal ideal.

(7.15.2) The residue class y−rgk lies in Rk/( fk).

(7.15.3) gk ∈ ( fk, yr).

Note that we can change fA + εy−rgk to ( fA + εhk) + εy−r(gk − yrhk) for any
hk ∈ Rk, but gk ∈ ( fk, yr) iff gk − yrhk ∈ ( fk, yr).
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Proof I is a principal ideal iff it has a generator of the form fA + εhk where
hk ∈ Rk. This holds iff

fA + εy−rgk = (1 + εy−sbk)( fA + εhk) for some bk ∈ RA.

Equivalently, iff y−rgk = hk + y−sbk fk. If r > s then gk = yrhk + yr−sbk fk, which
is impossible since y is not a zerodivisor modulo gk. If r < s then ys−rgk =

yshk + bk fk, which is impossible since y is not a zerodivisor modulo fk. Thus
r = s and then gk = yrhk + bk fk is equivalent to gk ∈ ( fk, yr). �

The next will be crucial in the proof of (7.60). To state it, let nil(nA) denote
the smallest r ≥ 0 such that nr

A = 0, and for f ∈ RA[y−1], let ordy denote pole
order in y, that is, the smallest r ≥ 0 such that yr f ∈ RA.

Proposition 7.16. Let (A, nA, k) be a local Artinian ring and (RA,mR) a flat,
local, S 2, A-algebra of dimension ≥ 2. Let fk ∈ mk be a non-zerodivisor and
y ∈ mR a non-zerodivisor modulo fk. Let fA, f ′A ∈ RA[y−1] be two liftings of fk.
Assume that fA − f ′A ∈ yNRA, where N = nil(nA) · ordy fA.

Then ( fA) ∩ RA is a principal ideal iff ( f ′A) ∩ RA is.

Proof Note first that N ≥ 0, so fA − f ′A ∈ yNRA implies that ordy fA = ordy f ′A,
so the assumption is symmetric in fA, f ′A. It is thus enough to prove that if
( fA) ∩ RA is a principal ideal then so is ( f ′A) ∩ RA.

Assume that ( fA) ∩ RA = (FA). Then there is unit uA in RA[y−1] such that
fA = uAFA. Since fk = Fk, we see that uk is a unit in Rk.

We claim that ordy fA = ordy uA. Indeed, if ordy uA = r then we get a nonzero
remainder ūA ∈ y−rRA/y1−rRA ' RA/yRA. Multiplication by FA preserves the
pole-order filtration, so

FAuA = FAūA ∈ y−rRA/y1−rRA ' RA/yRA.

Here RA/yRA has a filtration whose successive quotients are Rk/yRk and FA

acts by multiplication by fk an each graded piece. Since fk is a non-zerodivisor
modulo y, we see that FAuA , 0. So ordy fA = ordy uA. Taylor expansion of the
inverse shows that ordy(u−1

A ) ≤ nil(nA) · ordy fA =: N. Thus

u−1
A f ′A = u−1

A fA + u−1
A ( f ′A − fA) = FA + (yNu−1

A )
(
y−N( f ′A − fA)

)
∈ RA. �

The connection between (7.14) and (7.10) is given by the following.

7.17. Let X be an affine, S 2 scheme and D := (s = 0) ⊂ X a Cartier divisor.
Let Z ⊂ D be a closed subset that has codimension ≥ 2 in X. Set X◦ := X \ Z
and D◦ := D \ Z. Restricting the exact sequence

0→ OX
s
→ OX → OD → 0
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to X◦ and taking cohomologies we get

0→ H0(X◦,OX◦ )
s
→ H0(X◦,OX◦ )→ H0(D◦,OD◦ )

∂
→ H1(X◦,OX◦ ).

Note that H0(X◦,OX◦ ) = H0(X,OX) since X is S 2 and its image in H0(D◦,OD◦ )
is H0(D,OD). Thus ∂ becomes the injection

∂ : H1
Z(D,OD) ' H0(D◦,OD◦ )/H0(D,OD)↪→H2

Z(X,OX). (7.17.1)

We are especially interested in the case when (x, X) is local, 2-dimensional and
Z = {x}. In this case (7.17.1) becomes

∂ : H1
x(D,OD)↪→H2

x(X,OX). (7.17.2)

The left side describes first order deformations of D by (7.14) and the right
side the Picard group of the first order deformation of X \ {x} by (7.10.4).

We can be especially explicit about first order deformations in the smooth
case. Let us start with the description as in (7.14).

7.18 (Mumford divisors in k[[u, v]][ε]). Set X = Spec k[[u, v]][ε] with closed
point x ∈ X. By (7.10), the Picard group of the punctured spectrum X \ {x} is

H2
x(X,OX) '

⊕
i, j>0

1
uiv j · k.

An ideal corresponding to cu−iv− j (where c ∈ k×) can be given as

I
(
cu−iv− j) :=

(
u2i, uiv j + cε, uiε

)
,

a more systematic derivation of this is given in (7.20.1).

This is explicit, but we are more interested in the point of view of (7.10).

Lemma 7.19. Let f ∈ k[[u]][v] be a monic polynomial in v of degree n defining
a curve Ck ⊂ Â

2
uv. Let C ⊂ Â2

k[ε] be a relative Mumford divisor such that
pure(Ck) = Ck. Then the restriction of C to the complement of (u = 0) can be
uniquely written as(

f + ε
∑n−1

i=0 viφi(u) = 0
)

where φi(u) ∈ u−1k[u−1].

Thus the set of all such C is naturally isomorphic to the infinite dimensional
k-vector space H1

m(Ck,OCk ) ' ⊕
n−1
i=0 u−1k[[u−1]].

Note that, by the Weierstrass preparation theorem, almost every curve in Âuv

is defined by a monic polynomial in v, so the above is a mild restriction.
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Proof Note that k[[u]][v]/( f ) ' ⊕n−1
i=0 vik[[u]] as a k[[u]]-module, so

H0(Ck,OCk ) ' ⊕
n−1
i=0 vik[[u]] and H0(C◦k ,OC◦k ) ' ⊕n−1

i=0 vik((u)). (7.19.1)

That is, if g ∈ k((u))[v] is a polynomial of degree < n in v, then g|C◦ extends to
a regular function on C iff g ∈ k[[u]][v]. �

We can also restate (7.19.1) as

H1
m(Ck,OCk ) ' ⊕

n−1
i=0 vik((u))/k[[u]] ' ⊕n−1

i=0 viu−1k[u−1]. (7.19.2)

Example 7.20. Consider next the special case of (7.19) when f = v. We can
then write the restriction of C as (v + φ(u)ε = 0) where φ ∈ u−1k[u−1]. Let r
denote the pole-order of φ and set q(u) := urφ(u). By (7.7.1) the ideal of C is

IC =
(
v2, vur + q(u)ε, vε

)
. (7.20.1)

Thus the fiber over the closed point is k[[u, v]]/(v2, vur). Its torsion submodule
is isomorphic to k[[u, v]]/(v, ur) ' k[u]/(ur).

The ideals of relative Mumford divisors in k[[u, v]][ε] are likely to be more
complicated in general. At least the direct generalization of (7.20.1) does not
always give the correct generators.

For example, let f = v2 − u3 and consider the ideal I ⊂ k[[u, v]][ε] extended
from

(
(v2 − u3) + u−3vε

)
. The formula (7.20.1) suggests the elements

(v2 − u3)2, u3(v2 − u3) + vε, (v2 − u3)ε ∈ I.

However, u3(v2 − u3) + vε = v2(v2 − u3) + vε, giving that

I =
(
(v2 − u3)2, v(v2 − u3) + ε, (v2 − u3)ε

)
. (7.20.2)

Using the isomorphism R[ε]/( f 2, f g + ε, f ε) ' R/( f 2,− f 2g) ' R/( f 2), the
above examples can be generalized to the non-smooth case as follows.

Claim 7.20.3. Let (R,m) be a local, S 2, k-algebra of dimension 2 and f , g ∈ m
a system of parameters. Then J f ,g = ( f 2, f g + ε, f ε) is (the ideal of) a relative
Mumford divisor in R[ε] whose central fiber is R/( f 2, f g), with embedded
subsheaf isomorphic to R/( f , g). �

7.3 Divisorial support
There are at least three ways to associate a divisor to a sheaf (7.22), but only
one of them—the divisorial support—behaves well in flat families. In this Sec-
tion we develop this notion and a method to compute it. The latter is especially
important for the applications. First we recall the definition of the Fitting ideal
sheaf.
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7.21 (Fitting ideal). Let R be a noetherian ring, M a finite R-module and

Rs A
−→ Rr → M → 0

a presentation of M, where A is given by an s × r-matrix with entries in R.
The Fitting ideal, or, more precisely, the 0th Fitting ideal of M, denoted by
FittR(M), is the ideal generated by the determinants of r × r-minors of A. For
the following basic properties see Fitting (1936) or (Eisenbud, 1995, Sec.20.2).
(7.21.1) FittR(M) is independent of the presentation chosen.
(7.21.2) If R is regular and M ' ⊕iR/(g

mi
i ) then FittR(M) =

(∏
gmi

i
)
.

(7.21.3) The Fitting ideal commutes with base change. That is, if S is an R-
algebra then FittS (M ⊗R S ) is generated by FittR(M) ⊗R S .

The following is a special case of (Lipman, 1969, Lem.1).
(7.21.4) Let M be a torsion module. Then FittR(M) is a principal ideal gener-

ated by a non-zerodivisor iff the projective dimension of M is 1.
One direction is easy. If the projective dimension of M is 1, then M has a

presentation

0→ Rs A
−→ Rr → M → 0.

Here r = s since M is torsion, thus det(A) generates FittR(M).
We prove the converse only in the following special case that we use later,

which, however, captures the essence of the general proof.
(7.21.5) Let X be a smooth variety of dimension n and F a coherent sheaf of

generic rank 0 on X. Then FittX(F) is a principal ideal iff F is CM of pure
dimension n − 1.

Proof This can be checked after localization and completion. Thus we have
a module M over S := k[[x1, . . . , xn]], and, after a coordinate change, we may
assume that it is finite over R := k[[x1, . . . , xn−1]] of generic rank say r. Using
first (7.21.2) and then (7.21.3) we get that

dimk M ⊗S k[[xn]] = dimk k[[xn]]/Fittk[[xn]](M ⊗S k[[xn]])
= dimk

(
S/FittS (M)

)
⊗S k[[xn]].

(7.21.6)

Next note that M is CM ⇔ M is free over R ⇔ dim M ⊗S k[[xn]] = r. Us-
ing (7.21.1) and the previous equivalences for S/FittS (M) we get that these
are equivalent to S/FittS (M) being CM. This holds iff FittS (M) is a height 1
unmixed ideal, hence principal. �

The following explicit formula is quite useful.

Computation 7.21.7. Let S be a smooth R-algebra and v ∈ S such that S/(v) '
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R. (The examples we use are S = R[v] and S = R[[v]].) Let M be an S -
module that is free of finite rank as an R-module. Write M = ⊕r

i=1Rmi and
vmi =

∑r
i=1 ai jm j for ai j ∈ R. Then FittS (M) is generated by det

(
v1r − (ai j)

)
.

Proof A presentation of M as an S -module is given by

⊕r
i=1S ei

φ
−→ ⊕r

i=1S fi
ψ
−→ M → 0,

where ψ( fi) = mi and φ(ei) = v fi −
∑r

j=1 ai j f j. Thus φ = v1r − (ai j) and so
det

(
v1r − (ai j)

)
generates FittS (M). �

Computation 7.21.8. Let T be a free S -algebra and t ∈ T a non-zerodivisor.
Then FittS (T/tT ) is generated by normT/S (t).

Proof We use 0→ T
t
→ T → T/tT → 0 and the definition of the norm. �

Definition 7.22 (Divisorial support I). Let X be a scheme and F a coherent
sheaf on X. One usually defines its support Supp F and its scheme-theoretic
support SSupp F := SpecX(OX/Ann F).

Assume next that Supp F is nowhere dense and X is regular at every generic
point xi ∈ Supp F that has codimension 1 in X. Then there is a unique divisorial
sheaf (3.25) associated to the Weil divisor

∑
length(Fxi ) · [x̄i]. We call it the

divisorial support of F and denote it by DSupp F. Equivalently,

DSupp(F) = pure
(
OX/FittX(F)

)
, (7.22.1)

where pure denotes the pure codimension 1 part (10.1).
If every associated point of F has codimension 1 in X, then we have inclu-

sions of subschemes

Supp F ⊂ SSupp F ⊂ DSupp F. (7.22.2)

In general all three subschemes are different, though with the same support.
Our aim is to develop a relative version of this notion and some ways of

computing it in families. Let X → S be a morphism and F a coherent sheaf on
X. Informally, we would like the relative divisorial support of F, denoted by
DSuppS F, to be a scheme over S whose fibers are DSupp(Fs) for all s ∈ S . If
S is reduced, this requirement uniquely determines DSuppS F, but in general
there are 2 problems.
• Even in nice situations, this requirement may be impossible to meet.
• For non-reduced base schemes, the fibers do not determine DSuppS F.
In our main applications X is smooth over some base scheme S that may well
have nilpotent elements. As in (9.12), we need to allow embedded subsheaves
that ‘come from’ S , but not the others.
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Definition 7.23 (Divisorial support II). Let X → S be a smooth morphism of
pure relative dimension n. Let F be a coherent sheaf on X that is flat over S
with CM fibers of pure dimension n − 1. We define its divisorial support as

DSuppS (F) := pure
(
OX/FittX(F)

)
.

Lemma 7.24. Under the assumptions of (7.23),

(7.24.1) DSuppS (F) is a relative Cartier divisor, and

(7.24.2) DSuppS (F) commutes with base change. That is, let h : S ′ → S be
a morphism. By base change we get g′ : X′ → S ′, hX : X′ → X. Then
h∗X(DSupp F) = DSupp(h∗XF).

Proof The first claim can be checked after localization and completion. We
may thus assume that S = Spec B where (B,m) is local with residue field
k, X = Spec B[[x1, . . . , xn]] and F is the sheafification of M. Since M ⊗B k
has dimension n − 1 over k[[x1, . . . , xn]], after a general coordinate change
we may assume that M/(x1, . . . , xn−1,m)M is finite. Thus M is a finite R :=
B[[x1, . . . , xn−1]]-module. Set Rk = R ⊗B k ' k[[x1, . . . , xn−1]]. Since M is flat
over B, its generic rank over R equals the generic rank of M ⊗B k over Rk. By
assumption M⊗B k is CM, hence free over Rk. Thus the generic rank of M over
R equals dimk M ⊗R k and M is free as an R-module. The rest follows from
(7.21.7). The second claim is immediate from (7.21.3). �

The following restriction property is also implied by (7.21.3).

Lemma 7.25. Continuing with the notation and assumptions of (7.23), let D ⊂
X be a relative Cartier divisor that is also smooth over S . Assume that D does
not contain any generic point of Supp Fs for any s ∈ S . Then

DSupp(F|D) = (DSupp F)|D. �

Now we are ready to define the sheaves for which the relative divisorial
support makes sense, but first we have to distinguish associated points that
come from the base from the other ones.

Definition 7.26. Let X → S be a morphism and F a coherent sheaf on X. The
flat locus of F is the largest open subset U ⊂ X such that F|U is flat over S . We
denote it by FlatS (X, F).

It is usually more convenient to work with the flat-CM locus of F. It is
the largest open subset U ⊂ X such that F|U is flat with CM fibers over S . We
denote it by FlatCMS (X, F). If F is generically flat over S of relative dimension
d, then

(
Supp F \ FlatCMS (X, F)

)
→ S has relative dimension < d.
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Definition 7.27. Let X → S be a morphism. A coherent sheaf F is a gener-
ically flat family of pure sheaves of dimension d over S , if F is generically
flat (3.26) and Supp F → S has pure relative dimension d. This property is
preserved by any base change S ′ → S .

For our current purposes we can harmlessly replace F by its vertically pure
quotient vpure(F) (9.12). The generic fibers of vpure(F) are pure of dimension
d, but special fibers may have embedded points outside the flat locus (7.26).
Vertically purity is preserved by flat base changes.

Definition–Lemma 7.28 (Divisorial support III). Let g : X → S be a flat mor-
phism of pure relative dimension n and g◦ : X◦ → S the smooth locus of g.

Let F be a coherent sheaf on X that is generically flat and pure over S of
dimension n − 1. Assume that for every s ∈ S , every generic point of Fs is
contained in X◦.

Set U := FlatCMS (X, F) ∩ X◦
)

and j : U ↪→ X the natural injection. We
define the divisorial support of F over S as

DSuppS (F) := DSuppS (F|U), (7.28.1)

the scheme-theoretic closure of DSuppS (F|U). This makes sense since the latter
is already defined by (7.23).

Note that Supp DSuppS (F) = Supp F and DSuppS (F) is a generically flat
family of pure subschemes of dimension n − 1 over S , whose restriction to U
is relatively Cartier.

It is enough to check the following equalities at codimension 1 points, which
follow from (7.24) and (7.21.3).

Claim 7.28.2. Let gi : Xi → S be flat morphisms of pure relative dimension n
and π : X1 → X2 a finite morphism. Let D ⊂ X1 be a relative Mumford divisor.
Assume that red Ds → red(π(Ds)) is birational and π is étale at generic points
of Ds. Then DSuppS (π∗OD) = π(D), the scheme-theoretic image of D. �

Claim 7.28.3 (Divisorial support commutes with push-forward). Let gi : Xi →

S be flat morphisms of pure relative dimension n and π : X1 → X2 a finite mor-
phism. Let F be a coherent sheaf on X1 that is generically flat and pure over
S of relative dimension n − 1. Assume that g1 (resp. g2) is smooth at every
generic point of Fs (resp. π∗Fs) for every s ∈ S . Then

DSuppS (π∗F) = DSuppS
(
π∗ODSuppS (F)

)
. �

Claim 7.28.4. Let gi : Xi → S be flat morphisms of pure relative dimension n
and π1 : X1 → X2, π2 : X2 → X3 finite morphism. Let F be a coherent sheaf
on X1 that is generically flat and pure over S of relative dimension n − 1.



7.3 Divisorial support 277

Assume that g1 (resp. g2, g3) is smooth at every generic point of Fs (resp.
π1∗Fs, (π2 ◦ π1)∗Fs) for every s ∈ S . Then

DSuppS
(
(π2 ◦ π1)∗F) = DSuppS

(
π2∗ODSuppS (π1∗F)

)
. �

Lemma 7.29. Let X → S be a smooth morphism of pure relative dimension n.
Let F be a coherent sheaf on X that is generically flat over S with pure fibers
of dimension n − 1. Assume that either F is flat over S , or S is reduced.

Then DSuppS F is a relative Cartier divisor.

Proof Assume first that F is flat over S . If x ∈ Xs is a point of codimension
≤ 2, then Fs is CM at x, hence DSuppS F is a relative Cartier divisor at x
by (7.23). Since X → S is smooth, DSuppS F is a relative Cartier divisor
everywhere by (7.10.6).

For the second claim, the above argument gives only that DSuppS F is a
relative, generically Cartier divisor. By (4.34) it is then enough to check the
conclusion after base change T → S , where T is the spectrum of a DVR. Then
XT is regular, so DSuppT FT is Cartier. �

7.30 (Restriction to divisors). Let (s, S ) be a local scheme and g : X → S a flat
morphism of pure relative dimension n. Let F be a generically flat family of
pure sheaves of relative dimension n− 1 such that g is smooth at every generic
point of Supp Fs. Let D ⊂ X be a relative Cartier divisor.
(7.30.1) Assume that g|D is smooth and F is flat with CM fiber, at every generic
point of D ∩ Supp Fs. Then

DSuppS (F|D) = vpure
(
(DSuppS F)|D

)
.

(7.30.2) assume in addition, D contains neither a generic point of Supp Fs \

FlatCMS (X, F), nor a codimension ≥ 2 point of Supp Fs where DSuppS F is
not S 2, then

DSuppS (F|D) = (DSuppS F)|D.

Corollary 7.31 (Bertini theorem for divisorial support). Let g : X → S be a
flat morphism of pure relative dimension n and F a generically flat family of
pure sheaves of dimension n−1 over S . Fix s ∈ S such that g is smooth at every
generic point of Supp Fs. Let D be a general member of a linear system on X,
that is base point free in characteristic 0 and very ample in general. Then there
is an open neighborhood s ∈ S ◦ ⊂ S such that DSuppS (F|D) = (DSuppS F)|D
holds over S ◦.

Lemma 7.32 (Divisorial support commutes with base change). Let g : X → S
be a flat morphism of pure relative dimension n and F a generically flat family
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of pure sheaves of dimension n − 1 over S . Assume that g is smooth at every
generic point of Supp Fs, for every s ∈ S . Let h : S ′ → S be a morphism. By
base change we get g′ : X′ → S ′ and hX : X′ → X. Then

h[∗]
X (DSuppS F) = DSuppS ′ (h

∗
XF),

where h[∗]
X is the generically Cartier pull-back (4.2.7).

Proof Set U := FlatCMS (X, F) ⊂ X with injection j : U ↪→ X. Set U′ :=
h−1

X (U) and hU : U′ → U the restriction of hX . Then (7.24) shows the equality
h∗U(DSuppS F|U) = DSuppS ′

(
h∗U(F|U)

)
.

By (7.27.4) h[∗]
X (DSuppS F) is a generically flat family of pure divisors and

it agrees with DSuppS ′ (h
∗
XF) over U′. Thus the two are equal. �

7.33 (Proof of 7.4.7). Assume that we have f : X → (s, S ) of relative di-
mension n and relative Mumford divisors D1,D2 ⊂ X, where (s, S ) is local.
Let FlatCMS (X) ⊂ X be the largest open subset where f has CM fibers and
Z = X \ FlatCMS (X). Note that Z → S has relative dimension ≤ n − 2.

Let π : X → Pn
S be a finite morphism. Set P◦ := Pn

S \π(Z) and X◦ := π−1(P◦).
Then π : X◦ → P◦ is finite and flat. If ( f ) = D1 − D2 then, by (7.21.8),(

normX◦/X◦ ( f )
)

= DSuppS (D1)|P◦ − DSuppS (D2)|P◦ ,

Since Z → S has relative dimension ≤ n−2, this implies that DSuppS (D1) and
DSuppS (D2) are linearly equivalent. Thus, if one of them is relatively Cartier,
then so is the other. �

7.4 Variants of K-flatness

We introduce five versions of K-flatness, which may well be equivalent to each
other. From the technical point of view, Cayley-Chow-flatness (or C-flatness)
is the easiest to use, but a priori it depends on the choice of a projective em-
bedding. Then most of the work in the next two sections goes to proving that
a modified version (stable C-flatness) is equivalent to K-flatness, hence inde-
pendent of the projective embedding.

7.34 (Projections of Pn). Let S be an affine scheme. Projecting Pn
S from the

section (a0 : · · · : an) (where ai ∈ OS ) to the (xn = 0) hyperplane is given by

π : (x0 : · · · : xn)→ (anx0 − a0xn : · · · : anxn−1 − an−1xn). (7.34.1)

It is convenient to normalize an = 1 and then we get

π : (x0 : · · · : xn)→ (x0 − a0xn : · · · : xn−1 − an−1xn). (7.34.2)
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Similarly, a Zariski open set of projections of Pn
S to Lr = (xn = · · · = xr+1 = 0)

is given by

π : (x0 : · · · : xn)→
(
x0−`0(xr+1, . . . , xn) : · · · : xr−`r(xr+1, . . . , xn)

)
, (7.34.3)

where the `i are linear forms.
Note that in affine coordinates, when we set x0 = 1, the projections become

π : (x1, . . . , xn)→
(

x1−`1
1−`0

, . . . , xr−`r
1−`0

)
, (7.34.4)

where again the `i are (homogeneous) linear forms in the xr+1, . . . , xn. If `0 ≡ 0
then we recover the linear projections, but in general the coordinate functions
have a non-linear expansion

xi−`i
1−`0

= (xi − `i)(1 + `0 + `2
0 + · · · ). (7.34.5)

Finally, formal projections are given as

π : (x1, . . . , xn)→
(
x1 − φ1(x1, . . . , xn), . . . , xr − φr(x1, . . . , xn)

)
, (7.34.6)

where φi are power series such that φi(x1, . . . , xr, 0, . . . , 0) ≡ 0 for every i.

7.35 (Approximation of formal projections). Let vm : Pn
S ↪→ PN

S (where N =(
n+m

n

)
− 1) be the mth Veronese embedding. Pulling back the linear coordinates

on PN
S we get all the monomials of degree m. In affine coordinates x1, . . . , xn as

above, we get all monomials of degree ≤ m.
In particular we see that given a formal projection π as in (7.34.6) and m > 0,

there is a unique linear projection πm of PN
S such that πm ◦ vm is

(x1, . . . , xn)→
(
x1 − ψ1, . . . , xr − ψr

)
, where

ψi ≡ φi mod (x1, . . . , xn)m+1, and degψi ≤ m ∀i.
(7.35.1)

That is, we can approximate formal projections by linear projections composed
with a Veronese embedding. Thus it is reasonable to expect that K-flatness is
very close to C-flatness for all Veronese images; this leads to the notion of
stable C-flatness in (7.37.2).

The uniqueness of the approximation above is not always an advantage. In
practice we would like πm to be in general position away from the chosen
point. This is easy to achieve if we increase m a little. In particular, we get the
following obvious result.

Claim 7.35.2. Let (s, S ) be a local scheme and Y ⊂ Pn
S a closed subset of pure

relative dimension d. Let p ∈ Ys be a closed point with maximal ideal mp such
that x0(p) , 0. Fix m ∈ N and let (̂g1: · · · :̂ge) : Ŷp → Â

e
Ŝ

be a finite morphism.
Then for every M ≥ m + 1 there are g1, . . . , ge ∈ H0(Pn

S ,OPn
S
(M)

)
such that
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π : (xM
0 :g1: · · · :ge) : Y → Pe

S is a finite morphism, π−1(π(p)) ∩ Y = {p}, and
ĝi ≡ gi/xM

0 mod mm
p for every i. �

Despite having good approximations, the equivalence of K-flatness and sta-
ble C-flatness is not clear. The problem is the following.

Assume for simplicity that S is the spectrum of an Artinian ring A. For
sheaves of dimension d, using the notation of (7.21.7), we can write the equa-
tion of DSupp(̂π∗F̂) in the form det

(
v1r − M)

)
= 0, where the entries of the

matrix M involve rational functions in the power series φi. The problem is that
inverses of power series usually do not have good approximations by rational
functions. For example, there is no rational function g(x1, x2) such that

(x2 − sin x1)−1 − g(x1, x2) ∈ k[[x1, x2]].

The exception is the 1-variable case, where truncations of Laurent series give
good approximations. This is what we exploit in (7.60) to prove that K-flatness
is equivalent to stable C-flatness for curves.

Definition 7.36. Let E be a vector bundle over a scheme S and F ⊂ E a vector
subbundle. This induces a natural linear projection map π : PS (E) d PS (F).
If S is local then E, F are free. After choosing bases, π is given by a matrix of
constant rank with entries in OS . We call these OS -projections if we want to
emphasize this. If S is over a field k, we can also consider k-projections, given
by a matrix with entries in k. These, however, only make good sense if we have
a canonical trivialization of E; this rarely happens for us.

We can now formulate various versions of K-flatness.

Definition 7.37. Let (s, S ) be a local scheme with infinite residue field and F
a generically flat family of pure, coherent sheaves of relative dimension d on
Pn

S (7.27), with scheme-theoretic support Y := SSupp F.
(7.37.1) F is C-flat over S iff DSupp(π∗F) is Cartier over S for every OS -

projection π : Pn
S d P

d+1
S (7.36) that is finite on Y .

(7.37.2) F is stably C-flat iff (vm)∗F is C-flat for every Veronese embedding
vm : Pn

S ↪→ P
N
S (where N =

(
n+m

n

)
− 1).

(7.37.3) F is K-flat over S iff DSupp(%∗F) is Cartier over S for every finite
morphism % : Y → Pd+1

S .
(7.37.4) F is locally K-flat over S at y ∈ Y iff DSupp(%∗F) is Cartier over S at

%(y) for every finite % : Y → Pd+1
S for which {y} = Supp %−1(%(y)).

(7.37.5) F is formally K-flat over S at a closed point y ∈ Y iff DSupp(%∗F̂) is
Cartier over Ŝ for every finite morphism % : Ŷ → Âd+1

Ŝ
, where Ŝ (resp. Ŷ)

denotes the completion of S at s (resp. Y at y).
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7.37.6 (Base change properties). We see in (7.50) that being C-flat is preserved
by arbitrary base changes and the property descends from faithfully flat base
changes. This then implies the same for stable C-flatness. Once we prove that
the latter is equivalent to K-flatness, the latter also has the same base change
properties. Most likely the same holds for formal K-flatness.

7.37.7 (General base schemes). We say that any of the above notions (7.37.1–
5) holds for a local base scheme (s, S ) (with finite residue field) if it holds
after some faithfully flat base change (s′, S ′) → (s, S ), where k(s′) is infinite.
Property (7.37.6) assures that this is independent of the choice of S ′.

Finally we say that any of the above notions (7.37.1–5) holds for an arbitrary
base scheme S , if it holds for all of its localizations.

Variants 7.38. These definitions each have other versions and relatives. I be-
lieve that each of the above 5 are natural and maybe even optimal, though they
may not be stated in the cleanest form. Here are some other possibilities and
equivalent versions.
(7.38.1) It could have been better to define C-flatness using the Cayley-Chow
form; the equivalence is proved in (7.47). The Cayley-Chow form version
matches better with the study of Chow varieties; the definition in (7.37.1) em-
phasizes the similarity with the other 4.
(7.38.2) In (7.37.2) it would have been better to say that F is stably C-flat for
L := OY (1). However, we see in (7.62) that this notion is independent of the
choice of an ample line bundle L, so we can eventually drop L from the name.
(7.38.3) In (7.37.3) we get an equivalent notion if we allow all finite morphisms
% : Y → W, where W → S is any smooth, projective morphism of pure relative
dimension d + 1 over S . Indeed, let π : W → Pd+1

S be a finite morphism. If F is
K-flat then DSupp

(
(π◦%)∗F

)
is a relative Cartier divisor, hence DSupp(%∗F) is

K-flat by (7.28.3). Since W → S is smooth, DSupp(%∗F) is a relative Cartier
divisor by (7.53).
(7.38.4) It would be natural to consider an affine version of C-flatness: We start
with a coherent sheaf F on An

S and require that DSupp(π∗F) be Cartier over S
for every projection π : An

S → A
d+1
S that is finite on Y .

The problem is that the relative affine version of Noether’s normalization
theorem does not hold, thus there may not be any such projections (10.47),
though one can try to go around this using (10.46.2). This is why (7.37.4) is
stated for projective morphisms only.

Although a more local version is defined in (7.51), we did not find a truly
local theory. Nonetheless, the notions (7.37.1–4) are étale local on X, and most
likely the following Henselian version of (7.37.5) does work.
(7.38.5) Assume that f : (y,Y) → (s, S ) is a local morphism of pure relative
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dimension d of Henselian local schemes such that k(y)/k(s) is finite. Let F
be a coherent sheaf on X that is pure of relative dimension d over S . Then F
is K-flat over S iff DSupp(%∗F) is Cartier over S for every finite morphism
% : Y → Spec OS 〈x0, . . . , xd〉 (where R〈x〉 denotes the Henselization of R[x]).

It is possible that in fact all five versions (7.37.1–5) are equivalent to each
other, but for now we can prove only 13 of the 20 possible implications. Four
of them are easy to see.

Proposition 7.39. Let F be a generically flat family of pure, coherent sheaves
of relative dimension d on Pn

S . Then

formally K-flat⇒ K-flat⇒ locally K-flat⇒ stably C-flat⇒ C-flat.

Proof A divisor D on a scheme X is Cartier iff its completion D̂ is Cartier on
X̂ for every x ∈ X by (7.11). Thus formally K-flat⇒ K-flat.

K-flat ⇒ locally K-flat is clear, and locally K-flat ⇒ stably C-flat follows
from (7.52). Finally stably C-flat⇒ C-flat is clear; see also (7.56). �

A key technical result of the chapter is the following, to be proved in (7.63).

Theorem 7.40. K-flatness is equivalent to local K-flatness and to stable C-
flatness.

It is quite likely that our methods will prove the following.

Conjecture 7.41. Formal K-flatness is equivalent to K-flatness.

We prove the special case of relative dimension 1 in (7.60); this is also a key
step in the proof of (7.40).

The remaining question is whether C-flat implies stably C-flat. This holds in
the examples computed in Sections 7.8–7.9, but we do not have any conceptual
argument why these two notions should be equivalent.

Question 7.42. Is C-flatness equivalent to stable C-flatness and K-flatness?

Next we show that the above properties are automatic over reduced schemes
and can be checked on Artinian subschemes.

Proposition 7.43. Let S be a reduced scheme and F a generically flat family
of pure, coherent sheaves on Pn

S . Then F is K-flat over S .

Proof This follows from (7.29.2). �

Proposition 7.44. Let S be a scheme and F a generically flat family of pure,
coherent sheaves on Pn

S . Then F satisfies one of the properties (7.37.1–5) iff
τ∗F satisfies the same property for every Artinian subscheme τ : A ↪→ S .
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Proof Set Y := SSupp F and let π : Y → Pd+1
S be a finite morphism. By

(7.11) DSuppS (π∗F) is Cartier iff DSuppA
(
(πA)∗τ∗F

)
is Cartier for every Ar-

tinian subscheme τ : A ↪→ S . Thus the Artinian versions imply the global ones.
To check the converse, we may localize at τ(A). The claim is clear if every

finite morphism πA : YA → P
d+1
A can be extended to π : Y → Pd+1

S . This is
obvious for C-flatness, stable C-flatness and formal K-flatness, but it need not
hold for K-flatness and local K-flatness.

These cases will be established only after we prove (7.40) in (7.63). Thus
we have to be careful not to use this direction in Section 7.5. �

7.45 (Push-forward, additivity and multiplicativity). First, as a generalization
of (7.4.4), let f : X → S and g : Y → S be projective morphisms of pure
relative dimension n and τ : X → Y a finite morphism. Let F be a coherent
sheaf on X that is generically flat and pure over S of dimension n− 1 such that
g is smooth at generic points of f∗(Fs) for every s ∈ S . Let π : Y → Pn

S be any
finite morphism. Then

DSuppS
(
(π ◦ τ)∗F

)
= DSuppS

(
π∗(τ∗F)

)
= DSuppS

(
π∗ODSuppS (τ∗F)

)
,

where the first equality follows from the identity π∗(τ∗F) = (π ◦ τ)∗F and for
the second we apply (7.28.3) to τ∗F. This proves (7.4.4).

Additivity (7.4.5) is essentially a special case of this. Let f : X → S be
a projective morphism of pure relative dimension n and D1,D2 ⊂ X K-flat,
relative Mumford divisors. Next take 2 copies X′ := X1 ∪ X2 of X, mapping
to X by the identity map τ : X′ → X. Let D′ ⊂ X′ be the union of the divisors
Di ⊂ Xi. Then DSuppS (τ∗OD′ ) = D1 + D2. Thus if the Di are K-flat, then so is
D1 + D2.

Finally consider (7.4.6). If D is K-flat then so is every mD by additivity, the
interesting claim is the converse. Let π : Y → Pn

S be any finite morphism. Set
E := DSuppS (π∗D). Then mE = DSuppS (π∗(mD)), thus we need to show that
if mE is Cartier and char k - m, then E is Cartier. This was treated in (4.37). �

7.5 Cayley-Chow flatness
Let Z ⊂ Pn be a subvariety of dimension d. Cayley (1860, 1862) associates to
it the Cayley-Chow hypersurface

Ch(Z) := {L ∈ Gr(n−d−1,Pn) : Z ∩ L , ∅} ⊂ Gr(n−d−1,Pn).

We extend this definition to coherent sheaves on Pn
S over an arbitrary base

scheme. We use two variants, but the proof of (7.47) needs two other versions
as well. All of these are defined in the same way, but Gr(n−d−1,Pn) is replaced
by other universal varieties.
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Definition 7.46 (Cayley-Chow hypersurfaces). Let S be a scheme and F a
generically flat family of pure, coherent sheaves of dimension d on Pn

S (7.27).
We define four versions of the Cayley-Chow hypersurface associated to F. In
all four versions the left hand side map σ is a smooth fiber bundle.

7.46.1 (Grassmannian version). Consider the diagram

FlagS
(
point, n−d−1,Pn)

σgr
vvmmm

mmm
mmm

mmm
m

τgr
))SSS

SSSS
SSSS

SSSS

Pn
S GrS (n−d−1,Pn)

where the flag variety parametrizes pairs (point) ∈ Ln−d−1 ⊂ Pn. Set

Chgr(F) := DSuppS
(
(τgr)∗σ∗grF

)
.

7.46.2 (Product version). Consider the diagram

IncS
(
point, (P̌n)d+1)

σpr

xxqqq
qqq

qqq
qqq

τpr ''OO
OOO

OOO
OOO

O

Pn
S (P̌n)d+1

S

where the incidence variety parametrizes (d + 2)-tuples
(
(point),H0, . . . ,Hd

)
satisfying (point) ∈ Hi for every i. Set

Chpr(F) := DSuppS
(
(τpr)∗σ∗prF

)
.

7.46.3 (Flag version). Consider the diagram

PFlagS (0, n−d−2, n−d−1,Pn)

σ f l

vvmmm
mmm

mmm
mmm

mmm

τ f l
**VVVV

VVVV
VVVV

VVVV
VV

Pn
S FlagS (n−d−2, n−d−1,Pn)

where PFlag parametrizes triples
(
(point), Ln−d−2, Ln−d−1) such that (point) ∈

Ln−d−1 and Ln−d−2 ⊂ Ln−d−1 (but the point need not lie on Ln−d−2). Set

Ch f l(F) := DSuppS
(
(τ f l)∗σ∗f lF

)
.

7.46.4 (Incidence version). Consider the diagram

IncS
(
point, Ln−d−1, (P̌n)d+1)

σin

vvnnn
nnn

nnn
nnn

nnn

τin **TTT
TTTT

TTTT
TTTT

T

Pn
S IncS

(
Ln−d−1, (P̌n)d+1)
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where the (d +3)-tuples
(
(point), Ln−d−1,H0, . . . ,Hd

)
satisfy (point) ∈ Ln−d−1 ⊂

Hi for every i. Set

Chin(F) := DSuppS
(
(τin)∗σ∗inF

)
.

Theorem 7.47. Let S be a scheme and F a generically flat family of pure,
coherent sheaves of dimension d on Pn

S . The following are equivalent.
(7.47.1) Chpr(F) ⊂ (P̌n)d+1

S is Cartier over S .
(7.47.2) Chgr(F) ⊂ GrS (n − d − 1,Pn) is Cartier over S .
If S is local with infinite residue field then these are also equivalent to
(7.47.3) DSupp(π∗F) is Cartier over S for every OS -projection π : Pn

S d P
d+1
S

(7.36) that is finite on Supp F.
(7.47.4) DSupp(π∗F) is Cartier over S for a dense set of OS -projections

π : Pn
S d P

d+1
S .

Proof The extreme cases d = 0 and d = n − 1 are somewhat exceptional, so
we deal with them first.

If d = n−1 then GrS (n−d−1,Pn
S ) = GrS (0,Pn

S ) ' Pn
S and the only projection

is the identity. Furthermore Chgr(F) = DSuppS (F) by definition, so (7.47.2)
and (7.47.3) are equivalent. If these hold then Chpr(F) = Chpr

(
DSuppS (F)

)
is

also flat by (7.23). For (7.47.1)⇒ (7.47.2) the argument in (7.48) works.
If d = 0 then F is flat over S and (7.47.1–3) hold by (7.29).
We may thus assume from now on that 0 < d < n − 1. These cases are

discussed in (7.48–7.49). �

7.48 (Proof of 7.47.1 ⇔ 7.47.2). To go between the product and the Grass-
mannian versions, the basic diagram is the following.

IncS
(
Ln−d−1, (P̌n)d+1)

wwooo
ooo

ooo
ooo (Pd)d+1-bundle

))RRR
RRR

RRR
RRR

RRR

(P̌n)d+1
S GrS (n−d−1,Pn

S )

The right hand side projection

π2 : IncS
(
Ln−d−1, (P̌n)d+1)→ GrS (n−d−1,Pn

S )

is a (Pd)d+1-bundle. Therefore Chin(F) = π∗2 Chgr(F). Thus Chgr(F) is Cartier
over S iff Chin(F) is Cartier over S . It remains to compare Chin(F) and Chpr(F).

The left hand side projection

π1 : IncS
(
Ln−d−1, (P̌n)d+1)→ (P̌n)d+1

S

is birational. It is an isomorphism over (H0, . . . ,Hd) ∈ (P̌n)d+1
S iff dim(H0 ∩
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· · · ∩ Hd) = n−d−1, the smallest possible. That is, when the rank of the matrix
formed from the equations of the Hi is d + 1. Thus π−1

1 is an isomorphism
outside a subset of codimension n + 1 − d in each fiber of (P̌n)d+1

S → S .
Therefore, if Chin(F) is Cartier over S then Chpr(F) is Cartier over S , out-

side a subset of codimension n + 1− d ≥ 3 on each fiber of (P̌n)d+1
S → S . Then

Chpr(F) is Cartier over S everywhere by (7.10.6).
Conversely, let E be the support of the π1-exceptional divisor. If Chpr(F)

is a relative Cartier divisor then so is π∗1 Chpr(F), which agrees with Chin(F)
outside E.

Note that E consists of those (Ln−d−1,H0, . . . ,Hd) for which H0, . . . ,Hd are
linearly dependent. This is easiest to describe using π2, which is a (Pd)d+1-
bundle over GrS (n−d−1,Pn

S ). In a local trivialization, the points in the ith copy
of Pd have coordinates (ai,0: · · · :ai,d). Then the equation of E is det(ai, j) = 0.
Thus E is irreducible and the restriction of π2

IncS
(
Ln−d−1, (P̌n)d+1) \ E → GrS (n−d−1,Pn

S )

is surjective. Since Chin(F) = π∗2 Chgr(F), this implies that Chgr(F) is relative
Cartier (2.92.1). �

7.49 (Proof of 7.47.2⇒ 7.47.3⇒ 7.47.4⇒ 7.47.2). To go between the Grass-
mannian version and the projection versions, the basic diagram is the follow-
ing.

FlagS (n−d−2, n−d−1,Pn
S )

Pn−d−1-bundle

uujjjj
jjjj

jjjj
jjj Pd+1-bundle

))TTT
TTTT

TTTT
TTTT

GrS (n−d−1,Pn) GrS (n−d−2,Pn)

The left hand side projection

%1 : FlagS (n−d−2, n−d−1,Pn
S )→ GrS (n−d−1,Pn

S )

is a Pn−d−1-bundle and Ch f l(X) = %∗1 Chgr(X). Thus Chgr(F) is Cartier over S
iff Ch f l(F) is Cartier over S .

The right hand side projection

%2 : FlagS (n−d−2, n−d−1,Pn
S )→ GrS (n−d−2,Pn

S )

is a Pd+1-bundle, but Ch f l(X) is not a pull-back from GrS (n−d−2,Pn
S ).

Let L ⊂ Pn
S be a flat family of (n−d−2)-planes over S . The preimage of [L]

is the set of all n−d−1-planes that contain L; we can identify this with sections
of the target of the projection πL : Pn d L⊥. Thus the restriction of Ch f l(X) to
the preimage of L is DSupp

(
(πL)∗(F)

)
.
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So, if Ch f l(F) is Cartier over S then DSupp
(
(πL)∗(F)

)
= Ch f l(F)|L⊥ is also

Cartier over S . Thus (7.47.2)⇒ (7.47.3) and (7.47.3)⇒ (7.47.4) is obvious.
Conversely, assume that DSupp

(
(πL)∗(F)

)
is Cartier over S for general L.

By (7.10.6) it is enough to show that Ch f l(F) is flat over S , outside a subset of
codimension ≥ 3.

Let UF ⊂ GrS (n−d−2,Pn
S ) be the open subset consisting of those Ln−d−2 that

are disjoint from DSupp(F). The restriction of the projection π f to Suppσ∗f F
is finite over %−1

2 UF , thus Ch f (F) = DSuppS
(
(π f )∗σ∗f F

)
is flat over S , outside

a codimension ≥ 2 subset of each fiber of %−1
2 UF → UF by (7.29). By assump-

tion the non-flat locus is disjoint from the generic fiber, hence the non-flat locus
has codimension ≥ 3 over UF .

It remains to understand what happens over ZF := GrS (n−d−2,Pn
S ) \ UF .

Note that %−1
2 (ZF) has codimension 2 in FlagS (n−d−2, n−d−1,Pn

S ), so it is
enough to show that Ch f l(F) is flat over S at a general point of a general fiber
over ZF .

Thus let Ln−d−2 be a general point of ZF . Then DSupp(F)∩Ln−d−2 is a single
point p and F is flat over S at p. Furthermore, a general Ln−d−1 ⊃ Ln−d−2 still
intersects DSupp(F) only at p. Thus σ∗f l(F) is flat over S at

(p, Ln−d−2, Ln−d−1) ∈ PFlagS (0, n−d−2, n−d−1,Pn),

and Suppσ∗f lF is finite over (Ln−d−2, Ln−d−1) ∈ FlagS (n−d−2, n−d−1,Pn
S ).

Since Ch f l(F) = DSuppS
(
(π f l)∗σ∗f lF

)
by (7.46.3), it is flat over S at the

point (Ln−d−2, Ln−d−1) by (7.29). �

Corollary 7.50. Let S be a scheme and F a generically flat family of pure,
coherent sheaves of dimension d on Pn

S . Let h : S ′ → S be a morphism. By
base change we get g′ : X′ → S ′ and F′ = vpure(h∗XF) (9.12).
(7.50.1) If F is C-flat, then so is F′.
(7.50.2) If F′ is C-fqlat and h is scheme-theoretically dominant, then F is C-

flat.

Proof We may assume that S is local with infinite residue field. Being C-flat
is exactly (7.47.3) which is equivalent to (7.47.1). F 7→ Chpr(F) commutes
with base change by (7.32) and, if h is scheme-theoretically dominant, then,
by (4.28), a divisorial sheaf is Cartier iff its divisorial pull-back is. �

Definition 7.51. Let S be a local scheme with infinite residue field and F a
generically flat family of pure, coherent sheaves of dimension d over S (7.27).
F is locally C-flat over S at y ∈ Y := SSupp F iff DSupp(π∗F) is Cartier over
S at π(y) for every OS -projection π : Pn

S d P
d+1
S that is finite on Y for which

{y} = Supp
(
π−1(π(y)) ∩ Y

)
.
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Lemma 7.52. Let S be a local scheme with infinite residue field and F a
generically flat family of pure, coherent sheaves of dimension d on Pn

S . Then F
is C-flat iff it is locally C-flat at every point.

Proof It is clear that C-flat implies locally C-flat. Conversely, assume that F is
locally C-flat. Set Zs := Supp(Fs) \ FlatCMS (X, F) and pick points {yi : i ∈ I},
one in each irreducible component of Zs. If π : Pn

S d P
d+1
S is a general OS -

projection, then {yi} = π−1(π(yi)) ∩ Y for all i ∈ I.
Note that DSupp(π∗F) is a relative Cartier divisor along Pd+1

s \π(Zs) by (7.23)
and it is also relative Cartier at the points π(yi) for i ∈ I since F is locally C-
flat. Thus DSupp(π∗F) is a relative Cartier divisor outside a codimension ≥ 3
subset of Pd+1

s , hence a relative Cartier divisor everywhere by (7.10.6). �

Corollary 7.53. Let (s, S ) be a local scheme and X ⊂ Pn
S a closed subscheme

that is flat over S of pure relative dimension d + 1. Let D ⊂ X be a relative
Mumford divisor. Let x ∈ Xs be a smooth point. Then OD is locally C-flat at x
iff D is a relative Cartier divisor at x.

Proof We may assume that S has infinite residue field. A general linear pro-
jection π : X → Pd+1

S is étale at x, and D∩π−1(π(x)) = {x}. Thus π|D : D→ π(D)
is a local isomorphism at x, hence D is a relative Cartier divisor at x iff π(D) is
a relative Cartier divisor at π(x). By (7.28.2) DSuppS (π∗OD) = π(D), thus D is
a relative Cartier divisor at x iff DSuppS (π∗OD) is a relative Cartier divisor at
π(x). That is, iff OD is locally C-flat at x. �

Corollary 7.54. Let S be a scheme and F a generically flat family of pure,
coherent sheaves of dimension d over S . If F is flat at y ∈ Y := SSupp F then
it is also locally C-flat at y.

Proof We may assume that (s, S ) is local. By (10.17) Fs is CM outside a sub-
set Zs ⊂ Ys of dimension ≤ d−2. Let Ws ⊂ Ys be the set of points where F is not
flat. Let π : Y → Pd+1

S be a general linear projection. By (7.23) DSupp(π∗F) is a
relative Cartier divisor outside π(Zs∪Ws), so we may assume that π(y) < π(Ws).
Thus, in a neighborhood of π(y), DSupp(π∗F) is a relative Cartier divisor out-
side π(Zs), which has dimension ≤ d−2. Thus DSupp(π∗F) is a relative Cartier
divisor at y by (7.10.6). �

Lemma 7.55. Let S be a scheme and F a generically flat family of pure, co-
herent sheaves of dimension d on Pn

S . Let gm : Y ↪→ PN
S be an embedding such

that g∗mOPN
S
(1) ' π∗OPd+1

S
(m). If (gm)∗F is C-flat then F is C-flat.

Proof We may assume that S is local with infinite residue field. Let π : Pn
S d
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Pd+1
S be a general linear projection. We need to show that DSupp(π∗F) is a

relative Cartier divisor.
Choosing d + 2 general sections of OPd+1

S
(m) gives a morphism wm : Pd+1

S →

Pd+1
S . There is a linear projection % : PN

S d P
d+1
S such that wm ◦ π = % ◦ gm. By

assumption DSupp
(
(% ◦ gm)∗F

)
is a relative Cartier divisor, hence so is

DSupp
(
(wm ◦ π)∗F

)
= DSupp

(
(wm)∗ODSupp(π∗F)

)
,

where the equality follows from (7.30.2).
Pick a point x ∈ DSupp(π∗F). Then a general wm is étale at x and also {x} =

w−1
m (wm(x)) ∩ DSupp(π∗F). Thus wm : DSupp(π∗F) → DSupp

(
(wm ◦ π)∗F

)
is

étale at x. Thus DSupp(π∗F) is Cartier at x. �

Corollary 7.56. Let S be a scheme and F a generically flat family of pure,
coherent sheaves of dimension d on Pn

S . Let vm : Pn
S ↪→ P

N
S be the mth Veronese

embedding. If (vm)∗F is C-flat then so is F. �

There are very useful Bertini theorems for C-flatness. The going down ver-
sions are straightforward.

Lemma 7.57. Let (s, S ) be a local scheme and F a C-flat family of pure,
coherent sheaves of dimension d ≥ 1 on Pn

S (7.27). Then there is a finite set of
points Σ ⊂ Supp Fs with the following property.

Let H ⊂ Pn
S be a hyperplane that does not contain any point in Σ and Hs is

smooth at generic points of H ∩ Supp Fs. Then F|H is C-flat.

Proof We may assume that the residue field is infinite. Every projection H d
Pd

S is obtained as the restriction of a projection Pn
S d P

d+1
S . The rest follows

from (7.30.2). �

Corollary 7.58. Let (s, S ) be a local scheme and F a stably C-flat family of
pure, coherent sheaves of dimension d ≥ 1 on Pn

S . Set Y := SSupp F. Let D ⊂ Y
be a relative Cartier divisor that does not contain any point in Σ (7.57) and Ds

is smooth at generic points of D ∩ Supp Fs. Then F|D is also stably C-flat.

Proof We may assume that the residue field is infinite. By (7.52) it is suffi-
cient to prove that F|D is locally C-flat. Pick a point y ∈ D and let H ⊃ Pn

S be a
general hypersurface such that H ∩ Y equals D in a neighborhood of y. After a
Veronese embedding H becomes a hyperplane section, and then (7.57) implies
that F|H is stably C-flat. Hence F|H is locally C-flat by (7.52) and so F|D also
locally C-flat at y. �

The going up version needs a little more care.
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Lemma 7.59. Let (s, S ) be a local Artinian scheme with infinite residue field
and F a generically flat family of pure, coherent sheaves of dimension d ≥ 2
on Pn

S . Then F is C-flat iff F|H is C-flat for a dense set of hyperplanes H ⊂ P̌n
S .

Proof The hyperplanes are parametrized by H0(Pn
S ,OPn

S
(1)

)
' On+1

S . Since
OS is Artinian, it makes sense to talk about a dense set of hyperplanes. (This
is the only reason why the lemma is stated for Artinian schemes.)

One direction follows from (7.57). Conversely, if F|H is C-flat for a dense set
of hyperplanes H then there is a dense set of projections π : Pn

S d P
d+1
S , such

that, for a dense set of hyperplanes L ⊂ Pd+1
S , the restriction of F to π−1(L) is

C-flat. Thus DSupp(π∗F) is a relative Cartier divisor in an open neighborhood
of such an L by (7.31). Since d ≥ 2, this implies that DSupp(π∗F) is a relative
Cartier divisor everywhere by (7.10.6). Thus F is C-flat by (7.47). �

Now we come to the key result.

Proposition 7.60. Let (s, S ) be a local scheme and F a generically flat family
of pure, coherent sheaves of dimension 1 on Pn

S . Then F is stably C-flat ⇔
K-flat⇔ formally K-flat.

Proof By (7.39) formally K-flat⇒ K-flat⇒ stably C-flat.
Thus assume that F is stably C-flat. Set Y := SSupp F and pick a closed

point p ∈ Y . We need to show that F is formally K-flat at p. By the already
proved parts of (7.44), it is enough to prove this for Artinian base schemes with
infinite residue field. We may thus assume that S = Spec A for a local Artinian
ring (A, nA, k) with k infinite, and p ∈ Y(k) is the origin (1:0: · · · :0).

Let π : Ŷ → Â2
S = Spec A[[u, v]] be a finite morphism. We need to show that

DSupp(π∗F̂) is Cartier.
Let m0 be as in (7.61). By (7.35.2), for m � m0 we can choose homogeneous

polynomials g1, g2 ∈ H0(Pn
A,OPn

A
(m)

)
such that

τ : Y → P2
S given by (xm

0 :g1:g2) (7.60.1)

is a finite morphism, p is the only point of Y that maps to (1:0:0),

g1/xm
0 ≡ π

∗u mod nm0
R , and g2/xm

0 ≡ π
∗v mod nm0

R , (7.60.2)

where nR is the ideal sheaf of p ∈ Y .
Since F is stably C-flat, DSupp(τ∗F) is a Cartier divisor and so is its com-

pletion at the image of p. Then DSupp(π∗F̂) is Cartier by (7.61). �

Proposition 7.61. Let (A, nA, k) be an Artinian k-algebra, (R, nR) a local, S 1,
generically flat A-algebra of dimension 1, and F a generically free, finite R-
module. Let π : Spec R → Spec A[[u, v]] be a projection such that R is finite
over A[[u]] and π∗u, π∗v are non-zerodivisors. Then there is an m0 such that
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(7.61.1) if τ : Spec R → Spec A[[u, v]] satisfies τ∗u ≡ π∗u mod nm0
R and

τ∗v ≡ π∗v mod nm0
R , then DSupp(π∗F) is Cartier iff DSupp(τ∗F) is.

Proof We follow the computation of DSupp(π∗F) as in (7.21) and show that
the formula for DSupp(τ∗F) is very similar. Then we finish using (7.16).

Set s := π∗u. Since R is finite over A[[u]], (s) is nR-primary, hence ne
R ⊂ (s)

for some e ≥ 1. Since F is generically free over A[[s]], it contains a free
A[[s]]-module G = ⊕ jA[[s]]e j of the same generic rank = r. Since R is a finite
A[[s]]-algebra, RG ⊂ s−cG for some c ≥ 0. Hence DSupp(π∗F) agrees with
DSupp(π∗G) on the open set (u , 0).

We can thus compute DSupp(π∗F) using multiplication by π∗v on G, which
is given by a meromorphic matrix

Mπ(s) : ⊕ jA[[s]]e j ' G
π∗v
−→ s−dG ' ⊕ js−dA[[s]]e j

for some d ≥ 0. Our bound on m0 depends on r, c, d, e and nil(nA).

Claim 7.61.2. If s1 ≡ s mod (sm) and m ≥ c + 1, then sr
1G = srG for r ≥ 0.

Proof Note that s1G ⊂ sG + sm−c(scRG) ⊂ sG + sm−cG ⊂ sG. Also, sc
1RG =

Rsc
1G ⊂ RscG = scRG ⊂ G, thus we can interchange s, s1 in the previous

argument to get that s1G = sG. �

In particular, if t := τ∗u ≡ π∗u mod (sm) and m ≥ c + 1, then G =

⊕ jA[[t]]e j. Thus we can use the same G for computing the divisorial sup-
port of τ∗F. Multiplication by τ∗v is given by another meromorphic matrix
Mτ(t) : G → t−dG. Next we compare Mπ and Mτ.

Claim 7.61.3 Assume that τ∗v ≡ π∗v mod (sm+c+d) and t ≡ s mod (sm+c).
Then Mπ(u) ≡ Mτ(u) mod umA[[u]].

Proof The assumptions imply that G/smG = G/tmG, s−dG/smG = t−dG/smG,
and τ∗v, π∗v induce the same map G/smG → s−dG/smG. �

Claim 7.61.4 Assume that Mπ(u) ≡ Mτ(u) mod um+rd−dA[[u]]. Then

det(v1r − Mπ) ≡ det(v1r − Mτ) mod umA[[u]].

Proof The difference of the two sides involves terms that contain at most r−1
entries of Mπ and at least one entry of Mπ − Mτ. �

Putting these together, we get that if (7.61.1) holds and m0 is large enough,
then det(v1r − Mπ) ≡ det(v1r − Mτ) mod umA[[u]] and m ≥ nil(nA) · d. The
proposition now follows from (7.16). �
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Corollary 7.62. Let (s, S ) be a local scheme and F a generically flat family of
pure, coherent sheaves of dimension d ≥ 1 on Pn

S . Let L,M be relatively ample
line bundles on Y := SSupp F. Then F is stably C-flat for L (as in (7.38.2)) iff
it is stably C-flat for M.

Proof We already proved (7.44) for stable C-flatness, thus it is enough to
prove our claim when S is Artinian with infinite residue field.

Assume that F is stably C-flat for M. By (7.56) we may assume that L is very
ample. Repeatedly using (7.58) we get that, for general Li ∈ |L|, the restriction
of F to the complete intersection curve L1 ∩ · · · ∩ Ld−1 ∩ Y is stably C-flat for
M. Thus the restriction of F to L1 ∩ · · · ∩ Ld−1 ∩ Y is formally K-flat by (7.60).
Using (7.60) in the other direction for L, we get that the restriction of F to
L1 ∩ · · · ∩ Ld−1 ∩ Y is stably C-flat for L. Now we can use (7.59) to conclude
that F is stably C-flat for L. �

7.63 (Proof of 7.40 and 7.44). We already noted in (7.39) that K-flat⇒ stably
C-flat.

To see the converse, assume that F is stably C-flat. We aim to prove that it
is K-flat. By the already established directions of (7.44), it is enough to prove
this over Artinian rings. Thus assume that S is the spectrum of an Artinian ring
and let π : X → Pd+1

S be a finite projection. Set L := π∗OPd+1
S

(1). By (7.62) F
is stably C-flat for L, hence DSupp(π∗F) is a relative Cartier divisor by (7.55).
This proves (7.40).

We already proved (7.44) for stable C-flatness. By the just established (7.40),
stable C-flatness is equivalent to K-flatness and local C-flatness, hence (7.44)
also holds for these. �

7.6 Representability Theorems

Definition 7.64. Let S be a scheme and F a generically flat family of pure,
coherent sheaves on Pn

S . As in (3.16.1), the functor of K-flat pull-backs is

KflatF(q : T → S) =

{∅} if q[∗]
P F → T is K-flat, and

∅ otherwise,

where qP : Pn
T → P

n
S is the induced morphism and q[∗]

P F := vpure(q∗PF) is the
divisorial pull-back as in (4.2.7) or (9.12). If Y ⊂ Pn

S is a generically flat family
of pure subschemes then we write KflatY instead of KflatOY

.
If KflatF is representable by a morphism, we denote it by jkflat

F : S kflat
F → S .

Note that jkflat
F is necessarily a monomorphism.

One defines analogously the functor of C-flat pull-backs CflatF and the func-
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tor of stably C-flat pull-backs SCflatF. The monomorphisms representing them
are denoted by jcflat

F : S cflat
F → S and jscflat

F : S scflat
F → S .

In our cases several of the monomorphisms are subschemes S ∗ ↪→ S such
that red S = red S ∗. (In particular, S ∗ ⊂ S is both open and closed.) We call
such a subscheme full.

Proposition 7.65. Let S be a scheme and F a generically flat family of pure,
coherent sheaves of dimension d on Pn

S . Then the functors of C-flat, stably C-
flat or K-flat pull-backs of F are represented by full subschemes

S kflat
F = S scflat

F ⊂ S cflat
F ⊂ S .

Proof By (7.47), jcflat
F : S cflat

F → S is the same as jcar
Chpr(F) : S car

Chpr(F) → S , with
the Cayley-Chow hypersurface Chpr(F) as defined in (7.46.2). Thus (4.28)
gives S cflat

F ⊂ S .
We can apply this to each Veronese embedding vm : Pn

S ↪→ PN
S , to get full

subschemes S cflat
vm(F) ⊂ S . Their intersection gives S scflat

F ⊂ S . (An intersection
of closed subschemes is a subscheme.) Finally S kflat

F = S scflat
F by (7.40). �

7.66 (Proof of 7.3). Fix an embedding X ↪→ PS . By (4.76) there is a universal
family of generically flat Mumford divisors Univmd

d → MDivd(X ⊂ PS ). By
(7.65), we get KDivd(X) as a full subscheme

jkflat : KDivd(X) = MDivd(X ⊂ PS )kflat ↪→ MDivd(X ⊂ PS ). �

7.7 Normal varieties
In the next three sections we aim to give explicit descriptions of K-flat defor-
mations of certain varieties. First we show that every K-flat deformation of a
normal variety is flat. Then we consider K-flat deformations of planar curves
and of seminormal curves. In both cases, we give a complete answer for first
order deformations only.

Theorem 7.67. Let g : Y → (s, S ) be a projective morphism. Assume that
red(Ys) is normal, g is K-flat, g is smooth at the generic points of Ys, and OY is
vertically pure. Then g is flat along Ys.

Proof If dim Ys = 1 then the claim follows from (7.68). In general, there is
a smallest, closed subset Z ⊂ Ys such that g is flat along Ys \ Z. Using the
Bertini-type theorem (7.5), we see that the codimension of Z is ≥ 2. In this
case flatness holds even without K-flatness by (10.71). �

Lemma 7.68. Let g : (y,Y) → (s, S ) be a local morphism of pure relative
dimension 1, that is essentially of finite type. Assume that g is smooth along
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Y \ {y}, g is formally K-flat at y, and pure(Ys) is smooth at y. Then g is smooth
at y.

Proof By (7.44) we may assume that S is Artinian. Then we can reduce it
further to the case when Y is complete and k(y) = k(s) =: k; see (10.57) and
(7.50). Write Y = Spec RA.

By induction on the length of A we may assume that there is an ideal A ⊃
(ε) ' k such that pure(RA/εRA) ' (A/ε)[[x̄]].

Let x ∈ RA be a lifting of x̄. Set J := ker
[
RA → pure(RA/εRA)

]
. Then J is a

rank 1 Rk-module, hence free; let y ∈ J be a generator. We have xry = εgk(x),
where gk ∈ k[[x]] is a unit and r = dimk(J/εRA). These determine a projection
of RA whose image in Spec A[[x, y]] is given by the ideal

A[[x, y]] ∩
(
y − εx−rgk(x)

)
A[[x, x−1, y]].

By (7.15) this is a principal ideal iff gk(x) ∈ (y, xr), that is, when r = 0. Thus
RA = A[[x]]. �

7.8 Hypersurface singularities
In this section we give a detailed description of K-flat deformations of hyper-
surface singularities over k[ε].

7.69 (Non-flat deformations). Let X ⊂ An be a reduced subscheme of pure
dimension d. We aim to describe non-flat deformations of X that are flat outside
a subset W ⊂ X. Choose equations g1, . . . , gn−d such that

(g1 = · · · = gn−d = 0) = X ∪ X′,

where Z := X∩X′ has dimension < d. Let h be an equation of X′∪W that does
not vanish on any irreducible component of X. Thus X is a complete intersec-
tion in An \ (h = 0) with equation g1 = · · · = gn−d = 0. Its flat deformations
over an Artinian ring (A,m, k) are then given by

gi(x) = Ψi(x), where Ψi ∈ m[x1, . . . , xn, h−1]. (7.69.1)

Note that we can freely change the Ψi by an element of the ideal
(
gi −Ψi

)
. For

A = k[ε] the equations can be written as

gi(x) = Φi(x)ε, where Φi ∈ k[x1, . . . , xn, h−1]. (7.69.2)

Now we can freely change the Φi by any element of the ideal ε(g1, . . . , gn−d).
Thus the relevant information is carried by φi := Φi|X . So, generically, first
order flat deformations can be given in the form

gi = φiε, where φi ∈ H0(X,OX)[h−1]. (7.69.3)
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Set X◦ := X \ (Z ∪W). By varying h we see that in fact

gi = φiε, where φi ∈ H0(X◦,OX◦
)
. (7.69.4)

This shows that the choice of h is largely irrelevant.
If the deformation is flat then the equations defining X lift, that is, φi ∈

H0(X,OX
)
. In some simple cases, for example if X is a complete intersection,

this is equivalent to flatness. In the examples that we compute, the most impor-
tant information is carried by the polar parts

φ̄i ∈ H0(X◦,OX◦
)
/H0(X,OX

)
. (7.69.5)

We study first order K-flat deformations of hypersurface singularities. Plane
curves turn out to be the most interesting ones.

7.70. Consider a hypersurface singularity X := ( f = 0) ⊂ An
x and a generically

flat deformation of it

X ⊂ An+r
x,z [ε]→ Spec k[ε]. (7.70.1)

Aiming to work inductively, we assume that the deformation is flat outside the
origin. Choose coordinates such that the xi do not divide f .

As in (7.69.3) any such deformation can be given as

f (x) = ψ(x)ε and z j = φ j(x)ε, (7.70.2)

where ψ, φ j ∈ ∩iH0(X,OX)[x−1
n ]. If n ≥ 3 then ∩iOX[x−1

i ] = OX and we get the
following special case of (10.73).

Claim 7.70.3. Let X := ( f = 0) ⊂ An be a hypersurface singularity and X ⊂
An+r[ε] a first order deformation of X that is flat outside the origin. If n ≥ 3
then X is flat over k[ε]. �

For n = 2 we use the following:

Notation 7.70.4. Let B =
(
f (x, y) = 0

)
⊂ A2 be a reduced curve singularity.

Set B◦ := B \ {(0, 0)}. A non-flat deformation B over k[ε] is written as

f (x, y) = Ψ(x, y)ε and z j = Φ j(x, y)ε.

As in (7.69), we set ψ := Ψ|B, φ j := Φ j|B and ψ̄, φ̄ j ∈ H0(B◦,OB◦ )/H0(B,OB)
denote their polar parts.

We say that a (flat, resp. generically flat) deformation over k[ε] globalizes if
it is induced from a (flat, resp. generically flat) deformation over k[[t]].

Theorem 7.71. Consider a generically flat deformation B of the plane curve
singularity B := ( f = 0) ⊂ A2

xy given in (7.70.4).
(7.71.1) If B is B-flat then ψ ∈ H0(B,OB).
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(7.71.2) If ψ ∈ H0(B,OB) then the deformation is
(a) flat iff φ j ∈ H0(B,OB) and
(b) C-flat iff fxφ j, fyφ j ∈ H0(B,OB).

(7.71.3) If B is reduced and ψ = 0, then the deformation globalizes iff φ j ∈

H0(B̄,OB̄), where B̄→ B is the normalization.

Remark 7.71.4. Note that Ω1
B is generated by dx|B, dy|B, while ωB is generated

by f −1
y dx = − f −1

x dy.
If B is reduced, then Ω1

B and ωB are naturally isomorphic over the smooth
locus B◦. This gives a natural inclusion Hom(Ω1

B, ωB) ↪→ OB◦ . Then (7.71.2.b)
says that φ̄ j ∈ Hom(Ω1

B, ωB)/OB. See (7.72) for monomial curves.

Proof For simplicity, we compute with one z coordinate. If ψ, φ ∈ H0(B,OB)
then we can assume that Ψ,Φ are regular, so the deformation is flat. The con-
verse in (7.71.2.a) is clear.

As for (7.71.2.b), we write down the equation of image of the projection

(x, y, z) 7→ (x̄, ȳ) =
(
x − α(x, y, z)z, y − γ(x, y, z)z

)
,

where α, γ are constants for linear projections and power series that are nonzero
at the origin in general. Since z2 = φ2ε2 = 0, Taylor expansion gives that

f (x̄, ȳ) = f (x, y) − α(x, y, z) fx(x, y)z − γ(x, y, z) fy(x, y)z.

Similarly, for any polynomial F(x, y) we get that F(x̄, ȳ) ≡ F(x, y) mod εOB,
hence F(x̄, ȳ)z = F(x, y)z in OB since zε = 0. Thus the equation is

f (x̄, ȳ) −
(
ψ(x̄, ȳ) − α(x̄, ȳ, 0) fx(x̄, ȳ)φ − γ(x̄, ȳ, 0) fy(x̄, ȳ)φ

)
· ε = 0. (7.71.5)

By (7.15.2) this defines a relative Cartier divisor for every α, γ iff ψ, fxφ, fyφ ∈
OB, proving (7.71.2.b). (Thus linear and formal projections give the same re-
strictions, hence C-flatness implies formal K-flatness in this case.)

If B globalizes then φ ∈ H0(B̄,OB̄), this is the n = 1 case of (7.73.1). To
prove the converse assertion in (7.71.3), we would like to write the global
deformation as (

f (x, y) = 0, z = φ(x, y)s
)
⊂ A4

xyzs.

The problem with this is that φ has a pole at the origin. Thus we write φ = φ1h−r

where φ1 is regular at the origin and h is a general linear form in x, y. Then the
correct equations are(

f (x, y) = 0, zhr = φ1(x, y)s
)
⊂ A4

xyzs.

Note that typically φ1(0, 0) = 0, hence the 2-plane (x = y = 0) ⊂ A4
xyzs appears

as an extra irreducible component. We need one more equation to eliminate it.
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If φ ∈ H0(B̄,OB̄) then it satisfies an equation

φm +
∑m−1

j=0 r jφ
j = 0, where r j ∈ H0(B,OB).

Thus z = φs satisfies the equation zm +
∑m−1

j=0 r jz jsm− j = 0. Now the 3 equations

f (x, y) = zhr − φ1(x, y)s = zm +
∑m−1

j=0 r jz jsm− j = 0

define the required globalization of the infinitesimal deformation. �

7.71.6 (Nonreduced curves). Consider B = (y2 = 0) with deformations

y2 = (yψ1(x) + ψ0(x))ε and z = (yφ1(x) + φ0(x))ε,

where ψi, φi ∈ k[x, x−1]. If this is C-flat then ψi ∈ k[x] by (7.71.1). Since
fx ≡ 0, (7.71.2.b) gives only 1 condition, that y(yφ1(x) + φ0(x)) be regular.
Since y2 = 0 we get that φ0 ∈ k[x], but no condition on φ1. So it can have a pole
of arbitrary high order. Note that if φ1 has a pole of order m, then regularizing
the second equation we get zxm = yε+ (other terms). This suggests that if these
deformations lie on a family of surfaces, the total space must have more and
more complicated singularity at the origin as m→ ∞.

Example 7.72 (Monomial curves). We can be quite explicit if B is the irre-
ducible monomial curve B := (xa = yc) ⊂ A2 where (a, c) = 1. Its miniversal
space of flat deformations is given as

xa − yc +
∑a−2

i=0
∑c−2

j=0 si jxiy j = 0.

Its dimension is (a − 1)(c − 1).
In order to compute C-flat deformations, we parametrize B as t 7→ (tc, ta).

Thus OB = k[tc, ta]. Let EB = Na+Nc ⊂ N denote the semigroup of exponents.
Then the condition (7.71.2.b) becomes

tac−cφ(t), tac−aφ(t) ∈ k[ta, tc]. (7.72.1)

This needs to be checked one monomial at a time.
For φ = tm and m ≥ 0 the conditions (7.72.1) are automatic, and the defor-

mation is non-flat iff m < EB. These give a space of dimension 1
2 (a − 1)(c − 1).

(This is an integer since one of a, c must be odd.)
For φ = t−m and m ≥ 0 we get the conditions ac−c−m ∈ EB and ac−a−m ∈

EB. By (7.72.4) these are equivalent to ac − a − c − m ∈ EB. The largest value
of m satisfying this gives the deformation(

xa − yc = z − t−ac+a+cε = 0) over k[ε]. (7.72.2)

Note also that for 0 ≤ m ≤ ac − a − c, we have that ac − a − c − m ∈ EB iff
m < EB. These again have 1

2 (a − 1)(c − 1) solutions.
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Thus we see that the space of C-flat deformations that are non-flat has (a −
1)(c − 1) extra dimensions; the same as the space of flat deformations. This
looks very promising, but the next example shows that we get different answers
for non-monomial curve singularities.

7.72.3 (Non-monomial example). Consider the curve singularity B = (x4 + y5 +

x2y3 = 0). Blowing up the origin we get (x/y)4 + y + (x/y)2y = 0. Thus B is
irreducible, it can be parametrized as x = t5 + · · · , y = t4 + · · · and it is an
equisingular deformation of the monomial curve (x4 + y5 = 0).

In the monomial case we have the deformation (7.72.2) where z− t−11ε = 0.
We claim that B does not have a C-flat deformation z − φε = 0 where φ =

t−11 + · · · . Indeed, such a deformation would satisfy

fxφ = y · (local unit) and fyφ = x · (local unit).

Eliminating φ gives that (x fx)/(y fy) = (local unit). We can compute the left
hand side as

4x4 + 2x2y3

5y5 + 3x2y3 =
−4y5 − 4x2y3 + 2x2y3

5y5 + 3x2y3 = −
4
5
·

1 + (1/2)(x/y)2

1 + (3/5)(x/y)2 .

This is invertible at the origin of the normalization of B, but it is not regular on
B since x

y = t + · · · . �

The following is left as an exercise.

Claim 7.72.4. For (a, c) = 1 set E = Na + Nc ⊂ N. Then
(a) If 0 ≤ m ≤ min{ac − a, ac − c} then ac − a − m, ac − c − m ∈ E iff

ac − a − c − m ∈ E.
(b) If 0 ≤ m ≤ ac − a − c then ac − a − c − m ∈ E iff m < E. �

7.73 (Normalization of a deformation). Let T be the spectrum of a DVR with
maximal ideal (t) and residue field k. Let g : X → T be a flat morphism of pure
relative dimension d with generically reduced fibers. Set Z : = Supp tors(X0)
and let π : X̄ → X be the normalization.

By composition we get ḡ : X̄ → T . Note that π0 : X̄0 → X0 is an isomor-
phism over X0 \ Z and X̄0 is S 1. In particular, X̄0 is dominated by the normal-
ization Xnor

0 of X0.
Note that tnOX usually has some embedded primes contained in Z. The in-

tersection of its height 1 primary ideals (also called the nth symbolic power of
tOX) is (tOX)(n) = OX ∩ tnOX̄ . In particular, we have injections

(tOX)(n)/(tOX)(n+1) ↪→ tnOX̄/t
n+1OX̄ ' OX̄k

. (7.73.1)

A closely related computation is the following.
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Example 7.74. (Kollár, 1999, 4.8) Using (7.34.1) we see that the ideal of
Chow equations of the codimension 2 subvariety

(
xn+1 = f (x0, . . . , xn) = 0

)
⊂

Pn+1 is generated by the forms

f
(
x0 − a0xn+1 : · · · : xn − anxn+1

)
for all a0, . . . , an. (7.74.1)

If the characteristic is 0 then Taylor’s theorem gives that

f
(
x0 − a0xn+1 : · · · : xn − anxn+1

)
=

∑
I

(−1)I

I! aI ∂I f
∂xI x|I|n+1, (7.74.2)

where I = (i0, . . . , in) ∈ Nn+1. The a|I| are linearly independent, hence we get
that the ideal of Chow equations is

Ich( f (x0, . . . , xn), xn+1
)

=
(
f , xn+1D( f ), . . . , xm

n+1Dm( f )
)
, (7.74.3)

where we can stop at m = deg f . Here we use the usual notation

D( f ) :=
(
f , ∂ f

∂x0
, . . . , ∂ f

∂xn

)
(7.74.4)

for derivative ideals.
If we want to work locally at the point p = (x1 = · · · = xn = 0), the we can

set x0 = 1 to get the local version

Ich( f (1, x1, . . . , xn), xn+1
)

=
(
f , xn+1D( f ), . . . , xm

n+1Dm( f )
)
, (7.74.5)

where we can now stop at m = multp f . This also holds if f is an analytic func-
tion, though this needs to be worked out using the more complicated formulas
(7.34.6) that for us become

π : (x1, . . . , xn+1)→
(
x1 − xn+1ψ1, . . . , xn − xn+1ψn

)
, (7.74.6)

where ψi = ψi(x0, . . . , xn+1) are analytic functions. Expanding as in (7.74.2)
we see that

f
(
x1 − xn+1ψ1, . . . , xn − xn+1ψn

)
∈ Ich( f (x1, . . . , xn), xn+1

)
. (7.74.7)

Thus we get the same ideal if we compute Ich using analytic projections.

7.9 Seminormal curves
Over an algebraically closed field k, every seminormal curve singularity is for-
mally isomorphic to

Bn := Spec k[x1, . . . , xn]/(xix j : i , j) ⊂ An
x,

formed by the union of the n coordinate axes. In this section we study defor-
mations of Bn over k[ε] that are flat outside the origin.

A normal form is worked out in (7.75.4), which shows that the space of these
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deformations is infinite dimensional. Then we describe the flat deformations
(7.76) and their relationship to smoothings (7.77).

We compute C-flat and K-flat deformations in (7.79); these turn out to be
quite close to flat deformations.

The ideal of Chow equations of Bn is computed in (Kollár, 1999, 4.11). For
n = 3 these are close to C-flat deformations, but the difference between the two
classes increases rapidly with n.

7.75 (Generically flat deformations of Bn). Let Bn ⊂ A
m
x [ε] be a generically

flat deformation of Bn ⊂ A
m
x over k[ε].

If Bn is flat over k[ε] then we can assume that n = m, but a priori we only
know that n ≤ m. Following (7.69), we can describe Bn as follows.

Along the x j-axis and away from the origin, the deformation is fla. Thus, in
the (x j , 0) open set, Bn can be given as

xi = Φi j(x1, . . . , xm)ε, where i , j and Φi j ∈ k[x1, . . . , xm, x−1
j ]. (7.75.1)

Note that (x1, . . . , x̂ j, . . . , xm, ε)2 is identically zero on Bn ∩ (x j , 0), so the
terms in this ideal can be ignored. Thus along the x j-axis we can change
(7.75.1) to the simpler form

xi = φi j(x j)ε, where i , j and φi j ∈ k[x j, x−1
j ]. (7.75.2)

There is one more simplification that we can make. Write

φi j = φ′i j + γi j where φ′i j ∈ k[x−1
j ], γi j ∈ (x j) ⊂ k[x j],

and set x′i = xi −
∑

j,iγi j(x j). Then we get the description

x′i = φ′i j(x′j)ε where i , j and φ′i j ∈ k[x′j
−1]. (7.75.3)

For most of our computations the latter coordinate change is not very impor-
tant. Thus we write our deformations as

Bn :
{
xi = φi j(x j)ε along the x j-axis

}
, (7.75.4)

where φi j(x j) ∈ k[x j, x−1
j ], but we keep in mind that we can choose φi j(x j) ∈

k[x−1
j ] if it is convenient. Writing Bn as in (7.75.4) is almost unique; see (7.76.3)

for one more coordinate change that leads to a unique normal form.
Writing xix j in two ways using (7.75.4) we get that

xix j =
(
xiφ ji(xi)1i + x jφi j(xi)1 j

)
ε, (7.75.5)

where 1` denotes the function that is 1 on the x`-axis and 0 on the others.
In order to deal with the cases when m > n, we make the following

Convention 7.75.6. We set φi j ≡ 0 for j > n.
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We get the same result (7.75.4) if we work with the analytic or formal local
scheme of Bn: we still end up with φi j(x j) ∈ k[x−1

j ].

Proposition 7.76. For n ≥ 3 the generically flat deformation Bn ⊂ A
n
x[ε] as in

(7.75.4) is flat iff

(7.76.1) either n ≥ 3 and the φi j have no poles,

(7.76.2) or n = 2 and φ12, φ21 have only simple poles with the same residue.

Proof Bn is flat iff the equations xix j = 0 of Bn lift to equations of Bn. We
computed in (7.75.5) that xix j =

(
xiφ ji(xi)1i + x jφi j(xi)1 j

)
ε, thus xix j lifts to

an equation iff xiφ ji(xi)1i + x jφi j(xi)1 j is regular. Thus the φi j have only simple
poles and the residues must agree along all the axes. xiφ ji(xi)1i + x jφi j(xi)1 j

vanishes along the other n − 2 axes for n ≥ 3, so the residues must be 0. �

Corollary 7.76.3. The first order flat deformation space T 1
Bn

has dimension
n(n − 1) − n = n(n − 2).

Proof By (7.75.3) and (7.76), flat deformations can be given as

Bn :
{
xi = ei jε along the x j-axis, where ei j ∈ k

}
.

The constants ei j are not yet unique, xi 7→ xi − ai changes ei j 7→ ei j − a j. �

Strangely, (7.76.3) says that every flat first order deformation of Bn is ob-
tained by translating the axes independently of each other. These deformations
all globalize in the obvious way, but the globalization is not a flat deforma-
tion of Bn unless the translated axes all pass through the same point. If this
point is (a1ε, . . . , anε) then ei j = a j and applying (7.76.3) we get the trivial
deformation. See (7.77) for smoothings of Bn.

If n = 2 then the universal deformation is x1x2 + ε = 0. One may ask why
this deformation does not lift to a deformation of B3: smooth 2 of the axes to
a hyperbola and just move the 3rd axis along. If we use x1x2 + t = 0, then the
x3-axis should move to the line (x1 −

√
t = x2 −

√
t = 0). This gives the flat

deformation given by equations

x1x2 + t = x3(x1 −
√

t) = x3(x2 −
√

t) = 0.

Of course this only makes sense if t is a square. Thus setting ε =
√

t mod t
the t = ε2 mod t term becomes 0 and we get

x1x2 = x3x1 − x3ε = x3x2 − x3ε = 0,

which is of the form given in (7.76.1).
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Example 7.77 (Smoothing Bn). Rational normal curves Rn ⊂ P
n have a moduli

space of dimension (n + 1)(n + 1) − 1 − 3 = n2 + 2n − 3. The Bn ⊂ P
n have a

moduli space of dimension n + n(n − 1) = n2. Thus the smoothings of Bn have
a moduli space of dimension n2 + 2n− 3− n2 = 2n− 3. We can construct these
smoothings explicitly as follows.

Fix distinct p1, . . . , pn ∈ k and consider the map

(t, z) 7→
( t

z−p1
, . . . , t

z−pn

)
.

Eliminating z gives the equations

(pi − p j)xix j + (xi − x j)t = 0: 1 ≤ i , j ≤ n (7.77.1)

for the closure of the image, which is an affine cone over a degree n rational
normal curve Rn ⊂ P

n
t,x. So far this is an (n − 1)-dimensional space.

Applying the torus action xi 7→ λ−1
i xi, we get new smoothings given by

(pi − p j)xix j + (λ jxi − λix j)t = 0: 1 ≤ i , j ≤ n. (7.77.2)

Writing it in the form (7.75.4) we get

xi = λi
pi−p j

ε along the x j-axis. (7.77.3)

This looks like a 2n-dimensional family, but Aut(P1) acts on it, reducing the
dimension to the expected 2n−3. The action is clear for z 7→ αz+β, but z 7→ z−1

also works out since
λi

p−1
i −p−1

j
=
−λi p2

i
pi−p j

+ λi pi.

Claim 7.77.4. For distinct pi ∈ k and λ j ∈ k∗, the vectors(
λ j

pi−p j
: i , j

)
span T 1

Bn
' k(n

2).

So the flat infinitesimal deformations determined in (7.76.3) form the Zariski
tangent space of the smoothings.

Proof Assume that there is a linear relation
∑

i jmi j
λ j

pi−p j
= 0. If we let pi → p j

and keep the others fixed, we get that mi j = 0. �

Remark 7.77.5. If n = 3 then the Hilbert scheme of degree 3 reduced space
curves with pa = 0 is smooth, see Piene and Schlessinger (1985).

Example 7.78 (Simple poles). Among non-flat deformations, the simplest
ones are given by φi j(x j) = ci jx−1

j + ei j. By (7.75.5) xix j =
(
c ji1i + ci j1 j

)
ε.

For n ≥ 3 and general choices of the ci j, the rational functions c ji1i + ci j1 j

span OB̄n
/OBn . Thus we get an exact sequence

0→ ε · OB̄n
→ OBn → OBn → 0. (7.78.1)
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The main result is the following.

Theorem 7.79. For a first order deformation of Bn ⊂ A
m specified by

Bn :
{
xi = φi j(x j)ε along the x j-axis

}
, (7.79.1)

the following are equivalent.
(7.79.2) Bn is C-flat.
(7.79.3) Bn is K-flat.
(7.79.4) The φi j have only simple poles and φi j, φ ji have the same residue.

Recall that φi j ≡ 0 for j > n by (7.75.6), hence (4) implies that φi j has no
poles for i > n.

Proof The proof consist of 2 parts. First we show in (7.80) that (7.79.2) and
(7.79.4) are equivalent by explicitly computing linear projections.

We see in (7.81) that if the φi j have only simple poles then there is only 1
term of the equation of a non-linear projection that could have a pole. This
term is the same for the linearization of the projection. Hence it vanishes iff it
vanishes for linear projections. This shows that (7.79.4)⇒ (7.79.3). �

Remark 7.79.5. If j > n then φi j ≡ 0 by (7.75.6), so φ ji is regular by (7.79.4).
Evaluating them at the origin gives the vector v j ∈ kn. If

∑
j>nλ jv j = 0 then∑

j>nλ j
(
x j −

∑n
i=1φ jix`ε

)
is regular and identically 0 on Bn. We can thus eliminate some of the x j for
j > n and obtain that every K-flat deformation of Bn lives in A2n−1.

7.80 (Linear projections). Recall that by our convention (7.75.6), φi j ≡ 0 for
j > n. Extending this, in the following proof all sums/products involving i go
from 1 to m and sums/products involving j go from 1 to n.

With Bn as in (7.79.1) consider the special projections

πa : An
x[ε]→ A2

uv[ε] given by u =
∑

xi, v =
∑

aixi, (7.80.1)

where ai ∈ k[ε]. Write ai = āi + a′iε. (One should think that a′i = ∂ai/∂ε.)
In order to compute the projection, we follow the method of (7.21.7). Since

we compute over k[u, u−1, ε], we may as well work with the k[u, ε]-module
M := ⊕ jk[x j, ε] and write 1 j ∈ k[x j, ε] for the jth unit. Then multiplication by
u and v are given by

u · 1 j = (
∑

ixi)1 j = x j +
∑

iφi jε, and
v · 1 j = (

∑
i aixi)1 j = a jx j +

∑
iaiφi jε.

(7.80.2)
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Thus v · 1 j =
(
a ju +

∑
i(ai − a j)φi j(u)ε

)
· 1 j. and the v-action on M is given by

the diagonal matrix

diag
(
a ju +

∑
i(ai − a j)φi j(u)ε

)
.

By (7.21.7) the equation of the projection is its characteristic polynomial∏
j
(
v − a ju −

∑
i(ai − a j)φi j(u)ε

)
= 0. (7.80.3)

Expanding it we get an equation of the form∏
j
(
v − ā ju

)
− E(u, v, a, φ)ε = 0, where

E(u, v, a, φ) =
∑

j
(∏

i, j(v − ā ju)
)
·
(
a′ju +

∑
i(āi − ā j)φi j(u)

)
.

(7.80.4)

This is a polynomial of degree ≤ n − 1 in v, hence by (7.19) its restriction to
the curve

(∏
j
(
v − ā ju

)
= 0

)
is regular iff E(u, v, a, φ) is a polynomial in u as

well. Let r be the highest pole order of the φi j and write

φi j(u) = ci ju−r + (higher terms). (7.80.5)

Then the leading part of the coefficient of vn−1 in E(u, v, a, φ) is∑
j
∑

i(āi − ā j)ci ju−r = u−r∑
i āi

(∑
j(ci j − c ji)

)
. (7.80.6)

Since the āi are arbitrary, we get that∑
j(ci j − c ji) = 0 for every i. (7.80.7)

Next we use a linear reparametrization of the lines xi = λ−1
i yi and then apply a

projection πa as in (7.80.1). The equations xi = φi j(x j)ε become

yi = λiφi j(λ−1
j y j)ε

and ci j changes to λiλ
r
jci j. Thus the equations (7.80.7) become∑

j(λiλ
r
jci j − λ jλ

r
i c ji) = 0 ∀i. (7.80.8)

If r ≥ 2 this implies that ci j = 0 and if r = 1 then we get that ci j = c ji.
This completes the proof of (7.79.2)⇔ (7.79.4).

Remark 7.80.9. Note that if we work over F2 then necessarily λi = 1, hence
(7.80.8) does not exclude the r ≥ 2 cases.

7.81 (Non-linear projections). Consider a general non-linear projection

(x1, . . . , xn) 7→
(
Φ1(x1, . . . , xn),Φ2(x1, . . . , xn)

)
.

After a formal coordinate change we may assume that Φ1 =
∑

ixi. Note that
the monomials of the form xix jxk, x2

i x2
j , xix jε vanish on Bn, so we can discard
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these terms from Φ2. Thus, in suitable local coordinates a general non-linear
projection can be written as

u =
∑

ixi, v =
∑

iαi(xi) +
∑

i, jxiβi j(x j), (7.81.1)

where αi(0) = βi j(0) = 0. Note that α′i(0) = ai in the notation of (7.80). Now

u · 1 j = x j +
∑

iφi j(x j)ε, and
v · 1 j = α j(x j) +

∑
i, jαi

(
φi j(x j)ε

)
+

∑
i, jφi j(x j)βi j(x j)ε.

(7.81.2)

Note further that αi
(
φi j(x j)ε

)
= α′i(0)φi j(x j)ε and

α j(x j) = α j
(
u −

∑
iφi j(x j)ε

)
= α j(u) − α′j(u)

∑
iφi j(x j)ε.

Thus, as in (7.80.4), the projection is defined by the vanishing of∏
j

(
v − α j(u) −

∑
i
(
βi j(u) + α′i(0) − α′j(u)

)
φi j(u)ε

)
=:

∏
j
(
v − ᾱ j(u)

)
− E(u, v, α, β, φ)ε.

(7.81.3)

Let β̄i j, ᾱ
′
j denote the residue of βi j, α

′
j modulo ε and write α j(u) = ᾱ j(u) +

∂εα j(u)ε. As in (7.80.5), expanding the product gives that E(u, v, α, β, φ) equals∑
j
(∏

i, j(v − ᾱi(u))
)
·
(
∂εα j(u) +

∑
i
(
β̄i j(u) + ᾱ′i(0) − ᾱ′j(u)

)
φi j

)
. (7.81.4)

We already know that φi j(u) = ci ju−1 + (higher terms), hence E(u, v, α, β, φ)
has at most simple pole along (u = 0). Computing its residue gives that

vn−1∑
j
∑

i
(
β̄i j(0) + ᾱ′i(0) − ᾱ′j(0)

)
ci j = vn−1∑

i j(āi − ā j)ci j. (7.81.5)

These are the same as in (7.80.6). Thus E(u, v, α, β, φ) is regular iff it is regular
for the linearization. This completes the proof of (7.79.4)⇒ (7.79.3).

Example 7.82. The image of a general linear projection of Bn ⊂ A
n to A2 is n

distinct lines through the origin. A general non-linear projection to A2 gives n
smooth curve germs with distinct tangent lines through the origin.

As a typical example, the miniversal deformation of (xn + yn = 0) is(
xn + yn +

∑
i, j≤n−2ti jxiy j = 0

)
⊂ A2

xy × A
(n−1)2

t . (7.82.1)

Deformations with tangent cone (xn + yn = 0) form the subfamily(
xn + yn +

∑
i+ j>nti jxiy j = 0

)
⊂ A2

xy × A
(n−3

2 )
t . (7.82.2)

For n ≤ 4 there is no such pair (i, j), thus, for n ≤ 4, every analytic projection
B̂n → Â

2 is obtained as the composite of an automorphism of B̂n, followed by
a linear projection and an automorphism of Â2.

For n = 5 we get the deformations (x5 +y5 + tx3y3 = 0) ⊂ A2
xy×At. For t , 0

these give curve germs that are images of B̂n by a nonlinear projection, but can
not be obtained as the image of a linear projection, up to automorphisms.



Chapter 8

Moduli of stable pairs

We bring together the moduli theory of Chapter 6 with K-flatness of Chapter 7
to obtain the moduli theory of stable pairs in full generality. The basic def-
initions originate in the papers Kollár and Shepherd-Barron (1988); Alexeev
(1996); the resulting moduli spaces are usually called KSBA moduli spaces.

In Section 8.1 we discuss a bookkeeping device, called marking: we need to
know not only what the boundary divisor ∆ is, but also how it is written as a
linear combination of effective Z-divisors. In the cases considered in Chapter 6
there was always a unique, obviuos marking; this is why the notion was not in-
troduced before. Simple examples show that, without marking, we get infinite
dimensional moduli spaces, already for pointed curves (8.2).

The notion of Kollár–Shepherd-Barron–Alexeev stability is introduced in
Section 8.2. The proof that we get a good moduli theory, as defined in (6.10),
follows the methods of Chapter 6 if the coefficients are rational (8.9), but a few
more steps are need if they are irrational (8.15).

The end result is the following consequence of (8.9) and (8.15).

Theorem 8.1. Fix a base scheme S of characteristic 0, a coefficient vector
a = (a1, . . . , ar) ∈ [0, 1]r, an integer n and a real number v. Let SP(a, n, v)
denote the functor of marked, stable pairs of dimension n and volume v. Then
SP(a, n, v) is good moduli theory (6.10) and it has a coarse moduli space
SP(a, n, v), which is projective over S .

A variant with floating coefficients is treated in Section 8.3 and the moduli
theory of more general polarized pairs is discussed in Sections 8.4–8.5.

The construction of moduli spaces as quotients by group actions is treated
in Section 8.6, and a short overview of descent is in Section 8.7.

In Section 8.8 we discuss several unexpected problems that appear in pos-
itive characteristic. Quite likely, these necessitate substantial changes in the
moduli theory of varieties of dimension ≥ 3 in positive and mixed characteris-
tics.

306
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Further results

An early difficulty of KSBA theory was that good examples were not easy to
write down. The first notable successes were Alexeev (2002); Hacking (2004).
By now there is a rapidly growing body of fully understood cases.

Various moduli spaces are worked out in the papers Abramovich and Vistoli
(2000); van Opstall (2005, 2006b,a); Hacking (2012); Alexeev (2015); Fran-
ciosi et al. (2015b, 2017, 2018); Alexeev (2016); Ascher and Gallardo (2018);
Ascher and Bejleri (2019, 2021a,b); Ascher et al. (2020); Alexeev and Thomp-
son (2021); Bejleri and Inchiostro (2021).

Examples of stable degenerations and their relations to other invariants are
exhibited in Hassett (1999, 2000, 2001); Alexeev (2008); Tziolas (2009, 2010);
Hacking and Prokhorov (2010); Hacking (2013, 2016); Urzúa (2016b,a); Rana
(2017); Hacking et al. (2017); Rana and Urzúa (2019); Franciosi et al. (2022).

Computations of invariants of stable surfaces are given in Liu and Rollenske
(2014); Franciosi et al. (2015a); Stern and Urzúa (2016); Tziolas (2017, 2022).

Special examples are computed in detail in Hacking et al. (2006, 2009);
Thompson (2014); Ascher and Molcho (2016); Alexeev and Liu (2019a,b);
Donaldson (2020).

Other approaches to the moduli spaces are discussed in Abramovich and
Vistoli (2002); Alexeev and Knutson (2010); Abramovich and Hassett (2011);
Abramovich et al. (2013, 2017); Abramovich and Chen (2014); Abramovich
and Fantechi (2017).

Assumptions. In this Chapter we work over a Q-scheme. The definitions are
set up in full generality, but some of the theorems fail in positive characteristic;
see Section 8.8 for a discussion.

8.1 Marked stable pairs

So far we have studied slc pairs (X,∆), but usually did not worry too much
about how ∆ was written as a sum of divisors. As long as we look at a single
variety, we can write ∆ uniquely as

∑
aiDi where the Di are prime divisors, and

there is usually not much reason to do anything else. However, the situation
changes when we look at families.

8.2 (Is D = 1
n (nD)?). Assume that we have an slc family over an irreducible

base f : (X,∆) → S with generic point g ∈ S . Then the natural approach is to
write ∆g =

∑
aiDi

g, where the Di
g are prime divisors on the generic fiber Xg.

For any other point s ∈ S this gives a decomposition ∆s =
∑

aiDi
s, where Di

s

is the specialization of Di
g. Note that the Di

s need not be prime divisors. They
can have several irreducible components with different multiplicities and two
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different Di
s,D

j
s can have common irreducible components. Thus ∆s =

∑
aiDi

s

is not the ‘standard’ way to write ∆s.
Let us now turn this around. We fix a proper slc pair (X0,∆0) and aim to

understand all deformations of it. A first suggestion could be the following:

8.2.1 (Naive definition). An slc deformation of (X0,∆0) over a local scheme
(0 ∈ S ) is a proper slc morphism f : (X,∆) → S whose central fiber (X,∆)0 is
isomorphic to (X0,∆0).

As an example, start with
(
P1

xy, (x = 0)
)
. Pick n ≥ 1 and variables ti. Then(

P1
xy × A

n
t ,

1
n
(
xn + tn−1xn−1y + · · · + t0yn = 0

))
(8.2.2)

is a deformation of
(
P1

xy, (x = 0)
)

over An by the naive definition (8.2.1). We
get a deformation space of dimension n−2 using Aut

(
P1, (0:1)

)
. Letting n vary

results in an infinite dimensional deformation space.
The polynomial in (8.2.2) is irreducible over k(t0, . . . , tn−1), thus our recipe

above says that we should write ∆ = 1
n Dg (where Dg is irreducible). Then the

special fiber is written as (x = 0) = 1
n (xn = 0).

The situation becomes even less clear if we take 2 deformations as in (8.2.2)
for 2 different values n,m and glue them together over the origin. The family is
locally stable. One side says that the fiber over the origin should be 1

n (xn = 0),
the other side that it should be 1

m (xm = 0).

As (8.2) suggests, some bookkeeping is necessary to control the multiplic-
ities of the divisorial part of a pair (X,∆) in families. This is the role of the
marking we introduce next.

Once we control how a given R-divisor ∆ is written as a linear combination
of Z-divisors, we obtain finite dimensional moduli spaces.

Definition 8.3 (Marked pairs). A marking of an effective Weil R-divisor ∆

is a way of writing ∆ =
∑

aiDi, where the Di are effective Z-divisors and
0 < ai ∈ R. We call a = (a1, . . . , ar) the coefficient vector.

A marked pair is a pair (X,∆), plus a marking ∆ =
∑

aiDi.
We allow the Di to be empty; this has the advantage that the restriction of a

marking to an open subset is again a marking. However in other contexts this
is not natural and we will probably sometimes disregard empty divisors.

Observe that ∆ =
∑

aiDi and ∆ =
∑

( 1
2 ai)(2Di) are different as markings.

This seems rather pointless for one pair but, as we observed in (8.2), it is a
meaningful distinction when we consider deformations of a pair.

Note that, for a given (X,∆), markings are combinatorial objects that are
not constrained by the geometry of X. If ∆ =

∑
i biBi and the Bi are distinct
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prime divisors, then the markings correspond to ways of writing the vector
(b1, . . . , br) as a positive linear combination of nonnegative integral vectors.

Comments. Working with such markings is a rather natural thing to do. For
example, plane curves C of degree d can be studied using the log CY pair(
P2,∆C := 3

d C
)

as in Hacking (2004). Thus, even if C is reducible, we want to
think of the Q-divisor ∆C as 3

d C; hence as a marked divisor with a =
( 3

d
)
. Sim-

ilarly, in most cases when we choose the boundary divisor ∆, it has a natural
marking.

However, when a part of ∆ is forced upon us, for instance coming from the
exceptional divisor of a resolution, there is frequently no ‘natural’ marking,
though usually it is possible to choose a marking that works well enough.

If (X,∆) is slc and ai >
1
2 for every i, then the marking is almost determined

by ∆. For example, if the ai are distinct then the obvious marking of ∆ =
∑

aiDi

is the unique one. If all the ai = 1, then the markings of
∑

i∈I Di correspond to
partitions of I.

If we allow ai = 1
2 then an irreducible divisor D can have 3 different mark-

ings: [D], 1
2 [2D] or 1

2 [D] + 1
2 [D]. The smaller the ai, the more markings are

possible.

Definition 8.4 (Families of marked pairs). Fix a real vector a = (a1, . . . , ar).
A family of marked pairs with coefficient vector a = (a1, . . . , ar) consists of
(8.4.1) a flat morphism f : X → S with demi-normal fibers (11.36),
(8.4.2) an effective, relative, Mumford R-divisor ∆, plus
(8.4.3) a marking ∆ =

∑
aiDi, where the Di are effective, relative, Mumford

Z-divisors (4.68).

As we discussed in Section 4.1, the relative Mumford assumption on the Di

assures that markings can be pulled back by base-change morphisms W → S .
However, being relative Mumford is not automatic. This means that not all
markings of ∆ give a family of marked pairs.

Examples 8.5 (Marking and stability). Given a family of pairs f : (X,∆)→ S ,
it can happen that it is KSBA-stable for one choice of the marking, but not for
other markings. Although we define KSBA-stability only in the next section,
these examples influenced the precise definitions of KSBA-stability, especially
(8.13), so this is their right place.
(8.5.1) If S is normal then, by (4.4), every marking of ∆ yields a family of
marked pairs f : (X,∆)→ S .
(8.5.2) Assume that ∆ is a Q-divisor and S is reduced. There is a smallest
N ∈ N>0 such that N∆ is a Z-divisor. In characteristic 0, D := N∆ is a relative
Mumford divisor by (4.39), thus ∆ = 1

N D gives a marking of (X,∆).
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(8.5.3) For R-divisors there are markings ∆ =
∑

i λi∆i where the λi are Q-
linearly independent, see (11.47). In characteristic 0 we get the same stable
families, independent of the choice of the λi by (11.43.4) and (4.39).
(8.5.4) The simplest case is when ∆ = cD with a single irreducible D. The
only possible markings are ∆ =

∑
ai(miD) for some mi ∈ N and c =

∑
aimi. In

characteristic 0 we get the same stable families, independent of the choices by
(4.39), but not in positive characteristic, see (8.76).
(8.5.5) Let B be a curve with a single node b and B◦ := B \ {b}. Let b1, b2 ∈ B̄
be the preimages of the node in the normalization B̄. Set S̄ = P1 × B̄.

Let Ēi := {pi} × B̄ sections for i = 1, 2, 3 and ∆̄ their sum. If we use the
marking with only 1 divisor D◦1 :=

∑
i E◦i , then we can use any of the 6 au-

tomorphisms of P1 that preserve {p1, p2, p3} to descend (S̄ , ∆̄) to a family of
marked pairs over B. If we use the marking with 3 divisors D◦i := E◦i , then the
identity gives the only descent.

8.2 Kollár–Shepherd-Barron–Alexeev stability

Now we come to the main theorem of the book, the existence of a good moduli
theory for all marked stable pairs (X,∆) in characteristic 0.

The principle is that, once we have K-flatness to replace flatness in Sec-
tion 6.2, the rest of the arguments should go through with small changes. This
is indeed true for rational coefficients, so we start with that case.

For irrational coefficients it is less clear how to cook up ample line bundles,
so the existence of embedded moduli spaces needs more work.

KSBA stability with rational coefficients

Fix a rational coefficient vector a = (a1, . . . , ar) and let lcd(a) denote the least
common denominator of the ai.

8.6 (Stable objects). These are marked pairs
(
X,∆ =

∑
i aiDi

)
with coefficient

vector a, such that
(8.6.1)

(
X,∆

)
is slc,

(8.6.2) X is projective and KX + ∆ is ample.

8.7 (Stable families). A family f :
(
X,∆ =

∑
i aiDi

)
→ S is KSBA-stable if the

following hold.
(8.7.1) f : X → S is flat, finite type, pure dimensional.
(8.7.2) The Di are K-flat families of relative, Mumford, Z-divisors (7.1).
(8.7.3) The fibers

(
Xs,∆s

)
are slc.

(8.7.4) ω[m]
X/S

(
m∆−B

)
is a flat family of divisorial sheaves, provided lcd(a) | m

and B =
∑

j∈J D j with a j = 1 for j ∈ J.
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(8.7.5) f is proper and KX/S + ∆ is f -ample.
The first four of these conditions define locally KSBA-stable families.

8.8 (Explanation). These conditions are mostly straightforward generaliza-
tions of (6.16.1–3). We discussed K-flatness in Chapter 7.

The main question is (8.7.4). We should think of it as the minimal assump-
tion, which should be made more stronger whenever possible, without chang-
ing the reduced structure of the moduli space.

The main case is B = 0. For ω[m]
X/S

(
m∆

)
to make sense, m∆ must be a Z-

divisor. If the Di have no multiple or common irreducible components, this
holds only if m is a multiple of lcd(a). The nonzero choices of B in (8.7.4) are
discussed in (6.23).

We could also ask about the sheaves ω[m]
X/S

(∑
bmaicDi

)
as in (6.22.3). As we

saw in (2.41), they are not flat families of divisorial sheaves in general, but
(2.79) discusses various examples where they are. Thus, on a case-by-case
basis, a strengthening of (8.6.4) is possible and useful. This was one of the
themes of Chapter 6.

Theorem 8.9. KSBA-stability with rational coefficients, as defined in (8.6–
8.7), is a good moduli theory (6.10).

Proof We need to check the conditions (6.10.1–5).
Separatedness (6.10.1) follows from (2.50), valuative-properness (6.10.2) is

proved in (2.51) and (7.4.2). Assumption (8.7.4) follows from (2.79.1) if B = 0
and from (2.79.8) when B , 0. Representability is proved in (7.65) and (3.31).
Boundedness holds by (6.8.1) and (6.14).

Once we know that m(KX + ∆) is very ample for every (X,∆) ∈ SP(a, n, v)
for some fixed m, embedded moduli spaces (6.10.3) are constructed in (8.52).
However, the universal family over CmESP(a, n,PN

Q
) satisfies (8.7.3) only for

multiples of m. We can then handle the other values as in the proof of (6.24).
The coarse moduli space exists by (6.6). �

As in (6.25), we get the following from (8.7.3).

Proposition 8.10. For KSBA-stable families as in (8.6–8.7), let m be a multi-
ple of lcd(a). Then χ

(
X, ω[m]

X (m∆)
)

and h0(X, ω[m]
X (m∆)

)
are both deformation

invariant. �

KSBA stability with arbitrary coefficients

Fix a coefficient vector a = (a1, . . . , ar) where ai ∈ [0, 1] are arbitrary real
numbers. By (11.43.1), if KX +

∑
i aiDi is R-Cartier, then we can get many

Q-Cartier divisors. We start by listing them.
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Definition 8.11. Fix a = (a1, . . . , ar) with linear Q-envelope LEnvQ(1, a) ⊂
Qr+1 as in (11.44). For ∆ =

∑r
i=1 aiDi, set

LEnvZ(KX + ∆) :=
{
m0KX +

∑
miDi : (m0, . . . ,mr) ∈ LEnvQ(1, a) ∩ Zr+1}.

Let us mention two extreme cases.
(8.11.1) If all ai ∈ Q then LEnvZ(KX + ∆) consists of all Z-multiples of
lcd(a)(KX + ∆).
(8.11.2) If {1, a1, . . . , ar} is a Q-linearly independent set, then LEnvZ(KX + ∆)
consist of all Z-linear combinations m0KX +

∑
miDi.

It is very important that, by (11.44) and (11.43.1), if KX +∆ is R-Cartier then
all elements of LEnvZ(KX + ∆) are Q-Cartier Z-divisors. (There may be other
linear combinations that are Q-Cartier Z-divisors.)

The stable objects are the same as before, but the definition of stable families
again looks different.

8.12 (Stable objects). We parametrize marked pairs
(
X,∆ =

∑
i aiDi

)
with

coefficient vector a, such that

(8.12.1)
(
X,∆

)
is slc,

(8.12.2) X is projective and KX + ∆ is ample.

8.13 (Stable families). A family f :
(
X,∆ =

∑
i aiDi

)
→ S is KSBA-stable if

the following hold.

(8.13.1) f : X → S is flat, finite type, pure dimensional.
(8.13.2) The Di are K-flat families of relative, Mumford, Z-divisors (7.1).
(8.13.3) The fibers

(
Xs,∆s

)
are slc.

(8.13.4) ω[m0]
X/S

(∑
miDi − B

)
is a flat family of divisorial sheaves, whenever

(m0, . . . ,mr) ∈ LEnvZ(KX + ∆) and B =
∑

j∈J D j, where a j = 1 for j ∈ J.
(8.13.5) f is proper and KX/S + ∆ is f -ample.

The first four of these conditions define locally KSBA-stable families.

8.14 (Explanation). These conditions are mostly straightforward generaliza-
tions of (8.7), again the main question is assumption (8.13.4).

If the ai are rational, then, by (8.11.1), LEnvZ(KX +∆) consists of the integer
multiples of lcd(a)(KX + ∆), so (8.13.4) specializes to (8.7.4). If 1, a1, . . . , ar

are Q-linearly independent, then, by (8.11.2), we specialize to (6.38).
For the intermediate cases we follow the philosophy behind KSB stability

as in Section 6.2. Whenever we can prove to have a flat family of divisorial
sheaves over DVR’s, we require this property over all schemes.

Working with all of LEnvZ(KX + ∆) is (almost) necessary for our proof.



8.2 Kollár–Shepherd-Barron–Alexeev stability 313

We are using several rational perturbations of KX + ∆ to get enough ample
Q-divisors. These span LEnvZ(KX + ∆) (at least with Q-coefficients).

The choice of B in (8.13.4) is discussed in (6.23).
The sheaves ω[m]

X/S
(∑
bmaicDi

)
are not easy to understand. As we already

noted in (8.8), they are not always flat families of divisorial sheaves, though
the latter holds for infinitely many m, depending on the coefficient vector a.
Unfortunately, the method of (11.50) is ineffective, it is not at all clear how to
produce such values m.

Theorem 8.15. KSBA-stability, as defined in (8.12–8.13), is a good moduli
theory (6.10).

Proof We need to check the conditions (6.10.1–5).
Separatedness and valuative-properness (6.10.1–2) is as for (8.9). Embedded

moduli spaces (6.10.3) are worked out in (8.21). Representability holds by
(7.65) and (3.31). Boundedness is discussed in (6.8.2). �

Let us note the following strengthening of (2.65) and (2.69).

Theorem 8.16. Let f :
(
X,∆ =

∑
i∈I aiDi

)
→ S be a KSBA stable family. Let

B =
∑

j∈J D j be a divisor, where a j = 1 for j ∈ J and L an f -semi-ample
divisorial sheaf (3.25) on X. Then Ri f∗

(
L[−1](−B)

)
and Ri f∗

(
ωX/S [⊗] L(B)

)
are

locally free and compatible with base change for every i.

Proof As in the proof of (2.65), a suitable cycle cover reduces the first part
to the case when L = OX , which follows from (Kovács and Schwede, 2016,
5.1). (Note that the latter is stated over a smooth base, but that is not used in
the proof. Also, OX(−B) is a flat family of divisorial sheaves by (8.13.4), thus
(Xs, Bs) is a Du Bois pair for every s ∈ S .) This implies the second part as in
(2.69). �

KSBA stability, stronger version

K-flatness is designed to work for all boundary divisors ∆ =
∑

i aiDi, thus it
can not capture the stronger properties of those Di that have coefficient > 1

2 .
The notion below takes care of this. The resulting moduli space has the same
underlying reduced subscheme, but a smaller nilpotent structure.

8.17 (Stable objects).
(
X,∆ =

∑
i∈I aiDi

)
, same as in (8.12).

8.18 (Stable families). Families f :
(
X,∆ =

∑
i∈I aiDi

)
→ S as in (8.13), with

the following additional assumption taken from (2.82).
(8.18.1) Let J ⊂ I be any subset such that a j >

1
2 for every j ∈ J and set

DJ := ∪ j∈J D j. Then f |DJ : DJ → S is flat with reduced fibers.
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Note. It is possible that some variant of (6.27.3) could be added, but (2.83)
does not seem strong enough for this.

The proof of (8.15) carries over without changes to give the following.

Theorem 8.19. Strong KSBA-stability, as defined in (8.17–8.18), is a good
moduli theory (6.10). �

Example 8.20. To see that we do get a smaller scheme structure, even for
surfaces, start with the A1 singularity S 0 := (y2 − x2 + z2 = 0) and the nodal
curve C0 := (z = y2− x2 = 0). Then

(
S 0,C0

)
is lc. Over k[ε] consider the trivial

deformation S := (y2 − x2 + z2 = 0). For C0 we take the simplest K-flat, but
non-flat deformation. Using the notation of (7.70.5), it is given by y2 − x2 = 0
and z =

y
xε in the chart (x , 0). The closure is given by

C = (y2 − x2 = zx − yε = zy − xε = z2 = zε = 0).

Then
(
S ,C

)
→ Spec k[ε] is locally stable as in (8.13), but C is not flat over

Spec k[ε]. Hence (8.18.1) is not satisfied.

8.21 (Construction of embedded moduli spaces). A way of approximating an
R-Cartier pair with Q-Cartier pairs is given in (11.47).

Depending on the vector a, we have Q-linear maps σm
j : R → Q, extended

to divisors by σm
j (

∑
aiDi) :=

∑
σm

j (ai)Di, with the following properties.

(8.21.1) If KX/S + ∆ is R-Cartier then the KX/S + σm
j (∆) are Q-Cartier.

(8.21.2) limm→∞ σ
m
j (∆) = ∆.

(8.21.3) ∆ is a convex R-linear combination of the σm
j (∆) for every fixed m.

(8.21.4) If (X,∆)→ S is stable then so are the
(
X, σm

j (∆)
)
→ S for m � 1.

Since SP(a, n, v) is bounded by (6.8.2), there is a fixed M such that

(8.21.5) the
(
X, σM

j (∆)
)

are stable for every j and every (X,∆) ∈ SP(a, n, v).
The volume of

(
X, σM

j (∆)
)

may depend on (X,∆), but it is locally constant in
families, so only finitely many values can occur for SP(a, n, v). Denote this set
by V ⊂ R.

Let SP
(
σM
∗ (a), n,V

)
be the moduli functor of all pairs (X,∆) of dimension

n, for which all the
(
X, σM

j (∆)
)

are stable and vol
(
X, σM

1 (∆)
)
∈ V . We claim

that this is a good moduli theory.
Indeed, first SP

(
σM

1 (a), n,V
)

is a good moduli theory by (8.9). Then we
have to add the conditions that the KX/S +σM

j (∆) are Q-Cartier for j , 1; these
are representable by (4.29). Finally, once the KX/S + σM

j (∆) are Q-Cartier,
ampleness of these is an open condition. Thus we have the moduli space
SP

(
σM
∗ (a), n,V

)
.
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Since ∆ is a convexR-linear combination of theσm
j (∆), SP(a, n, v) is a closed

subspace of SP
(
σM
∗ (a), n,V

)
by (11.4.4). �

8.3 Stability with floating coefficients

Much of the technical subtlety of the KSBA approach is caused by the presence
of boundary divisors that are notQ-Cartier. As we discussed in Section 6.4, one
way to avoid these is to work with marked pairs (X,

∑
i∈I aiDi) as in (8.3), where

the ai ∈ R are Q-linearly independent. However, in many important cases, the
ai are dictated by geometric considerations and they are rational.

By working on a Q-factorialization π : X′ → X, we can achieve that the D′i
are Q-Cartier. The price we pay is that KX +

∑
aiD′i is only nef, giving a non-

separated moduli space. We can restore separatedness if we know which linear
combinations −

∑
i ciD′i are π-ample. (The negative sign works better later.)

If we fix ci, then −
∑

i(ci + ηi)D′i is also π-ample for all |ηi| � |ci|. Thus we
can choose the ηi such that the (ai − ci − ηi) are Q-linearly independent; we are
then back to the situation of Alexeev stability, as in Section 6.4. However, we
do not wish to fix the ci.

Using floating coefficients was considered early on by Alexeev, Hassett and
Kovács. There is a short discussion in Alexeev (2006), but the first significant
example of it is treated in Alexeev (2015). The general type case with a floating
coefficient is worked out in Filipazzi and Inchiostro (2021).

Keeping in mind the chambers discussed in (6.39), it is clear that one can
not float several coefficients independently. A solution is to fix an ordering of
the index set I; this is natural in many cases, but not always.

The key observation is that, for a normal pair (X,
∑r

i=1 aiDi), there is at most
one small modification π : X′ → X such that
• −

∑r
i=1 εiD′i is π-ample for all 0 < ε1 � · · · � εr.

(The notation means that there is a δ > 0 such that ampleness holds whenever
εi ≤ δεi+1 for every i. By (11.43), then the D′i := π−1

∗ Di are Q-Cartier.)
To get a good moduli theory out of this, we need to allow certain non-small

birational maps X′ → X. There is a further issue that going freely between
X and X′ seems to need the Abundance Conjecture to hold (Kollár and Mori,
1998, 3.12). Thus the working definition is more complicated.

8.22 (Canonical contractions and models of nef slc pairs). By Kollár (2011c),
there are projective surfaces with normal crossing singularities whose canoni-
cal ring is not finitely generated. Thus it is not possible to define the canonical
model of a proper slc pair (Y,∆) in general.

There are problems even if we assume that KY +∆ is semiample. As a typical
example, let S ⊂ P3 be a surface of degree ≥ 5 with a single singular point
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s ∈ S that is simple elliptic (2.21.4.1). Let S ′ → S be the minimal resolution
with exceptional curve E′ ⊂ S ′. Next take 2 copies of (S ′i , E

′
i ) and glue them

along E′1 ' E′2 to get a surface T ′ with normal crossing singularities. Note that
ωT ′ is generated by global sections and it maps T ′ to the surface T obtained
by gluing 2 copies (S i, si) at the points s1 ' s2. Thus T is not S 2. Here the
problem is that T ′ is singular along the exceptional divisor of T ′ → T . It is
easy to see that this is the only obstacle in general.

Claim 8.22.1. Let g : Y → X be a proper, birational morphism of pure dimen-
sional, reduced schemes. Assume that g∗OY = OX , Y is S 2 and none of the
g-exceptional divisors is contained in Sing Y . Then X is S 2. �

Corollary 8.22.2. Let (Y,∆) be an slc pair such that KY + ∆ is semiample,
inducing a proper morphism g : Y → X. Assume that g is birational and none of
the g-exceptional divisors is contained in Sing Y . Then (X, g∗∆) is slc, KX +g∗∆
is ample and g is a crepant contraction. That is, KY + ∆ is numerically g-
trivial. �

We call (X, g∗∆) the canonical model of (Y,∆) and denote it by (Yc,∆c).
We stress that here we are considering only those cases for which (Y,∆) →

(Yc,∆c) is a crepant contraction.

Lemma 8.23. Let (Y,∆) be an slc pair and g : Y → X a proper morphism such
that g∗OY = OX and KY + ∆ is numerically g-trivial. Let Θ1,Θ2 be effective
divisors such that Supp Θi ⊂ Supp ∆. Assume that −Θ1 is g-ample and −Θ2 is
g-nef. Then the following hold.

(8.23.1) (X, g∗∆) is slc and g is birational.

(8.23.2) g∗OY
(
mKY + bm∆c

)
= OX

(
mKX + bmg∗∆c

)
for every m ≥ 1.

(8.23.3) −Θ2 is g-semiample.

Proof Since −Θ1 is g-ample, Ex(g) ⊂ Supp Θ1 ⊂ Supp ∆. In particular, g is
birational and Y is smooth at every generic point of Ex(g) that has codimension
1 in Y . Thus X is S 2 by (8.22.1), hence deminormal, so (1) holds by (4.50).
Next (2) follows from (11.61).

For (3), assume first that Y is normal. We apply (11.28.2) to (Y,∆−εΘ2). Set
Z = g(Θ2). Then (X \ Z, g∗∆) is the canonical model of (Y \ g−1(Z),∆ − εΘ2).
Since −Θ2 is g-nef, Supp Θ2 = g−1(Z), hence none of the lc centers of (Y,∆ −
εΘ2) is contained in g−1(Z). Thus KY + ∆− εΘ2 is g-semiample and so is −Θ2.

In general, we can apply the above to the normalization Ȳ → Y , get a canon-
ical model of (Ȳ , ∆̄ − εΘ̄2) and then use (11.38) to conclude. �
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8.24 (Stable objects). Alexeev-Filipazzi-Inchiostro stability parametrizes pro-
jective, marked, slc pairs(

X,∆ =
∑

j∈Jb jB j +
∑

i∈IaiDi), (8.24.1)

where the divisors are indexed by the disjoint union J ∪ I. We write ∆0 :=∑
j∈J b jB j; this divisor will be treated as in KSBA stability. The new aspect is

the treatment of the divisors Di. The index set I is ordered, so we identify it
with {1, . . . , r}.

The sole assumption that we would like to have is the following.
(8.24.2) KX + ∆ −

∑
i εiDi is ample for all 0 < ε1 � · · · � εr � 1.

Since we can choose the ai − εi to be Q-linearly independent of the b j, we see
that KX + ∆0 and the D1, . . . ,Dr are necessarily R-Cartier by (11.43).

Fixing m and 0 < εm � · · · � εr, letting the others go to 0 gives that
KX + ∆−

∑r
i=m+1 εiDi is nef for 0 ≤ m ≤ r. If the Abundance Conjecture holds,

then these divisors are semiample, but this is not known. So for now we have
to add the assumption:
(8.24.3) KX + ∆ is semiample.
An slc pair (X,∆) as in (1) is AFI-stable if it satisfies assumptions (2–3).

If (3) holds then we have a crepant contraction to the canonical model
π : (X,∆)→ (Xc,∆c). Then (2) is equivalent to the following condition.
(8.24.4) There are ηim > 0 such that −

∑r
i=m ηimDi is π-nef for 1 < m < r and

π-ample for m = 1.

8.25 (Explanation). By (8.23.3) the assumptions (8.24.2–3) imply that
(8.25.1) KX + ∆ −

∑r
i=m+1 εiDi is semiample for 0 ≤ m ≤ r.

Thus for each m we get a morphism πm : X → Xm. Then (8.23.1) shows that
πm is birational. For the rest of the section we use a subscript m to denote the
image of a divisor on Xm.

Using (8.23) we get that, for 0 < εm � · · · � εr � 1,
(8.25.2) (Xm,∆m) is slc and KXm + ∆m −

∑r
i=m+1 εiDi

m is ample.
In particular, we have
(8.25.3) a tower of morphisms X =: X0 → X1 → · · · → Xr, such that
(8.25.4) KXr + ∆r is ample on Xr, and
(8.25.5) −Dm

m−1 is (Xm−1 → Xm)-ample for every m.
Repeatedly using (Hartshorne, 1977, Exc.II.7.14) we get that (3–5) are equiv-
alent to (8.24.2–3).

In (8.30) we show how to transform the conditions (8.24.2) involving vari-
able εi > 0 into a set of conditions with fixed δi > 0. The result is, however,
ineffective, and it would be good to find a more constructive approach.
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Note that (Xr,∆r) is the canonical model (Xc,∆c) of (X,∆), it is thus inde-
pendent of the ordering of I. By contrast, the intermediate X → Xm → Xc do
depend on the ordering of I.

8.26 (Stable families). A family f :
(
X,∆ =

∑
j∈J b jB j +

∑
i aiDi)→ S is AFI-

stable if the following hold.

(8.26.1) f :
(
X,∆

)
→ S is locally stable.

(8.26.2) KX/S +
∑

j∈J b jB j and the D1, . . . ,Dr are relatively R-Cartier.

(8.26.3) The fibers
(
Xs,∆s

)
are AFI-stable as in (8.24).

(8.26.4) ω[m0]
X/S

(∑
j∈J m jB j +

∑
i∈I niDi) is a flat family of divisorial sheaves if

ni ∈ Z and (m j : j ∈ {0} ∪ J) ∈ LEnvZ(KX +
∑

j∈J b jB j).
The next assumption may be redundant; we discuss it in (8.27) and (8.34).

(8.26.5) f : (X,∆)→ S has a crepant contraction to its simultaneous canonical
model. That is, to a stable morphism f c : (Xc,∆c) → S whose fibers are
the canonical models

(
(Xs)c, (∆s)c) of the fibers.

8.27 (Explanation). Assumptions (8.26.1–3) closely follow (8.7). (8.26.4) is
modeled on (8.11) and (8.13).

The Di are Q-Cartier by (11.43.2), hence K-flat by (7.4.6), at least in char-
acteristic 0. Thus if ∆0 :=

∑
j∈J b jB j is the 0 divisor, then we avoid using

K-flatness entirely.
Since ampleness is an open condition (11.54), we see using (8.24.4) that, if S

is Noetherian, then KX +∆−
∑

i εiDi is f -ample for all 0 < ε1 � · · · � εr � 1.
Thus one can view (8.26) as picking one of the chambers discussed in (6.39).

By (8.25) each fiber (Xs,∆s) has a canonical model
(
(Xs)c, (∆s)c). More gen-

erally, we prove in (8.35) that, if S is reduced, then (8.26.1–4) imply (8.26.5).
This implication is not known over arbitrary bases, but we prove in (8.33) that
(X,∆)→ S uniquely determines its simultaneous canonical model.

Assumption (8.26.5) guarantees that taking the relative canonical model is a
natural transformation from AFI-stable families to KSBA-stable families.

A stronger variant of (8.26.5) would be to require that the towers (8.25.3) of
the fibers form a flat family. The latter might be equivalent to (8.26.5).

Theorem 8.28. AFI-stability, as defined in (8.24–8.26) is a good moduli theory
(6.10).

We start with a general discussion on ample perturbations, followed by re-
sults on simultaneous canonical models and boundedness. With these prelimi-
naries in place, the proof of (8.28) given in (8.37) is quite short.
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Definition 8.29. A pair
(
X,∆ =

∑
j∈Jb jB j +

∑r
i=1aiDi) as in (8.24) has an

intersection form

I(t0, . . . , tr) :=
(
t0(KX + ∆) + t1D1 + · · · + trDr)n

. (8.29.1)

For a family as in (8.26), the intersection form I(t0, . . . , tr) is a locally constant
function on the base by (8.26.2). We can thus decompose the functor of AFI-
stable pairs into open and closed subfunctors

AFI
(
b, a, n,I(t0, . . . , tr)

)
. (8.29.2)

Next we see that, for each of these subfunctors, there is a uniform choice of
ample divisors.

Proposition 8.30. Fix b, a, n and I(t0, . . . , tr). Then there are δi > 0 such that
(X,∆) ∈ AFI

(
b, a, n,I(t0, . . . , tr)

)
iff the following hold.

(8.30.1) (X,∆) is slc and the Di are R-Cartier,

(8.30.2)
(
t0(KX + ∆) + t1D1 + · · · + trDr)n

= I(t0, . . . , tr),
(8.30.3) KX + ∆ −

∑r
i=1δiDi is ample, and

(8.30.4) KX + ∆ −
∑r

i=m+1δiDi is semiample for m = 1, . . . , r.

Proof If (X,∆) ∈ AFI
(
b, a, n,I(t0, . . . , tr)

)
then (1–2) hold by assumption.

The key point is that one can find δi that do not depend on (X,∆).
Start with the canonical model (Xr,∆r) = (Xc,∆c). Since(

KXc + ∆c)n
=

(
KX + ∆

)n
= I(1, 0, . . . , 0),

the canonical models form a bounded family by (6.8.1). In particular, there is
an η > 0 such that

(
(KXr +∆r) ·C

)
≥ η for every nonzero effective curve C ⊂ Xr

for every Xr. Thus
(
(KX + ∆) ·C

)
is either 0 or ≥ η for every nonzero effective

curve C ⊂ X.
Choose 0 < c1 � · · · � cr−1 � cr = ar such that KX + ∆ − εr

∑
ciDi is

ample for some εr > 0. Applying (8.31) with ∆2 :=
∑

ciDi and ∆1 := ∆ − ∆2,
we get a fixed δr such that

KX + ∆1 + (1 − δr)∆2 = KX + (∆ − δrDr) −
∑r−1

i=1 ciδrDi

is ample. This holds for all 0 < c1δr � · · · � cr−1δr � 1, so KX + ∆ − δrDr

is nef, so semiample by (8.23.3). By induction on r, we get the other δi and
the divisors in (4) are nef. KX + ∆ is semiample by assumption (8.24.3). This
implies the rest of (4) by (8.23.3).

Conversely, convex linear combinations of the divisors KX + ∆−
∑r

i=m+1δiDi

for m = 0, . . . , r show that (8.24.2) holds. �
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Lemma 8.31. (Filipazzi and Inchiostro, 2021, 2.15) Let (X,∆1 + ∆2) be a
proper slc pair of dimension n. Assume that there is an η > 0 such that

(8.31.1)
(
(KX + ∆1 + ∆2) · C

)
is either 0, or ≥ η for every nonzero effective

curve C, and

(8.31.2) KX + ∆1 + (1 − ε0)∆2 is ample for some ε0 > 0.
Then KX + ∆1 + (1 − ε)∆2 is ample for every η/(2n + η) > ε > 0.

Proof We may assume that X is normal. If ε0 > ε > 0 then KX +∆1 +(1−ε)∆2

is a convex linear combination of KX + ∆1 + (1 − ε0)∆2 and of KX + ∆1 + ∆2,
hence ample.

Thus consider the case when ε0 < ε. We check Kleiman’s ampleness crite-
rion. For Z ∈ NE(X) we have that(

(KX + ∆1 + (1 − ε)∆2) · Z
)

=
ε−ε0
1−ε0

(
(KX + ∆1) · Z

)
+ 1−ε

1−ε0

(
(KX + ∆1 + (1 − ε0)∆2) · Z

)
.

(8.31.3)

So the criterion holds on the part where
(
(KX + ∆1) · Z

)
≥ 0.

By the Cone theorem of (Fujino, 2017, 4.6.2), the rest of NE(X) is generated
by curves Ci for which −2n ≤

(
(KX + ∆1) ·Ci

)
< 0. If Ci is such a curve, then,

applying (8.31.3) with ε0 = 0, we get that(
(KX+∆1+(1−ε)∆2)·Ci

)
= ε

(
(KX+∆1)·Ci

)
+(1−ε)

(
(KX+∆1+∆2)·Ci

)
. (8.31.4)

Now set ε = ε0. Then the left hand side is positive, hence so is
(
(KX + ∆1 +

∆2) · Ci
)
. Thus

(
(KX + ∆1 + ∆2) · Ci

)
≥ η by assumption. Thus (8.31.4) gives

that, for every ε > 0,
(
(KX + ∆1 + (1− ε)∆2) ·Ci

)
≥ −2nε+ (1− ε)η. The latter

is positive if ε < η/(2n + η). �

Definition 8.32. Let πX : X → S be a flat, proper morphism with S 2 fibers. A
simultaneous contraction is a factorization πX : X

τ
→ Y→S where

(8.32.1) πY : Y → S is flat, proper with S 2 fibers, and

(8.32.2) τ∗OX = OY .
This implies that (τs)∗OXs = OYs for every s ∈ S .

If the τs are birational, then X → S and the τs uniquely determine Y . When
S is Artinian, this is (8.33), which in turn implies the general case.

Lemma 8.33. Let A be a local, Artinian ring with residue field k. Let gk : Xk →

Yk be a birational morphism between proper, pure dimensional, S 2-schemes,
such that (gk)∗OXk = OYk . Let XA → Spec A be a flat, proper morphism.

(8.33.1) There is at most 1 flat YA → Spec A such that gk lifts to gA : XA → YA.

(8.33.2) If YA exists then OYA = (gA)∗OXA .
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Proof Note that XA,YA are S 2 since XA → Spec A and YA → Spec A are flat.
Let Uk ⊂ Yk be the largest open set over which gk is an isomorphism.

Thus we get open sets Vk ⊂ Xk, VA ⊂ XA and UA ⊂ YA. Note that YA \ UA

has codimension ≥ 2. Thus OYA is the push-forward of OUA by the injection
jA : UA ↪→ YA (10.6).

Since gA : VA → UA is an isomorphism, we see that OYA = ( jA)∗(gA)∗OVA is
determined by XA and gk. This also implies that (gA)∗OXA = OYA . �

Definition 8.34. Let h : (X,∆) → S be proper and locally stable such that
KX/S + ∆ is h-nef. A simultaneous, canonical, crepant, birational contraction
is a simultaneous contraction πX : X

τ
→ Y→S such that

(8.34.1) πY : (Y, τ∗∆)→ S is stable, and
(8.34.2) τs : (Xs,∆s) → (Ys, g∗∆s) is the crepant, birational contraction to its

canonical model as in (8.22) for every s ∈ S .
By (8.32), πY : (Y, τ∗∆) → S is uniquely determined by πX : (X,∆) → S , even
when S is nonreduced.

Using the rational approximations ∆n
j → ∆ as in (11.47), we see that

(8.34.3) X → Y → S is a simultaneous canonical contraction for ∆ iff it is a
simultaneous canonical contraction for ∆n

j for n � 1 for every j.

Proposition 8.35. Let g : (X,∆)→ S be proper and locally stable, S reduced.
Assume that (Xs,∆s) has a crepant, birational contraction to its canonical
model for every s ∈ S . Then g : (X,∆) → S has a simultaneous, canonical,
crepant, birational contraction.

Proof By (8.34.3) it is enough to deal with the case when ∆ is a Q-divisor.
Next we prove that g∗

(
OX(mKX/S + m∆)

)
is locally free and commutes with

base change for m sufficiently divisible. By Grauert’s theorem (as stated in
(Hartshorne, 1977, III.12.9)) it is enough to prove this when S is a smooth
curve. In this case (11.28) and (11.38) show that the relative canonical model
exists, τs is an isomorphism for the generic point s ∈ S and a finite, universal
homeomorphism (10.78) for closed points s ∈ S . However, (5.4) then implies
that in fact τs is an isomorphism for every s ∈ S . Thus

h0(Xs,OXs (mKXs + m∆s)
)

= h0((Xs)c,OXc
s (mKXc

s + m∆c
s)
)

= h0((Xc)s,OXc
s (m(KXc/S + ∆c)s

)
is independent of s ∈ S for m sufficiently divisible, since Xc → S is flat and
KXc/S + ∆c is relatively ample.

With arbitrary S , we get the simultaneous canonical model

Xc = ProjS ⊕r∈N g∗
(
OX(rmKX/S + rm∆)

)
. �
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For representability, the key step is the following.

Proposition 8.36. Let g : (X,∆)→ S be proper and locally stable. Then there
is a locally closed partial decomposition S sccc → S such that, for any T → S ,
the base change gT : (XT ,∆T ) → T has a simultaneous, canonical, crepant,
birational contraction iff T factors through S sccc.

Proof As before, using (8.34.3) it is enough to deal with the case when ∆ is
a Q-divisor. We may assume that S is connected.

Assume that (Xs,∆s) has a crepant, birational contraction to its canonical
model (Xc

s ,∆
c
s). The self-intersection of KXc

s + ∆c
s equals the self-intersection

of KXs + ∆s, which is independent of s ∈ S . Thus the pairs (Xc
s ,∆

c
s) are in a

bounded family by (6.8.1). In particular, there is an m > 0, independent of s,
such that rmKXc

s +rm∆c
s is Cartier, very ample and has no higher cohomologies

for r > 0. Moreover, we get only finitely many possible Hilbert functions.
Thus OXs

(
rmKXs+rm∆s) is locally free, globally generated and maps (Xs,∆s)

to its canonical model. This implies that if πT : (XT ,∆T )→ T has a simultane-
ous canonical, crepant contraction, then, for every r > 0,
(8.36.1) OXT

(
rmKXT /T + rm∆T

)
is relatively globally generated, and

(8.36.2) (πT )∗OXT

(
rmKXT /T + rm∆T

)
is locally free and commutes with base

change.
For each Hilbert function, these conditions are representable by a locally closed
subscheme by (3.21). �

Remark 8.36.3. If the Abundance Conjecture holds then red S sccc is an open
subset of red S . The scheme theoretic situation is not clear.

Example 8.36.4. Being semiample and big is not a constructible condition for
families of line bundles. As a simple example, let E ⊂ P2 be an elliptic curve,
π : X := ProjE(OE + OE(3)) → E the resolution of the cone over E. Consider
the line bundles LX := OX(1) ⊗ π∗L where L ∈ Pic◦(E).

Then LX is nef and big for every L ∈ Pic◦(E), but semiample only if L is
a torsion point of Pic◦(E). Thus the set {L : LX is big and semiample} is not
constructible.

A much subtler example of Lesieutre (2014) shows that being nef and big is
also not a constructible condition in families of smooth surfaces.

8.37 (Proof of 8.28). First we show thatAFI
(
b, a, n,I

)
is bounded and repre-

sentable. By (8.30) there are fixed δi > 0 such that KX + ∆−
∑r

i=1δiDi is ample.
The self-intersection of this divisor is I(1, a1 − δ1, . . . , ar − δr), hence all such
stable pairs form a bounded family by (6.8.1). We can choose the ai − δi to be
Q-linearly independent of the bi. Then the Di are R-Cartier by (11.43).
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Note that (6.8.1) gives boundedness for pairs such that (X,∆ −
∑r

i=1δiDi)
is slc, but we want (X,∆) to be slc. By (7.65) local stability of (X,∆) is a
representable condition. (Actually, (11.48) shows that, for a suitable choice of
the δi, the (X,∆) are in fact slc.)

Semiampleness of the divisors KX + ∆ −
∑r

i=m+1δiDi is a representable con-
dition by (8.36). Representability of (8.26.4) is handled as in (6.40). (8.26.5)
was treated in (8.36).

Separatedness follows from (11.40) as usual, applied to (X,∆−
∑r

i=m+1δiDi).
To see valuative-properness, assume that we have f ◦ :

(
X◦,∆◦ =

∑
j∈Jb jB j◦+∑r

i=1aiDi◦)→ C◦ over an open subset of a smooth curve C◦ ⊂ C.
Applying (8.35) to the divisors KX + ∆ −

∑r
i=m+1δiDi we also have a tower

f ◦ :
(
X◦,∆◦

)
→

(
X◦1 ,∆

◦
1
)
→ · · · →

(
X◦r ,∆

◦
r
)
→ C◦,

where
(
X◦r ,∆

◦
r
)

is the relative canonical model of
(
X◦,∆◦

)
.

First we use (2.51) to get that, after a base change (which we suppress in the
notation),

(
X◦r ,∆

◦
r
)
→ C◦ extends to a stable morphism

(
Xr,∆r

)
→ C.

Next we extend
(
X◦r−1,∆

◦
r−1

)
→ C◦. By construction KX◦r−1

+ ∆◦r−1 − εrDr,◦
r−1 is

relatively ample on X◦r−1 → X◦r for 0 < εr � 1 and relatively semiample for
εr = 0. Thus, by (Hacon and Xu, 2013, 1.5), after a base change (which we
again suppress in the notation), it extends to a model

(
Xr−1,∆r−1−εrDr

r−1
)
→ C

with the same properties (with a possibly smaller upper bound for εr). This
gives

(
Xr−1,∆r−1

)
→ C. We can continue this until we get the tower

f :
(
X,∆

)
→

(
X1,∆1

)
→ · · · →

(
Xr,∆r

)
→ C,

proving valuative properness. �

8.4 Polarized varieties
Assumptions. In this section we work with arbitrary schemes. Because of
functoriality, the situation over SpecZ determines everything.

8.38 (Ampleness conditions). Let X be a proper scheme over a field k and
L a line bundle on X. The most important positivity notion is ampleness, but
in connection with projective geometry the notion of very ampleness seems
more relevant. If L is ample then Lr is very ample for r � 1 and there are
numerous Matsusaka-type theorems that give effective control over r, see Mat-
susaka (1972); Lieberman and Mumford (1975); Kollár and Matsusaka (1983).
In practice, this will not be a major difficulty for us.

A problem with very ampleness is that it is not open in flat families (Xs, Ls).
Thus one needs to consider stronger variants. The two most frequently needed
additional conditions are the following.
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(8.38.1) Hi(X, L) = 0 for i > 0.
(8.38.2) H0(X, L) generates the ring

∑
r≥0 H0(X, Lr).

These are connected by the notion of Castelnuovo-Mumford regularity; see
(Lazarsfeld, 2004, Sec.I.8) for details.

For our purposes the relevant issue is (1). Thus we say that a line bundle
L is strongly ample if it is very ample and Hi(X, Lm) = 0 for i,m > 0. By
(Lazarsfeld, 2004, I.8.3), if this holds for all m ≤ dim X + 1 then it holds for
all m. Thus strong ampleness is an open condition in flat families.

Let f : X → S be a proper, flat morphism and L a line bundle on X. We say
that L is strongly f -ample or strongly ample over S , if L is strongly ample on
the fibers. Equivalently, if Ri f∗Lm = 0 for i,m > 0 and L is f -very ample. Thus
f∗L is locally free and we get an embedding X ↪→ PS ( f∗L).

The main case for us is when f : (X,∆) → S is stable and L = ω[r]
X/S (r∆) for

some r > 0. If r > 1 then Ri f∗Lm = 0 for i,m > 0 by (11.34).

Definition 8.39 (Polarization). A polarized scheme is a pair (X, L) consisting
of a projective scheme X plus an ample line bundle L on X.

In the most basic version of the definition, a polarized family of schemes
over a scheme S consists of a flat, projective morphism f : X → S , plus a
relatively ample line bundle L on X. (See (8.40) for other variants.)

We are interested only in the relative behavior of L, thus two families (X, L)
and (X, L′) are considered equivalent if there is a line bundle M on S such that
L ' L′ ⊗ f ∗M. There are some quite subtle issues with this in general Raynaud
(1970), but if S is reduced and H0(Xs,OXs ) ' k(s) for every s ∈ S , then
L ' L′⊗ f ∗M for some M iff L|Xs ' L′|Xs for every s ∈ S by Grauert’s theorem,
as in (Hartshorne, 1977, III.12.9). See also (8.40) for further comments on this.

For technical reasons it is more convenient to deal with the cases when, in
addition, L is strongly f -ample (8.38). We call such an L a strong polarization.
Thus the ‘naive’ functor of strongly polarized schemes

S 7→ PsSch(n,N)(S) (8.39.1)

associates to a scheme S the equivalence classes of all f : (X, L)→ S such that
(8.39.2) f is flat, proper, of pure relative dimension n,
(8.39.3) Xs is pure and H0(Xs,OXs ) ' k(s) for every s ∈ S ,
(8.39.4) L is strongly f -ample (8.38), and
(8.39.5) f∗L is locally free of rank N + 1.
Since L is flat over S , strong f -ampleness implies that f∗L is locally free.

(8.39.6) If we fix the whole Hilbert polynomial χ(X, r) := χ(X, Lr), we get the
functor S 7→ PsSch(χ)(S).
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Let f : X → S be a flat, proper morphism and L a line bundle on X. Having
pure fibers is an open condition (10.11) and then pure dimensionality is an
open condition. Thus there is a maximal open subscheme S ◦ ⊂ S such that
f ◦ : (X◦, L◦)→ S ◦ satisfies the assumptions (2–5).

Definition 8.40 (Pre-polarization). The above definition of polarization is ge-
ometrically clear, but it does not have the sheaf property. In analogy with the
notion of a presheaf, we could define a pre-polarization of a projective mor-
phism f : X → S to consist of
(8.40.1) an open cover ∪iUi → S , and
(8.40.2) relatively ample line bundles Li on Xi := X ×S Ui, such that,
(8.40.3) for every i, j, the restrictions of Li and L j to Xi j := X ×S Ui ×S U j are

identified as in (8.39).
(That is, there are line bundles Mi j on Ui×S U j such that Li|Xi j ' L j|Xi j⊗ f ∗i jMi j.)

Pre-polarizations form a presheaf, hence the ‘right’ notion of polarization
should be a global section of the corresponding sheaf.

If ∪iUi → S is a cover by Zariski open subsets, the resulting notion is very
similar to what we have in (8.39). The only difference is in property (8.39.5)
since f∗L need not exists globally. However, PS ( f∗L) does exist as a Zariski
locally trivial PN-bundle over S and we usually use PS ( f∗L) anyhow.

If the Ui → S are étale, then we still get an object PS ( f∗L) → S , but this
is a Severi-Brauer scheme, that is, an étale locally trivial PN-bundle over S .
(See (8.40.5) for an example with N = 1.) From the theoretical point of view,
it is most natural to use the étale topology for the moduli theory of varieties.
Pre-polarizations define a pre-sheaf in the étale topology and sheafifying gives
the functors

S 7→ PsSchet(n,N)(S) and S 7→ PsSchet(χ)(S). (8.40.4)

(For arbitrary schemes one needs finer topologies, see Raynaud (1970).)
For the difference between PsSchet and PsSch, a simple example to keep in

mind is the following. Consider

X :=
(
x2 + sy2 + tz2 = 0) ⊂ P2

xyz ×
(
A2

st \ (st = 0)
)
, (8.40.5)

with coordinate projection to S := A2
st \ (st = 0). The fibers are all smooth

conics. In the analytic or étale topology, there is a pre-polarization whose re-
striction to each fiber is a degree 1 line bundle, but there is no such line bundle
on X. However, OP2 (1) gives a line bundle on X whose restriction to each fiber
has degree 2.

We will, however, stick to the naive versions for several reasons.
• Stable families come with preferred polarizing line bundles ω[m]

X/S (m∆).
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• PsSchet and PsSch have the same coarse moduli spaces (8.56.1).
• A suitable power of any pre-polarization naturally gives an actual polariza-

tion using (8.66.6).
So, at the end, the distinction between the functors PsSchet and PsSch does not
matter much for us. There is, however, another related notion that does lead to
different coarse moduli spaces.

8.40.7 (Numerical polarization). Given f : X → S , two relatively ample line
bundles L and L′ on X are considered equivalent if Ls ≡ L′s (p.11) for every ge-
ometric point s→ S . This is the original definition used by Matsusaka (1972)
and it may be the most natural notion for general polarized pairs. Stable vari-
eties come with an ample divisor, not just with an ample numerical equivalence
class, which simplifies our task.

8.41 (Strongly embedded schemes). Fix a projective space PN
Z . Over the Hilbert

scheme there is a universal family, hence we get

Univ(PN
Z ) ⊂ PN

Z × Hilb(PN
Z ), (8.41.1)

and OPN (1) gives a polarization of Univ(PN
Z )→ Hilb(PN

Z ). As in (8.39) there is
a largest open subset

Hilbstr
n (PN

Z ) ⊂ Hilbn(PN
Z ), (8.41.2)

over which the polarization is strong (8.39.2–5). One should think of this as
pairs (X, L) that ‘naturally live’ in PN . The universal family restricts to

Univstr
n (PN

Z )→ Hilbstr
n (PN

Z ). (8.41.3)

The corresponding functor associates to a scheme S the set of all flat families
of closed subschemes of pure dimension n of PN

S

f :
(
X ⊂ PN

S ; OX(1)
)
→ S , (8.41.4)

where OX(1) is strongly f -ample. Equivalently, we parametrize objects(
f : (X; L)→ S ; φ ∈ IsomS

(
PS ( f∗L),PN

S
))
, (8.41.5)

consisting of strongly polarized, flat families of purely n-dimensional schemes,
plus an isomorphism φ : PS ( f∗L) ' PN

S . We call the latter a projective framing
of f∗L or of L. We can also fix the Hilbert polynomial χ of X and, for N :=
χ(1) − 1 consider the subschemes

Univstr
χ (PN

Z )→ Hilbstr
χ (PN

Z ) ⊂ Hilbstr
n (PN

Z ). (8.41.6)

By the theory of Hilbert schemes, the spaces Hilbstr
χ (PN

Z ) are quasi-projective,
though usually non-projective, reducible and disconnected; see Grothendieck
(1962), (Kollár, 1996, Chap.I) or Sernesi (2006).
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We can summarize these discussions as follows.

Proposition 8.42. Fix a polynomial χ(t). Then

Univstr
χ (PN

Z )→ Hilbstr
χ (PN

Z )

constructed in (8.41) represents the functor of strongly polarized schemes with
Hilbert polynomial χ and a projective framing. That is, for every scheme S ,
pull-back gives a one-to-one correspondence between

(8.42.1) MorZ
(
S ,Hilbstr

χ (PN
Z )

)
, as in (8.63), and

(8.42.2) flat, projective families of purely n-dimensional schemes f : X → S
with a strong polarization L of Hilbert polynomial χ, plus an isomorphism
PS ( f∗L) ' PN

S , where N + 1 = χ(1). �

The general correspondence between the moduli of polarized varieties and
the moduli of embedded varieties (8.56.1) gives now the following.

Corollary 8.43. Fix a Hilbert polynomial χ with N + 1 = χ(1). Then the stack[
Hilbstr

χ (PN)/PGLN+1
]

represents the functorPsSchet(χ) defined in (8.40.3). �

8.44 (Marking points). So far we have studied varieties with marked divisors
on them. It is sometimes useful to also mark some points. For curves the points
are also divisors and they interact with the log canonical structure. By contrast,
in dimension ≥ 2, the points and the log canonical structure are independent of
each other. This makes the resulting notion much less interesting theoretically,
but it gives a quick and way to rigidify slc pairs, which was quite useful in
Section 5.9.

A flat family of r-pointed schemes is a flat morphism f : X → S plus r
sections σi : S → X. This gives a functor of r-pointed schemes.

Consider the Hilbert scheme with its universal family Univ(PN)→ Hilb(PN).
Then the r-fold fiber product

Univ(PN) ×Hilb(PN ) Univ(PN) · · · ×Hilb(PN ) Univ(PN)

represents the functor of r-pointed subschemes of PN . More generally, for any
functor that is representable by a flat universal family UnivM → M, its r-
pointed version is representable by the r-fold fiber product of UnivM over M.

In particular, we get MpSP, the moduli of pointed stable pairs.

8.5 Canonically embedded pairs

Assumptions. In this section we work with arbitrary schemes. As before, the
situation over SpecZ determines everything.
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Definition 8.45. A strongly polarized family of schemes marked with K-flat
divisors is written as
(8.45.1) f : (X; D1, . . . ,Dr; L)→ S , where
(8.45.2) f : X → S satisfies (8.39.2–5),
(8.45.3) the Di are K-flat families of relative Mumford divisors (7.1), and
(8.45.4) L is strongly f -ample (8.39).
If we fix the relative dimension and the rank of f∗L, then, as in (8.39.6), we get
the functor

PsMSch(r, n,N). (8.45.5)

We write PsMSch(r, χ) if the Hilbert polynomial χ = χ(Xs, Lm
s ) of L is also

fixed. These can also be sheafified in the étale topology as in (8.40.3). (The
notation does not indicate K-flatness; but it has enough letters in it already.)

The embedded version is denoted by

EsMSch(r, n,PN). (8.45.6)

These functors associate to a scheme S the set of all families of closed sub-
schemes of a given PN

S (where N = χ(1) − 1) marked with K-flat divisors

f :
(
X ⊂ PN

S ; D1, . . . ,Dr; OX(1)
)
→ S , (8.45.7)

where OX(1) is strongly ample.
Equivalently, we can view EsMSch(r, n,PN) as parametrizing objects(

f : (X; D1, . . . ,Dm; L)→ S ; φ ∈ IsomS
(
PS ( f∗L),PN

S
))

(8.45.8)

consisting of a strongly polarized family of schemes marked with K-flat divi-
sors, plus a projective framing φ : PS ( f∗L) ' PN

S as in (8.41.5).

8.46 (Universal family of strongly embedded, marked schemes). Fix a projec-
tive space PN

Z and integers n ≥ 1 and r ≥ 0. By (8.41) we have a universal
family of strongly embedded schemes

Univstr
n (PN

Z )→ Hilbstr
n (PN

Z ) (8.46.1)

satisfying (8.39.2–5). The universal family of K-flat, Mumford divisors

KDiv
(
Univstr

n (PN
Z )/Hilbstr

n (PN
Z )

)
→ Hilbstr

n (PN
Z )

was constructed in (7.3). If we need r such divisors, the base of the universal
family we want is the r-fold fiber product

EsMSch(r, n,PN
Z ) := ×r

Hilbn(PN
Z ) KDiv

(
Univstr

n (PN
Z )/Hilbstr

n (PN
Z )

)
. (8.46.2)
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We denote the universal family by

F :
(
X,D1, . . . ,Dr; L

)
→ EsMSch(r, n,PN

Z ), (8.46.3)

where we really should have written the rather cumbersome(
X(r, n,PN

Z ),D1(r, n,PN
Z ), . . . ,Dr(r, n,PN

Z ); L(r, n,PN
Z )

)
.

It is clear from the construction that the spaces EsMSch(r, n,PN
Z ) parametrize

polarized families of schemes marked with divisors, equipped with an extra
framing.

Proposition 8.47. Fix r, n,N. Then the scheme of embedded, marked schemes
EsMSch(r, n,PN

Z ) constructed in (8.46.3) represents EsMSch(r, n,PN
Z ), defined

in (8.45). That is, for every Z-scheme S , pulling back the family (8.46.3) gives
a one-to-one correspondence between
(8.47.1) MorZ

(
S ,EsMSch(r, n,PN

Z )
)
, and

(8.47.2) families f : (X; D1, . . . ,Dr; L) → S of n-dimensional schemes, with
a strong polarization and marked with K-flat Mumford divisors, plus a
projective framing PS ( f∗L) ' PN

S . �

As in (8.43) and (8.56.1), this implies the following.

Corollary 8.48. Fix n,m,N. Then the stack
[
EsMSch(r, n,PN

Z )/PGLN+1
]

rep-
resents the functor PsMSch(r, n,N), defined in (8.45). �

8.49 (Boundedness conditions). The schemes EsMSch(r, n,PN) have infinitely
many irreducible components since we have not fixed the degrees of X and of
the divisors Di. Set

degL(X; D1, . . . ,Dr) :=
(
degL X, degL D1, . . . , degL Dr) ∈ Nr+1. (8.49.1)

This multidegree is a locally constant function on EsMSch(r, n,PN), hence its
level sets give a decomposition

EsMSch(r, n,PN) = qd∈Nr+1 EsMSch(r, n,d,PN). (8.49.2)

The schemes EsMSch(r, n,d,PN) are still not of finite type since the fibers are
allowed to be nonreduced. However, the subscheme

EsMV(r, n,d,PN) ⊂ EsMSch(r, n,d,PN), (8.49.3)

which parametrizes geometrically reduced fibers, is quasi-projective, though
usually non-projective, reducible and disconnected.

Definition 8.50. A family of marked pairs f : (X,∆) → S as in (8.4) is m-
canonically strongly polarized if
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(8.50.1) ωX/S is locally free outside a codimension ≥ 2 subset of each fiber,
(8.50.2) ω[m]

X/S (m∆) is a line bundle, and

(8.50.3) ω[m]
X/S (m∆) is strongly f -ample.

If X ⊂ PN
S then f : (X,∆) → S is m-canonically strongly embedded if, in

addition,
(8.50.4) ω[m]

X/S (m∆) ' OPN (1) ⊗ f ∗MS for some line bundle MS on S .
These define the functors CmPsMSch and CmEsMSch.

Theorem 8.51. Fix m, n,N ∈ N and a rational vector a = (a1, . . . , ar). Then
the functor CmEsMSch(a, n,PN) is represented by a monomorphism

CmEsMSch(a, n,PN
Z )→ EsMSch(r, n,PN

Z )

Proof Start with the universal family, as in (8.46.3),

F :
(
X,D1, . . . ,Dr; L

)
→ EsMSch(r, n,PN

Z ).

Note that (8.50.1) is an open condition and it holds iff ωXs is locally free out-
side a closed subset of codimension ≥ 2 of Xs for every s ∈ S . Being a line
bundle is representable by (3.30) and, once it holds, being a strong polarization
is an open condition. Applying (3.22) to ω[m]

X/S (m∆)(−1) shows that condition
(8.50.4) is representable. �

By (4.45), if KX/S + ∆ is Q-Cartier, then the stable fibers are parametrized
by an open subset, at least in characteristic 0. Thus we get the following.

Corollary 8.52. Fix m, n,N ∈ N and a rational vector a = (a1, . . . , ar). Then,
over SpecQ, there is an open subscheme

CmESP(a, n,PN
Q) ⊂ CmEsMSch(a, n,PN

Q),

representing the functor of m-canonically, strongly embedded, stable families.

Warning 8.52.1. The reduced subspace of CmESP is the correct one, but its
scheme structure is still a little too large. The reason is that (8.7.3) imposes
restrictions on ω[r]

X/S
(
r∆

)
for various values of r, so we took care only of our

chosen m (and its multiples).
We dropped the superscript from Es since, as we noted in (8.38), an m-

canonical polarization is automatically strong.

8.6 Moduli spaces as quotients by group actions
Notation 8.53. For a scheme S , we use PGLn(S ) to denote the group scheme
PGLn over S . We will formulate definitions and results for general algebraic
group schemes whenever possible, but in the applications we use only PGLn,
which is smooth and geometrically reductive.
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Keep in mind that, if k is a field, then in the literature PGLn(k) usually de-
notes the k-points of the group scheme PGLn, not PGLn(Spec k). It is custom-
ary to use PGLn to denote PGLn(SpecZ) if we work with arbitrary schemes
and PGLn(SpecQ) if we work in characteristic 0.

8.54 (Comment on algebraic spaces). We will consider quotients of schemes
by algebraic groups, primarily PGLn. It turns out that in many cases such quo-
tients are not schemes, but algebraic spaces. For this reason, it is natural to
formulate the basic definitions using algebraic spaces.

In our cases, these quotients turn out to be schemes, even projective, but this
is not easy to prove.

In any case, this means that the reader can substitute ‘scheme’ for ‘algebraic
space’ in the sequel, without affecting the final theorems.

Definition 8.55. An action of an algebraic group scheme G on an algebraic
space X is a morphism σ : G × X → X that satisfies the scheme theoretic
version of the condition g1(g2(x)) = (g1g2)(x). That is, the diagram

G ×G × X

m×1X
��

1G×σ // G × X

σ
��

G × X σ // X

commutes. If G acts on X1, X2 then π : X1 → X2 is a G-morphism if the fol-
lowing diagram commutes.

G × X1

1G×π
��

σ1 // X1

π

��
G × X2

σ2 // X2.

The categorical quotient is a G-morphism q : X → Y such that the G-action is
trivial on Y and q is universal among such.

Fix N and consider the functor PsSch(N) of strongly polarized schemes of
embedding dimension N. By (8.42), its embedded version has a moduli space
with a universal family Univstr(PN) → Hilbstr(PN). The connection between
the two versions is the following impressive sounding, but quite simple claim.

Theorem 8.56. The categorical quotient Hilbstr(PN)/PGLN+1 is also the cate-
gorical moduli space PsSch(n,N).

Proof We have a universal family over Hilbstr(PN), so we get Hilbstr(PN) →
PsSch(n,N) which is PGLN+1-equivariant.
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Conversely, let f : (X, L) → S be a family in PsSch(n,N). Then f∗L is lo-
cally free of rank N + 1 on S , hence S has an open cover S = ∪S i such that
each f∗L|S i is free. Choosing a trivialization gives embedded families, hence
morphisms φi : S i → Hilbstr(PN). Over S i ∩ S j we have two different trivial-
izations, these differ by a section of gi j ∈ H0(S i∩S j,PGLN+1). Thus, compos-
ing with the quotient map q : Hilbstr(PN) → Hilbstr(PN)/PGLN+1 we get that
q◦ (φi|S i∩S j ) = q◦ (gi j(φ j|S i∩S j )

)
= q◦ (φ j|S i∩S j ), since q is PGLN+1-equivariant.

Thus the q ◦ φi glue to a morphism φ : S → Hilbstr(PN)/PGLN+1. �

Remark 8.56.1. Since one can glue a morphism from étale charts, we see that
PsSchet and PsSch have the same categorical moduli spaces (8.40.5). For those
conversant with stacks, this argument proves (8.43) and (8.48).

The same proof applies to pairs and we get the following.

Corollary 8.57. Fix m, n,N ∈ N and a rational vector a = (a1, . . . , ar). Then
the categorical quotient CmESP(a, n,PN

Q
)/PGLN+1 is also the categorical mod-

uli space of SP(a, n, ∗,m,N), the functor of stable families that have an m-
canonical, strong embedding into PN . �

Existence of quotients

Let G be an algebraic group acting on an algebraic space X. Under very mild
conditions the categorical quotient X/G exists, but it may be very degenerate.
For example, consider An

k with the scalar Gm-action xi 7→ λxi. Then An/Gm =

Spec k, but (An \ {0})/Gm = Pn−1. Note that here the stabilizer is Gm for the
origin, but trivial for every other point. This and many other examples suggest
that points with infinite stabilizer cause problems.

With PGLN+1 acting on the Hilbert scheme, the stabilizer of the point [X]
corresponding to a strongly embedded X ⊂ PN is the automorphism group of
the polarized scheme

(
X,OX(1)

)
. As we saw in Section 1.8, infinite automor-

phism groups cause many problems.
We get the best results if all automorphism groups are trivial; we discuss

these in Section 8.7. For stable pairs the automorphism groups are finite, but
we need a scheme-theoretic version of this.

Definition 8.58 (Proper action). Let σ : G × X → X be an algebraic group
scheme acting on an algebraic space X. Combining σ with the coordinate pro-
jection to X gives (σ, πX) : G×X−→X×X. The action is called proper if (σ, πX)
is proper and called free if (σ, πX) is a closed embedding. Note that the preim-
age of a diagonal point (x, x) is the stabilizer of x. Thus free implies that all
stabilizers are trivial and, if G is affine (for example PGL) then proper im-
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plies that all stabilizers are finite. (The converses are, however, not true; see
(Mumford, 1965, p.11).)

Assume that X ⊂ CmESP(a, n,PN) parametrizes pluricanonically embedded
stable subvarieties in PN and G = PGLN+1. We claim that the properness of the
PGLN+1-action is equivalent to the uniqueness of stable extensions considered
in (2.50) (and called separatedness there).1

Over X we have a universal family Y → X. Let T be the spectrum of a
DVR with generic point η and (q1, q2) : T → X × X a morphism. Thus the
q∗i Y → T give families of stable varieties over T . The generic point η lifts to
G × T iff there is a g(η) ∈ Gη such that q1(η) = σ

(
g(η), q2(η)

)
. Equivalently, if

the generic fibers (q∗1Y)η and (q∗2Y)η are isomorphic. (2.50) then says that the
families q∗1Y and q∗2Y are isomorphic. This isomorphism gives qG : T → G and
(qG, q2) : T → G × X shows that the valuative criterion of properness holds for
G × X → X × X.

Now we come to the definition of the right class of quotients.

Definition 8.59. (Mumford, 1965, p.4) Let G be an algebraic group scheme
acting on an algebraic space X with categorical quotient q : X → X/G (8.55).
It is called a geometric quotient if
(8.59.1) q(K) : X(K)/G(K) → (X/G)(K) is a bijection of sets, whenever K is

algebraically closed,
(8.59.2) q is of finite type and universally surjective, and
(8.59.3) OX/G = (q∗OX)G.
The geometric quotient is denoted by X//G.

The fundamental theorem for the existence of geometric quotients is the
following. Seshadri (1962/1963, 1972) came close to proving it. His ideas were
developed in Kollár (1997) to settle many cases, including PGL that we need.
The general case was treated in Keel and Mori (1997); see Olsson (2016) for a
thorough treatment.

Theorem 8.60. Let G be a flat group scheme acting properly on an algebraic
space X. Then the geometric quotient X//G exists. �

For free actions, the quotient map is especially simple. Over fields, this is
proved in (Mumford, 1965, Prop.0.9). The general case follows from (Stacks,
2022, Tag 0CQJ).

Complement 8.61. Assume in addition that the G-action is free on X. Then
X → X//G is a principal G-bundle. �

1 This clash of terminologies is, unfortunately, well entrenched.

https://stacks.math.columbia.edu/tag/04WM
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For us the main application is the following.

Theorem 8.62. Fix m, n,N ∈ N and a rational vector a = (a1, . . . , ar). Then
the PGLN+1-action on CmESP(a, n,PN

Q
) (8.52) is proper.

Thus the geometric quotient CmESP(a, n,PN
Q

)//PGLN+1 exists and it is the
coarse moduli space of SP(a, n, ∗,m,N), the functor of stable families that
have an m-canonical, strong embedding into PN .

Proof For simplicity, write Univ → CmESP for the universal family over
CmESP(a, n,PN

Q
). Following (8.58), we need to show that

PGLN+1 × CmESP −→ CmESP×CmESP (8.62.1)

is proper. First we claim that (8.62.1) is isomorphic to

Isom
(
π∗1 Univ, π∗2 Univ

)
−→ CmESP×CmESP, (8.62.2)

where the πi : CmESP → CmESP×CmESP are the coordinate projections.
This is simply the statement that giving a stable pair (X,∆) plus two m-canoni-
cal embeddings into PN is the same as giving one m-canonical embedding into
PN plus an element of PGLN+1.

The properness of (8.62.2) follows from (8.64). The rest then follow from
(8.60) and (8.57). �

8.63 (Morphism schemes). For S -schemes X,Y let MorS (X,Y) be the set of
morphisms that commute with projections to S . We get the functor of mor-
phisms on S -schemes T 7→ MorT (XT ,YT ).

Claim 8.63.1. Assume that X → S is flat, proper and Y → S is of finite type.
Then the functor of morphisms is representable by a scheme MorS (X,Y).

Proof We can identify a morphism with its graph, which is in HilbS (X ×S Y)
since X → S is flat. Conversely, a subscheme Z ⊂ X ×S Y is the graph of a
morphism iff the first projection πX : Z → X is finite and (πX)∗OZ ' OX . The
first of these is always an open condition, for the second we need the flatness
of Z → S (10.54). �

We also get sets IsomS (X,Y), AutS (X) and schemes IsomS (X,Y) AutS (X).
that represent the functor of isomorphisms (resp. automorphisms). The identity
is always in automorphism, thus we have the identity section S ⊂ AutS (X). We
say that X is rigid (over S ) if S = AutS (X).

The definitions of Mor, Isom,Aut and Mor, Isom,Aut also apply to pairs.

With the definition of stable families in place, we get the following conse-
quence of (11.40) about isomorphism schemes.
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Proposition 8.64. Let fi : (Xi,∆i) → S be stable morphisms. Then the struc-
ture map IsomS

(
(X1,∆1), (X2,∆2)

)
→ S is finite.

Proof Choose m such that the divisors m(KXi/S + ∆i) are very fi-ample. Set
Fi := ( fi)∗OXi (mKXi/S + m∆i). Then

IsomS
(
(X1,∆1), (X2,∆2)

)
⊂ IsomS

(
PS (F1),PS (F2)

)
is closed, hence affine over S .

Let T be the spectrum of a DVR over k with generic point tg and φg : tg →
IsomS

(
(X1,∆1), (X2,∆2)

)
a morphism. We can view it as an isomorphism of

the generic fibers φg : (X1,∆1) ×S {tg} ' (X2,∆2) ×S {tg}. By (2.50), φg extends
uniquely to an isomorphism Φ : (X1,∆1) ×S T ' (X2,∆2) ×S T. This is the
valuative criterion of properness for IsomS

(
(X1,∆1), (X2,∆2)

)
, which is thus

both affine and proper, hence finite over S . �

Next we verify (1.77.1) for stable pairs.

Corollary 8.65. Let f : (X,∆)→ S be a stable morphisms. Then the structure
map π : AutS (X,∆)→ S is finite, the subset S ◦ ⊂ S of rigid fibers is open and
AutS (X,∆) = S iff Aut(Xs,∆s) is trivial for every geometric point s→ S .

Proof Finiteness follows from (8.64). The identity section gives that OS is a
direct summand of π∗OAutS (X,∆). Thus S ◦ is the complement of the support of
π∗OAutS (X,∆)/OS . The fibers of AutS (X,∆)→ S are the Aut(Xs,∆s). �

8.7 Descent
Let q : S ′ → S be a morphism of schemes and assume that we have an object
over S ′. We say that the object descends to S if it is isomorphic to the pull-back
of an object on S . Typical examples are
• a (quasi)coherent sheaf F′, in which case we want to get a (quasi)coherent

sheaf F on S such that F′ ' q∗F, or
• a morphism X′ → S ′, in which case we want to get a morphism X → S

such that X′ ' X ×S S ′.
A systematic theory was developed in (Grothendieck, 1962, Lec.1), treat-

ing the case when S ′ → S is faithfully flat; see also (Grothendieck, 1971,
Chap.VIII), (Bosch et al., 1990, Chap.6) or (Stacks, 2022, Tag 03O6) for more
detailed treatments. We explain the basic idea during the proof of (8.69).

Here we discuss the consequences of descent theory for the moduli of sta-
ble pairs; the main one is (8.71). We also prove some special cases that are
representative of the general theory, yet can be obtained by simpler methods.

8.66 (Functorial polarization). Kollár (1990) Let F be a subfunctor of PsSch.
A functorial polarization (of level r) of F assigns

https://stacks.math.columbia.edu/tag/03O6
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(8.66.1) to any ( f : (X, L) → S ) ∈ F (S ) another ( f : (X, L̄) → S ) ∈ F (S )
such that L̄ is equivalent to Lr, and

(8.66.2) to every q : S ′ → S an isomorphism σ(q) : q∗X(L̄) ' (q∗XL), such that

(8.66.3) σ(q ◦ q′) = σ(q′) ◦ (q′X)∗σ(q) for every q′ : S ′′ → S ′ and q : S ′ → S .
Note that in (2) we need to fix an isomorphism, it is not enough to say that the
two sides are isomorphic.

If the choice of L̄ is specified, then we say that F is functorially polarized.
The following are examples of functorial polarizations.

(8.66.4) If Ls ' ωXs for s ∈ S , then L̄ := ωX/S is a functorial polarization.
(8.66.5) If every family in F has a natural section σ : S → X, then we can
take L̄ := L ⊗ f ∗(σ∗L)−1. This applies, for instance, to pointed varieties and
(depending on our definition) to polarized abelian varieties.
(8.66.6) Assume that r := χ(Xs, Ls) is constant and positive for every (Xs, Ls)
in F . Then, using the notation of (3.24.3), L̄ := Lr ⊗ f ∗(det R q f∗L)−1 is a level
r functorial polarization.
(8.66.7)

(
P1,OP1 (1)

)
does not have a functorial polarization of level 1, since

that would lead to a nontrivial representation of Aut(P1) on H0(P1,OP1 (1)
)
'

k2. On the other hand,
(
P1, ω−1

P1

)
gives a functorial polarization of level 2.

Functorial polarizations also give natural line bundles on the base spaces
of families. Let F be a functorially polarized subfunctor of PSch. For any
( f : (X, L̄) → S ) ∈ F (S ) we get the line bundle det R q f∗

(
L̄⊗k) as in (3.24.3).

For k � 1 it is given by the simpler formula det f∗
(
L̄⊗k).

These line bundles are functorial for base changes, thus they give line bun-
dles on the moduli stack of F .

Uniqueness of descent now follows easily.

Proposition 8.67. Let S ′ → S be a faithfully flat morphism and X′ → S ′ a
flat, proper morphism such that X′ is rigid over S ′. Then there is at most 1
scheme X → S such that X′ ' X ×S S ′.

Proof Assume that we have X1 → S and X2 → S . Since the Xi ×S S ′ ' X′

are flat and proper, so are Xi → S . We aim to prove that IsomS (X1, X2) ' S .
To see this take any T → S ′, and note that

IsomT (X′T , X
′
T ) = IsomT

(
X1 ×S T, X2 ×S T

)
= MorS

(
T, IsomS (X1, X2)

)
.

If X′ is rigid over S ′ then IsomT (X′T , X
′
T ) has only 1 element, so MorS (T, S ) =

MorS
(
T, IsomS (X1, X2)

)
for every T . Thus S = IsomS (X1, X2). �

The simplest descent result is the following; see (1.73).
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Lemma 8.68. Let K/k be a finite, separable field extension and (X, L) a rigid,
functorially polarized, projective variety defined over K. Then (X, L) descends
to k iff (X, L) ' (Xσ, Lσ) for every σ ∈ Gal(k̄/k).

Proof We may assume that K/k is Galois. Then only theσ ∈ Gal(K/k) matter.
We get an action of Gal(K/k) on H0(X, L) by

H0(X, L)
σ−lin
−→ H0(Xσ, Lσ)

K−isom
−→ H0(X, L).

This is well defined since the K-isomorphism is unique, even on L. By the
fundamental lemma on quasilinear maps (see (Shafarevich, 1974, Sec.A.3))
there is a unique k-subspace V(X, L) ⊂ H0(X, L) such that V(X, L) ⊗k K =

H0(X, L). Since X = ProjK
∑

H0(X, Lm), we see that Xk := Projk
∑

V(X, Lm)
defines the descent. �

Theorem 8.69. Let S ′ → S be a faithfully flat morphism and f ′ : (X′, L′) →
S ′ a flat, functorially polarized projective morphism that is rigid over S ′. The
following are equivalent.
(8.69.1) f ′ : (X′, L′)→ S ′ descends to f : (X, L)→ S .
(8.69.2) For every Artinian scheme τ : A → S , the pull-back f ′A : (X′A, L

′
A) →

A is independent of the lifting τ′ : A→ S ′.
If S is normal and S ′ → S is smooth, then it is enough to check (2) for spectra
of fields.

Proof We just explain how this fits in the framework of faithfully flat descent,
for which we refer to (Stacks, 2022, Tag 03O6).

Let πi : S ′ ×S S ′ → S ′ denote the coordinate projections for i = 1, 2. Pulling
back f ′ : (X′, L′)→ S ′ to S ′ ×S S ′ by the πi, we get two families

f ′i : (X′i , L
′
i )→ S ′ ×S S ′.

If f : (X, L) → S exists then these are both isomorphic to the pull-back of
f : (X, L) → S , hence to each other σ12 : (X′1, L

′
1) ' (X′2, L

′
2). The existence

of σ12 is a necessary condition for descent. The key observation is that it is
not sufficient, one also needs certain compatibility conditions over the triple
product S ′ ×S S ′ ×S S ′. However, if (X′, L′) is rigid over S ′, then σ12 is unique
and the compatibility conditions are automatic.

To prove that σ12 exists, consider

π : IsomS ′×S S ′
(
(X′1, L

′
1), (X′2, L

′
2)
)
→ S ′ ×S S ′.

Since (X′, L′) is rigid over S ′, π is a monomorphism. Assumption (2) implies
that it is scheme-theoretically surjective, hence an isomorphism.

https://stacks.math.columbia.edu/tag/03O6
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If S ′ → S is smooth then S ′ ×S S ′ → S is also smooth, hence S ′ ×S S ′ is
normal if S is normal. In that case, surjectivity is a set-theoretic question. �

Corollary 8.70. Let G be a flat group scheme over S and S ′ → S a principal
G-bundle. Let f ′ : (X′, L′) → S ′ be a flat, functorially polarized projective
morphism that is rigid over S ′. Assume that the G actions lifts to (X′, L′).

Then f ′ : (X′, L′)→ S ′ descends to f : (X, L)→ S .

Proof We need to check assumption (8.69.2). So fix τ : A → S and liftings
τi : A → S ′. Then S ′A is a principal G-bundle with 2 sections τi. Thus τ2 =

g12 ◦ τ1 for some section g12 of GA. Since the G-action lifts to (X′, L′), the
corresponding pull-backs are isomorphic. �

Now we come to the main theorem.

Theorem 8.71. Let SPrigid ⊂ SP be the open subset parametrizing stable pairs
without automorphisms. Then there is a universal family over SPrigid.

Proof First note that SPrigid is indeed open by (8.65).
For rigid families the existence is a local question. We may thus fix the di-

mension n, the number of marked divisors r, the coefficient vector (a1, . . . , ar),
the volume v and the intended embedding dimension N.

First consider the case when the ai are rational and also fix m > 1, a multiple
of lcd(a1, . . . , ar). Set d := (n, r, a1, . . . , ar,m, v,N).

Let SP(d)(S ) denote the set of marked families f : (X,∆) → S with these
numerical data, for which m(KX/S + ∆) is a Cartier Z-divisor and a strong
polarization, and such that f∗OX

(
m(KX/S + ∆)

)
has rank N + 1. Similarly, let

EMSP(d)(S ) denote the set of these objects together with a strong embedding
into PN

S .
By (8.52) we have the moduli spaces EMSPrigid(d) ⊂ EMSP(d), with uni-

versal families. By (8.61), EMSPrigid(d) → SPrigid(d) is a principal PGLN+1-
bundle. Hence the universal family over EMSPrigid(d) descends to SPrigid(d) by
(8.70).

The case of irrational coefficients is very similar. We need to work with the
rational approximations

(
X, σm

j (∆)
)
→ S as in (8.21). �

Complement 8.71.1. The same proof works for other variants of the moduli
of stable pairs, in particular we get universal families over the moduli space
MpSPrigid of rigid, pointed, stable pairs (8.44).

8.8 Positive characteristic
We discuss, mostly through examples, two types of problems that complicate
the moduli theory of pairs in positive characteristic.
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The first problem is that, as we already noted in (2.4), the four versions of the
definition of local stability in (2.3) are not equivalent in positive characteristic.
The first such examples are in Kollár (2022); these are families of 3-folds. In
(8.73) we discuss a series of higher dimensional examples that have very mild
singularities.

The second is due to p-torsion in local class groups, visible most clearly in
(4.39). As we see starting with (8.75), this issue appears already for the moduli
of 4 points on P1. This difficulty can be avoided either by working only over
weakly normal bases, or by a strong reliance on markings.

Theorem 8.72. Kollár (2022) Let k be an algebraically closed field of char-
acteristic , 0. There are flat, projective morphisms f : (X,∆)→ A1

k of relative
dimension 3, such that
(8.72.1) (X, Xt + ∆) is lc for every t ∈ A1,
(8.72.2)

(
X̄t,Diff X̄t

∆
)

is lc for every t ∈ A1,
(8.72.3)

(
X̄0,Diff X̄0

∆
)

lifts to characteristic 0, yet
(8.72.4) X0 is not weakly normal, Sing X0 is 1-dimensional, and X̄0 → X0 is

purely inseparable over Sing X0.

The singularities of the 3-folds in Kollár (2022) are rather complicated. We
discuss here instead another series of examples, arising from cones over ho-
mogeneous spaces. These are higher dimensional, but similar to the various
examples discussed in Section 2.3.

Example 8.73 (Kovács-Totaro-Bernasconi examples). Let X = G/P be a pro-
jective, homogeneous space. If P is reduced, then G/P is Fano and Kodaira
vanishing holds on X in any characteristic by the Bott-Kempf theorem.

The cases when P is non-reduced were studied in Haboush and Lauritzen
(1993). For some of these X = G/P is Fano, but Kodaira vanishing fails for
a multiple of the canonical class. The first example was identified by Kovács
(2018); giving a 7 dimensional canonical singularity in characteristic 2, that is
not CM. A large series of examples is exhibited in Totaro (2019), leading to
terminal singularities in any characteristic p > 0, that are not CM. These were
further studied by Bernasconi (2018).

Kollár (2022) observed that they can be used to construct stable degenera-
tions, where the generic fibers are smooth with ample canonical class and the
special fibers have isolated, non-normal singularities.

Assume that X = G/P as above and −KX = mH for some ample divisor H
for some m ≥ 1. |H| is very ample by Lauritzen (1996), so it gives an embed-
ding X ↪→ PN , where N = dim |H|. Let Y := C(X,H) ⊂ PN+1 be the projective
cone over X with vertex v.
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Let D ∈ |H| be a smooth divisor and DY ⊂ Y its preimage. Since KX + D ∼
(m−1)H, (2.35) shows that (Y,DY ) is a log canonical pair if m = 1, a canonical
pair if m > 1.

DY ⊂ Y is a Cartier divisor that is smooth outside v. Thus DY is nor-
mal ⇔ depthv DY ≥ 2 ⇔ depthv Y ≥ 3; see (2.36). Since Hi+1

v (Y,OY ) '∑
m∈ZHi(X,OX(mH)

)
by (2.35.1), DY is normal iff H1(X,OX(mH)

)
= 0 for

all m ∈ Z by (10.29.5).
Therefore, if H1(X,OX(H)

)
, 0, then DY is not normal. Intersecting Y with a

pencil of hyperplanes with base locus Z = v, we get a locally stable morphism
π : BZY → P1. It has 1 fiber isomorphic to DY , the others are isomorphic to X.

Taking a suitable cyclic cover (2.13), we get a series of examples of stable
families, where the generic fibers are smooth varieties with ample canonical
class and the special fibers have isolated non-normal singularities.

The cases described in Totaro (2019) have m = 2. Then the normalization
of DY has canonical singularities, hence these families occur in what is usually
considered the ‘interior’ of the moduli space.

Aside 8.73.1. Another class of non-CM, cyclic, quotient singularities is de-
scribed in Yasuda (2019). These all have depth ≥ 3 by Ellingsrud and Skjel-
bred (1980), so they do not lead to families as in (8.72).

8.74 (Cartier or Q-Cartier?). One of the early key conceptual steps of the
Minimal Model Program was the realization that, starting with dimension 3,
minimal models can be singular. Moreover, their canonical class need not be
Cartier. It was gradually understood that the more general Q-Cartier condition
is the important one.

In moduli theory we frequently start with pairs (X, B) where X is smooth
and B is Cartier, but in compactifying their moduli space we encounter pairs
(X′, B′) where X′ is singular and KX′ is onlyQ-Cartier. Thus the usual approach
is to work with pairs (X, B) where KX + B is Q-Cartier.

Next we discuss various problems that arise when the denominators involve
the characteristic.

8.75 (Moduli of points on P1). We consider the moduli problem of n = 2r+1 ≥
3 unordered, distinct points in P1. Fix an index set I of n elements. There is only
one natural way of defining the objects of this theory.
(8.75.1) (Geometric objects)

(
P1,

∑
i∈I[pi]

)
where the pi are distinct points.

(8.75.2) (Objects over a field)
(
P1,Z

)
where Z ⊂ P1 is a geometrically re-

duced, 0-dimensional subscheme of degree n.
The question becomes more subtle when families are considered.
(8.75.3) (Families)

(
PS → S ,D

)
where PS → S is a locally trivial P1-bundle
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and D ⊂ PS is a divisor over S of degree n. For ordered points the tra-
ditional choice is to take D to be a union of sections of PS → S , but for
unordered points we have two natural choices.
(3.a) (Cartier) D is a relative Cartier divisor over S .
(3.b) (Q-Cartier) D is a relative Q-Cartier divisor over S .
The first is closest to the traditional choice of union of sections, the second
is more in the spirit of the higher dimensional theory.

(8.75.4) (Base spaces) Ideally we should work over arbitrary base schemes,
but it turns out that unexpected things happen even when the base is quite
nice. We consider three classes of base schemes.
(4.a) (Reduced)
(4.b) (Seminormal)
(4.c) (Weakly normal)

The cases (3.a–b) and (4.a–c) are in principle independent, thus we have six
different settings for the moduli problem. We might expect that, for all of them,
M0,n/S n '

(
Symn P1 \ (diagonal)

)
/PGL2 is a fine moduli space.

Theorem 8.76. Consider the above six settings of the moduli problem of n ≥ 3
unordered points in P1 over a field k.
(8.76.1) If char k = 0 then M0,n/S n is a fine moduli space in all six settings.
(8.76.2) If char k > 0 then M0,n/S n is a fine moduli space, provided either

(8.75.3.a) or (8.75.4.c) holds.
(8.76.3) If char k > 0 and we are in (8.75.3.b+4.a) or (8.75.3.b+4.b), then

M0,n/S n is not even a coarse moduli space. In fact the categorical moduli
space (1.9) is Spec k.

Proof Let
(
PS → S ,D

)
be as in (8.75.3). If D is flat over S , then choosing

an open cover S = ∪ jU j and isomorphisms PU j ' P
1 × U j gives morphisms

φ j : U j → Hilbn(P1). Changing the local trivialization changes the φ j by an ele-
ment of Aut(P1). Thus the φ j glue to give a global morphism φ : S → M0,n/S n.

Since PS → S is smooth, a relativelyQ-Cartier divisor D is Cartier by (4.39)
if char k = 0. The same holds in any characteristic if the base is weakly normal
by (4.41). In both cases D is flat over S , showing (1) and (2).

The proof of (3) relies on the following construction.
Let k be a field of characteristic p > 0, B a smooth projective curve over k

and S a k-variety, for example a smooth curve. Let ∆ be an effective, relative
Cartier divisor on B × S → S . Any universal homeomorphism τ : S → T
(10.78) factors through a power of the Frobenius (for some q = pm) as

Fq : S
τ
−→ T

τ′

−→ S .
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Taking product with B we get τB : B× S → B×T and τ′B : B×T → B× S . Set
∆T := (τB)∗∆ on B× T . If τ is birational, the coefficients of ∆T are the same as
the coefficients of ∆. Also, ∆T is Q-Cartier since q∆T = (τ′B)∗∆. However, the
Cartier index may get multiplied by q. We have thus proved the following.

Claim 8.76.4. If (B×S ,∆)→ S is in our moduli problem using (8.75.3.b), then
so is (B × T,∆T )→ T . �

A typical example with concrete equations is in (4.12).

Assume now that we work in the settings (8.75.3.b+4.a) or (8.75.3.b+4.b).
Let Mn be the categorical moduli space. If

(
P1 × S ,D

)
is a family of n points

on P1, then we get a moduli map φ : S → Mn. By the above construction, for
any τ : S → T we get a factorization φ : S

τ
→ T→Mn.

Corollary 8.76.5. If the universal push-out of all the above τ : S → T is S →
Spec k, then the moduli map φ : S →Mn is constant.

Instead of proving this in general, we work out some typical examples.

Example 8.76.6. The map Spec k[x]→ Spec k
[
(x− c)r, (x− c)s] is a birational,

universal homeomorphism for any (r, s) = 1 and c ∈ k. The universal push-out
of all of them is Spec k[x]→ Spec k; cf. (10.87).

Indeed, if f (x) ∈ k
[
(x− c)r, (x− c)s] vanishes at c then it has a zero of multi-

plicity ≥ min{r, s}. Thus only the constants are contained in the intersection of
all of them.

This settles (8.75.3.b+4.a), but the curves Spec k
[
(x − c)r, (x − c)s] are not

seminormal if r, s > 1. Over an algebraically closed field k, there are 2-
dimensional seminormal examples.

Example 8.76.7. Set Rq := k[x] + (yq − x)k[x, y] ⊂ k[x, y]. Rq is seminormal,
but not weakly normal and its normalization is k[x, y]. The conductor ideal is
(yq − x)k[x, y]. It is a principal ideal in k[x, y], but not in Rq.

The map Spec k[x, y] → Spec Rq is birational. It is again easy to check that
the universal push-out of all of them is Spec k[x, y] → Spec k[x]. Thus if we
combine the maps Spec k[x, y] → Spec Rq with all linear coordinate changes,
then the universal push-out is Spec k[x, y]→ Spec k. �



Chapter 9

Hulls and Husks

Given a coherent sheaf F over a proper scheme, the quot-scheme parametrizes
all quotients F � Q. In many applications it is necessary to understand not
only surjections F � Q but also ‘almost surjections’ F → G. Such objects
are called quotient husks. Special cases appeared in Kollár (2008a); Pandhari-
pande and Thomas (2009); Alexeev and Knutson (2010); Kollár (2011b). In
this chapter we study quotient husks, prove that they have a fine moduli space
QHusk(F), and then apply this to families of hulls.

The notion of the hull of a coherent sheaf F is the generalization of the
concept of reflexive hull of a module over a normal domain. In Section 9.1
we discuss the absolute case, denoted usually by F[∗∗], and in Section 9.2 the
relative case, denoted by FH . For many applications the key is the following.

Question 9.1. Let f : X → S be a proper morphism and F a coherent sheaf on
X. Do the hulls F[∗∗]

s of the fibers Fs form a coherent sheaf that is flat over S ?

If the answer is yes, the resulting sheaf is called the universal hull of F over
S . Local criteria for its existence are studied in Section 9.3.

In order to get global criteria, husks and quotient husks are defined in Sec-
tion 9.4. In Section 9.5, the first main result of the Chapter proves that if X → S
is projective and F is a coherent sheaf on X then the functor of all quotient
husks with a given Hilbert polynomial has a fine moduli space QHuskp(X),
which is a proper algebraic space over S . The proof closely follows the argu-
ments given in Kollár (2008a).

This is used in a global study of hulls in Section 9.6. A third answer to our
question is given in Section 9.7 in terms of a decomposition of S into locally
closed subschemes. Local versions of these results are studied in Section 9.8.

Assumptions. In this chapter we are mostly interested in schemes of finite type
over an arbitrary base scheme.

However, the results of Section 9.1 work for Noetherian schemes that have
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a dimension function dim( ), such that closed points have dimension 0, and if
W1 ( W2 is a maximal (with respect to inclusion) irreducible subscheme of
an irreducible W2 ⊂ X, then dim W1 = dim W2 − 1. (That is, X is catenary
(Stacks, 2022, Tag 02I0).) This holds for schemes of finite type over a local
CM scheme; see (Stacks, 2022, Tags 00NM and 02JT).

9.1 Hulls of coherent sheaves
We use the results on S 2 sheaves, to be discussed in Section 10.1.

Let X be an integral, normal scheme and F a coherent sheaf on X. The
reflexive hull of F is the double dual F∗∗ := HomX

(
HomX(F,OX),OX

)
. We

would like to extend this notion to arbitrary schemes and arbitrary coherent
sheaves. For this the key properties of the reflexive hull are the following.
• F∗∗ is S 2, and
• F∗∗ is the smallest S 2 sheaf containing F/(torsion).
These are the properties that we use to define the hull of a sheaf. Note, however,
that for this we need to agree what the ‘torsion subsheaf’ of a sheaf should be.
Two natural candidates, emb(F) and tors(F), are discussed in (10.1).

Here we work with tors(F), the largest subsheaf whose support has dimen-
sion < dim F. An advantage is that pure(F) := F/ tors(F) is pure dimensional;
but one needs the dimension function to be reasonable. A theory of hulls using
emb(F) is developed in Kollár (2017).

A useful property of pure sheaves is the following.

Lemma 9.2. Let p : X → Y be a finite morphism and F a coherent sheaf on
X. Then F is pure and S m iff p∗F is pure and S m.

Proof The last remark of (10.2) implies that the depth is preserved by push-
forward. Thus the only question is whether (co)dimension is preserved or not;
this is where our assumptions on the dimension function come in. �

Definition 9.3 (Hull of a sheaf). Let X be a scheme and F a coherent sheaf on
X. Set n = dim F. The hull of F is a coherent sheaf F[∗∗] together with a map
q : F → F[∗∗], such that
(9.3.1) Supp(ker q) has dimension ≤ n − 1,
(9.3.2) Supp(coker q) has dimension ≤ n − 2, and
(9.3.3) F[∗∗] is pure and S 2.
We sometimes say S 2-hull or pure hull if we want to emphasize these proper-
ties. We see below that a hull is unique and it exists if X is excellent.

By definition, F[∗∗] = (F/ tors(F))[∗∗], hence it is enough to construct hulls
of pure, coherent sheaves.

The notation F[∗∗] is chosen to emphasize the close connection between the

https://stacks.math.columbia.edu/tag/02I0
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hull and the reflexive hull F∗∗; see (9.4). We introduce a relative version, de-
noted by FH in (9.8).

The following property is clear from the definition.

(9.3.4) Let G be a pure, coherent, S 2 sheaf and F ⊂ G a subsheaf. Then
G = F[∗∗] iff dim(G/F) ≤ dim G − 2.

From (9.2) and (10.10) we obtain the following base change properties of hulls.

(9.3.5) Let p : X → Y be a finite morphism. Then p∗
(
F[∗∗]) =

(
p∗F

)[∗∗].

(9.3.6) Let g : Z → X be flat, pure dimensional, with S 2 fibers. Then there is
a natural isomorphism g∗

(
F[∗∗]) =

(
g∗F

)[∗∗].

Proposition 9.4. Let X be an irreducible, normal scheme and F a torsion free
coherent sheaf on X. Then F[∗∗] = F∗∗ := HomX

(
HomX(F,OX),OX

)
.

Proof F is locally free outside a codimension ≥ 2 subset Z ⊂ X. Thus the
natural map F → F∗∗ is an isomorphism over X \ Z. Since F∗∗ is S 2 by (10.8),
it satisfies the assumptions of (9.3). �

This can be used to construct the hull over schemes of finite type over a
field. Indeed, we may assume that X is affine and X = Supp F. By Noether
normalization, there is a finite surjection p : X → An. Thus, by (9.3.5) and
(9.4), F[∗∗] can be identified with

(
p∗F

)∗∗, as a p∗OX-module. Hulls also exist
over excellent schemes; see Kollár (2017) for a more general result.

Proposition 9.5. Let F be a pure, coherent sheaf on an excellent scheme X.

(9.5.1) There is a closed subset Z ⊂ Supp F of dimension ≤ dim F − 2, such
that F is S 2 over X \ Z.

(9.5.2) Let Z ⊂ Supp F be any closed subset of dimension ≤ dim F − 2, such
that F is S 2 over U := X \ Z. Then F[∗∗] = j∗

(
F|U

)
, and, for every coherent

sheaf G, every morphism G|U → F|U uniquely extends to G → F[∗∗].

Proof The first claim follows from (10.27). To see (2), note that j∗
(
F|U

)
is

coherent by (10.26), S 2 over U by assumption, and depthZ j∗
(
F|U

)
≥ 2 by

(10.6). Thus j∗
(
F|U

)
is a hull of F and we get τ : G → j∗

(
G|U

)
→ j∗

(
F|U

)
.

Let F[∗∗] be any hull of F. Then F[∗∗]|U is a hull of F|U ; let W ⊂ U be
the support of their quotient. Then codimX W ≥ 2 hence F[∗∗]|U = F|U by
(10.6.2). Thus we get a map F[∗∗] → j∗

(
F|U

)
. Applying (10.6) again gives that

F[∗∗] = j∗
(
F|U

)
. �

Corollary 9.6. Let 0 → F1 → F2 → F3 be an exact sequence of coherent
sheaves of the same dimension. Then the hulls also form an exact sequence
0→ F[∗∗]

1 → F[∗∗]
2 → F[∗∗]

3 . �
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9.7 (Quasi-coherent hulls). Following (9.5.2), one should define the hull of a
torsion-free, quasi-coherent sheaf F as F[∗∗] := lim

−−→
( jZ)∗

(
F|X\Z

)
, where Z runs

through all codimension ≥ 2 closed subsets of Supp F. It is easy to see that
F[∗∗] is S 2, as defined in (Grothendieck, 1968, Exp.III).

9.2 Relative hulls
Next we develop a relative version of the notion of hull for coherent sheaves
on a scheme X over a base scheme S .

In the absolute case, the hull is an S 2 sheaf that we can associate to any
coherent sheaf on X, in particular, the hull does not have embedded points.

In the relative case, assume for simplicity that f : X → S is smooth; then
OX should be its own ‘relative hull.’ Note, however, that the structure sheaf OX

has no embedded points if and only if the base scheme S has no embedded
points. Thus if we want to say that OX is its own ‘relative hull’ then we have
to distinguish embedded points that are caused by S (these are allowed) from
other embedded points (these are forbidden).

The distinction between these two types of embedded points seems to be
meaningful only if F is generically flat (3.26).

Definition 9.8 (Relative hull). Let f : X → S be a morphism of finite type
and F a coherent sheaf on X. Let n be the relative dimension of Supp F → S .
A hull (or relative hull) of F over S is a coherent sheaf FH together with a
morphism q : F → FH , such that1

(9.8.1) Supp(ker q)→ S has fiber dimension ≤ n − 1,
(9.8.2) Supp(coker q)→ S has fiber dimension ≤ n − 2,
(9.8.3) there is a closed subset Z ⊂ X with complement U := X \ Z such that

Z → S has fiber dimension ≤ n − 2, (F/ ker q) → FH is an isomorphism
over U, FH |U is flat over S with pure, S 2 fibers, and depthZ FH ≥ 2.

Note that Supp(coker q) ⊂ Z by (3), hence in fact (3) implies (2). We state the
latter separately to emphasize the parallels with (9.3).

Note that, while the hull always exists, the relative hull frequently does not;
see (9.13) for a criterion. We have the following obvious comparisons.

Claim 9.8.4. Assume that FH exists and S is reduced. Then (FH)g = (Fg)[∗∗]

for every generic point g ∈ S . �

Claim 9.8.5. Assume that FH exists and S is S 2. Then FH = F[∗∗]. �

The converse fails. As an example, let f : X := A2
st → S := A1

t be the
projection and F ⊂ OX the ideal sheaf of the point (0, 0). Then F[∗∗] = OX , but
F → OX is not a relative hull since coker(F → OX) has codimension 1 on X0.
1 Fh would have been more consistent, but it is frequently used to denote the Henselization.
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Lemma 9.9. Let (0,T ) be the spectrum of a DVR, f : X → T a morphism of
finite type, and q : F → G a map between pure, coherent sheaves on X that
are flat over T . Then G is a relative hull of F iff Gg is the hull of Fg, G0 is
S 1, and q0 : F0 → G0 is an isomorphism outside a subset Z0 ⊂ Supp G0 of
codimension ≥ 2.

Proof Assume that G = FH and let Z ⊂ X be as in (9.8). By assumption
G|X\Z has S 2 fibers thus G|X\Z is S 2. Hence G is S 2 since depthZ G ≥ 2 and so
G0 is S 1 and q0 : F0 → G0 is an isomorphism outside X0 ∩ Z.

Conversely, if (1–3) hold then G is S 2 by (1–2). By (9.5) there is a closed
subset Z1 ⊂ X0 of codimension ≥ 2 such that F0 is S 2 over X0 \ Z1. Thus
q : F → G satisfies the conditions (9.8.1–3) where Z is the union of 3 closed
sets: Z0,Z1 and the closure of Supp(coker qg). �

Corollary 9.10. Let (0,T ) be the spectrum of a DVR, f : X → T a morphism
of finite type and F a pure, coherent sheaf on X that is flat over T . Then F = FH

⇔ F is S 2 ⇔ Fg is S 2 and F0 is S 1. �

Corollary 9.11 (Bertini theorem for relative hulls). Let (0,T ) be the spectrum
of a DVR, X ⊂ Pn

T a quasi-projective scheme and F a coherent sheaf on X with
relative hull q : F → FH . Then q|L : F|L → FH |L is the relative hull of F|L for
a general hyperplane L ⊂ Pn

T .

Proof We use (10.18) and (10.19) both for the special fiber X0 and the generic
fiber Xg. We get open subsets U0 ⊂ P̌

n
0 and Ug ⊂ P̌

n
g such that FH |L0 is S 1 for

L0 ∈ U0, (F/ tors(F))|L0 = (F|L0 )/ tors(F|L0 ) for L0 ∈ U0, the natural map
(F|L0 )/ tors(F|L0 ) → GL0 is an isomorphism outside a subset of codimension
≥ 2 for L0 ∈ U0, and FH |Lg is the hull of F|Lg for Lg ∈ Ug.

Let WT ⊂ P̌
n
T denote the closure of P̌n

g \Ug. For dimension reasons, WT does
not contain P̌n

0. Thus any hyperplane corresponding to a section through a point
of U0 \WT works. �

Definition 9.12 (Vertical purity). Let g : X → S be a finite type morphism and
G a coherent sheaf on X. We say that G is vertically pureof dimenion n, if for
every W ∈ Ass(G), every fiber of g|W : W → S is either empty or has pure
dimension n,

Let F be a coherent sheaf on X such that Supp F → S has relative dimen-
sion n. Let {Wi : i ∈ I} ⊂ Ass(F) be those associated subschemes for which
the generic fiber of g|Wi : Wi → S has dimension < n. Set Z := ∪i∈IWi. The
vertically pure quotient of F is vpure(F) := F/ torsZ(F), using the notation of
(10.1). Note that if q : F → FH is a relative hull, then vpure(F) = im q.
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Next we state the precise conditions needed for the existence of relative
hulls. Then we show that a relative hull is unique, generalizing (9.5).

Lemma 9.13. Let f : X → S be a morphism of finite type and F a coherent
sheaf on X. Let n denote the maximum fiber dimension of Supp F → S . Then
F has a relative hull iff
(9.13.1) F is generically flat (3.26), and
(9.13.2) there is an open j : U ↪→ X such that vpure(F)|U is a flat family of

S 2 sheaves and (Supp F \ U)→ S has fiber dimension ≤ n − 2.
If this holds, then
(9.13.3) FH = j∗

(
vpure(F)|U

)
is the unique relative hull of F over S , and

(9.13.4) any τU : G|U → F|U uniquely extends to τ : G → FH .

Proof If q : F → FH is a relative hull, then vpure(F) = im q, so the condi-
tions (9.13.1–2) are satisfied.

Conversely, if the conditions (9.13.1–2) are satisfied, then we can harmlessly
replace F by vpure(F). Then j∗

(
F|U

)
is coherent by (10.26), F → j∗

(
F|U

)
is

an isomorphism over U by construction, and depthZ j∗
(
F|U

)
≥ 2 by (10.6).

The last claim follows from the universal property of the push-forward and
it implies that FH is independent of the choice of U. �

Corollary 9.14. Let f : X → S be a morphism of finite type and G a coherent
sheaf on X that is flat over S with pure, S 2 fibers of dimension n. Let F ⊂ G
be a subsheaf. Then G = FH iff the fiber dimension of Supp(G/F) → S is
≤ n − 2. �

9.3 Universal hulls
For many applications a key question is to understand the behavior of relative
hulls under a base change.

Notation 9.15. Let f : X → S be a morphism of finite type and F a coherent
sheaf satisfying (9.13.1–2). As in (3.18.1), for any g : T → S we get

X
gX
←− XT := X ×S T

fT
−→ T.

Set UT := g−1
X (U) and FT := g∗XF. The relative hulls FH and (FT )H exists, and,

as in (3.27.2), we have restriction maps

rS
T : (FH)T → (FT )H . (9.15.1)

Definition 9.16. Let f : X → S be a morphism of finite type and F a coherent
sheaf on X satisfying (9.13.1–2).

We say that FH is a universal hull of F at x ∈ X if the restriction map rS
T
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(9.15.2) is an isomorphism along g−1
X (x) for every g : T → S . FH is a universal

hull of F if this holds at every x ∈ X. Equivalently, iff the functor F 7→ FH

commutes with base change.
We say that F 7→ FH is universally flat if (FT )H is flat over T for every

g : T → S .

The following theorem gives several characterizations of universal hulls.

Theorem 9.17. Let f : X → S be a morphism of finite type and F a coherent
sheaf on X that has a relative hull FH over S . The following are equivalent.
(9.17.1) FH is a universal hull of F.
(9.17.2) F 7→ FH is universally flat.
(9.17.3) FH is flat over S with pure, S 2 fibers.
(9.17.4) FH is flat over S with pure, S 2 fibers over closed points of S .
(9.17.5) rS

s : FH → (Fs)H is surjective for every closed point s ∈ S .
(9.17.6) (FA)H is a universal hull of FA for every Artinian scheme A→ S .

Proof The only obvious implications are (3)⇒ (4) and (1)⇒ (5), but (4)⇒
(3) directly follows from the openness of the S 2-condition (10.11).

Note that the properties in (3) are preserved by base change, thus
(
FH)

T is
flat over T and

(
(FH)T

)
t is S 2 for every point t ∈ T . By (9.14) this implies

that (FH)T is the relative hull of FT . Therefore (FH)T = (FT )H , so F 7→ FH is
universally flat and commutes with base change. That is, (3)⇒ (2) and (3)⇒
(1) both hold.

If (4) holds then
(
FH)

s = (Fs)H by (9.3.4), thus (4)⇒ (5). Applying (10.71)
to every localization of S at closed points shows that (5)⇒ (4).

Next we show that (2) ⇒ (6). We may assume that S = Spec A, where
(A,m) is a local, Artinian ring. Choose the smallest r ≥ 0 such that mr+1 = 0;
so mr ' ⊕iA/m, the sum of a certain number of copies of A/m. This gives an
injection jr : ⊕iFs ↪→ F which then extends to jH

r : ⊕i(Fs)H ↪→ FH .
Since FH is flat over A, the image jH

r
(
⊕i(Fs)H)

is also isomorphic to (mr)⊗A

FH which is the same as ⊕i(FH)s. Thus (Fs)H = (FH)s and, by the above
arguments, (2) implies the properties (1–5) for local, Artinian base schemes.

In order to see (6)⇒ (5) we may replace S by its completion at s. For r ∈ N
set Ar := SpecS OS /mr

s. By base change we get fr : Xr → Ar and Fr := F|Xr . By
assumption (Fr)H is flat over Ar and we have proved that F 7→ FH commutes
with base change over Artinian schemes. Set F̃ := lim

←−−
(Fr)H . Then F̃ is flat

over S , coherent by (Hartshorne, 1977, II.9.3.A), agrees with F over U, and
F̃ → FH

s is surjective. Thus F̃ = FH by (9.14), giving (5). �

We can restate the characterization (9.17.3) as follows.
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Corollary 9.18. Let f : X → S be a morphism of finite type, q : F → G a
map of coherent sheaves on X. Let n denote the maximum fiber dimension of
Supp(F)→ S . Then G is the universal hull of F over S iff the following hold.
(9.18.1) qs : Fs → Gs is an isomorphism at all n-dimensional points of Xs for

every s ∈ S .
(9.18.2) G is flat with purely n-dimensional, S 2 fibers over S , and
(9.18.3) Supp(coker(q))→ S has fiber dimension ≤ n − 2. �

Combining (9.18) and (10.12) shows that a relative hull is a universal hull
over a dense open subset of the base. Thus Noetherian induction gives the
following. A much more precise form will be proved in (9.40).

Corollary 9.19. Let f : X → S be a proper morphism and F a coherent sheaf
on X. Then there is a locally closed decomposition j : S ′ → S such that j∗XF
has a universal hull. �

The following example illustrates several aspects of (9.17).

Example 9.20. Let g : X → S be a flat family of projective varieties, S reduced
and connected, with g-ample line bundle L. As in (2.35), we get the relative
affine cone CS (X) := SpecS ⊕m∈N g∗OX(m), with vertex V ' S . Note that
CS (X) \V is a Gm-bundle over X, so flat over S . By contrast, CS (X) is flat over
S iff h0(Xs, Lm

s
)

is independent of s ∈ S for all m ∈ N.
The simplest examples where h0 jumps are given by taking X = C × Jac(C)

for some smooth curve C of genus ≥ 2 and L a universal line bundle of relative
degree 0 < d < 2g − 2.

In these cases, the structure sheaf of CS (X) is its own relative hull, but it is
not a universal hull.

9.4 Husks of coherent sheaves
Definition 9.21. Let X be a scheme and F a coherent sheaf on X. An n-
dimensional quotient husk of F is a quasi-coherent sheaf G together with a
homomorphism q : F → G such that
(9.21.1) G is pure of dimension n and
(9.21.2) q : F → G is surjective at all generic points of Supp G.
A quotient husk is called a husk, if n = dim F and
(9.21.3) q : F → G is an isomorphism at all n-dimensional points of X.
Note 9.21.4. If h ∈ Ann(F), then hG ⊂ G is supported in dimension < n, thus
it is 0. Therefore G is also an OX/Ann(F) sheaf, so we get the same husks if
we replace X with any subscheme containing SpecX

(
OX/Ann(F)

)
.

Any coherent sheaf F has a maximal husk M(F) := lim
−−→

( jZ)∗
(
F|X\Z

)
, where
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Z runs through all closed subsets of Supp F such that dim Z < dim F. If
dim F ≥ 1 then M(F) is never coherent, but it is the union of coherent husks.

Lemma 9.22. Let F be a coherent sheaf on X and q : F → G an n-dimensional
(quotient) husk of F.

(9.22.1) Let g : X → Z be a finite morphism. Then g∗G is an n-dimensional
(quotient) husk of g∗F.

(9.22.2) Let h : Y → X be a flat morphism of pure relative dimension r with
S 1 fibers. Then h∗G is an (n + r)-dimensional (quotient) husk of h∗F.

Proof If g is a finite morphism and M is a sheaf then the associated primes of
g∗M are the images of the associated primes of M. This implies (1). Similarly,
if h is flat then the associated primes of h∗M are the preimages of the associated
primes of M. Since h∗G is S 1 by (10.10), we get (2). �

9.23 (Bertini theorem for (quotient) husks). Let F be a coherent sheaf on a
quasi-projective variety X ⊂ Pn and q : F → G a coherent (quotient) husk. Let
H ⊂ Pn be a general hyperplane. Then G|H is pure by (10.18). If, in addition, H
does not contain any of the associated primes of coker q then q|H : F|H → G|H
is also a (quotient) husk.

Definition 9.24. Let X be a scheme and F a coherent sheaf on X. Set n :=
dim F. A husk q : F → G is called tight if q : F/ tors(F) ↪→ G is an isomor-
phism at all (n − 1)-dimensional points of X.

Thus the hull q : F → F[∗∗] defined in (9.3) is a tight husk of F. We see
below that the hull is the maximal tight husk.

Lemma 9.25. Let X be a scheme and F a coherent sheaf on X with hull
q : F → F[∗∗]. Let r : F → G be any tight husk. Then q extends uniquely to
an injection qG : G ↪→ F[∗∗]. Therefore F[∗∗] is the unique tight husk that is S 2.

Proof After replacing F with F/ tors(F) we may assume that F is pure. Set
Z := Supp(coker r) ∪ Supp(F[∗∗]/F). Then Z has codimension ≥ 2 and F is S 2

on X \ Z. Using (9.5.2) we get that G ⊂ j∗
(
G|X\Z

)
= j∗

(
F|X\Z

)
= F[∗∗]. If G is

also S 2, then, (9.5.2) gives that G = F[∗∗]. �

Lemma 9.26. Let X be a projective scheme, F a coherent sheaf of pure dimen-
sion n and F → G a quotient husk. The following are equivalent.

(9.26.1) G = F[∗∗].

(9.26.2) G is S 2 and χ
(
X, F(t)

)
− χ

(
X,G(t)

)
has degree ≤ n − 2.

(9.26.3) χ
(
X, F[∗∗](t)

)
≡ χ

(
X,G(t)

)
(identical as polynomials).
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Proof The exact sequence 0→ K → F → G → Q→ 0 defines K,Q and

χ
(
X, F(t)

)
− χ

(
X,G(t)

)
≡ χ

(
X,K(t)

)
− χ

(
X,Q(t)

)
.

Note that K has pure dimension n and dim Q ≤ n − 1. If G = F[∗∗] then K = 0
and dim Q ≤ n − 2 which implies (2) and (1)⇒ (3) is obvious.

Conversely, assume that χ
(
X, F(t)

)
− χ

(
X,G(t)

)
has degree ≤ n − 2. Since

deg χ
(
X,Q(t)

)
≤ n−1, we see that degχ

(
X,K(t)

)
≤ n−1. However, K has pure

dimension n, thus in fact K = 0 and so G is a tight husk of F. If G is S 2 then
(9.25) implies that G = F[∗∗], hence (2)⇒ (1).

Finally, if (3) holds then χ
(
X, F(t)

)
− χ

(
X,G(t)

)
has degree ≤ n − 2, hence,

as we proved, G is a tight husk of F. By (9.25.1) G is a subsheaf of F[∗∗]. Thus
G = F[∗∗] since they have the same Hilbert polynomials. �

Definition 9.27 (Husks over a base scheme). Let f : X → S be a morphism
and F a coherent sheaf on X. A quotient husk of F over S is a quasi-coherent
sheaf G on X, together with a homomorphism q : F → G such that,
(9.27.1) G is flat and pure over S , and
(9.27.2) qs : Fs → Gs is a quotient husk for every s ∈ S .
A quotient husk is called a husk if
(9.27.3) qs : Fs → Gs is a husk for every s ∈ S .
We sometimes omit ‘over S ’ if our choice of S is clear from the context. The
following properties are useful.
(9.27.4) Husks are preserved by base change. That is, let q : F → G be a
(quotient) husk over S and g : T → S a morphism. Set XT := X ×S T and let
gX : XT → X be the first projection. Then g∗Xq : g∗XF → g∗XG is a (quotient)
husk over T .
(9.27.5) Assume that f is proper and we have q : F → G where G is flat and
pure over S . By (10.54.1) there is a largest open S ◦ such that q◦ : F◦ → G◦ is
a quotient husk over S ◦ ⊂ S .

9.5 Moduli space of quotient husks
Definition 9.28. Let f : X → S be a proper morphism and F a coherent sheaf
on X. Let QHusk(F/S)(∗) (resp. Husk(F/S)(∗)) be the functor that to an S -
scheme g : T → S associates the set of all coherent quotient husks (resp. husks)
of g∗XF, where gX : T ×S X → X is the projection.

We write QHusk(F) andHusk(F) if the choice of S is clear.
By (10.54.1)Husk(F/S)(∗) is an open subfunctor of QHusk(F/S)(∗).
If f is projective, H is an f -ample divisor class and p(t) is a polynomial, then

QHuskp(F/S)(∗) (resp. Huskp(F/S)(∗)) denote the subfunctors of all coherent
quotient husks (resp. husks) of g∗XF with Hilbert polynomial p(t).
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The main existence theorem of this section is the following.

Theorem 9.29. Let f : X → S be a projective morphism and F a coherent
sheaf on X. Let H be an f -ample divisor class and p(t) a polynomial. Then
QHuskp(F/S) has a fine moduli space QHuskp(F/S ) → S , which is a proper
algebraic space over S .

When S is a point, the projectivity of QHuskp(F) is proved in Lin (2015),
see also Wandel (2015).

As we noted,Huskp(F/S) is represented by an open subspace Huskp(F/S ) ⊂
QHuskp(F/S ), which is usually not closed. There are, however, many impor-
tant cases when Huskp(F/S ) is also proper over S .

Corollary 9.30. Let f : X → S be a projective morphism and F a coher-
ent sheaf that is generically flat over S (3.26). Let H be an f -ample divi-
sor class and p(t) a polynomial. Then Huskp(F/S) has a fine moduli space
Huskp(F/S )→ S which is a proper algebraic space over S .

The implication (9.29)⇒ (9.30) is proved in (9.31), where we also establish
the valuative criteria of properness and separatedness for QHusk(F/S).

As a preliminary step, note that the problem is local on S , thus we may
assume that S is affine. Then f , X, F are defined over a finitely generated sub-
algebra of OS , hence we may assume in the sequel that S is of finite type.

9.31 (The valuative criteria of separatedness and properness). More generally,
we show that QHusk(F/S) satisfies the valuative criteria of separatedness and
properness whenever f is proper.

Let T be the spectrum of an excellent DVR with closed point 0 ∈ T and
generic point t ∈ T . Given g : T → S , let gX : T ×S X → X denote the projec-
tion. We have the coherent sheaf g∗XF and, over the generic point, a quotient
husk qt : g∗XFt → g∗XGt. We aim to extend it to a quotient husk q̃ : g∗XF → G̃.

Let K ⊂ g∗XF be the largest subsheaf that agrees with ker qt over the generic
fiber. Then g∗XF/K is a coherent sheaf on XT and none of its associated primes
is contained in X0. Thus g∗XF/K is flat over T . Let Z0 ⊂ X0 be the union of the
embedded primes of (g∗XF/K)0.

By construction qt descends to a morphism q′t : (g∗XF/K)t ↪→ g∗XGt. Let Zt ⊂

Supp(g∗XF/K)t be the closed subset where q′t is not an isomorphism and ZT ⊂

XT its closure. Finally set Z = Z0 ∪ (ZT ∩ X0).
The restriction of the sheaf g∗XF/K to XT \

(
Z0∪ZT

)
is flat and pure over T and

g∗XGt is pure on Xt = XT \ X0. Furthermore, when restricted to XT \ (X0 ∪ ZT ),
both of these sheaves are naturally isomorphic to g∗XF/K. Thus we can glue
them to get a single sheaf G′ defined on XT \ Z that is is flat and pure over T .
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Let j : XT \ Z ↪→ XT be the injection. By (10.6.6), G̃ := j∗G′ is the unique
extension that is flat and pure over T , hence q̃ : g∗XF → g∗XF/K → G̃ is the
unique quotient husk extending qt : Ft → Gt. Thus QHusk(F/S) satisfies the
valuative criteria of separatedness and properness.

If f is projective then G̃0 has the same Hilbert polynomial as Gt.
Finally note that if F is generically flat over S and qt : g∗XFt → g∗XGt is

a husk then K ⊂ g∗XF is zero at the generic points of X0 ∩ Supp g∗XF, thus
q̃ : g∗XF → g∗XF/K → G̃ is a husk.

This shows that if F is generically flat over S then Husk(F/S ) is closed in
QHusk(F/S ) hence (9.30) follows from (9.29).

9.32 (Construction of QHuskp(F/S )). We may assume that X = PN
S for some

N; the only consequence we actually need is that f∗OX = OS , and this holds
after any base change.

We use the existence and basic properties of quot-schemes (9.33) and hom-
schemes (9.34). Also, as we discuss in (9.35), there is fixed m, such that Gs(m)
is generated by global sections and its higher cohomologies vanish for all quo-
tient husks of Fs → Gs with Hilbert polynomial p(t). Thus each Gs(m) can be
written as a quotient of O p(m)

Xs
. Let

Qp(t) := Quot◦p(t)(O
p(m)
X ) ⊂ Quot(O p(m)

X )

be the universal family of quotients qs : O p(m)
Xs
� Ms that have Hilbert polyno-

mial p(t), are pure, have no higher cohomologies and the induced map

qs : H0(Xs,O
p(m)
Xs

)
→ H0(Xs,Ms

)
is an isomorphism. Openness of purity is the m = 1 case of (10.12), the other
two properties were discussed in (9.35).

Let π : Qp(t) → S be the structure map, πX : Qp(t) ×S X → X the second
projection and M the universal sheaf on Qp(t) ×S X.

By (10.54.1) the hom-scheme Hom(π∗XF,M) (9.34) has an open subscheme
Wp(t) parametrizing maps from F to M that are surjective outside a subset of
dimension ≤ n−1. Let σ : Wp(t) → Qp(t) be the structure map and σX : Wp(t)×S

X → Qp(t) ×S X the fiber product.
Note that Wp(t) parametrizes triples

w :=
[
Fw

rw
→ Gw

qw
� O p(m)

Xw
(−m)

]
where rw : Fw → Gw is a quotient husk with Hilbert polynomial p(t) and
qw(m) : O p(m)

Xw
→ Gw(m) is a surjection that induces an isomorphism on the

spaces of global sections.



9.5 Moduli space of quotient husks 355

Let w′ ∈ Wp(t) be another point corresponding to the triple[
Fw′

rw′
→ Gw′

qw′
� O p(m)

Xw′
(−m)

]
. such that

[
Fw

rw
→ Gw

]
'

[
Fw′

rw′
→ Gw′

]
.

The difference between w and w′ comes from the different ways that we can
write Gw ' Gw′ as quotients of OXw (−m)⊕p(t). Since we assume that the in-
duced maps

qw(m), qw′ (m) : H0(Xw,O
p(m)
Xw

)
⇒ H0(Xw,Gw(m)

)
= H0(Xw,Gw′ (m)

)
are isomorphisms, the different choices of qw and qw′ correspond to different
bases in H0(Xw,Gw(mH)

)
. Thus the fiber of Mor(∗,Wp(t)) → QHuskp(F/S)(∗)

over π ◦ σ(w) = π ◦ σ(w′) =: s ∈ S is a principal homogeneous space under
the algebraic group GL

(
p(m), k(s)

)
= Aut

(
H0(Xs,Gs(m)

))
.

Thus the group scheme GL
(
p(m), S

)
acts on Wp(t) and, arguing as in (8.56),

QHuskp(F/S ) = Wp(t)/GL
(
p(m), S

)
.

9.33 (Quot-schemes). Let f : X → S be a morphism and F a coherent sheaf
on X. Quot(F/S )(∗) denotes the functor that to a scheme g : T → S associates
the set of all quotients of g∗XF that are flat over T with proper support, where
gX : T ×S X → X is the projection.

If F = OX , then a quotient can be identified with a subscheme of X, thus
Quot(OX/S ) = Hilb(X/S ), the Hilbert functor.

If H is an f -ample divisor class and p(t) a polynomial, then Quotp(F/S )(∗)
denotes those flat quotients that have Hilbert polynomial p(t).

By (Grothendieck, 1962, Lect.IV), Quotp(F/S ) is bounded, proper, sepa-
rated and it has a fine moduli space Quotp(F/S ). See (Sernesi, 2006, Sec.4.4)
for a detailed proof.

Note that one can write F as a quotient of OPn (−m)r for some m, r, thus
Quotp(F/S ) can be viewed as a subfunctor of Quot(Or

Pn/S ). The theory of the
latter is essentially the same as the study of the Hilbert functor.

9.34 (Hom-schemes). Let f : X → S be a morphism and F,G quasi-coherent
sheaves on X. Let HomS (F,G) be the set of OX-linear maps of F to G.

For q : T → S we have HomS (FT ,GT ), where gX : T ×S X → X is the
projection and FT = g∗XF, GT = g∗XG.

As a special case of (Grothendieck, 1960, III.7.7.8–9), if f is proper, F,G are
coherent and G is flat over S , then this functor is represented by an S -scheme
HomS (F,G). That is, for any g : T → S , there is a natural isomorphism

HomT (FT ,GT ) ' MorS
(
T,HomS (F,G)

)
.

To see this, note first that there is a natural identification between
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(9.34.1) homomorphisms φ : F → G, and
(9.34.2) quotients Φ : (F + G)� Q that induce an isomorphism Φ|G : G ' Q.
Next let π : QuotS (F + G) → S denote the quot-scheme parametrizing quo-
tients of F + G with universal quotient u : π∗X(F + G) → Q, where πX denotes
the induced map πX : QuotS (F + G) ×S X → X.

Consider now the restriction of u to uG : π∗XG → Q. By (10.54) there is an
open subset

Quot◦S (F + G) ⊂ QuotS (F + G)

that parametrizes those quotients v : F + G → Q that induce an isomorphism
vG : G ' Q. Thus HomS (F,G) = Quot◦S (F + G). �

9.35 (Boundedness of quotient husks). Let us say that a set of sheaves {Fλ : λ ∈
Λ} is bounded if there is fixed m, such that, Fλ(m) is generated by global sec-
tions and its higher cohomologies vanish for all λ ∈ Λ.

By an argument going back to (Mumford, 1966, Lec.14), a set of pure
sheaves {Fλ : λ ∈ Λ} on PN with given Hilbert polynomial is bounded iff their
restrictions to general linear subspaces of codimension d − 1 are bounded; see
(Huybrechts and Lehn, 1997, 3.3.7) for a stronger result.

Since being a quotient husk commutes with restriction to general linear sub-
spaces (9.23), after replacing S by the Grassmannian GrS (PN−d+1,PN), it is
sufficient to prove boundedness in relative dimension 1.

If dim Fs = 1, then we can choose m such that Fs(m) is generated by global
sections and its H1 vanishes for all s ∈ S . Since coker(Fs → Gs) has dimension
0, we get that Gs(m) is also generated by global sections and its H1 vanishes

9.6 Hulls and Hilbert polynomials
Recall that we use � (resp. ≡) to denote the lexicographic ordering (resp. iden-
tity) of polynomials, see (5.14).

Let f : X → S be a projective morphism with relatively ample line bundle
OX(1). For a coherent sheaf F on X we aim to understand flatness of F and
of its hull FH in terms of the Hilbert polynomials χ

(
Xs, Fs(t)

)
of the fibers Fs.

Note that the χ
(
Xs, Fs(t)

)
carry no information about the nilpotents in OS , so

we assume that S is reduced.
As we noted in (3.20), s 7→ χ

(
Xs, Fs(∗)

)
is an upper semi-continuous func-

tion on S and F is flat over S iff this function is locally constant.
The next result says that the same holds for s 7→ χ

(
Xs, F

[∗∗]
s (∗)

)
. This does

not follow directly from (3.20), since in general there is no sheaf on X whose
fibers are F[∗∗]

s .

Theorem 9.36. Let f : X → S be a projective morphism with relatively ample
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line bundle OX(1) and F a mostly flat family of coherent, S 2 sheaves (3.26). As-
sume that S is reduced. Then s 7→ χ

(
Xs, F

[∗∗]
s (∗)

)
is an upper semi-continuous

function and the following are equivalent.
(9.36.1) s 7→ χ

(
Xs, F

[∗∗]
s (∗)

)
is locally constant on S .

(9.36.2) rS
s : Fs → F[∗∗]

s is an isomorphism for s ∈ S .
(9.36.3) F is flat over S with S 2 fibers (9.17).

Proof We follow the method of (5.30). By generic flatness (Eisenbud, 1995,
14.4), there is a dense open subset S ◦ ⊂ S such that FH is flat with S 2 fibers
(FH)s = F[∗∗]

s over S ◦. Thus the function s 7→ χ
(
Xs, F

[∗∗]
s (t)

)
is locally constant

on S ◦, hence constructible on S by Noetherian induction. Thus it is enough
to prove upper semicontinuity when (0 ∈ S ) is the spectrum of a DVR with
generic point g.

Then F is S 2 and flat over S . Thus χ
(
X0, F0(t)

)
≡ χ

(
Xg, Fg(t)

)
and F0 is

S 1, hence the restriction map (9.15) rS
0 : F0 → FH

0 is an injection. The exact
sequence

0→ F0 → FH
0 → Q0 → 0

defines Q0 and χ
(
X0, FH

0 (t)
)
≡ χ

(
X0, F0(t)

)
+ χ

(
X0,Q0(t)

)
. This gives that

χ
(
X0, FH

0 (t)
)
� χ

(
X0, F0(t)

)
≡ χ

(
Xg, Fg(t)

)
Equality holds iff rS

0 : F0 → FH
0 is an isomorphism, that is, when F0 is S 2.

We have thus proved that if s 7→ χ
(
Xs, F

[∗∗]
s (t)

)
is locally constant and S is

regular, 1-dimensional, then FH is flat over S with S 2 fibers. We show in (9.41)
that this implies the general case. �

Complement 9.36.4. If dim Q0 = 0 then we get that χ
(
X0, FH

0
)
≥ χ

(
Xg, Fg

)
and

equality holds iff rS
0 is an isomorphism

Proposition 9.37. Let f : X → S be a projective morphism with relatively am-
ple line bundle OX(1) and F a mostly flat family of coherent, S 2 sheaves. Then
FH is a universal hull iff for every local, Artinian ring (A,mA) with residue
field k = A/mA and every morphism Spec A→ S we have

χ
(
XA, (FA)H(t)

)
≡ χ

(
Xk, (Fk)H(t)

)
· length A.

Proof We show that the condition holds iff (FA)H is flat over A and then
conclude using (9.17.6).

Let U ⊂ X be the largest open set where F is flat with S 2 fibers. Pick a
maximum length filtration of A and lift it to a filtration

0 = GU
0 ⊂ GU

1 ⊂ · · · ⊂ GU
r = FA|UA ,
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such that GU
i+1/G

U
i ' Fk |Uk and r = length A. By pushing it forward to XA we

get a filtration

0 = G0 ⊂ G1 ⊂ · · · ⊂ Gr = (FA)H ,

such that Gi+1/Gi ⊂ (Fk)H . Therefore

χ
(
XA, (FA)H(t)

)
� χ

(
Xk, (Fk)H(t)

)
· length A.

Equality holds iff Gi+1/Gi = (Fk)H for every i, that is, iff FH
A is flat over A. �

The next result roughly says that local constancy of H0 implies flatness for
globally generated shaves. It is similar to Grauert’s theorem on direct images;
the key difference is that we do not have a flat sheaf to start with.

Proposition 9.38. Let f : X → S a proper morphism to a reduced scheme and
F a mostly flat family of coherent, S 2 sheaves on X. Assume that
(9.38.1) s 7→ h0(Xs, FH

s ) is a locally constant function on S , and
(9.38.2) FH

s is generated by its global sections for every s ∈ S .
Then FH is a universal hull and f∗

(
FH)

is locally free.

Proof Assume first that S is the spectrum of a DVR. We may replace F by
F[∗∗], hence assume that F is flat over S . Then Fs ↪→ FH

s is an injection and
we have inequalities

h0(Xg, Fg) ≤ h0(Xs, Fs
)
≤ h0(Xs, FH

s
)
. (9.38.3)

By (1) these are equalities. Since FH
s is generated by its global sections, this

implies that Fs = FH
s . As we explain in (9.41), this implies that FH is a univer-

sal hull for every S . The last claim then follows from Grauert’s theorem. �

9.7 Moduli space of universal hulls
Definition 9.39. Let f : X → S be a morphism and F a coherent sheaf on X.
As in (3.16.1)), for a scheme g : T → S set Hull(F/S)(T) = {∅} if g∗XF has a
universal hull, andHull(F/S)(T) = ∅ otherwise, where gX : T ×S X → X is the
projection.

If f is projective and p is a polynomial we setHullp(F/S)(T) = 1 if g∗XF has
a universal hull with Hilbert polynomial p.

The following result is the key to many applications of the theory.

Theorem 9.40 (Flattening decomposition for universal hulls). Let f : X → S
be a projective morphism and F a coherent sheaf on X. Then
(9.40.1) Hullp(F/S) has a fine moduli space Hullp(F/S ).
(9.40.2) Hullp(F/S )→ S is a locally closed embedding (10.83).
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(9.40.3) The structure map Hull(F/S ) = qp Hullp(F/S ) → S is a locally
closed decomposition (10.83).

Proof Let n be the relative dimension of Supp F/S and S n ⊂ S the closed
subscheme parametrizing n-dimensional fibers. We construct Hulln(F/S ), the
fine moduli space of n-dimensional universal hulls. Then repeat the argument
for S \ S n.

Let π : Husk(F/S ) → S be the structure map, πX : Husk(F/S ) ×S X → X
the second projection and quniv : π∗XF → Guniv the universal husk. The set of
points y ∈ Husk(F/S ) such that (Guniv)y is S 2 and has pure dimension n is open
by (10.12). The fiber dimension of

Supp coker[π∗XF → Guniv]→ Husk(F/S )

is upper semi-continuous. Thus there is a largest open set Wn ⊂ Husk(F/S )
parametrizing husks Fs → Gs such that Gs is S 2, has pure dimension n and
dim Supp Gs/Fs ≤ n − 2. By (9.18), Hulln(F/S ) = Wn.

Since hulls are unique (9.13), Hull(F/S ) → S is a monomorphism (10.82).
In order to prove that each Hullp(F/S )→ S is a locally closed embedding, we
check the valuative criterion (10.84).

Let (0,T ) be the spectrum of a DVR with generic point g and p : T → S a
morphism such that the hulls of Fg and of F0 have the same Hilbert polyno-
mials. Let Gg denote the hull of Fg and extend Gg to a husk FT → GT . By
assumption and by flatness

χ
(
X0, (GT )0(t)

)
≡ χ

(
Xg, (GT )g(t)

)
≡ χ

(
Xg, (Fg)H(t)

)
≡ χ

(
X0, (F0)H(t)

)
.

Hence (GT )0 = (F0)H by (9.26) and so GT is the relative hull of FT . Thus GT

defines the lifting T → Hullp(F/S ). �

9.41 (End of the proof of 9.36 and 9.38). By definition F has a universal hull
over Hull(F/S ), thus we need to show that τ : Hull(F/S ) → S is an isomor-
phism.

By (9.40) τ is a locally closed decomposition, and by (10.83.2) a proper,
locally closed decomposition is an isomorphism if S is reduced.

To check properness, let T be the spectrum of a DVR and p : T → S a
morphism. We already proved for both (9.36) and (9.38) that (p∗F)H is a uni-
versal hull. Thus p : T → S lifts to p̃ : T → Hull(F/S ), so Hull(F/S ) → S is
proper. �

Let f : X → S be a morphism. Two coherent sheaves F,G on X are called
relatively isomorphic or f -isomorphic if there is a line bundle LS on S such
that F ' G⊗ f ∗LS . We are interested in understanding all morphisms q : T → S
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such that the hulls of q∗XF and q∗XG are relatively isomorphic, that is, there is a
line bundle LT on T such that (q∗XF)H ' (q∗XG)H ⊗ f ∗T LT .

Proposition 9.42. Let f : X → S be a flat, projective morphism with S 2 fibers
such that H0(Xs,OXs ) ' k(s) for every s ∈ S . Let M1,M2 be mostly flat families
of divisorial sheaves on X. Then there is a locally closed subscheme i : S riso ↪→

S such that, for any q : T → S , the pull-backs q∗X M1 and q∗X M2 have relatively
isomorphic hulls iff q factors as q : T → S riso ↪→ S .

Proof Set L := HomX(M1,M2). Then q∗X M1 and q∗X M2 have relatively iso-
morphic hulls iff L is relatively isomorphic to OX .

We may assume that S is connected. Then p(∗) := χ
(
Xs,OXs (∗)

)
is inde-

pendent of s ∈ S . Thus i : S riso ↪→ S factors through Hullp(L/S ) → S . After
replacing S by Hullp(L/S ) it remains to prove the special case when L is flat
over S . The latter follows from (3.21). �

9.43 (Pure quotients). We get a similar flattening decomposition for pure quo-
tients. The proofs are essentially the same as for hulls, so we just state the
results.

Let f : X → S be a morphism of finite type and F a coherent sheaf on X.
We say that F is f -pure or relatively pure, if F is flat over S and has pure fibers
(10.1). We say that q : F → G is an f -pure quotient or relatively pure quotient
of F if G is f -pure and Gs = pure(Fs) for every s ∈ S . Note that ker q is then
the largest subsheaf K ⊂ F such that dim(Supp Ks) < dim(Supp Fs) for every
s ∈ S . In particular, a relatively pure quotient is unique.

This gives the functor of relatively pure quotients Pureq(F/S). If f is projec-
tive, it can be decomposed Pureq(F/S) = qpPureqp(F/S) using Hilbert poly-
nomials. As in (9.40), we get the following.

Claim 9.43.1. Let f : X → S be a projective morphism and F a coherent sheaf
on X. The functor of pure quotients is represented by a locally closed decom-
position Pureq(F/S )→ S . �

Arguing as in (9.36) gives the following.

Corollary 9.43.2. Let S be a reduced scheme, g : X → S a projective morphism
and F a coherent sheaf on X. Then F has a g-pure quotient F � G iff s 7→
χ
(
pure(Fs)(∗)

)
is locally constant on S . �

9.8 Non-projective versions

The proofs in Section 9.7 used in an essential way the projectivity of X → S .
Here we consider similar questions for non-projective morphisms in two cases.
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If X → S is affine then a good theory seems possible only if S is local and
complete. Then we study the case when X → S is proper.

For affine morphisms we have the following variant of (9.40).

Theorem 9.44. Let (S ,mS ) be a complete local ring, R a finite type S -algebra
and F a finite R-module that is mostly flat with S 2 fibers over S (3.28). Then
there is a quotient S � S u that represents Hull(F/S ) for local, Artinian S -
algebras.

Since universal hulls commute with completion (9.17.6), (9.44) implies the
same statement for complete, local S -algebras. That is, for every local mor-
phism h : (S ,mS )→ (T,mT ), the hull (FT )H is universal iff there is a factoriza-
tion h : S � S u → T .

Note that, compared with (9.40), we only identify the stratum containing the
closed point of Spec S .

Proof We follow the usual method of deformation theory Artin (1976); Se-
shadri (1975); Hartshorne (2010). As a first step we construct S u.

For an ideal I ⊂ S set FI := F ⊗ (R/IR). First we claim that if (FI)H and
(FJ)H are universal hulls then so is (FI∩J)H . Start with the exact sequence

0→ S/(I ∩ J)→ S/I + S/J → S/(I + J)→ 0. (9.44.1)

F is mostly flat over S , thus (9.44.1) stays left exact after tensoring by F and
taking the hull. Thus we obtain the exact sequence

0→ (FI∩J)H → (FI)H + (FJ)H → (FI+J)H . (9.44.2)

(FJ)H → (FI+J)H is surjective since (FJ)H is a universal hull, hence (9.44.2) is
also right exact.

Set k := S/mS . Since (FI)H is a universal hull, (FI)H ⊗ k ' (Fm)H , and the
same holds for J and I + J. Thus tensoring (9.44.2) with k yields

(FI∩J)H ⊗ k → (Fm)H + (Fm)H p
→ (Fm)H → 0. (9.44.3)

Since ker p ' (Fm)H we see that (FI∩J)H ⊗ k → (Fm)H is surjective. By (9.17)
this implies that (FI∩J)H is a universal hull.

Let Iu ⊂ S be the intersection of all those ideals I such that (FI)H is a
universal hull and S u := S/Iu. By (9.17.6) (FS u )H is a universal hull.

By construction, if h : S � W := S/IW is a quotient such that (FW )H is a
universal hull then Iu ⊂ IW . We still need to prove that if (A,mA) is a local
Artinian S -algebra such that (FA)H is a universal hull then h : S → A factors
through S u.

Let K := A/mA denote the residue field. F/mS F has a hull by (9.5), so
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Iu ⊂ mS . Thus S → A → K factors through S u. Working inductively we may
assume that there is an ideal JA ⊂ A such that JA ' K and h′ : S → A′ := A/J
factors through S u. Therefore h : S → A factors through S → S/mS Iu. Note
that Iu/mS Iu is a finite dimensional k-vector space, call it Vk, and we have a
commutative diagram

0 // Vk

λ
��

// S/mS Iu //

h
��

S u

h′
��

// 0

0 // K // A // A // 0

(9.44.4)

for some k-linear map λ : Vk → K. If λ = 0 then h factors through S u, this is
what we want. If λ , 0 then we show that there is an ideal Ju ( Iu such that
F has a universal hull over S/Ju. This contradicts our choice of Iu and proves
the theorem.

It is easier to write down the obstruction map in scheme-theoretic language.
To simplify notation, we may assume that mS Iu = 0. Thus set X := SpecS R
and let i : U ↪→ X be the largest open set over which F̃ (the sheaf associated to
F) is flat over S . For any S → T by base change we get i : UT ↪→ XT . Let FT

denote the restriction of F̃T to UT . Then i∗FT is the sheaf associated to (FT )H

and we have a commutative diagram

Vk ⊗k i∗Fk

λ
��

// i∗FS

h
��

// i∗FS u

h′
��

δ // Vk ⊗k R1i∗Fk

λ
��

i∗FK // i∗FA // i∗FA′
∆ // R1i∗FK .

(9.44.5)

Here ∆ = 0 since i∗FA is a universal hull. The right hand square factors as

δ : i∗FS u //

h′
��

i∗Fk

hk
��

δk // Vk ⊗k R1i∗Fk

λ⊗1
��

∆ : i∗FA′ // i∗FK
∆K // K ⊗k R1i∗Fk.

(9.44.6)

By assumption ∆K = 0. Choosing a basis {v j} of Vk, this means that the compo-
nents δk, j : i∗Fk → R1i∗Fk are linearly dependent over K. So they are linearly
dependent over k, that is, there is a nonzero µ : Vk → k such that µ ◦ δk = 0.
Set Ju := mS Iu + ker µ and S ′ := S/Ju. Note that Iu/Ju ' k. The extension
Iu/Ju → S ′ → S u gives the exact sequence

(Iu/Ju) ⊗k i∗Fk ↪→ i∗FS ′ → i∗FS u
µ◦δ
−→ (Iu/Ju) ⊗k R1i∗Fk. (9.44.7)

Since µ ◦ δ = 0 the map i∗FS ′ → i∗FS u is surjective and so is the com-
posite i∗FS ′ → i∗FS u → i∗Fk. Thus i∗FS ′ is a universal hull by (9.17). This
contradicts the choice of S u. �
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One can see that (9.44) does not hold for arbitrary local schemes S , but the
following consequence was pointed out by E. Szabó.

Corollary 9.45. The conclusion of (9.44) remains true if S is a Henselian local
ring, that is the localization of an algebra of finite type over a field or over an
excellent DVR.

Proof There is a general theorem (Artin, 1969, 1.6) about representing func-
tors over Henselian local rings, we check that its conditions are satisfied.

Let Ŝ denote the completion of S . As in (3.16.1), define a functor on local
S -algebras by seeting F (T ) = {∅} if (FT )H is a universal hull and F (T ) = ∅

otherwise.
It is easy to see that if F (T ) = {∅}, then there is a factorization S → T ′ → T

such that T ′ is of finite type over S and F (T ′) = {∅}. So F is locally of finite
presentation over S , as in (Artin, 1969, 1.5). The universal family over (Ŝ )u

gives an effective versal deformation of the fiber over mS . The existence of S u

now follows from (Artin, 1969, 1.6). �

Next we present an alternative approach to hulls and husks that does not
use projectivity, works for proper algebraic spaces, but leaves properness of
Husk(F/S ) unresolved. The proofs were worked out jointly with M. Lieblich.

Theorem 9.46. Let S be a Noetherian algebraic space and p : X → S a
proper morphism of algebraic spaces. Let F be a coherent sheaf on X. Then
QHusk(F/S) is separated and it has a fine moduli space QHusk(F/S ).

Proof Let f : X → S be a proper morphism. The functor of flat families
of coherent sheaves Flat(X/S) is represented by an algebraic stack Flat(X/S )
which is locally of finite type, but very non-separated; see (Laumon and Moret-
Bailly, 2000, 4.6.2.1).

Let σ : Flat(X/S ) → S be the structure morphism and UX/S the univer-
sal family. By (10.12), there is an open substack Flatn(X/S ) ⊂ Flat(X/S )
parametrizing pure sheaves of dimension n. Let Un

X/S be the corresponding
universal family. Consider X ×S Flatn(X/S ) with coordinate projections π1, π2.
The stack Hom

(
π∗1F, π∗2Un

X/S
)

parametrizes all maps from the sheaves Fs to
pure, n-dimensional sheaves Ns.

We claim that QHusk(F/S ) is an open substack of Hom
(
π∗1F, π∗2Un

X/S
)
. In-

deed, by (10.54), for a map of sheaves M → N with N flat over S , it is an open
condition to be an isomorphism at the generic points of the support.

As we discussed in (9.31), QHusk(F/S ) satisfies the valuative criteria of
separatedness and properness, so the diagonal of QHusk(F/S ) is a monomor-
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phism. Every algebraic stack with this property is an algebraic space; see (Lau-
mon and Moret-Bailly, 2000, Sec.8). �

The connected components of QHusk(F/S ) are not proper over S , this fails
even for the quot-scheme, but the following should be true.

Conjecture 9.47. Every irreducible component of QHusk(F/S ) is proper.

The construction of Hull(F/S ) given in (9.40) applies to algebraic spaces as
well, but it does not give boundedness. Nonetheless, we claim that Hull(F/S )
is of finite type. First, it is locally of finite type since QHusk(F/S ) is. Second,
we claim that red Hull(F/S ) is dominated by an algebraic space of finite type.
In order to see this, consider the (reduced) structure map red Hull(F/S ) →
red S . It is an isomorphism at the generic points, hence there is an open dense
S ◦ ⊂ red S such that S ◦ is isomorphic to an open subspace of red Hull(F/S ).
Repeating this for red S \ S ◦, by Noetherian induction we eventually write
red Hull(F/S ) as a disjoint union of finitely many locally closed subspaces of
red S . These imply that Hull(F/S ) is of finite type. Using (9.13.4), we get the
following.

Theorem 9.48 (Flattening decomposition for hulls). Let f : X → S be a
proper morphism of algebraic spaces and F a coherent sheaf on X. Then
(9.48.1) Hull(F/S) is separated and it has a fine moduli space Hull(F/S ),
(9.48.2) Hull(F/S ) is an algebraic space of finite type over S , and
(9.48.3) the structure map Hull(F/S )→ S is a surjective monomorphism. �

Example 9.49. Let C,D be two smooth projective curves. Pick points p, q ∈ C
and r ∈ D. Let X be the surface obtained from the blow-up B(p,r)(C × D) by
identifying {q} × D with the birational transform of {p} × D. Note that X is
a proper, but non-projective scheme and there is a natural proper morphism
π : X → C′ where C′ is the nodal curve obtained from C by identifying the
points p, q. Then Hull(OX/S ) = C \ {q}. The natural map C \ {q} → C′ is a
surjective monomorphism, but not a locally closed embedding.



Chapter 10

Ancillary results

In this chapter we discuss various results that were used earlier and for which
good references are scarce or scattered. We work over an arbitrary base scheme,
whenever possible.

10.1 S 2 sheaves

Definition 10.1. Let F be a quasi-coherent sheaf on a scheme X. Its annihila-
tor, denoted by Ann(F), is the largest ideal sheaf I ⊂ OX such that I · F = 0.
The support of F is the zero set Z(I) ⊂ X, denoted by Supp F.

The dimension of F at a point x, denoted by dimx F, is the dimension of its
support at x. The dimension of F is dim F := dim Supp F.

The set of all associated points (or primes) of a quasi-coherent sheaf F is de-
noted by Ass(F). An associated point of F is called embedded if it is contained
in the closure of another associated point of F. Let emb(F) ⊂ F denote the
largest subsheaf whose associated points are all embedded points of F. Thus
F/ emb(F) has no embedded points, hence it is S 1 (10.5). Informally speaking,
F 7→ F/ emb(F) is the best way to associate an S 1 sheaf to another sheaf.

If F is coherent then it has only finitely many associated points and Supp F
is the union of their closures.

Let Z ⊂ X be a closed subscheme. Then torsZ(F) ⊂ F denotes the Z-torsion
subsheaf, consisting of all local sections whose support is contained in Z. There
is a natural isomorphism torsZ(F) ' H0

Z (X, F).
If X has a dimension function (see the Assumptions on p.343), then we use

tors(F) ⊂ F to denote the torsion subsheaf, consisting of all local sections
whose support has dimension < dim Supp F. A coherent sheaf F is called pure
(of dimension n) if (the closure of) every associated point of F has dimension
n. Thus pure(F) := F/ tors(F) is the maximal pure quotient of F. A scheme is
pure iff its structure sheaf is.

If Supp F is pure dimensional, then emb(F) = tors(F).

365
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Let f : X → S be of finite type and F a coherent sheaf on X such that Fs is
pure for every s ∈ S . Then the same holds after any base change S ′ → S .
Warning. If X is pure dimensional, F is coherent and dim F = dim X, then our
terminology agrees with every usage of ‘torsion’ that we know of. However,
the above distinction between emb(F) and tors(F) is not standard.

10.2 (Regular sequences and depth). Let A be a ring and M an A-module.
Recall that x ∈ A is M-regular if it is not a zero divisor on M, that is, if m ∈ M
and xm = 0 implies that m = 0. Equivalently, if x is not contained in any of the
associated primes of M.

A sequence x1, . . . , xr ∈ A is an M-regular sequence if x1 is not a zero
divisor on M and xi is not a zero divisor on M/(x1, . . . , xi−1)M for all i.

Let rad A denote the radical (or Jacobson radical) of A, that is, the intersec-
tion of all maximal ideals. Let I ⊂ rad A be an ideal. The depth of M along I is
the maximum length of an M-regular sequence x1, . . . , xr ∈ I. It is denoted by
depthI M. If A is Noetherian, M is finite over A and I ⊂ rad A, then all maxi-
mal M-regular sequences x1, . . . , xr ∈ I have the same length; see (Matsumura,
1986, p.127) or (Eisenbud, 1995, Sec.17).

Warning. The literature is not fully consistent on the depth if M = 0 or if
I 1 rad A. While the above definition of depth makes sense for arbitrary rings
and ideals, it can give unexpected results.

10.3 (Comments on depth and S m). Let F be a coherent sheaf on X. The depth
of F at x, denoted by depthx F, is defined as the depth of its localization Fx

along mx,X (as an Ox,X-module). For a closed subscheme Z ⊂ X we set

depthZ F := inf{depthz F : z ∈ Z}. (10.3.1)

If X = Spec A is affine, Z = V(I) for some ideal I ⊂ rad A and M = H0(X, F)
then depthZ F = depthI M. (This definition is for coherent sheaves only. See
(Grothendieck, 1968, Exp.III) for quasi-coherent sheaves.)

A coherent sheaf F on a scheme X satisfies Serre’s condition S m if

depthx F ≥ min{m, codim(x,Supp F)} for every x ∈ X; (10.3.2)

see (Stacks, 2022, Tag 033P) for details.
It is important to note that over a local scheme (x, X), being S m is not the

same as depthx F ≥ m; neither implies the other.

Definition 10.4. F is Cohen-Macaulay or CM if

depthx F = dimx F for every x ∈ X. (10.4.1)

https://stacks.math.columbia.edu/tag/033P
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It is easy to see that if F is CM then the local rings of Supp F are pure di-
mensional (Stacks, 2022, Tag 00N2). In the literature, the definition of CM
frequently includes the assumption that Supp F be pure dimensional; we will
most likely lapse into this habit too.

In contrast with the S m situation (10.3), if (10.4.1) holds at closed points,
then it holds at every point of Supp F, see (Matsumura, 1986, 17.4).

Condition S 1 can be described in terms of embedded points.

Lemma 10.5. Let F be a coherent sheaf on a scheme X and Z ⊂ X a closed
subscheme. Then depthZ F ≥ 1 iff none of the associated points of F is con-
tained in Z. In particular, F is S 1 iff it has no embedded associated points. �

The following lemma which gives several characterizations of S 2 sheaves.

Lemma 10.6. Let F be a coherent sheaf and Z ⊂ Supp F a nowhere dense
subscheme. The following are equivalent.
(10.6.1) depthZ F ≥ 2.
(10.6.2) depthZ F ≥ 1 and depthZ

(
F|D

)
≥ 1 whenever D is a Cartier divisor

in an open subset of X that does not contain any associated prime of F.
(10.6.3) torsZ(F) = 0 and torsZ

(
F|D

)
= 0 whenever D is as above.

(10.6.4) An exact sequence 0→ F → F′ → Q→ 0 splits if Supp Q ⊂ Z.
(10.6.5) depthZ F ≥ 1 and for any exact sequence 0 → F → F′ → Q → 0

such that ∅ , Supp Q ⊂ Z, F′ has an associated point in Supp Q.
(10.6.6) F = j∗

(
F|X\Z

)
where j : X \ Z ↪→ X is the natural injection.

(10.6.7) H 0
Z (X, F) = H 1

Z (X, F) = 0.
(10.6.8) Let z ∈ Z be any point. Then H0

z (Xz, Fz) = H1
z (Xz, Fz) = 0.

Proof All but (4) are clearly local conditions on X. By assumption torsZ(F) =

0. Thus, if in (4) there is a splitting locally then the unique splitting is given by
torsZ(F′) ⊂ F′. Thus (4) is also local, so we can assume that X is affine.

Conditions (2) and (3) are just restatements of the inductive definition of
depth. Assume (1) and consider an extension 0 → F → F′ → Q → 0
where Supp Q ⊂ Z. If torsZ(F′) → Q is surjective then it gives a splitting.
If not then after quotienting out by torsZ(F′) and taking a coherent subsheaf
F′′ ⊂ F′/ torsZ(F′) we get an extension 0 → F → F′′ → Q′′ → 0 where
torsZ(F′′) = 0. Pick s ∈ IZ that is not a zero divisor on F and F′′, but
s · (F′′/F) = 0. Then sF′′ is a nonzero submodule of F/sF supported on
Z. This proves (1)⇒ (4).

Assuming (4) we claim that torsZ(F) = 0. After localizing at a generic point
of torsZ(F), we may assume that torsZ(F) is supported at z ∈ Z. Since the
injective hull of k(z) over OX has infinite length, there is a non-split extension

https://stacks.math.columbia.edu/tag/00N2
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j : torsZ(F) ↪→ G. Then the cokernel of (1, j) : torsZ(F) → F + G gives a
non-split extension of F. The rest of (5) is clear.

If depthZ F ≥ 1 then the natural map F → j∗
(
F|X\Z

)
is an injection. The

quotient is supported on Z, thus (5)⇒ (6).
Assume (6). Then F → j∗

(
F|X\Z

)
is an injection, so depthZ F ≥ 1. If

depthZ F < 2 then we can pick s ∈ IZ such that F/sF has a subsheaf Q sup-
ported on Z. Let F′ ⊂ F be the preimage of Q. Then s−1F′ ⊂ j∗

(
F|X\Z

)
shows

that (6)⇒ (1). We discuss (7) and (8) in (10.29). �

Corollary 10.7. Let F be a coherent, S 2 sheaf and G ⊂ F a subsheaf. Then G
is S 2 iff every associated point of F/G has codimension ≤ 1 in Supp F.

Proof Let Z ⊂ Supp F be a closed subset of codimension ≥ 2 and j : U :=
X \ Z ↪→ X the injection. Then j∗(G|U) ⊂ F and depthZ G < 2⇔ G , j∗(G|U)
⇔ j∗(G|U)/G ⊂ F/G is a nonzero subsheaf supported on Z. �

Corollary 10.8. Let F be a coherent, S 2 sheaf and G any coherent sheaf. Then
HomX(G, F) is also S 2.

Proof It is clear that every irreducible component of SuppHomX(G, F) is
also an irreducible component of Supp F.

Let Z ⊂ Supp F be a closed subset of codimension ≥ 2 and j : X \ Z ↪→

X the injection. Any homomorphism φ : G|X\Z → F|X\Z uniquely extends to
j∗φ : j∗

(
G|X\Z

)
→ j∗

(
F|X\Z

)
. Since F is S 2, the target equals F. We have a

natural map G → j∗
(
G|X\Z

)
, whose kernel is torsZ(G). Thus HomX(G, F) =

j∗
(
HomX(G, F)|X\Z

)
, henceHomX(G, F) is S 2. �

An important property of S 2 sheaves is the following, which can be obtained
by combining (Hartshorne, 1977, III.7.3 and III.12.11).

Proposition 10.9 (Enriques–Severi–Zariski lemma). Let f : X → S be a pro-
jective morphism and F a coherent sheaf on X that is flat over S , with S 2 fibers
of pure dimension ≥ 2. Then f∗F(−m) = R1 f∗F(−m) = 0 for m � 1.

Therefore, if H ∈ |OX(m)| does not contain any of the associated points of
F, then the restriction map f∗F → ( f |H)∗(F|H) is an isomorphism. �

10.10 (Depth and flatness). Let p : Y → X be a morphism and G a coherent
sheaf on Y that is flat over X. It is easy to see that for any point y ∈ Y we have

depthy G = depthp(y) X + depthy Gp(y). (10.10.1)

Similarly, if p : Y → X is flat and F is a coherent sheaf on X, then

depthy p∗F = depthp(y) F + depthy Yp(y). (10.10.2)
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In particular, if p : Y → X is flat with S m fibers and F is a quasi-coherent S m

sheaf on X then p∗F is also S m. The converse also holds if p is faithfully flat.
The assumption on the fibers is necessary and a flat pull-back of an S m sheaf

need not be S m; not even for products. Let X1, X2 be k-schemes. Then X1 × X2

is S m iff both of the Xi are S m.

10.2 Flat families of S m sheaves
We consider how the S m property (2.72) varies in flat families.

Theorem 10.11. (Grothendieck, 1960, IV.12.1.6) Let π : X → S be a mor-
phism of finite type and F a coherent sheaf on X that is flat over S . Fix m ∈ N.
Then the set of points {x ∈ X : Fπ(x) is pure and S m at x} is open in X.

This immediately implies the following variant for proper morphisms.

Corollary 10.12. 5 Let π : X → S be a proper morphism and F a coher-
ent sheaf on X that is flat over S . Fix m ∈ N. Then the set of points {s ∈
S : Fs is pure and S m} is open in S . �

For non-proper morphisms we get the following.

Corollary 10.13. Let S be an integral scheme, π : X → S a morphism of finite
type and F a coherent sheaf on X. Assume that F is pure and S m. Then there
is a dense open subset S ◦ ⊂ S such that Fs is pure and S m for every s ∈ S ◦.

Proof Let Z ⊂ X denote the set of points x ∈ X such that either F is not flat
at x or Fπ(x) is not pure and S m at x. Note that Z is closed in X by (10.11) and
by generic flatness (Eisenbud, 1995, 14.4).

The local rings of the generic fiber of π are also local rings of X, hence the
restriction of F to the generic fiber is pure and S m. Thus Z is disjoint from
the generic fiber of π. Therefore π(Z) ⊂ S is a constructible subset that does
not contain the generic point, hence S \ π(Z) contains a dense open subset
S ◦ ⊂ S . �

10.14 (Nagata’s openness criterion). In many cases one can check openness of
a subset of a scheme using the following easy to prove test, which is sometimes
called the Nagata openness criterion.

Let X be a Noetherian topological space and U ⊂ X an arbitrary subset.
Then U is open iff the following conditions are satisfied.
(10.14.1) If x1 ∈ x̄2 and x1 ∈ U then x2 ∈ U.
(10.14.2) If x ∈ U then there is a nonempty open V ⊂ x̄ such that V ⊂ U.

Assume now that we want to use this to check openness of a fiber-wise
property P for a morphism π : X → S .
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We start with condition (10.14.1). Pick points x1, x2 ∈ X such that x1 ∈ x̄2.
Let T be the spectrum of a DVR with closed point 0 ∈ T , generic point

tg ∈ T and q : T → X a morphism such that q(0) = x1 and q(tg) = x2. After
base change using π ◦ q we get Y → T . Usually one can not guarantee that the
residue fields are unchanged under q. However, if property P is invariant under
field extensions, then it is enough to check (10.14.1) for Y → T . Thus we may
assume that S is the spectrum of a DVR.

As for (10.14.2), we can replace S by the closure of π(x). Then π(x) is the
generic point of S and then we may assume that S is regular.

We can summarize these considerations in the following form.

Proposition 10.15 (Openness criterion). Let P be a property defined for co-
herent sheaves on schemes over fields. Assume that P is invariant under base
field extensions. The following are equivalent.

(10.15.1) Let π : X → S be a morphism of finite type and F a coherent sheaf
on X that is flat over S . Then {x ∈ X : Fπ(x) satisfies property P at x} is
open in X.

(10.15.2) The following hold, where σ : S → X denotes a section.
(a) If S is the spectrum of a DVR with closed point 0, generic point g and
P holds for σ(0) ∈ X0, then P holds for σ(g) ∈ Xg.
(b) If S is the spectrum of a regular ring with generic point g and P holds
for σ(g) ∈ Xg, then P holds in a nonempty open U ⊂ σ(S ). �

10.16 (Proof of 10.11). By (10.15) we may assume that S is affine and regular.
We may also assume that π is affine and X = Supp F.

First we check (10.15.2.a) for m = 1. (Note that pure and S 1 is equivalent
to pure (10.1).) Let W ⊂ X be the closure of an associated prime of F. Then
the irreducible components of W ∩ X0 are associated primes of F0 by (10.22).
Since F0 is pure, W ∩ X0 is an irreducible component of Supp F0. Hence W is
an irreducible component of Supp F. Thus Fg is also pure.

Next we check (10.15.2.a) for m > 1. Since S m implies S 1, we already know
that every fiber of F is pure. By (10.17) there is a subset Z ⊂ X of codimension
≥ 2 such that F is CM over X \ Z. Let Z ⊂ H ⊂ X be a Cartier divisor that
does not contain any of the associated primes of F0. Then F|H is flat over S
and

(
F|H

)
0 = F0|H is pure and S m−1. Thus, by induction, F|H is pure and S m−1

on the generic fiber, hence Fsg is pure and S m along H. It is even CM on X \H,
hence Fsg is pure and S m.

The proof of (10.15.2.b) follows a similar pattern. We start with m = 1.
We may assume that Fsg is pure. By Noether normalization, there is a finite
surjection p : X → An

S for some n. Note that p∗F is flat over S and it is pure
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on the generic fiber by (9.2), hence torsion-free. Using (9.2) in the reverse
direction for the other fibers, we are reduced to the case when X = An

S and F
is torsion-free at x := σ(g) on the generic fiber. Thus there is an injection of
the localizations Fx ↪→ Om

x,X . By generic flatness (Eisenbud, 1995, 14.4), the
quotient Om

x,X/Fx is flat over an open, dense subset S ◦ ⊂ S . Thus if s ∈ S ◦

then we have an injection F|U ↪→ Om
U . Thus every fiber Fs is torsion-free

over U ∩ π−1(S ◦). For m > 1 we follow the same argument as above using
Z ⊂ H ⊂ X and induction. �

Lemma 10.17. Let π : X → S be a morphism of finite type and F a coherent
sheaf on X that is flat over S . Assume that Supp F is pure-dimensional over S .
As in (7.26), let FlatCMS (X, F) ⊂ X be the set of points x such that Fπ(x) is CM
at x. Then, for every s ∈ S ,

(10.17.1) Supp Fs ∩ FlatCMS (X, F) is dense in Supp Fs, and,
(10.17.2) if Fs is pure, then its complement has codimension ≥ 2 in Supp Fs.

Proof We may assume that π is affine and X = Supp F. By (10.49), after
replacing X with an étale neighborhood of x, there is a finite surjection g : X →
Y where τ : Y → S is smooth.

Since g∗F is flat over S , it is locally free at a point y ∈ Y iff the restriction of
g∗F to the fiber Yτ(y) is locally free at y. The latter holds outside a codimension
≥ 1 subset of each fiber Ys. If F is pure then g∗F is torsion-free on each fiber,
so local freeness holds outside a subset of codimension ≥ 2. �

Let F be a coherent, S m sheaf on Pn. If a hyperplane H ⊂ Pn does not con-
tain any of the irreducible components of Supp F then F|H is S m−1, essentially
by definition. The following result says that F|H is even S m for general hyper-
planes, though we can not be very explicit about the meaning of ‘general.’

Corollary 10.18 (Bertini theorem for S m). Let F be a coherent, pure, S m sheaf
on a finite type k-scheme and |V | a base point free linear system on X. Then
there is a dense, open U ⊂ |V | such that F|H is also pure and S m for H ∈ U.

Proof Let Y ⊂ X × |V | be the incidence correspondence (that is, the set of
pairs (point ∈ H) with projections π and π̌. Note that π is a Pn−1-bundle for
n = dim |V |, thus π∗F is also pure and S m by (10.10).

By (10.13) there is a dense open subset U ⊂ |V | such that F|H is also pure
and S m for H ∈ U. For a divisor H, the restriction F|H is isomorphic to the
restriction of π∗F to the fiber of π̌ over H ∈ |V |. �

Corollary 10.19 (Bertini theorem for hulls). Let |V | be a base point free linear
system on a finite type k-scheme X. Let F be a coherent sheaf on X with hull
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q : F → F[∗∗]. Then there is a dense, open subset U ⊂ |V | such that(
F[∗∗])|H =

(
F|H

)[∗∗] for H ∈ U.

Proof By definition we have an exact sequence

0→ K → F → F[∗∗] → Q→ 0,

where dim K ≤ n − 1 and dim Q ≤ n − 2. If H ∈ |V | is general, then the
restriction stays exact

0→ K|H → F|H → (F[∗∗])|H → Q|H → 0,

dim K|H ≤ n − 2 and dim Q|H ≤ n − 3. Thus (F[∗∗])|H = (F|H)[∗∗]). �

Corollary 10.20 (Bertini theorem for S m in families). Let T be the spectrum
of a local ring, X ⊂ Pn

T a quasi-projective scheme and F a coherent sheaf on
X that is flat over T with pure, S m fibers.

Assume that either X is projective over T or dim T ≤ 1. Then F|H∩X is also
flat over T with pure and S m fibers for a general hyperplane H ⊂ Pn

T .

Proof The hyperplanes correspond to sections of P̌n
T → T . If X is projective

over T then we use (10.18) for the special fiber X0 and conclude using (10.12).
If dim T = 1 then we use (10.18) both for the special fiber X0 and the generic

fibers Xgi . We get open subsets U0 ⊂ P̌
n
0 and Ugi ⊂ P̌

n
gi

. Let Wi ⊂ P̌
n
T denote the

closure of P̌n
gi
\ Ugi . For dimension reasons, Wi does not contain P̌n

0. Thus any
hyperplane corresponding to a section through a point of U0\

(
∪iWi

)
works. �

Example 10.21. If dim T ≥ 2 then (10.20) does not hold for non-proper maps.
Here is a similar example for the classical Bertini theorem on smoothness. Set

X := (x2 + y2 + z2 = s) \ (x = y = z = s = 0) ⊂ A3
xyz × A

2
st

with smooth second projection f : X → A2
st. Over the origin we start with the

hyperplane H00 := (x = 0), it is a typical member of the base point free linear
system |ax + by + cz = 0|.

A general deformation of it is given by Hst := x+b(s, t)y+c(s, t)z = d(s, t). It
is easy to compute that the intersection Hst∩Xst is singular iff s(1+b2+c2) = d2.
This equation describes a curve in A2

st that passes through the origin.

10.22 (Associated points of restrictions). Let X be a scheme, D ⊂ X a Cartier
divisor and F a coherent sheaf on X. We aim to compare Ass(F) and Ass(F|D).
If D does not contain any of the associated points of G then Tor1(G,OD) = 0.
Thus if 0 = F0 ⊂ · · · ⊂ Fr = F is a filtration of F by subsheaves and D does not
contain any of the associated points of Fi/Fi−1 then 0 = F0|D ⊂ · · · ⊂ Fr |D =

F|D is a filtration of F|D and Fi|D/Fi−1|D ' (Fi/Fi−1)|D. We can also choose
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any of the associated points of F to be an associated point of F1, proving the
following.

Claim 10.22.1. If D does not contain any of the associated points of F then
(a) Ass(F|D) ⊂ ∪i Ass

(
(Fi/Fi−1)|D

)
and

(b) for every x ∈ Ass(F), every generic point of D ∩ x̄ is in Ass(F|D). �

By (10.25) we can choose the Fi such that Ass(Fi/Fi−1) is a single associated
point of F for every i. Thus it remains to understand Ass(G|D) when G is pure.
Let G[∗∗] ⊃ G denote the hull of G and set Q := G[∗∗]/G. As we noted above, if
D does not contain any of the associated points of Q then G[∗∗]|D ⊃ G|D, thus
Ass(G[∗∗]|D) = Ass(G|D). Finally, since G[∗∗] is S 2, the restriction G[∗∗]|D is S 1

hence its associated points are exactly the generic points of D ∩ Supp G. We
have thus proved the following.

Claim 10.22.2. Let D ⊂ X be a Cartier divisor that contains neither an associ-
ated point of F nor an associated point of (Fi/Fi−1)[∗∗]/(Fi/Fi−1). Then

(a) the associated points of F|D are exactly the generic points of D∩ x̄ for all
x ∈ Ass(F), and

(b)
(
F/ emb(F)

)
|D ' (F|D)/

(
emb(F|D)

)
. �

Note that the associated points of (Fi/Fi−1)[∗∗]/(Fi/Fi−1) depend on the choice
of the Fi, they are not determined by F. For the Claim to hold it is enough to
take the intersection of all possible sets. This set is still hard to determine, but
in many applications the key point is that, as long as X is excellent, we need D
to avoid only a finite set of points.

The next result describes how the associated points of fibers of a flat sheaf
fit together. The proof is a refinement of the arguments used in (10.16).

Theorem 10.23. Let f : X → S be a morphism of finite type and F a coherent
sheaf on X. Then the following hold.
(10.23.1) There are finitely many locally closed Wi ⊂ X, such that Ass(Fs)

equals the set of generic points of the (Wi)s for every s ∈ S .
(10.23.2) If F is flat over S then we can choose the Wi to be closed and such

that each f |Wi : Wi → f (Wi) is equidimensional.

Proof Using Noetherian induction it is enough to prove that (1) holds over a
non-empty open subset of red S . We may thus assume that S is integral with
generic point g ∈ S .

Assume first that X is integral and F is torsion-free. By Noether normaliza-
tion, after again passing to some non-empty open subset of S there is a finite
surjection p : X → Am

S . Then p∗F is torsion-free of generic rank say r, hence
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there is an injection j : p∗F ↪→ Or
Am

S
. After again passing to some non-empty

open subset we may assume that coker( j) is flat over S , thus

js : p∗(Fs) = (p∗F)s ↪→ Or
Am

s

is an injection for every s ∈ S . Thus each Fs is torsion-free and its associated
points are exactly the generic points of the fiber Xs.

In general, we use (10.25) for the generic fiber and then extend the resulting
filtration to X. Thus, after replacing S by a non-empty open subset if necessary,
we may assume that there is a filtration 0 = F0 ⊂ · · · ⊂ Fn = F such that
each Fm+1/Fm is a coherent, torsion-free sheaf over some integral subscheme
Wm ⊂ X and Wm1 1 Wm2 for m1 > m2. As we proved, we may assume that
the associated points of each

(
Fm+1/Fm)

s are exactly the generic points of the
fiber (Wm)s. Using generic flatness we may also assume that each Fm+1/Fm is
flat over S and, after further shrinking S , none of the generic points of (Wm1 )s

is contained in (Wm2 )s for m1 > m2. Then the associated points of each Fs are
exactly the generic points of the fibers (Wm)s for every m. This proves (1).

In order to see (2), consider first the case when the base (0 ∈ T ) is the
spectrum of a DVR. The filtration given by (10.25) for the generic fiber extends
to a filtration 0 = F0 ⊂ · · · ⊂ Fn = F over X giving closed integral subschemes
Wm ⊂ X. Since T is the spectrum of a DVR, the Fm+1/Fm are flat over T , hence
the associated points of F0 are exactly the generic points of the fibers (Wm)0

for every m.
To prove (2) in general, we take the Wi ⊂ X obtained in (1) and replace

them by their closures. A possible problem arises if f |Wi : Wi → f (Wi) is not
equidimensional. Assume that Wi → f (Wi) has generic fiber dimension d and
let (Wi)s be a special fiber. Pick any closed point x ∈ (Wi)s and the spectrum
of a DVR (0 ∈ T ) mapping to Wi such that the special point of T maps to f (x)
and the generic point of T to the generic point of f (Wi). After base change to T
we see that Fs has a d-dimensional associated subscheme containing x. Thus
(Wi)s is covered by d-dimensional associated subschemes of Fs. Since Fs is
coherent, this is only possible if dim(Wi)s = d and every generic point of the
(Wi)s is an associated point of Fs. �

10.24 (Semicontinuity and depth). Let X be a scheme and F a coherent sheaf
on X. As we noted in (10.3), the function x 7→ depthx F is not lower semicon-
tinuous. This is, however, caused by the non-closed points. A quick way to see
this is the following.

Assume that X is regular and let 0 ∈ X be a closed point. By the Auslander–
Buchsbaum formula as in (Eisenbud, 1995, 19.9), F0 has a projective resolu-
tion of length dim X − depth0 F. Thus there is an open subset 0 ∈ U ⊂ X such
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that F|U has a projective resolution of length dim X−depth0 F. This shows that

depthx F ≥ depth0 F − dim x̄ ∀x ∈ U. (10.24.1)

That is, x 7→ depthx F is lower semicontinuous for closed points. In general,
we have the following analog of (10.11).

Proposition 10.24.2. Let π : X → S be a morphism of finite type and F a
coherent sheaf on X that is flat over S with pure fibers. Let 0 ∈ X be a closed
point. Then there is an open subset 0 ∈ U ⊂ X such that

depthx Fπ(x) ≥ depth0 Fπ(0) − tr-degk(π(x)) k(x) ∀x ∈ U,

where Fπ(x) is the restriction of F to the fiber Xπ(x) and tr-deg denotes the tran-
scendence degree. Hence x 7→ depthx Fπ(x) is lower semicontinuous on closed
points.

Proof Using Noether normalization and (10.17.1) as in (10.16), we can re-
duce to the case when X = An

S for some n. Next we take a projective resolution
of the fiber Fπ(0) and lift it to a suitable neighborhood 0 ∈ U ⊂ X using the
flatness of F. �

Dévissage is a method that writes a coherent sheaf as an extension of simpler
coherent sheaves and uses these to prove various theorems. There are many
ways to do this, different ones are useful in different contexts; see (Stacks,
2022, Tag 07UN) for some of them.

Recall that Ass(F) denotes the set of associated points of a sheaf F (10.1)
and that a sheaf is S 1 iff it has no embedded points (10.5). As in (10.1),
torsZ(F) ⊂ F is the largest subsheaf whose support is contained in Z.

Lemma 10.25 (Dévissage). Let X be a Noetherian scheme, F a coherent sheaf
on X. Write Ass(F) = {wi : i = 1, . . . ,m} in some fixed order and let Wi be the
closure of wi. Assume that W j 1 Wi for i < j. Then the following hold.

(10.25.1) There is a unique filtration 0 = G0 ⊂ G1 ⊂ · · · ⊂ Gm = F such
that each Gi/Gi−1 is a torsion-free sheaf supported on Wi. Moreover, the
natural map torsWi (F)→ Gi/Gi−1 is an isomorphism at wi.

(10.25.2) There is a non-unique refinement Gi = Gi,0 ⊂ Gi,1 ⊂ · · · ⊂ Gi,ri =

Gi+1 such that each Gi, j+1/Gi, j is a rank 1, torsion-free sheaf over red Wi.

Proof It is easy to see that we must set G1 = torsW1 (F). Then pass to F/G1

and use induction on the number of associated points to get (1).
For (2), any filtration of (Gi+1/Gi)wi whose successive quotients are k(wi)

extends uniquely to the required Gi, j. �

https://stacks.math.columbia.edu/tag/07UN
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10.3 Cohomology over non-proper schemes

The cohomology theory of coherent sheaves is trivial over affine schemes
and well understood over proper schemes. If X is a scheme and j : U ↪→ X
is an open subscheme then one can study the cohomology theory of coher-
ent sheaves on U by understanding the cohomology theory of quasi-coherent
sheaves on X and the higher direct image functors Ri j∗. The key results are
(10.26) and (10.30); see (Grothendieck, 1960, IV.5.11.1).

Proposition 10.26. Let X be an excellent scheme, Z ⊂ X a closed subscheme
and U := X \ Z with injection j : U ↪→ X. Let G be a coherent sheaf on U.
Then j∗G is coherent iff codimW (Z ∩W) ≥ 2, whenever W ⊂ X is the closure
of an associated point w of G.

The case of arbitrary Noetherian schemes is discussed in Kollár (2017).

Proof This is a local question, hence we may assume that X is affine. By
(10.25) G has a filtration 0 = G0 ⊂ · · · ⊂ Gr = G such that each Gm+1/Gm is
isomorphic to a subsheaf of some OW∩U where w is an associated prime of G.
Since j∗ is left exact, it is enough to show that each j∗OW∩U is coherent.

Let p : V → W be the normalization. Since X is excellent, p is finite. OV is
S 2 (by Serre’s criterion) and so is p∗OV by (9.2). Thus

j∗OW∩U ⊂ j∗
(
p∗OV |U

)
= p∗OV ,

where the equality follows from (10.6) using codimW (Z ∩ W) ≥ 2. Thus
j∗OW∩U is coherent. �

It is frequently quite useful to know that coherent sheaves are ‘nice’ over
large open subsets. For finite type schemes this was established in (10.17).

Proposition 10.27. Let X be a Noetherian scheme. Assume that every integral
subscheme W ⊂ X has an open dense subscheme W◦ ⊂ W that is regular, or at
least CM. (For example, X is excellent.) Let F be a coherent sheaf on X.

(10.27.1) There is a closed subset Z1 ⊂ Supp F of codimension ≥ 1 such that
F is CM on X \ Z1.

(10.27.2) If F is S 1 then there is a closed subset Z2 ⊂ Supp F of codimension
≥ 2 such that F is CM on X \ Z2.

Proof We put the intersections of different irreducible components of Supp F
into Z1. Since (1) is a local question, we may thus assume that Supp F is ir-
reducible. Since an extension of CM sheaves of the same dimensional support
is CM (10.28), using (10.25) we may assume that F is torsion-free over an
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integral subscheme W ⊂ X. Then F is locally free over a dense open subset
W◦ ⊂ W and we can take Z1 := W \W∗, where W∗ is the regular locus of W◦.

In order to prove (2), we may assume that X is affine. Let s = 0 be a local
equation of Z1. We apply the first part to F/sF to obtain a closed subset Z2 ⊂

Supp(F/sF) of codimension ≥ 1 such that F/sF is CM on X \ Z2. Thus F is
CM on X \ Z2. �

The next lemma is quite straightforward; see (Kollár, 2013b, 2.60).

Lemma 10.28. Let X be a scheme and 0 → F′ → F → F′′ → 0 a sequence
of coherent sheaves on X that is exact at x ∈ X.
(10.28.1) If depthx F ≥ r and depthx F′′ ≥ r − 1 then depthx F′ ≥ r.
(10.28.2) If depthx F ≥ r and depthx F′ ≥ r − 1 then depthx F′′ ≥ r − 1. �

10.29 (Cohomology over quasi-affine schemes). Grothendieck (1967)
Let X be an affine scheme, Z ⊂ X a closed subscheme and U := X \ Z. Here

our primary interest is in the case when Z = {x} is a closed point.
For a quasi-coherent sheaf F on X, let H0

Z(X, F) denote the space of global
sections whose support is in Z. There is a natural exact sequence

0→ H0
Z(X, F)→ H0(X, F)→ H0(U, F|U).

This induces a long exact sequence of the corresponding higher cohomology
groups. Since X is affine, Hi(X, F) = 0 for i > 0, hence the long exact sequence
breaks up into a shorter exact sequence

0→ H0
Z(X, F)→ H0(X, F)→ H0(U, F|U)→ H1

Z(X, F)→ 0 (10.29.1)

and a collection of isomorphisms

Hi(U, F|U) ' Hi+1
Z (X, F) for i ≥ 1. (10.29.2)

The vanishing of the local cohomology groups is closely related to the depth
of the sheaf F. Two instances of this follow from already established results.
First, for coherent sheaves (10.5) can be restated as

H0
Z(X, F) = 0 ⇔ depthZ F ≥ 1. (10.29.3)

Second, (10.6) tells us when the map H0(X, F) → H0(U, F|U) in (10.29.1) is
an isomorphism. This implies that, for coherent sheaves,

H0
Z(X, F) = H1

Z(X, F) = 0 ⇔ depthZ F ≥ 2. (10.29.4)

More generally, Grothendieck’s vanishing theorem (see (Grothendieck, 1967,
Sec.3) or (Bruns and Herzog, 1993, 3.5.7)) says that

depthZ F = min
{
i : Hi

Z(X, F) , 0
}
. (10.29.5)
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Combined with (10.29.2–3) this shows that

Hi(U, F|U)
= 0 for 1 ≤ i ≤ depthZ F − 2. (10.29.6)

All the above groups are naturally modules over H0(X,OX) and we need to
understand when they are finitely generated.

More generally, let G be a coherent sheaf on U. When is the group Hi(U,G)
a finite H0(X,OX)-module? Since X is affine, Hi(U,G) = H0(X,Ri j∗G

)
, where

j : U ↪→ X denotes the natural open embedding. Thus Hi(U,G) is a finite
H0(X,OX)-module iff Ri j∗G is a coherent sheaf. For i ≥ 1, the sheaves Ri j∗G
are supported on Z, which implies the following.

Claim 10.29.7. Notation as above. Assume that i ≥ 1. Then every associated
prime of Hi(U,G) (viewed as an H0(X,OX)-module) is contained in Z, and,
if Z = {x}, then Hi(U,G) is a finite H0(X,OX)-module iff Hi(U,G) has finite
length. �

The general finiteness condition is stated in (10.30); but first we work out the
special cases that we use. We start with H0(U,G); here we have the following
restatement of (10.26).

Claim 10.29.8. Let X be an excellent, affine scheme, Z ⊂ X a closed sub-
scheme, U := X \ Z and G a coherent sheaf on U. Assume in addition that
Z ∩ W̄i has codimension ≥ 2 in W̄i for every associated prime Wi ⊂ U of G.
Then H0(U,G) is a finite H0(X,OX)-module. �

It is considerably harder to understand finiteness for H1(U,G). The follow-
ing special case is used in Section 5.4.

Claim 10.29.9. Let X be an excellent scheme, Z ⊂ X a closed subscheme,
U := X \ Z and G a coherent sheaf on U. Assume in addition that G is S 2,
there is a coherent CM sheaf F on X and an injection G ↪→ F|U , and Z has
codimension ≥ 3 in Supp F. Then R1 j∗G is coherent.

Proof Set Q = F|U/G. Since G is S 2, it has no extensions with a sheaf whose
support has codimension ≥ 2 by (10.6), thus every associated prime of Q has
codimension ≤ 1 in Supp F. Thus Q satisfies the assumptions of (10.26) and
so j∗Q is coherent. By (10.29.4) R1 j∗

(
F|U

)
= 0, hence the exact sequence

0→ j∗G → j∗
(
F|U

)
→ j∗Q→ R1 j∗G → R1 j∗

(
F|U

)
= 0

shows that R1 j∗G is coherent. �

Not every S 2-sheaf can be realized as a subsheaf of a CM sheaf, but this can
be arranged in some important cases.
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Claim 10.29.10. Notation as above. Assume in addition that X is embeddable
into a regular, affine scheme R as a closed subscheme, Supp G has pure dimen-
sion n ≥ 3, Z = {x} is a closed point, and G is S 2.

Then H1(U,G) has finite length. Thus, if X is of finite type over a field k,
then H1(U,G) is a finite dimensional k-vector space.

Outline of proof X plays essentially no role. Let Y ⊂ R be a complete inter-
section subscheme defined by dim R − n elements of Ann G. Then Y is Goren-
stein, we can view G as a coherent sheaf on Y \ {x} and Hi(X \ {x},G) =

Hi(Y \ {x},G). Thus it is enough to prove vanishing of the latter for i = 1. By
(10.29.11) there is an embedding G ↪→ Om

Y\{x}, hence (10.29.9) applies. �

Claim 10.29.11. Let U be a quasi-affine scheme of pure dimension n and G a
pure, coherent sheaf on U of dimension n. Assume that either U is reduced, or
U is Gorenstein at its generic points.

Then G is isomorphic to a subsheaf of Om
U for some m.

Outline of proof Assume that such an embedding exists at the generic points.
Then we have an embedding G ↪→ Om

U over some dense open set U◦ ⊂ U. Pick
s ∈ OU invertible at the generic points and vanishing along U \U◦. Multiplying
by sr for r � 1 gives the embedding G ↪→ Om

U .
The remaining question is, what happens at the generic point. The existence

of the embedding is clear if U is reduced.
In general, we are reduced to the following algebra question: given an Ar-

tinian ring A, is every finite A-module M a submodule of Am for some m? Usu-
ally the answer is no. However, local duality theory (see, for instance, (Eisen-
bud, 1995, Secs.21.1–2)) shows that every finite A-module is a submodule of
ωm

A for some m. Finally A is Gorenstein iff A ' ωA. �

Much of the next result can be proved using these methods, but local duality
theory works better, as in (Grothendieck, 1968, VIII.2.3).

Theorem 10.30. Let X be an excellent scheme, Z ⊂ X a closed subscheme,
U := X \ Z and j : U ↪→ X the open embedding. Assume in addition that X is
locally embeddable into a regular scheme. For a coherent sheaf G on U and
n ∈ N the following are equivalent.
(10.30.1) Ri j∗G is coherent for i < n.
(10.30.2) depthu G ≥ n for every point u ∈ U such that codimū(Z∩ ū) = 1. �

10.4 Volumes and intersection numbers
We have used several general results that compare intersection numbers and
volumes under birational morphisms.
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Definition 10.31. (Lazarsfeld, 2004, Sec.2.2.C) Let X be a proper scheme of
dimension n over a field and D a Mumford R-divisor on X. Its volume is

vol(D) := lim
m→∞

h0(X,OX(bmDc))
mn/n!

.

Numerically equivalent divisors have the same volume, and, for D =
∑

diDi,
the volume is a continuous function of the di; see (Lazarsfeld, 2004, 2.2.41–
44). If D is nef then vol(D) = (Dn) (11.52).

Proposition 10.32. Let p : Y → X be a birational morphism of normal, proper
varieties of dimension n. Let DY be a p-nef R-Cartier R-divisor such that
DX := p∗(DY ) is also R-Cartier. Then

(10.32.1) vol(DX) ≥ vol(DY ), and

(10.32.2) if DX is ample then equality holds iff DY ∼R p∗DX .
Furthermore, let H be an ample divisor on X. Then

(10.32.3) I(H,DX) � I(p∗H,DY ) (with I(∗, ∗) as in (5.13)), and

(10.32.4) equality holds iff DY ∼R p∗DX .

Proof Write DY = p∗DX − E where E is p-exceptional. By assumption −E is
p-nef, hence E is effective by (11.60). Thus vol(DX) = vol(p∗DX) ≥ vol(DY ),
proving (1). Parts (2) and (4) are special cases of (10.39), but here is a more
direct argument.

Set r = dim
(
p(Supp E)

)
. For any R-Cartier divisors Ai on X, the intersection

number
(
p∗A1 · · · p∗A j · E

)
vanishes whenever j > r. Thus, if j > r then(

p∗H j · Dn− j
Y

)
=

(
p∗H j · (p∗DX − E)n− j) =

(
p∗H j · p∗Dn− j

X
)

=
(
H j · Dn− j

X
)
,

and for j = r we get that(
p∗Hr · Dn−r

Y
)

=
(
Hr · Dn−r

X
)

+
(
p∗Hr · (−E)n−r).

Thus we need to understand
(
p∗Hr · (−E)n−r). We may assume that H is very

ample. Intersecting with p∗H is then equivalent to restricting to the preimage of
a general member of |H|. Using this r-times (and normalizing if necessary), we
get a birational morphism p′ : Y ′ → X′ between normal varieties of dimension
n − r and an effective, nonzero, p-exceptional R-Cartier R-divisor E′ such that
−E′ is p′-nef and p′(E′i ) is 0-dimensional. Thus, by (10.33),

(
p∗Hr · (−E)n−r) =

(−E′)n−r < 0 which proves (3–4).
If DX is ample then we can use this for H := DX . Then

(
Hr · Dn−r

X
)

=
(
Dn

X
)

and we get (2). �

Lemma 10.33. Let p : Y → X be a proper, birational morphism of normal
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schemes. Let E be an effective, nonzero, p-exceptional R-Cartier R-divisor
such that p(E) is 0-dimensional and −E is p-nef. Set n = dim E.

Then −(−E)n+1 =
(
−E|E

)n
> 0.

Proof Assume that there is an effective, nonzero, p-exceptional R-Cartier R-
divisor F such that p(F) = p(E), −F is p-nef and −(−F)n+1 > 0. Note that
E, F have the same support, namely p−1(p(E)

)
, thus E−εF is effective for 0 <

ε � 1. Thus −(−E)n ≥ −(−εF)n by (10.34) applied to N2 = −E,N1 = −εF.
Such a divisor F exists on the normalization of the blow-up Bp(E)X. Let

Z → X be a proper, birational morphism that dominates both Y and Bp(E)X.
We can apply the above observation to the pull-backs of E and F to Z. �

Lemma 10.34. Let N1,N2 be R-Cartier divisors with proper support on an
n + 1-dimensional scheme. Assume that there exists an effective divisor with
proper support D such that D ∼R N1 − N2 and the Ni|D are both nef. Then
(Nn+1

1 ) ≥ (Nn+1
2 ).

Proof (Nn+1
1 ) − (Nn+1

2 ) = D ·
∑n

i=0 N i
1Nn−i

2 =
∑n

i=0
(
N1|D

)i(N2|D
)n−i. �

The next results compare the volumes of different perturbations of the canon-
ical divisor.

Lemma 10.35. Let X be a normal, proper variety of dimension n, and D an
effective R-divisor such that KX + D is R-Cartier, nef and big. Let Y be a
smooth, proper variety birational to X. Then
(10.35.1) vol(KY ) ≤

(
KX + D

)n, and
(10.35.2) equality holds iff D = 0 and X has canonical singularities.

Proof Let Z be a normal, proper variety birational to X such that there are
morphisms q : Z → Y and p : Z → X. Write

KZ ∼R q∗KY + E and KZ ∼R p∗(KX + D) − p−1
∗ D + F, (10.35.3)

where E is effective, q-exceptional and F is p-exceptional (not necessarily
effective). Thus

q∗KY ∼R p∗(KX + D) − p−1
∗ D + F − E. (10.35.4)

Write F − E = G+ − G− where G+,G− are effective and without common
irreducible components. Note that G+ is p-exceptional, therefore

H0(Z,OZ
(
bmp∗(KX + D) + mG+c

))
= H0(Z,OZ

(
bmp∗(KX + D)c

))
, so

H0(Z,OZ
(
bmp∗(KX + D) − p−1

∗ (mD) + mG+ − mG−c
))

= H0(Z,OZ
(
bmp∗(KX + D) − p−1

∗ (mD) − mG−c
))
.
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This implies that

vol(KY ) = vol
(
p∗(KX+D)−p−1

∗ D+G+−G−
)

= vol
(
p∗(KX+D)−p−1

∗ D−G−
)

≤ vol
(
p∗(KX + D)

)
= vol(KX + D) = (KX + D)n.

Furthermore, by (10.39) equality holds iff p−1
∗ D + G− = 0, that is, when D = 0

and G− = 0. In such a case (10.35.4) becomes q∗KY ∼R p∗KX + G+ and G+ is
effective. Thus a(E, X) ≥ a(E,Y) for every divisor E by (11.4.3), hence X has
canonical singularities. �

A similar birational statement does not hold for pairs in general, but a variant
holds if Y is a resolution of X. We can also add some other auxiliary divisors;
these are needed in our applications.

Lemma 10.36. Let X be a normal, proper variety of dimension n and ∆ a
reduced, effective R-divisor on X. Let A be an R-Cartier R-divisor and D an
effective R-divisor such that KX + ∆ + A + D is R-Cartier, nef and big. Let
p : Y → X be any log resolution of (X,∆). Then
(10.36.1) vol(KY + p−1

∗ ∆ + p∗A) ≤
(
KX + ∆ + A + D

)n and
(10.36.2) equality holds iff D = 0 and (X,∆) is canonical.

Proof There are p-exceptional, effective divisors Fi such that

KY + p−1
∗ ∆ ∼R p∗(KX + ∆ + D) − p−1

∗ D − F1 + F2, (10.36.3)

As in (10.35) we get that

H0(Y,OY
(
bmp∗(KX + ∆ + A + D) − p−1

∗ (mD) − mF1 + mF2c
))

= H0(Y,OY
(
bmp∗(KX + ∆ + A + D) − p−1

∗ (mD) − mF1c
))
, and

vol(KY + p−1
∗ ∆ + p∗A) = vol

(
p∗(KX + ∆ + A + D) − p−1

∗ D + F2 − F1
)

= vol
(
p∗(KX + ∆ + A + D) − p−1

∗ D − F1
)
≤ vol

(
p∗(KX + ∆ + A + D)

)
= vol(KX + ∆ + A + D) = (KX + ∆ + A + D)n.

Furthermore, by (10.39) equality holds iff p−1
∗ D + F1 = 0, that is, when D = 0

and F1 = 0. Thus (10.36.3) becomes KZ + p−1
∗ ∆ ∼R p∗(KX + ∆) + F2, where

F2 is effective. This says that (X,∆) is canonical. �

Essentially the same argument gives the following log canonical version.

Lemma 10.37. Let X be a normal, proper variety of dimension n, ∆ a reduced,
effective R-divisor on X and A an R-Cartier R-divisor on X. Let q : X̄ → X be
a proper birational morphism, Ē the reduced q-exceptional divisor, ∆̄ := q−1

∗ ∆
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and D̄ an effective R-divisor on X̄ such that KX̄ + ∆̄ + Ē + D + q∗A is R-Cartier,
nef and big. Let p : Y → X be any log resolution of singularities with reduced
exceptional divisor E. Then
(10.37.1) vol(KY + p−1

∗ ∆ + E + p∗A) ≤
(
KX̄ + ∆̄ + Ē + D̄ + q∗A

)n and
(10.37.2) equality holds iff D̄ = 0 and (X̄, ∆̄ + Ē) is log canonical. �

We have also used the following elementary estimate.

Lemma 10.38. Let p : Y → X be a separable, generically finite morphism
between smooth, proper varieties. Then vol(KY ) ≥ deg(Y/X) · vol(KX).

Proof This is obvious if vol(KX) = 0, hence we may assume that KX is big.
Pulling back differential forms gives a natural map p∗ωX → ωY . This gives an
injection ωr

X ⊗ p∗ωY ↪→ p∗
(
ωr+1

Y
)
. Since p∗ωY has rank deg(Y/X) and KX is

big, H0(X, ωr
X ⊗ p∗ωY

)
grows at least as fast as deg(Y/X) · H0(X, ωr

X
)
. �

The following result describes the variation of the volume near a nef and big
divisor. The assertions are special cases of (Fulger et al., 2016, Thms.A–B).

Theorem 10.39. Let X be a proper variety, L a big R-Cartier divisor, and E
an effective divisor. The following are equivalent.
(10.39.1) vol(L − E) = vol(L), and
(10.39.2) H0(OX(bmL − mEc)

)
= H0(OX(bmLc)

)
for every m ≥ 0.

If L is nef then these are further equivalent to
(10.39.3) E = 0.

Note that (3)⇒ (2)⇒ (1) are clear, but the converse is somewhat surprising.
It says that although the volume measures only the asymptotic growth of the
Hilbert function, one can not change the Hilbert function without changing the
volume. For proofs see the original paper.

10.5 Double points
We used a variety of results about hypersurface double points. For the rest of
the section we work with rings R that contain 1

2 . In this case, all the definitions
that we have seen are equivalent to the ones given below. If 1

2 < R, there are
differing conventions, especially if char R = 2.

The following results on normal forms, deformations and resolutions of dou-
ble points are well known, but not easy to find in one place.

Definition 10.40. A quadratic form over a field k is a degree 2 homogeneous
polynomial q(x1, . . . , xn) ∈ k[x1, . . . , xn]. The rank of q is defined either as the
dimension of the space spanned by the derivatives

〈
∂q
∂x1
, . . . , ∂q

∂xn

〉
, or as the rank
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of Hess(q) :=
(

∂2q
∂xi∂x j

)
, or as the number of variables in any diagonalized form

q = a1y2
1 + · · · + ary2

r where ai ∈ k×. More abstractly, if V is a k-vector space,
we can think of q as an element of the symmetric square of its dual S 2(V∗).

Definition 10.41. Let (S ,m) be a regular local ring with residue field k such
that char k , 2. We can identify m2/m3 with S 2(m/m2). Thus, for any g ∈ m2,
we can view its image in m2/m3 as a quadratic form.

Let Y be a smooth variety over a field of characteristic , 2 and X = (g =

0) ⊂ Y a hypersurface. Given a point p ∈ X, we let rankp X denote the rank of
the image of g in m2

p/m
3
p.

We say that p ∈ X is a double point if rankp X ≥ 1, a cA point if rankp X ≥ 2
and an ordinary double point if rankp X = dimp X. An ordinary double point is
also called a node, especially if dim S = 2.

If y1, . . . , yn are étale coordinates on Y then Hessy(g) =
(

∂2g
∂yi∂y j

)
. Since the

rank is lower semicontinuous, {p ∈ Sing X : rankp X ≥ r} is open in Sing X for
every r. For us the most interesting case is r = 2. The relative version is then
the following.

Claim 10.41.1. Let f : Y → S be smooth and X ⊂ Y a relative Cartier divisor.
Then {p ∈ X : p is cA (or smooth) on X f (p)} ⊂ X is open. �

This implies that if X → S is proper and Xs has only cA-singularities (and
smooth points) outside a closed subset Zs ⊂ Xs of codimension ≥ m for some
s ∈ S then then same holds in an open neighborhood s ∈ S ◦ ⊂ S .

Corollary 10.42. Let π : X → S be a flat and pure dimensional morphism.
Then the set of points {x : Xπ(x) is demi-normal at x} is open in X.

Proof Being S 2 is an open condition by (10.12). An S 1 scheme is geometri-
cally reduced iff it is generically smooth and smoothness is an open condition.
Thus being S 2 and geometrically reduced is an open condition.

It remains to show that having only nodes in codimension 1 is also an open
condition. If all residue characteristics are , 2, this follows from (10.41.3)
since having only cA-singularities in codimension 1 is an open condition.

See (Kollár, 2013b, 1.41) for nodes in characteristic 2. �

Let f be a function on Rn that has an ordinary critical point at the origin. The
Morse lemma says that in suitable local coordinates y1, . . . , yn we can write f
as ±y2

1±· · ·±y2
n; see (Milnor, 1963, p.6) and (Arnol′d et al., 1985, Vol.I.Sec.6.2)

for differentiable and analytic versions. Algebraically the best is to work with
formal power series. We prove a form that also works if char(R/m) = 2.
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Lemma 10.43 (Formal Morse lemma with parameters). Let (R,m) be a com-
plete local ring and G ∈ R[[x1, . . . , xn]]. Assume that G = q + H, where q is a
quadratic form with reduction modulo m denoted by q̄, such that
(10.43.1) dim

〈
∂q̄/∂x1, . . . , ∂q̄/∂xn

〉
= n, and

(10.43.2) H ∈ (x1, . . . , xn)3 + mR[[x1, . . . , xn]].
Then there are local coordinates y1, . . . , yn such that
(10.43.3) yi ≡ xi mod (x1, . . . , xn)2 + mR[[x1, . . . , xn]], and
(10.43.4) G = q(y1, . . . , yn) + b for some b ∈ m.

Proof Let us start with the case when R = k is a field. Set x2,i := xi. As-
sume inductively (starting with r = 2) that there are local coordinate systems
(xs,1, . . . , xs,n) for 3 ≤ s ≤ r such that

xs,i ≡ xs−1,i mod (x1, . . . , xn)s−1 and
G ≡ q(xr,1, . . . , xr,n) mod (x1, . . . , xn)r+1.

Next we choose xr+1,i := xr,i + hr,i for suitable hr,i ∈ (x1, . . . , xn)r. Note that

q(xr+1,1, . . . , xr+1,n) = q(xr,1, . . . , xr,n) +
∑

ihr,i
∂q
∂xi

mod (x1, . . . , xn)2r.

(We use this only modulo (x1, . . . , xn)r+2.) Since q is nondegenerate,∑
i
∂q
xi

(x1, . . . , xn)r = (x1, . . . , xn)r+1.

Thus we can choose the hr,i such that

G − q(xr+1,1, . . . , xr+1,n) ∈ (x1, . . . , xn)r+2.

In the limit we get (x∞,1, . . . , x∞,n) as required.
Applying this to k = R/m we can assume from now on that

G − q(x1, . . . , xn) ∈ mR[[x1, . . . , xn]].

Working inductively (starting with r = 1) assume that there are local coordi-
nate systems (ys,1, . . . , ys,n) for 3 ≤ s ≤ r such that

ys,i ≡ ys−1,i mod ms−1R[[x1, . . . , xn]] and
G ≡ q(yr,1, . . . , yr,n) mod m + mrR[[x1, . . . , xn]].

Next we choose yr+1,i := yr,i +cr,i for suitable cr,i ∈ mrR[[x1, . . . , xn]]. Note that

q(yr+1,1, . . . , yr+1,n) = q(yr,1, . . . , yr,n) +
∑

icr,i
∂q
∂xi

mod m2rR[[x1, . . . , xn]].

(We use this only modulo mr+1R[[x1, . . . , xn]].) Since q is nondegenerate,∑
i
∂q
∂xi

mrR[[x1, . . . , xn]] = (x1, . . . , xn)mrR[[x1, . . . , xn]].
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Thus we can choose the cr,i such that

G − q(yr+1,1, . . . , yr+1,n) ∈ m + mr+1R[[x1, . . . , xn]].

In the limit we get (y∞,1, . . . , y∞,n) as required. �

In (1.27) we used various results on resolutions of double points of surfaces
that contain a pair of lines and double points of 3–folds that contain a pair
of planes. The normal forms can be obtained using the method of (10.43),
but we did not follow how linear subvarieties transform under the (non-linear)
coordinate changes used there. However, in the next examples one can be quite
explicit about the coordinate changes and the resolutions.

10.44 (Ordinary double points of surfaces). Let S :=
(
h(x1, x2, x3) = 0

)
⊂ A3

be a surface with an ordinary double point at the origin that contains the pair
of lines (x1x2 = x3 = 0). Then h can be written as

h = f (x1, x2, x3)x1x2 − g(x1, x2, x3)x3.

Since the quadratic part has rank 3 then f (0, 0, 0) , 0 and we can write g =

x1g1 + x2g2 + x3g3 for some polynomials gi. Thus

h = f
(
x1 − f −1g1x3

)(
x2 − f −1g2x3

)
−

(
g3 + f −1g1g2

)
x2

3.

Here g3 + f −1g1g2 is nonzero at (0, 0, 0) and we can set

y1 := x1 − f −1g1x3, y2 := f
(
x2 − f −1g2x3

)(
g3 + f −1g1g2

)−1 and y3 := x3

to bring the equation to the normal form S = (y1y2 − y2
3 = 0). The pair of lines

is (y1y2 = y3 = 0).
Now we consider three ways of resolving the singularity of X. First, one can

blow up the origin 0 ∈ A3. We get B0A
3 ⊂ A3

y × P
2
s defined by the equations

{yis j = y jsi : 1 ≤ i, j ≤ 3}. Besides these equations, B0S is defined by y1y2 −

y2
3 = s1s2 − s2

3 = y1s2 − y3s3 = s1y2 − y3s3 = 0.
One can also blow up (y1, y3). We get B(y1,y3)A

3 ⊂ A3
y × P

1
u1u3

defined by the
equation y1u3 = y3u1. Besides this equation, B(y1,y3)S is defined by y1y2 − y2

3 =

u1y2 − u3y3 = 0.
These two blow-ups are actually isomorphic, as shown by the embedding

A3
y × P

1
u1u3

↪→ A3
y × P

2
s :

(
(y1, y2, y3), (u1:u3)

)
7→

(
(y1, y2, y3), (u2

1:u2
3:u1u3)

)
restricted to B(y1,y3)S . The same things happen if we blow up (y2, y3).

10.45 (Ordinary double points of 3-folds). Let X :=
(
h(x1, . . . , x4) = 0

)
⊂ A4
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be a hypersurface with an ordinary double point at the origin that contains the
pair of planes (x1x2 = x3 = 0). Then h can be written as

h = f (x1, . . . , x4)x1x2 − g(x1, . . . , x4)x3.

The quadratic part has rank 4 iff f (0, . . . , 0) , 0 and x4 appears in g with
nonzero coefficient. In this case we can set yi := xi for i = 1, 2, 3 and y4 := f −1g
to bring the equation to the normal form X = (y1y2 − y3y4 = 0). The original
pair of planes is (y1y2 = y3 = 0).

Now we consider three ways of resolving the singularity of X. First, one can
blow up the origin 0 ∈ A4. We get B0A

4 ⊂ A4
y × P

3
s , defined by the equations

{yis j = y jsi : 1 ≤ i, j ≤ 4}, and p : B0X → X by the additional equations

y1y2 − y3y4 = s1s2 − s3s4 = yis3−i − y js7− j = 0 : i ∈ {1, 2}, j ∈ {3, 4}.

The exceptional set is the smooth quadric (s1s2 = s3s4) ⊂ P3 lying over the
origin 0 ∈ A4.

One can also blow up (y1, y3). Then B(y1,y3)A
4 ⊂ A4

y × P
1
u1u3

is defined by the
equation y1u3 = y3u1. Besides this equation, B(y1,y3)X is defined by y1y2−y3y4 =

u1y2 − u3y4 = 0. The exceptional set is the smooth rational curve E ' P1
u1u3

lying over the origin 0 ∈ A4.
Note furthermore that the birational transform P∗24 of the plane P24 := (y2 =

y4 = 0) is the blown-up plane B0P24, but the birational transform P∗14 of the
plane P14 := (y1 = y4 = 0) is the plane (y1 = u1 = 0). The latter intersects
E at the point (u1 = 0) ∈ E, thus

(
P∗14 · E) = 1. Since P∗14 + P∗24 is the pull-

back of the Cartier divisor (y4 = 0), it has 0 intersection number with E. Thus(
P∗24 · E) = −1.

By direct computation, the rational map p : A4
y × P

3
s d A

4
y × P

1
u given by

p1 : (y1, . . . , y4, s1: · · · :s4) 7→ (y1, . . . , y4, s1:s3) gives a morphism p1 : B0X →
B(y1,y3)X. Similarly, we obtain p2 : B0X → B(y2,y3)X and an isomorphism

p1 × p2 : B0X ' B(y1,y3)X ×X B(y2,y3)X.

Finally, set S := (y3 = y4) ⊂ X. By the computations of (10.44), the pi restrict
to isomorphisms pi : B0S ' B(yi,y3)S . Thus p−1S = B0S ∪ E and B0S is the
graph of the isomorphism p2 ◦ p−1

1 : B(y1,y3)S ' B(y2,y3)S .

10.6 Noether normalization
10.46 (Classical versions). Noether’s normalization theorem says that if X is
an affine (resp. projective) k-variety of dimension n then it admits a finite mor-
phism to An

k (resp. Pn
k).

We aim to generalize this to arbitrary morphisms. For the projective case,
let X ⊂ PN

S be projective over S and n = dim Xs for some s ∈ S . Choose
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a linear subspace Ls ⊂ P
N
s of dimension N − n − 1 that is disjoint from Xs.

(This is always possible if k(s) is infinite, otherwise we may need to take a
high enough Veronese embedding first.) Lifting Ls to PN

S and projecting from
it gives the following.

Claim 10.46.1. Let p : X → S be a projective morphism and n = dim Xs for
some s ∈ S . Then there is an open neighborhood s ∈ S ◦ ⊂ S such that p|X◦ can
be factored as

p|X◦ : X◦ finite // Pn
S ◦

// S ◦. �

In general, we have the following weaker local version.

Claim 10.46.2. Let p : X → S be a finite type morphism and x ∈ X a closed
point. Then there is an open neighborhood x ∈ X◦ ⊂ X and an open embedding
X◦ ↪→ X∗, where p∗ : X∗ → S is projective of relative dimension ≤ dim Xs.

Proof Set d := dim Xs and pick g1, . . . , gd ∈ Ox,X that generate an mx,X-
primary ideal. They give a rational map X d Ad

S ↪→ Pd
S that is quasi-finite on

some x ∈ X◦ ⊂ X. We then take X◦ ⊂ X∗ such that X∗ → Pd
S is finite. �

Next we give two examples showing that in (10.46.2) one can not choose X◦

such that X◦ → Ad
S is finite, not even when S is local. After that we discuss

an étale local version for finite type morphisms due to Raynaud and Gruson
(1971). Arbitrary morphisms are discussed in (10.52); these results work best
for morphisms of complete local schemes.

Example 10.47. We give an example of a morphism of pure relative dimension
one p : X → S from an affine 3-fold X to a smooth, pointed surface s ∈ S that
can not be factored as

p : X finite // A1 × S // S .

not even over a formal neighborhood of s. Such examples are quite typical and
there does not seem to be any affine version of Noether normalization over
base schemes of dimension ≥ 2.

Let S denote the localization (or completion) of A2
st at the origin and con-

sider the affine scheme

X :=
(
(x3 + y3 + 1)(1 + tx) + sy = 0

)
⊂ A2

xy × S .

Then π : X → S is a flat family of curves. We claim that there is no finite
morphism of it onto A1 × S .

Assume to the contrary that such a map g : X → A1 × S exists. Then g can
be extended to a finite morphism ḡ : X̄ → P1 × S .
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Here X̄(0,0) is a compactification of X(0,0), hence a curve of genus 1.
For t , 0 the line (1 + tx = s = 0) gives an irreducible component of X̄(0,t)

that is a rational curve. As t → 0, the limit of these rational curves is a union
of rational, irreducible, geometric components of X̄(0,0), a contradiction.

Example 10.48. In A4
xyst consider the surface X := (x − sy2 = y − tx2 = 0).

Projection to A2
xy is birational with inverse (x, y) 7→ (s, t) = (x/y2, y/x2). The

projection to A2
st is quasi-finite.

Consider the projection π : A4
xyst → A

3
zst given by z = x + y. We claim that

the closure of its image contains the z-axis. Indeed, for any c, the curve

t 7→
(
t, c − t, t

(c−t)2 ,
c−t
t2

)
lies on X and its projection converges to (c, 0, 0) as t → ∞.

It is easy to see that the same happens for every perturbation of π. In fact,
given (x, y) 7→

(
a(s, t)x+b(s, t)y+c(s, t)

)
, the closure of the image of X contains

the z-axis whenever a(0, 0) , 0 , b(0, 0).

The next result of Raynaud and Gruson (1971) shows that Noether normal-
ization works étale locally. The version given in (Stacks, 2022, Tag 052D)
states the first part, but following the proof gives the additional information
about the choices.

Theorem 10.49. Let f : X → S be a finite type morphism. Pick s ∈ S , a
closed point x ∈ Xs and set n = dimx Xs. Then there is an elementary étale
neighborhood (2.18) π : (x′, X′)→ (x, X) such that f ◦ π factors as

(x′, X′)
g
→ (y,Y)

τ
→ (s, S ), (10.49.1)

where g is finite, g−1(y) = {x′} (as sets), τ is smooth of relative dimension n,
and k(y) = k(s).

Moreover, pick c ∈ N and x1, . . . , xn ∈ mx,Xs that generate an mx,Xs -primary
ideal. Then we can choose (10.49.1) such that there are y1, . . . , yn ∈ my,Ys

satisfying g∗syi ≡ π
∗
s xi mod mc

x′,X′s
for every i. �

If Xs is generically geometrically reduced, then we can choose yn+1 ∈ mx,Xs

with specified residue modulo mc
x′,X′s

and which embeds the generic fiber of
Xs → Ys into A1

k(Ys)
. Lifting it to X′ and setting Y ′ := A1

Y gives the following
birational version of Noether normalization.

Corollary 10.50. Let f : X → S be a finite type morphism. Pick s ∈ S and
a closed point x ∈ Xs. Assume that Xs is generically geometrically reduced
and of pure dimension n. Then there is an elementary étale neighborhood

https://stacks.math.columbia.edu/tag/052D
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π : (x′, X′)→ (x, X) such that f ◦ π factors as

(x′, X′)
g′
→ (y′,Y ′)

τ′

→ (s, S ), (10.50.1)

where g′ is finite, (g′)−1(y′) = {x′} (as sets), g′s : X′s → Ys × A
1 is birational, τ′

is smooth of relative dimension n + 1 and k(y′) = k(s).
Moreover, pick c ∈ N and x1, . . . , xn+1 ∈ mx,Xs that generate an mx,Xs -

primary ideal. Then we can choose the above diagram such that there are
y1, . . . , yn+1 ∈ my,Ys satisfying g′s

∗yi ≡ π
∗
s xi mod mc

x′,X′s
for every i. �

Corollary 10.51. Let f : X → S be a finite type morphism of pure relative
dimension n. Pick s ∈ S and a closed point x ∈ Xs such that k(x) = k(s).
Assume that S is normal and f is flat at the generic points of Xs. Assume also
that embdimx pure(Xs) ≤ n+1. Then there is an elementary étale π : (x′, X′)→
(x, X) such that (10.50.1) further factors as

(x′, X′)
g′
→ (y′,D′) ↪→ (y′,Y ′)

τ′

→ (s, S ), (10.51.1)

where, D′ ⊂ Y ′ is a relative Cartier divisor, g′ is birational, g′s : X′s → D′s is
birational and induces a local isomorphism pure(X′s)→ D′s at x′.

Proof Since embdim( pure(Xs) ≤ n + 1, we can choose x1, . . . , xn+1 ∈ mx,Xs

that generate the ideal of x ∈ pure(Xs). Applying (10.50) with c = 2 guarantees
that pure(X′s)→ D′s is a local isomorphism at x′.

D′ is a relative Cartier divisor by (4.4) and then (10.54) implies that g′ is a
local isomorphism at the generic points of X′s. Thus g′ is birational. �

Informally speaking, (10.51) says that partial normalizations of flat defor-
mations of hypersurfaces describe all deformations over normal base schemes.
For double points this approach leads to a complete answer (10.68). More sub-
stantial applications are in de Jong and van Straten (1991).

Next we turn to local morphisms of Noetherian local schemes

10.52 (Noether normalization, local version). Let f : (x, X)→ (s, S ) be a mor-
phism of local, Noetherian schemes. We would like to factor f as

f : (x, X)
p
→ (s′, S ′)

q
→ (s, S ), (10.52.1)

where p has ‘finiteness’ properties and q has ‘smoothness’ properties. Let
us start with the case when k(x) ⊃ k(s) is a finitely generated field exten-
sion. Pick any transcendence basis ȳ1, . . . , ȳn of k(x)/k(s) and lift these back to
y1, . . . , yn ∈ OX . We can then take S ′ to be the localization of An

S at the generic
point of the fiber over s ∈ S . Thus we have proved the following.



10.6 Noether normalization 391

Claim 10.52.2. Let f : (x, X)→ (s, S ) be a local morphism of local, Noetherian
schemes such that k(x) ⊃ k(s) is a finitely generated field extension. Then we
can factor f as f : (x, X)

p
→ (s′, S ′)

q
→ (s, S ), where k(x)/k(s′) is a finite field

extension, q is the localization of a smooth morphism and q−1(s) = s′ (as
schemes). �

For Henselian schemes we can do better. Pick ȳ ∈ k(x) that is separable over
k(s′) with separable, monic equation ḡ(ȳ) = 0. If OX is Henselian then we can
lift ȳ to y ∈ OX such that y satisfies a separable, monic equation g(y) = 0. We
can now replace S ′ with the Henselization of OS ′ [y]/(g(y)) at the generic point
of the central fiber, and obtain the following.

Claim 10.52.3. Let f : (x, X) → (s, S ) be a local morphism of local, Hensel-
ian, Noetherian schemes such that k(x)/k(s) is a finitely generated field ex-
tension. Then we can factor f as f : (x, X)

p
→ (s′, S ′)

q
→ (s, S ), where p is

finite, k(x)/k(s′) is a purely inseparable field extension, q is the localization of
a smooth morphism and q−1(s) = s′ (as schemes). �

Combining these with (10.53) gives the following.

Claim 10.52.4. Let f : (x, X)→ (s, S ) be a local morphism of local, complete,
Noetherian schemes. Then we can factor f as f : (x, X)

p
→ (s′, S ′)

q
→ (s, S ),

where k(x)/k(s′) is a purely inseparable field extension, q is formally smooth,
faithfully flat, regular and q−1(s) = s′ (as schemes). �

Putting these together we get the following.

Claim 10.52.5. Let f : (x, X)→ (s, S ) be a local morphism of local, complete,
Noetherian schemes such that k(x)/k(s) is separable. Set n := dim Xs

Then we can factor f as

f : (x, X)
p
→

(
(s′, 0), Ân

S ′
) π
→ (s′, S ′)

q
→ (s, S ),

where p is finite, k(x) = k(s′, 0) = k(s′), π is the coordinate projection, q−1(s) =

s′ (as schemes), q is the localization of a smooth morphism if k(x)/k(s) is
finitely generated and formally smooth, faithfully flat and regular in general.

Proof By (10.52.4) we have q : (s′, S ′)→(s, S ) such that k(x) = k(s′). Since
OXs has dimension n, there are t̄1, . . . , t̄n ∈ OXs that generate an ideal that is
primary to the maximal ideal. Lift these back to t1, . . . , tn ∈ OX . These define
p : (x, X)→

(
(s′, 0), Ân

S ′
)
. By construction OX/

(
mS , t1, . . . , tn

)
' OXs/

(
t̄1, . . . , t̄n

)
is finite over k(s′). Thus p is finite. �

Notation 10.52.6. Let R be a complete, local ring and Y = Spec R. we write
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Ân
Y := Spec R[[x1, . . . , xn]]. Note that Ân

Y is not the product of Ân with Y in any
sense. If X → Y is a finite morphism then Ân

X ' X ×Y Â
n
Y .

10.53 (Residue field extensions). Let (s, S ) be a Noetherian, local scheme
and K/k(s) a field extension. By (Grothendieck, 1960, 0III .10.3.1), there is
a Noetherian, local scheme (x, X) and a flat morphism g : (x, X) → (s, S ) such
that g∗ms,S = mx,X (that is, the scheme fiber g−1(s) is the reduced point {x}) and
k(x) ' K.

If K/k(s) is a finitely generated separable extension then we can choose
g : (x, X) → (s, S ) to be the localization of a smooth morphism. In particular,
if S is normal then so is X.

Combining (Grothendieck, 1960, 0III .10.3.1) and (Stacks, 2022, Tag 07PK)
shows that if K/k(s) is an arbitrary separable extension, then we can choose
g : (x, X)→ (s, S ) to be formally smooth. If S is complete then g is also regular.
In particular, if S is normal then so is X.

Note that infinite inseparable extensions do cause problems in the above
arguments. One difficulty is that they can lead to non-excellent schemes; see
(Nagata, 1962, p.206).

10.54 (Openness for isomorphism). Let g : (x, X) → (s, S ) be a local mor-
phism of local, Noetherian schemes and g : G → F a map of coherent sheaves
on X. Assume that F is flat over S . Then g is an isomorphism iff gs is an iso-
morphism, and gs is injective iff g is injective and coker g is flat over S . See
(Matsumura, 1986, 22.5) or (Kollár, 1996, I.7.4.1) for proofs. Applying this to
the structure sheaf of a scheme and its image, we get the following.

Claim 10.54.1. Let π : X → Y be a finite morphism of S -schemes. Assume
that X is flat over S . Then π is an isomorphism (resp. closed embedding) in
a neighborhood of a fiber Xs iff πs : Xs → Ys is an isomorphism (resp. closed
embedding).

10.7 Flatness criteria
Let g : X → S be a morphism and F a coherent sheaf on X. We are mainly
interested in those cases when F is flat over S with pure fibers of dimension d
for some d. In practice we already know that F|U is flat for some dense open
subset U ⊂ X and we aim to find conditions that guarantee flatness.

Note that such a result is possible only if F|U determines F. Thus we at least
need to assume that none of the associated point of F are contained in Z. A
stronger version of this is the following.

10.55 (Flatness and associated points). Let f : X → S be a morphism of
Noetherian schemes and F a coherent sheaf on X.

https://stacks.math.columbia.edu/tag/07PK
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Claim 10.55.1. If F is flat over S then f
(
Ass(F)

)
⊂ Ass(S ).

Proof Let x ∈ X be an associated point of F and s := f (x). Assume that s is
not an associated point of S . Then there is an r ∈ ms,S such that r : OS → OS

is injective near s. Tensoring with F shows that r : F → F is injective near Xs.
Thus none of the points of Xs is in Ass(F). �

Claim 10.55.2. Assume that F is flat over S and x ∈ Ass(F). Then every
generic point of Supp

(
x̄∩ Xs

)
is an associated point of Fs. In particular, if F is

flat with pure fibers then every x ∈ Ass(F) is a generic point of Supp
(
F f (x)

)
.

Proof Let G ⊂ F be the largest subsheaf supported on x̄. After localizing
at a generic point of Supp

(
x̄ ∩ Xs

)
, we have Supp

(
x̄ ∩ Xs

)
= {w}, a single

closed point. There is an n ≥ 0 such that G ⊂ mn
s,S F, but G 1 mn+1

s,S F. Thus
mn

s,S F/mn+1
s,S F '

(
mn

s,S /m
n+1
s,S

)
⊗ Fs has a nonzero subsheaf supported on w. �

Note that flatness is needed for (10.55.2) as illustrated by the restriction of
either of the coordinate projections to the union of the axes (xy = 0).

Claim 10.55.3. Assume f is of finite type, F is flat over S and x ∈ Ass(F).
Then every fiber of x̄→ f (x̄) has the same dimension.

Proof We may assume that f (x) is a minimal associated point of S . Assume
that we have s ∈ f (x̄) such that dim(Xs ∩ x̄) is larger than the expected di-
mension d. By restricting to a general relative Cartier divisor H ⊂ X, F|H is
flat along Hs by (10.56) and Hs ∩ x̄ is a union of associated points of F|H by
(10.22.1). Repeating this d + 1 times we get Cartier divisors H1, . . . ,Hd+1 ⊂ X
and a complete intersection Z := H1 ∩ · · · ∩Hd+1 such that F|Z is flat along Zs,
the generic points of Z∩ x̄ are associated points of F|Z yet they do not dominate
f (x̄). This is impossible by (10.55.1). �

Next we discuss some basic reduction steps.
Let f : X → S be a morphism that we would like to prove to be flat. We can

usually harmlessly assume that S is local.
If f is of finite type, then flatness is an open property. Let U ⊂ X denote the

largest open set over which f is flat and set Z := X \U. The situation is techni-
cally simpler if Z is a single closed point. To achieve this, one can use (10.56)
to pass to a general hyperplane section of X and repeat if necessary, until Z
becomes zero dimensional. A potential drawback is that, while we can choose
general hyperplanes, some fibers are non-general complete intersections, so
may be harder to control.

Alternatively, we can localize at a generic point of Z. Then f is no longer of
finite type, which can cause problems.
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Once S and X are both local, we can take their completions. Now we have
a local morphism of complete, local, Noetherian schemes. Note, however, that
some of our results hold only over base schemes that are normal, seminormal or
reduced. These properties are preserved by completion for excellent schemes,
but not in general.

Proposition 10.56 (Bertini theorem for flatness). (Matsumura, 1986, p.177)
Let (x, X) → (s, S ) be a local morphism of local schemes, r ∈ mx,X and F a
coherent sheaf on X. The following are equivalent.
(10.56.1) r is a non-zerodivisor on F and F/rF is flat over S .
(10.56.2) r is a non-zerodivisor on Fs and F is flat over S . �

10.57 (Flatness and residue field extension). The following simple trick re-
duces most flatness questions for local morphisms f : (x, X) → (s, S ) with
finitely generated residue field extension k(x)/k(s) to the special case when
k(x) = k(s) and they are infinite. (See 10.52–10.53 for other versions.)

If k(x)/k(s) is a generated by n elements then there is a point s′ ∈ An
k(s) such

that k(x) ⊂ k(s′) and k(s′) is infinite.
Consider next the trivial lifting f ′ : X′ := An

X → S ′ := An
S . Set s′ ∈ An

k(s) ⊂

S ′ and x′ := (s′, x) ∈ X′ projecting to x. Thus we have a commutative diagram
of pointed schemes

(x′ ∈ X′)

f ′

��

πX // (x ∈ X)

f

��
(s′ ∈ S ′)

πS // (s ∈ S )

(10.57.1)

where πX , πS are smooth, k(x′) = k(s′) and f is flat at x iff f ′ is flat at x′.
Many properties of schemes and morphisms are preserved by composing

with smooth morphisms; see (Matsumura, 1986, Sec.23) for a series of such
results. Thus the properties of (s, S ) are inherited by (s′, S ′). Once we prove a
result about (x′, X′) it descends to (x, X).

Over reduced bases, flatness is usually easy to check if we know all the
fibers. For projective morphisms there are criteria using the Hilbert function
(3.20). In the local case we have the following.

Lemma 10.58. Let S be a reduced scheme and f : X → S a morphism that is
of finite type, pure dimensional and with geometrically reduced fibers. Then f
is flat.

Proof By (4.38) it is enough to show this when (s, S ) is the spectrum of a
DVR. In this case f is flat iff none of the associated points of X is contained
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in Xs. By assumption Xs is reduced, so only generic points of Xs could oc-
cur. Then the corresponding irreducible component of Xs is also an irreducible
component of X, but we also assumed that f has pure relative dimension. �

10.59 (Format of flatness criteria). In many cases we have some information
about the fibers of a morphism, but we do not fully understand them. So we
are looking for results of the following type.

Let (s, S ) be a local scheme, f : X → S a morphism and F a vertically pure
coherent sheaf on X. Let Z ⊂ X be a closed subset such that FX\Z is flat over
S . We make various assumptions on pure(Fs) (involving Zs) and on S . The
conclusion should be that F is flat and Fs is pure.

The natural way to organize the results is by the relative codimension; in
the local case this equals codimXs (Zs). The starting case is when Z = X, so the
codimension is 0.

The main theorems are (10.60), (10.63), (10.67), (10.71) and (10.73).

Flatness in relative codimension 0

The basic result is the following, proved in (Grothendieck, 1971, II.2.3).

Theorem 10.60. Let f : (x, X)→ (s, S ) be a local morphism of local, Noethe-
rian schemes of the same dimension such that f −1(s) = x as schemes, that is,
mx,X = ms,S OX . Assume that k(x) ⊃ k(s) is separable and Ŝ , the completion of
S , is normal. (Note that if S is normal and excellent, then Ŝ is normal.)

Then f is flat at x.

Proof We may replace S and X by their completions. As in (10.52.4), we can
factor f as

f : (x, X)
p
→ (y,Y)

q
→ (s, S )

where (y,Y) is also complete, local, Noetherian, k(x) = k(y), mx,X = my,YOX

and q is flat.
Thus p∗ : my,Y/m2

y,Y → mx,X/m2
x,X is surjective, hence p∗ : OY → OX is sur-

jective by the Nakayama lemma. Equivalently, p : X → Y is a closed embed-
ding. It is thus an isomorphism, provided Y is integral.

In order to ensure these properties of Y we need to know more about q. If
k(x)/k(s) is finitely generated then q is the localization of a smooth morphism
(10.52.3). Thus Y is normal and dim Y = dim S , as required. The general case
is technically harder. We use that q is formally smooth and geometrically reg-
ular (10.52.4) to reach the same conclusions as before.

Thus p is an isomorphism, so f = q and f is flat. �
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Examples 10.61. These examples show that the assumptions in (10.60) and
(10.63) are necessary.

(10.61.1) Assume that char k , 2 and set C := (y2 = ax2 + x3) where a ∈ k
is not a square. Let f : C̄ → C denote the normalization. Then the fiber over
the origin is the spectrum of k(

√
a), which is a separable extension of k. Here

C is not normal and f is not flat.
(10.61.2) The extension C[x, y] ⊂ C[ x

y , y](y) is not flat yet (x, y) · C[ x
y , y](y)

is the maximal ideal and the residue field extension is purely transcendental.
However, the dimension of the larger ring is 1.

A similar thing happens with C[x, y] ↪→ C[[t]] given by (x, y) 7→ (t, sin t).
The fiber over the origin is the origin with reduced scheme structure.

(10.61.3) On C[x, y] consider the involution τ(x) = −x, τ(y) = −y. The in-
variant ring is C[x2, xy, y2] ⊂ C[x, y]. The fiber over the origin is the spectrum
of C[x, y]/(x2, xy, y2); it has length 3 and embedding dimension 2. The fiber
over any other point has length 2. Thus the extension is not flat.

(10.61.4) As in (Kollár, 1995a, 15.2), on S := k[x1, x2, y1, y2] consider the
involution τ(x1, x2, y1, y2) = (x2, x1, y2, y1). The ring of invariants is

R := k[x1 + x2, x1x2, y1 + y2, y1y2, x1y1 + x2y2].

The resulting extension is not flat along (x1 − x2 = y1 − y2 = 0).
If char k = 2 then x1 − x2, y1 − y2 are invariants. Set P := (x1 − x2, y1 − y2)R.

Then S/PS = S/(x1 − x2, y1 − y2)S ' k[x1, y1] and R/P ' k[x2
1, y

2
1].

Thus S P ⊃ RP is a finite extension whose fiber over P is k(x1, y1) ⊃ k(x2
1, y

2
1).

This is an inseparable field extension, generated by 2 elements.
(10.61.5) Set X := (z = 0) ∪ (z − x = z − y = 0) ⊂ A3 with coordinate

projection π : X → A2
xy. Then π is finite, has curvilinear fibers, but not flat.

These examples leave open only one question: what happens with curvilin-
ear fibers.

Definition 10.62 (Curvilinear schemes). Let k be a field and (A,m) a local,
Artinian k-algebra. We say that Speck A is curvilinear if A is cyclic as a k[t]-
module for some t. That is, if A can be written as a quotient of k[t]. It is easy
to see that this holds if either A/m is a finite, separable extension of k and m is
a principal ideal, or A is a field extension of k of degree = char k.

Let B be an Artinian k-algebra. Then Speck B is called curvilinear if all of
its irreducible components are curvilinear. If k is an infinite field, this holds iff
B can be written as a quotient of k[t]. If K/k is a field extension and Speck B is
curvilinear then so is SpecK(B ⊗k K).

Let π : X → S be a finite type morphism. The embedding dimension of
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fibers is upper semicontinuous, thus the set {x ∈ X : Xπ(x) is curvilinear at x} is
open.

Theorem 10.63. Let f : X → S be a finite type morphism with curvilinear
fibers such that every associated point of X dominates S . Assume that either S
is normal, or there is a closed W ⊂ S such that depthW S ≥ 2 and f is flat over
S \W. Then f is flat.

Proof We start with the classical case when X, S are complex analytic, S
is normal, f is finite and X ⊂ S × C. Let s ∈ S be a smooth point. Then
S ×C is smooth along {s} ×C thus X is a Cartier divisor near Xs. In particular,
f is flat over the smooth locus S ns ⊂ S . Set d := deg f . For each s ∈ S ns

there is a unique monic polynomial td + ad−1(s)td−1 + · · · + a0(s) of degree d
whose zero set is precisely Xs ⊂ C. As in the proof of the analytic form of the
Weierstrass preparation theorem (see, for instance, (Griffiths and Harris, 1978,
p.8) or (Gunning and Rossi, 1965, Sec.II.B)) we see that the ai(s) are analytic
functions on S ns. By Hartogs’s theorem they extend to analytic functions on
the whole of S ; we denote these still by ai(s). Thus

X =
(
td + ad−1(s)td−1 + · · · + a0(s) = 0

)
⊂ S × C

is a Cartier divisor and f is flat. This completes the complex analytic case.
In general we argue similarly, but replace the polynomial td + ad−1(s)td−1 +

· · · + a0(s) by the point in the Hilbert scheme corresponding to Xs.
Assume first that f is finite. Again set d := deg f and let S ◦ ⊂ S denote a

dense open subset over which f is flat. Since f is finite, it is (locally) projective,
thus we have

Univd(X/S )
u
��

p // X

f
��

Hilbd(X/S ) π // S

(10.63.1)

parametrizing length d quotients of the fibers of f . If s ∈ S ◦ then OXs has
length d, hence its sole length d quotient is itself. Thus π is an isomorphism
over S ◦.

Let s → S be a geometric point. Then Xs ' Spec k(s)[t]/
(∏

i(t − ai)mi
)

for some ai ∈ k(s) and mi ∈ N. Thus the fiber of p over s is a finite set
corresponding to length d quotients of k(s)[t]/

(∏
i(t − ai)mi

)
, equivalently, to

solutions of the equation
∑

i m′i = d where 0 ≤ m′i ≤ mi. We have not yet
proved that Hilbd(X/S ) has no embedded points over Sing S , but we obtain
that pure

(
Hilbd(X/S )

)
→ S is finite and birational, hence an isomorphism if S
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is normal or if S ◦ ⊃ S \W in case (2) by (10.6.4). The natural map

pure(p) : Univd(X/S ) ×Hilbd(X/S ) pure
(
Hilbd(X/S )

)
→ X

is a closed immersion whose image is isomorphic to X over S ◦. Thus pure(p)
is an isomorphism, so f is flat and Hilbd(X/S ) ' S .

Finally (10.49) reduces the general case to the finite one. (Note that any
finite type, quasi-finite morphism can be extended to a finite morphism, but
there is no reason to believe that the extension still has curvilinear fibers. So
we need to use the more difficult (10.49).) �

Over a non-normal base there does not seem to be any simple analog of
(10.63), but the following is quite useful.

Proposition 10.64. Let f : X → (s, S ) be a finite morphism with curvilinear
fibers. Assume that
(10.64.1) the pair (s ∈ S ) is weakly normal (10.74),
(10.64.2) f is flat of constant degree d over S \ {s},
(10.64.3) X has no associated points in Supp f −1(s), and
(10.64.4) either x := Supp f −1(s) is a single point and k(x)/k(s) is purely

inseparable, or f has well-defined specializations (4.2.9).
Then f is flat.

Proof Again consider the diagram (10.63.1). By (2) p and π are isomor-
phisms over S \{s}. We claim that π is an isomorphism. Since (s ∈ S ) is weakly
normal, this holds if π−1(s) has a unique geometric point. If f has well-defined
specializations, this holds by definition.

Otherwise let s′ → s be a geometric point. Since k(x)/k(s) is purely insep-
arable, Xs′ ' Spec k(s′)[t]/(tr) for some r, which has a unique subscheme of
length d. Thus π is an isomorphism. As in the proof of (10.63) we conclude
that p is also an isomorphism. �

The proof given in (4.21) applies with minor modifications to give the fol-
lowing result of Ramanujam (1963); Samuel (1962), see also (Grothendieck,
1960, IV.21.14.1).

Theorem 10.65 (Principal ideals in power series rings). Let (R,m) be a nor-
mal, complete, local ring and P ⊂ R[[x1, . . . , xn]] a height 1 prime ideal that
is not contained in mR[[x1, . . . , xn]]. Then P is principal. �

Corollary 10.66 (Unique factorization in power series rings). Let (R,m) be
a normal, complete, local ring and g ∈ R[[x1, . . . , xn]] a power series not
contained in mR[[x1, . . . , xn]]. Then g has a unique factorization as g =

∏
i pi

where each (pi) is a prime ideal.
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Proof Let Pi be a height 1 associated prime ideal of (g). Then Pi is not con-
tained in mR[[x1, . . . , xn]] thus it is principal by (10.65). �

Example 10.66.1. A lemma of Gauss says that if R is a UFD then R[t] is also a
UFD. More generally, if Y is a normal scheme then Cl(Y × An) ' Cl(Y). If An

is replaced by a smooth variety X then there is an obvious inclusion

Cl(Y) × Cl(X) ↪→ Cl(Y × X),

but, as the example below shows, this map is not surjective, not even if Cl(Y) =

Cl(X) = 0.
Let E ⊂ P2 be a cubic defined over Q such that Pic(E) is generated by a

degree 3 point P := E ∩ L for some line L ⊂ P2. Let S ⊂ A3 be the affine cone
over E and E◦ := E \ P. Then Cl(S ) = 0 and Cl(E◦) = 0. However, we claim
that Cl(S × E◦) is infinite.

To see this pick any φ ∈ End(E). (For example, for any m we have mul-
tiplication by 3m + 1 which sends p ∈ E(Q̄) to the unique point φ(p) ∼
(3m + 1)p −mP.) The lines

{
`p × {φ(p)} : p ∈ E

}
sweep out a divisor in S × E,

where `p ⊂ S denotes the line over p ∈ E. It is not hard to see that this gives
an isomorphism End(E) ' Cl(S × E◦).

As another application, let R denote the complete local ring of S at its vertex.
The above considerations also show that R is a UFD, but R[[t]] is not.

Flatness in relative codimension 1

The following result is stated in all dimensions, but we will have stronger the-
orems when the codimension is ≥ 2.

Theorem 10.67. Let f : X → S be a finite type morphism of Noetherian
schemes, s ∈ S a closed point, and Z ⊂ Xs a nowhere dense closed subset
such that f is flat along Xs \ Z. Assume that
(10.67.1) pureZ(Xs) is smooth,
(10.67.2) dim S ≥ 1 and S has no embedded points, and
(10.67.3) X has no embedded points.
Then f is smooth.

Proof Pick a closed point x ∈ Z. By (10.57) we may assume that k(x) = k(s).
Choose local coordinates x1, . . . , xn ∈ mx,Xs and apply (10.50). Then there is
an elementary étale π : (x′, X′)→ (x, X) such that f ◦ π factors as

(x′, X′)
g
→ (y,Y)

τ
→ (s, S ),

where g is finite, g−1(y′) = {x′} (as sets), τ is smooth of relative dimension n
and k(y) = k(s). We also know that gs induces an embedding pure(X′s)→ Ys.
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We claim that g is an isomorphism. To see this note first that, since X′ → S
is flat along X′s\Z

′, (10.54) implies that there is a smallest closed subset W ⊂ Y
such that g−1(X′s ∩W) ⊂ Z′ and g is an isomorphism over Y \W. Since Y → S
is smooth, we are done if W = ∅.

To see this, pick a generic point w ∈ W with projections pY ∈ Y and p ∈ S .
Since Yp is smooth and X′p → Yp is an isomorphism outside W, we see that
pureW (Xp) ' Yp. Thus X′p has an embedded point in g−1(W ∩ Yp). Therefore p
is not a generic point of S by (3). Then

depthpY
Y = depthpY

Yp + depthp S ≥ 1 + 1 = 2,

and X′ has no associated points contained in g−1(W) (3). Hence g is an isomor-
phism by (10.6). �

In codimension 1, an slc pair is either smooth or has nodes. Next we show
that a close analog of (10.67) holds for nodal fibers if the base scheme is nor-
mal; the latter assumption is necessary by (10.70.1).

Corollary 10.68. Let (s, S ) be a normal, local scheme and f : X → S a finite
type morphism of pure relative dimension 1. Assume that f is generically flat
along Xs and pure(Xs) has a single singular point x, which is a node. Then, in
a neighborhood of x, one of the following holds.
(10.68.1) f is flat and its fibers have only nodes.
(10.68.2) f is not flat, X is not S 2 and the normalization f̄ : X̄ → S is smooth.

Proof By (10.51), after étale coordinate changes we may assume that X is a
partial normalization of a relative hypersurface H = (h = 0) ⊂ A2

S such that hs

has a single node.
If the generic fiber Hg is smooth then H is normal and so X = H. Otherwise

∂h/∂x = ∂h/∂y = 0 is an étale section. After an étale base change we may as-
sume that the fibers are singular along the zero section Z ⊂ A2

S → S . Blowing
it up gives the normalization τ : H̄ → H which is smooth over S . Furthermore,
we have an exact sequence

0→ OH → τ∗OH̄ → OZ → 0.

Since X lies between H̄ and H, there is an ideal sheaf J ⊂ OZ such that
OX/OH ' J.

If J = 0 then X ' H. If J = OZ then X ' H̄. The projection to S is flat in
both cases. Otherwise Supp(OH̄/OX) = Supp(OZ/J) has codimension ≥ 2 in
H, thus X is not S 2 by (10.6). �

With different methods, the following generalization of (10.68) is proved in
Kollár (2011b). The projectivity assumption should not be necessary.
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Theorem 10.69. Let (s, S ) be a normal, local scheme and f : X → S a projec-
tive morphism of pure relative dimension 1. Assume that X is S 2 and pure(Xs)
is seminormal (resp. has only simple, planar singularities).

Then f is flat with reduced fibers that are seminormal (resp. have only sim-
ple, planar singularities). �

See (Arnol′d et al., 1985, I.p.245) for the conceptual definition of simple,
planar singularities. For us it is quickest to note that a plane curve singularity(
f (x, y) = 0

)
is simple iff

(
z2 + f (x, y) = 0

)
is a Du Val surface singularity.

Examples 10.70. The next examples show that (10.68–10.69) do not general-
ize to non-normal bases or to other curve singularities.

10.70.1 (Deformations of ordinary double points). Let C ⊂ P2 be a nodal cubic
with normalization p : P1 → C. Over the coordinate axes S := (xy = 0) ⊂ A2

consider the family X that is obtained as follows.
Over the x-axis take a smoothing of C, over the y-axis take P1 ×A1

y and glue
them over the origin using p : P1 → C to get f : X → S .

Then X is seminormal and S 2, the central fiber is C with an embedded point,
yet f is not flat.

10.70.2 (Deformations of ordinary triple points). Consider the family of plane
cubic curves

C :=
(
(x2 − y2)(x + t) + t(x3 + y3) = 0

)
⊂ A2

xy × A
1
t .

For every t the origin is a singular point, but it has multiplicity 3 for t = 0
and multiplicity 2 for t , 0. Thus blowing up the line (x = y = 0) gives the
normalization for t , 0, but it introduces an extra exceptional curve over t = 0.
The normalization of C is obtained by contracting this extra curve. The fiber
over t = 0 is then isomorphic to 3 lines though the origin in A3.

10.70.3 (Deformations of ordinary quadruple points). Let C4 → P
14 be the

universal family of degree 4 plane curves and C4,1 → S 12 the 12-dimensional
subfamily whose general members are elliptic curves with 2 nodes. We nor-
malize both the base and the total space to get π̄ : C̄4,1 → S̄ 12.

We claim that the fiber of π̄ over the plane quartic with an ordinary quadruple
point C0 : = (x3y− xy3 = 0) is C0 with at least 2 embedded points. Most likely,
the family is not even flat.

We prove this by showing that in different families of curves through [C0] ∈
S 12 we get different flat limits.

To see this, note that the seminormalization Csn
0 of C0 can be thought of as 4

general lines through a point in P4. In suitable affine coordinates we can write
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it as k[x, y]/(x3y − xy3) ↪→ k[u1, . . . , u4]/(uiu j : i , j) using the map (x, y) 7→
(u1 + u3 + u4, u2 + u3 − u4). Any 3-dimensional linear subspace 〈u1, . . . , u4〉 ⊃

Wλ ⊃ 〈u1 + u3 + u4, u2 + u3 − u4〉. corresponds to a projection of Csn
0 to P3; call

the image Cλ ⊂ P
3. Then Cλ is 4 general lines through a point in P3; thus it

is a (2, 2)-complete intersection curve of arithmetic genus 1. (Note that the Cλ

are isomorphic to each other, but the isomorphism will not commute with the
map to C0 in general.) Every Cλ can be realized as the special fiber in a family
S λ → Bλ of (2, 2)-complete intersection curves in P3 whose general fiber is a
smooth elliptic curve.

By projecting these families to P2, we get a 1-parameter family S ′λ → Bλ of
curves in S 12 whose special fiber is C0 .

Let S̄ ′λ ⊂ C̄4,1 be the preimage of this family in the normalization. Then
S̄ ′λ is dominated by the surface S λ. In particular, the preimage of C0 in C̄4,1 is
connected.

There are two possibilities. First, if S̄ ′λ is isomorphic to S λ, then the fiber
of C̄4,1 → S̄ 12 over [C0] is Cλ. This, however, depends on λ, a contradiction.
Second, if S̄ ′λ is not isomorphic to S λ, then the fiber of S̄ ′λ → Bλ over the origin
is C0 with some embedded points. Since C0 has arithmetic genus 3, we must
have at least 2 embedded points.

Flatness in relative codimension ≥ 2

Once we know flatness at codimension 1 points of the fibers, the following
general result, valid for coherent sheaves, can be used to prove flatness every-
where. We no longer need any restrictions on the base scheme S .

Theorem 10.71. Let f : X → S be a finite type morphism of Noetherian
schemes, (s, S ) local. Let F be a vertically pure coherent sheaf on X and
Z ⊂ Supp Fs a nowhere dense closed subset. Assume that

(10.71.1) depthZ pureZ(Fs) ≥ 2, and

(10.71.2) F is flat over S along X \ Z.
Then F is flat over S and torsZ(Fs) = 0.

Proof Set m := ms,S and Xn := SpecX(OX/mn
s,S OX) and Fn := F|Xn . We may

assume that S is m-adically complete. There are natural complexes

0→ (mn/mn+1) · F0 → Fn+1
rn
−→ Fn → 0, (10.71.3)

which are exact on X \ Z, but not (yet) known to be exact along Z, except that
rn is surjective. We also know that

(mn/mn+1) · pureZ(F0)→ pureZ(ker rn) (10.71.4)
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is an isomorphism on X \ Z. Since depthZ pureZ(F0) ≥ 2, this implies that
(10.71.4) is an isomorphism on X by (10.6). Next we show that the induced

rn : torsZ(Fn+1)→ torsZ(Fn) is surjective. (10.71.5)

Set Kn+1 := r−1
n

(
torsZ(Fn)

)
. We have an exact sequence

0→ pureZ(ker rn)→ Kn+1/ torsZ(ker rn)→ torsZ(Fn)→ 0. (10.71.6)

Using that (10.71.4) is an isomorphism, we have depthZ pureZ(ker rn) ≥ 2,
hence the sequence (10.71.6) splits by (10.6).

Thus T := lim
←−−

torsZ(Fn) is a subsheaf of F and Xs∩Supp T ⊂ Z. Thus T = 0
since F is vertically pure, and torsZ(Fn) = 0 for every n by (10.71.5).

Now (10.71.4) says that (mn/mn+1) · F0 ' ker rn. Therefore the sequences
(10.71.3) are exact, F is flat and torsZ(F0) = 0. �

Putting together the above flatness criteria (10.60), (10.68), (10.69.1) and
(10.71) gives the following strengthening of Hironaka (1958).

Theorem 10.72. Let (s, S ) be a normal, local, excellent scheme, X an S 2

scheme and f : X → S a finite type morphism of pure relative dimension n.
Assume that pure(Xs) is
(10.72.1) either geometrically normal
(10.72.2) or geometrically seminormal and S 2.
Then f is flat with reduced fibers that are normal in case (1) and seminormal
and S 2 in case (2). �

Flatness in relative codimension ≥ 3

The following gives an even stronger result in codimension ≥ 3; see (Kollár,
1995a, Thm.12). Lee and Nakayama (2018) pointed out that the purity assump-
tion in (2) is also necessary.

Theorem 10.73. Let f : X → S be a finite type morphism of Noetherian
schemes, (s, S ) local. Let F a coherent sheaf on X and Z ⊂ Supp F a closed
subset such that Xs ∩ Z ⊂ Supp Fs has codimension ≥ 3. Let j : Xs \ Z ↪→ Xs

be the natural injection. Assume that
(10.73.1) depthXs∩Z

(
j∗(Fs|Xs\Z)

)
≥ 3,

(10.73.2) F|X\Z is flat over S with pure, S 2 fibers, and
(10.73.3) depthZ F ≥ 2.
Then F is flat over S and Fs = j∗(Fs|Xs\Z).

Proof Set m := ms,S , Xn := SpecX(OX/mnOX) and Fn := F|Xn . We may
assume that OS and OX are m-adically complete. Set Gn := Fn|Xn\Z and let j
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denote any of the injections Xn \ Z ↪→ Xn. By assumption (2) we have exact
sequences

0→ (mn/mn+1) ·G0 → Gn+1−→Gn → 0. (10.73.4)

Pushing it forward we get the exact sequences

0→ (mn/mn+1) ⊗ j∗G0 → j∗Gn+1
rn
→ j∗Gn

→ (mn/mn+1) ⊗ R1 j∗G0.
(10.73.5)

Here j∗G0 is coherent and assumption (1) implies (in fact is equivalent to)
R1 j∗G0 = 0 by (Grothendieck, 1968, III.3.3, II.6 and I.2.9) or (10.29).

Thus the rn are surjective. This shows that G := lim
←−−

j∗Gn is a coherent sheaf
on X that is flat over S with S 2 fibers. Furthermore, the natural map % : F → G
is an isomorphism along Xs \ Z. Thus (10.6) implies that it is an isomorphism.
So F ' G is flat with central fiber j∗G0 = j∗(Fs|Xs\Z). �

10.8 Seminormality and weak normality

Normalization is a very useful operation that can be used to ‘improve’ a scheme
X. However, the normalization Xn → X usually creates new points, and this
makes it harder to relate X and Xn. The notions of semi and weak normalization
intend to do as much of the normalization as possible, without creating new
points.

Definition 10.74. Let X be a noetherian scheme and Z ⊂ X a closed, nowhere
dense subset. A finite modification of X centered at Z is a finite morphism
p : Y → X such that the restriction p : Y \ p−1(Z) → X \ Z is an isomorphism
and none of the associated primes of Y is contained in p−1(Z).

A pair (Z ⊂ X) is called normal if every finite modification p : Y → X cen-
tered at Z is an isomorphism. It is called seminormal (resp. weakly normal) if
such a p is an isomorphism, provided k(x) ↪→ k

(
red p−1(x)

)
is an isomorphism

(resp. purely inseparable) for every x ∈ X.
A reduced scheme X is normal (resp. seminormal or weakly normal) if every

pair (Z ⊂ X) is normal (resp. seminormal or weakly normal).
Let X be a reduced scheme with normalization Xn. There are unique

Xn // Xsn πsn // X and Xn // Xwn πwn // X,

where Xsn is seminormal, Xwn is weakly normal, and k(x) ↪→ k
(
red π−1

sn (x)
)

(resp. k(x) ↪→ k
(
red π−1

wn(x)
)
) is an isomorphism (resp. purely inseparable) for

every x ∈ X. Note that Xwn = Xsn in characteristic 0.
For more details see (Kollár, 1996, Sec.I.7.2) and (Kollár, 2013b, Sec.10.2).
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Examples 10.75. The curve examples led to the general definition of semi-
normalization, but they do not adequately show how complicated seminormal
schemes are in higher dimensions.

(10.75.1) The normalization of the higher cusps C2m+1 := (x2 = y2m+1) is

π2m+1 : A1
t → C2m+1 given by t 7→ (t2m+1, t2).

The map π2m+1 is a homeomorphism, so it is also the seminormalization. By
contrast, the normalization of the higher tacnode C2m := (x2 = y2m) is

π2m : A1
t × {±1} → C2m given by (t,±1) 7→ (±tm, t).

The map π2m is not a homeomorphism since (0, 0) ∈ C2m has 2 preimages,
(0, 1) and (0,−1). The seminormalization of C2m is

τ2m : C2 ' (s2 = t2)→ C2m given by (s, t) 7→ (sm, t).

(10.75.2) Let g(t) ∈ k[t] be a polynomial without multiple factors and set Cg :=
Speck

(
k + g · k[t]

)
. We can think of Cg as obtained from A1 by identifying all

roots of g. It is an integral curve whose normalization is A1. It has a unique
singular point cg ∈ Cg and k(cg) = k.

If g is separable then Cg is seminormal and weakly normal. If g is irreducible
and purely inseparable then Cg is seminormal, but not weakly normal; the weak
normalization is A1.

(10.75.3) If B is a seminormal curve, then every irreducible component of B is
also seminormal, but an irreducible component of a seminormal scheme need
not be seminormal. In fact, every reduced and irreducible affine variety that is
smooth in codimension 1, occurs as an irreducible component of a seminormal
complete intersection scheme, see (Kollár, 2013b, 10.12).

(10.75.4) If X is S 2 (but possibly nonreduced) and Z has codimension ≥ 2 then
(Z ⊂ X) is a normal pair by (10.6).

The following properties are proved in Kollár (2016c). The last equivalence
is surprising since the completion of a normal local ring is not always normal.

Proposition 10.76. For a noetherian scheme X without isolated points, the
following are equivalent.
(10.76.1) X is normal (resp. seminormal, weakly normal).
(10.76.2) Z ⊂ X is a normal (resp. seminormal, weakly normal) pair for every

closed, nowhere dense subset Z ⊂ X.
(10.76.3) {x} ⊂ Spec Ox,X is a normal (resp. seminormal, weakly normal) pair

for every non-generic point x ∈ X.
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(10.76.4) {x} ⊂ Spec Ôx,X is a normal (resp. seminormal, weakly normal) pair
for every non-generic point x ∈ X. �

The next results show that many questions about schemes can be settled
using points and specializations only, up to homeomorphisms.

Definition 10.77. Let f : X → Y be a morphism, R a DVR and q : Spec R→ Y
a morphism. We say that q lifts after a finite extension, if there is a DVR R′ ⊃ R
that is the localization of a finite extension of R, such that q′ : Spec R′ →
Spec R→ Y lifts to q′X : Spec R′ → X.

10.78 (Universal homeomorphism). A morphism f : U → V of S -schemes is a
universal homeomorphism if f ×S 1W : U×S W → V×S W is a homeomorphism
for every S -scheme W; see (Stacks, 2022, Tag 04DC). Equivalently, if f is
integral, surjective and geometrically injective, see (Stacks, 2022, Tag 04DF).

The following characterization for local schemes is simple, but useful.

Claim 10.78.1. Let (s, S ) be a local scheme and f : U → S a finite type mor-
phism that is geometrically injective. Then f is a finite, universal homeomor-
phism iff every local, component-wise dominant (4.30) morphism from the
spectrum of a DVR to S , lifts to U, after a finite extension.

Proof For any generic point gS ∈ S there is a q : (t,T ) → (s, S ) such that
q(tg) = sg and q(t) = s where T is the spectrum of a DVR. Thus every irre-
ducible component of S is dominated by a unique irreducible component of U.
Let V ⊂ U be their union. Extend f |V to a finite h : V̄ → S .

Pick a point v̄ ∈ g−1(s). There is a q : T → V̄ such that q(t) = v̄ and q(tg) is
a generic point of V̄ . Then q is the only possible lifting of h ◦ q, hence v̄ ∈ V .
Thus V = V̄ and h is a universal homeomorphism. Since f is geometrically
injectove, we must have V = U. �

The following is a special case of (Stacks, 2022, Tag 0CNF).

Claim 10.78.2. A finite morphism Y → X of Fp-schemes is a universal home-
omorphism iff it factors a power of the Frobenius Fq : Xq → Y → X. �

Definition 10.79. For a scheme X let |X| denote its underlying point set. Let
X,Y be reduced schemes and φ : |X| → |Y | a set-map of the underlying sets. We
say that φ is a morphism if there is a morphism Φ : X → Y inducing φ. Note
that such a Φ is unique since its graph is determined by its points.

Our aim is to find simple conditions that guarantee that a subset is Zariski
closed or that a set-map is a morphism.

We say that φ is a morphism on points if the natural inclusion k(x) ↪→

https://stacks.math.columbia.edu/tag/04DC
https://stacks.math.columbia.edu/tag/04DF
https://stacks.math.columbia.edu/tag/0CNF
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k
(
x, φ(x)

)
is an isomorphism for every x ∈ X, where we view

(
x, φ(x)

)
as a point

in X × Y . (This in effect says that there is a natural injection k(φ(x)) ↪→ k(x).)
We say that φ is a morphism on DVRs (resp. component-wise dominant

DVRs) if the composite φ ◦ h is a morphism whenever h : T → X is a mor-
phism (resp. a component-wise dominant morphism (4.30)) from the spectrum
of a DVR to X.

Lemma 10.80 (Valuative criterion of being a section). Let h : X → S be
a separated morphism of finite type and B ⊂ |X| a subset. Then there is a
Zariski closed Z ⊂ X such that B = |Z| and h|Z : Z → S is a finite, universal
homeomorphism (10.78) iff every point s ∈ S has a unique preimage bs ∈ B,
k(bs)/k(s) is purely inseparable, and the following holds.

Let R be an excellent DVR and q : Spec R→ S a component-wise dominant
morphism. Then q lifts after a finite extension (10.77) to q′ : Spec R′ → X
whose image is in B.

Proof By assumption h|B : B → S is a universal bijection. Let sg ∈ S be a
generic point and bg ∈ B its preimage. We claim that b̄g ⊂ B. For any b0 ∈ b̄g

there is a component-wise dominant morphism τ : (t,T ) → S that maps the
generic point to h(bg) and the closed point to h(b0), where T is the spectrum of
a DVR. Lifting it shows that b0 ∈ B.

Thus Z is the union of all b̄g, hence Zariski closed and h|Z : Z → S is a finite,
universal bijection, hence a homeomorphism. �

Lemma 10.81 (Valuative criterion of being a morphism). Let X,Y be schemes
of finite type, X seminormal and Y separated. Then a set-map φ : |X| → |Y | is
a morphism iff it is a morphism on points and on component-wise dominant
DVRs.

Proof Let Z ⊂ X × Y be the graph of φ and h : X × Y → X the projection. By
(10.80) h|Z : Z → X is a finite, universal homeomorphism that is residue field
preserving since φ is a morphism on points. Thus h|Z : Z → X is an isomor-
phism since X is seminormal. �

Definition 10.82. A morphism p : X → Y is geometrically injective if for
every geometric point ȳ→ Y the fiber X ×Y ȳ consists of at most 1 point.

Equivalently, for every point y ∈ Y , its preimage p−1(y) is either empty or a
single point and k

(
p−1(y)

)
is a purely inseparable extension of k(y).

If, furthermore, k
(
p−1(y)

)
equals k(y) then we say that p preserves residue

fields. The two notions are equivalent in characteristic 0.
A morphism of schemes f : X → Y is a monomorphism if for every scheme

Z, the induced map of sets Mor(Z, X)→ Mor(Z,Y) is an injection.
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A monomorphism is geometrically injective. The normalization of the cusp
π : Spec k[t] → Spec k[t2, t3] is geometrically injective, but not a monomor-
phism. The problem is with the fiber over the origin, which is Spec k[t]/(t2) '
Spec k[ε] (where ε2 = 0). The two maps gi : Spec k[ε] → Spec k[t] given by
g∗0(t) = 0 and g∗1(t) = ε are different, but π ◦ g0 = π ◦ g1. A similar argument
shows that a morphism is a monomorphism iff it is geometrically injective and
unramified; see (Grothendieck, 1960, IV.17.2.6).

As the above example shows, in order to understand when a map between
moduli spaces is a monomorphism, they key is to study the corresponding
functors over Spec k[ε] for all fields k.

See (1.64) for an example that is geometrically bijective but, unexpectedly,
not a monomorphism.

A closed, open or locally closed embedding is a monomorphism. A typical
example of a monomorphism that is not a locally closed embedding is the
normalization of the node with a point missing, that is A1 \ {−1} → (y2 =

x3 + x2) given by (t 7→ (t2 − 1, t3 − t).

Claim 10.82.1. (Stacks, 2022, Tag 04XV) A proper monomorphism f : X → Y
is a closed embedding. �

Definition 10.83. A morphism g : X → Y is a locally closed embedding if it
can be factored as g : X → Y◦ ↪→ Y where X → Y◦ is a closed embedding and
Y◦ ↪→ Y is an open embedding.

A monomorphism g : X → Y is called a locally closed partial decomposition
of Y if the restriction of g to every connected component Xi ⊂ X is a locally
closed embedding.

If g is also surjective, it is called a locally closed decomposition of Y . For
reduced schemes, the key example is the following.

Claim 10.83.1. Let h : Y → Z be a constructible, upper semi-continuous func-
tion and set Yi := {y ∈ Y : h(y) = i}. Then qiYi → Y is a locally closed
decomposition. �

The following direct consequence of (10.82.1) is quite useful.

Claim 10.83.2. A proper, locally closed partial decomposition g : X → Y is a
closed embedding. If Y is reduced then a proper, locally closed decomposition
g : X → Y is an isomorphism. �

Proposition 10.84 (Valuative criterion of locally closed embedding). For a
geometrically injective morphism of finite type f : X → Y, the following are
equivalent.
(10.84.1) f (X) ⊂ Y is locally closed and X → f (X) is finite.

https://stacks.math.columbia.edu/tag/04XV


10.8 Seminormality and weak normality 409

(10.84.2) Every component-wise dominant morphism, from the spectrum of
an excellent DVR to f (X), lifts to X, after a finite extension (10.77).

If f is a monomorphism then these are further equivalent to
(10.84.3) f is a locally closed embedding.

Proof It is clear that (1) ⇒ (2). Next assume (2). A geometrically injective
morphism of finite type is quasi-finite, hence, by Zariski’s main theorem, there
is a finite morphism f̄ : X̄ → Y extending f . Set Z := X̄ \ X.

If Z , f̄ −1 f̄ (Z) then there are points z ∈ Z and x ∈ X such that f̄ (z) = f̄ (x).
Let T be the spectrum of a DVR and h : T → X̄ a component-wise dominant
morphism. Set g := f̄ ◦h. Then g(T ) ⊂ f (X) and the only lifting of g to T → X̄
is h, but h(T ) 1 X.

Thus Z = f̄ −1 f̄ (Z) hence X → Y \ f̄ (Z) is proper, proving (1). A proper
monomorphism is a closed embedding by (10.82.1), showing the equivalence
with (3). �

A major advantage of seminormality over normality is that seminormaliza-
tion X 7→ Xsn is a functor from the category of excellent schemes to the cate-
gory of excellent seminormal schemes. (The injection Sing X ↪→ X rarely lifts
to the normalizations.) It is thus reasonable to expect that taking the coarse
moduli space commutes with seminormalization. This is indeed the case for
coarse moduli spaces satisfying the following mild condition.

Definition 10.85. A functorM : (schemes)→ (sets) with coarse moduli space
M has enough 1-parameter families if the following holds.
(10.85.1) Let R be a DVR and Spec R → M a morphism. Then there is a

DVR R′ ⊃ R that is the localization of a finite extension of R and F′ ∈
M(Spec R′), such that Spec R′ → Spec R→ M is the moduli map of F′.

This condition holds if M is obtained as a quotient M = E/G, where G is an
algebraic group acting properly on E and there is a universal family over E.
Thus it is satisfied by all moduli spaces considered in this book.

Proposition 10.86. LetM : (schemes) → (sets) be a functor defined on finite
type schemes over a field of characteristic 0. Assume thatM has a finite type
coarse moduli space M and enough 1-parameter families.

Then Msn is the coarse moduli space for Msn, the restriction of M to the
category Schsn of finite type, seminormal schemes.

Proof Since seminormalization is a functor, every morphism W → M lifts to
Wsn → Msn. Thus we have a natural transformation Φ : Msn → Mor

(
∗,Msn).

Assume that M′ is a finite type, seminormal scheme and we have another
natural transformation Ψ : Msn → Mor

(
∗,M′

)
. Every geometric point s 7→
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Msn comes from a scheme Xs. Let Z ⊂ Msn×M′ denote the union of the points
(s,Φ[Xs]). Since M is a coarse moduli space and Msn → M is geometrically
bijective, the coordinate projection Z → Msn is also geometrically bijective.
SinceM has enough 1-parameter families, Z → Msn is a universal homeomor-
phism by (10.80). Thus Z → Msn is an isomorphism since Msn is seminormal
and the characteristic is 0.

Thus we get a morphism Msn → M′ and Ψ factors through Φ. �

The next examples show that the characteristic 0 assumption is likely nec-
essary in (10.86) and that the analogous claim for the underlying reduced sub-
scheme is likely to be false.

Examples 10.87. Let D be any diagram of schemes with direct limit limD.
Since seminormalization is a functor, we get a diagramDsn and a natural mor-
phism lim(Dsn)→ (limD)sn. However, this need not be an isomorphism.

(10.87.1) Consider the diagram of all maps φa : Spec k[x] → Spec k[(x −
a)2, (x − a)3] for a ∈ k where k is an infinite field.

If char k = 0 then the direct limit is Spec k. After seminormalization, the
maps φa become isomorphisms φsn

a : Spec k[x] ' Spec k[x]. Now the direct
limit is Spec k[x].

(10.87.2) If char k = p > 0 then xp − ap = (x − a)p ∈ k[(x − a)2, (x − a)3]
shows that the direct limit is Spec k[xp]. After seminormalization, the direct
limit is again Spec k[x]. Here Spec k[xp] behaves like a coarse moduli space.

(10.87.3) Consider the maps σi : k[x] → k[x, ε] given by σ0(g(x)) = g(x)
and σ1(g(x)) = g(x) + g′(0)ε. We get a universal push-out diagram

Spec k[x, ε]

σ1

��

σ0 // Spec k[x]

��
Spec k[x] // Spec k[x2, x3].

If we pass to the underlying reduced subspaces, the push-out is Spec k[x].



Chapter 11

Minimal models and their singularities

We review the definitions and results of the minimal model program that we
used repeatedly.

Assumptions. The theorems of Sections 11.1–11.3 are currently known in
characteristic 0. See Kollár and Mori (1998) or Kollár (2013b) for varieties;
Lyu and Murayama (2022) and Fujino (2022) in general.

Most of the older literature works with Q-divisors. We treat R-divisors on
arbitrary schemes in Section 11.4.

11.1 Singularities of pairs
Singularities of pairs are treated thoroughly in Kollár (2013b). Here we aim to
be concise, discussing all that is necessary for the main results in this book, but
leaving many details untouched.

Definition 11.1 (Pairs). We are primarily interested in pairs
(
X,∆

)
where X is

a normal variety over a field and ∆ =
∑

aiDi a formal linear combination of
prime divisors with rational or real coefficients. More generally, X can be a re-
duced scheme and ∆ =

∑
aiDi a formal linear combination of prime, Mumford

divisors (4.16.4), that is, none of the Di are contained in Sing X.
For a prime divisor E, we use coeffE(∆) to denote the coefficient of E in ∆.

That is, E 1 Supp
(
∆ − coeffE(∆) · E

)
. We use coeff(∆) to denote the set of all

nonzero coefficients in ∆.
If ∆ is R-Cartier, π : X′ → X is birational and E′ is a prime divisor on X′,

then coeffE′ (∆) := coeffE′ (π∗∆) defines the coefficient of every prime divisor
over X in ∆.

For any c ∈ R we set ∆>c :=
∑

i : ai>c aiDi, and similarly for ∆=c,∆<c.

Definition 11.2 (Canonical or dualizing sheaf). A pure dimensional, projective
scheme over a field has a dualizing sheaf as in (Hartshorne, 1977, III.7), but
for arbitrary schemes the existence of a dualizing sheaf is a complicated issue.
The following quite general setting is sufficient for our purposes.

411



412 Minimal models and their singularities

Let g : X → S be a finite type morphism. As in (Stacks, 2022, Tag 0E9M),
there is a relative dualizing complex. If X is pure dimensional, the lowest non-
zero cohomology of it is the relative dualizing sheaf, or relative canonical
sheaf, denoted by ωX/S .

We are interested in cases whereωX/S depends very little on S . This happens
when OS is a dualizing complex on S (Stacks, 2022, Tag 0AWV). We only
need to know that this occurs in 4 important cases:
• S is the spectrum of a field,
• S is smooth over a field,
• S is regular and of dimension 1, or
• S is the spectrum of a regular, local ring.
We declare ωX/S to be a canonical sheaf of X and denote it by ωX .

Note that we do not need X → S to be surjective. So if we want to work over
a quasi-projective scheme S , we choose an embedding S ↪→ PN and work over
PN . Similarly, if S is the spectrum of a complete local ring, we can embed it
into the spectrum of a regular, complete local ring. However,ωX is well defined
only up to tensoring with pull-backs by line bundles from S . Thus one should
use it only for properties of X that are local on S .

Definition 11.3 (Canonical class II). Let X be a scheme that has a canonical
sheafωX . IfωX is invertible outside a subset of codimension ≥ 2—for example,
X is normal or demi-normal—then it corresponds to a linear equivalence class
of Mumford divisors KX , called the canonical class of X.

Assumptions. In Sections 11.1–11.3 we work with pairs that have a canonical
class as above.

Definition 11.4 (Discrepancy of divisors). Let
(
X,∆ =

∑
aiDi

)
be a pair as

in (11.1) that has a canonical class (11.3). We are looking at cases when the
pull-back of KX + ∆ by birational morphisms makes sense. If ∆ is a Q-divisor,
the natural assumption is that KX + ∆ is Q-Cartier, that is, m(KX + ∆) is Cartier
for some m > 0.

If ∆ is an R-divisor, we need to assume that KX + ∆ is R-Cartier, we discuss
this notion in detail in Section 11.4. (See (4.48) for the even more general
notion of numerically R-Cartier divisors).

Let f : Y → X be a proper, birational morphism from a demi-normal scheme
Y (11.36), Ex( f ) ⊂ Y the exceptional locus, and Ei ⊂ Ex( f ) the irreducible
exceptional divisors. Assume that Ex( f ) ∩ Sing Y and f (Ex( f )) have codi-
mension ≥ 2 in Y and X; these are automatic if X and Y are normal. Let
f −1
∗ ∆ :=

∑
ai f −1
∗ Di denote the birational transform of ∆. Fix any canonical

divisor KY in the linear equivalence class KY and set KX := f∗(KY ).

https://stacks.math.columbia.edu/tag/0E9M
https://stacks.math.columbia.edu/tag/0AWV
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Assume next that KX + ∆ is R-Cartier. Then KY + f −1
∗ ∆− f ∗

(
KX + ∆) makes

sense and it is exceptional, hence we can write

KY + f −1
∗ ∆ = f ∗

(
KX + ∆) +

∑
ia(Ei, X,∆)Ei. (11.4.1)

The a(Ei, X,∆) ∈ R are independent of the choice of KY . This defines a(E, X,∆)
for exceptional divisors. Set a(E, X,∆) := − coeffE ∆ for non-exceptional divi-
sors E ⊂ X.

The real number a(E, X,∆) is called the discrepancy of E with respect to
(X,∆); it depends only on the valuation defined by E, not on the choice of f .
(See (Kollár and Mori, 1998, 2.22) for a more canonical definition.)

Warning 11.4.2. For most cases of interest to us, a(E, X,∆) ≥ −1, so some
authors use log discrepancies, a`(E, X,∆) := 1 + a(E, X,∆). Unfortunately,
some people use a(E, X,∆) to denote the log discrepancy, leading to confusion.

The discrepancies have the following obvious monotonicity and linearity
properties; see (Kollár and Mori, 1998, 2.27).

Claim 11.4.3. Let ∆′ be an effective, R-Cartier divisor and E a divisor over X.
Then a(E, X,∆ + ∆′) = a(E, X,∆) − coeffE ∆′. In particular, a(E, X,∆ + ∆′) ≤
a(E, X,∆), and a(E, X,∆ + ∆′) < a(E, X,∆) iff centerX E ⊂ Supp ∆′. �

Claim 11.4.4. Assume that KX +∆i are R-Cartier. Fix λi ≥ 0 such that
∑
λi = 1

and set ∆ :=
∑
λi∆i. Then KX + ∆ is R-Cartier and a(E, X,∆) =

∑
λia(E, X,∆i)

for every divisor E over X. In particular, using the next definition, if the (X,∆i)
are lc (resp. dlt, klt, canonical, terminal) then so is (X,∆). �

Definition 11.5. Let X be a normal scheme of dimension ≥ 2 and ∆ =
∑

aiDi

an R-divisor such that KX + ∆ is R-Cartier. We say that (X,∆) is

terminal
canonical

klt
plt
dlt
lc


if a(E, X,∆) is



> 0 for every exceptional E,
≥ 0 for every exceptional E,
> −1 for every E,
> −1 for every exceptional E,
> −1 if centerX E ⊂ non-snc(X,∆),
≥ −1 for every E.

Here klt is short for Kawamata log terminal, plt for purely log terminal, dlt
for divisorial log terminal, lc for log canonical, and non-snc(X,∆) denotes the
set of points where (X,∆) is not a simple normal crossing pair (p.12).

We define semi-log-canonical or slc pairs in (11.37).

Claim 11.5.1. If (X,∆) is in any of these 6 classes, 0 ≤ ∆′ ≤ ∆ and KX + ∆′ is
R-Cartier, then (X,∆′) is also in the same class. �
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Claim 11.5.2. Assume that (X,∆) is terminal (resp. klt) and Θ is an effective
R-Cartier divisor. If (X,∆) has a log resolution (p.12), then (X,∆ + εΘ) is also
terminal (resp. klt) for 0 ≤ ε � 1. (See (11.10.6) for the other cases.)

We gave some examples in (1.33) and (1.40); see also Section 2.2 for such
surfaces, (2.35) for cones and Kollár (2013b) for a detailed treatment.

For computing discrepancies, the following are useful; see also (Kollár and
Mori, 1998, 2.29–30)

Lemma 11.6. Let (X,∆ − Θ) be an snc pair, where ∆ =
∑

(1 − ai)Di and Θ

are effective. Let E be a divisor over X such that a(E, X,∆ − Θ) < 0. Then
a(E, X, d∆e) = −1 and a(E, X,∆ −Θ) ≥ a(E, X,∆) = −1 +

∑
ai · coeffE Di < 0.

Proof (X, d∆e) is lc by (Kollár and Mori, 1998, 2.31), so a(E, X,∆ − Θ) ≥
a(E, X, d∆e) = −1 by (11.4.3). The rest follows from (11.4.3.a). �

Corollary 11.7. Using the notation of (11.6), for every ε > 0 there is η > 0
such that the following holds.

Let (X,∆′ − Θ′) be a pair, where Supp Θ = Supp Θ′ and ∆′ =
∑

(1 − a′i)Di

such that |ai − a′i | < η for every i and a′i = 0 iff ai = 0. Then, for every E,∣∣∣a(E, X,∆ − Θ) − a(E, X,∆′ − Θ′)
∣∣∣ < ε,

whenever one of the discrepancies is < 0. �

Definition 11.8. Let (X,∆) be an lc or slc (11.37) pair and W ⊂ X an irre-
ducible, closed subset. The minimal log discrepancy of W is defined as the
infimum of the numbers 1 + a(E, X,∆) where E runs through all divisors over
X such that centerX(E) = W. It is denoted by

mld(W, X,∆) or by mld(W), (11.8.1)

if the choice of (X,∆) is clear. Note that if W is an irreducible divisor on X and
W 1 Sing X then mld(W, X,∆) = 1−coeffW ∆. If W ⊂ X is a closed subset with
irreducible components Wi, then we set mld(W, X,∆) = maxi

{
mld(Wi, X,∆)

}
.

If (X,∆) is slc then, by definition, mld(W, X,∆) ≥ 0 for every W. The subva-
rieties with mld(W, X,∆) = 0 play a key role in understanding (X,∆).

Definition 11.9. Let (X,∆) be an slc pair. An irreducible subset W ⊂ X is a
log canonical center or lc center of (X,∆) if mld(W, X,∆) = 0. If (X,∆) has a
log resolution, then there is a divisor E over X such that a(E, X,∆) = −1 and
centerX E = W.

11.10 (Properties of log canonical centers). Let (X,∆) be an slc pair over a
field of characteristic 0. (11.10.1) There are only finitely many lc centers.
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(11.10.2) Any union of lc centers is seminormal and Du Bois (11.12.1–2).
(11.10.3) Any intersection of lc centers is also a union of lc centers; see Ambro
(2003, 2011); Fujino (2017) or (11.12.4).
(11.10.4) If (X,∆) is snc then the lc centers of (X,∆) are exactly the strata of
∆=1, that is, the irreducible components of the various intersections Di1 ∩ · · · ∩

Dis where the coeffDik
∆ = 1, see (Kollár, 2013b, 2.11). More generally, this

also holds if (X,∆) is dlt; see (Fujino, 2007, Sec.3.9) or (Kollár, 2013b, 4.16).
(11.10.5) At codimension 2 normal points, the union of lc centers is either
smooth or has a node; see (Kollár, 2013b, 2.31).
(11.10.6) Let (X,∆) be slc and Θ effective, R-Cartier. Then (X,∆ + εΘ) is slc
for 0 < ε � 1 iff Supp Θ does not contain any lc center of (X,∆).
(11.10.7) Assume that (X,∆) is slc and εΘ ≤ ∆ is an effectiveQ-Cartier divisor.
Then Supp Θ does not contain any lc center of (X,∆ − εΘ) by (11.4.3).

Definition 11.11. Let (X,∆) be an slc pair. An irreducible subset W ⊂ X is a
log center of (X,∆) if mld(W, X,∆) < 1. (It is frequently convenient to consider
every irreducible component of X a log center.)

Building on earlier results of Ambro (2003, 2011); Fujino (2017), part 1
of the following theorem is proved in Kollár and Kovács (2010). The rest in
Kollár (2014); see also (Kollár, 2013b, Chap.7).

Theorem 11.12. Let (X,∆) be an slc pair over a field of characteristic 0 and
Z,W ⊂ X closed, reduced subschemes.
(11.12.1) If mld(Z, X,∆) = 0, then Z is Du Bois.
(11.12.2) If mld(Z, X,∆) < 1

6 , then Z is seminormal (10.74).
(11.12.3) If mld(Z, X,∆) + mld(W, X,∆) < 1

2 , then Z ∩W is reduced.
(11.12.4) mld(Z ∩W, X,∆) ≤ mld(Z, X,∆) + mld(W, X,∆). �

Adjunction is a classical method that allows induction on the dimension by
lifting information from divisors to the ambient scheme.

Definition 11.13 (Poincaré residue map). Let X be a (pure dimensional) CM
scheme and S ⊂ X a divisorial subscheme. Then ωS = Ext1(OS , ωX) and
Ext1(OX , ωX) = 0. Thus, applyingHom( , ωX) to the exact sequence

0→ OX(−S )→ OX → OS → 0,

we get the short exact sequence

0→ ωX → ωX(S )
RS
→ ωS → 0. (11.13.1)

The map RS : ωX(S )→ωS is called the Poincaré residue map. By taking tensor
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powers, we get maps

R⊗m
S :

(
ωX(S )

)⊗m
→ ω⊗m

S ,

but, if m(KX + S ) and mKS are Cartier for some m > 0 then we really would
like to get a corresponding map between the locally free sheaves

ω[m]
X (mS )|S

???
d ω[m]

S . (11.13.2)

There is no such map in general; one needs a correction term.

Definition 11.14 (Different). Let X be a demi-normal scheme (11.36), S a
reduced divisor (p.11) on X, and ∆ an R-divisor on X. We assume that there
are no coincidences, that is, the irreducible components of Supp S ,Supp ∆ and
Sing X are all different from each other.

Let π : S̄ → S denote the normalization. There is a closed subscheme Z ⊂ S
of codimension 1 such that S \ Z and X \ Z are both smooth along S \ Z, the
restriction π : (S̄ \ π−1Z)→ (S \ Z) is an isomorphism and Supp ∆ ∩ S ⊂ Z.

Assume first that ∆ is a Q-divisor and m(KX + S + ∆) is Cartier for some
m > 0. Then the Poincaré residue map (11.13) gives an isomorphism

Rm
S \Z : π∗ω[m]

X (mS + m∆)|(S̄ \π−1Z) ' ω
[m]
S̄
|(S̄ \π−1Z).

Hence there is a unique (not necessarily effective) divisor ∆S̄ on S̄ supported
on π−1Z such that Rm

S \Z extends to an isomorphism

Rm
S̄ : π∗ω[m]

X (mS + m∆)|S̄ ' ω
[m]
S̄

(
∆S̄

)
. (11.14.1)

We formally divide by m and define the different of ∆ on S̄ as the Q-divisor

DiffS̄ (∆) := 1
m ∆S̄ . (11.14.2)

We can write (11.14.1) in terms of Q-divisors as

(KX + S + ∆)|S̄ ∼Q KS̄ + DiffS̄ (∆). (11.14.3)

Note that (11.14.3) has the disadvantage that it indicates only that the two sides
are Q-linearly equivalent, whereas (11.14.1) is a canonical isomorphism.

If KX + S + ∆ is R-Cartier, then, by (11.43.4), we can write ∆ = ∆′ + ∆′′

where KX + S + ∆′ is Q-Cartier and ∆′′ is R-Cartier. Then we set

DiffS̄ (∆) := DiffS̄ (∆′) + π∗∆′′. (11.14.4)

If X, S are smooth than KS = (KX + S )|S , hence in this case DiffS̄ (∆) = π∗∆.
Let f : Y → X be a proper birational morphism, S Y := f −1

∗ S and write
KY + S Y + ∆Y ∼R f ∗(KX + S + ∆). Then

DiffS̄ (∆) = ( f |S̄ Y
)∗ DiffS̄ Y

(∆Y ). (11.14.5)
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Proposition 11.15. (Kollár, 2013b, 4.4–8) Using the notation of (11.14) write
DiffS̄ (∆) =

∑
diVi where Vi ⊂ S̄ are prime divisors. Then the following hold.

(11.15.1) If (X, S + ∆) is lc (or slc) then
(
S̄ ,DiffS̄ (∆)

)
is lc.

(11.15.2) If coeff(∆) ⊂ {1, 1
2 ,

2
3 ,

3
4 , . . . }, then the same holds for DiffS̄ (∆).

(11.15.3) If S is Cartier, then DiffS̄ (∆) = π∗∆.
(11.15.4) If KX + S and D are both Cartier, then DiffS̄ D is a Z-divisor and(

KX + S + D
)
|S̄ ∼ KS̄ + DiffS̄ D. �

The following facts about codimension 1 behavior of the different can be
proved by elementary computations; see (Kollár, 2013b, 2.31, 2.36).

Lemma 11.16. Let S be a normal surface, E ⊂ S a reduced curve and ∆ =∑
diDi an effective R-divisor. Assume that 0 ≤ di ≤ 1 and Di 1 Supp E for

every i. Let π : Ē → E be the normalization and x ∈ Ē a point.
(11.16.1) If E is singular at π(x), then coeffx Diff Ē(∆) ≥ 1, and equality holds

iff E has a node at π(x), E is Cartier at π(x) and π(x) < Supp ∆.
(11.16.2) If π(x) ∈ Di, then coeffx Diff Ē(∆) ≥ di. �

The next theorem—proved in (Kollár, 1992b, 17.4) and Kawakita (2007)—
is frequently referred to as adjunction if we assume something about X and
obtain conclusions about S , or inversion of adjunction if we assume something
about S and obtain conclusions about X. See (Kollár, 2013b, 4.8–9) for a proof
of a more precise version.

Theorem 11.17. Let X be a normal scheme over a field of characteristic 0 and
S a reduced divisor on X with normalization πS : S̄ → S . Let ∆ be an effective
R-divisor that has no irreducible components in common with S and such that
KX + S + ∆ is R-Cartier. Then
(11.17.1)

(
S̄ ,DiffS̄ (∆)

)
is klt iff

(
X, S + ∆

)
is plt in a neighborhood of S , and

(11.17.2)
(
S̄ ,DiffS̄ (∆)

)
is lc iff

(
X, S + ∆

)
is lc in a neighborhood of S .

(11.17.3) mld
(
Z, S̄ ,DiffS̄ (∆)

)
= mld

(
πS (Z), X, S + ∆

)
for any irreducible and

closed subset Z ( S̄ , provided one of them is ≤ 1.
(11.17.4) The claims also hold for slc pairs by (11.37). �

Many divisorial sheaves on an lc pair are Cohen-Macaulay (CM for short).
The following variant is due to (Kollár and Mori, 1998, 5.25) and (Fujino,
2017, 4.14); see also (Kollár, 2013b, 2.88).

Theorem 11.18. Let (X,∆) be a dlt pair over a field of characteristic 0, L a
Q-Cartier Z-divisor, and D ≤ b∆c an effective Z-divisor. Then the sheaves OX ,
OX(−D − L) and ωX(D + L) are CM.

If D + L is effective, then OD+L is also CM. �
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We also need the following; see Kollár (2011a) or (Kollár, 2013b, 7.31).

Theorem 11.19. Let (X,∆) be dlt over a field of characteristic 0, D a (not
necessarily effective) Z-divisor and ∆′ ≤ ∆ an effective R-divisor on X such
that D ∼R ∆′. Then OX(−D) is CM. �

If (X,∆) is lc then frequently OX is not CM. The following variant of the
above theorems, while much weaker, is quite useful. In increasing generality
it was proved by Alexeev (2008); Kollár (2011a); Fujino (2017); see (Kollár,
2013b, 7.20) for the slc case and Kovács (2011); Alexeev and Hacon (2012)
for other versions. The main applications are in (2.79) and (4.33).

Theorem 11.20. Let (X,∆) be slc over a field of characteristic 0 and x ∈ X a
point that is not an lc center (11.10). Let D be a Mumford Z-divisor. Assume
that there is an effective R-divisor ∆′ ≤ ∆ such that D ∼R ∆′. Then
(11.20.1) depthx OX(−D) ≥ min{3, codimX x}, and
(11.20.2) depthx ωX(D) ≥ min{3, codimX x}.

Proof The first claim is proved in (Kollár, 2013b, 7.20). To get the second,
note that, working locally, KX + ∆ ∼R 0, thus −(KX + D) ∼R ∆ − ∆′ and
∆−∆′ ≤ ∆ is effective. Thus, by the first part, ωX(D) ' OX

(
−(−(KX + D))

)
has

depth ≥ min{3, codimX x}. �

Corollary 11.21. Alexeev (2008) Let (X,∆) be slc. If x is not an lc center and
codimX x ≥ 3, then depthx OX ≥ 3 and depthx ωX ≥ 3. �

11.22 (Hurwitz formula). The main example is when π : Y → X is a finite,
separable morphism between normal varieties of the same dimension, but we
also need the case when π : Y → X is a finite, separable morphism between
demi-normal schemes such that π is étale over the nodes of X. Working over
the closure of the open set where KX is Cartier, we get that

KY ∼Q R + π∗KX , (11.22.1)

where R is the ramification divisor of π. If none of the ramification indices is
divisible by the characteristic, then R =

∑
D(e(D) − 1)D where e(D) denotes

the ramification index of π along the divisor D ⊂ Y .
Note that if π is quasi-étale, that is, étale outside a subset of codimension

≥ 2, then R = 0, hence KY ∼Q π
∗KX .

11.23. Let π : Y → X be a finite, separable morphism as in (11.22) and ∆X an
R-divisor on X (not necessarily R-Cartier). Set

∆Y := −R + π∗∆X . (11.23.1)
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With this choice, (11.22.1) gives that

KY + ∆Y ∼R π
∗(KX + ∆X). (11.23.2)

Reid’s covering lemma compares the discrepancies of divisors over X and Y .
For precise forms see Reid (1980), (Kollár and Mori, 1998, 5.20) or (Kollár,
2013b, 2.42-43). We need the following special cases.

Claim 11.23.3. Using the above notation, assume that ∆X and ∆Y are both effec-
tive, and, either the characteristic is 0, or π is Galois and deg π is not divisible
by the characteristic, or deg π is less than the characteristic. Then (X,∆X) is klt
(resp. lc or slc) iff (Y,∆Y ) is klt (resp. lc or slc). �

Special case 11.23.4. If π is quasi-étale, then ∆Y = π∗∆X , thus we compare
(X,∆X) and (Y, π∗∆X).

Special case 11.23.5 . Let DX be a reduced divisor on X such that π is étale
over X \ DX . Set DY := red π∗(DX). Then DY + R = π∗(DX), thus we compare
(X,DX + ∆X) and (Y,DY + π∗∆X).

11.24 (Cyclic covers). See (Kollár and Mori, 1998, 2.49–52) or (Kollár, 2013b,
Sec.2.3) for details.

Let X be an S 2 scheme, L a divisorial sheaf (3.25) and s a section of L[m].
These data define a cyclic cover or µm-cover π : Y → X, such that we have
direct sum decompositions into µm-eigensheaves

π∗OY = ⊕m−1
i=0 L[−i], and

π∗ωY/C ' HomX
(
π∗OY , ωX/C

)
= ⊕m−1

i=0 L[i] [⊗]ωX/C ,

where [⊗] denotes the double dual of the tensor product. The morphism π is
étale over x ∈ X iff L is locally free at x, s(x) , 0 and char k(x) - m. Thus π is
quasi-étale iff s is a nowhere zero section and char k(x) - m.

One can reduce many questions about Q-Cartier divisors to Cartier divisors.

Proposition 11.25. Let (x, X) be a local scheme over a field of characteristic
0 and {Di : i ∈ I} a finite set of Q-Cartier, Mumford Z- divisors. Then there is a
finite, abelian, quasi-étale cover π : X̃ → X such that the π∗Di are Cartier.

Furthermore, if (X,∆) is klt (resp. lc or slc) for some R-divisor ∆, then(
X̃, ∆̃ := π∗∆

)
is also klt (resp. lc or slc). �

11.2 Canonical models and modifications
We used many times canonical models in the relative setting.

Definition 11.26. Let (Y,∆Y ) be an lc pair and pY : Y → S a proper morphism.
We say that (Y,∆Y ) is a canonical model over S , if KY + ∆Y is pY -ample.
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Let (X,∆) be an lc pair and p : X → S a proper morphism. We say that
(Xc,∆c) is a canonical model of (X,∆) over S if there is a diagram

X

p
��?

??
??

??
?

φ //_______ Xc

pc
~~~~
~~
~~
~~

S

(11.26.1)

such that
(11.26.2) (Xc,∆c) is a canonical model over S ,
(11.26.3) φ is a birational contraction (p.10),
(11.26.4) ∆c = φ∗∆, and
(11.26.5) φ∗OX

(
mKX + bm∆c

)
= OXc

(
mKXc + bm∆cc

)
for every m ≥ 0.

Comments 11.26.6. Since φ is a birational contraction, there are open sets U ⊂
X and Uc ⊂ Xc whose complements have codimension ≥ 2, such that the
restriction of φ is a morphism φU : U → Uc. Thus (11.26.5) is equivalent to
saying that φ∗OU

(
mKU + bm∆|Uc

)
= OUc

(
mKUc + bm∆c|Ucc

)
for every m ≥ 0.

(One needs (11.62.2) to see that this is equivalent to (Kollár and Mori, 1998,
3.50).)

For Q-divisors we have the following direct generalization of (1.38).

Proposition 11.27. Let (X,∆) be an lc pair and p : X → S a proper morphism.
Assume that X is irreducible and ∆ is a Q-divisor. Then (X,∆) has a canonical
model over S iff the generic fiber is of general type and the canonical algebra
⊕m≥0 p∗OX

(
mKX + bm∆c

)
is finitely generated. If these hold then the canonical

model is Xc := ProjS ⊕m≥0 p∗OX
(
mKX + bm∆c

)
.

The main conjecture on canonical models says that the relative canonical
models always exist if the generic fiber is of general type. The following known
cases, due to Birkar et al. (2010); Hacon and Xu (2013, 2016) and generalized
in Lyu and Murayama (2022) are the most important for us.

Theorem 11.28. Let (X,∆) be an lc pair over a field of characteristic 0 and
p : X → S a proper morphism, S irreducible. The relative canonical model
exists in the following cases.
(11.28.1) (X,∆) is klt and the generic fiber is of general type.
(11.28.2) (X,∆) is dlt, the relative canonical model exists over an open S ◦ ⊂

S , and every lc center intersects p−1(S ◦). �

Definition 11.29 (Canonical modification). Let Y be a scheme over a field
k. (We allow Y to be reducible and non-reduced, but in applications usually
pure dimensional.) Its canonical modification is the unique proper, birational
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morphism pcm : Ycm → red Y such that Ycm has canonical singularities and
KYcm is ample over Y .

Let ∆ be an effective divisor on Y . We define the canonical modification
pcm :

(
Ycm,∆cm)

→ (Y,∆) as the unique proper, birational morphism for which(
Ycm,∆cm)

has canonical singularities and KYcm + ∆cm is ample over Y; where
∆cm is the birational transform of ∆|red Y ; see (Kollár, 2013b, 1.31).

The log canonical modification plcm :
(
Y lcm,∆lcm)

→ (Y,∆) is defined simi-
larly. The change is that

(
Y lcm,∆lcm + Elcm)

is log canonical and KY lcm + ∆lcm +

Elcm is ample over Y , where Elcm denotes the reduced exceptional divisor.

The canonical modification of (X,∆) is unique. It exist in characteristic 0
if coeff ∆ ⊂ [0, 1] by (11.28). The lc modification is also unique. As for its
existence, we clearly need to assume that coeff ∆ ⊂ [0, 1]. Conjecturally, this
is the only necessary condition, but this is known only in some cases. C. Xu
pointed out that the arguments in Odaka and Xu (2012) give the following.

Theorem 11.30. Let X be a normal variety and ∆ an R-divisor on X with
coeff(∆) ⊂ [0, 1]. If KX + ∆ is numerically R-Cartier (4.48), then (X,∆) has a
log canonical modification. �

Proposition 11.31. (Kollár, 2018a, Prop.19) Let (X,∆) be a potentially lc pair
(11.5.1) over a field of characteristic 0. Then

(11.31.1) it has a projective, small, lc modification π : (Xlcm,∆lcm)→ (X,∆),

(11.31.2) π is a local isomorphism at every lc center of (Xlcm,∆lcm), and

(11.31.3) π is a local isomorphism over x ∈ X iff KX +∆ is R-Cartier at x. �

The following typical application of (11.31) reduces some questions about
Weil divisors to Q-Cartier Weil divisors.

Proposition 11.32. Let (X,∆) be an lc pair over a field of characteristic 0 and
Θ an effective R-divisor such that Supp Θ ⊂ Supp ∆. Let B be a Weil Z-divisor
such that B ∼R −Θ. Then there is a small, lc modification π : X′ → X such
that the following hold, where we use ′ to denote the birational transform of a
divisor on X′.

(11.32.1) B′ is Q-Cartier and π-ample,

(11.32.2) Ex(π) ⊂ Supp Θ′,

(11.32.3) none of the lc centers of (X′,∆′ − εΘ′) are contained in Ex(π),

(11.32.4) π∗OX′ (B′) = OX(B),

(11.32.5) Riπ∗OX′ (B′) = 0 for i > 0, and

(11.32.6) Hi(X,OX(B)
)

= Hi(X,OX′ (B′)
)
.
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Proof We construct π : (X′,∆′)→ (X,∆) by applying (11.31) to (X,∆ − εΘ).
Then −εΘ′ ∼R KX′ + ∆′ − εΘ′ is R-Cartier and π-ample, hence (1) holds by
(11.43). This gives (2). Then (3) follows from (11.10.7). Next, (4) holds since
π is small. We can write B′ ∼R KX′ + (∆′−εΘ′)+ (1−ε)(−Θ′); then (5) follows
from (3) and (11.34). Finally the Leray spectral sequence shows (6). �

One of the difficulties in dealing with slc pairs is that analogous small mod-
ifications need not exists for them; see (Kollár, 2013b, 1.40).

We use generalizations of Kodaira’s vanishing theorem, see (Kollár and
Mori, 1998, Secs.2.4–5) for an introductory treatment. The following is proved
in Ambro (2003) and (Fujino, 2014, 1.10). See also (Fujino, 2017, Sec.5.7) and
(Fujino, 2017, 6.3.5), where it is called a Reid-Fukuda–type theorem.

Definition 11.33. Let (X,∆) be an slc pair, f : X → S a proper morphism and
L an R-Cartier, f -nef divisor on X. Then L is called log f -big if L|W is big on
the generic fiber of f |W : W → f (W) for every lc center W of (X,∆) and also
for every irreducible component W ⊂ X.

Theorem 11.34. Let (X,∆) be an slc pair over a field of characteristic 0 and
D a Mumford Z-divisor on X. Let f : X → S be a proper morphism. Assume
that D ∼R KX + L + ∆, where L is R-Cartier, f -nef and log f -big. Then

Ri f∗OX(D) = 0 for i > 0. �

11.3 Semi-log-canonical pairs
Definition 11.35. Let (R,m) be a local ring such that char(R/m) , 2. We say
that Spec R has a node if there is a regular local ring (S ,mS ) of dimension
2, generators mS = (x, y), a unit a ∈ S \ mS and h ∈ m3

S , such that R '
S/(x2 − ay2 + h). (See (Kollár, 2013b, 1.41) for characteristic 2.)

If R is complete, then we can arrange that h = 0. If R/m is algebraically
closed, then we can take a = 1. Over an algebraically closed field we get the
more familiar form k[[x, y]]/(xy).

As a very simple special case of (2.27) or of (10.43), over a field all defor-
mations of a node can be obtained, étale locally, by pull-back from

(x2 − ay2 = 0) ⊂
(
x2 − ay2 + t = 0

)
⊂ A2

xy × A
1
t . (11.35.1)

Definition 11.36. Recall that, by Serre’s criterion, a scheme X is normal iff it
is S 2 and regular at all codimension 1 points. As a weakening of normality, a
scheme is called demi-normal if it is S 2 and its codimension 1 points are either
regular points or nodes.

A 1-dimensional demi-normal variety is a curve C with nodes. It can be
thought of as a smooth curve C̄ (the normalization of C) together with pairs
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of points pi, p′i ∈ C̄, obtained as the preimages of the nodes. Equivalently, we
have the nodal divisor D̄ =

∑
i(pi + p′i) on C̄, plus a fixed point free involution

on D̄ given by τ : pi ↔ p′i .
We aim to get a similar description for any demi-normal scheme X. Let

π : X̄ → X denote the normalization and D ⊂ X the divisor obtained as the
closure of the nodes of X. Set D̄ := π−1(D) with reduced structure. Then D, D̄
are the conductors of π, and the induced map D̄ → D has degree 2 over the
generic points. The map between the normalizations D̄n → D̄n has degree
2 over all irreducible components, determining an involution τ : D̄n → D̄n,

which is not the identity on any irreducible component. We always assume
this condition from now on. (Note that τ is only a rational involution on D̄.)

It is easy to see (Kollár, 2013b, 5.3) that a demi-normal scheme X is uniquely
determined by the triple

(
X̄, D̄, τ

)
.

However, it is surprisingly difficult to understand which triples
(
X̄, D̄, τ

)
correspond to demi-normal schemes. The solution of this problem in the log
canonical case, given in (11.38), is a key result for us.

Roughly speaking, the concept of semi-log-canonical is obtained by replac-
ing ‘normal’ with ‘demi-normal’ in the definition of log canonical (11.5).

Definition 11.37. Let X be a demi-normal scheme with normalization π : X̄ →
X and with conductors D ⊂ X and D̄ ⊂ X̄. Let ∆ be an effective R-divisor
whose support does not contain any irreducible component of D, and ∆̄ the
divisorial part of π−1(∆). The pair (X,∆) is called semi-log-canonical or slc if

(11.37.1) KX + ∆ is R-Cartier, and

(11.37.2)
(
X̄, D̄ + ∆̄

)
is lc.

Alternatively, one can define a(E, X,∆) using semi-resolutions (as in (Kollár,
2013b, Sec.10.4)) and then replace (2) by

(11.37.3) a(E, X,∆) ≥ −1 for every exceptional divisor E over X.
This is now the exact analog of the definition of log canonical given in (11.5);
the equivalence is proved in (Kollár, 2013b, 5.10).

This formula suggests that if Di ⊂ D is an irreducible component, then we
should declare that a(Di, X,∆) = −1.

Warning 11.37.4. It can happen that (2) holds, hence KX̄ + D̄ + ∆̄ is R-Cartier,
but KX + ∆ is not; see (2.22.1) for an instructive special case of dimension 2.

By contrast, this can not happen in codimensions ≥ 3 by (11.42).

The following theorem, proved in Kollár (2016b) and (Kollár, 2013b, 5.13),
describes slc pairs using their normalizations.
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Theorem 11.38. Let S be a scheme over a field of characteristic 0 as in (11.2).
Then normalization gives a one-to-one correspondence:

Proper, slc pairs
g : (X,∆)→ S ,

KX + ∆ is g-ample.

 ←→


Proper, lc pairs ḡ :

(
X̄, D̄ + ∆̄

)
→ S

with involution τy
(
D̄n,DiffD̄n ∆̄

)
,

KX̄ + D̄ + ∆̄ is ḡ-ample.


(As in (11.36), τ is not the identity on any irreducible component.) �

In applications, we usually know the codimension 1 points of X and X̄. The
codimension 1 points of

(
D̄n,DiffD̄n ∆̄

)
correspond to codimension 2 points of

X and X̄. Since we understand 2-dimensional slc pairs quite well, we frequently
have good control over codimension ≤ 2 points of lc and slc pairs. The next
theorems show that one can sometimes ignore the higher codimension points.

The first result of this type, due to Matsusaka and Mumford (1964), shows
how to extend isomorphisms across subsets of codimension ≥ 2.

Theorem 11.39. Let S be a Noetherian scheme, Xi → S projective morphisms
and Hi relatively ample R-divisor classes on Xi. Let Zi ⊂ Xi be closed subsets
such that depthZi

Xi ≥ 2. Let

τ◦ :
(
X1 \ Z1,H1|X1\Z1

)
'

(
X2 \ Z2,H2|X2\Z2

)
be an isomorphism. Then τ◦ extends to an isomorphism τ : X1 ' X2.

Proof Let Γ ⊂ X1 ×S X2 be the closure of the graph of τ◦ with projections
πi : Γ → Xi. Then πi is an isomorphism over Xi \ Zi. By (5.32.4), πi is an
isomorphism iff it is finite. The latter can be checked locally on S after com-
pletion. We can now also assume that the Xi are normal and replace Γ with its
normalization.

There is a divisor E ∼R π∗1H1 − π
∗
2H2 that is supported on the union of the

πi-exceptional loci. Since πi(E) ⊂ Zi, we see that Supp(E) ⊂ Ex(πi) for i = 1, 2.
Next note that −E is π1-nef and exceptional, so E ≥ 0 by (11.60). Also E is

π2-nef and exceptional, so E ≤ 0. Thus E = 0, hence π∗1H1 ≡ π
∗
2H2. We now

finish by (11.39.1). �

Claim 11.39.1. Let Xi → S be projective morphisms and Hi relatively ample
R-divisor classes on Xi. Let p : Y → X1 ×S X2 be a finite morphism such that
p∗π∗1H1 ∼R p∗π∗2H2. Then πi ◦ p : Y → Xi are finite.

Proof If a curve C ⊂ Y is contracted by π1 ◦ p then it cannot be contracted by
π2◦p since p is finite. Thus (C·p∗π∗1H1) = 0, but (C·p∗π∗2H2) = (π2◦p(C)·H2) >
0 since H2 is ample. �
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The depthZ X ≥ 2 assumption in (11.39) holds if X is normal and Z ⊂ X has
codimension ≥ 2; the main case in most applications. If Z has codimension
1, we usually get very little information about X from X \ Z. Nonetheless, we
have the following very useful result about slc pairs.

Theorem 11.40. Let S be a scheme over a field of characteristic 0 as in (11.2),
and let fi : (Xi,∆i)→ S proper morphisms from slc pairs such that KXi + ∆i is
fi-ample. Let ZS ⊂ S be a closed subset and set Zi := f −1

i (ZS ). Let

τ◦ :
(
X1 \ Z1,∆1|X1\Z1

)
'

(
X2 \ Z2,∆2|X2\Z2

)
(11.40.1)

be an isomorphism. Assume that none of the log centers (11.11) of (Xi,∆i) is
contained in Zi for i = 1, 2.

Then τ◦ extends to an isomorphism τ : X1 ' X2.

Proof Since every irreducible component of X is a log center, the Zi are
nowhere dense in Xi.

Using (11.38) we may assume that the Xi are normal. Let Γ→ X1 ×S X2 be
the normalization of the closure of the graph of τ◦ with projections πi : Γ→ Xi.

As in (1.28), we use the log canonical class to compare the Xi. If F is an
irreducible component of ∆i then a

(
F, Xi,∆i

)
= − coeffF ∆i < 0, thus F 1 Zi.

In particular, (π1)−1
∗ ∆1 = (π2)−1

∗ ∆2; let us denote this divisor by ∆Γ. Write

KΓ + ∆Γ ∼R π
∗
i
(
KXi + ∆i

)
+ Ei, (11.40.2)

where Ei is πi-exceptional and πi(Supp Ei) ⊂ Zi. Note that Ei is effective by
our assumption on the log centers.

Subtracting the i = 1, 2 cases of (11.40.2) from each other we get that

E1 − E2 ∼R π
∗
2
(
KX2 + ∆2

)
− π∗1

(
KX1 + ∆1

)
. (11.40.3)

Thus E1 − E2 is π1-nef and −(π1)∗(E1 − E2) = (π1)∗(E2) is effective. Thus
E2 − E1 is effective by (11.60). Using π2 shows that E1 − E2 is effective, hence
E1 = E2. Thus π∗1

(
KX1 + ∆1

)
∼R π

∗
2
(
KX2 + ∆2

)
. We finish by (11.39.1). �

Remark 11.40.4. The assumption on log centers is crucial. To see an example,
consider the family of curves

X :=
(
xyz(x + y + z) + t(x4 + y4 + z4) = 0

)
⊂ P2

xyz × A
1
t .

It is smooth along the central fiber X0, which consists of 4 lines Li, each with
self-intersection −3. We can contract any of them pi : X → Xi, to get fi : Xi →

A1. Note that p j ◦ p−1
i : Xi d X j is an isomorphism over A1 \ {0}, but not an

isomorphism for i , j. Here Xi has a singularity of type A2/ 1
3 (1, 1), which is

log terminal and the singularities are log centers of (Xi, 0).
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Corollary 11.41. Let S be a scheme over a field of characteristic 0 as in (11.2)
and S ◦ ⊂ S a dense, open subscheme. Let g◦ : (X◦,∆◦) → S ◦ be a proper, slc
pair with normalization π◦ :

(
X̄◦, ∆̄◦ + D̄◦

)
→ (X◦,∆◦).

Assume that there is an slc pair
(
X̄, ∆̄ + D̄

)
⊃

(
X̄◦, ∆̄◦ + D̄◦

)
that is proper

over S , such that KX̄ + ∆̄ + D̄ is ample over S and every codimension ≤ 2 log
center of

(
X̄, ∆̄ + D̄

)
has nonempty intersection with X̄◦.

Then there is a unique slc pair (X,∆) ⊃ (X◦,∆◦) that is proper over S and
whose normalization is

(
X̄, ∆̄ + D̄

)
.

Proof Since every irreducible component of X̄ is a log center, X̄◦ is dense
in X̄. Let n : D̄n → D̄ denote the normalization. By inversion of adjunction
(11.17.2),

(
D̄n,DiffD̄n ∆̄

)
is also lc and KD̄n + DiffD̄n ∆̄ is ample over S .

Using (11.17.3), every irreducible component of DiffD̄n lies over a codimen-
sion 2 log center of

(
X̄, ∆̄ + D̄

)
, hence none of the irreducible components of

DiffD̄n is disjoint from X̄◦.
Thus the involution τ◦ of (D̄◦)n extends to an involution τ on D̄n by (11.40),

and DiffD̄n is τ̄-invariant. Hence (11.38) gives the existence of (X,∆). �

Corollary 11.42. Let (X,∆) be demi-normal with lc normalization
(
X̄, ∆̄ + D̄

)
.

Assume that there is a closed subset W ⊂ X of codimension ≥ 3 such that(
X \W,∆|X\W

)
is slc. Then (X,∆) is slc.

Proof Apply (11.41) with S = X, X◦ = X \W. �

11.4 R-divisors

It is easy to see that, on a Q-factorial scheme, R-divisors behave very much
like Q-divisors. The same holds in general, but it needs a little more work.
The basics are discussed in (Lazarsfeld, 2004, Sec.1.3), but most other facts
are scattered in the literature; see for example (Kollár, 2013b, 2.21) or Birkar
(2017); Fujino and Miyamoto (2021).

11.43 (R-divisors). Let X be a reduced, S 2 scheme and ∆ =
∑

biBi a Mumford
R-divisor. There is a unique such way of writing ∆ where the Bi are irreducible,
distinct and bi , 0 for every i. The Q-vector space spanned by the coefficients
is denoted by CoSp(∆) =

∑
i Q · bi ⊂ R.

We say that ∆ is R-Cartier if it can be written as an R-linear combination
of Cartier Z-divisors ∆ =

∑
riDi. By (11.46) we can choose the Di to have

the same support as ∆, but we do not assume this to start with. Two R-divisors
are R-linearly equivalent, denoted by ∆1 ∼R ∆2, if ∆1 − ∆2 is an R-linear
combination of principal divisors. (11.43.2.d) shows that for Q-divisors we do
not get anything new.
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Let σ : R → Q be a Q-linear map. It extends to a Q-linear map from R-
divisors to Q-divisors as σ(

∑
diDi) :=

∑
σ(di)Di.

Claim 11.43.1. Let σ : R→ Q be a Q-linear map. Then
(a) Supp

(
σ(D)

)
⊂ Supp(D),

(b) if D1 ∼R D2 then σ(D1) ∼Q σ(D2),
(c) if D is R-Cartier then σ(D) is Q-Cartier, and
(d) D 7→ σ(D) commutes with pull-back for R-Cartier divisors.

Proof The first claim is clear. If D1 − D2 =
∑

ci( fi) then σ(D1) − σ(D2) =∑
σ(ci)( fi), showing (b), which in turn implies (c) and (d) is clear. �

Let D be an R-divisor. Choosing a Q-basis di ∈ CoSp(D), we can write
D =

∑
diDi where the Di are Q-divisors (usually reducible), The Di depend on

the choice of the basis. Nonetheless, they inherit many properties of D.

Claim 11.43.2. Let Di be Q-divisors and di ∈ R linearly independent over Q.
Then

(a)
∑

diDi is R-Cartier iff each Di is Q-Cartier.
(b)

∑
diDi ∼R 0 iff Di ∼Q 0 for every i.

(c) If X is proper then
∑

diDi ≡ 0 iff Di ≡ 0 for every i.
(d) A Q-divisor Di is R-Cartier iff it is Q-Cartier.
(e) D1 ∼R D2 iff D1 ∼Q D2.
(f) Supp Di ⊂ Supp D.

Proof If the di ∈ R are linearly independent then we can choose σi such that
σi(di) = 1 and σi(d j) = 0 for i , j. Then σi(D) = Di, thus (11.43.1) shows (a)
and (b).

For (c) assume that
∑

diDi ≡ 0 and let C ⊂ X be a curve. Then
∑

di(Di ·C) =

0. Since (Di ·C) ∈ Q and the di are linearly independent, we get that (Di ·C) = 0
for every i. Applying (a) to Di gives (d). Applying (b) to D1 − D2 gives (e).
Finally (f) follows from the linear independence over Q. �

Corollary 11.43.3. Let Θ be a Mumford R-divisor and {di} a basis of CoSp(Θ)
over Q. Then we get a unique representation Θ =

∑
diDi where the Di are

Q-divisors. If Θ is R-Cartier, then the Di are Q-Cartier. �

Corollary 11.43.4. Let ∆ be a Mumford R-divisor and {d′i } a Q-basis of Q +

CoSp(∆) such that
∑

d′i = 1. Then we get a unique representation ∆ =
∑

d′i Di

where the Di are Q-divisors. If KX +∆ is R-Cartier, then KX + Di are Q-Cartier.

Proof Note that KX + ∆ =
∑

d′i (KX + Di), so the last assertion follows from
(11.43.2.a). �
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Next we show that R-divisors can be approximated by Q-divisors in a way
that many properties are preserved. We start with some general comments on
vector spaces and field extensions. At the end we care only about R ⊃ Q.

Definition–Lemma 11.44. Let K/k be a field extension, V a k-vector space
and w ∈ V ⊗k K. The linear k-envelope of w, denoted by LEnvk(w) ⊂ V , is
the smallest vector subspace such that w ∈ LEnvk(w) ⊗k K. Then LEnvk(w) is
spanned by any of the following 3 sets, where σ runs through all k-linear maps
K → k.
(11.44.1) All (1V ⊗ σ)(w).
(11.44.2) All

∑
σ(ci)vi, where vi ∈ V is a basis and w =

∑
civi.

(11.44.3) All
∑

i ai jvi, where e j ∈ K is a k-basis and w =
∑

i j ai je jvi.
The affine k-envelope of w, denoted by AEnvk(w) ⊂ V , is the smallest affine-

linear subspace such that w ∈ AEnvk(w) ⊗k K. Then AEnvk(w) is spanned by
any of the following 3 sets, where σ runs through all k-linear maps K → k
such that σ(1) = 1.
(11.44.4) All (1V ⊗ σ)(w).
(11.44.5) All

∑
σ(ci)vi, where vi ∈ V is a basis and w =

∑
civi.

(11.44.6) All
∑

i ai jvi, where e j ∈ K is a k-basis such that e1 = 1 and w =∑
i j ai je jvi.

11.45 (Approximating by rational simplices). Fix real numbers d1, . . . , dm and
consider a Q-vector space W with basis d1, . . . , dm. Set d :=

∑
didi ∈ WR and

V := AEnvQ(d). We inductively construct a sequence of simplices

V ⊃ S 1 ⊃ S 2 ⊃ · · · such that ∩n S n = {d}.

Set S 0 := V . For each n ∈ N the cubes of the lattice 1
nZ

m give a cubical
chamber decomposition of WR. There is a smallest chamber Cn that contains d.
Then d is an interior point of Cn ∩ S n−1 (in its affine-linear span). The vertices
of Cn∩S n−1 are in Qn. Thus d can be written as a convex linear combination of
suitably chosen dim V + 1 vertices of VR ∩Cn; denote them by dnj . These span
S n. By (11.44), there are Q-linear maps σn

j : R → Q such that dnj = σn
j (d). We

can thus write
(11.45.1) d =

∑
jλ

n
jd

n
j , where

(11.45.2) dnj =
∑

i σ
n
j (di)di,

(11.45.3)
∑

j λ
n
j = 1 and

∑
j λ

n
jσ

n
j (di) = di ∀i,

(11.45.4) limn→∞ d
n
j = d ∀ j, and

(11.45.5) for fixed n, the λn
j are linearly independent over Q. (To see this, note

that 1 and the di are Q-linear combinations of the λn
j for fixed n.)
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Remark 11.45.6. The choice of the vertices is not unique, but once we choose
them, the constants λn

j are unique, and so are the restrictions of σn
j to LEnvQ(d).

Thus, from now on, we view σn
j and λn

j as depending only on j, n ∈ N and
d1, . . . , dm ∈ R. Note that these are not continuous functions of the di, even the
number of the j-indices varies discontinuously with d1, . . . , dm.

Also, we only care about the restriction of the σn
j to LEnvQ(d), so we are

really dealing with finite dimensional linear algebra.

Proposition 11.46 (Convex approximation of R-divisors I). Let X be a re-
duced, S 2 scheme and Θ =

∑
idiDi a Mumford R-divisor, where the Di are

Q-divisors. Let σn
j and λn

j be as in (11.45) and set Θn
j :=

∑
σn

j (di)Di. Then
(11.46.1) Θ =

∑
j λ

n
jΘ

n
j and the Θn

j are Q-divisors.
(11.46.2) Let E ⊂ X be a prime divisor on X. Then limn→∞ coeffE Θn

j =

coeffE Θ and coeffE Θn
j = coeffE Θ if coeffE Θ ∈ Q.

(11.46.3) Θ is effective iff the Θn
j are effective for every j for n � 1 (then they

have the same support).
Assume next that Θ is R-Cartier. Then the following also hold.
(11.46.4) The Θn

j are Q-Cartier.
(11.46.5) Let E be prime divisor over X (11.1). Then limn→∞ coeffE Θn

j =

coeffE Θ and coeffE Θn
j = coeffE Θ if coeffE Θ ∈ Q.

(11.46.6) Let C be a proper curve on X. Then limn→∞(C · Θn
j ) = (C · Θ) and

(C · Θn
j ) = (C · Θ) if (C · Θ) ∈ Q.

(11.46.7) Θ is ample (11.51) iff the Θn
j are ample for every j for n � 1.

Proof (1) is a formal consequence of (11.45.2), while the limit in (2) follows
from (11.45.3). If coeffE Θ =: c ∈ Q, then

∑
i xi coeffE Di = c defines a rational

hyperplane in W (as in (11.45)). It contains d, hence also V and the other dnj .
The Θn

j are the images of the dnj .
By (11.45.4) the λn

j are linearly independent over Q. Thus, if Θ is R-Cartier
then the Θn

j are Q-Cartier by (11.43.2), proving (4). Also, in this case coeffE Θ

makes sense for divisors over X and same for the intersection numbers (C ·Θ).
The proofs of (5–7) are now the same as for (2). �

Proposition 11.47 (Convex approximation of R-divisors II). Let X be a demi-
normal scheme and ∆ =

∑
diDi a Mumford R-divisor, where the Di are Q-

divisors. Assume that KX + ∆ is R-Cartier. Let σn
j and λn

j be as in (11.45) and
set ∆n

j :=
∑
σn

j (di)Di. Then
(11.47.1) ∆ =

∑
j λ

n
j∆

n
j and KX + ∆ =

∑
j λ

n
j (KX + ∆n

j ).
(11.47.2) ∆ is effective iff the ∆n

j are effective for every j for n � 1 (then they
have the same support).



430 Minimal models and their singularities

(11.47.3) KX + ∆n
j are Q-Cartier.

(11.47.4) KX + ∆ is ample iff the KX + ∆n
j are ample for every j for n � 1.

(11.47.5) Let E be a prime divisor. Then limn→∞ a(E, X,∆n
j ) = a(E, X,∆) and

a(E, X,∆n
j ) = a(E, X,∆) if a(E, X,∆) ∈ Q.

(11.47.6) Let C be a proper curve. Then limn→∞(C ·(KX +∆n
j )) = (C ·(KX +∆))

and (C · (KX + ∆n
j )) = (C · (KX + ∆)) if (C · (KX + ∆)) ∈ Q.

Assume next that (X,∆) has a log resolution and fix ε > 0. Then, for every j
and every n � 1 the following hold.
(11.47.7) |a(E, X,∆) − a(E, X,∆n

j )| < ε for every divisor E over X, whenever
one of the discrepancies is < 0.

(11.47.8) (X,∆) is lc (resp. dlt or klt) iff (X,∆n
j ) is lc (resp. dlt or klt).

(11.47.9) (X,∆) and (X,∆n
j ) have the same dlt modifications.

Proof (1–2) follow directly from (11.46) and (3) follows from (11.46.4) and
(1). Since ampleness is an open condition, (3) implies (4).

The proofs of (5) and (6) are the same as the proof of (11.46.2). If (X,∆) has
a log resolution then (7) follows from (11.7) and being lc (resp. dlt or klt) can
be read off from the discrepancies, hence (7) implies (8) and (9). �

In the slc case, we have the following remarkable sharpening.

Complement 11.48. (Han et al., 2020, 5.6) In (11.47) assume in addition that
(X,∆ =

∑
diDi) is slc. Then we can choose the σn

j and λn
j to depend only on

(d1, . . . , dr) and the dimension. �

We also get some information about pluricanonical sheaves for R-divisors.

Theorem 11.49. Fix a finite set C := {c1, . . . , cr} ⊂ [0, 1]. Then there is a
subset M(C, n) ⊂ Z of positive density such that, if (X,∆ =

∑
ciDi) is an slc

pair of dimension n, then
(
X, b∆c +

∑
{mci}Di

)
is slc for m ∈ M(C, n), and has

the same lc centers as (X,∆).

Proof Let A ⊂ Rr be the affine envelope of c := (c1, . . . , cr) ∈ Rr and H ⊂ Rn

the closed subgroup generated by A. Then A is a connected component of H
and H/(H ∩ Zr) ⊂ Rr/Zr is a closed subgroup. Furthermore, by a theorem of
Weyl, the multiples of c are equidistributed in H/(H ∩ Zr); see, for example,
(Kuipers and Niederreiter, 1974, Sec.1.1).

Pick now σn
j as in (11.48). Then the convex linear combinations of the σn

j (c)
give an open neighborhood c ∈ U ⊂ H/(H ∩ Zr). If

(
{mc1}, . . . , {mcr}

)
∈ U

then (1–2) hold. �

Applying (11.20) gives the following.
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Corollary 11.50. Using the notation of (11.49), let (X,∆ =
∑

ciDi) be an slc
pair of dimension n. Then, for every m ∈ M(C, n),

depthx ω
[m]
X

(∑
bmcicDi

)
≥ min{3, codimX x}, (11.50.1)

whenever x is not an lc center of (X,∆). �

Example 11.50.2. Let X ⊂ A4 be the quadric cone and |A|, |B| the 2 families of
planes on X. Fix r ∈ N and for 0 < c ≤ 1/r consider the pair(

X,∆c := B + cA1 + · · · + cAr + (1 − rc)A0
)
.

Then (X,∆c) is canonical and

OX
(
bm∆cc

)
'

{
OX(−A) if {mc} ≤ 1/r, and
OX(−dA) for some d ≥ 2 otherwise.

An easy computation as in (Kollár, 2013b, 3.15.2) shows that OX
(
bm∆cc

)
is

CM iff {mc} ≤ 1/r. If c is irrational, then the set {m : {mc} ≤ 1/r} has no
periodic subsets.

Definition 11.51. Let g : X → S be a proper morphism. An R-Cartier divisor
H is g-ample iff it is linearly equivalent to a positive linear combination H ∼R∑

ciHi of g-ample Cartier divisors.
Ampleness is preserved under perturbations. Indeed, let D1, . . . ,Dr be Q-

Cartier divisors. There are m j > 0 such that the m jH1 + D j are g-ample. Then

H +
∑

jη jD j ∼R
(
c1 −

∑
jη jm j

)
H1 +

∑
i,1ciHi +

∑
jη j(m jH1 + D j)

shows that H +
∑

jη jD j is g-ample if η j ≥ 0 and
∑

jη jm j ≤ c1.
This implies that if H is g-ample, m � 1 and bmHc is Cartier, then bmHc is

very g-ample. However, frequently bmHc is not evenQ-Cartier for every m > 0,
making the proofs of the basic ampleness criteria are more complicated.

Theorem 11.52 (Asymptotic Riemann-Roch). Let X be a normal, proper al-
gebraic space of dimension n and D a nef R-Cartier divisor. Then

h0(X,OX(bmDc)
)

= mn

n! (Dn) + O(mn−1), and

h0(X,OX(dmDe)
)

= mn

n! (Dn) + O(mn−1).
(11.52.1)

Proof By Chow’s lemma we may assume that X is projective. Write D =∑
aiAi where the Ai are effective, ample Z-divisors and ai ∈ R. Then∑

bmaicAi ≤ bmDc ≤ mD ≤ dmDe ≤ H +
∑
dmaieAi, (11.52.2)
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for any H ample and effective. It is thus enough to prove that (11.52.1) holds
for the 2 divisors on the sides of (11.52.2) for suitable H. Note that∑

dmaieAi ∼R
∑

(dmaie − mai)Ai + mD,

thus
∑
dmaieAi is nef for every m ≥ 0, even though some of the dmaie may be

negative. Next choose H such that (11.52.4) holds (with F = OX) and H +
∑

Ai

is linearly equivalent to an irreducible divisor B. Then, by Riemann-Roch,

h0(X,OX(H +
∑
dmaieAi)

)
= χ

(
X,OX(H +

∑
dmaieAi)

)
= mn

n! (Dn) + O(mn−1).

Restricting OX(H +
∑
dmaieAi) to B, the kernel is

OX(
∑
dmaieAi −

∑
Ai) ⊂ OX(

∑
bmaicAi),

(the 2 are equal iff none of the mai are integers). Thus

h0(X,OX(H +
∑
dmaieAi)

)
− h0(X,OX(

∑
bmaicAi)

)
is at most h0(B,OB(H|B+

∑
dmaieAi|B)

)
. The latter is bounded by O(mn−1) using

(11.52.3). �

11.52.3 (Matsusaka inequality). Let X be a proper variety of dimension n, L a
nef and big Z-divisor and D a Weil Z-divisor giving a dominant map |D| : X d
Z. Then

h0(X,OX(D)
)
≤

(D · Ln−1)dim Z

(Ln)dim Z−1 + dim Z.

See Matsusaka (1972) or (Kollár, 1996, VI.2.15) for proofs.

11.52.4 (Fujita vanishing). Let X be a projective scheme and F a coherent
sheaf on X. Then there is an ample line bundle L such that

Hi(X, F ⊗ L ⊗ M
)

= 0 ∀i > 0, ∀ nef line bundle M.

See Fujita (1983) (or (Lazarsfeld, 2004, I.4.35) for the characteristic 0 case).

Corollary 11.53 (Kodaira lemma). Let X be a normal, proper, irreducible al-
gebraic space of dimension n and D a nef R-divisor. Then D is big (p.11) ⇔
(Dn) > 0⇔ one can write D = cB + E, where B is a big Z-divisor, c > 0 and E
is an effective R-divisor. If X is projective, then one can choose B to be ample.

Proof With (11.52) in place, the arguments in (Kollár and Mori, 1998, 2.61)
or (Lazarsfeld, 2004, 2.2.6) work. See also (Shokurov, 1996, 6.17) (for char-
acteristic 0) and (Birkar, 2017, 1.5) for the original proofs, or (Fujino and
Miyamoto, 2021, 2.3). �
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The proof of the Nakai-Moishezon criterion for R-divisors uses induction
on all proper schemes, so first we need some basic results about them.

11.54 (R-Cartier divisor classes). Fujino and Miyamoto (2021) On an arbitrary
scheme one can define R-line bundles or R-Cartier divisor classes as elements
of Pic(X) ⊗Z R. It is better to think of these as coming from line bundles, but
writing divisors keeps the additive notation.

Claim 11.54.1. Let X be a proper algebraic space, p : Y → X its normalization
and Θ an R-Cartier divisor class on X. Then Θ is ample iff p∗Θ is ample.

Proof For Cartier divisors this is (Hartshorne, 1977, Ex.III.5.7), which im-
plies the Q-Cartier case. Next we reduce the R-Cartier case to it.

By assumption we can write Θ ∼R
∑

idiDi where the Di are Q-Cartier. By
(11.46) there are ci j ∈ Q and 0 < λ j ∈ R such that the ΘY

j :=
∑

i ci j p∗Di are
ample and di =

∑
k λ jci j for every i. In particular, p∗Θ ∼R

∑
j λ jΘ

Y
j .

Set Θ j :=
∑

i ci jDi. Then Θ ∼R
∑

j λ jΘ j and p∗Θ j = ΘY
j . The Θ j are Q-

Cartier, hence ample, hence so is Θ. �

Corollary 11.54.2. Let g : X → S be a proper morphism of algebraic spaces
and Θ an R-Cartier divisor class on X. Then

S amp := {s ∈ S : Θs is ample on Xs} ⊂ S is open.

Proof Write Θ =
∑

diDi and apply (11.46) to its restriction to Xs. Thus we
get Q-Cartier divisors Θ j := Θn

j (for n � 1) such that Θ =
∑

j λ jΘ j and each
Θ j|Xs is ample. The Θ j are ample over some open s ∈ S ◦ ⊂ S , hence so is
Θ. �

Theorem 11.55. Fujino and Miyamoto (2021) Let X be a proper algebraic
space and D anR-Cartier divisor class on X. Then D is ample iff (Ddim Z ·Z) > 0
for every integral subscheme Z ⊂ X.

Proof By (11.54.1) we may assume that X is normal. By (11.52) we may
assume that D is an effective R-divisor. By (11.46) we can write D =

∑
λiDi

where the Di are effective, Q-Cartier. D − Di can be chosen arbitrarily small.
Let p : Y → Supp D ↪→ X be the normalization of Supp D. By dimension

induction, p∗D is ample, and so are the p∗Di if the D − Di are small enough.
Thus the Di|Supp D are ample, hence the Di are semiample by (11.55.1). Since

(D · C) > 0 for every curve, Supp D is not disjoint from any curve, hence the
same holds for Supp Di = Supp D. So the Di are ample, and the converse is
clear. �

Claim 11.55.1. (Lazarsfeld, 2004, p.35) Let X be a proper algebraic space and



434 Minimal models and their singularities

D an effective Q-Cartier divisor such that D|Supp D is ample. Then D is semi-
ample. Thus if D is not disjoint from any curve, then D is ample. �

The usual proof of the Seshadri criterion (see (Lazarsfeld, 2004, 1.4.13))
now gives the following.

Corollary 11.56 (Seshadri criterion). Let X be a proper algebraic space and
D an R-Cartier divisor on X. Then D is ample iff there is an ε > 0 such that
(D ·C) ≥ εmultp C for every pointed, integral curve p ∈ C ⊂ X. �

Next we study a way to pull back Weil divisors.

11.57 (Intersection theory on normal surfaces). Mumford (1961) Let S be a
normal, 2-dimensional scheme and p : S ′ → S a resolution with exceptional
curves Ei. The the intersection matrix (Ei ·E j) is negative definite by the Hodge
index theorem (see (Kollár, 2013b, 10.1)). Let D be an R-divisor on S . Then
there is a unique p-exceptional R-divisor ED such that(

Ei · (p−1
∗ D + ED)

)
= 0 for every i. (11.57.1)

If D is effective, then ED is effective by (Kollár, 2013b, 10.3.3) and (Ei·ED) ≤ 0
for every i.

We call p∗D := p−1
∗ D + ED the numerical pull-back of D. If D is R-Cartier

then this agrees with the usual pull-back.
More generally, the numerical pull-back is also defined if S ′ is only normal:

we first pull-back to a resolution of S ′ and then push forward to S .
If D1,D2 are R-divisors and one of them has proper support, then one can

define their intersection cycle as

(D1 · D2) = p∗
(
p−1
∗ D1 · p∗D2

)
= p∗

(
p−1
∗ D2 · p∗D1

)
. (11.57.2)

If S is proper, we get the usual properties of intersection theory, except that,
even if the Di are Z-divisors, their intersection numbers can be rational.

The following connects the numerical and sheaf-theoretic pull-backs.

Claim 11.57.3. Let p : T → S be a proper, birational morphism between nor-
mal surfaces with exceptional curve E = ∪Ei. Let B be an R-divisor on T such
that −B is p-nef. Then p∗OT (bBc) = OS (bp∗Bc).

Moreover, if E is connected, then g∗OT (bB − εEc) = OS (bp∗Bc) for 0 ≤ ε �
1, save when B is a Z-divisor and B ∼ 0 in a neighborhood of E.

Proof Write B = Bv + Bh as a sum of its exceptional and non-exceptional
parts. We can harmlessly replace Bh with its round down, so we assume that
Bh is a Z-divisor. Let φ be a local section of OS (p∗Bh). Then φ ◦ p is a rational
section of OT (Bh), with possible poles along the exceptional curves. There is
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thus a smallest exceptional Z-divisor F such that φ◦p is a section of OT (Bh+F).
In particular,

(
Ei · (Bh + F)

)
≥ 0 for every i. Thus(

Ei · (F − Bv)
)

=
(
Ei · (Bh + F − B)

)
≥

(
Ei · (Bh + F)

)
≥ 0

for every i. By the Hodge index theorem (Kollár, 2013b, 10.3.3), this implies
that Bv − F is effective, thus Bh + F ≤ bBc.

Moreover, Bv − F − εE is effective, unless(
Ei · (−B)

)
= 0 and

(
Ei · (Bh + F)

)
= 0

for every i. Then Bh + F ∼ 0 and Bh + Bv ∼Q 0. Thus F = Bv, hence B ∼ 0. �

Corollary 11.57.4. Let p : T → S be a proper, birational morphism between
normal surfaces and D an R-divisor on S . Then p∗OT (bp∗Dc) = OS (bDc). �

Next we propose a higher dimensional version of pull-back, focusing on its
numerical properties. A different notion, using sheaf-theoretic properties, is
defined in de Fernex and Hacon (2009).

11.58 (Numerical pull-back). Let g : Y → X be a projective, birational mor-
phism of normal schemes and H a g-ample Cartier divisor. We define the H-
numerical pull-back of R-divisors

g(∗)
H : WDivR(X)→WDivR(Y)

as follows. Let D ⊂ X be an R-divisor. We inductively define

g(∗)
H (D) = g−1

∗ D +
∑

i≥2Fi(D), (11.58.1)

where Supp Fi(D) consists of g-exceptional divisors Ei` for which g(Ei`) ⊂ X
has codimension i.

Assume that we already defined the Fi(D) for i < j. Let x ∈ X be a point of
codimension j. After localizing at x we have gx : Yx → Xx. Let F j(D)x be the
unique divisor supported on g−1

x (x) such that(
E j` · (g−1

∗ D +
∑

i< jFi(D) + F j(D)x) · H j−2) = 0 ∀`. (11.58.2)

To make sense of this, we may assume that H is very ample. Let S be a general
complete intersection of j − 2 members of |H|. Then S is a normal surface, so
we are working with intersection numbers as in (11.57). Also, if S is general,
then the gx|S -exceptional curves are in one-to-one correspondence with the
divisors E j`, so any linear combination of gx|S -exceptional curves corresponds
to a linear combination of the divisors E j`.

If we have proper, but non-projective Y → X, we can apply our definition
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to a projective modification Y ′ → Y → X and then push forward to Y . This
defines g(∗)

H in general.
Already in simple situations, for example for cones over cubic surfaces, the

divisors g(∗)
H (D) do depend on H. However, the notion has several good proper-

ties and it is quite convenient in some situations. See, for example, (11.52) or
(Fulger et al., 2016, 3.3).

Theorem 11.59. Let g : Y → X be a projective, birational morphism of normal
schemes and H a g-ample Cartier divisor. Then

(11.59.1) g(∗)
H : WDivR(X)→WDivR(Y) is R-linear,

(11.59.2) g∗ ◦ g(∗)
H is the identity,

(11.59.3) if D is R-Cartier, then g(∗)
H (D) = g∗(D),

(11.59.4) if D is effective, then so is g(∗)
H (D),

(11.59.5) g(∗)
H respects R-linear equivalence,

(11.59.6) g∗OY
(
bg(∗)

H (B)c
)

= OX
(
bBc

)
, and

(11.59.7) g(∗)
H maps Q-divisors to Q-divisors,

Proof (1–3) are clear from the definition. (4) follows from its surface case,
which we noted after (11.57.1). If D1 ∼R D2 then, using first (1) and then (3),
we get that

g(∗)
H (D1) = g(∗)

H (D2) + g(∗)
H (D1 − D2) = g(∗)

H (D2) + g∗(D1 − D2),

giving (5). Finally (6) is a local question. We may thus assume that (6) holds
outside a closed point x ∈ X. Assume to the contrary that OY

(
bg(∗)

H (B)c
)

has
a rational section that has poles along g−1(x). After restricting to a general
complete intersection surface S ⊂ Y as in (11.58), we would get a contradiction
to (11.57.3). �

The following negativity lemmas are quite useful.

Lemma 11.60. (Kollár and Mori, 1998, 3.39) Let h : Z → Y be a proper
birational morphism between normal schemes. Let −B be an h-nef R-Cartier
divisor on Z. Then

(11.60.1) B is effective iff h∗B is.

(11.60.2) Assume that B is effective. Then for every y ∈ Y, either h−1(y) ⊂
Supp B or h−1(y) ∩ Supp B = ∅. �

Lemma 11.61. Kollár (2018a) Let π : Y → X be a proper, birational contrac-
tion of demi-normal schemes such that none of the π-exceptional divisors is
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contained in Sing Y. Let N, B be Mumford R-divisors such that N is π-nef and
B is effective and non-exceptional. Then

π∗OY (b−N − Bc) = OX(bπ∗(−N − B)c). (11.61.1)

Moreover, fix x ∈ X and let Ex be the divisorial part of π−1(x). Then

π∗OY (b−N − B − εExc) = OX(bπ∗(−N − B)c) (11.61.2)

for 0 ≤ ε � 1, save when N+B is a Z-divisor and N+B ∼ 0 in a neighborhood
of π−1(x).

Proof If dim Y = 2 then B is also π-nef, so the claim follows from (11.57.3).
In general, we may assume that π is projective, take the normalization, and
reduce to the surface case as in the proof of (11.59.6). �

11.62 (Divisorial base locus). Let X be a normal scheme and D a Z-divisor.
The divisorial part of the base locus of |D| is denoted by Bsdiv(D). Define the
divisorial base locus of an R-divisor ∆ as Bsdiv(∆) := Bsdiv(b∆c) + {∆}. In
particular, H0(X,OX(bD − Bc)

)
= H0(X,OX(bDc)

)
.

Assume now that we can write ∆ =
∑

j a jA j where the A j are Cartier divisors
such that Bs(A j) = ∅ and a j > 0 (This is always possible if X is quasi-affine.)
Then

∑
jbma jcA j ≤ bm∆c for any m > 0, which shows that

Bsdiv(m∆) ≤
∑

jA j. (11.62.1)

Claim 11.62.2. Let g : Y → X be a proper, birational morphism of normal
schemes and ∆ an R-Cartier, R-divisor on X. Let E be a g-exceptional divisor.
Then g∗OY (bmg∗∆ + mEc) = OX(bm∆c) for infinitely many m ≥ 1 iff E is
effective.

Proof Use (11.61) with B = 0 and N = −g∗∆ for the if part. For the converse
we may assume that X is affine. Write ∆ =

∑
j a jA j as above.

If g∗OY (bmg∗∆ + mEc) = OX(bm∆c) then −mE ≤ Bsdiv(mg∗∆) ≤
∑

jg∗A j by
(11.62.1). If this holds for infinitely many m ≥ 1, then E is effective. �
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Index

a( , , ), discrepancy of divisor, 413
a`( , , ) := a( , , ) + 1, log discrepancy, 413
Ca(X, L), affine cone, 90
∂x, = x ·

(
∂/∂x

)
, 246

∆>c,∆=c,∆<c, 411
∆c or ∆div

c , divisorial fiber, 116
det R

q
, 135

F∗∗, reflexive hull, 344
F[∗∗], hull or S 2-hull, 344
FH , relative hull, 346
I( , ) intersection numbers, 191
I[q], Frobenius power, 177
KX , canonical class, 28, 412
KX/C , relative canonical class, 70
L[m], reflexive power of divisorial sheaf, 136
∇, divergence, 242
ωX/S , relative dualizing sheaf, 412
ωX , canonical or dualizing sheaf, 28
ω[m]

X , reflexive power of canonical sheaf, 28
q[∗](D), pull-back (generically Cartier), 146
q∗Wdiv(D), Weil-divisor pull-back, 145
R( , ), canonical ring, 33, 37
R, restriction or Poincaré residue map, 415
∼, linear equivalence, 11
∼Q, Q-linear equivalence, 11
∼R, R-linear equivalence, 426
≡, numerical equivalence, 11
≡, identity of sequences or polynomials, 191
[⊗] , tensor product for divisorial sheaves, 136
d, rational map, 10
→, morphism, 10
{ }, fractional part, 11
b c, d e, rounding down or up, 11
,̂ completion, 13, 392
�, for sequences, 191
�, for polynomials, 191

An
k or An

x, affine n-space, 10
An/ 1

m (a1, . . . , an), quotient singularity, 38
2-dimensional, 249

Adjunction, 417
inversion of, 417

AEnv( ), affine envelope, 428
AFI, Alexeev-Filipazzi-Inchiostro, 317

functor,AFI( , ), 318
Alexeev stable, 235

good moduli theory, 236
Ample

fiber-wise, 196
R-divisor, 431
relatively, 11
strongly, 323

Approximation of R-divisors, 429
Ass( ), associated points or subschemes, 365
Asymptotic Riemann-Roch, 431
AutS ( ),AutS ( ), 13, 334

finite for stable families, 335

Base change
dualizing sheaf, 108, 110
K-flat, 281
notation, 13
pluricanonical, 119

Bertini theorem
C-flatness, 289
divisorial support, 277
flatness, 394
generically Cartier family, 158
hulls, 371
husks, 351
inverse, local stability, 73, 188
K-flatness, 263
local stability, 72
relative hull, 347
S m, 371, 372

Big, divisor, 11
Birational

transform, 11
fiberwise, 21
map, 10

Boundary, 11
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Boundedness, 27
marked pairs, 329
set of sheaves, 356
strong, 225
weak, 226

Calabi-Yau pair, 12
Canonical

algebra, 420
class, 28, 412
class, relative, 70, 139
divisor, 28
line bundle, 28
model, 12, 34, 420
model of resolutions, 12
model, existence, 420
model, nef slc case, 316
model, simult. numerical criterion, 190
model, simult. of resolutions, 189
model, simultaneous, 189
modification, 12, 420
modification, simultaneous, 191
ring, 33, 37
ring, not finitely generated, 46
sheaf, 28, 70
sheaf, absolute, 412
sheaf, relative, 412
singularity, 35, 413
surface singularity, list, 76

Canonically
embedded family, 329
polarized family, 329

Cartier
divisor, 152
divisor, relative, 155
divisor, valuative criterion, 161
generically ∼ pull-back, 146, 159
generically ∼, relative, 157
index, 11
non-∼ locus, 157

Categorical
moduli as ∼ quotient, 331, 332
quotient by group action, 331

Cayley-Chow
correspondence, 180
correspondence, Mumford divisors, 180
correspondence, over fields, 175
family, 127
form, 176
hypersurface, 176, 284
hypersurface, flag, Grassmann, incidence,

product versions, 284

inverse, scheme-theoretic, 181
type hypersurface, 176

CmEsMSch( ), CmEsMSch( ), functor and
moduli of canonically embedded, marked
schemes, 329

Center
log ∼, 415
log canonical ∼, 414
of a divisor, 11

CmESP( ), CmESP( ), functor and moduli of
m-canonically embedded, stable pairs,
224, 330, 333

C-flat, 280
Bertini theorem, 289
locally ∼, 287
stably ∼, 280

Ch( ), Cayley-Chow hypersurface, 176
Chgr ,Chin,Ch f l,Chpr , versions of

Cayley-Chow hypersurface, 284
Ch−1

sch( ), Cayley-Chow inverse, 181
Chow

equations, ideal of, 178
hull of Mumford divisor, 179
hull, of a cycle, 178
variety, 16

CM, Cohen-Macaulay, 11, 366
coeff( ), set of coefficients, 411
coeffE( ), coefficient of E in, 411
Coefficient

of a prime divisor, 411
vector of marking, 308
floating, 314
generic, 218
major, 218
standard, 218

Cohen-Macaulay, CM, 11, 366
Completion, ,̂ 13, 392
Component-wise dominant, 160
Cone

affine, 90
deformation to, 49, 90

Continuous choice, 223
Contraction, 10

crepant, 316
simultaneous, 320
simultaneous, crepant, 320

CoSp( ), Q-vector space spanned by
coefficients, 426

CmPsMSch( ), functor of canonically
polarized, marked schemes, 329

Crepant, contraction, 316
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Curve
stable, 20
stable extension, 22

Curvilinear scheme, 396
Cycle

degree of, 175
effective, 175
fundemantal ∼, [ ], 175
geometrically reduced, 175
on a scheme, 175
width of, 178

Cyclic cover, 419

D, unit disc, 42
Decomposition

locally closed, 408
partial, 408

Deformation, 237
hypersurface singularities, 84
KSB-∼, 248
locally trivial, 238
non-algebraic, 42
of quotients, 81
V-∼, 248
W-∼, 248

Demi-normal, 422
open condition, 384

Depth, 366
along a subscheme, 366
and flatness, 368
and push forward, 367
of a sheaf, 366
of slc scheme, 418
semicontinuity, 374

Descent, 335
and functorial polarization, 335
for flat, projective morphism, 337
for rigid, projective morphism, 337

det R
q
, 135

Dévissage, 375
Diff( ), different, 416
Different, 416

properties of ∼, 417
Differentiation, 239

cohomological, 239
Discrepancy

log ∼, 413
of a divisor, 413

Discrete choice, 222
Divergence, ∇, 242
Divisor

big, 11

canonical, 28
Cartier, 152
Cartier, relative, 155
Cartier, valuative criterion, 161
generically Q- or R-Cartier, relative, 147
generically Cartier, 152
generically Cartier, relative, 157
Mumford, 11, 152
Mumford, relative, 179
Mumford, universal family, 183
on a scheme, 11
over a scheme, 11
Q− ∼, 152
R− ∼, 152
reduced, 11
Weil, 152

Divisorial
fiber, ∆c or ∆div

c , 116
log terminal, 413
pull-back, 147
restriction, Dt or Ddiv

t , 13, 114
sheaf, 135
sheaf, flat family, 136
sheaf, generically flat, 136
sheaf, mostly flat, 137
sheaf, valuative criterion, 160
subscheme, 152
subscheme, family of ∼, 155
support and Fitting ideal, 275
support, DSupp( ), 274
support, Bertini theorem, 277
support, final definition, 276

dlt, divisorial log terminal, 413
is CM, 417

DSupp( ), divisorial support, 274
Du Bois singularity, 105

cohomology and base change, 106
Du Val singularity, 76
Dual graph, 76
Dualizing

sheaf, 28, 70
sheaf, base change, 110
sheaf, construction, 109
sheaf, other deformations, 74
sheaf, relative, 412

Elementary étale, 75
emb( ), embedded subsheaf, 365
Embedded point, 365
Embedding, locally closed, 408
EsMSch( ), EsMSch( ) functor and moduli of

embedded, marked schemes, 328
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Enough 1-parameter families, 409
Envelope, affine or linear, 428
Etale, elementary, 75
Ex( ), exceptional set, 10

Family
1-parameter, 67
algebraic, 127
canonically embedded, 329
canonically polarized, 329
Cartier, normal base, 147
Cayley-Chow, 127
divisorial sheaves, flat, 136
divisorial sheaves, mostly flat, 137
divisorial subschemes, 155
generically Cartier divisors, 157
Hilbert-Grothendieck, 128
locally stable, 68, 125
marked pairs, 309
mostly flat of line bundles, 196
non-projective, 32
of polarized schemes, 324
pairs, 67, 144
polarized with K-flat divisors, 327
stable, 97
stable over smooth base, 171
stable, extension of, 173
universal, 128
varieties, 67
well-defined, 146
well-defined, reduced base, 147

Fano pair, 12
Fiber, divisorial, ∆c or ∆div

c , 116
Fiber-wise ample, 196
Field of moduli, 62

hyperelliptic curve, 63
Fine moduli space, 18

universal family, 338
Fitting ideal, 273
Flat

family, divisorial sheaves, 136
generically, 136
mostly, 136

FlatCM( ), flat and CM locus, 275
Flatness

associated points, 392
Bertini theorem, 394
curvilinear fibers, 397
Hironaka’s theorem, 403
is open, 369
nodal fibers, 400
relative codimension ≥ 3, 403

relative codimension 0, 202, 203, 395
relative codimension 1, 399
relative codimension 2, 402
residue field extension, 394
with reduced fibers, 202

Flattening decomposition, 133
Floating coefficient, 314
Formally K-flat, 280
Framing, projective, 326
Free group action, 332
Frobenius power, I[q], 177
Full subscheme, 293
Functorial polarization, 335
Fundamental cycle [ ], 175

General type, 10, 34
Generically

Cartier divisor, 152
flat, 136
flat and pure, 276
Q- or R-Cartier divisor, relative, 147

Genus, sectional, 130
Geometric quotient

by free group action, 333
by group action, 333
existence, 333

Geometrically injective, 407
Grothendieck–Lefschetz theorem, 124

Henselisation, 75
strict, 75

Hilbert
function, of ωX , 139
function, of divisorial sheaf, 138
functor, 17
∼-Grothendieck family, 128
scheme, 17
∼-to-Chow map, 131

Hilb( ), Hilbert scheme, 129
Hilbstr, strongly embedded part of Hilb, 326
HomX( , ),HomX( , ),HomS ( , ), 12, 355
Homeomorphism, universal, 406
Hull( ), Hull( ), functor and moduli space of

universal hulls, 358
Hull, 136

S 2 ∼, 344
algebraic spaces, 363
Bertini theorem, 347, 371
of a sheaf, 344
pull-back, 136
pure, 344
reflexive, 344
relative, 346
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universal, 348
universal, characterization, 349
universal, fine moduli space, 358

Hurwitz formula, 418
Husk( ), Husk( ), functor and moduli of husks,

352, 353
Husk, 350

algebraic spaces, 363
Bertini theorem, 351
quotient, 350
quotient, relative, 352
relative, 352
tight, 351

Hypersurface
Cayley-Chow, 176, 284
Cayley-Chow, flag, Grassmann, incidence,

product versions, 284
K-flatness, 294

I( , ), intersection form, 318
Index

Cartier ∼, 11
of ωX , 247
of a variety, 11

Intersection number, 11
Inversion of adjunction, 417
IsomS ( , ), IsomS ( , ), 13, 334

finiteness of, 98, 334
Isotrivial family, 62

κ(X), Kodaira dimension, 10, 33
KDiv( ), KDiv( ), functor and moduli of

K-flat divisors, 261
K-flat, 259

additive, 262
base change, 281
Bertini theorem, 263
equals stable C-flat, 282
family, polarized, 327
flat implies ∼, 261
formal nature of, 282
formally ∼, 280
functor of ∼ pull-backs, 292
hypersurface singularities, 294
implies C-flat, 282
linear equivalence, 262
locally ∼, 280
multiplicative, 262
over reduced base, 262
push forward of, 262
reasons for definition, 260
seminormal curves, 299

Kodaira dimension, 10, 33

jump of, 40, 41
Kodaira lemma, 432
KSB, Kollár–Shepherd-Barron, 231

good moduli theory, 231–233
stable, 231, 232
stable, major coefficients, 233

KSB-deformation, 248
KSBA, Kollár–Shepherd-Barron–Alexeev

good moduli theory, 306, 311, 313
stable strong form, 313
stable, general coefficients, 312
stable, rational coefficients, 310

lc, log canonical, 413
center, 414

LEnv( ), linear envelope, 428
LEnvZ( ), integral points of LEnv, 311
Lexicographic order, �, 191
Lie derivative, 240
Linear

equivalence, ∼, 11
Q-∼ equivalence, ∼Q, 11
R-∼ equivalence, ∼R, 426
system, 15

Link, 163
Local

morphism, 160
numerical criterion of ∼ stability, 187
Picard group, 124
stability, Bertini, 72
stability, reduced base, 125
stability, representable, reduced base, 148

Locally
C-flat, 287
closed decomposition, 408
closed embedding, 408
closed partial decomposition, 408
K-flat, 280
stable, 38
stable morphism, 68, 125
stable pair, 67
stable, equivalent conditions for, 148
stable, KSB version, 141
stable, reduced base, 125

Locus
flat or flat-CM, 275
non-Cartier, 157

Log big, 422
Log canonical, 38

lc, 413
center, 414
modification, 421
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Log center, 415
mld bounds, 415

Log discrepancy, 413
Log resolution, 12

Major coefficient, 218
Map, rational, 10

birational, 10
Marked

family of ∼ pairs, 309
pair, with divisors, 308
reasons for, 307

Marking, of pair or family, 308, 309
Matsusaka inequality, 432
MDiv( ), MDiv( ), functor and moduli of

Mumford divisors, 179
Minimal log discrepancy, mld, 414
mld, minimal log discrepancy, 414
Model, canonical, 12, 34
Modification

canonical, 12, 420
finite, 404
log canonical, 421
semi-log-canonical, slc, 214
simultaneous, canonical, 191

Moduli
boundary, 219
embedded pairs, 223
embedded varieties, 223
enough 1-parameter families, 409
field of, 62
interior, 219
representable, 24
separated, 26

Moduli space
categorical, 19
categorical quotient, 331, 332
coarse, 18
fine, 18
fine for universal hull, 358
genus 2 curves, 55
husks, 353
hypersurfaces, 48, 50
irreducible components proper, 174
KSBA, exists, 306
non-separated, 29, 32, 51, 57
projectivity of, 226
quotient by group action, 330
quotient husks, 353
reduced version, 144
stable varieties, 127

Moduli theory

Alexeev, 236
good, 227
KSB, 231
KSB, standard coeffs, 232
KSBA, rational coeffs, 311
KSBA, real coeffs, 313
KSBA, strong form, 313
V+, 235

Monomorphism, 407
MorS ( , ),MorS ( , ), 13, 334
Morphism, 10

dominant, 160
Hilbert-to-Chow, 131
locally stable, 68
locally stable, reduced base, 125
pure dimensional, 112
scheme, Mor, 334
small, 10
stable, 23

Morse lemma, 384
Mostly flat, 136

divisorial sheaf, 137
family of line bundles, 196
S 2 sheaf, 137

Mumford divisor, 11, 152
along subscheme, 152
Cayley-Chow correspondence, 180
Chow hull of, 179
flat, 229
functor and moduli, 179
relative, 179
relative class group, 265
universal family, 183

Nagata openness criterion, 369
Nakai-Moishezon criterion, 433
Nef, 11
Negativity lemma, 436
Node, 422

deformation of, 401
Noether normalization

étale version, 389
fails for affine morphism, 388
local version, 390

Norm, 124
Normal, 404

crossing, simple, 12
pair, 404

Numerical
criterion for relative line bundles, 188
criterion of local stability, 187
criterion of stability, 185, 187
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criterion of simult. canonical model, 190
equivalence, ≡, 11
pull-back, 434, 435

Numerically
log canonical, 168
polarized, 325
Q-Cartier, 168
R-Cartier, 168
R-Cartier, lc modification of, 421
relatively trivial, 168
semi-log-canonical, 168
slc is slc, 169

Obstruction theory, 220

Pn
k or Pn

x, projective n-space, 10
Pair, 11, 411

Calabi-Yau, 12
family of, 67, 144
family, marked, 309
Fano, 12
locally stable, 67
marked with divisors, 308
normal, 404
rigid and universal family, 338
seminormal, 404
stable, 67
weakly normal, 404
well-defined family, 146

Partial decomposition, 408
PGL, group scheme, 330
Pic( ),Pic( ), Picard group and scheme, 13
Picloc( ),Picloc( ), local Picard group and

scheme, 124, 168
Picard group, 13

for smooth morphisms, 164
local, 124, 168

PsMSch( ), functor of polarized, marked
schemes, 327

stack version, 329
Poincaré residue map, 415
Pointed scheme, 327
Polarization

family of schemes, 324
functorial, 335
numerical, 325
scheme, 324
strong, 324

Potentially, slc or ..., 106
Pre-polarization, 324
Preserve residue fields, 407
Projection

approximation of, 279

various versions, 280
Projective

framing, 326
moduli space, 226

Proper
group action, 332
valuative-∼, 26

PsSch( ), functor of polarized schemes, 324
étale sheafification of, 325
stack version, 327

Pull-back
C-flat, 293
Cartier, 159
divisorial, 147
generically Cartier, 146
hull-∼, 136
K-flat, 292
locally stable, representable, 165
numerical, 434, 435
Q- or R-Cartier divisors, 147
stable, representable, 165
Weil-divisor, 145

Pure
quotient, 153, 365
relatively, 360
scheme, 365
sheaf, 365
vertically, 347

Purely log terminal, plt, 413

Q-Cartier divisor, 11
valuative criterion, 161
Q-divisor, 11, 152
QHusk( ), QHusk( ), functor and moduli of

quotient husks, 352
Quasi-étale, 71
Quot( ), Quot( ), functor and scheme, 355
Quot-scheme, 355
Quotient

categorical, by group action, 331
geometric, by free group action, 333
geometric, by group action, 333
geometric, existence, 333
husk, 350
singularity, 38

Rational
double point, 76
map, 10
singularity, 10
R-Cartier divisor, 426

class, 433
valuative criterion, 161
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R-divisor, 11, 152, 426
ample, 431
convex approximation, 429
depth of pluricanonical sheaf, 431

Reduced
normal form, 231
divisor, 11

Regular sequence, 366
Relatively

ample, 11
generically Cartier, 147
isomorphic, 359
pure, 360

Representable
C-flat pull-back, 293
Cartier pull-back, 159
flat, divisorial pull-back, 159
flatness, 133
functor, 132
hull of divisorial sheaves, 137
invertible hull of sheaves, 137
K-flatness, 261, 292
local stability, 126, 165
local stability, reduced base, 148
moduli theory, 24
pull-backs, 132
stability, 126, 165
stability, over reduced base, 149

Residue map, 415
Resolution, 10

dual graph of ∼, 76
log ∼, 12
of Du Val singularities, 76

Restriction
divisorial, Dt or Ddiv

t , 13, 114
map, 114, 348

Riemann-Roch, asymptotic, 431
Rigid, scheme or pair, 334

and universal family, 338
Ring, canonical, 33, 37
R-line bundle, 433

S 2, Serre’s condition, 366
divisorial sheaf, 135
family of varieties, 125
for families, 115
for restriction, 114
Hilbert-to-Chow map, 131
mostly flat, 137

Semi-log-canonical, slc, 38, 423
and depth, 418
modification, 214

Seminormal, 404
K-flatness for ∼ curves, 299
pair, 404

Separatedness
for husks, 353
for stable maps, 98, 334
moduli spaces, 26
valuative criterion, 26

Serre’s condition S m, 366
along a subset, 113

Seshadri criterion, 434
Sheaf

canonical, 28
divisorial, 135
dualizing, 28

Simple normal crossing, snc, 12
Singularity

canonical, 35, 413
cyclic quotient A2/ 1

n (1, q), 38, 249
dlt, 413
Du Bois, 105
Du Val, 76
klt, 413
lc, log canonical, 38, 413
log terminal, 413
plt, 413
potentially slc or ..., 106
quotient, 38
slc, semi-log-canonical, 38
terminal, 413

slc, semi-log-canonical, 38, 423
characterization using normalization, 423
depth, 418
potentially ∼, 106

S m, Serre’s condition, 366
along a subset, 113
Bertini theorem, 371
is open, 369

Small morphism, 10
snc, simple normal crossing, 12
SP( ), SP( ), functor and moduli of stable,

marked pairs, 144, 225, 306
SPrigid( ), SPrigid( ), functor and moduli of

rigid pairs, 338
SSupp, scheme-theoretic support, 274
Stability

automatic in codimension ≥ 3, 71, 122, 188
local, representable, 126
numerical criterion, 185, 187
representable, 126
representable over reduced base, 149
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Stabilization functor, 44, 45
over nodal curves, 46

Stable
Alexeev ∼, 235
Alexeev-Filipazzi-Inchiostro, 317
curve, 20
equivalent conditions for, 148
extension for curves, 22
extension, weak, 104
family over smooth base, 171
family, 1 parameter, 97
family, extension of, 173
KSB, 141, 231, 232
KSB, major coefficients, 233
KSBA, general coefficients, 312
KSBA, rational coefficients, 310
KSBA, strong form, 313
locally ∼, 38
morphism, 23
one parameter family, 68
pair, 67
V+-∼, 234, 235
variety, 38

Stably C-flat, 280
equals K-flat, 282
independence of embedding, 292

Standard coefficient, 218
Stratum, of an snc pair, 415
Strongly ample, 323
Subscheme, divisorial, 152
Support

divisorial, 274
divisorial, final definition, 276
scheme-theoretic, 274

SV( ), SV( ), functor and moduli of stable
varieties, 127

Tight husk, 351
tors( ), torsion subsheaf, 365
Trace map, 109
Transform, birational, 11
Tree, 76
Twig, 76

Univ( ), universal family, 128
Universal

family, 128
family for rigid pairs, 338
family of flat Mumford divisors, 229
homeomorphism, 406
hull, 348
hull, characterization, 349

Universally flat, 349

V+, strict Viehweg stability, 234
V-deformation, 248
Valuative criterion

for Q-Cartier divisor, 161
for flat, divisorial sheaf, 160
for relative Cartier divisor, 161
locally closed embedding, 408
morphism, 407
section, 407

Valuative-proper, 26
stable map, 98

Vanishing theorem
Ambro-Fujino version, 422
Fujita version, 432

Variety, 10
general type, 10, 34
stable, 38

Vertically pure, vpure( ), 347
Volume, 26, 380

and push-forward, 380
birational models, 381, 382
finite maps, 383
perturbations, 383

vpure( ), vertically pure, 347

W-deformation, 248
Weakly normal, 404

pair, 404
Weil divisor, 152

pull-back, 145
relative, 154

Well-defined
family, 146
family, reduced base, 147

Width of a cycle, 178

Z-divisor, 11
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