
Skinner–Venkatesh learning seminar on Iwasawa theory 6 March 2025

Talk #3: Class numbers of p-power cyclotomic fields, mod p
Kenz Kallal

Contents

1 Introduction 1

2 Strategy of proof and setup of computations 2
2.1 Handling the Gauss sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The Galois action on units and on archimedean places, and two important special elements of

the Galois group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 The results of Weber’s computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Odd characters 11

4 Preliminaries on units and Stark regulators 12
4.1 Generalities on Stark regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Application to the 2-power cyclotomic tower . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Even characters 18
5.1 From L-values to the regulator of some special units in the minus part of the unit group . . . 20
5.2 From the special units to the full minus part of the unit group . . . . . . . . . . . . . . . . . 22
5.3 Inductively recovering the regulator from those of the minus parts in the tower . . . . . . . . 25

1 Introduction

The following fact is a fairly straightforward consequence of class field theory:

Theorem 1.1 (Iwasawa, 1956). Let p be any rational prime, and n ≥ 1 be a positive integer. The class
number of Q(ζpn) is divisible by p if and only if the class number of Q(ζp) is divisible by p.

Proof. During my talk, I explained Iwasawa’s proof of this fact, which appears in the 1.5-page paper
[Iwa1956]. That paper is in English and is very readable, so I will allow the interested reader to refer
to it.

While Iwasawa’s proof of Theorem 1.1 used class field theory as the main input, surprisingly, it turns
out that Weber [Web1886] was able to prove Theorem 1.1 for the case p = 2 in 1886 (decades before the
full statements of class field theory were even known, and even before the existence of the Hilbert class field
had been conjectured). The paper [Web1886] also contains a slightly flawed proof of the Kronecker–Weber
theorem, which I explained in a talk in a previous instance of the Skinner–Venkatesh seminar. Weber’s
proof of Theorem 1.1 in the p = 2 case seems fully correct to me, and it uses completely different tools:
namely, the analytic class number formula and explicit comparison of L-values to regulators. Since I did not
explain the full detail of Weber’s proof during my talk, and since some of the audience were surprised that
this kind of method could be made to work, I have written in this document a detailed account of Weber’s
proof. I depart slightly from a literal interpretation of the original text in places: most significantly, I use
the language of Stark regulators (which technically did not exist in 1886) and some group cohomology to
avoid having to pass to maximal real subfields as Weber does.

To recap, the goal of these notes is to prove the following result:
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Theorem 1.2 (Weber, 1886). For all positive integers n ≥ 1, the class number of Q(ζ2n) is odd.

I have also written a version of the proof which is essentially a direct translation of [Web1886, part
II] with a few small details filled in (https://web.math.princeton.edu/~kk2703/kallal_weber.pdf). In
contrast, these notes are intended to make it slightly easier to understand the new ideas in that proof by
modernizing some notation and skipping/citing steps that are now routine so that it is easier for the reader
to find the new ideas, but it’s probably better to give both options as I may have failed in making Weber’s
excellent paper more understandable.

2 Strategy of proof and setup of computations

Let n ≥ 2, Kn = Q(ζ2n) and hn := |Cl(Kn)|. Then (since the absolute value of the discriminant of Kn is

22
n−1(n−1) [e.g. by using [Neu1999, Ch. III, Proposition 2.4 and Theorem 2.9] and the minimal polynomial

X2n−1

+ 1 for ζ2n , or just directly applying [Neu1999, Ch. I, Lemma 10.1 and Proposition 10.2]] and it
contains 2n roots of unity [e.g. because if there were any more then it would create ramification at a prime
other than 2]) the analytic class number formula (see e.g. [Neu1999, Ch. VII, Corollary 5.11]) works out to

Proposition 2.1 (Analytic class number formula for Kn). In this situation, we have

ress=1ζKn(s) =
(2π)2

n−2

Reg(Kn)hn

2n22n−2(n−1)
= π2n−2

2−n−(n−2)2n−2

Reg(Kn)hn.

Weber’s strategy was to compute the left hand side of Proposition 2.1, finding that up to a multipicative
factor of an odd integer, it is of the form πa12a2Reg(Kn) for some explicit integers a1, a2 (of course since
π is transcendental over Q we can reverse engineer from the fact that hn ∈ Z that he must have proved
a1 = π2n−2

and from Theorem 1.2 that a2 = 2−n−(n−2)2n−2

).
By [Neu1999, Proposition 5.12] and the fact that 2 is totally ramified in Kn (the prime above it is

(1− ζ2n) which has norm 2 — see e.g. [Neu1999, Lemma 10.1]), the left hand side of Proposition 2.1 further
decomposes as

ress=1ζKn
(s) =

∏
χ∈ ̂(Z/2nZ)∗−{1}

L(1, χ), (2.1)

where L(1, χ) is (for χ ̸= 1) the convergent Dirichlet L-series

L(1, χ) :=
∑
n≥0

n odd

χ(n)

n
< ∞.

Recall from [Elk2019, l1x.pdf] that for χ ̸= 1,

L(1, χ) =
1

τ(χ)

∑
a∈(Z/2n)×

χ(a)
∑
n≥1

1

n
exp

(
2πin

a

q

)
=

1

τ(χ)

∑
a∈(Z/2n)×

χ(a) log(1− ζa2n). (2.2)

Here the notation τ(χ) means the Gauss sum

τ(χ) :=
∑

a∈(Z/2n)×

χ(a) exp

(
2πi

a

q

)
=

∑
a∈(Z/2n)×

χ(a)ζa2n .

The various elements 1 − ζa2n are NOT units in Kn — they are Galois conjugate generators of the prime
above 2. However, their pairwise quotients are units, as are the quantities (1 − ζa2n)/(1 − ζ−a

2n ) = −ζa2n . As
a result, depending on whether χ(−1) = ±1 (i.e. on whether χ is even or odd), our expression for

∏
L(1, χ)

will involve logs of very specific units in Kn (to be made more explicit than this). Weber’s strategy was
to study the explicit arithmetic of those systems of Galois conjugate units sitting inside O×

Kn
to relate this

product to the regulator of Kn.
We now make all of this more precise by setting up Weber’s computation in more explicit detail.
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2.1 Handling the Gauss sums

First we deal with the Gauss sums, whose computation we know will depend on the conductor of χ — so
our first step must be to divide the computation by conductor. By (2.1) and (2.2), the left hand side of
Proposition 2.1 is equal to

∏
χ∈ ̂(Z/2n)×−{1}

L(1, χ) =
∏

χ∈ ̂(Z/2n)×−{1}

τ(χ)−1
∑

a∈(Z/2n)×

χ(a) log(1− ζa2n)

 . (2.3)

Now we pair up χ with χ and use the standard identity τ(χ)τ(χ) = χ(−1)q, where χ has conductor q
(which can be seen via the Poisson summation formula as in [Elk2019, lsx.pdf, (17)] or by direct computa-
tion). There is just one small wrinkle in this plan1, which is that there are three nontrivial real characters of
(Z/2n)× = ⟨−1⟩× ⟨5⟩, and these cannot be paired up since they satisfy χ = χ. Those characters are defined
as follows:

Definition 2.2. The nontrivial characters of conductor 4 and 8 are:

(1) χ4((−1)a5b) := (−1)a, the unique nontrivial character of conductor 4.

(2) χ−
8 ((−1)a5b) := (−1)a+b, the unique odd character of conductor 8.

(3) χ+
8 ((−1)a5b) := (−1)b, the unique even character of conductor 8.

The corresponding special values L(1, χ) are known (and they can be explicitly computed from the formula
(2.2) because all the sums are finite and explicit for a given explicit χ), so we just keep them separate from
the rest of the computation:

Lemma 2.3. We have the following explicit special values.

(1) L(1, χ4) =
π
4 .

(2) L(1, χ−
8 ) =

π
2
√
2
.

(3) L(1, χ+
8 ) =

1√
2
log(

√
2 + 1).

Carrying out our plan to pair up the remaining χ’s with χ and to use the identity τ(χ)τ(χ) = χ(−1)cond(χ),
we deduce (using the fact that L(s, χ) is the same regardless of whether χ is considered as a character mod

1Technically this is not a real wrinkle: after partitioning the χ according to the conductor 2N , we can still compute all of
the absolute values |τ(χ)| = 2N/2 which are all that matter to us (we only care about 2-adic valuations so everything can be
computed up to sign). Down the line, we will have no choice but to separate out the case of χ4 (we will need to consider the

element 52
N−3 ∈ (Z/2N )× to carry out the general arguments), but there really would have been nothing wrong with making

the prevailing hypothesis in all of these notes N ≥ 3 instead of N ≥ 4.
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2n or a character modulo the conductor of χ) from (2.3) and Lemma 2.3 that

∏
χ∈ ̂(Z/2n)×−{1}

L(1, χ) = L(1, χ4)L(1, χ
−
8 )L(1, χ

+
8 )

n∏
N=4

∏
χ∈ ̂(Z/2N )×

χ primitive

L(1, χ)

=
π2

16
log(

√
2 + 1)

n∏
N=4

∏
χ∈ ̂(Z/2N )×

χ primitive

L(1, χ)

=
π2

16
log(

√
2 + 1)

n∏
N=4


 ∏

χ∈ ̂(Z/2N )×

χ primitive

τ(χ−1)


 ∏

χ∈ ̂(Z/2N )×

χ primitive

∑
a∈(Z/2N )×

χ(a) log(1− ζa2N )




=
π2

16
log(

√
2 + 1)

n∏
N=4

((−1)2
N−4

2−N2N−3
) ∏

χ∈ ̂(Z/2N )×

χ primitive

∑
a∈(Z/2N )×

χ(a) log(1− ζa2N )




= −π2 log(
√
2 + 1)2−(n−1)2n−2

n∏
N=4

 ∏
χ∈ ̂(Z/2N )×

χ primitive

∑
a∈(Z/2N )×

χ(a) log(1− ζa2N )


(2.4)

where the second-to-last line is using the fact that (Z/2N )× has φ(2N−2) = 2N−3 primitive odd characters
and the same number of primitive even characters. This concludes our handling of the Gauss sums.

2.2 The Galois action on units and on archimedean places, and two important
special elements of the Galois group

What remains is to compute the product from N = 4 to n of

∏
χ∈ ̂(Z/2N )×

χ primitive

∑
a∈(Z/2N )×

χ(a) log(1−ζa2N ) =

 ∏
χ∈ ̂(Z/2N )×

χ primitive and even

·
∏

χ∈ ̂(Z/2N )×

χ primitive and odd


 ∑

a∈(Z/2N )×

χ(a) log(1− ζa2N )


From here, most of the content (with the exception of what will be done in Section 5.2, which requires

a third special element 5N−4 when N ≥ 4) comes from the following. The group (Z/2N )× decomposes
as ⟨−1⟩ × ⟨5⟩ ∼= (Z/2) × (Z/2N−2). For all a ∈ (Z/2N )×, let σa ∈ Gal(KN/Q) be the corresponding
automorphism, σa(ζ2N ) = ζa2N . This decomposition corresponds via (Z/2N )× ∼= Gal(Q(ζ2N )/Q) to both
short short exact sequences

1 Gal(Q(ζ2N /Q(ζ2N )+) Gal(Q(ζ2N )/Q) Gal(Q(ζ2N )+/Q) 1

0 ⟨−1⟩ ⟨−1⟩ × ⟨5⟩ ⟨5⟩ 0

and
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1 Gal(Q(ζ2N )/Q(i)) Gal(Q(ζ2N )/Q) Gal(Q(i)/Q) 1

0 ⟨5⟩ ⟨−1⟩ × ⟨5⟩ ⟨−1⟩ 0

where the point is that the automorphism σ−1 is just complex conjugation (which also induces the nontrivial
automorphism of Q(i)/Q), and the automorphism σ5 has fixed field Q(i) (whose totally real part is Q).
This can be summarized in the compositum diagram

Q(ζ2N )

Q(i) Q(ζ2N )+ = Q(ζ2N + ζ−1
2N

)

Q

⟨−1⟩

⟨5⟩

the left hand side of which fits inside a big tower

Q ⊂ Q(i) ⊂ Q(ζ8) ⊂ · · · ⊂ Q(ζ2N−1) ⊂ Q(ζ2N ).

In fact, for the purpose of carrying out inductive arguments down this tower, we should consider the com-
positum diagram that involves the last part of this tower instead of the first part:

Q(ζ2N )

Q(ζ2N−1) Q(ζ2N )+

Q

⟨−1⟩

⟨52
N−3

⟩

where the point is that 5 has order 2N−2 in (Z/2N )×, so 52
N−3 ≡ 1 mod 2N−1 and it is of order 2 in

(Z/2N )×, so σ52N−3 is the nontrivial automorphism of Gal(KN/KN−1), namely σ52N−3 (ζ2N ) = ζ5
2N−3

2N −ζ2N .
Since we will have to deal with regulators coming from systems of units that are Galois conjugate to

each other (as pointed out vaguely after (2.2)), it will be useful to understand the places of Q(ζ2N ) = KN

in terms of our explicit understanding of the group (Z/2N )×.

Definition 2.4. Denote by ι : Q(ζ2N ) = KN → C the complex embedding coming from ζ2N 7→ exp(2πi/2N ),
i.e., the one already implicit in identifying the complex number L(1, χ) with a formula involving ζ2N in (2.2).

The field KN is totally complex with 2N−2 complex places (up to complex conjugation – i.e. we have
already quotiented out by σ−1). It is of degree 2N−2 = |⟨5⟩| over Q(i) = K2, which has a single complex
place. The Galois group ⟨5⟩ = Gal(KN/Q(i)) therefore acts transitively on the archimedean places of KN ;
and since there are the same number of those places as there are elements of ⟨5⟩, we have

Lemma 2.5. The 2N−2 complex places of KN are in bijection with ⟨5⟩ = Gal(KN/Q(i)) via

a = 5β 7→ ι ◦ σa = ι ◦ σ5β .

Furthermore, KN/KN−1 is quadratic, so each (complex) archimedean place v of KN−1 comes with
(complex) places v1 and v2 of KN lying over it. By the same transitivity argument, the nontrivial element
σ5N−3 ∈ Gal(KN/KN−1) has the effect of switching v1 and v2 for all v, and we have
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Lemma/Definition 2.6. (1) The archimedean places v of KN−1 are in bijection with ⟨5⟩/⟨52N−3⟩ =
Gal(KN−1/Q(i)) via a 7→ ι ◦ σa;

(2) For the system of representatives {5β : β = 0, . . . , 2N−3 − 1} for ⟨5⟩/⟨52N−3⟩ (which we take because
we might as well), the embeddings ι ◦ σ5β form a list of archimedean (complex) places of KN with the
property of that each pair {v1, v2} of places of KN over a given place v of KN−1 contains exactly one
of the places ι◦σ5β , β = 0, . . . , 2N−3. What is logically equivalent to this choice of representatives {β},
for all archimedean places v of KN−1, we choose to always define the place v1 of KN to be the one of
the form ι ◦σ5β (for β ∈ {0, . . . , 2N−3 − 1} uniquely determined by v), and v2 to be the one that is not
of this form.

The two elements σ−1 (which we quotient out by to get Gal(KN/Q(i))) and σ5N−3 (which we quotient
out by to get Gal(KN−1/Q(i))) are then of importance for understanding Reg(KN ) in terms of Reg(KN−1),
so it makes sense to use (quotients of Gal(KN/Q) by) them in order to relate our product

∏
χ L(1, χ) directly

to Reg(Kn). From now on, we always keep the following notation:

Definition 2.7 (τ). We always refer to σ52N−3 as τ .

The above discussion was about the complex places of KN and KN−1. To understand regulators, we
also need to discuss the same actions of these two groups of order 2, namely ⟨−1⟩ ∼= ⟨σ−1⟩ = Gal(KN/K+

N )

and ⟨52N−3⟩ ∼= ⟨τ⟩ = Gal(KN/KN−1), on the units in KN . Ideally we would use the pairs of idempotents
(1 ± [σ−1])/2, (1 ± [τ ])/2, to split all the unit groups in sight into a direct sum of isotypic components for
σ, τ = 1 and σ, τ = −1. But this is not literally possible, since the required idempotents have denominators.
For example, the inclusion

(O×
KN

/µ)τ=1 ⊕ (O×
KN

/µ)τ=−1 ⊂ O×
KN

/µ

is almost never an equality. At the very least, though, those idempotents still map to their corresponding
isotypic components for the usual formal reasons, so we still have the following fact:

Lemma 2.8. Let x ∈ K×
N such that vp(x) = 0 for all p except for the one lying over 2. Then, (1− [σ−1])x ∈

O×
KN

is a root of unity, and
(1− [τ ])(1− [σ−1])x = ±1.

Proof. The element (1− [σ−1])x = x/σ−1(x) is in O×
KN

, since σ−1(p) = p for p|2 (as there is only one such
prime), so vp of this quotient is 0. More specifically

(1− [σ−1])x ∈ (O×
KN

)σ−1=−1.

Since every unit in O×
KN

is a root of unity times a real unit (i.e. a unit u with the property that σ−1(u) = u),

it follows that (1 − [σ−1])x =: u is a 2M -th root of unity for some M ≤ N , hence (1 − [τ ])u = ±1, since
τ(ζ2N ) = −ζ2N .

We will in the next few paragraphs (as soon as we introduce the analogous lemma for the even part) that
Lemma 2.8 is relevant to the odd part of

∏
χ L(1, χ), as we will find units of the form (1− [τ ])(1− [σ−1])x

in our formula for that product.
As for the even terms, the relevant statement will be:

Lemma 2.9. Let x ∈ K×
N such that vp(x) = 0 for all p except for the one lying over 2. Then (1+ [σ−1])x =

xσ−1(x) ∈ K+
N , and

(1− [τ ])(1 + [σ−1])x ∈ (O×
K+

N

)τ=−1.

In fact, we already have
(1− [τ ])x ∈ (O×

KN
)τ=−1.

Proof. We have (1 + [σ−1])x ∈ (K×
N )σ−1=1 = (K+

N )×. Applying 1 − [τ ] to this gives a unit by the same
reasoning used in Lemma 2.8.

6



We are about to see in the next paragraph why the elements considered Lemma 2.9 are relevant to the
even part of

∏
χ L(1, χ), but for now: such elements (1 − [τ ])(1 + [σ−1])x, can therefore plausibly account

for the “τ = −1 part of Reg(KN ).” In Section 4, we will make this into a precise notion, define it by the
notation Reg(KN/KN−1)

−, and analyse the (finite) index of the inclusion

(O×
KN

/µ)τ=1 ⊕ (O×
KN

/µ)τ=−1 ⊂ O×
KN

/µ

to relate Reg(KN ) to Reg(KN−1)Reg(KN/KN−1)
−, so that

∏
N

∏
χ L(1, χ) will be related to

Reg(K4/K3)
− · · ·Reg(Kn/Kn−1)

− = Reg(Kn)/Reg(K3).

In the next paragraphs, we will find units of the form (1− [τ ])(1 + [σ−1])x in a formula for the even part of∏
χ L(1, χ), and in Section 5 we will relate that formula to Reg(KN/KN−1)

−.
Let us bring the automorphisms σ−1 and τ to bear on the odd part of the product we obtained in (2.4).

The relevance of Lemma 2.8 will be clear from this discussion. For a given N ≥ 4, we take ⟨5⟩ ⊂ (Z/2N )×

to be the quotient by ⟨−1⟩ of (Z/2N )×, and we rearrange the product over odd χ of conductor 2N according
to orbits under the action of −1 ∈ (Z/2N )×:∏

χ∈ ̂(Z/2N )×

χ primitive odd

∑
a∈(Z/2N )×

χ(a) log(1− ζa2N ) =
∏

χ∈ ̂(Z/2N )×

χ primitive odd

∑
a∈⟨5⟩

(
χ(a) log(1− ζa2N ) + χ(−a) log(1− ζ−a

2N
)
)

=
∏

χ∈ ̂(Z/2N )×

χ primitive odd

∑
a∈⟨5⟩

χ(a)(log(1− ζa2N )− log(1− ζ−a
2N

))

=
∏

χ∈ ̂(Z/2N )×

χ primitive odd

∑
a∈⟨5⟩

(
χ(a) log

1− ζa2N

1− ζ−a
2N

)

=
∏

χ∈ ̂(Z/2N )×

χ primitive odd

∑
a∈⟨5⟩

χ(a) log(−ι(ζa2N )).

(2.5)

where the second line uses the fact that χ is odd, and the last line is an explicit version of the part of
Lemma 2.8 that says (1 − [σ−1])x is a root of unity, applied to x = 1 − ζa2N . In the calculation above, we
are always using the same branch of the logarithm, and passing differences into the log can be checked to
always be okay because of where the arguments of the inputs are. The product in (2.5) only involves the
logs of the very specific units −ζa2N . In particular, it

(1) only involves units in the kernel of the Log map, so we expect it to have nothing to do with the
regulator of Kn, and

(2) involves the terms log(−ζa2N ) = log(−e2πia/2
N

) = πi(2a/2N − 1) which contribute some factors of π.

Having used σ−1, we now turn to τ , where we use the main part of Lemma 2.8 and the set of represen-

tatives a = 5β , β = 0, . . . , 2N−3 − 1 for ⟨5⟩/⟨52N−3⟩ to see that (2.5) continues to
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∏
χ∈ ̂(Z/2N )×

χ primitive odd

∑
a∈(Z/2N )×

χ(a) log(1− ζa2N ) =
∏

χ∈ ̂(Z/2N )×

χ primitive odd

∑
a∈⟨5⟩

χ(a) log(−ζa2N )

=
∏

χ∈ ̂(Z/2N )×

χ primitive odd

2N−3−1∑
β=0

χ(5β)(log(−ζa2N )− log(−τ(ζa2N )))

=
∏

χ∈ ̂(Z/2N )×

χ primitive odd

2N−3−1∑
β=0

χ(5β)(log(−ζa2N )− log(ζa2N ))

=
∏

χ∈ ̂(Z/2N )×

χ primitive odd

2N−3−1∑
β=0

χ(5β)(ϵβπi)

= (πi)2
N−3 ∏

χ∈ ̂(Z/2N )×

χ primitive odd

2N−3−1∑
β=0

χ(5β)ϵβ

(2.6)

where the point is that (because of our explicit computation that shows that we are in the −1 case of
Lemma 2.8 applied to x = 1 − ζa2N ) since we chose the specific branch of log with log(e2πiθ) ∈ [0, 2πi), the
quantities ϵβ are all ±1 depending on β (exercise for the reader: what is the condition on β equivalent to
having εβ = 1 ? In fact, we really only need to know that the ϵβ are odd integers, and to prove this we
don’t need to worry about the branch cut — it is just a direct consequence of the fact that we are in the −1
case of Lemma 2.8 [if we were in the 1 case, then the ϵβ would be even]), and since χ is primitive, we have

χ(52
N−3

) = −1. This is a product of certain linear combinations with ±1 coefficients of certain 2N−2-th
roots of unity.

We state the exact outcome of this computation (including the exact powers of π and 2 that appear) in
Proposition 2.10, and we carry it out in full detail in Section 3.

On the other hand, where again we are careful when passing products and quotients through our chosen
branch of log, and we take β = 0, . . . , 2N−3 − 1 as a choice of representatives for (Z/2N−2)/⟨2N−3⟩ the even
part of the product from (2.4) is∏

χ∈ ̂(Z/2N )×

χ primitive even

∑
a∈(Z/2N )×

χ(a) log(1− ζa2N ) =
∏

χ∈ ̂(Z/2N )×

χ primitive odd

∑
a∈⟨5⟩⊂(Z/2N )×

χ(a) log(1− ζa2N ) + χ(−a) log(1− ζ−a
2N

)

=
∏

χ∈ ̂(Z/2N )×

χ primitive even

∑
a∈⟨5⟩⊂(Z/2N )×

χ(a) log
(
(1− ζa2N )(1− ζ−a

2N
)
)

=
∏

χ∈ ̂(Z/2N )×

χ primitive even

∑
{a,52

N−3
a}∈⟨5⟩/⟨52

N−3
⟩

a=5β ,0≤β<2N−3

χ(a) log
(1− ζa2N )(1− ζ−a

2N
)

(1− ζ5
2N−3a

2N
)(1− ζ

52
N−3

a

2N
)

=
∏

χ∈ ̂(Z/2N )×

χ primitive even

∑
{a,52

N−3
a}∈⟨5⟩/⟨52

N−3
⟩

a=5β ,0≤β<2N−3

χ(a) log
(1− ζa2N )(1− ζ−a

2N
)

(1 + ζa
2N

)(1 + ζ
−a

2N
)

(2.7)

where the first line is by combining the terms a and −a using ⟨5⟩ as the quotient of (Z/2N )× by ⟨−1⟩ in the
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same way as in the even case. After noticing that (1− ζa)(1− ζ−a) is still not a unit (because we took the
product instead of the quotient since the χ here are even instead of odd), the third line further breaks down

the sum into classes (pairs) a mod 52
N−3

(which works because χ is primitive mod 2N so χ(52
N−3

) = −1 or

else χ would factor through the quotient by ⟨52N−3⟩, and ζ5
2n−3

a
2N = σ52N−3 (ζ2N ) = −ζ2N , since σ52n−3 is the

nontrivial automorphism of KN/KN−1). This is an explicit incarnation with x = 1− ζa2N of Lemma 2.9: in
particular the quantity

(1 + [σ−1])(1− [τ ])x =
(1− ζa2N )(1− ζ−a

2N
)

(1 + ζa
2N

)(1 + ζ−a
2N

)

is a real unit in O×
KN

. In particular, remembering that all of this is an abuse of notation for applying ι and
then taking logs, the sums we get in (2.7) involve logs of squared norms (according to the embedding ι) of
Galois conjugate units

log ι

(
1− e2πia/2

N

1 + e2πia/2N

)
ι

(
1− e2πia/2

N

1 + e2πia/2N

)
= log

∥∥∥∥1− ζa2N

1 + ζa
2N

∥∥∥∥
ι

= log

∥∥∥∥σa

(
1− ζ2N

1 + ζ2N

)∥∥∥∥
ι

= log

∥∥∥∥1− ζ2N

1 + ζ2N

∥∥∥∥
ι◦σa

(2.8)
where the notation ∥−∥ι is used in the way it is for defining the Log map (it is the squared absolute
value instead of just the absolute value, since ι is complex), and a ranges over a set of representatives for

⟨5⟩/⟨52N−3⟩ ∼= Gal(KN−1)/Q(i) so that ι ◦ σa ranges over the archimedean places of KN−1 or the places v1
of KN (according to Lemma-Definition 2.6). In particular,

(1) we do not expect these terms to contribute any factors of π, and

(2) we expect the even terms to be the only part of the left hand side of Proposition 2.1 accounting for
the regulator of Kn on the right hand side.

Adding more detail to (2), the things we are taking squared norms under ι of in the even part of (2.4),
as computed in (2.7), are the specific 2N−3 Galois conjugate units

(1− [τ ])xa =
1− ζa2N

1 + ζa
2N

which are in (O×
KN

)τ=−1 by Lemma 2.9. Weber did the following:

(1) related the quantity we found at the end of (2.7) to Reg(KN/KN−1)
− by showing it was equal to a

certain determinant involving the quantities log∥(1 + [τ ])xa∥ι (which we do in Proposition 5.1) and
that

(2) the submodule of (O×
KN

/µ)τ=−1 that the various units (1 − [τ ])x generate has odd index (which we
do in Section 5.2 — the fact that this works is the most surprising part), so that the even part of∏n

N=4

∏
χ L(1, χ) is related to

∏n
N=4 Reg(KN/KN−1)

−; then

(3) as mentioned above, he understood the index of (O×
KN−1

/µ)⊕(O×
KN

)τ=−1 ⊂ O×
KN

/µ well enough to re-

late Reg(KN ) to Reg(KN−1)Reg(KN )− and therefore
∏n

N=4 Reg(KN/KN−1)
− to Reg(Kn)/Reg(K3).

This is carried out by us in Section 4 using more modern language (but the content is exactly the same
as [Web1886, §8]).

2.3 The results of Weber’s computations

We still have to work out the 2-adic valuation of the remaining algebraic number that will appear in the
continuation of the calculation (2.6) in the odd case, and we still need to carry out Weber’s strategy briefly
outlined above for relating the quantity we arrived at in (2.7) to Reg(Kn)/Reg(K3).

Here are the exact statements we will prove:
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Proposition 2.10 (The computation for odd characters). For N ≥ 4, we have∏
χ∈ ̂(Z/2N )×

χ primitive odd

∑
a∈(Z/2N )×

χ(a) log(1− ζa2N ) = π2N−3

22
N−3−1(some odd integer).

Proof. Postponed for Section 3, where this will be accomplished by direct computation, continuing along
the lines of (2.6).

Proposition 2.11 (The computation for even characters). We have

n∏
N=4

∏
χ∈ ̂(Z/2N )×

χ primitive even

∑
a∈(Z/2n)×

χ(a) log(1− ζa2n) =
2−1−Σ

log(
√
2 + 1)

Reg(Kn)(some odd integer)

where χ runs over the nontrivial even characters of (Z/2n)×, and Σ denotes some nonnegative integer.

Proof. Postponed for Section 5, where we will follow the outline given at the end of Section 2.2. For this
outline to make sense, we first need to properly define Reg(KN/KN−1)

−, which we do in Section 4.

Just to be on the same page regarding what was done in this section, we make the following explicit:

Proof of Theorem 1.2 assuming Proposition 2.10 and Proposition 2.11. The analytic class number formula
(Proposition 2.1) says that ∏

χ ̸=1

L(1, χ) = π2n−2

2−n−(n−2)2n−2

Reg(Kn)hn. (2.9)

In (2.4), we saw that the left hand side decomposes as

∏
χ ̸=1

L(1, χ) = −π2 log(
√
2+1)2−(n−1)2n−2

(
n∏

N=4

the quantity from Proposition 2.10

)
·(the quantity from Proposition 2.11),

and then Proposition 2.10 and Proposition 2.11 imply that∏
χ ̸=1

L(1, χ) = −π2 log(
√
2 + 1)2−(n−1)2n−2

π
∑n

N=4 2N−3

2
∑n

N=4(2
N−3−1) 2−1−Σ

log(
√
2 + 1)

Reg(Kn) · (some odd integer)

= π2n−2

2−n−(n−2)2n−2−ΣReg(Kn) · (some odd integer).

Comparing this to the right hand side of (2.9), we conclude that Σ = 0 (as hn ∈ Z), which is a strengthening
of Proposition 2.11, and that hn is odd.

The remainder of these notes are hence devoted to proving Proposition 2.10 and Proposition 2.11.
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3 Odd characters

In this section we will prove Proposition 2.10 by continuing the computations of (2.6). Let N ≥ 4. Recall
that (2.6) says

∏
χ∈ ̂(Z/2N )×

χ primitive odd

∑
a∈(Z/2N )×

χ(a) log(1− ζa2N ) = (πi)2
N−3 ∏

χ∈ ̂(Z/2N )×

χ primitive odd

2N−3−1∑
β=0

χ(5β)ϵβ

= ±π2N−3 ∏
χ∈ ̂(Z/2N )×

χ primitive odd

2N−3−1∑
β=0

χ(5β)ϵβ

= ±π2N−3 ∏
x∈(Z/2N−2)×

2N−3−1∑
β=0

ϵβζ
−xβ
2N−2

= ±π2N−3

N
Q(ζ2N−2 )

Q

2N−3−1∑
β=0

ϵβζ
−β
2N−2



(3.1)

as the primitive odd characters χ are in bijection with the primitive 2N−2-th roots of unity ζx2N−2 (x ∈
(Z/2N−2)×), via χ 7→ χ(5). Since ζ2

N−3

2N−2 = −1, we have

1

2
(1− ζ−1

2N−2)

2N−3−1∑
β=0

ϵβζ
−β
2N−2 =

ϵ0 + ϵ2N−3−1

2
+

2N−3−1∑
k=1

ϵk − ϵk−1

2
ζ−k
2N−2 , (3.2)

which is congruent to ϵ2N−3−1 = ±1 modulo the prime (1− ζ−1
2N−2) above 2, since after subtracting ϵ2N−3−1

we get (viewing ϵ−1 := ϵ2N−3−1)

2N−3−1∑
k=0

ϵk − ϵk−1

2
ζ−k
2N−2 = (1− ζ−1

2N−2)

2N−3−2∑
k=0

ϵk − ϵ2N−3−1

2
ζ−k
2N−2 ∈ (1− ζ−1

2N−2)Z[ζ2N−2 ],

from which we deduce that

N
Q(ζ2N−2 )

Q

1

2
(1− ζ−1

2N−2)

2N−3−1∑
β=0

ϵβζ
−β
2N−2

 is odd,

as the quantity inside the norm is in Z[ζ2N−2 ] by (3.2) and is not in the prime of Q(ζ2N−2) lying over 2.
Since

N
Q(ζ2N−2 )

Q (2) = 22
N−3

and N
Q(ζ2N−2 )

Q (1− ζ−1
2N−2) = 2

(2 is totally ramified), we deduce from this and from (3.1) that

∏
χ∈ ̂(Z/2N )×

χ primitive odd

∑
a∈(Z/2N )×

χ(a) log(1− ζa2N ) = ±π2N−3

N
Q(ζ2N−2 )

Q

2N−3−1∑
β=0

ϵβζ
−β
2N−2



= ±π2N−3

22
N−3−1N

Q(ζ2N−2 )

Q

1

2
(1− ζ2N−2)

2N−3−1∑
β=0

ϵβζ
−β
2N−2


= π2N−3

22
N−3−1(an odd integer)

which concludes the proof of Proposition 2.10.
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4 Preliminaries on units and Stark regulators

I will now recall some stadard material about Stark regulators from [Tat1984]. That book is hard to find
online but this specific material is also found in Samit Dasgupta’s undergraduate thesis. The purpose of
this is to apply it to the situation of KN/KN−1 in order to follow the outline from the end of Section 2 in
relating Reg(KN ) to the product of Reg(KN−1) with Reg(KN/KN−1)

−. The first subsection will deal with
the generalities required to define Reg(KN/KN−1)

− and to set up this relation, and the second subsection
will carry out this step of Weber’s argument in the relevant case.

4.1 Generalities on Stark regulators

For a number field K, let YK be the free Z-module of rank r+s generated by the symbols [v], where [v] runs
over the archimedean places of K. Let XK ⊂ YK be the free Z-module of rank r + s− 1 equal to the set of
elements

∑
v av[v] with the property that

∑
v av = 0. For all places v0 of K, {v − v0 : v ̸= v0} is a Z-basis

for XK of size r + s− 1.
Dirichlet’s unit theorem says that the quotient O×

K/µK is a free abelian group of rank r + s − 1, and
provides an R-linear isomorphism

LogK : R⊗ (O×
K/µK)

∼→ R⊗XK

given on the pure tensors 1⊗ [ε] by

LogK(1⊗ ε) =
∑
v

log∥ε∥v[v],

where ∥x∥ means |x|2v when v is complex and it means |x|v when v is real. Note that this morphism does NOT
take O×

K/µK to XK : it only exists after tensoring with R, since the logs of unit are in general transcendental
quantities.

If K/k is a Galois extension of number fields, then both O×
K/µK and XK admit an action of Gal(K/k)

and are therefore Z[Gal(K/k)]-modules which are free of rank r + s − 1 as Z-modules. The isomorphism
LogK is Gal(K/k)-equivariant, so we manifestly have

C⊗ (O×
K/µK) ∼= C⊗XK

as finite-dimensional complex representations of the finite group Gal(K/k). Since Q has characteristic zero, a
finite-dimensinal Q[Gal(K/k)]-module is determined by its character, so this implies that there is an abstract
(but no specific choice of) isomorphism

f : Q⊗XK
∼→ Q⊗ (O×

K/µK)

of Q[Gal(K/k)]-modules, which has nothing to do with LogK (since that map is not usually defined over
Q).

Definition 4.1. Let f : Q⊗XK → Q⊗ (O×
K/µK) be any isomorphism of Q[Gal(K/k)]-modules, and let V

be any finite-dimensional complex representation of Gal(K/k), with character χ. The maps induced by f
under (−)⊗QC which we abusively call f : C⊗XK → C⊗ (O×

K/µK) and LogK : C⊗ (O×
K/µK) → C⊗XK

induce maps that we call

fχ : HomGal(K/k)(V
∨,C⊗XK) → HomGal(K/k)(V

∨,C⊗ (O×
K/µK))

and
LogK,χ : HomGal(K/k)(V

∨,C⊗ (O×
K/µK)) → HomGal(K/k)(V

∨,C⊗XK).

These two maps compose to give a Gal(K/k)-equivariant automorphism of C⊗XK , and the quantity

R(χ, f) := det(LogK,χ ◦ fχ)

is called the Stark regulator of χ with respect to f .
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The definition of the Stark regulator is not vacuous, because we showed right before it that such isomor-
phisms f exist. In fact, by multiplication by a large enough integer, f can even be taken to come from an
integral datum of an injective Z[Gal(K/k)]-module morphism f : XK → O×

K/µK . We will have no need to
worry about the presence of the dual on top of V in the definition, because the only representations we will
care about are the two irreps of Z/2.

The point of the Stark regulator is that it captures the part of the regulator that comes from the units
in a certain isotypic component of the action of Gal(K/k). Indeed, if f is obtained by base change from an
injective map of Z[Gal(K/k)]-modules f : XK → O×

K/µK , then we have the following examples:

Example 4.1. (1) If K = k and V is the trivial representation of the trivial group, then fχ and LogK,χ

are identified with f,LogK . Choosing an arbitrary infinite place v0 of K, using the Z-basis {[v]− [v0] :
v ̸= v0} of XK , and setting εv := f([v]− [v0]) for v ̸= v0, the r+ s− 1 units εv are (by the assumption
that f is an isomorphism after (−) ⊗ Q) a basis of a finite-index free abelian subgroup of O×

K/µK .
Since

(LogK ◦ f)([v]− [v0]) = LogK(εv) =
∑
w

log∥εv∥w[w] =
∑
w ̸=v0

log∥εv∥w([w]− [v0]),

the Stark regulator is then

R(f, χ) = det(LogK ◦ f) = det (log∥εv∥w)v,w ̸=v0
= ±[O×

K/µK : f(XK)]Reg(K).

(2) Let K/k satisfy2 (O×
K/µ)Gal(K/k) = O×

k /µ, and let V be the trivial representation of Gal(K/k). We can
still let εv = f([v]− [v0]), v ̸= v0 be the values of f on this specific basis of XK . The equivariant map

f also induces an injection of free abelian groups of the same rank f : X
Gal(K/k)
K → (O×

K/µK)Gal(K/k),

which necessarily has finite index. Moreover, X
Gal(K/k)
K is canonically identified with Xk regardless of

whether we take Z orC coefficients (take the common value of aw, w|v, to be the av of the corresponding
element of Xk), from which we have C⊗X

Gal(K/k)
K = (C⊗XK)Gal(K/k).

The induced maps we want to understand are therefore

fχ : C⊗Xk → (C⊗ (O×
K/µK))Gal(K/k)

and
LogK,χ : (C⊗ (O×

K/µK))Gal(K/k) → C⊗Xk.

Choose a fixed archimedean place v0 of k, so that {[v]− [v0]} is a Z-basis of Xk. Without caring about

the values of f on XK outside of X
Gal(K/k)
K = Xk, we set εv = f([v]− [v0]) for all archimedean places

v of k. This is an element of (O×
K/µK)Gal(K/k) = O×

k /µk, so we further have

LogK,χ(εv) =
∑
w

log∥εv∥w[w] ∈ (C⊗XK)Gal(K/k),

where this last is taken to C ⊗Xk by observing that the log∥εv∥w don’t change when you change w
lying over the same archimedean place of k, so really [v] − [v0], for v ̸= v0 a place of k, is taken by
LogK,χ ◦ fχ to ∑

w ̸=v0

log∥εv∥w′ [w],

where for all places w of k, w′ is taken to be an arbitrary place of K with w′|w. Since (and this is
where we are actually using it) εv ∈ O×

k /µk, we really have ∥εv∥w′ = ∥εv∥w, at least if we assume that

2Weber gets to ignore this condition because he passes to the maximal totally real subfield, where this is obvious. But it is
almost equally obvious in our setting where K/k = KN/KN−1, because H1(Gal(KN/KN−1), µ) = 1 for N ≥ 3 (easy to check
explicitly: it comes down to the fact that ζ2N τ(ζ2N ) = −ζ2N−1 ̸= 1 if N ̸= 2, so this H1 is at worst the group {±1}, but it is
actually trivial because ζ2N /τ(ζ2N ) = −1.)

13



K and k are both totally complex or both totally real (if w′ were complex and w were real then there
would be a factor of 2 to insert), so

(LogK,χ ◦ fχ)([v]− [v0]) =
∑
w ̸=v0

log∥εv∥w[w],

and, taking determinants, we have

R(χ, f) = ±[O×
k /µk : f(Xk)]Reg(k).

(3) Suppose that K/k is quadratic and that they are both totally complex. Let η− : Gal(K/k) = ⟨τ⟩ ∼=
Z/2 → {±1} be the nontrivial 1-dimensional character. This is a convenient case to be in because it is
defined over Z, and consequently the Z-modules HomGal(K/k)(η−, XK),HomGal(K/k)(η−,O×

K/µK) are

well-defined. The former is the same as the η−-isotypic component Xτ=−1
K ⊂ XK , and the latter is the

same as the η−-isotypic component of O×
K/µK , namely (O×

K/µK)τ=−1. We also have

(C⊗XK)τ=−1 = C⊗Xτ=−1
K , C⊗ (O×

K/µK)τ=−1 = (C⊗ (O×
K/µK))τ=−1.

The injection f : XK → O×
K/µK is assumed to be Gal(K/k)-equivariant and hence induces an injection

fη− : Xτ=−1
K → (O×

K/µK)τ=−1.

of free abelian groups of the same rank.

Since Gal(K/k) ∼= Z/2, there are two complex places of K above each (complex) place of k, and τ acts
by switching them (because it must act transitively). It follows that Xτ=−1

K has a natural basis given
by {[v1] − [v2] : v archimedean place of k}, where v1, v2 are the two places of K above v (a choice of
which one is v1 and which one is v2 is made in order to choose this basis). So for each place v of k, we
let εv = f([v1]− [v2]) ∈ (O×

K/µK)τ=−1, so that

(LogK,η−
◦ f)([v1]− [v2]) =

∑
w

log∥εv∥w[w] =
∑
w

log∥εv∥w1
([w1]− [w2]),

where in the second expression the w’s go over the places of K and in the third one they go over the
places of k. In particular,

R(η−, f) = det(LogK,η−
◦ f) = det(log∥εv∥w1

).

Since (O×
K/µK)τ=−1 is a free abelian group of rank equal to the number of complex places of k (i.e.

the rank of Xτ=−1
K ), it has a basis {Ev : v archimedean places of k}, and we have

R(η−, f) = ±[(O×
K/µK)τ=−1 : f(Xτ=−1

K )]|det(log∥Ev∥w)|.

Let us make explicit the definition of “minus part of the regulator” implicit in the third example:

Definition 4.2. Let K/k be a quadratic extension of totally complex fields with Galois group G = ⟨τ⟩.
For a (complex) archimedean place v of k, denote by v1, v2 the two (complex) places of K lying over it.
The abelian group (O×

K/µK)τ=−1 is a free Z-module, and since it is isomorphic after −⊗Q to (XK)τ=−1,
it is of rank equal to [k : Q]/2 = #{(complex) archimedean places of k} =: r. For any basis E1, . . . , Er of
(O×

K/µK)τ=−1, we define the minus-part of the regulator to be

Reg(K/k)− := |det((log∥Ei∥v1)i,v)|

where the rows are parametrized by the choice of 1 ≤ i ≤ r and the columns are parametrized by the choice
of place v of k (this matrix is square by the remarks above, and this definition obviously does not depend on
the choice of basis). Since we took absolute values, this doesn’t depend on the choice of basis Ei, nor on the
choice of which of the places above v is called v1 (changing that choice would just negate a whole column of
the matrix and thus would only change the sign of the determinant).
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4.2 Application to the 2-power cyclotomic tower

Now we apply this theory to our situation in order to relate Reg(KN ) to Reg(KN−1)Reg(KN/KN−1)
−.

Let N ≥ 3, and let k = Q(ζ2N−1) = KN−1 and K = KN = Q(ζ2N ) = k(
√
ζ2N−1). Then K/k is

quadratic with Gal(K/k) = {1, τ} (where now τ is the element σ52N−3 defined in Section 2), and it sat-
isfies H1(Gal(K/k), µK) = 1 (the norm of ζx2N−1 is ζ2x2N−1 , which is 1 if and only if ζx2N−1 = ±1; and the
norm of ζ2N is ζ2N τ(ζ2N ) = −ζ22N = −ζ2N−1 , which is not 1 because ζ2N−1 ̸= −1 because N ≥ 3 — so
the norm 1 elements of µK are just {±1}, and we note that −1 = ζ2N /τ(ζ2N )), so that the hypothesis
(O×

K/µ)Gal(K/k) = O×
k /µ to Example 4.1(2) is satisfied. Since the trivial character and η− are a complete

list of characters of Gal(KN/KN−1), we have the decompositions

C⊗XK = (C⊗XK)Gal(K/k) ⊕ (C⊗XK)τ=−1 = (C⊗Xk)⊕ (C⊗Xτ=−1
K )

and

C⊗ (O×
K/µK) = (C⊗ (O×

K/µK))Gal(K/k) ⊕ (C⊗ (O×
K/µK))τ=−1 = (C⊗ (O×

k /µk))⊕ (C⊗ (O×
K/µK)τ=−1)

where η− is as before the nontrivial character of Gal(K/k) sending τ to −1. There is an important thing to
keep track of here, which is that this decomposition does NOT apply on the nose integrally, i.e., it is NOT
true that

XK = Xk ⊕Xτ=−1
K ,

nor that
O×

K/µK = O×
k /µk ⊕ (O×

K/µK)τ=−1.

The problem, as already discussed in Section 2, is that the idempotents ([1]− [τ ])/2, ([1]+ τ)/2 in the group
algebra that you would use to make this decomposition have denominators. So the index will be a power of
2, which we need to keep track of since our results are sensitive to powers of 2. In our particular situation,
we have rkZ(XK) = rkZ(O×

K/µK) = 2N−2 − 1, rkZ(Xk) = rkZ(O×
k /µk) = 2N−3 − 1, and (either by separate

calculation or by subtraction), rkZ(X
χ
K) = rkZ((O×

K/µK)χ) = 2N−3.

Lemma 4.3. The index of Xk ⊕Xτ=−1
K ⊂ XK is exactly

[XK : Xk ⊕Xτ=−1
K ] = 22

N−3−1.

Proof. I will carry this out by explicit Smith normal form computation, using specific bases of all the modules
involved. For all places v|∞ of k, let v1, v2 be the two places of K lying over v. Since the group {1, τ} must
act transitively on {v1, v2}, we know that τ acts on the places of K by switching v1, v2 for all v of k. Let us
fix arbitrarily a certain place v0|∞ of k.

The free Z-module XK has a basis given by

{[v01 ]− [v02 ]} ⊔ {[v1]− [v01 ] : v ̸= v0} ⊔ {[v2]− [v01 ] : v ̸= v0}.

As a sanity check, note that K has 2N−2 (complex) places and k has 2N−3, so we expect this basis to have
size 2N−2 − 1, which is true because 1 + (2N−3 − 1) + (2N−3 − 1) = 2N−2 − 1.

The free Z-module Xk = X
Gal(K/k)
K has a basis given by {[v1] + [v2]− [v01 ]− [v02 ] : v ̸= v0}, which has size

2N−3 − 1 as expected. Writing these in terms of the basis of XK we just discussed, we have

[v1] + [v2]− [v01 ]− [v02 ] = ([v01 ]− [v02 ]) + ([v1]− [v01 ]) + ([v2]− [v01 ]).

Finally, the free Z-module Xτ=−1
K has a basis given by

{[v01 ]− [v02 ]} ⊔ {[v1]− [v2] : v ̸= v0},

where the point of separating v ̸= v0 from v0 is that [v01 ] − [v02 ] is already in our chosen basis of XK , while
the decomposition of the remaining ones is

[v1]− [v2] = ([v1]− [v01 ])− ([v2]− [v01 ]).
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Figure 1: The matrix of Xk ⊕ Xτ=−1
K → XK , from the proof of Lemma 4.3. The labels of the columns

remind us of which basis element of Xk or Xτ=−1
K that column represents the image of, and the labels of the

rows remind us of the basis of XK that those images are being represented in.

1 1 1 · · · 1 1 1 1 0 0 0 · · · 0 0 0

1 0 0 · · · 0 0 0 0 1 0 0 · · · 0 0 0

1 0 0 · · · 0 0 0 0 −1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0 0 0 1 0 · · · 0 0 0

0 1 0 · · · 0 0 0 0 0 −1 0 · · · 0 0 0

0 0 1 · · · 0 0 0 0 0 0 1 · · · 0 0 0

0 0 1 · · · 0 0 0 0 0 0 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 · · · 1 0 0 0 0 0 0 · · · 1 0 0

0 0 0 · · · 1 0 0 0 0 0 0 · · · −1 0 0

0 0 0 · · · 0 1 0 0 0 0 0 · · · 0 1 0

0 0 0 · · · 0 1 0 0 0 0 0 · · · 0 −1 0

0 0 0 · · · 0 0 1 0 0 0 0 · · · 0 0 1

0 0 0 · · · 0 0 1 0 0 0 0 · · · 0 0 −1





rkZ(Xk) = 2N−3 − 1 rkZ(X
τ=−1
K ) = 2N−3

rk
Z
(X

K
)
=

2
N

−
2
−

1

[v01 ]− [v02 ]

[v1]− [v01 ],
[v2]− [v01 ]
(v ̸= v0)

[v1] + [v2]− [v01 ]− [v02 ]
(v ̸= v0)

[v1]− [v2]
(v ̸= v0)

[v01 ]− [v02 ]
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In other words, with this choice of bases, the matrix of the injection Xk ⊕Xτ=−1
K → XK is as pictured

in Figure 1.
To compute the index of the submoduleXk⊕Xχ

K ⊂ XK can be done by computing the Smith normal form
of this matrix. That computation is just many copies of the following 3×3 Smith normal form computation:1 1 0

1 0 1
1 0 −1

⇝
1 1 0
0 −1 1
0 −1 −1

⇝
1 0 1
0 −1 1
0 0 2

⇝
1 0 0
0 −1 1
0 0 2

⇝
1 0 0
0 −1 0
0 0 2


which is the N = 4 case. One concludes from this that the elementary divisors of XK/(Xk ⊕ Xτ=−1

K ) are
just 2N−3 − 1 copies of 2, hence that the index is 2N−3 − 1, as required. Note that the fact that no power
of 2 greater than 21 can appear in the elementary divisors was clear at the outset, because (again thanks to
the fact that the denominators in the relevant idempotents are just 2) 2XK ⊂ Xk ⊕Xχ

K ⊂ XK .

In fact, the index appearing in Lemma 4.3 is the “most degenerate” possible case, as shown by the
following general fact:

Lemma 4.4. Let G = Z/2 = ⟨τ⟩, and let M be a Z[G]-module which is free of finite rank as a Z-module.
Then

[M : Mτ=1 ⊕Mτ=−1] ≤ 2min(rkZ(Mτ=1,Mτ=−1)).

Proof. We consider the short exact sequence of Z[G]-modules

0 → Mτ=1 ⊕Mτ=−1 → M → Q → 0,

and take the long exact sequence in cohomology, which starts out as

0 → Mτ=1 ∼→ Mτ=1 → Qτ=1 → H1(G,Mτ=1 ⊕Mτ=−1).

We simplify the terms one at a time starting at Qτ=1. The point here is to clear the denominators in the
idempotents we would like to use: x+ τ(x) ∈ Mτ=1 and x− τ(x) ∈ Mτ=−1 are still true, so (only actually
using the second one), we have x− τ(x) = 0, where x denotes the class in Q represented by x ∈ M . In other
words, Qτ=1 = Q. So far, the content of the long exact sequence is that Q injects intoH1(G,Mτ=1⊕Mτ=−1).
This is where the upper bound on the index will come from.

Since G = ⟨τ⟩ = Z/2, this H1 is identified with

H1(G,Mτ=1 ⊕Mτ=−1) =
{m1 +m−1 ∈ Mτ=1 ⊕Mτ=−1 : (m1 +m−1) + τ(m1 +m−1) = 0}
{(m1 +m−1)− τ(m1 −m−1) : m1 +m−1 ∈ Mτ=1 ⊕Mτ=−1}

.

By definition of Mτ=±1, the numerator simplifies to {m1+m−1 : 2m1 = 0} = Mτ=−1, and the denominator
simplifies to {2m−1} = 2Mτ=−1. In other words,

H1(G,Mτ=1 ⊕Mτ=−1) =
Mτ=−1

2Mτ=−1
∼= F

rkZ(Mτ=−1)
2 ,

so the injection of Q into this provides the upper bound |Q| ≤ 2rkZ(Mτ=−1).

The bound |Q| ≤ 2rkZ(Mτ=1) which was also claimed follows a fortiori from this, by considering the
alternative action of G on M given by τnew(m) = −τoriginal(m).

Corollary 4.5. Let N ≥ 3. If K = Q(ζ2N ) and k = Q(ζ2N−1) and τ denotes the nontrivial element of
Gal(K/k), then

[(OK/µK) : (Ok/µk)⊕ (Ok/µk)
τ=−1] ≤ 22

N−3−1

and is a power of 2.
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Let σN ≥ 0 be the nonnegative integer such that this index is equal to 22
N−3−1−σN .

We can put this together to obtain the following result that is relevant to our situation, where K/k is
KN/KN−1. Let f : XK → (O×

K/µK) be a Gal(K/k)-equivariant injection. By restriction, we obtain two
injections

f1 : Xk → O×
k /µk

and
fη− : Xχ

K → (O×
K/µK)τ=−1.

On one hand, we have C-vector space isomorphisms

C⊗XK
f→ C⊗ (O×

K/µK)
LogK→ C⊗XK ,

for which (by Example 4.1(1)) we have

det(LogK ◦ f)± [O×
K/µK : f(XK)]Reg(K). (4.1)

On the other hand, by decomposing both f and LogK into Gal(K/k)-isotypic components,

(C⊗Xk)⊕(C⊗Xτ=−1
K )

f=f1⊕fη−−→ C⊗(O×
k /µk)⊕C⊗(O×

K/µK)τ=−1
LogK=LogK,1⊕LogK,η−−→ (C⊗Xk)⊕(C⊗Xτ=−1

K ),

and we obtain

det(LogK ◦ f) = det(LogK,1 ◦ f1) · det(LogK,η−
◦ fη−)

= R(1, f)R(χ, f)

= ±[(O×
k /µk) : f(Xk)][(O×

K/µk)
τ=−1 : f(Xτ=−1

K )]Reg(k)Reg(K/k)−

= ±[(O×
k /µk)⊕ (O×

K/µk)
τ=−1 : f(Xk ⊕Xτ=−1

K )]Reg(k)Reg(K/k)−.

(4.2)

by Example 4.1((2) and (3)).
Combining (4.1) and (4.2) with Lemma 4.3 and Corollary 4.5, we end up with

Reg(K)

Reg(k)Reg(K/k)−
=

[(O×
k /µk)⊕ (O×

K/µk)
χ : f(Xk ⊕Xχ

K)]

[O×
K/µK : f(XK)]

=
[XK : Xk ⊕Xχ

K ]

[O×
K/µK : O×

k /µk ⊕ (O×
K/µK)χ]

= 2σN ,

from which we have the main result of this section:

Proposition 4.6. Let N ≥ 3. Then there exists a nonnegative integer σN such that

Reg(KN ) = 2σNReg(KN−1)Reg(KN/KN−1)
−.

Weber gets here through much more explicit (and probably more understable) means. Writing it this
way gave me some practice with Stark regulators but it is up to the reader to decide whether this gives any
useful clarifying perspective on what is already done pretty clearly in [Web1886, §8].

5 Even characters

In this section, we will prove Proposition 2.11, thus completing the proof of Theorem 1.2. Recall from (2.7)
and (2.8) that the quantity (which, up to some Gauss sum factors, is the product of values L(1, χ) where χ

18



is even of conductor 2N with 4 ≤ N ≤ n) we are meant to compute (the left hand side of Proposition 2.11)
is

n∏
N=4

∏
χ∈ ̂(Z/2N )×

χ primitive even

∑
a∈(Z/2n)×

χ(a) log(1− ζa2n) =

n∏
N=4

∏
χ∈ ̂(Z/2N )×

χ primitive even

2N−3−1∑
β=0

χ(a) log
(1− ζa2N )(1− ζ−a

2N
)

(1 + ζa
2N

)(1 + ζ
a

2N
)

=

n∏
N=4

∏
χ∈ ̂(Z/2N )×

χ primitive even

2N−3−1∑
β=0

χ(a) log

∥∥∥∥σa

(
1− ζ2N

1 + ζ2N

)∥∥∥∥
ι

=

n∏
N=4

∏
χ∈ ̂(Z/2N )×

χ primitive even

2N−3−1∑
β=0

χ(a) log

∥∥∥∥1− ζ2N

1 + ζ2N

∥∥∥∥
ι◦σa

(5.1)

where a = 5β ∈ ⟨5⟩ ⊂ (Z/2N )× runs over our chosen set of representatives for ⟨5⟩/⟨52N−3⟩. We will use the
notation of Section 2.2 to talk about the Galois action on units and on archimedean places of KN ,KN−1,
recall especially Lemma-Definition 2.6. To briefly recall, the ι ◦ σa as β ranges from 0 to 2N−3 − 1 are a
choice of places v1 of KN lying over each of the 2N−3 archimedean place v of KN−1 (and we always take v1
to mean this particular choice), and the elements of K×

N given by

εβ = σa

(
1− ζ2N

1 + ζ2N

)
=

1− ζ5
β

2N

1 + ζ5
β

2N

, β = 0, . . . , 2N−3 − 1,

are a system of 2N−3 mutually Gal(KN/Q(i))-conjugate elements of (O×
KN

)τ=−1, by Lemma 2.9. There is
nothing stopping us from considering the full Galois orbit of ε0 under Gal(KN/Q(i)), which is given by the

εβ :=
1− ζ5

β

2N

1 + ζ5
β

2N

= σ5β (ε0)

for all β ∈ Z/2N−2 ∼= ⟨5⟩. The full set of εβ are still in (O×
KN

)τ=−1 by Lemma 2.9; it’s just that only

one of these per class mod 52
N−3

contribute to the sum above, and (precisely because εβ ∈ (O×
KN

)τ=−1),

we have εβ+2N−3 = τ(εβ) = ε−1
β , so this construction produces at most 2N−3 independent elements of

(O×
KN

/µ)τ=−1. In any event we know from our detailed computations in Section 4 that (O×
KN

/µ)τ=−1 is

a free abelian group of rank 2N−3, so Reg(KN/KN−1)
τ=−1 will be a determinant involving exactly 2N−3

elements of (O×
KN

/µ)τ=−1. The εβ , 0 ≤ β < 2N−3 are typically not a basis of (O×
KN

/µ)τ=−1, but it is of the
right size to be a basis of a finite index subgroup — we will prove that this is the case.

More generally, for all β, β′ ∈ Z/2N−2 ∼= ⟨5⟩, we have

log∥εβ+β′∥ι = log∥σβ′(εβ)∥ι = log∥εβ∥ι◦σ
5β

which means that all the entries of (log∥εβ∥v1)β,v where the coordinate v ranges over all 2N−3 archimedean
places of KN−1 and the coordinate β ranges over 0, . . . , 2N−3 − 1 (the same determinant that appeared in
Example 4.1(3) for a set of units that forms a basis of (O×

KN
/µ)τ=−1, which the εβ do not) appear in (5.1),

though a direct relationship between the expression in (5.1) to any det(log∥εβ∥v1)β,v is not yet obvious.
The proof of that relationship will be carried out in Section 5.1. Then, in Section 5.2, we will relate that
determinant to Reg(KN/KN−1)

− by proving that the subgroup of (O×
KN

/µ)τ=−1 spanned by the εβ is of
finite odd index, and in Section 5.3 we will put this together inductively using Proposition 4.6 to conclude
the proof of Proposition 2.11.
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5.1 From L-values to the regulator of some special units in the minus part of
the unit group

The primitive even characters χ of (Z/2N )× are in bijection with the primitive 2N−2-th roots of unity ζx2N−2 ,
x ∈ (Z/2N−2)×, so (continuing from (5.1)) we have

n∏
N=4

∏
χ∈ ̂(Z/2N )×

χ primitive even

2N−3−1∑
β=0

χ(5β) log∥σ5β (ε0)∥ι =
n∏

N=4

∏
x∈(Z/2N−2)×

2N−3−1∑
β=0

ζxβ
2N−2 log∥σ5β (ε0)∥ι.

In Section 3, a similar inside product appeared, and we wrote it as a norm from Q(ζ2N−2). We cannot do that
in this case because the coefficients log∥σ5β (ε0)∥ι are typically transcendental quantities. The point of this
section is to relate that inside product to the determinant ananalous to the one defining Reg(KN/KN−1)

−

(see Example 4.1(3)) defined with respect to the {εβ} instead of with respect to a basis of (O×
KN

/µ)τ=−1,
using a similar-in-spirit technique:

Proposition 5.1. For all N ≥ 3,

∏
x∈(Z/2N−2)×

2N−3−1∑
β=0

ζxβ
2N−2 log∥σ5β (ε0)∥ι = ±det(log∥εβ∥v1)β,v

where β runs over the set {0, . . . , 2N−3 − 1} and v runs over the 2N−3 complex places of KN−1.

Proof. Parametrizing the rows and columns by 5β , 5β
′ ∈ Gal(KN−1/Q(i)) ∼= ⟨5⟩/⟨52N−3⟩ so that v1 = ι◦σ5β′

and εβ = σ5β (ε0), we get

M := (log∥εβ∥v1)β,v
= (log∥σ5β (ε0)∥ι◦σ

5β
′ )β,β′

= (log∥εβ+β′)∥ι)β,β′

=



log∥ε0∥ι log∥ε1∥ι log∥ε2∥ι · · · log∥ε2N−3−3∥ι log∥ε2N−3−2∥ι log∥ε2N−3−1∥ι
log∥ε1∥ι log∥ε2∥ι log∥ε3∥ι · · · log∥ε2N−3−2∥ι log∥ε2N−3−1∥ι log∥ε2N−3∥ι
log∥ε2∥ι log∥ε3∥ι log∥ε4∥ι · · · log∥ε2N−3−1∥ι log∥ε2N−3∥ι log∥ε2N−3+1∥ι

...
...

...
. . .

...
...

...
log∥ε2N−3−3∥ι log∥ε2N−3−2∥ι log∥ε2N−3−1∥ι · · · log∥ε2N−2−6∥ι log∥ε2N−2−5∥ι log∥ε2N−2−4∥ι
log∥ε2N−3−2∥ι log∥ε2N−3−1∥ι log∥ε2N−3∥ι · · · log∥ε2N−2−5∥ι log∥ε2N−2−4∥ι log∥ε2N−2−3∥ι
log∥ε2N−3−1∥ι log∥ε2N−3∥ι log∥ε2N−3+1∥ι · · · log∥ε2N−2−4∥ι log∥ε2N−2−3∥ι log∥ε2N−2−2∥ι



=



log∥ε0∥ι log∥ε1∥ι log∥ε2∥ι · · · log∥ε2N−3−3∥ι log∥ε2N−3−2∥ι log∥ε2N−3−1∥ι
log∥ε1∥ι log∥ε2∥ι log∥ε3∥ι · · · log∥ε2N−3−2∥ι log∥ε2N−3−1∥ι − log∥ε0∥ι
log∥ε2∥ι log∥ε3∥ι log∥ε4∥ι · · · log∥ε2N−3−1∥ι − log∥ε0∥ι − log∥ε1∥ι
log∥ε3∥ι log∥ε4∥ι log∥ε5∥ι · · · − log∥ε0∥ι − log∥ε1∥ι − log∥ε2∥ι

...
...

...
. . .

...
...

...
log∥ε2N−3−3∥ι log∥ε2N−3−2∥ι log∥ε2N−3−1∥ι · · · − log∥ε2N−3−6∥ι − log∥ε2N−3−5∥ι − log∥ε2N−3−4∥ι
log∥ε2N−3−2∥ι log∥ε2N−3−1∥ι − log∥ε0∥ι · · · − log∥ε2N−3−5∥ι − log∥ε2N−3−4∥ι − log∥ε2N−3−3∥ι
log∥ε2N−3−1∥ι − log∥ε0∥ι − log∥ε1∥ι · · · − log∥ε2N−3−4∥ι − log∥ε2N−3−3∥ι − log∥ε2N−3−2∥ι


This is the matrix whose determinant we are after, and it involves the same terms ∥εβ∥ι, β = 0, . . . , 2N−3−

1, that appear in the left hand side of the statement of this proposition.
For all x ∈ (Z/2N−2)×, consider the quantity

r(x) :=

2N−3−1∑
β=0

ζxβ
2N−2 log∥σ5β (ε0)∥ι.
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We want to show that
∏

x∈(Z/2N−2)× r(x) = ±detM , and we will do this by showing that the r(x) are

precisely the eigenvalues (with algebraic multiplicity) of a diagonalizable matrix that is the same as M
except with some rows swapped or negated.

Indeed, since ζ2
N−3

2N−2 = −1, which we also used in Section 3 to further simplify, we have (with ∥−∥ always
understood to mean ∥−∥ι)

r(x) = log∥ε0∥+ ζx2N−2 log∥ε1∥+ · · ·+ ζ
(2N−3−3)x

2N−2 log∥ε2N−3−3∥+ ζ
(2N−3−2)x

2N−2 log∥ε2N−3−2∥+ ζ
(2N−3−1)x

2N−2 log∥ε2N−3−1∥

ζx2N−2r(x) = ζx2N−2 log∥ε0∥+ ζ2x2N−2 log∥ε1∥+ · · ·+ ζ
(2N−3−2)x

2N−2 log∥ε2N−3−3∥+ ζ
(2N−3−1)x

2N−2 log∥ε2N−3−2∥+ ζ2
N−3x

2N−2 log∥ε2N−3−1∥

= − log∥ε2N−3−1∥+ ζx2N−2 log∥ε0∥+ ζ2x2N−2 log∥ε1∥+ · · ·+ ζ
(2N−3−2)x

2N−2 log∥ε2N−3−3∥+ ζ
(2N−3−1)x

2N−2 log∥ε2N−3−2∥

ζ2x2N−2r(x) = ζ2x2N−2 log∥ε0∥+ ζ3x2N−2 log∥ε1∥+ · · ·+ ζ
(2N−3−1)x

2N−2 log∥ε2N−3−3∥+ ζ2
N−3x

2N−2 log∥ε2N−3−2∥+ ζ
(2N−3+1)x

2N−2 log∥ε2N−3−1∥

= − log∥ε2N−3−2∥ − ζx2N−2 log∥ε2N−3−1∥+ ζ2x2N−2 log∥ε0∥+ ζ3x2N−2 log∥ε1∥+ · · ·+ ζ
(2N−3−1)x

2N−2 log∥ε2N−3−3∥
... =

...

ζ
(2N−3−3)x

2N−2 r(x) = ζ
(2N−3−3)x

2N−2 log∥ε0∥+ · · ·+ ζ
(2N−2−6)x

2N−2 log∥ε2N−3−3∥+ ζ
(2N−2−5)x

2N−2 log∥ε2N−3−2∥+ ζ
(2N−2−4)x

2N−2 log∥ε2N−3−1∥

= − log∥ε3∥ − · · · − ζ
(2N−3−4)x

2N−2 log∥ε2N−3−1∥+ ζ
(2N−3−3)x

2N−2 log∥ε0∥+ ζ
(2N−3−2)x

2N−2 log∥ε1∥+ ζ
(2N−3−1)x

2N−2 log∥ε2∥

ζ
(2N−3−2)x

2N−2 r(x) = ζ
(2N−3−2)x

2N−2 log∥ε0∥+ · · ·+ ζ
(2N−2−5)x

2N−2 log∥ε2N−3−3∥+ ζ
(2N−2−4)x

2N−2 log∥ε2N−3−2∥+ ζ
(2N−2−3)x

2N−2 log∥ε2N−3−1∥

= − log∥ε2∥ − · · · − ζ
(2N−3−3)x

2N−2 log∥ε2N−3−1∥+ ζ
(2N−3−2)x

2N−2 log∥ε0∥+ ζ
(2N−3−1)x

2N−2 log∥ε1∥

ζ
(2N−3−1)x

2N−2 r(x) = ζ
(2N−3−1)x

2N−2 log∥ε0∥+ · · ·+ ζ
(2N−2−4)x

2N−2 log∥ε2N−3−3∥+ ζ
(2N−2−3)x

2N−2 log∥ε2N−3−2∥+ ζ
(2N−2−2)x

2N−2 log∥ε2N−3−1∥

= − log∥ε1∥ − · · · − ζ
(2N−3−2)x

2N−2 log∥ε2N−3−1∥+ ζ
(2N−3−1)x

2N−2 log∥ε0∥

In other words, for all x ∈ (Z/2N−2)×, the vector

vx =


1

ζx2N−2

...

ζ
(2N−3−1)x

2N−2

 ∈ C2N−3

is an eigenvector for the matrix

log∥ε0∥ log∥ε1∥ log∥ε2∥ · · · log∥ε2N−3−3∥ log∥ε2N−3−2∥ log∥ε2N−3−1∥
− log∥ε2N−3−1∥ log∥ε0∥ log∥ε1∥ · · · log∥ε2N−3−4∥ log∥ε2N−3−3∥ log∥ε2N−3−2∥
− log∥ε2N−3−2∥ − log∥ε2N−3−1∥ log∥ε0∥ · · · log∥ε2N−3−5∥ log∥ε2N−3−4∥ log∥ε2N−3−3∥

...
...

...
. . .

...
...

...
− log∥ε2∥ − log∥ε3∥ − log∥ε4∥ · · · − log∥ε2N−3−1∥ log∥ε0∥ log∥ε1∥
− log∥ε1∥ − log∥ε2∥ − log∥ε3∥ · · · − log∥ε2N−3−2∥ − log∥ε2N−3−1∥ log∥ε0∥


of eigenvalue r(x). If you permute the set of rows excluding the first one by reversing the order, and then
negate that same collection of rows, this is exactly the same as M , so its determinant is ± det(M). By the

standard Vandermonde determinant calculation, the set {vx : x ∈ (Z/2N−2)×} is a basis of C2N−3

, which
means that in fact we have diagonalized this matrix, and thus proven that∏

x

r(x) = ±det(M),

as desired.
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5.2 From the special units to the full minus part of the unit group

As a consequence of Proposition 5.1, det(log∥εβ∥v1
)β,v ̸= 0 (combining (5.1), (2.4), (2.1), and Proposition 2.1,

it implies that det(log∥εβ∥v1)β,v can be multiplied by some factor to get hN , which is not zero because it is
the class number of a number field). Recall that Reg(KN/KN−1)

− was defined by det(log∥Eβ∥v1)β,v for any
basis {Eβ} of (O×

KN
/µ)τ=−1, so this already implies:

Corollary 5.2. The subgroup of (O×
KN

/µ)τ=−1 spanned by the εβ is of finite index. In particular, the εβ
are a Z-basis of that subgroup, since there are 2N−3 of them.

More specifically, letting

[(O×
KN

/µ)τ=−1 : ⊕2N−3−1
β=0 Z · εβ ] =: d,

we have
det(log∥εβ∥v1)β,v = ±dReg(KN/KN−1)

−.

It is therefore mandatory for carrying out Weber’s strategy to compute the 2-adic valuation of d, which is
what we do next:

Proposition 5.3. The positive integer d is odd.

Corollary 5.4. det(log∥εβ∥v1)β,v = (an odd integer)Reg(KN/KN−1)
−.

Proof of Proposition 5.3. First, let us explicitly decompose εβ into a root of unity times a real unit by
rationalizing the denominator: if a = 5β mod 2N , we have

εβ =
1− ζa2N

1 + ζa
2N

=
(1− ζa2N )(1 + ζ−a

2N
)

(1 + ζa
2N

)(1 + ζ−a
2N

)

=
ζ−a
2N

− ζa2N

2 + ζa
2N

+ ζ−a
2N

= ζ−2N−2a
2N

ζ
(2N−2−1)a

2N
− ζ

(2N−2+1)a

2N

2 + ζa
2N

+ ζ−a
2N

= ζ−2N−2a
2N

ζ
(2N−2−1)a

2N
+ ζ

(−2N−2+1)a

2N

2 + ζa
2N

+ ζ−a
2N

where in the last line we are using ζ2
N−1

2N = −1 to get a real3 number in the numerator. We can conveniently
simplify this remaining real unit to get a trigonometric function, which will be convenient for the purposes
of our index computation:

ζ
(2N−2−1)a

2N
+ ζ

(−2N−2+1)a

2N

2 + ζa
2N

+ ζ−a
2N

=
2 cos

(
2π (2N−2−1)a

2N

)
2 + 2 cos

(
2π a

2N

)
=

cos
(
−2π a

2N
+ πa

2

)
1 + cos

(
2π a

2N

)
=

sin
(
2π a

2N

)
1 + cos

(
2π a

2N

)
=

sin
(
2π a

2N

)
cos2

(
πa
2N

) ,

3There is no difference between “real” and “totally real” here because KN is CM.
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where the second to last line is using the fact that a = 5β ≡ 1 mod 4, and the last line is the double-angle
formula for cosine.

In fact, this is the same as the more pleasant tan(πa/2N ), but the current presentation will ultimately
be more convenient.

Since we only care about the index of the span as a submodule of (O×
KN

/µ)τ=−1, for the purposes of
proving this result, we can replace εβ with the quantity which we call by the same name

εβ :=
sin
(
2π a

2N

)
cos2

(
πa
2N

) ∈ (O×
K+

N

/µ)τ=−1.

In fact, we will prove that the set {εβ : β = 0, . . . , 2N−3 − 1} ⊂ (K+
N )× has the following property:

(*) For all elements x ∈ (K+
N )× of the form x =

∏2N−3−1
β=0 ε

eβ
β , if all of the embeddings (ι ◦ γ)(x) ∈ R×,

γ ∈ Gal(KN/Q), have the same sign, then all the eβ are even.

The property (*) already implies that d is odd. Indeed, suppose that we have proved property (*) for
{εβ}, and assume for the sake of contradiction that d = 2d′. If E ∈ (O×

K+
N

/{±1})τ=−1 ⊂ (O×
KN

/µ)τ=−1, then

there are integers eβ such that

Ed = ±
2N−3−1∏

β=0

ε
eβ
β .

Since Ed = (Ed′
)2 is the square of a real unit in K+

N , all of its embeddings (which are real a priori because
we have arranged to work only with real units) are positive, hence of the same sign. So the same is true of
the product

∏
β ε

eβ
β , and property (*) tells us that the eβ ’s are all even. This means that d could have been

replaced with d′ = d/2, which means d was not the index in the first place — hence the index is odd.
It remains to prove the property (*) for the specific set {εβ}. The numerator and denominator of

εβ =
sin
(
2π a

2N

)
cos2

(
πa
2N

)
are elements of K+

N . Moreover, the denominator is even the square of an element of K+
N , so all of its

embeddings into R ⊂ C are positive. Therefore, it suffices to prove property (*) for the alternative set of
elements

δβ := sin
(
2π

a

2N

)
=

ζa2N − ζ−a
2N

2
∈ K+

N ,

where we are reminded that a := 5β . It is no longer the case (nor is it necessary for what we need) that we
are dealing with units or even algebraic integers in KN , and the action of τ needs to be refigured as well.
For all σa′ ∈ Gal(KN/Q(i)), a′ = 5β

′ ∈ ⟨5⟩ we have

σa′(δβ) = δβ+β′ ,

just like for the εβ ’s, i.e., the δβ are just the Galois conjugates by σ5β ∈ Gal(KN/Q) of δ0. Once again, it is
legal to consider the entire orbit of δ0 under all of Gal(KN/Q(i)) = Gal(K+

N/Q) = ⟨5⟩ instead of only the

representatives β = 0, . . . , 2N−3 − 1 for the quotient by ⟨52N−3⟩. But if we consider the action of τ , we see
that

τ(δβ) = σ52N−3 (δβ) = δβ+2N−3 = sin

(
2π

a52
N−3

2N

)
= −δβ , (5.2)

since 52
N−3 ≡ 1 mod 2N−1 and a := 5β ≡ 1 mod 4. This is completely different from how τ acts on εβ ,

which is by multiplicative inverse instead of additive inverse.
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Finally, we will find it useful to fold ⟨5⟩/⟨52N−3⟩ in half again, by considering the action of 52
N−4

. Note

that 52
N−4 ≡ 1 + 2N−2 + 2N−1 mod 2N , so

δβ+2N−4 = sin

(
2π

a52
N−4

2N

)
= sin

(
2π

a

2N
+

3πa

2

)
= − cos

(
2π

a

2N

)
and thus

δβδβ+2N−4 = − sin
(
2π

a

2N

)
cos
(
2π

a

2N

)
= −1

2
sin
(
2π

a

2N−1

)
(5.3)

by the double angle formula. Importantly, the right hand side of (5.3) is exactly the same as δβ except
considered with respect to KN−1 instead of KN , which we will now use to prove (*) for the δβ ’s by induction
on N . We take N = 3 as the base case. Then KN = Q(ζ8) and K+

N = Q(cos(π/4)) = Q(
√
2). We have

2N−3 = 1, so there is only one δβ to consider, which is

δ0 = sin
π

4
=

√
2/2.

If x = δe0, e ∈ Z, then the two embeddings of x in R ⊂ C according to the two genuinely different embeddings
of K3 into C are (±

√
2/2)e. These have the same sign if and only if e is even, thus establishing the base

case. Now assume that property (*) is established for the δβ ’s defined with respect to the field KN−1, and
by induction it suffices to prove it for those defined with respect to KN .

To make the notation clear, we add N as a parameter, setting

δβ,N := sin
(
2π

a

2N

)
,

so that (5.3) becomes the more usable

δβ,Nδβ+2N−4,N = −1

2
δβ,N−1. (5.4)

Suppose that all the embeddings of

x :=

2N−3−1∏
β=0

δ
eβ
β

have the same sign. We intend to prove that the eβ ’s are all even. Since σ52N−4 (δβ) = δβ+2N−4 , the element

y := σ52N−4 (x) =

2N−3−1∏
β=0

δ
eβ
β+2N−4

must also have the property that all of its embeddings have the same sign. (in fact the embeddings of y are
exactly the same as a set to those of x since y is defined as a Galois conjugate of x, which just permutes
the embeddings). Since the infinite places of KN are by definition ring homomorphisms, xy ∈ K+

N also has
the property that all of its embeddings have the same sign. Using (5.4) followed by (5.2) (applied to N − 1
instead of N), that element is equal to

xy =

2N−3−1∏
β=0

δ
eβ
β

2N−3−1∏
β=0

δ
eβ
β+2N−4


=

2N−3−1∏
β=0

(δβ,Nδβ+2N−4,N )eβ

= ±(some power of 2)

2N−3−1∏
β=0

δ
eβ
β,N−1
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= ±(some power of 2)

2N−4−1∏
β=0

δ
eβ+eβ+2N−4

β,N−1

where the ±1 on the last line might be different from the ±1 on the line before, because (5.2) for N − 1
says that that δβ+2N−4,N−1 = −δβ,N−1. Since (*) has been assumed, as an inductive hypothesis, for the
δβ,N−1 ∈ KN−1, it follows that

eβ ≡ eβ+2N−4 mod 2

for all β = 0, . . . , 2N−4 − 1.
Using this congruence along with (5.4), we obtain

2N−4−1∏
β=0

δ
eβ
β,N−1 = ±(some power of 2)

2N−4−1∏
β=0

δ
eβ
β,Nδ

eβ
β+2N−4,N

=

2N−4−1∏
β=0

δ
eβ
β,N

2N−3−1∏
β=2N−4

δ
eβ−2N−4

β,N


=

2N−4−1∏
β=0

δ
eβ
β,N

2N−3−1∏
β=2N−4

δ
eβ
β,N

α2

= xα2

for some α ∈ (K+
N )×. The congruence eβ ≡ eβ+2N−4 is being used in the second to last line to deduce the

existence of α. Since the embeddings of α2 are all positive (they are squares of nonzero real numbers since
the embeddings are ring homomorphisms), it follows that

z :=

2N−4−1∏
β=0

δ
eβ
β,N−1

has the property that all of its embeddings have the same sign (since x was assumed to have this property
and we just saw that multiplication by α2 doesn’t affect whether that property holds).

Making use one last time of the inductive hypothesis that (*) holds for the δβ,N−1 ∈ K+
N−1, we conclude

that the eβ , β = 0, . . . , 2N−4 − 1, are all even. We already saw that eβ ≡ eβ+2N−4 mod 2, so this is already
enough to deduce that all of the eβ are even, and thus that (*) holds for δβ,N ∈ KN , as desired.

5.3 Inductively recovering the regulator from those of the minus parts in the
tower

Now we put everything together to deduce Proposition 2.11. The left hand side of Proposition 2.11 is

n∏
N=4

∏
χ∈ ̂(Z/2N )×

χ primitive even

∑
a∈(Z/2n)×

χ(a) log(1− ζa2n)
(2.7)
=

n∏
N=4

∏
χ∈ ̂(Z/2N )×

χ primitive even

∑
{a,52N−3a}∈⟨5⟩/⟨52N−3 ⟩

χ(a) log
(1− ζa2N )(1− ζ−a

2N
)

(1 + ζa
2N

)(1 + ζ
a

2N
)

(2.8)
=

n∏
N=4

∏
χ∈ ̂(Z/2N )×

χ primitive even

2N−3−1∑
β=0

χ(5β) log∥σ5β (ε0)∥ι

=

n∏
N=4

∏
x∈(Z/2N−2)×

2N−3−1∑
β=0

ζxβ
2N−2 log∥σ5β (ε0)∥ι
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(Proposition 5.1) = ±
n∏

N=4

det(log∥εβ∥v1)β,v

(Corollary 5.4) = ±
n∏

N=4

(some odd integer depending on N)Reg(KN/KN−1)
−

= (some odd integer)

n∏
N=4

Reg(KN/KN−1)
−

(Proposition 4.6) = (some odd integer)2
∑n

N=4 −σN
Reg(Kn)

Reg(K3)

= (some odd integer)2−ΣReg(Kn)

Reg(K3)
,

where the σN and hence Σ :=
∑n

N=4 σN is known to be nonnegative. Moreover, K3 = Q(ζ8), which has unit

group of rank 1, soits regulator is twice the regulator of its maximal real subfield Q(
√
2), which is log(

√
2+1)

by the basic theory of Pell equation. We conclude that the left hand side of Proposition 2.11 is

(some odd integer)
2−1−Σ

log(
√
2 + 1)

Reg(Kn),

which is exactly the right hand side in the claim of Proposition 2.11, which we have therefore proved.
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