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Euler, Abel, Jacobi

1751-1851
Elliptic integrals (multi-valued):

dx

Vx3+ax2+ bx+c

To make it single-valued, look at the algebraic curve

C:={(xy):y=x>+a’+bx+c} CC?
We get the integral

/% for some path I' on C.
ry



General case )

Let g(x, y) be any polynomial, it determines
y = y(x) as a multi-valued function of x.
Let h(u, v) be any function.

Then

h(x,y(x))dx (multi-valued integral)

becomes

/h(x,y) dx (single-valued integral)

r

for some path I on the algebraic curve

C .= (g(x,y) = 0) c C?

Q>



Example: C := (y? = (x 4+ 1)2°x(1 — x)). Real picture:

(Comment: looks like 2 parts, but the real picture can
decieve. Complex picture is better.)



Example: C := (y* = (x + 1)2x(1 — x)). Complex picture:

CONPLEX PLANE

(Comment: the picture is correct in projective space only.
The correct picture has 2 missing points at infinity.)
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Substitution in integrals |

Question (Equivalence)

Given two algebraic curves C and D, when can we transform
every integral [ h dx into an integral |, g dx?

Question (Simplest form)

Among all algebraic curves C; with equivalent integrals, is
there a simplest?




Example

For C:= (y? = (x + 1)’x(1 — x))
the substitution

1 t2—-t3) . y
X = 12 y:m with inverse t:m
transforms [ h(x, y)dx into an integral
1 42
/h 7 t(2 — t°) 2t di.
1—t2"(1-1¢t%)2) (1—t?)?



Theorem (Riemann, 1851)

For every algebraic curve C C C? we have

e S: a compact Riemann surface and

e meromorphic, invertible ¢ : S --+ C establishing an
isomorphism between

— Merom(C) : meromorphic function theory of C and
— Merom(S) : meromorphic function theory of S.




MINIMAL MODEL PROBLEM J

X — any algebraic variety.
Is there another algebraic variety X™ such that
e Merom(X) = Merom(X™) and

e the geometry of X™ is the simplest possible?

Answers:

e Curves: Riemann, 1851

e Surfaces: Enriques, 1914; Kodaira, 1966

e Higher dimensions: Mori's program 1981-
— also called Minimal Model Program
— many open questions



MODULI PROBLEM )

e What are the simplest families of algebraic varieties?
e How to transform any family into a simplest one?

Answers:
e Curves: Deligne-Mumford, 1969
e Surfaces: Kollar — Shepherd-Barron, 1988; Alexeev, 1996
e Higher dimensions: the KSBA-method works
but needs many technical details



Algebraic varieties 1

Affine algebraic set: common zero-set of polynomials

X = xat(f o f)ycCV
{(Xl,...,x,\,) DX, X)) :OVi}.

Hypersurfaces: 1 equation, X(f) C CV.

Complex dimension: dim C" = N (=3(topological dim))

Curves, surfaces, 3-folds, ...



Algebraic varieties 2

Example: x* — y* + z* + 2x%72

22=0

(Comment: What is going on? Looks like a sphere and a
cone together.)
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Explanation:
X4yt 20X

I S
(P +y>+22=1)(x*> — y2 + Z?)

Variety= irreducible algebraic set

APAN &4



Algebraic varieties 3

Projective variety: X C CP", closure of an affine
Homogeneous coordinates: [xp: - - - ixy] = [Axg:- - -
= p(xo, ..., xn) makes no sense
Except: If p is homogeneous of degree d then
p(AX07 SR /\XN) - )\dp(X07 s 7XN)'
Well-defined notions are:

— Zero set of homogeneous p.

pi(xo; - - - Xn)
f(xo,....,xn) =

( ) P2(Xo, e ,XN)

Rational functions on CPV, and, by restriction,

— Quotient of homogeneous p, g of the same degree

rational functions on X c CPV,

variety.
AXN]



Theorem (Chow, 1949; Serre, 1956)

M < CPN — any closed subset that is locally the common

zero set of analytic functions. Then

e M is algebraic: globally given as the common zero set of
homogeneous polynomials and

e every meromorphic function on M is rational: globally
the quotient of two homogeneous polynomials.

Non-example: M := (y = sinx) C C? C CP?.

(Comment: The closure at infinity is not locally analytic.)



Rational maps = meromorphic maps |

Definition

— X C CPV algebraic variety

—fo, ..., fiy rational functions.

Map (or rational map) f : X —-+ CPM given by
p > [fo(p):---:fu(p)] € CPM.

Where is f defined?
e away from poles and common zeros, but, as an example,

let 7w : CP? --» CP! be given by [x:y:z] — [ £].

z

Note that
(2t =[3:1]=[1:%].

So 7 is defined everywhere except (0:0:1).



Isomorphism ]

Definition

X, Y are isomorphic if there are everywhere defined maps
f:X—=Yandg:Y—X
that are inverses of each other.

Denoted by X = Y.

Isomorphic varieties are essentially the same.



Birational equivalence |

Unique to algebraic geometry!

Definition

X, Y are birational
if there are rational maps

f:X-->Yandg:Y --+» X such that

® oy — ¢x = ¢yof and px — ¢y ‘= ¢xog
give Merom(X) = Merom(Y).

e Equivalent: There are Z C X and W C Y
such that (X \ Z) = (Y \ W).

Denoted by X % Y.



(Comment: The next 12 slides show that, in topology, one
can make a sphere and a torus from a sphere by cutting and
pasting. Nothing like this can be done with algebraic
varieties. Notice that if we keep the upper cap open and the
lower cap closed then the construction is naturally
one-to-one on points.)



Non-example from topology
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Non-example from topology
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Example of birational equivalence

Affine surface S := (xy = z%) C C.
It is birational to C?  as shown by

f (X,y,Z)I—>(X/Z,y/Z)
(vPv,uv? uv)<—(u,v): g
f — not defined if z =10
g — defined but maps the coordinate axes to (0,0,0).
e S (C? but
¢S\ (z=0)=C?\ (uv=0)

Dac



Basic rule of thumb

Assume X 2 Y, hence (X \ Z) = (Y \ W).

Many questions about X can be answered by
e first studying the same question on Y
e then a similar question involving Z and WV.

Aim of the Minimal Model Program:

Exploit this in two steps:

e Given a question and X, find Y 20 X that is best adapted
to the question. This is the Minimal Model Problem.

e Set up dimension induction to deal with Z and W.



When is a variety simple?

e Surfaces: Castelnuovo, Enriques (1898-1914)

e Higher dimensions: There was not even a conjecture until

— Mori, Reid (1980-82)
— Kollar—Miyaoka—Mori (1992)

Need: Canonical class or first Chern class

We view it as a map: {algebraic curves in X} — 7,

it is denoted by: [ c1(X) or —(Kx - C).

(Comment: next few slides give the definition.)



Volume forms

Measure or volume form on R" :
S(Xl, .

Xp) - dxg A A dx,.

Complex volume form: locally written as
w:="h(z1,...,2,) - dzy A\ -+ A\ dz,.
w gives a real volume form (

n
\/:1> w AW
(Comment: for the signs note that

dz A dz = (dx + +/—1dy) A (dx — /—1dy)
2y/—1dx A dy)

Q>



TENSION

Differential geometers want C> volume forms:
h(zi,...,z,) should be C*-functions.

Algebraic/analytic geometers want meromorphic forms:
h(z, ..., z,) should be meromorphic functions.

Simultaneously possible only for Calabi—Yau varieties.



Connection: Gauss—Bonnet theorem

X — smooth, projective variety,
w, — C* volume form,

w,,, — meromorphic volume form,
C C X — algebraic curve.

Definition (Chern form or Ricci curvature)

V-1 2 log |h.(z
3 g|h(2)]

T 0z;0Z;
y

El(X,w,) = dZ,' N dEJ

Definition (Algebraic degree)

degc wm 1= #(zeros of w, on C) — #(poles of w, on C),

zeros/poles counted with multiplicities.
(assuming w,, not identically 0 or oo on C.)



Theorem (Gauss—Bonnet)

X — smooth, projective variety,
w, — C* volume form,

W, — meromorphic volume form,
C C X — algebraic curve. Then

/ &(X,w,) = —degewnm
c
is independent of w, and w,, .

Denoted by [ ci(X).

(Comment on the minus sign: differential geometers prefer
the tangent bundle; volume forms use the cotangent bundle.)



Building blocks of algebraic varieties

Negatively curved: [ ci(X) < 0 for every curve C C X.
Largest class of the three.
Flat or Calabi-Yau: [ ci(X) = 0 for every curve C C X.

Important role in string theory and mirror symmetry.

Positively curved or Fano: [ ci(X) > 0 for every curve.

Few but occur most frequently in applications.
Kahler—Einstein metric : pointwise conditions.
negative/flat: Yau, Aubin,

positive: still not settled




Mixed type |

Semi-negatively curved or Kodaira—litaka type
Jcc(X) <0 for every curve C C X.

Structural conjecture (Main open problem)
— There is a unique Ix : X — [(X) such that
Jea(X) =0iff C C fiber of Ix.

— (X)) is negatively curved in a “suitable sense.”

Intermediate case: 0 < dim /(X) < dim X:
family of lower dimensional Calabi—Yau varieties

parametrized by the lower dimensional variety /(X).

(Comment: this is one example why families of varieties are
important to study.)



Mixed type Il

Positive fiber type

| really would like to tell you that:
— There is a unique my : X — M(X) such that
Jea(X) > 0if C C fiber of mx.
— M(X) is semi—negatively curved.
BUT this is too restrictive.

We fix the definition later.

Dac



Main Conjecture

Conjecture (Minimal model conjecture, extended)

Every algebraic variety X is birational to a variety X™ that is
e either semi-negatively curved
e or has positive fiber type.

X™ is called a minimal model of X (especially in first case)

Caveat. X™ may have singularities
(This was a rather difficult point historically.)



Some history
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Mori




Some history

Kodaira

Mori

McKernan




Rationally connected varieties

5\

Theme: plenty of rational curves CP! — X.

Theorem
X — smooth projective variety. Equivalent:
oV x1,% € X there is CP* — X through them.
oV xi,....x, € X there is a CP* — X through them.
oV Xxq,...,x, € X + tangent directions v; € T, X
there is a CIP* — X through them with given directions.

Definition
X is rationally connected or RC if the above hold. |




Properties of rationally connected varieties

e Positively curved = RC
(Nadel, Campana, Kolldr—-Miyaoka—Mori, Zhang)

e Birational and smooth deformation invariant
(Kollar—Miyaoka—Mori)

e Good arithmetic properties:
p-adic fields (Kollar),
finite fields (Kolldr-Szabé, Esnault)
C(t) (Graber—Harris=Starr, de Jong—Starr).

e Loop space of RC is RC (Lempert—Szabd).

Problem
Is RC a symplectic property?




Positive fiber type |

Definition

X is of positive fiber type if there is a unique
myx : X — M(X) such that

e almost all fibers are rationally connected and
o M(X) is semi—negatively curved.




