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Abstract

This undergraduate thesis is broadly about the theme of applying the Arthur–Selberg trace formula in
various contexts to gain insight into the problems of arithmetic statistics. To this end, we develop, in
essentially full detail, the technical prerequisites in the spectral theory of automorphic forms for GL(2),
and we prove two specializations of the trace formula: the version at the in�nite place using Selberg’s
language of point-pair invariants, and the adelic version speci�cally for traces of classical Hecke operators.
After fully setting up the technology of the trace formula, we proceed with the applications to arithmetic
statistics. We provide an exposition of one of the results of Sarnak’s thesis, in which he applied the
trace formula (in the guise of a prime geodesic theorem for hyperbolic surfaces of �nite area) to prove
an asymptotic averaging law for class numbers of real quadratic �elds which made an important stride
towards removing the dependence on the regulator of the classical Gauss–Siegel asymptotic formula.
Then, we move on to imaginary quadratic �elds, where we present a new approach to proving the
existence of �elds whose class group has trivial `-torsion for a small list of primes `. Our approach (the
original content of this thesis) uses congruences between modular eigenforms of di�erent weight (those
induced by the holomorphic Eisenstein series E`−1 and which were used by Deligne–Serre to extend
the construction of Galois representations associated to modular forms to the case of weight k = 1) in
conjunction with the trace formula.
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Chapter 1

Introduction

“It is good to be confused!”

Glenn Stevens

1.1 | Historical background

Ever since the time of the ancient Greeks, Diophantine equations (polynomial equations for which the
solutions we seek are integers) have been of fundamental interest to number theorists. Elementary
questions about Diophantine equations, though stated in simple language, are responsible for much of the
vast modern corpus of algebraic number theory. Now that we have made this claim, we have no choice but
to back it up with some of the most famous examples of how the modern abstractions of algebraic number
theory have been motivated by questions stated hundreds of years ago in the elementary language of
Diophantine equations.

Question 1.1.1 (Fermat’s challenge to the English mathematicians). What are the solutions x, y ∈ Z to
the Diophantine equation

x2 = y3 − 2?

Question 1.1.2 (Fermat’s last theorem). The pythagorean triples (solutions to the Diophantine equation
x2 + y2 = z2) can be explicitly generated by parametrizing rational points on the unit circle, or by
Hilbert’s Theorem 90. Are there any nontrivial solutions x, y, z ∈ Z to

xn + yn = zn

if n ≥ 3?

Question 1.1.3 (Gauss’ quadratic reciprocity law). Given a prime p, which primes q can divide the values
of x2 − p? Note that this is really asking about when the diophantine equation

x2 − p = qy

has solutions x, y ∈ Z.
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Question 1.1.4 (General reciprocity law). Given an arbitrary polynomial f(x) ∈ Z[x], which primes q
can possibly divide the output? More generally, can we predict how the mod-q reduction of f in Fq[x]

factors?

Question 1.1.5. Given a �xed integer n, which primes p are of the form x2 +ny2? More generally, given
a quadratic polynomial

f(x, y) = ax2 + bxy + cy2 ∈ Z[x, y]

(or eventually an arbitrary homogeneous polynomial in an arbitrary number of variables), which primes
p are in the image of f?

All �ve questions 1.1.1-1.1.5 are natural questions about numbers that only use the language of
prime numbers and polynomial expressions. They are also very old: Fermat studied Question 1.1.1 and
Question 1.1.2 in the middle of the 17th century; Question 1.1.3, Question 1.1.4 and Question 1.1.5 were
studied starting at least in the 18th century by Euler, Legendre, Lagrange, and Gauss (see [Cox2013] for a
reasonably elementary modern treatment, and [Gau1966] for Gauss’ famous work on these questions).
But at least in the current state of knowledge, none of them can be solved in generality without the
modern tools of algebraic number theory.

For Question 1.1.1, the key insight is to move the 2 over to the left hand side and factor it in the ring

Z[
√
−2] = {a+ b

√
−2 : a, b ∈ Z},

at which point one has
y3 = (x−

√
−2)(x+

√
−2).

One proves that every element in Z[
√
−2] factorizes uniquely (up to units) into irreducible elements,

from which it follows that x−
√
−2 and x+

√
−2 both must be perfect cubes in Z[

√
−2]. This turns

out to be enough information to deduce directly that the only solutions to the Diophantine equation
x2 = y3 − 2 are

(x, y) = (5,±3).

But here’s the rub: if we want to repeat this kind of argument to some slightly more general equations,
such as

x2 = y3 − n,

then we can repeat it verbatim only if Z[
√
−n] has the unique factorization property. For positive n, this

almost never happens. The failure of the unique factorization property for the ring of integers OK of an
algebraic number �eld K is quanti�ed by the ideal class group ClK , which is the quotient of the group of
fractional ideals of OK by the subgroup of principal ideals (so ClK = 1 is equivalent to OK having the
unique factorization property, by the general theory of Dedekind domains [Neu1999]). Gauss [Gau1966]
conjectured that the group ClQ(

√
−n) is trivial only for some �nite list of n > 0, namely

n = 1, 2, 3, 7, 11, 19, 43, 67, 163.

Gauss’s class number 1 conjecture was �nally proved by Heegner–Stark [Hee1952, Sta1969] (and inde-
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pendently by Baker [Bak1968]) in the 1950s and 1960s, using the theory of modular forms and elliptic
curves with complex multiplication. But algebraic number �elds and knowledge of their class groups
is not just useful for these concrete questions if the class group is trivial. In particular, one of the most
well-known steps towards answering Question 1.1.2 (Fermat’s last theorem) in the negative is due to
Kummer [Kum1850], and involves a similar strategy as the answer to Question 1.1.1 explained above. In
particular, the Fermat equation

xn + yn = zn

can be factored over Z[ζn] = OQ(ζn), where ζn is a primitive n-th root of 1. Using the factorization
Tn − 1 =

∏n−1
i=0 (T − ζin), the Fermat equation becomes

zn =
n−1∏
i=0

(x+ ζiny).

If ClQ(ζn) = 1, then one deduces that the quantities x+ ζiny are n-th powers in Z[ζn], and it is relatively
straightforward (though not trivial) to deduce Fermat’s last theorem from this information. After dis-
covering this argument, Lamé famously made the mistake of claiming that he had produced a proof of
Fermat’s last theorem1. Still, Kummer discovered that the argument could still be made to work when n
is prime and

n - #ClQ(ζn).

Such primes n are called regular primes.
Class groups of number �elds are also of key importance for Question 1.1.5. It is a standard fact

from algebraic number theory that for a quadratic �eld K = Q(
√
n) of discriminant D, there is a

bijection between ClK and the set of GL2(Z)-equivalence classes of primitive binary quadratic forms2

of discriminant D (the article of Wood [Woo2011] which also generalizes this much further and the book
of Cohen [Coh1993] on computational algebraic number theory are two good references). So it is no
surprise that the answer to Question 1.1.5 depends on knowledge of the class number of some quadratic
orders3. Surprisingly, Question 1.1.5 can only be answered in generality via class �eld theory, a part of
algebraic number theory developed over the course of the �rst half of the 20th century by Kronecker,
Hilbert, Takagi, and Artin, among others [Hil1896, Hil1902, Tak2014, Art1929, AT2009, CF1967]. As a
basic example (this argument is most of the content of [Cox2013]; I learned it from an exercise in B.
Conrad’s course [Con2009, Homework 9]), if Z[

√
−n] = OQ(

√
n), then a prime p is of the form x2 − ny2

if and only if p splits into two principal primes (x −
√
−ny)(x +

√
−ny) in Q(

√
−n). By class �eld

theory, this is equivalent to p splitting completely in the the Hilbert class �eld of Q(
√
−n), which is

a degree-#ClQ(
√
−n) extension of Q(

√
−n). Therefore, the answer to Question 1.1.5 depends on how

some polynomial over Z[
√
−n] depending only on n splits modulo p, which reduces Question 1.1.5 to

1At least this story is part of number theory folklore, recorded for instance in [Edw1977].
2A primitive binary quadratic form is just one of the quadratic polynomials of interest in Question 1.1.5, namely a homogeneous

quadratic polynomial in 2 variables such that all 3 coe�cients are coprime.
3Here we have been sweeping a detail under the rug: the ring Z[

√
n] is not necessarily equal to the ring of integersOQ(

√
n);

instead it is a non-maximal order (see [Neu1999, Ch. 1]). But this di�culty is not the central one in the theory, and we lose no
important ideas by ignoring it.
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Question 1.1.4 with the added information that the degree of this polynomial equals #ClQ(
√
−n).

Finally, Question 1.1.3 and the generalized version Question 1.1.4 concern the general notion of
reciprocity. Gauss [Gau1966] famously resolved Question 1.1.3 by elementary methods in many di�erent
ways over the course of his life. The case of Question 1.1.4 where f has abelian Galois group is part
of the content of class �eld theory. From one lens, the reciprocity law of class �eld theory is about
a correspondence between abelian Hecke L-functions (analytic objects that come from 1-dimensional
complex representations of ray class groups, which are just a natural generalization of ideal class groups)
and abelian Artin L-functions (analytic objects that come from 1-dimensional complex representations
of Gal(Q/Q)). The idea that this should generalize to higher-dimensional representations and with
coe�cients in other �elds is a fundamental one fueling the Langlands program, and particularly modern
work on the Langlands reciprocity conjecture. In fact, Wiles and Taylor–Wiles’ resolution of Question 1.1.2
in the 1990s [Wil1995, TW1995] and the continuing work on modularity [Kis2009a, Kis2009b, KW2009] is
a central part of the Langlands program.

A common view is that the theory of automorphic forms and representations (key objects on one
side of the Langlands program; the Hecke L-function of class �eld theory are attached to automorphic
representations of GL(1)) began with Tate’s thesis [Tat1950], which set up the language and proved
the local and global functional equation in the case GL(1). This thesis essentially assumes familiarity
with that work, and explains the theory for GL(2) in all the necessary detail. The main theme of this
thesis is the development of the Arthur–Selberg trace formula in various forms for GL(2), and the
application of this to concrete questions about the distribution of ideal class groups of number �elds.
Though it is not the main focus of this thesis, we remark here that the trace formula is a central tool
in the Langlands program in and of itself: for instance, it is used in the proof of the Jacquet–Langlands
correspondence [JL1970, GJ1979], and in the proof of the cyclic base change lifting for GL(2), which
itself was a key ingredient in the proof of Fermat’s last theorem (in the guise of the Langlands–Tunnell
theorem [Lan1980, Tun1981, CSS1997]). It is also the key ingredient in the Langlands–Kottwitz method
[Lan1973, Kot1984, Sch2011, Sch2013].

1.2 | Brief overview

The purpose of Section 1.1 was to give some motivation for why class numbers of algebraic number
�elds are interesting for the purposes of attacking concrete questions in number theory, and for why the
modern methods of algebraic number theory and particularly the Langlands program should be expected
to shed light on them. This section is meant to give more detailed information about the actual contents
of this thesis.

Given that Gauss’ class number-1 conjecture for imaginary quadratic �elds has been resolved, one
might hope to eventually be able to have simple explicit formulas for class numbers of quadratic �elds.
Having such convenient theoretical information about individual class numbers seems to be out of reach
thus far (though this does not mean there are not e�cient algorithms for computing class numbers of
individual number �elds [Coh1993]). In fact, it is not known whether in�nitely many real quadratic
�elds Q(

√
n) for n > 0 have class number 1, though it is predicted that about 76% of them (ordered by

discriminant) do [CL1984].
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On the other hand, Gauss [Gau1966] saw that the class numbers have considerable regularity to them
when looked at on average. In particular, he proved

Theorem 1.2.1 (Gauss, 1801). Let DIm be the set of discriminants of imaginary quadratic �elds. Then∑
D∈DIm
−D<T

hD ∼
π

36

∏
p

(1− p−2 − p−3 + p4)T 3/2

as T →∞, where the product is over the positive rational primes and hD denotes the class number of the
imaginary quadratic �eld of discriminant D.

However, Gauss found that no such asymptotic law seemed to hold for averages of class numbers of
real quadratic �elds. This is due to the fact that the unit groups of real quadratic �elds are in�nite, and
one must account for this by weighting everything by the regulator. Gauss conjectured the following
statement, which was eventually proved in [Sie1944].

Theorem 1.2.2 (Siegel, 1944). Let DRe be the set of discriminants of real quadratic �elds. Then

∑
D∈DRe
−D<T

hDRD ∼
π2

36

∏
p

(1− p−2 − p−3 + p4)T 3/2

as T →∞, where the product is over the positive rational primes and hD denotes the class number of the
real quadratic �eld of discriminant D.

Nowadays, the problem of the asymptotic behavior of class numbers, and more generally the asymp-
totic distribution of class groups of global �elds in natural families, is an important part of a �eld called
arithmetic statistics. The most famous conjecture of arithmetic statistics in this direction is from [CL1984]:

Conjecture 1.2.3 (Cohen–Lenstra heuristics, 1983). Let ` be an odd prime. For any �nite abelian `-group
G,

Pr[ClkD [`∞] ∼= G|D ∈ DIm] =
1

#AutG

∏
i≥1

(1− `−i)

where kD denotes the imaginary quadratic �eld of discriminant D. The probability is meant in the sense
of natural density, ordered by discriminant.

Conjecture 4.2.1 seems to be very far out of reach, and so are its various generalizations to other
families of number �elds [CM1987, CM1990]. The question in arithmetic statistics that this thesis will
focus on is a consequence of Conjecture 4.2.1 which is still very open:

Conjecture 1.2.4. Let ` be an odd prime. Then

Pr[ClkD [`] = 1|D ∈ DIm] = Pr[hD 6≡ 0 (mod `)|D ∈ DIm] =
∏
i≥1

(1− `−i) > 0.
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To give an idea of how open this conjecture is: when ` ≥ 5, it is unknown whether a positive
proportion4 of imaginary quadratic �elds K have ClK [`] = 1.

We will explain some special instances of the theme of applying information about automorphic
forms together with a powerful tool from the Langlands program called the Arthur–Selberg trace formula
[Sel1956, DL1971, Lan2001, Art2005] (the research program around various forms of the trace formula and
related issues of invariance and stabilization is ongoing and still being led by Arthur [Art1981, Art1983,
Lan1983,Art2002,Art2001,Art2003]) to make progress towards both of the questions in arithmetic statistics
we have introduced so far: Conjecture 1.2.4, as well as the question of how to generalize Theorem 1.2.1 to
the real quadratic case without having to weight the class number by the regulator.

One explicit way to write down the Arthur–Selberg trace formula for GL(2) is called the Eichler–
Selberg trace formula. The statement (in the case of full level) is as follows.

Theorem 1.2.5. Let k > 2 be an even integer, and Sk the C-vector space of cusp forms of weight k and
level 1, equipped with the Hecke operators Tm for allm ≥ 1. Then

TrTm|Sk = −1

2

∑
|t|≤2

√
m

Pk(t,m)H(t2 − 4m)− 1

2

∑
d1d2=m

min(d1, d2)k−1,

where Pk(t,m) is de�ned to be

Pk(t,m) =
ρk−1 − ρk−1

ρ− ρ
,

where ρ is the quadratic algebraic number with norm m and trace t, and H denotes the Hurwitz class
number5. Note that Pk(t,m) is a polynomial in t andm, and is equal to the coe�cient of xk−2 in the formal
power series (1− tx+mx2)−1 ∈ Z[m, t]JxK.

We recover some special cases (previously known but by di�erent methods [Har1974, Wil2015]) of
Conjecture 1.2.4 by using Theorem 1.2.5 in conjunction with congruences between modular eigenforms
of di�erent weight coming from the congruence of holomorphic Eisenstein series Ep−1 ≡ 1 mod p

(this type of congruence was notably used by Deligne–Serre [DS1974] to show the existence of Galois
representations associated to eigenforms of weight k = 1). This novel approach is the original content of
this thesis, and the present result is stated and proved in Theorem 4.2.27.

We also explain how to apply the Selberg trace formula at the in�nite place to obtain a prime
geodesic theorem for �nite-area hyperbolic surfaces and deduce one of the main results of Sarnak’s thesis
[Sar1980, Sar1982], namely

Theorem 1.2.6 (Sarnak, 1980). For D ∈ DRe, let h+
D denote the narrow class number of the real quadratic

�eld of discriminant D, and RD the narrow regulator. Then∑
D∈DRe

eRD≤T

h+
D ∼ Li(T

2)

4From now on we omit the fact that densities are computed by ordering by discriminant, since this is the only way it will be
done in this thesis.

5The Hurwitz class number is de�ned just like the usual class number, except the quadratic forms are counted with weights
inverse to the size of the stablizer in SL2(Z)
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as T →∞.

This thesis is organized as follows. In Chapter 2, we follow some of the standard references
[Bum1997, GGPS1969, Lan1985, Lan1976, Iwa2002] in establishing in full detail the basic spectral theory
of automorphic forms on GL(2), albeit only in the context of GL(2,R)+. In the long Chapter 3, we
provide detailed proofs of both versions of the Arthur–Selberg trace formula we will use: the purely
analytic version for GL2(R) (essentially following [Hej1976, Iwa2002]) which we will use later to prove
the prime geodesic theorem and Weyl’s law for hyperbolic surfaces; and the version for GL2/Q used
to deduce Theorem 1.2.5 (essentially following [GJ1979, KL2006]). Finally, in Chapter 4, we present the
applications of these tools to the problems of arithmetic statistics introduced in this section: Sarnak’s
result Theorem 1.2.6 [Sar1980, Sar1982] for asymptotic averages of class numbers of real quadratic �elds,
and our new approach to Conjecture 1.2.4 (about torsion in class groups of imaginary quadratic �elds)
using the trace formula in conjunction with additional congruence data (as brie�y described above).

Parts of Chapter 2 and Chapter 3 have previously appeared in notes I wrote for the University of
Chicago graduate students’ seminar on automorphic forms and representations [Kal2020].
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Chapter 2

Review of basic spectral theory of
automorphic forms

“Il a fallu Maass pour nous sortir du ghetto
des fonctions holomorphes”

André Weil

This chapter follows the references [Bum1997] and [Iwa2002] closely, with occasional input from
[Lan1976], [GGPS1969], and [Lan1985].

2.1 | Automorphic forms and representation theory

Let Γ ⊂ SL2(Z) be a congruence subgroup and H = {z ∈ C : =(z) > 0} the complex upper half-plane.
Then recall

De�nition 2.1.1. Let k ≥ 0 be an integer and χ : Γ→ C× a unitary character. A Maass form of weight
k and character χ is a smooth function

f : H→ C

satisfying

1. A polynomial growth condition at the cusps1;

2. the transformation law

f(γz) = χ(γ)

(
cz + d

|cz + d|

)k
f(z)

for all

γ =

(
a b

c d

)
∈ γ;

1What this means is that for any σ ∈ Γ\SL2(Z) (these take i∞ to the other cusps of Γ\H), f(σ(x+ iy))� yN for some
N .
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3. and the di�erential equation
∆kf = λf

for some constant λ, where ∆k is the weight-k Laplacian

∆k = −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

∂

∂x
.

For this section and the next two, we assume Γ = SL2(Z). This will make the theory easier to write
down (since we only have one cusp and therefore only one family of Eisenstein series), and it is the only
thing we will need in the archimedean theory in order to establish Sarnak’s theorem on class numbers in
Chapter 4. However, we note here that (with the exception of speci�c information about small Laplace
eigenvalues which is only important for the error terms in Chapter 4) all the parts of the theory presented
here generalize easily to general Γ.

The reason for the strange-looking transformation law in De�nition 2.1.1 is that the de�nition comes
from looking at functions on H from the perspective of representation theory. This perspective allows
one to go from the classical notion of modular forms to the modern language of automorphic forms and
representations. In particular, H is equipped with a transitive smooth action of GL2(R)+, and

StabGL2(R)+(i) =

{(
a b

−b a

)
: a2 + b2 > 0

}
= R×>0SO2(R).

We write SO2(R) = K◦, because it is the connected component of the maximal compact subgroup
K = O2(R) ⊂ GL2(R). So we may rewrite H as the homogeneous space

H ∼= GL2(R)+/Z◦K◦ ∼= SL2(R)/K◦.

The point of this observation is that the Maass forms of weight2 0 which also enjoy the property
of being square-integrable with respect to the induced hyperbolic metric on Γ\H can be considered as
elements of the complex Hilbert space

L2(Γ\GL2(R)+/Z◦K◦, χ) = L2(Γ\SL2(R)+/K◦, χ)

consisting of the measurable functions f : GL2(R)+ → C with the property that3

f(γguκ) = χ(γ)f(g)

for all γ ∈ Γ, g ∈ GL2(R)+, u ∈ Z◦, κ ∈ K◦ and∫
Γ\SL2(R)

|f(x)|2 dx <∞ (2.1)

2We are about to explain the representation-theoretic reason for the de�nition of Maass forms of general weight.
3We can also add a choice of “central character” ω : Z → S1 with the obvious change to the de�nition, but this is not very

relevant to the current discussion. The inclusion of the χ is just to reassure us that modular forms with Nebentypus character
can be dealt with in this setting.
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where dx is the Haar measure on SL2(R). One checks (for instance via the Iwasawa decomposition
for SL2(R)) that the measure on Γ\SL2(Z)/K◦ = Γ\H coming from the Haar measure on SL2(R)

coincides with the measure induced by the Riemannian metric on H, so since K◦ is compact and of
measure 1 when normalized correctly, Equation (2.1) is equivalent to f being of �nite L2-norm when
considered as a function on H. In summary, we have

Lemma 2.1.2. There is an isomorphism of complex Hilbert spaces

ϕ : L2(Γ\H, χ)→ L2(Γ\SL2(R)/K◦, χ)

given by sending f to the complex-valued function(
y1/2 xy−1/2

0 y−1/2

)(
cos θ − sin θ

sin θ cos θ

)
7→ f(x+ iy).

Proof. This is just the explicit realization of the isomorphism Γ\H ∼= Γ\SL2(R)/K◦, using the Iwasawa
decomposition and the fact that this isomorphism is given by

g 7→ g(i),

and hence x+ iy is the image of the coset of

(
y1/2 xy−1/2

0 y−1/2

)
. As remarked above, one checks that the

left Haar measure on the upper-triangular Borel subgroup is given by 1
y2 dxdy when using the coordinates

above, which shows that ϕ respects the inner product of the two L2 spaces.

This L2 space is really only useful insofar as we can use representation theory to study it. We would
want to de�ne a left action ofGL2(R)+, via right regular representation (g ·f)(x) = f(xg). The problem
with this is thatK◦ is not in the center ofGL2(R)+, so this action would not take L2(Γ\SL2(R)/K◦, χ)

to itself.
So we remove the requirement of K◦-invariance, and consider the larger Hilbert space

H = L2(Γ\SL2(R), χ),

which admits a left-action of GL2(R)+ (namely the right regular action). The Hilbert space

L2(Γ\SL2(R)/K◦, χ)

where the square-integrable Maass forms live then sits inside of H as the set of vectors on which K◦

operates trivially. Also,the space of smooth vectors for the Lie group action of GL2(R)+ on H is

C∞(Γ\GL2(R)+/Z◦, χ),

de�ned in the obvious way4. It is a general fact that the smooth vectors in Hilbert space representations
4Though the “obvious” way still requires adding the requirement of square-integrability.

10



of Lie groups are dense:

Lemma 2.1.3. Let π : G→ End(H) be a representation of a Lie group G into a Hilbert space H. The space
of smooth vectors for this representation, H∞, is dense in H.

Proof. The method is by convolution by a smooth function φ ∈ C∞c (G). Let

π(φ)v =

∫
G
φ(g)π(g)v dg,

which is well-de�ned for all v ∈ H because φ is compactly supported. In the toy model where π is the left
regular representation and H = L2(G), this is the same as convolving a function in that L2 space with φ.

Let g be the Lie algebra of G. For any v ∈ H, φ ∈ C∞c (G), and X ∈ g, we have

d

dt

∣∣∣∣
t=0

π(exp(tX))π(φ)v =
d

dt

∣∣∣∣
t=0

π(exp(tX))

∫
G
φ(g)π(g)v dg

=
d

dt

∣∣∣∣
t=0

∫
G
φ(g)π(exp(tX)g)v dg

=
d

dt

∣∣∣∣
t=0

∫
G
φ(exp(−tX)g)π(g)v dg

=

∫
G

(
d

dt

∣∣∣∣
t=0

φ(exp(−tX)g)

)
π(g)v dg

where the di�erentiation under the integral sign is okay because φ and d
dt

∣∣
t=0

φ(exp(−tX)g) are com-
pactly supported onG. So the action of g on π(φ)v is well-de�ned and results in another thing of the form
π(φ′)v, where φ′ = d

dt

∣∣
t=0

φ(exp(−tX)g) is also in C∞c (G) and supported in the support of φ. It follows
that the same argument we just did applies arbitrarily many times, which shows that π(φ)v ∈ H∞.

Now the point is that we can approximate a given v ∈ H with these smooth vectors π(φ)v. Let v ∈ H,
ε > 0, and take an open set U ⊂ G around the identity with the property that |π(g)v − v| < ε for all
g ∈ U . This is possible because the function g 7→ |π(g)f − f | is continuous. By general theory of smooth
manifolds, there exists a φε ∈ C∞(G) such that φ is supported on U , and

∫
G φε = 1. Then

|π(φε)v − v| =
∣∣∣∣∫
G
φε(g)(π(g)v − v) dg

∣∣∣∣ ≤ ∫
G
φε(g)ε ≤ ε.

Since we showed that π(φε)v ∈ H∞, this shows that H∞ is dense in H, as desired.

The square-integrable Maass forms of weight 0 live in the GL2(R)+-smooth vectors of

L2(Γ\SL2(R)/K◦, χ) ⊂ L2(Γ\SL2(R), χ) = H,

that is they are smooth vectors in theK◦-isotypic subspace ofH corresponding to the trivial representation
of K◦. But K◦ = SO2(R) has some other irreducible representations, which are all 1-dimensional (as
SO2(R) is abelian) and given by (

cos θ − sin θ

sin θ cos θ

)
7→ eikθ

11



for k ∈ Z. By the Peter–Weyl theorem [Bum2013, Theorem 4.3], we have a decomposition

H =
⊕
k∈Z

Hk,

of representations of K◦, where the direct sum is the Hilbert space direct sum5 and Hk is the K◦-isotypic
subspace corresponding to the irreducible representation eikθ .

This is a general technique in representation theory: when you have a Hilbert space representation
of a group G, restrict it to a maximal compact subgroup K and use the representation theory of compact
groups to your advantage. In our case, there are two reasons why it is more convenient to think about
the connected component G = GL2(R)+ rather than GL2(R):

1. It is more naturally connected to the upper half-plane, since the fractional linear transformations
of negative determinant take the upper half-plane to the lower half-plane

2. The maximal compact subgroup K◦ ⊂ GL2(R)+ is abelian, whereas K = O2(R) is not.

These things don’t make a big di�erence, because PGL2(R)/O2(R) ∼= PGL2(R)+/SO2(R), and it
isn’t hard to write down the irreducible representations of O2(R) by induction from SO2(R).

The Maass forms of weight k are the smooth vectors in the corresponding K◦-isotypic subspace
H∞k . To get from a function on the upper half-plane to an element of the weight-k K-isotypic subspace,
we can’t simply transfer the function over using the isomorphism H ∼= GL2(R)+/Z◦K◦, since that
function would always be in the isotypic subspace corresponding to k = 0. Instead, one must twist by
the appropriate character of K◦, using the Iwasawa decomposition. From this we recover the symmetry
condition satis�ed by Maass forms of weight k: let L2(Γ\H, χ, k) be the subspace of L2(H) de�ned by
the condition

f(γz) = χ(γ)

(
cz + d

|cz + d|

)k
f(z), γ =

(
a b

c d

)
∈ Γ.

Lemma 2.1.4. The map
σk : L2(Γ\H, χ, k)→ Hk

given by
(σkf)(g) = e−ikθgf(xg + iyg),

where θg, xg, yg are de�ned via the Iwasawa decomposition

g =

(
y1/2 y−1/2x

0 y−1/2

)
κθ,

is an isomorphism of Hilbert spaces.

Proof. We checked already in Lemma 2.1.2 that this map respects the inner product. To recover f from

σkf , we just take f(x+ iy) = (σkf)

(
y x

0 1

)
, which works because the K-component of this matrix

5So the claim is really that the algebraic direct sum on the right hand side is dense in H
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in the Iwasawa decomposition is zero. It just remains to check that σkf being a eikθ-simultaneous
eigenvector for the action of K is equivalent to f satisfying the symmetry property for Maass forms of
weight k. This is because if σkf = F ∈ L2(Γ\PGL2(R)+, χ, k), then

f(γ · (x+ iy)) = F

((
y′ x′

0 1

))
= F

(
γ

(
y x

0 1

)
κ−1
θ′

)
= eikθ

′
χ(γ)f(x+ iy),

where x′ + iy′ := γ · (x+ iy) and θ′ is de�ned by the Iwasawa decomposition

γ

(
y x

0 1

)
=

√
y

y′

(
y′ x′

0 1

)
κθ′ .

So we just need to compute θ′ in terms of γ and x+ iy. I don’t know how to do it by pure thought, but
the computation isn’t that bad:

κθ′ =

√
y′

y

(
y′ x′

0 1

)−1(
a b

c d

)(
y x

0 1

)

= (yy′)−1/2

(
1 −x′

0 y′

)(
ay ax+ b

cy cx+ d

)

=
|cz + d|

y

(
∗ ∗
cyy′ cxy′ + dy′

)

=
1

|cz + d|

(
∗ ∗
cy cx+ d

)
so

cos θ + i sin θ =
cz + d

|cz + d|
,

and thus

f(γ · (x+ iy)) = χ(γ)

(
cz + d

|cz + d|

)k
f(x+ iy)

as desired.

So we have provided a natural explanation of the symmetry condition satis�ed by the Maass forms
of weight k in terms of the representation theory of SL2(R). Where do the modular forms �t into this
picture? Actually the answer is very simple.

Lemma 2.1.5. Suppose that f : H→ C is a modular form of weight k and character χ for Γ. Then

yk/2f ∈ C∞(Γ\H, χ, k).

Proof. This is a straightforward observation about the relationship between the symmetry conditions

13



satis�ed by modular forms and Maass forms. In particular,

(=(γ · z))k/2f(γ · z) =
yk/2

|cz + d|k
(cz + d)kχ(γ)f(z) =

(
cz + d

|cz + d|

)k
χ(γ)yk/2f(z)

as required.

So from the perspective of representation theory, the theory of modular forms is subsumed by the
theory of Maass forms. Note that we haven’t yet accounted for the entirety of De�nition 2.1.1: we are
still missing

1. The growth condition at the cusps.

2. The requirement of being an eigenvalue for the Laplace operator.

These conditions are useful because they guarantee the existence of a Fourier expansion (see [Bum1997,
§1.9]). We will see later that despite the growth condition, the Maass forms still provide a full decom-
position of H into the discrete spectrum (coming from Maass cusp forms) and the continuous spectrum
(coming from non-holomorphic Eisenstein series6). The point is that we are looking to decompose the
spectrum of ∆, and the Maass forms are the basic building blocks of that.

Let g =M2×2(R) be the Lie algebra of GL(2,R)+. Since C∞(Γ\SL2(R), χ) are the GL(2,R)+-
smooth vectors in L2(Γ\SL2(R), χ), they admit an action of the universal enveloping algebra U(g).
The weight-0 Laplacian on the upper half-plane, which we might originally justify as being the Laplace-
Beltrami operator for the Poincaré upper half-plane, turns out to transfer over (via the map of Lemma 2.1.4)
to this setting as the Casimir element of U(g). In fact, it is generally true that if you choose a bi-invariant
metric on a Lie group G, then the Laplace-Beltrami operator with respect to that metric coincides with
the Casimir element corresponding to the induced inner product on the Lie algebra g.

The center of U(g⊗C) is Z = C[∆, Zg], where ∆ is the Casimir element with respect to the Killing
form, and Zg is the identity matrix and one of the two standard basis elements of the Cartan subalgebra
hC ⊂ g⊗C, given by the diagonal matrices. Recall that the standard basis of hC is

Zg =

(
1 0

0 1

)
, H =

(
1 0

0 −1

)
.

Note that Z◦ = R×>0 the subgroup of GL2(R)+ is distinguished in our notation from Zg, though the fact
that they are both involve the letter Z is suggestive of their relation, namely that exp(R× Zg) = Z◦.

The real subspace of gC consisting of real diagonal matrices is also spanned over R by Z and H , and
is a Cartan subalgebra of g. We should be aware that the exponential map sends this choice of h to the
abelian subgroup of GL2(R)+ given by diagonal matrices with positive entries. This is inconvenient for
us, because we want this to contain a maximal compact of GL2(R)+ (so that we can compare the action
of H to the action of a maximal compact). It does contain such a maximal compact, but only of GL2(C):

6Though the individual Eisenstein series are NOT square-integrable.
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those elements are

exp(iθH) =

(
eiθ 0

0 e−iθ

)
.

We need to perform a change of variables to make the entries real. The canonical way of doing this is to
conjugate by the Cayley transform

C = − i+ 1

2

(
i 1

i −1

)

and if we set Ĥ = CHC−1 we have

exp(iθĤ) =

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)
= κ−θ ∈ K◦ = SO2(R).

Despite the fact that the actual matrix Ĥ =

(
0 −i
i 0

)
is not as nice, we prefer to use this one because a

decomposition of a K◦-�nite representation of GL2(R) into K◦-isotypic subspaces should correspond
to a decomposition into eigenspaces of H . By our previous discussion on the irreducible representations
of K◦ = SO2(R), such a K◦-�nite representation V of G decomposes as an algebraic direct sum

V =
⊕
k∈Z

V (k)

where V (k) is the isotypic component corresponding to the 1-dimensional representation of K given by
the character

κθ 7→ eikθ.

If V is the space of K◦-�nite vectors in H = L2(Γ\SL2(R), χ), then in the previous section we saw
that Maass forms and modular forms of weight k and character χ for Γ can be thought of as elements of
V (k). By virtue of the way we changed variables via the Cayley transform, this decomposition is also an
eigenspace decomposition for the action of Ĥ , since

iĤv =
d

dt

∣∣
t=0

exp(itĤ)v

=
d

dt

∣∣
t=0

eiktv

= ikv

for v ∈ V (k), which means that V (k) is exactly the k-eigenspace of the action of Ĥ ∈ g⊗R C on V .
Back in the setting of H and Zg rather than their Cayley-transformed siblings, it is convenient that

g⊗C is reductive: it splits into
sl2(C)⊕C · Zg,

where we know that sl2(C) is simple (e.g. from the theory of its root system) and CZg is abelian. In
particular, there is a maximal abelian subalgebra of sl2(C) spanned by H (or Ĥ), and a root space
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decomposition
sl2(C) = C ·H ⊕C · L⊕C ·R,

where

L :=

(
0 0

1 0

)
, R :=

(
0 1

0 0

)
span the−2 and +2 root spaces, respectively (since they are eigenvectors for the adjoint action ofH with
[H,L] = −2L and [H,R] = 2R). This is just the standard root space decomposition for the semisimple
Lie algebra sl2(C). If we conjugate by the Cayley transform (which is in SL2(C) which of course has a
well-de�ned adjoint action on sl2(C)) we get a slightly less standard root space decomposition

sl2(C) = C · Ĥ ⊕C · L̂⊕C · R̂,

which has the advantage that the abelian subalgebra C · Ĥ acts nicely on the decomposition of V into
K-isotypic subspaces. We still have

[Ĥ, L̂] = −2L̂, [Ĥ, R̂] = +2R̂

so since the decomposition of V into V (k)’s is a weight-space decomposition for V , the operator L̂
decreases the H-eigenvalue by 2, and R̂ increases it by 2. Translating to the language of K◦-isotypic
subspaces, and then to the language of functions on the upper half-plane, these produce di�erential
operators which raise and lower the weight of Maass forms by 2. Those di�erential operators are called
the Maass–Shimura operators.

When we think about GL2(R)+ instead, the only di�erence is that the Lie algebra has nontrivial
center, namely C · Zg. But since this is in the center, it necessarily acts on everything via the adjoint
action by 0. And in the case we care about, namely the space ofK-�nite vectors in L2(Γ\PGL2(R)+, χ),
the action of Z and thus Zg is also trivial. So these issues about the center will not be important for us,
and all the important features that have to do with the Lie-algebra are contained in the subalgebra sl2C.

The Maass–Shimura operators also provide the key representation–theoretic distinction between the
Maass forms that come from (anti-)holomorphic modular forms (see Lemma 2.1.5) and those that don’t.

Lemma 2.1.6. Let f ∈ C∞(Γ\SL2(R), χ, k) be nonzero.

1. L̂f = 0 if and only if y−k/2σ−1
k f is a holomorphic modular form.

2. R̂f = 0 if and only if yk/2σ−1
k f is an antiholomorphic modular form.

Proof. In the coordinates on GL2(R)+ coming from the Iwasawa decomposition

g =

(
u

u

)(
y1/2 y−1/2x

y−1/2

)
κθ,

the Maass–Shimura di�erential operators may be explicitly given by

R̂ = e−2iθ

(
iy
∂

∂x
+ y

∂

∂y
− 1

2i

∂

∂θ

)
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L̂ = e2iθ

(
−iy ∂

∂x
+ y

∂

∂y
+

1

2i

∂

∂θ

)
so for a function F ∈ C∞(Γ\H, χ, k), we have

σk+2R̂σkF =

(
iy
∂

∂x
+ y

∂

∂y
+

1

2
k

)
F

σk−2L̂σkF =

(
−iy ∂

∂x
+ y

∂

∂y
− 1

2
k

)
F.

So as maps from C∞(Γ\H, χ, k) to k ± 2, the Maass di�erential operators are given by

R̂ = (z − z) ∂
∂z

+
1

2
k

L̂ = −(z − z) ∂
∂z
− 1

2
k

F ∈ C∞(Γ\H, χ, k) being killed by R̂ is therefore equivalent to yk/2F (considered abstractly as a
function on H) being killed by (z − z) ∂∂z , since

(z − z) ∂
∂z

(yk/2F ) = yk/2R̂F.

By the Cauchy–Riemann equations, this is equivalent to yk/2F being antiholomorphic. Similarly, F
being killed by L̂ is equivalent to y−k/2F being holomorphic.

2.1.1 | Discrete decomposition of the cuspidal subspace

The ultimate goal here is to decompose the right regular representation (π,H) into irreducible components.
We do this following the reference of Bump [Bum1997], which uses the strategy of applying the theory of
(g,K◦)-modules originally due to Harish-Chandra [HC1953, HC1954a, HC1954b]. In the decomposition,
there is a serious distinction between the cuspidal part of H and the rest: the cuspidal part will decompose
discretely as a direct sum of irreducibles. The rest will compose continuously as a direct integral of
subgrpresentations generated by Eisenstein series. So we begin with a more serious discussion of
cuspidality, and with the decomposition of the cuspidal subspace. Let N ⊂ SL2(R) be the upper-
triangular nilpotent radical in the Levi decomposition of the upper-triangular parabolic (Borel) subgroup
of SL2(R)7. The de�nition of cuspidal is obvious when χ|Γ∩N = 1: in that case, f is periodic under
horizontal translations, so we say that f is cuspidal at∞ if its constant Fourier coe�cient vanishes, i.e.∫

(Γ∩N)\N
f (ng) dn = 0

7Some general language is used here to suggest what the appropriate generalization is to automorphic forms on arbitrary
reducive Lie groups, but the point is that N is the group of upper-triangular matrices with 1’s on the diagonal. You integrate
over (Γ ∩N)\N ∼= Z\R to compute Fourier coe�cients.
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for almost all g. The function g 7→ f(γg) = χ(γ)f(g) is also periodic, so f is said to be cuspidal at the
cusp ξ∞ if ∫

(Γ∩N)\N
f
(
ξ−1ng

)
dn = 0.

This will not be relevant to us since we will restrict to the case Γ = SL2(Z), and therefore to the case of
exactly one cusp at∞. When χ has �nite image (true of the most important case, when χ is a nebentypus
character) and χ|Γ∩N 6= 1, f is periodic with respect to horizontal translations, but not by everything in
Γ ∩N : one must restrict to the kernel, and the constant Fourier coe�cient at∞ is

f(∞) =
1

µ((kerχ ∩N)\N)

∫
(kerχ∩N)\N

f(ng)

=
1

µ((kerχ ∩N)\N)

∑
γ∈(kerχ∩N)\(Γ∩N)

∫
(Γ∩N)\N

f(γng)

=
1

µ((kerχ ∩N)\N)

 ∑
γ∈(kerχ∩N)\(Γ∩N)

χ(γ)

∫
(Γ∩N)\N

f(ng)

= 0.

If χ does not have �nite image, this exact argument doesn’t work: there are convergence issues. A
reasonable way to proceed is to use the Iwasawa decomposition G = N ×A×K and de�ne

F (nak) = χ(n)−1f(nak),

which really is periodic with respect to the translations in Γ∩N . Since χ has in�nite image, any extension
to N ∼= (R,+) must be of the form

χ :

(
1 t

0 1

)
7→ e2πiλχ ,

where λχ is irrational. So f has a Fourier expansion which is e2πiλχ times the Fourier expansion of f ,
and thus has no constant term (here we are transferring over to H, i.e. �xing a coordinate in K , to be
able to talk about Fourier expansions in elementary terms).

So we de�ne cuspidality in the following way for forms with character.

De�nition 2.1.7. A function f ∈ L2(Γ\G,χ) is cuspidal at∞ if χ|Γ∩N 6= 1 or otherwise if∫
(Γ∩N)\N

f(ng) dn = 0

for almost all g ∈ G. It is cuspidal if g 7→ f(ξ−1g) is cuspidal at∞ as an element of L2(ξΓξ−1\G/Z, χ)

for enough ξ ∈ SL2(Z) such that {ξ∞} exhausts all cusps of Γ.
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Now we proceed with the decomposition of the subrepresentation

L2
cusp(Γ\SL2(R)) ⊂ H

consisting of cuspidal elements as a direct sum of irreducible components. This is an example of the
general technique of obtaining operators by convolving a representation with smooth test functions.

De�nition 2.1.8. For the representation (π,H) and a function φ ∈ C∞c (G◦), we can obtain an operator
π(φ) on H given by

(π(φ)f)(g) =

∫
G
φ(h)π(h)f(g) dh.

The following two lemmas were proved in greater generality by Langlands, but the basic ideas are
contained in these proofs for GL2(R)+. The �rst is an obligatory estimate. The reader should feel free
to skip it, but be aware that it is the only place where the cuspidality is an input. So the di�culties of the
continuous spectrum are due to the failure of this estimate to hold when not restricted to the cuspidal
part.

Lemma 2.1.9. Suppose φ ∈ C∞c (GL2(R)+) and Γ ⊂ SL2(Z) is a congruence subgroup. Then there exists
a constant Cφ,Γ,χ depending only on φ, χ and Γ such that

‖π(φ)f‖L∞ ≤ Cφ,Γ,χ‖f‖L2

for all f ∈ L2
cusp(Γ\SL2(R), χ).

Proof. The simplest way to carry out an estimate like this is to construct a crude approximation of a
fundamental domain for Γ\SL2(R), from the standard knowledge of how Γ\H works. The Siegel set
de�ned via the Iwasawa decomposition

Gc,d :=

{
u

(
y1/2 y−1/2x

0 y−1/2

)
κ : 0 ≤ x ≤ d, y ≥ c, u ∈ Z, κ ∈ K

}

contains a fundamental domain for SL2(Z)\G◦ if c, d > 0 are chosen correctly. Choose them correctly,
and �x those values. Depending on the choice of Γ, there is a list of �nitely many8 ξi ∈ SL2(Z) which
take∞ to each of the cusps, and thus ⋃

i

ξiGc,d

contains a fundamental domain for Γ\G◦. Therefore, it su�ces to show that

sup
g∈Gc,d

|(π(φ)f)(g)| ≤ Cφ,Γ,χ‖f‖L2

for some Cφ,Γ,χ only depending on φ,Γ, χ. This su�ces, because for ξ ∈ {ξi} ⊂ SL2(Z), the function

F : g 7→ f(ξ−1g)

8since there are �nitely many cusps
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is in L2
cusp(ξΓξ−1\SL2(R), χ). Applying the bound over Gc,d to this function, we have

sup
g∈Gc,d

|(π(φ)F )(g)| ≤ Cφ,ξΓξ−1,χ‖F‖L2 .

The right hand side is equal to Cφ,ξΓξ−1,χ‖f‖L2 , and the left hand side is equal to supg∈ξGc,d |(π(φ)f)(g)|.
So if we can establish this inequality for the sup over Gc,d for arbitrary congruence subgroups Γ and
c, d > 0, then we have

sup
g∈G◦

|(π(φ)f)(g)| ≤ (max
i
Cφ,ξΓξ−1,χ)‖f‖L2

as desired. For convenience, suppose that Γ ∩N is generated by(
1 n0

0 1

)

where n0 ∈ Z. Now we have a canonical choice of fundamental domain for (Γ ∩N)\N , namely

NΓ =

{(
1 x

0 1

)
: 0 ≤ x < n0

}
.

Using the Iwasawa decomposition, there is a fundamental domain for (Γ ∩N)\SL2(R) given by NΓ ×
A×K , where

A =

{(
y 0

0 1

)
: y > 0

}
.

To carry out this estimate, we rewrite π(φ) as an integral operator and estimate the kernel.
In particular, for arbitrary g ∈ G◦,

(π(φ)f)(g) =

∫
G
φ(g−1h)f(h) dh

=

∫
(Γ∩N)\SL2(R)

∑
γ∈Γ∩N

∫
Z
f(γhu)φ(g−1γhu) dy = u dh

=

∫
(Γ∩N)\SL2(R)

f(h)
∑

γ∈Γ∩N
χ(γ)

∫
Z
φ(ug−1γh) du dh

=

∫
NΓ×A×K

f(h)
∑
n∈Z

χ

((
1 n0n

0 1

))∫
Z◦
φ

(
g−1

(
1 n0n

0 1

)
h

)
du dh.

The integral over Z◦ is necessary even in the absence of a central character, since we need it to be
invariant under multiplication by elements of Z .

Since χ extends to a character of N ∼= (R,+), we can by abuse of notation de�ne

Φg,h(t) = χ

((
1 n0t

0 1

))∫
Z◦
φ

(
ug−1

(
1 n0t

0 1

)
h

)
du
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a smooth function on R. So we have written π(φ) as an integral operator

(π(φ)f)(g) =

∫
NΓ×A×K

f(h)
∑
n∈Z

Φg,h(n).

The main task is therefore to estimate ∑
n∈Z

Φg,h(n).

for h ∈ NΓ ×A×K and g ∈ Gc,d.
Since φ is compactly supported on some compact set Ω ⊂ G,

φZ◦(g) =

∫
Z◦
φ(ug) du

is supported on Z◦Ω, where we can assume that Ω ⊂ SL2(R). Since φZ◦ is invariant under Z◦, we can
also assume that g, h ∈ SL2(R). Therefore

g(ZΩ)h−1 ∩N = gΩh−1

since everything in gΩh−1 and N has determinant 1. It follows that Φg,h is compactly supported. Hence
Φg,h ∈ C∞c (R), which means Poisson summation applies:∑

n∈Z
Φg,h(n) =

∑
n∈Z

Φ̂g,h(n),

hence
(π(φ)f)(g) =

∫
NΓ×A×K

f(h)
∑
n∈Z

Φ̂g,h(n).

Fourier transforms of smooth compactly-supported functions are nice, because they decay very fast, in
fact faster than any polynomial9. So when n 6= 0 the terms in this sum can be controlled, which is what
we do next. We need our bound to work over arbitrary y-coordinate for h and yg ≥ c, though, so we
need to take this apart a little more. Writing

h = uh

(
yh xh

0 1

)
κh, g = ug

(
yg xg

0 1

)
κg

we have (sine χ is unitary and φZ◦ is Z◦-invariant)

|Φ̂g,h(n)| =

∣∣∣∣∣
∫ ∞
−∞

χ

((
1 n0t

0 1

))
φZ◦

(
u−1
g uhκ

−1
g

(
y−1
g yh y−1

g (xh + n0t− xg)
0 1

)
κh

)
e−2πint dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ ∞
−∞

χ

((
1 n0t

0 1

))
φZ◦

(
κ−1
g

(
y−1
g yh y−1

g (xh + n0t− xg)
0 1

)
κh

)
e−2πint dt

∣∣∣∣∣
9This is an exercise in integration by parts.
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=

∣∣∣∣∣
∫ ∞
−∞

χ

((
1 n0t

0 1

))
φZ◦

(
κ−1
g

(
y−1
g yh y−1

g n0t

0 1

)
κh

)
e−2πint dt

∣∣∣∣∣
= |yg|

∣∣∣∣∣
∫ ∞
−∞

χ

((
1 n0ygt

0 1

))
φZ◦

(
κ−1
g

(
y−1
g yh n0t

0 1

)
κh

)
e−2πinygt dt

∣∣∣∣∣
= |yg|

∣∣∣∣∣
∫ ∞
−∞

φZ◦

(
κ−1
g

(
y−1
g yh n0t

0 1

)
κh

)
e−2πi(n−λχn0)ygt dt

∣∣∣∣∣ .

This quantity is |yg| times the Fourier transform, evaluated at yg(n− λχn0), of the function

Fg,h : t 7→ φZ◦

(
κ−1
g

(
y−1
g yh n0t

0 1

)
κh

)

which is compactly supported and smooth for �xed g and h by the same argument as above. Also, Fg,h
is identically zero for y−1

g yh outside of some compact set in R>0: φZ◦ is supported on Z◦Ω for some
compact Ω ⊂ SL2(R), and

K(Z◦Ω)K ∩

{(
∗ ∗
0 1

)}
is compact10, which means that the set of (y−1

g yh, t) ∈ R>0 ×R for which Fg,h(t) 6= 0 is contained in a
compact set, hence the set of possible y−1

g yh is contained in a compact set11 as well. We have shown

|Φ̂g,h(n)| = |yg||F̂g,h(yg(n− λχn0))|,

so since Fg,h ∈ C∞c (R) and only actually depends on κg, κh, y−1
g yh and φ,Γ, for any N

|Φ̂g,h(n)| �κg ,κh,y
−1
g yh

|yg||yg(n− λχn0)|−N

where the implicit constant varies continuously in κg, κh, y−1
g yh (it also depends on N but we will only

need one value ofN ). But we have shown that this constant may be chosen to be 0 when y−1
g yh is outside

of a compact subset S ⊂ R>0, which means (by taking the maximum of a continuous function on the
compact set K ×K × S) there is a constant Bφ,Γ depending only on φ,Γ such that

|Φ̂g,h(n)| ≤ Bφ,Γ|yg|1−N |n− λχn0|−N .

for all h, g (we haven’t yet used any restriction to fundamental domains). As a result, choosing N = 2 so
10It is the continuous image of K ×Ω×K under the map that multiplies all the coordinates together and then normalizes so

that the bottom-right coordinate is 1. One then intersects this with the closed condition that the bottom-left coordinate is 0,
which is �ne.

11The image of a compact set under the continuous projection map is compact

22



that the sum converges, there is a constant Bφ,Γ.χ such that∣∣∣∣∣∣∣∣
∑
n∈Z

n−λχn0 6=0

Φ̂g,h(n)

∣∣∣∣∣∣∣∣ ≤ |yg|
−1Bφ,Γ

∑
n∈Z

n−λχn0 6=0

|n− λχn0|−2 ≤ Bφ,Γ,χ|yg|−1.

Since we are assuming g ∈ Gc,d, we have |yg| ≥ c, so the contribution of this term to (π(φ)f)(g) is∣∣∣∣∣∣∣∣
∫
NΓ×A×K

f(h)
∑
n∈Z

n−λχn0 6=0

Φ̂g,h(n) dh

∣∣∣∣∣∣∣∣ ≤ c
−1Bφ,Γ,χ

∫
NΓ×A×K

|f(h)| dh.

Unfortunately, this is not enough to bound anything, since f is not compactly supported. However, we
have already shown, for the purpose of controlling the constant, that the g, h such that Φg,h (and thus the
same is true of Φ̂g,h) is nonvanishing must satisfy y−1

g yh ∈ S for some compact set S = [a, b] ⊂ R>0.
Since we are only considering g with yg ≥ c, this means that only h with

yh ≥ ac

contribute anything at all to the integral de�ning (π(φ)f)(g). So in fact we have the bound∣∣∣∣∣∣∣∣
∫
NΓ×A×K

f(h)
∑
n∈Z

n−λχn0 6=0

Φ̂g,h(n) dh

∣∣∣∣∣∣∣∣ ≤ c
−1Bφ,Γ,χ

∫
0≤xh<n0
yh≥ac

|f(h)| dh.

The domain of integration here can be covered by �nitely many translates of a fundamental domain
for Γ\SL2(R) (this is easily seen using the upper half-plane, and then taking products of everything
with K which doesn’t change the volume). So there is some positive integer N depending only on
Γ such that this contribution is bounded by c−1Bφ,Γ,χN‖f‖L1 . This L1-norm is actually �nite and
bounded above by ‖f‖L2 <∞, because the fundamental domain has �nite volume (so it follows from
Cauchy–Bunyakovski–Schwarz inquality).

There is still a possibility that the restriction to n ∈ Z such that n− λχn0 6= 0 has forced us to leave
out a term. This is where cuspidality is used. There are two cases:

1. χ|Γ∩N has �nite image

2. χ|Γ∩N has in�nite image. This case is not relevant, because then λχ is irrational, so n − λχn0

cannot vanish, and the contribution we have already estimated accounts for everything.

If χ|Γ∩N is trivial, then λχ = 0 and this just means we have left out the n = 0 term. That term is∫
(Γ∩N)\G/Z

f(h)Φ̂g,h(0) =

∫
(Γ∩N)\SL2(R)

f(h)

∫
N
φZ(g−1nh) dn dh
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=

∫
(Γ∩N)\SL2(R)

f(h)

∫
N
φZ(g−1n−1h) dn dh

=

∫
NΓ

∫
(Γ∩N)\SL2(R)

f(h)
∑

γ∈Γ∩N
φZ(g−1n−1γ−1h) dh dn

=

∫
NΓ

(π(φ)f)(ng)

= 0

since π(φ)f is assumed cuspidal at∞. The same argument works as long as χ has �nite image. In that
case, we may replace Γ with kerχ and repeat the same argument (from the very beginning). In real life,
where χ is a Nebentypus character, kerχ is a congruence subgroup, but we have not depended on Γ

actually being a congruence subgroup anywhere in this argument.

Proposition 2.1.10. Let φ ∈ C∞c (G◦). Then the convolved operator π(φ) is a compact operator on
L2

cusp(Γ\SL2(R), χ).

Proof. First, we consider the case of compact quotient. In that case, for f ∈ L2(Γ\SL2(R), χ) and
h ∈ G◦, we have

(π(φ)f)(h) =

∫
G◦
φ(g)(π(g)f)(h) dg

=

∫
G◦
φ(g)f(hg) dg

=

∫
G◦
φ(h−1g)f(g) dg

=

∫
F

∑
γ∈Γ

∫
Z
φ(h−1γgu)χ(γ)f(g) du dg

=

∫
F
K(g, h)f(g) dg,

where
K(g, h) =

∑
γ∈Γ

∫
Z
φ(h−1γgu)χ(γ) du

and F is a fundamental domain12 in G◦ for Γ\G◦/Z◦ = Γ\SL2(R). The fact that φ ∈ C∞c (G◦) means
that K(g, h) is smooth in g and h, and Γ\SL2(R) being compact therefore implies that

K ∈ L2(F × F).

So π(φ) is a Hilbert–Schmidt operator on L2(Γ\SL2(R), χ) ∼= L2(F) [where the isomorphism is as
Hilbert spaces], and is therefore compact.

12These fundamental domains are already familiar from the theory of SL2(Z) acting on H. Starting with a fundamental
domain FH for the action of Γ on H, the construction of which is well-known, you can just translate over to G◦ using the
Iwasawa decomposition. This is the same reason why there is no question that if Γ\H is compact, so is Γ\SL2(R).
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In the case of noncompact quotients, to prove the statement, we need to check that π(φ) restricts to a
well-de�ned operator on L2

cusp(Γ\SL2(R), χ). In other words, if∫
(Γ∩N)\N

f (γng) dn = 0

for all g ∈ G and γ ∈ SL2(Z), then we need to check that∫
(Γ∩N)\N

(π(φ)f) (γng) dn = 0.

This is not hard to check:∫
(Γ∩N)\N

(π(φ)f) (γng) dn =

∫
(Γ∩N)\N

∫
G
φ(h)f (γngh) dh dn

=

∫
G
φ(h)

∫
(Γ∩N)\N

f (γngh) dn dh

= 0

where the Fubini/Tonelli justi�cation can be made using the fact that (Γ ∩N)\N is compact and φ is
compactly supported.

The argument we have written down so far is not a priori a valid argument for why π(φ)|L2
cusp

is
compact (indeed, if it worked without modi�cation, then there would be no need to restrict to the cuspidal
part). The reason is that when Γ\SL2(R) is not compact, K(·, ·) is not guaranteed to be in L2(F × F).
The additional technical observation that must be made is that there is a constant Cφ depending only on
φ such that

‖π(φ)f‖L∞ ≤ Cφ‖f‖L2

for all f ∈ L2
cusp(Γ\SL2(R), χ). This is what we did in Lemma 2.1.9, and it is where the assumption of

cuspidality is used.
There are two ways of establishing the compactness of π(φ)L2

cusp
from here. The �rst, which I learned

from Lang, involves more functional analysis. The basic point is that for any x ∈ G◦, Lemma 2.1.9 says
that the linear functional

Tx : L2
cusp(Γ\SL2(R), χ)→ C

given by
f 7→ (π(φ)f)(x)

is bounded. By the Riesz representation theorem, it follows that for all such x, there exists a qx ∈
L2

cusp(Γ\SL2(R), χ) such that Tx(f) = 〈f, qx〉. The map x 7→ qx from G◦ to L2
cusp has bounded image,

because by Lemma 2.1.9

‖qx‖L2 =
√
〈qx, qx〉 =

√
Tx(qx) =

√
(π(φ)qx)(x) ≤

√
Cφ‖qx‖L2
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so ‖qx‖L2 ≤ Cφ for all x. Also, since L2
cusp(Γ\G◦, χ) ∼= L2

cusp(F) has a countable orthonormal basis13

{ui}, we can write
qx =

∑
i≥0

gi(x)ui,

where gi is a priori just a map of sets G◦ → C. The fact that gi(x) = 〈qx, ui〉 = ui(x) means that the
functions gi(x) are actually measurable functions on G◦ and, since measurability respects products and
limits,

x 7→ 〈qx, qx〉 =
∑
i

gi(x)2

is a measurable bounded function on G◦. Restricting it to a fundamental domain F for Γ\SL2(R),
which has �nite volume, and using the Hilbert space isomorphism L2

cusp(Γ\SL2(R), χ) ∼= L2
cusp(F),

the function x 7→ 〈qx, qx〉 is therefore in L1(F). When g(x, y) is the characteristic function of U × V
the product of measurable sets in X , we have∫

F

∫
F
g(x, y)qx(y) dy dx =

∫
F
χU (x)

∫
F
χV (y)qx(y) dy dx

=

∫
F
χU (x)〈χV , qx〉 dx

=

∫
F
χU (x)(π(φ)χV )(x) dx

<∞

so this iterated integral is well-de�ned as long as g(x, y) is a step function on F × F . By the Cauchy–
Bunyakovsky–Schwarz inequality14 and Lemma 2.1.9, we have (still only as long as g is a step function,
which is the only case in which we have established the left hand side is a real thing)

∣∣∣∣∫
F

∫
F
g(x, y)qx(y) dy dx

∣∣∣∣ ≤ ‖g‖L2

√∫
F

∫
F
|qx(y)|2 dy dx

where the right hand side is well-de�ned from our previous observation that x 7→ 〈gx, gx〉 is in L1(F).
So the linear map

L2(F × F)→ C

densely de�ned on the step functions and given by

g 7→
∫
F

∫
F
g(x, y)qx(y) dy dx

is continuous where it is de�ned and is therefore extends to all of L2(F ×F). By the Riesz representation
13L2(F) is separable by general theory, and L2

cusp is a closed subspace and thus separable too.
14technically speaking, one has to repeat the proof to deduce what follows.

26



theorem, there exists a Q(·, ·) ∈ L2(F × F) such that∫
F

∫
F
g(x, y)qx(y) dy dx =

∫
F

∫
F
g(x, y)Q(x, y) dy dx

for all step functions g. If we choose the step function g correctly, we see that this implies that qx =

Q(x,−) in L2
cusp(F) for almost all x ∈ F . Therefore, we really can write

(π(φ)f)(x) = Txf =

∫
F
f(y)Q(x, y) dy

for almost all x ∈ F . Since Q is by de�nition an element of L2(F × F), this means that π(φ) is
Hilbert–Schmidt and therefore compact.

Note that the only time the assumption of cuspidality was used was to establish the estimate
‖π(φ)f‖L∞≤ Cφ‖f‖L2 , and this was only used to show that the evaluation-at-x functional was bounded.
The rest of the proof is not dependent on the speci�cs of the situation at all, and is a general technique in
functional analysis.

It is the existence of these compact operators that allows us to decompose the cuspidal subspace
discretely. My understanding is that this argument was �rst written down in [GGPS1969]. It appeared
later in [Lan1976] in a more general context but containing essentially the same ideas.

Theorem 2.1.11 (Gelfand–Graev–Piatetski-Shapiro, 1966). Let (π,H) be the right regular representation
of G◦ on Hcusp = L2

cusp(Γ\G◦/Z◦, χ). Then we have a discrete decomposition of Hcusp as a Hilbert space
orthogonal direct sum of irreducible representations of G◦

H =
⊕
i

πmii .

Proof. The basic technique of the proof is the same as usual: let H′ be a nonzero closed subspace of
Hcusp which is closed under the action of G◦. We will show that H′ contains a nontrivial irreducible
representation of G◦, which will show by Zorn’s lemma15 (via the fact that π is unitary) that the desired
decomposition exists (though not a priori with �nite multiplicity).

There exists a choice of φ ∈ C∞c (G◦) such that π(φ) is not only compact but also self-adjoint on
Hcusp. Such a φ just needs to have

φ(g−1) = φ(g)

for all g ∈ G◦, since then (again using the fact that π is unitary)

〈π(φ)v, w〉 =

∫
G◦
φ(g)〈π(g)v, w〉 dg

15By Zorn’s lemma, there is a maximal set of mutually orthogonal closed subrepresentations of π. Since π is unitary, the
orthogonal complement of the Hilbert space direct sum of all those subrepresentations is also a closed subrepresentation, and
showing that it has a nontrivial irreducible closed subrepresentation contradicts the maximality statement from Zorn’s lemma;
it follows that the orthogonal complement is zero, and thus the desired orthogonal decomposition into irreducible Hilbert space
representations exists.
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=

∫
G
φ(g)〈v, π(g−1)w〉 dg

=

∫
G◦
φ(g)〈v, π(g)w〉 dg

= 〈v, π(φ)w〉.

A φ satisfying this condition is easily cooked up using the usual theory of bump functions on manifolds,
for instance, by taking a bump function φ0 supported on a compact set U ⊂ G◦ and then letting

φ(g) = φ0(g) + φ0(g−1).

The fact that the multiplicities are �nite does not lie deeper than the rest of the statement: by the
spectral theorem for compact self-adjoint operators, π(φ) diagonalizes and has eigenvalues going to zero,
so each eigenspace with nonzero eigenvalue is �nite-dimensional. Also, from its de�nition, π(φ) restricts
to a well-de�ned G-intertwining operator on each irreducible component πi, where it must act as a scalar
by Schur’s lemma. This scalar only depends on i, so the fact that the nonzero eigenvalues have �nite
multiplicity implies mi <∞ as well, as long as π(φ) doesn’t act by zero on πi. This could technically
happen, but can be avoided easily, by choosing some nonzero f ∈ πi and then choosing16 φ ∈ C∞c (G◦)

such that |π(φ)f − f | is small enough that π(φ)f cannot vanish.
Now for the construction of the nontrivial irreducible subspace of H′. By assumption, there exists

some 0 6= f ∈ H′, so by choosing φ such that π(φ) is compact and self-adjoint and π(φ)f 6= 0 (which we
have already shown how to do), the operator

π(φ)|H′

is also compact, nonzero, and self-adjoint. By the spectral theorem for compact self-adjoint operators, it
therefore has some nonzero eigenvalue λ with �nite dimensional eigenspace Vλ ⊂ H′. It is true from
the de�nition of π(φ) that π(φ) has a well-de�ned restriction to any subrepresentation, but it is not true
that Vλ is G◦-invariant: the action of G◦ does not actually commute with π(φ). Still, Vλ is useful in the
construction, because π(φ) is supposed to restrict to each πi ⊂ H′ to something diagonalizable, where
the λ-eigenspace is Vλ ∩ πi. Motivated by this, the trick is to take L0 ⊂ Vλ to be the minimal nonzero
subspace of Vλ of the form Vλ ∩ H′0 where H′0 is a closed subrepresentation of H′ (this is well-de�ned
because Vλ is �nite-dimensional). The minimal H′0 such that L0 = Vλ ∩ H′0 ought to be irreducible and
nonzero. To construct it, just take the intersection of all such H′0:

V :=
⋂

H′0⊂H′
L0=Vλ∩H′0

H′0.

Since 0 6= L0 ⊂ V, the de�nition guarantees that V 6= 0, and it remains to show that V is irreducible. It
is irreducible because of the minimal nature of its construction: if it had a proper subrepresentation V1,

16To do that, just use the fact that π is continuous, so there exists a neighborhood U of the identity in G◦ such that
|π(g)f − f | < ε for all g ∈ U . We may take φ compactly supported in U such that

∫
G◦ φ = 1, which is enough.
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then V1 ∩ Vλ has to be properly contained in L0 by the minimality of V. Unless V1 = 0, this contradicts
the minimality of L0. So we just need to show that V1 can be chosen so that V1 ∩ Vλ 6= 0. Since π is
unitary, we actually have V = V1 ⊕V2 for closed subrepresentations Vi. Taking intersections with Vλ,
we have

L0 = V ∩ Vλ = (V1 ⊕V2) ∩ Vλ = (V1 ∩ Vλ)⊕ (V2 ∩ Vλ).

The key point is the last equality, which is because f1 + f2 ∈ V ∩ Vλ, for fi ∈ Vi, means that
π(φ)f1 + π(φ)f2 = λf1 + λf2. Since the Vi are acted on by π(φ), this implies fi ∈ Vλ too, as desired.
Since L0 6= 0, at least one of Vi ∩ Vλ is nonzero, so we are done.

The reason why this technical analysis-heavy argument (which uses in a crucial way the existence
of these compact operators and thus the fact that we are restricting to the cuspidal part) is necessary is
that one cannot simply construct an irreducible subrepresentation by taking the G-span of a nonzero
vector: the resulting subspace is not necessarily closed. So one must take the closure to obtain a bona-�de
Hilbert space subrepresentation, but this new object is not necessarily irreducible. One needs to show
that this closure has the Artinian descending chain condition. The canonical way to do this is to intersect
with Vλ and use �nite-dimensionality of Vλ, which is essentially the same strategy as the version of the
proof we have written down.

As a consequence of Theorem 2.1.11, after taking the appropriate K◦-isotypic subspace, we have

Corollary 2.1.12. For any element f ∈ L2
cusp(Γ\H, χ, k), we have

f =
∑
uj

〈f, uj〉uj

where uj runs over the Maass cusp forms of weight k.

2.1.2 | The continuous spectrum and Eisenstein series

Because of the weight-raising and weight-lowering operators R̂ and L̂, for the Maass forms not coming
from modular forms, it su�ces to study those of weight 0 and 1. For our purposes, we will stick to
those of weight 0. In any event, to �nish o� the decomposition of L2(Γ\H), we need to construct some
non-cuspidal Maass forms. The standard way to do this is via the Eisenstein series. This section mostly
follows [Iwa2002].

From now on, take Γ = SL2(Z) and χ = 1. This will serve to make things slightly more convenient
for us, since normally there is one type of Eisenstein series for every cusp, and one has to consider all
of them at the same time. But the main ideas of the theory, as they are relevant to our case17, will not
change.

De�nition 2.1.13. For any given ψ ∈ C∞c (R>0), the corresponding incomplete Eisenstein series is the
smooth function

E(z|ψ) =
∑

(Γ∩N)Γ

ψ(=γz).

17In general there is an issue with the residual spectrum coming from residues of Eisenstein series. This issue does not really
come up in as serious a way for Γ = SL2(Z).
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de�ned on H

These incomplete Eisenstein series are not exactly what we want to end up with, for example because
they are not necessarily eigenfunctions of the Laplacian, but they are a good starting point because of

Lemma 2.1.14. The span of the E(z|ψ) over all ψ is the orthogonal complement of L2
cusp(Γ\H).

Proof. First, the fact that E(z|ψ) is invariant under Γ is clear from the de�nition (that is why we sum
over Γ), and the fact that it is square-integrable is clear from the fact that ψ is compactly supported (in
fact E(z|ψ) is bounded, which automatically makes it square-integrable thanks to the y−2 factor in the
hyperbolic measure on H). Let f ∈ L2(Γ\H). Then

〈f,E(z|ψ)〉 =

∫
F [Γ\H]

f(z)
∑

γ∈(Γ∩N)\Γ

ψ(=γz) dxdy
y2

=
∑

γ∈(Γ∩N)\Γ

∫
γF [Γ\H]

f(z)ψ(y)
dxdy

y2

=

∫ ∞
0

∫ 1

0
f(x+ iy)ψ(y)

dxdy

y2

=

∫ ∞
0

[∫ 1

0
f(x+ iy) dx

]
ψ(y)y−2 dy,

where F [Γ\H] denotes the standard fundamental domain in H for Γ\H. If this quantity vanishes for all
ψ, then it must have been the case that ∫ 1

0
f(x+ iy) dx = 0

for almost all y, i.e. that f is cuspidal. The result follows.

The actual family of Eisenstein series that is useful to us is the one given by De�nition 2.1.13 except
with the non-compactly supported function ψ(y) = ys for some s ∈ C. The reason for this choice is that
x+ iy 7→ ys is the simplest example of a nontrivial eigenfunction for ∆:

Lemma 2.1.15. The Eisenstein series

E(z, s) =
∑

γ∈(Γ∩N)\Γ

(=γz)s

is an eigenfunction of ∆ with eigenvalue s(1− s).

Proof. Since ∆ is Γ-invariant, it su�ces to show that x+ iy 7→ ys is a ∆-eigenfunction with appropriate
eigenvalue. And indeed we have

∆ys = −y2

(
∂2

∂x2
+

∂2

∂y2

)
ys = s(1− s)ys.
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On the other hand, the Eisenstein series E(z, s) are very much not square-integrable on Γ\H. This
is because of what their Fourier expansions look like.

Proposition 2.1.16. For <s > 1, we have the Fourier expansion

E(x+ iy, s) = ys + ϕ(s)y1−s +
∑
n 6=0

ϕ(n, s) · 2y1/2Ks−1/2(2π|n|y)e2πinx,

whereKs−1/2 denotes theK-Bessel function,

ϕ(s) = π1/2 Γ(s− 1/2)

Γ(s)

∑
c

c−2s
∑

a∈(Z/cZ)×

1,

and
ϕ(n, s) = 2π1/2Γ(s)−1|n|s−1/2

∑
c

c−2s
∑

a∈(Z/cZ)×

e2πian
c .

Proof. First, observe that for (
a b

c d

)
6= I ∈ Γ = SL2(Z),

we have (
1 m

0 1

)(
a b

c d

)(
1 n

0 1

)
=

(
a+mc b+md+ na+ nmc

c d+ nc

)
.

This shows that the non-identity double cosets (Γ ∩N)\Γ/(Γ ∩N) are determined by the bottom-left
entry c of a representative plus the value of d mod c. Computing explicitly, we can conclude that

E(z, s) =
∑

γ∈(Γ∩N)\Γ

=(γz)s

= (=z)s + 2
∑
c≥1

∑
d∈(Z/cZ)×

∑
n∈Z
=

[(
a b

c d

)
(z + n)

]s
,

where the matrix

(
a b

c d

)
is an arbitrary one in Γ with bottom row (c, d). By Poisson summation, we

have

∑
n∈Z
=

[(
a b

c d

)
(z + n)

]s
=
∑
n∈Z

∫
R

∑
n∈Z
=

[(
a b

c d

)
(z + t)

]s
e−2πint dt

=
∑
n∈Z

∫
R
=
[
a

c
− 1

c2(t+ x+ d/c+ iy)

]s
e−2πint dt

=
∑
n∈Z

exp

(
2πi

(
nx+ n

d

c

))∫
R
=
[
a

c
− 1

c2(t+ iy)

]s
e−2πint dt

=
∑
n∈Z

exp

(
2πi

(
nx+ n

d

c

))∫
R

[
yc−2

t2 + y2

]s
e−2πint dt.
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Returning to the original computation, and putting the sum over n on the outside instead of the inside,
we see that the n = 0 term is

2
∑
c≥1

c−2sys
[∫

R

1

(t2 + y2)s
dt

] ∑
d∈(Z/cZ)×

1.

and the others are∑
n6=0

[
e2πinx

∫
R

1

(t2 + y2)s
e−2πint dt

]
ys · 2

∑
c≥1

c−2s
∑

d∈(Z/cZ)×

e2πind/c

which proves the claimed Fourier expansion thanks to the standard de�nite integrals∫
R

1

(t2 + y2)s
dt = π1/2 Γ(s− 1/2)

Γ(s)
y1−2s

and ∫
R

1

(t2 + y2)s
e−2πint dt = 2πsΓ(s)−1|n|s−1/2y−s+1/2Ks−1/2(2π|n|y).

By the standard estimates onK-Bessel functions, for any �xed s, E(z, s) is dominated by the cuspidal
terms ys + ϕ(s)y1−s. So the closest that E(z, s) gets to being square-integrable is when <s = 1/2 (in
which case it barely fails to be square-integrable). But to even talk about that, we need to meromorphically
extend E(z, s) to the left of <s > 1. Luckily, at least for our choice of Γ = SL2(Z), this is a direct
consequence of the Fourier expansion Lemma 2.1.15, thanks to the fact that the Fourier coe�cients
theselves have meromorphic continuations. In particular,

ϕ(s) = π1/2 Γ(s− 1/2)

Γ(s)

∑
c≥1

c−2sφEuler(c)

= π1/2 Γ(s− 1/2)

Γ(s)

∏
p

∑
n≥0

p−2nsφEuler(p
n)

= π1/2 Γ(s− 1/2)

Γ(s)

∏
p

1 +
∑
n≥1

pn − pn−1

p2ns


= π1/2 Γ(s− 1/2)

Γ(s)

∏
p

(
1 +

(
p1−2s − p−2s

) 1

1− p1−2s

)

= π1/2 Γ(s− 1/2)

Γ(s)

∏
p

(
1− p−2s

1− p1−2s

)
= π1/2 Γ(s− 1/2)

Γ(s)

ζ(2s− 1)

ζ(2s)
.
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And

ϕ(n, s) = πsΓ(s)−1|n|s−1
∑
c≥1

c−2s
∑

d∈(Z/cZ)×

e2πi dn
c

= πsΓ(s)−1|n|s−1
∏
p

1 +
∑
m≥1

p−2ms
∑

d∈(Z/pmZ)×

e
2πi dn

pm


= πsΓ(s)−1|n|s−1

∏
p

1 +
∑
m≥1

p−2ms

pm−1∑
d=0

e
2πi dn

pm −
pm−1−1∑
d=0

e
2πi dn

pm−1


= πsΓ(s)−1|n|s−1

∏
p

1 +
∑
m≥1

p−2ms

pm−1∑
d=0

e
2πi dn

pm −
pm−1−1∑
d=0

e
2πi dn

pm−1

 .

The sum on the inside may be evaluated case-by-case. If vp(n) ≥ m, then it is pm−pm−1. If vp(n) = m−1,
then it is −pm−1. Otherwise, it vanishes. So we may continue the computation, �nding that

ϕ(n, s) = πsΓ(s)−1|n|s−1
∏
p

1 +

vp(n)∑
m=1

p−2ms(pm − pm−1)− p−2(vp(m)+1)spvp(m)


= πsΓ(s)−1|n|s−1

∏
p

(
(1− p−2s)(1 + p(vp(n)+1)(1−2s))

1− p1−2s

)

= πsΓ(s)−1ζ(2s)−1|n|s−1
∏
p

vp(n)∑
m=0

pm(1−2s)


= πsΓ(s)−1ζ(2s)−1|n|−1/2

∑
ab=|n|

(a
b

)s− 1
2
.

So we can deduce from our newfound explicit knowledge of the Fourier expansion

Corollary 2.1.17. E(z, s) extends meromorphically in s ∈ C to a function with a single simple pole, at
s = 1. The residue at that pole is 3/π (in particular it doesn’t depend on z). Finally, it satis�es the functional
equation

E(z, 1− s) = ϕ(1− s)E(z, s).

Proof. This follows directly from the computations we have done for the Fourier expansion of E(z, s),
along with standard facts about the poles, zeros, and residues of the Gamma and Riemann ζ-functions.
The only nontrivial fact used is that ζ(s) 6= 0 when <(s) = 1 (which is standard and part of the proof of
the prime number theorem).

This allows us to look at the family of functions on the upper half-plane E(z, s) with <s = 1/2,
which still barely fails to be square-integrable because of the cuspidal terms in the Fourier expansion
(which are of order y1/2).

Finally we are equipped to write downL2(Γ\H) as the discrete part plus a direct integral of Eisenstein
series with <(s) = 1/2. We already know (Lemma 2.1.14) that the general incomplete Eisenstein series
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E(z|ψ) for compactly-supported smooth ψ span the orthogonal complement of L2
cusp(Γ\H). The key

manipulation to get from E(z|ψ) to E(z, s) is to use the Mellin inversion formula. In particular, if

(Mψ)(s) =

∫ ∞
0

x−s−1ψ(x) dx

denotes the Mellin transform of f (with a slightly di�erent convention than usual), then by the Mellin
inversion formula, for σ > 1, we have

1

2πi

∫
<s=σ

(Mψ)(s)E(z, s) ds =
∑

γ∈(Γ∩N)\Γ

1

2πi

∫
<s=σ

(Mψ)(s)=(γz)s ds

=
∑

γ∈(Γ∩N)\Γ

(M−1Mψ)(=(γz))

=
∑

γ∈(Γ∩N)\Γ

ψ(=(γz))

= E(z|ψ).

Therefore, we obtain E(z|ψ) as an integral of Eisenstein series as s traverses a vertical line of real part
larger than 1. Shifting the contour of integration to the left until <s = 1/2 and using the fact that the
Eisenstein series all have a pole only at s = 1 of residue 3/π, we obtain

E(z|ψ) = (Mψ)(1)
3

π
+

1

2π

∫ ∞
t=−∞

(Mψ)

(
1

2
+ it

)
E

(
z,

1

2
+ it

)
dt.

From this, at the very least we may conclude that every element of L2(Γ\H) is (arbitrarily close to) a
linear combination of (possibly constant) Maass cusp forms of weight 0 plus an integral of Eisenstein
series along the line <s = 1/2. Notice that we have seen that even though E(z, 1/2 + it) fails to be
square-integrable for any �xed t, it does become square integrable when integrated with respect to t
against appropriate functions (for instance the Mellin transform of compactly-supported ψ).

We aren’t completely done yet, because the numbers (Mψ)(1/2 + it) aren’t necessarily equal to
〈E(z|ψ), E(z, 1/2 + it)〉. The problem is that the E(z, 1/2 + it) are not square-integrable, so their inner
products are not de�ned (which is a problem because we need them to be orthogonal). To �x this, we
compute (by the same technique as the proof of Theorem 2.1.21, exploiting the fact that non-cuspidal
terms in the Fourier cancel die when integrated horizontall, and the automorphicity of E(z, s))

〈E(z|ψ), E(z, 1/2 + it)〉 =

∫
F [Γ\H]

 ∑
γ∈(Γ∩N)\Γ

ψ(=(γ(x+ iy)))

E(x+ iy, 1/2− it) dxdy
y2

=

∫ ∞
0

ψ(y)y−2

∫ 1
2

− 1
2

E(x+ iy, 1/2− it) dxdy

=

∫ ∞
0

ψ(y)y−2(y1/2−it + ϕ(1/2− it)y1/2+it) dy
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=

∫ ∞
0

ψ(y)y−3/2−it dy + ϕ(1/2− it)
∫ ∞

0
ψ(y)y−3/2+it dy

= (Mψ)(1/2 + it) + ϕ(1/2− it)(Mψ)(1/2− it)

Multiplying by E(z, 1/2 + it) and using the functional equation (Corollary 2.1.17), we get

〈E(z|ψ), E(z, 1/2 + it)〉E(z, 1/2 + it) = (Mψ)(1/2 + it)E(z, 1/2 + it)

+ (Mψ)(1/2− it)E(z, 1/2− it),

which after integrating t over the real line becomes∫ ∞
−∞
〈E(z|ψ), E(z, 1/2 + it)〉E(z, 1/2 + it) = 2 · 1

i

∫
<s=1/2

(Mψ)(s)E(z, s) ds

= 4πE(z|ψ)− 2

i
(Mψ)(1)

3

π

so we may conclude that

E(z|ψ)− 1

4π

∫ ∞
−∞
〈E(z|ψ), E(z, 1/2 + it)〉E(z, 1/2 + it)

is a constant function (for arbitrary congruence subgroups we would �nd that this di�erence is in the
residual spectrum coming from the residues of Eisenstein series), i.e. part of the 0-eigenspace of ∆. Thus,
we conclude, as a result of this computation along with

Theorem 2.1.18. Any f ∈ L2(Γ\H) decomposes as

f =
∑
j

〈f, uj〉uj +
1

4π

∫ ∞
−∞
〈f,E(z, 1/2 + it)〉E(z, 1/2 + it) dt

where uj ranges over an orthonormal basis of L2(Γ\H) consisting of normalized eigenvectors of ∆, plus the
constant function u0 which is normalized to have ‖u0‖L2 = 1.

Still, the Eisensten series E(z, 1/2 + it) are not square-integrable, and, as discussed above, their inner
products with each other (over varying t ∈ R) do not converge. The canonical way to solve this problem
is to approximate the Eisenstein series by truncating them. This discussion of truncation is necessary for
the development of the trace formula.

Iwaniec does the truncation in the naive way by just deleting the cuspidal term, but this has the
disadvantage that the truncated function is not automorphic. So we follow the convention of Arthur’s
truncation operator, which is just as well since that is the convention typically used when dealing with
truncation in the trace formula. In reality, the computations will be identical to those in Iwaniec, because
Arthur’s truncation operator agrees with Iwaniec’s on a fundamental domain where the integral de�ning
an inner product is de�ned.
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De�nition 2.1.19. For large T , de�ne the truncated cuspidal term of E(z, s) as expected,

cTEis(x+ iy, s) =

ys + ϕ(s)y1−s if y > T

0 if y ≤ T

De�nition 2.1.20 (Arthur’s truncation operator). For the Eisenstein series E(z, s), de�ne the truncation
ΛTE(z, s) to be

ΛTE(z, s) = E(z, s)−
∑

γ∈(Γ∩N)\Γ

cTEis(γz, s).

As promised, for T large enough, we have =(γz) < T for all γ 6= I in (Γ ∩ N)\Γ, which makes
De�nition 2.1.20 equivalent to Iwaniec’s de�nition when restricted to the standard fundamental domain,
namely

ΛTE(x+ iy, s) =

E(x+ iy, s) if y ≤ T

E(x+ iy, s)− ys − ϕ(s)y1−s if y > T
.

In any event, the point now is that ΛTE(x+ iy, s) decays quickly at the cusp and is therefore square-
integrable. Of course it isn’t smooth and is not an eigenfunction for ∆. We are ultimately interested in
making approximations with truncated Eisenstein series and computing inner products involving them.
The basic computation for this is

Theorem 2.1.21 (The Maass–Selberg relations). For s1, s2 6= 1 with s1 6= s2 and s1 + s2 6= 1, we have

〈ΛTE(z, s1),ΛTE(z, s2)〉 = (s1 − s2)−1ϕ(s2)T s1−s2 + (s2 − s1)−1ϕ(s1)T s2−s1

+ (s1 + s2 − 1)−1T s1+s2−1 − (s1 + s2 − 1)−1ϕ(s1)ϕ(s2)T 1−s1−s2

Proof. Iwaniec’s proof is by applying Green’s formula, but I am not sure if this can be generalized as easily
as the standard proof, which is as follows. First, we compute (using the convenient fact that ΛT (z, s) is
Γ-invariant in z)〈

ΛTE(z, s),
∑

γ∈(Γ∩N)\Γ

cTEis(γz, s)

〉
=

∫
F [Γ\H]

ΛTE(x+ iy, s)
∑

γ∈(Γ∩N)\Γ

cTEis(γ(x+ iy), s)
dxdy

y2

=

∫ 1
2

− 1
2

∫ ∞
0

ΛTE(x+ iy, s)cTEis(x+ iy, s)
dxdy

y2

=

∫ 1
2

− 1
2

∫ ∞
0

ΛTE(x+ iy, s)cTEis(x+ iy, s)
dydx

y2

=

∫ 1
2

− 1
2

∫ ∞
T

ΛTE(x+ iy, s)(ys2 + ϕ(s2)y1−s2)
dydx

y2
.

=

∫ ∞
T

(ys2 + ϕ(s2)y1−s2)

∫ 1
2

− 1
2

ΛTE(x+ iy, s) dx
dy

y2
.

Because of the Fourier expansion (Proposition 2.1.16), for any �xed value of y, ΛTE(x+iy, s) is expanded
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in Fourier series with no constant term, and hence its integral on a fundamental domain for Z\R vanishes.
So we have shown that 〈

ΛTE(z, s),
∑

γ∈(Γ∩N)\Γ

cTEis(γz, s)

〉
= 0,

and thus
〈ΛTE(z, s1),ΛTE(z, s2)〉 = 〈ΛTE(z, s1), E(z, s2)〉

(which is well-de�ned even though E(z, s2) is not square-integrable, as we have just shown). Now we
may compute (using the fact that the Eisenstein series is automorphic and the fact that the cuspidal term
in the Fourier expansion is computed in the usual way)

〈ΛTE(z, s1),ΛTE(z, s2)〉 = 〈ΛTE(z, s1), E(z, s2)〉

=

∫
F [Γ\H]

 ∑
γ∈(Γ∩N)\Γ

(=(γ(x+ iy))s1 − cTEis(γ(x+ iy), s1))

E(z, s2)
dxdy

y2

=

∫ ∞
0

∫ 1
2

− 1
2

(ys1 − cTEis(x+ iy, s1))E(x+ iy, s2)
dxdy

y2

=

∫ T

0

∫ 1
2

− 1
2

ys1E(x+ iy, s2)
dxdy

y2
−
∫ ∞
T

∫ 1
2

− 1
2

(ϕ(s1)y1−s1)E(x+ iy, s2)
dxdy

y2

=

∫ T

0
ys1(ys2 + ϕ(s2)y1−s2)

dy

y2
− ϕ(s1)

∫ ∞
T

y1−s1(ys2 + ϕ(s2)y1−s2)
dy

y2

and the rest follows from direct computation of these de�nite integrals.

Recall that we are really interested in what happens on the line <s = 1
2 . Let s = s1 = s2 = σ + it.

Then for σ 6= 1
2 and t 6= 0 (so that s1 + s2 6= 1 and s1 6= s2 as required by Theorem 2.1.21), we have

shown that

〈ΛTE(z, s),ΛTE(z, s)〉 =
ϕ(σ − it)T 2it − ϕ(σ + it)T−2it

2it
+
T 2σ−1 − ϕ(σ + it)ϕ(σ − it)T 1−2σ

2σ − 1
.

As σ → 1/2, the problem is that we have some division by zero in the last two terms. Luckily, the blowing
up that happens in those two terms cancels out, as we have the Taylor expansions near σ = 1/2

T 2σ−1 = 1 + (log T )(2σ − 1) +O((σ − 1/2)2),

T 1−2σ = 1− (log T )(2σ − 1) +O((σ − 1/2)2),

and
ϕ(σ + it) = ϕ(1/2 + it) + (σ − 1/2)ϕ′(1/2 + it) +O((σ − 1/2)2)

which implies that ϕ(σ + it)ϕ(σ − it) is

ϕ(1/2 + it)ϕ(1/2− it) + (σ − 1/2)(ϕ′(1/2 + it)ϕ(1/2− it)− ϕ′(1/2− it)ϕ(1/2 + it)).
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With the added information that ϕ(s) = ϕ(1− s)−1 from the functional equation (Corollary 2.1.17), this
simpli�es to

ϕ(σ + it)ϕ(σ − it) = 1 + (2σ − 1)ϕ′(1/2 + it)ϕ(1/2 + it)−1 +O((σ − 1/2)2).

Plugging this back into our previous expression for 〈ΛTE(z, s1),ΛTE(z, s2)〉 and taking the limit as
σ → 1/2, we obtain

Corollary 2.1.22. For nonzero t ∈ R, we have〈
ΛTE

(
z,

1

2
+ it

)
,ΛTE

(
z,

1

2
+ it

)〉
=
ϕ
(

1
2 − it

)
T 2it − ϕ

(
1
2 − it

)
T−2it

2it

+ 2 log T − ϕ′
(

1

2
+ it

)
ϕ

(
1

2
+ it

)−1

.

And for t = 0, we obtain (by taking the limit)〈
ΛTE

(
z,

1

2

)
,ΛTE

(
z,

1

2

)〉
= 4 log T − 2ϕ′

(
1

2

)
.
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Chapter 3

The Arthur–Selberg trace formula

“Now witness the �repower of this fully
armed and operational battle station!”

Emperor Sheev Palpatine to Luke Skywalker,
Star Wars Episode VI: Return of the Jedi

In this chapter, we follow the basic references [Hej1976, Iwa2002, KL2006, GJ1979, Art2005] about the
various forms of the trace formula that will be necessary for this thesis.

3.1 | The general approach of the trace formula and of its applica-
tions

Given a topological group G and a discrete subgroup Γ, we have spent the beginning of this chapter
studying the right regular representation π of G acting on L2(Γ\G). Prominently featured in the theory
of this representation were the operators

π(φ) =

∫
G
φ(g)π(g) dg

for compactly supported functions φ on G (see Proposition 2.1.10).
The Arthur–Selberg trace formula is essentially a way of computing the trace of the π(φ) in two

di�erent ways: one side is the spectral side and comes from decomposing L2(Γ\G) into irreducible
representations and looking at the trace on each one of those. The other side is the geometric side and
comes from writing π(φ) as an integral operator coming from a certain kernel and then computing its
trace as a sum of orbital integrals corresponding to conjugacy classes of γ.

Thus far, we have been only looking at real groups. In that scenario, we have had G = SL2(R) and
Γ = SL2(Z), though in our more concrete analysis of Eisenstein series we restricted to the SO2(R)-
isotypic subspace corresponding to the trivial representation of SO2(R) (hopefully it was clear how to
generalize it to the subspace of arbitrary weight just by using the Iwasawa decomposition).
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Manipulating things formally without any regard to convergence, let F be a fundamental domain for
Γ\G, and for g ∈ G and f ∈ L2(Γ\G), observe that

(π(φ)f)(g) =

∫
F
f(h)

(∑
φ(g−1γh)

)
dh,

so that π(φ) can be viewed as a Hilbert–Schmidt integral operator with kernel

Kφ(g, h) =
∑
γ∈Γ

φ(g−1γh).

In particular, even if F is noncompact, the fact that φ is compactly supported means that the sum de�ning
Kφ is �nite. If we were to make the additional assumption that Γ\G were compact1, then the L2 space
would decompose discretely (since there are no cusps), and we would have Kφ ∈ L2(F × F). The
operator π(φ) is compact (as shown in Proposition 2.1.10), so there is an orthonormal basis {ui} of
L2(Γ\G) that diagonalizes it. If π(φ)ui = aiui for each i, then since π(φ) is given by the integral kernel
Kφ(·, ·), we have

Kφ(g, h) =
∑
i

aiui(g)ui(h),

and hence (if π(φ) is actually of trace-class)

Tr(π(φ)) =
∑
i

ai

=
∑
i

ai〈ui, ui〉

=

∫
F

∑
i

aiui(g)ui(g) dg

=

∫
F
Kφ(g, g) dg.

In general, we are therefore interested in computing the integral of Kφ along the diagonal, which is
supposed to equal the trace of π(φ) in good circumstances. This integral in turn is best written as a sum
of orbital integrals corresponding to conjugacy classes in Γ.

The basic statement in the case of compact quotient is as follows.

Theorem 3.1.1. Suppose that L2(Γ\G,χ) decomposes into irreducibles as

L2(Γ\G,χ) ∼=
⊕

πmii .

1The compactness assumption might omit a lot of spaces of arithmetic interest, such as the space SL2(Z)\SL2(R) we have
been studying so far, but by the uniformization theorem and Gauss–Bonnet, it still includes the compact Riemann surfaces of
genus ≥ 2.
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If π(φ) is trace-class, then

∑
i

miTr

(∫
G
φ(g)πi(g) dg

)
︸ ︷︷ ︸

spectral side

=
∑
γ∈{Γ}

µ(Γγ\Gγ)

∫
Gγ\G

φ(g−1γg) dg

︸ ︷︷ ︸
geometric side

where both are equal to Trπ(φ), {Γ} is the set of representatives of conjugacy classes of Γ, and and subscripts
denote centralizers.

Proof. The fact that the spectral side equals Trπ(φ) is immediate from the spectral decomposition of
L2(Γ\G,χ) and the fact that the integral operator π(φ) restricts to a well-de�ned operator on any
G-invariant subspace.

The main part of the proof is the computation of the geometric side, which is, by the previous lemma,
a computation of the integral ∫

G
Kφ(g, g) dg.

This computation is reproduced from [Art2005, §1]:∫
G
Kφ(g, g) dg =

∫
Γ\G

∑
γ∈Γ

φ(g−1γg) dg

=

∫
Γ\G

∑
γ∈{Γ}

∑
δ∈Γγ\Γ

φ(g−1δ−1γδg) dg

=
∑
γ∈{Γ}

∫
Γγ\G

φ(g−1γg) dg

=
∑
γ∈{Γ}

∫
Γγ\Gγ

∫
Gγ\G

φ((g1g2)−1γg1g2) dg1 dg2.

Of course, elements of Gγ act by conjugation by the identity on γ, so the outer integral is the integral of
a constant function, hence we can ignore g1 and the integral, simply multiplying by µ(Γγ\Gγ).

The trace formula Theorem 3.1.1 breaks down on both sides for reasons essentially related to the
existence of a proper parabolic subgroup in G. On the left hand side, this is related to the technicalities of
the continuous spectrum; on the right hand side, one sees that the divergence of the integral comes from
conjugacy classes of Γ which meet a proper parabolic subgroup of G. Arthur [Art1978] has made this
principle explicit, showing that both sides converge if and only if G has a proper parabolic subgroup.
In this thesis, we are interested mainly in GL2, where there tend to be nontrivial parabolic subgroups
(in particular the upper-triangular Borel subgroup). So we will have no choice but to deal with the
convergence issue by Arthur’s technique of truncation (which we have already discussed in Section 2.1.2
in the context of truncation of Eisenstein series).

In any particular realization of the Arthur–Selberg trace formula, there are basically three steps:

1. Choose the test function φ.
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2. Simplify the spectral side.

3. Simplify the geometric side (usually this is done by case-by-case analysis of the di�erent types of
conjugacy classes: elliptic, parabolic, hyperbolic, and identity).

One interesting thing about Theorem 3.1.1 is that it is a generalization of Poisson summation. Here is
how one obtains Poisson summation from the general perspective of the trace formula.

Example 3.1.2 (Poisson summation). Let G = R and Γ = Z. By Fourier analysis (a.k.a. knowledge of
the irreducible representations of SO2(R) = S1 = Z\R), we know that L2(Z\R) is the closure of the
span of the functions x 7→ e2πinx for n ∈ Z. These are eigenfunctions of the Laplacian ∆ = − ∂2

∂x2 with
eigenvalues 4π2n2. For a test function φ smooth on R with good decay properties, we have a well-de�ned
kernel

Kφ(x, y) =
∑
n∈Z

φ(y − x+ n).

So the geometric side of the trace formula reads∑
n∈Z

µ(Z\R)φ(n) =
∑
n∈Z

φ(n).

On the other hand, π(φ) acts on the eigenfunctions by

(π(φ)e2πin·)(x) =

∫
R
e2πin(x+y)φ(y) dy = e2πinx

∫
R
e2πinyφ(y) dy

which means the basis we have of eigenfunctions is also a diagonalizing basis for π(φ), with eigenvalues
φ̂(−n). The trace, equal to the geometric side computed above, is the sum of those eigenvalues, and
hence we obtain the Poisson summation formula∑

n∈Z
φ(n) =

∑
n∈Z

φ̂(n).

Notice that all of the analytic issues associated with which test functions φ can be plugged in are all
absorbed into the convergence issues of the trace formula; once this is taken care of, the trace formula
becomes a powerful and systematic way to interpret spectral theory in terms of geometry.

There are generally two ways in which the trace formula is applied.

1. Apply it for a single group and exploit the resulting nontrivial identities. This splits into two
general strategies:

(a) Design a test function so that the spectral side is something we understand and the geometric
side is something we want. This is the strategy behind proving prime geodesic theorems
from the trace formula, and why the error term in the prime geodesic theorem depends on
whether there are small eigenvalues present in the spectral side. It is also how our approach
to Conjecture 4.2.1 will function: the class numbers will appear on the geometric side as a
result of thinking carefully about the orbital integrals, and we will use additional information
about modular forms to manage the spectral side.
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(b) Design a test function so that the geometric side is something we understand and the spectral
side is something we want. This is the strategy behind proving Weyl’s law for the distribution
of Laplace eigenvalues.

2. Apply the trace formula for two di�erent groups, match up orbital integrals on the geometric side,
and use this to extract a correspondence between automorphic forms on the two groups. This is the
strategy that was intended by Langlands to be the way to prove his functoriality conjecture, which
seems so far to indeed be the most promising route [JL1970, GJ1979, Lan1980, Tun1981, Ngô2010].

3.2 | The Selberg trace formula for SL2(R)

In this section, we follow Iwaniec [Iwa2002] and Hejhal [Hej1976] in deriving the trace formula for
L2(SL2(Z)\SL2(R)). As discussed above, in this setting there is the added di�culty of the continuous
spectrum and the parabolic conjugacy classes in SL2(R). We deal with these issues by Arthur’s method of
truncation. For convenience, and because we constructed the Eisenstein series in this setting, we restrict
to the weight-0 K◦-isotypic subspace, so that we are really looking at L2(Γ\H) where Γ = SL2(Z).
Again, we make the claim here that everything here will work for arbitrary congruence subgroup Γ, but
our proofs are only complete for Γ = SL2(Z) because that is the context in which we developed the
theory of Eisenstein series (for convenience).

Before anything else, a discussion of the test function. In this setting, the choice of test function
φ ∈ C∞c (SL2(R)) that actually makes a di�erence is somewhat limited, for the following reason. The
kernel whose corresponding integral operator we want to take the trace of is

Kφ(g, h) =
∑
γ∈Γ

φ(g−1γh).

Since φ((σg)−1(σγh)) = φ(g−1γh), the data from φ that we care about is really the data of a smooth
function

φ : SL2(R)× SL2(R)→ C

with the property that φ(g, h) = φ(σg, σh) for any σ ∈ SL2(R). This new perspective is convenient
for when we look at the K◦-invariant subspace, since we don’t have to worry about multiplying the
underlying elements of SL2(R). In particular, the trace formula is meant to compute the trace of the
integral operator given by the kernel

Kφ(z, w) =
∑
γ∈Γ

φ(z, γw).

where
φ : H×H→ C

is invariant under SL2(R) acting diagonally. Since PSL2(R) = Isom(H), it follows that φ(z, w) only
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depends on the hyperbolic distance between z and w, which meand we can rewrite it as

φ(z, ζ) = Φ

(
|z − ζ|2

=(z)=(ζ)

)
,

where Φ is a smooth function on R. In principle Φ is compactly supported or at least has good decay
properties. In the literature on the trace formula in this context, such functions φ are called Selberg’s
point-pair invariants. For the geometric side, we are interested in computing the quantity∫

Γ\H
Kφ(z, z) dµ(z) =

∫
Γ\H

∑
γ∈Γ

φ(z, γz) dµ(z)

=

∫
Γ\H

∑
γ∈{Γ}

∑
δ∈Γγ\Γ

φ(z, δ−1γδz) dµ(z)

=

∫
Γ\H

∑
γ∈{Γ}

∑
δ∈Γγ\Γ

φ(δz, γδz) dµ(z)

=
∑
γ∈{Γ}

∫
Γ\H

∑
δ∈Γγ\Γ

φ(δz, γδz) dµ(z)

=
∑
γ∈{Γ}

∫
F [Γγ\H]

φ(z, γz) dµ(z)

where µ(z) denotes the hyperbolic measure on H and subscripts denote centralizers. We will compute
these orbital integrals by casework on the type of conjugacy classes. For now, we go back to the spectral
side.

3.2.1 | The spectral side

Recall from Section 2.1.2 that L2(Γ\H) is a direct sum of Maass cusp forms of weight 0 plus a direct
integral of Eisenstein series. To compute the spectral side of the trace, we therefore need to understand
the action of π(φ) on the Maass cusp forms and on the Eisenstein series (Example 3.1.2 is a good example
for why we should expect this to work). In fact, this computation is insensitive to whether the Maass
form is cuspidal.

Lemma 3.2.1. Suppose f : H→ C is such that ∆0f = λf for some λ ∈ C. Then∫
H
φ(z, ζ)f(ζ) dµ(ζ) = Λ(λ)f(z),

where Λ(λ) depends only on λ and Φ (and in particular not on z). In fact, Λ is an entire function of λ.

This proof is taken from [Hej1976, Proposition 3.1].

Proof. Since ∆0 respects the action of PSL2(R), z 7→ f(σz) is also a λ-eigenfunction. So if we can
prove the lemma when z = i, then we are done, since then we may choose σ ∈ PSL2(R) such that
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σi = z, and then we have ∫
H
φ(z, ζ)f(ζ) dµ(ζ) =

∫
H
φ(σi, ζ)f(ζ) dµ(ζ)

=

∫
H
φ(i, σ−1ζ)f(ζ) dµ(ζ)

=

∫
H
φ(i, ζ)f(σζ) dµ(ζ)

= Λ(λ)f(σi)

= Λ(λ)f(z).

By the same argument we may actually choose σ ∈ PSL2(C), and transform the situation to be situated
on the unit disc model of hyperbolic space, where z = 0. By the standard formulas for how the hyperbolic
metric on H translates over to this situation, it su�ces to show that

4

∫
|z|<1

Φ(|z|)f(z)
dx dy

(1− |z|2)2
= Λ(λ)f(0)

where f : {|z| < 1} → C is a λ-eigenfunction for the Laplacian on the the unit disc model. By averaging
and the fact that the measure only depends on |z|, we have∫

|z|<1
Φ(|z|)f(z)

dx dy

(1− |z|2)2
=

∫
|z|<1

Φ(|z|)F (z)
dx dy

(1− |z|2)2

where F (z) := 1
2π

∫ 2π
0 f(zeiθ) dθ. The new function F is useful because it only depends on |z|. So we

can rewrite the integral we are interested in as

2π

∫ 1

0
Φ(r)F (r)r

dr

(1− r2)2
.

The trick is now to use the same di�erential equation that let us to Green’s functions: by di�erentiation
under the integral sign, ∆0F = λF , which in the language of functions on the disc model we have
already seen equates to

F ′′(r) +
1

r
F ′(r)− 4λ

(1− r2)2
F (r) = 0

with initial conditions F (0) = f(0) and F ′(0) = 0 (both of these follow directly from the de�nition of
F (r) as the average of f on the circle of radius r). By the theory of regular singular points, we see that
there exists a function Gλ(r) [depending only on λ, the only other thing coming up in the di�erential
equation] such that

F (r) = f(0) ·G(r).

This proves the result, because

2π

∫ 1

0
Φ(r)F (r)r

dr

(1− r2)2
= f(0) · 2π

∫ 1

0
Φ(r)Gλ(r)r

dr

(1− r2)2
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and the integral on the right hand side only depends on λ and Φ.

It’s useful that this works without requiring that Kφ is a Green’s function. The cost is that we need
to understand the function Λ. Also, note that Gλ(r) is di�erent from the Green’s function we used in the
previous section: this one does not blow up near r = 0.

It isn’t obvious (to me) that Λ is entire from its de�nition as an integral involving a function satisfying
a di�erential equation depending on λ. Instead, one uses the result of Lemma 3.2.1: to compute Λ, we
may choose any test function f we want2, as long as it has ∆0f = λf . This is what allows for

Lemma 3.2.2. For r ∈ C, we have

Λ

(
1

4
+ r2

)
= h(r),

where

h(r) :=

∫
R
eiru

∫ ∞
eu+e−u−2

Φ(t)√
t− (eu + e−u − 2)

dt du.

In fact, Λ is entire.

Proof. The point is to take the test function (on the upper half-plane, not the disc) f(x+ iy) = =(y)s,
where s ∈ C. Then

∆0f = s(1− s)f.

So by Lemma 3.2.1,

Λ(s(1− s)) =

∫
H
φ(i, ζ)=(ζ)s dµ(ζ).

Taking

s =
1

2
+ ir,

with r ∈ C so that
s(1− s) =

1

4
+ r2,

we may use this to compute (substituting t = x2+(y−1)2

y and then u = log y)

Λ

(
1

4
+ r2

)
= Λ(s(1− s))

=

∫
H
φ(i, ζ)=(ζ)s dµ(ζ)

= 2

∫ ∞
0

∫ ∞
0

Φ

(
x2 + (y − 1)2

y

)
ys−2 dx dy

=

∫ ∞
0

∫ ∞
(y−1)2/y

Φ (t) ys−2 dt

(
√
ty − (y − 1)2)/y

dy

=

∫ ∞
−∞

∫ ∞
eu+e−u−2

Φ(t)eu(s−2) dt

(
√
teu − (eu − 1)2)e−u

du

e−u

=

∫ ∞
−∞

eu(s−
1
2)
∫ ∞
eu+e−u−2

Φ(t)√
t− eu − e−u + 2

dt du

2this is not a typo. For a brief time, now f will be a “test function” rather than Φ.
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=

∫ ∞
−∞

eiru
∫ ∞
eu+e−u−2

Φ(t)√
t− eu − e−u + 2

dt du

as claimed. This at least makes s 7→ Λ(s(1 − s)) an entire function, hence λ 7→ Λ(λ) is holomorphic
away from λ = 1/4. But Λ is de�ned and continuous at λ = 1/4, so in fact Λ is entire.

De�nition 3.2.3. The function h is called the Harish-Chandra transform of the test function Φ. From
now on, Φ is considered to be �xed, and h is de�ned to be its Harish-Chandra transform.

Corollary 3.2.4. The integral kernelKφ decomposes in L2(F × F) as

Kφ(z, ζ) =
∑
j

h(rj)uj(z)uj(ζ) +
1

4π

∫
R
h(r)E

(
z,

1

2
+ ir

)
E

(
ζ,

1

2
+ ir

)
dr

where the rj are such that 1
4 + r2

j = λj the ∆-eigenvalue of uj .

Proof. Direct consequence of Theorem 2.1.18 and Lemma 3.2.1. N.B.: one has to check that Kφ really is
square-integrable in both coordinates as long as h satis�es the appropriate decay properties. This whole
time, we are implicitly restricting to test functions Φ such that h satis�es those decay properties.

Regardless, the integral operator induced by the kernelKφ will likely not be of trace class. In particular,
according to Corollary 3.2.4 and our previous computations, if it was of trace-class, we would have

Trπ(φ) =

∫
F [Γ\H]

Kφ(z, z) dµ(z)

=
∑
j

h(rj)‖uj‖2L2 +
1

4π

∫
R
h(r)

∥∥∥∥E (z, 1

2
+ ir

)∥∥∥∥2

L2

dr.

This does not make sense because E(z, s) is (barely) not square-integrable even when <s = 1/2. So we
are forced to compute the truncated trace, which is done by replacing this integral with an integral over
the truncated fundamental domain F [Γ\H]y≤T for large T . In that case, we are after the quantity we
now call

TrTπ(φ) =
∑
j

h(rj)

∫
F [Γ\H]y≤T

|uj(z)|2 dµ(z) +
1

4π

∫
R
h(r)

∫
F [Γ\H]y≤T

∣∣∣∣E (z, 1

2
+ ir

)∣∣∣∣2 dµ(z)dr

(3.1)
and since we are looking at the truncated fundamental domain, we might as well replace E with the
truncated Eisenstein series ΛTE (see De�nition 2.1.20). Since the truncated fundamental domains are
compact, there are no issues with convergence here.

The terms coming from truncated Eisenstein series must now be estimated. By Corollary 2.1.22, we
have (for r 6= 0 which doesn’t contribute anything to the integral anyway)∫
F [Γ\H]y≤T

∣∣∣∣ET (z, 1

2
+ ir

)∣∣∣∣2 dµ(z) ≤
∫
F [Γ\H]

∣∣∣∣ET (z, 1

2
+ ir

)∣∣∣∣2 dµ(z)
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=
ϕ
(

1
2 − ir

)
T 2ir − ϕ

(
1
2 − ir

)
T−2ir

2ir
+ 2 log T − ϕ′

ϕ

(
1

2
+ ir

)
.

So the whole term in Equation (3.1) coming from Eisenstein series is bounded above by

1

4π

∫
R
h(r)

[
ϕ
(

1
2 − ir

)
T 2ir − ϕ

(
1
2 − ir

)
T−2ir

2ir
+ 2 log T − ϕ′

ϕ

(
1

2
+ ir

)]
dr.

Only the �rst term is something we are interested in simplifying further. Indeed, we have (by the evenness
of h)

1

8πi

∫
R

h(r)

r

[
ϕ

(
1

2
− ir

)
T 2ir − ϕ

(
1

2
−ir

)
T−2ir

]
dr

=
1

4πi

∫
R

h(r)

r

[
ϕ

(
1

2
− ir

)
T 2ir − ϕ

(
1

2

)]
dr,

where the ϕ(1/2) = 1 term is subtracted from ϕ(1/2 − ir)T 2ir to make r−1h(r)(ϕ(1/2 − ir)T 2ir −
ϕ(1/2)) integrable for r ranging over R (and in particular the integrand does not have a pole at r = 0).
Since

ϕ(s) = π1/2 Γ(s− 1/2)

Γ(s)

ζ(2s− 1)

2s

is bounded on small neighborhoods of the line <s = 1/2, if h decays fast enough, we can move the
contour of integration up from R to R + εi, which then allows us to integrate both terms separately
(since h(r)/r no longer has any poles on the line of integration). There are no poles in the way, so we
are left with

1

4πi

∫
=r=ε

h(r)

r

[
ϕ

(
1

2
− ir

)
T 2ir − 1

]
dr

=
1

4πi

∫
=r=ε

h(r)

r
ϕ

(
1

2
− ir

)
T 2ir dr − 1

4πi

∫
=r=ε

h(r)

r
dr.

Again, since ϕ is actually bounded on small neighborhoods of <s = 1/2, for small ε, the �rst term is

1

4πi

∫
=r=ε

h(r)

r
ϕ

(
1

2
− ir

)
T 2ir dr �

∫
=r=ε

h(r)

r
T 2ir

�
∫
R

h(r + iε)

r + iε
T 2ir−2ε

� T−2ε

and the second term is

− 1

4πi

∫
=r=ε

h(r)

r
dr =

1

4
h(0),

by moving the contour of integration down to=r = −ε, using the symmetry of h and the fact that h(r)/r
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has only a simple pole at r = 0 of residue h(0). Anyway, we conclude from this the upper bound

TrTπ(φ) ≤
∑
j

h(rj) + g(0) log T − 1

4π

∫
R
h(r)

ϕ′

ϕ

(
1

2
+ ir

)
dr +

1

4
h(0) +O(T−2ε),

where
g(u) =

∫ ∞
eu+e−u−2

Φ(t)√
t− (eu + e−u − 2)

dt =
1

2π

∫
R
e−iruh(r) dr

is the (suitably normalized) Fourier transform of h.
In fact, this upper bound is supposed to be an equality, as we show now.

Proposition 3.2.5 (Spectral side of the trace formula). For large T ,

TrTπ(φ) =
∑
j

h(rj) + g(0) log T − 1

4π

∫
R
h(r)

ϕ′

ϕ

(
1

2
+ ir

)
dr +

1

4
h(0) +O(T−2ε).

Proof. The upper bound in this equality was proven by integrating Kφ(z, z) (except with Eisenstein
series replaced with truncated Eisenstein series) over the entire fundamental domain rather than the
truncated one. So it su�ces to show that the contribution of the remainder of the fundamental domain is
absorbed into the error term. For the constant function u0 (which makes up the residual spectrum in our
case Γ = SL2(Z)), we have ∫

F [Γ\H]y≥T

|u0(z)|2 dµ(z)� µ(F [Γ\H]y≥T )

� 1

T
.

And since Maass cusp forms have exponential decay at the cusp (thanks to the Fourier expansion), the
same bound holds for all the uj ’s (except the implied constant might depend on sj ; this doesn’t end up
mattering — we just end up with an in�nite sum of these implied constants times h(sj) which converges
thanks to the decay properties of h). As for the Eisenstein series term, the same bound∫

R
h(r)

∫
F [Γ\H]y≥T

∣∣∣∣ΛTE (z, 1

2
+ ir

)∣∣∣∣2 dµ(z)dr �h
1

T

holds, again thanks to the fact that the truncated Eisenstein series decay exponentially at the cusp. The
extra T−1 are absorbed in the O(T−2ε) error, as long as ε was chosen to be su�ciently small.

3.2.2 | The geometric side

We are now meant to evaluate the geometric side of the trace formula, namely

TrTπ(φ) =

∫
F [Γ\H]y≤T

Kφ(z, z) dµ(z)
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=
∑
γ∈{Γ}

∫
F [Γγ\H]y≤T

φ(z, γz) dµ(z).

It remains to compute the orbital integrals
∫
F [Γγ\H]y≤T

φ(z, γz) dµ(z) for each type of conjugacy class
γ. As a warm-up, we begin with the identity term. To do this, we need to make an observation about the
integral transform involved in the de�nition of g(u).

Lemma 3.2.6. If Φ ∈ C∞c (R), then for any t ∈ R,

Φ(t) = − 1

π

∫ ∞
t

d
dx

∫∞
x

Φ(v)√
v−x dv√

x− t
dx

Proof. The proof of this formula is the main part of [Hej1976, Proposition 4.1]. I don’t know why it is not
a coincidence, but it seems related to the theory of the Abel transform . The fact that Φ is compactly
supported makes all of our manipulations below kosher. First, observe that

d

dx

∫ ∞
x

Φ(v)√
v − x

dv = 2
d

dx

∫ ∞
0

Φ(x+ u2) du

= 2

∫ ∞
0

Φ′(x+ u2) du

=

∫ ∞
x

Φ′(v)√
v − x

dv.

So we may compute

∫ ∞
t

d
dx

∫∞
x

Φ(v)√
v−x dv√

x− t
dx =

∫ ∞
t

∫∞
x

Φ′(v)√
v−x dv√
x− t

dx

=

∫ ∞
t

∫ ∞
x

(x− t)−
1
2 (v − x)−

1
2 Φ′(v) dv dx

=

∫ ∞
t

Φ′(v)

∫ v

t
(x− t)−

1
2 (v − x)−

1
2 dx dv

=

∫ ∞
t

Φ′(v)

∫ 1

0
x−

1
2 (1− x)−

1
2 dx dv

=

∫ ∞
t

Φ′(v)B

(
1

2
,
1

2

)
dv

=
Γ
(

1
2

)
Γ
(

1
2

)
Γ (1)

∫ ∞
t

Φ′(v) dv

= −πΦ(t),

again using the fact that Φ is compactly supported on R and in reality replacing t with t+ ε while taking
ε→ 0 to deal with the improper integrals.
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Proposition 3.2.7. The identity term on the geometric side is∫
F [Γ\H]y≤T

φ(z, Iz) dµ(z) =
µ(F [Γ\H]y≤T )

2π

∫ ∞
0

rh(r) tanh(πr) dr,

where h is the holomorphic function de�ned as above.

Proof. By de�nition, we have∫
F [Γ\H]y≤T

φ(z, Iz) dµ(z) = Φ(0)µ(F [Γ\H]y≤T ),

and from Lemma 3.2.6 (substituting eu + e−u − 2 for x),

Φ(0) = − 1

π

∫ ∞
0

d
dx

∫∞
x

Φ(v)√
v−x dv√
x

dx

= − 1

π

∫ ∞
0

d
dxg(u)

√
eu + e−u − 2

dx

du
du

= − 1

π

∫ ∞
0

g′(u)

eu/2 − e−u/2
du.

Since the spectral side of the trace formula we only have in terms of the inverse Fourier transform h of g,
it is convenient to simplify this further using the formula for the derivative of the Fourier transform. In
fact, using the symmetry of the integral involved,

g(u) =
1

2π

∫
R
h(r)e−iru dr =

1

π

∫ ∞
0

h(r) cos(ru) dr

so di�erentiating under the integral sign yields

g′(u) = − 1

π

∫ ∞
0

rh(r) sin(ru) dr

hence

Φ(0) =
1

π2

∫ ∞
0

rh(r)

∫ ∞
0

sin(ru)

eu/2 − e−u/2
du dr

=
1

2π

∫ ∞
0

rh(r) tanh(πr) dr,

as desired.

Since Γ\H has �nite volume, the truncation really makes no di�erence to us for the identity term: as
T →∞, the identity term will converge to

µ(Γ\H)

2π

∫ ∞
0

rh(r) tanh(πr) dr
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anyway. This is part of the general theme that the divergence in the orbital integrals is caused only by the
proper parabolic subgroups, so the only thing truncation will be necessary for is the parabolic conjugacy
classes. For this reason, we do those last.

For now, we do the hyperbolic classes. For a hyperbolic γ ∈ Γ, we know that γ is conjugate in
PSL2(R) to a transformation of the form z 7→ N(γ)z for some positive constant N(γ). That quantity
is also characterized by the fact that

inf
z∈H

dH(z, γz) = inf
z∈H

dH(z,N(γ)z)

=

∫
x+iy∈H

∫ N(γ)y

y

dy

y

= logN(γ).

Lemma 3.2.8. If γ ∈ SL2(Z) is hyperbolic, then∫
F [Γγ\H]

φ(z, γz) dµ(z) =
logN(γ0)

N(γ)1/2 −N(γ)−1/2
g(logN(γ)),

where γ0 denotes a generator of the centralizer of γ in Γ.

Proof. when γ ∈ Γ is hyperbolic, there is an η ∈ PSL2(R) such that η−1γη acts by z 7→ N(γ)z, and the
centralizer of η−1γη is generated by η−1γ0η, where without loss of generality, N(η−1γ0η) = N(γ0) > 1.
The orbital integral corresponding to γ is∫

F [Γγ\H]
φ(z, γz) dµ(z) =

∫
η−1F [Γγ\H]

φ(ηz, γηz) dµ(z)

=

∫
F [η−1Γγη\H]

φ(ηz, γηz) dµ(z)

=

∫
F [Γη−1γη\H]

φ(ηz, γηz) dµ(z)

=

∫
F [Γη−1γη\H]

φ(z, η−1γηz) dµ(z)

=

∫
F [Γη−1γη\H]

φ(z, η−1γηz) dµ(z)

=

∫
1≤=(z)≤N(γ0)

φ(z,N(γ)z) dµ(z)

=

∫ N(γ0)

1

∫ ∞
−∞

Φ

(
|(x+ iy)−N(γ)(x+ iy)|2

N(γ)y2

)
dx dy

y2

= 2

∫ N(γ0)

1

∫ ∞
0

Φ

(
(N(γ)− 1)2

N(γ)

x2 + y2

y2

)
dx dy

y2

= logN(γ0)

√
N(γ)

N(γ)− 1

∫ ∞
(N(γ)−1)2/N(γ)

Φ(t)√
t− (N(γ)−1)2

N(γ)

dt.
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This simpli�es to the actual claim, using the fact that

g(u) =

∫
eu+e−u

Φ(t)√
t− (N(γ)−1)2

N(γ)

It’s nice that these numbers N(γ) show up: these are related to lengths of geodesics on Γ\H, and
hence the trace formula will allow us to study the distribution of those lengths.

Now, time for the elliptic term. This term basically never has any impact on anything, because there
are only �nitely many elliptic elements of SL2(Z) or any other congruence subgroup – most elements
have no �xed points in H, which is why it is easy to de�ne the Riemann surface Γ\H. For an elliptic
element γ ∈ Γ, its centralizer is �nite cyclic (it is the stabilizer of the �xed point of γ) and generated by
some γ0.

Proposition 3.2.9. The elliptic orbital integrals evaluate to∫
F [Γγ\H]

φ(z, γz) dµ(z) =
τ

2π sin τ

∫
R
h(r)

cosh(πr − 2τr)

coshπr
dr,

where τ ∈ [0, π) is the angle such that γ is conjugate in SL2(R) to a rotation by angle ±τ .

Proof. Every elliptic element is conjugate in SL2(R) to some

κτ =

(
cos τ − sin τ

sin τ cos τ

)
.

So we have
γ = η−1κτη,

and hence (by the same argument as in Lemma 3.2.8)∫
F [Γγ\H]

φ(z, γz) dµ(z) =

∫
F [Γκτ \H]

φ(z, κτz) dµ(z).

The fundamental domain for Γκτ might not be as easy to describe as the fundamental domain for
hyperbolic elements, but we are saved by the fact that κτ has �nite order (as the stabilizer of i in Γ is
�nite), namely π/τ . So all of H is tiled by translates of F [Γκτ \H] by κτ , and the orbital integral over all
of these regions are the same thanks to the SL2(R)-invariance of φ. So in fact the value we are interested
in computing does not require us to understand this fundamental domain, and we just need to compute

τ

π

∫
H
φ(z, κτz) dµ(z).

This is easiest to compute in the coordinates that come from the Cartan decomposition of SL2(R),
rather than the Iwasawa decomposition (makes sense, since we are interested in the action of K◦). In
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particular, we have
SL2(R) = K◦AK◦,

where A is the subgroup of diagonal matrices. This gives us new coordinates

z = κτe
−ri

for θ ∈ [0, π) and r ∈ [0,∞). One checks that

dµ(z) = (2 sinh r) drdθ,

from which it follows that∫
F [Γγ\H]

φ(z, γz) dµ(z) =
τ

π

∫
H
φ(z, κτz) dµ(z)

=
τ

π

∫ π

0

∫ ∞
0

φ(κθe
−ri, κτκθe

−ri)(2 sinh r) drdθ

=
τ

π

∫ π

0

∫ ∞
0

φ(κθe
−ri, κθκτe

−ri)(2 sinh r) drdθ

= τ

∫ ∞
0

φ(e−ri, κτe
−ri)(2 sinh r) dr

= τ

∫ ∞
0

Φ((sinh r sin τ)2)(2 sinh r) dr

=
τ

sin τ

∫ ∞
0

Φ(u)√
u+ sin2 τ

du

=
τ

π

∫ ∞
0

g(r)
cosh(r/2)

cosh r − cos(2τ)
dr

=
τ

2π sin τ

∫
R
h(r)

cosh(πr − 2τr)

coshπr
dr

as desired.

It is �nally time to deal with the parabolic elements. We are saved in this case by the fact that the
parabolic conjugacy classes are very easy to describe: they have representatives which are in Γ ∩N , i.e.
are just horizontal translations. The technical di�culty here comes from the fact that the truncation
is actually necessary: as we saw in Proposition 3.2.7, Lemma 3.2.8, and Proposition 3.2.10, all the other
orbital integrals converge as T → ∞, which implies (by Proposition 3.2.5) that the parabolic orbital
integrals have to be of order log T . So in this situation we need to keep track of the truncation.

Proposition 3.2.10. The sum of the parabolic orbital integrals is

∑
γ∈{Γ}

parabolic

∫
F [Γγ\H]y≤T

φ(z, z + n) = g(0) log T − g(0) log 2 +
1

4
h(0)− 1

2π

∫
R
h(r)

Γ′

Γ
(1 + ir) dr.
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Proof. Every parabolic conjugacy class of Γ has a representative in Γ of the form

γn =

(
1 n

0 1

)
.

for n 6= 0. The centralizer of γn is exactly

Γ ∩N =

{(
1 1

0 1

)n
: n ∈ Z

}
,

so the sum we wish to compute is

∑
n6=0

∫
F [(Γ∩N)\H]

φ(z, z + n) =
∑
n6=0

∫ T

0

∫ 1
2

− 1
2

Φ

(
n2

y2

)
dxdy

y2

=
∑
n6=0

∫ T

0
Φ

(
n2

y2

)
y−2dy

=
∑
n6=0

1

2n

∫ ∞
n2/T 2

Φ(u)√
u
du

=
∑
n≥1

1

n

∫ ∞
n2/T 2

Φ(u)√
u
du

=

∫ ∞
T−2

Φ(u)√
u

 ∑
1≤n≤T

√
u

1

n

 du

=

∫ ∞
T−2

Φ(u)√
u

(
log(T

√
u) + γEuler +O

(
1

T
√
u

))
du

where γEuler is the Euler–Mascheroni constant. The contribution of the error inside the integral is of the
order

1

T

∫ ∞
T−2

Φ(u)

u
du�Φ

1

T
log T,

and the rest is ∫ ∞
0

Φ(u)√
u

(
log(T

√
u) + γEuler

)
du

which is
g(0)(log T + γEuler) +

1

2

∫ ∞
0

Φ(u)√
u

log(u) du.

Computing further, we have

1

2

∫ ∞
0

Φ(u)√
u

log(u) du = −g(0)γEuler +
1

4
h(0)− 1

2π

∫
R
h(r)

Γ′

Γ
(1 + ir) dr,

from which the desired result follows.

Now that we have computed the spectral side and all the necessary orbital integrals, we can write
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down the �nal version of the trace formula in this context.

Theorem 3.2.11 (Selberg trace formula for SL2(R)). Let h(s) be an even holomorphic function de�ned
on a neighborhood of the strip |=s| ≤ 1/2 satisfying the appropriate growth conditions such that the spectral
side below converges absolutely, and let g(u) = 1

2π

∫
R e
−iruh(r) dr be its Fourier transform. Then

∑
j

h(rj)−
1

4π

∫
R
h(r)

ϕ′

ϕ

(
1

2
+ ir

)
dr

= −g(0) log 2− 1

2π

∫
R
h(r)

Γ′

Γ
(1 + ir) dr

+
∑

γ∈{Γ}Ell

τγ
2π sin τγ

∫
R
h(r)

cosh(πr − 2τγr)

coshπr
dr

+
∑

γ∈{Γ}Hyp

logN(γ0)

N(γ)1/2 −N(γ)−1/2
g(logN(γ))

+
µ(F [Γ\H])

2π

∫ ∞
0

rh(r) tanh(πr) dr.

Proof. Combine Proposition 3.2.5, Proposition 3.2.7, Proposition 3.2.10, Lemma 3.2.8, and Proposition 3.2.9.
Subtract the term proportional to log T from both sides, and then take T →∞.

Now is a good time to mention all the technical analytic conditions we have swept under the rug in
the proofs. In particular, we have been assuming this whole time (as made explicit in the hypothesis to
Theorem 3.2.11) that the truncated operators are actually of trace-class. This is true when Φ is compactly
supported, but as we see in Theorem 3.2.11, an attractive feature in this explicit version of the trace
formula is that it doesn’t depend on Φ itself at all — only on h and its Fourier transform3. So it makes more
sense to ask what kind of growth condition we need to require of h to make the spectral side converge
absolutely (in which case it is a formal consequence that the geometric side will also). It turns out that if h
is de�ned on the neighborhood |=s| ≤ 1/2 + δ, then it is enough to have h satisfy the growth condition

h(r) ≤ (|r|+ 1)−2−δ. (3.2)

In the case where Γ\H was compact, one could show convergence under the weaker growth condition
h(r) ≤ (|r|+ 1)−4−δ by constructing a Green’s function, that is, a Hilbert–Schmidt integral kernel for
the resolvent of the Laplace–Beltrami operator. The existence of a Green’s function in that context (which
itself is a consequence of basic ODE theory) then shows that∑

λ−2
j <∞,

where the λj are the Laplace eigenvalues of the Maass (cusp) forms on Γ\H (see [Bum1997, §2.3]). It is
harder to get this argument to work in the presence of the continuous spectrum, but luckily the following

3Of course, one can recover Φ and thus φ from h (see the de�nitions) — otherwise the hypotheses to Theorem 3.2.11 wouldn’t
make sense.
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weak version of Weyl’s law for the �nite-volume case is fairly easy to establish given what we have
developed so far.

Lemma 3.2.12. ∑
|rj |<T

1 +

∫ T

−T

ϕ′

ϕ
(1 + ir) dr � T 2.

Proof. By Bessel’s inequality, we have, for ζ ∈ H in the standard fundamental domain,

∑
j

|h(rj)uj(ζ)|2 +
1

4π

∫
R
|h(r)E(ζ, 1/2 + ir)|2 dr ≤

∫
F [Γ\H]

|Kφ(z, ζ)|2 dµ(z).

Taking Φ to be a smooth approximation to the characteristic function of an interval [0, R], we �nd that
this yields ∑

|rj |<T

|uj(ζ)|2 +

∫ T

−T
|E(ζ, 1/2 + ir)|2 dr � T 2 + Ty

where ζ = x+ iy is chosen to be in the standard fundamental domain (this choice is convenient because
it guarantees that y = supγ∈Γ=(γ · ζ)). Integrating this inequality over the truncated fundamental
domain F [Γ\H]y≤T and using Corollary 2.1.22 along with the decay properties at the cusp guaranteed
by Lemma 2.1.15, we get the desired result.

The crude bound Lemma 3.2.12 (which we will improve to a precise asymptotic in the standard
application of the trace formula) is enough to establish the validity of Theorem 3.2.11 for test functions h
satisfying the condition Equation (3.2).

3.3 | The Eichler–Selberg trace formula

The goal of this section is to prove the analog of Theorem 3.2.11 in the global setting, that is in the setting
of automorphic forms on GL2(AQ). The adelic setting is where the Hecke operators are most naturally
de�ned, and the point of this section is to derive the Eichler–Selberg trace formula for traces of Hecke
operators acting on the classical holomorphic cusp forms of level 1 and weight k. In doing this, we will
follow the references of Knightly–Li [KL2006] and Gelbart–Jacquet [GJ1979].

In the language of Section 3.1, we are looking at the group G = GL2(AQ) and the discrete subgroup
Γ = GL2(Q). In reality, we are restricting to the case of trivial central character (since we are interested
in level 1), so the actual representation we are looking at is the right regular representation π ofGL2(AQ)

acting on
L2(PGL2(Q)\PGL2(AQ)).

The automorphic forms inL2(PSL2(Z)\PSL2(R)) embed in the obvious way in here. The trace formula
is a computation of

Trπ(φ)

where φ : GL2(AQ) → C is smooth (in the usual adelic sense) and is nice enough to that π(Φ) is of
trace class.
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The standard notation for this setup (which will allow us to save a little space is as follows). Let
G = GL2/Q, Z its center (the scalar matrices), and G = G/Z = PGL2/Q. As we have already seen, the
key feature of G that brings all the technical di�culties is the existence of the proper parabolic subgroup
P (which we take to be the upper-triangular Borel subgroup), which admits the Levi decomposition

P = MN,

where

M =

{(
∗
∗

)}
and

N =

{(
1 ∗

1

)}
.

3.3.1 | Choosing the test function

In real life, there are (like in the previous section) complications relating to the continuous spectrum, and
an analogous theory of Eisenstein series to account for those complications. But the test function we are
interested in will make sure that π(φ) kills the continuous spectrum, and in fact only acts on the space of
weight-k holomorphic cusp forms. De�ne

φ =
∏
v∈MQ

φv,

where each φv is smooth onGv = GL2(Qv). It is our job to de�ne the φv so that π(φ) gives us exactly the
Hecke operator we want (it needs to kill the orthogonal complement ofSk(Γ(1),C) inL2(G(Q)\G(AQ))

and act as the Hecke operator Tn on Sk(Γ(1),C)). Once we have done this, our life will be much easier
than in the general case: we will not have to worry about the continuous spectrum, and we will be
guaranteed that π(φ) is of trace class (as it is a �nite-rank operator).

Lemma 3.3.1. Suppose k > 2. Let

φ∞(g) = dk〈π(g)fk, fk〉,

where dk is the formal dimension of the weight-k discrete series representation of GL2(R) and fk is any
nonzero lowest-weight vector in that representation. For each �nite prime p, let φp be the characteristic
function of the compact subset Z(Qp)T (n)p, where

T (n)p = {g ∈M2(Zp)| det g ∈ nZ×p } ⊂ GL2(Qp).

Then π(φ) kills the orthogonal complement of Sk(Γ(1),C) and acts on it by the Hecke operator n1− k
2Tn.

Proof. The set T (n)p is just the set of 2× 2 matrices with coe�cients in Zp such that the p-adic valuation
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of the determinant equals that of n. By the Cartan decomposition, we have

GL2(Qp) =
⋃
i≥j

GL2(Zp)

(
pi 0

0 pj

)
GL2(Zp),

which means that we can write T (n)p as a union of double cosets

T (n)p =
⋃
i≥j

i+j=vp(n)

GL2(Zp)

(
pi 0

0 pj

)
GL2(Z).

This means that (ignoring the archimedean place for now) π(φfin) agrees with the global de�nition of Tn
as a double coset operator (see e.g. [Bum1997, §3.6]).

The test function at the in�nite place is meant to restrict this to Sk(Γ(1),C). This is thanks to the
general theory of matrix coe�cients. First of all, φ∞ is absolutely integrable modulo center, as can be
checked from the standard explicit realization of the discrete series representation (see [Bum1997, Theorem
2.6.5]; note that this is where we use the fact that k > 2). So (despite the fact that φ∞ is not compactly
supported modulo center), the operator π(φ) is well-de�ned.

Again by [Bum1997, Theorem 2.6.5], one checks that∫
N(R)

φ∞(gnh) dn = 0

for any g, h ∈ G(R), and hence that

∫
N(AQ)

φ (gnh) dn =

(∫
N(R)

φ∞(g∞nh∞) dn

)(∫
N(AQ,fin)

∏
p<∞

φp(gpnphp) dn

)
= 0 (3.3)

and as a result ∫
N(AQ)

φ(gn−1mnh) dn = 0 (3.4)

for any m ∈M(AQ).
Therefore, for any f ∈ L2(G(Q)\G(AQ)), we have∫

N(Q)\N(AQ)
(π(φ)f)(ng) dn :=

∫
N(Q)\N(AQ)

∫
G(A)

φ(g−1n−1x)f(x) dxdn

=

∫
N(Q)\N(AQ)

∫
N(Q)\G(AQ)

∑
δ∈N(Q)

φ(g−1n−1δx) dxdn

=

∫
N(Q)\G(AQ)

f(x)

∫
N(Q)\N(AQ)

∑
δ∈N(Q)

φ(g−1n−1δx) dndx

=

∫
N(Q)\G(AQ)

f(x)

∫
N(AQ)

φ(g−1n−1δx) dndx

= 0
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thanks to Equation (3.3) (here we have used the integrability of φ modulo center and approximated f by
bounded functions to apply Fubini’s theorem). In other words, π(φ) sends everything to the cuspidal
subspace. Recall (from above or from [Bum1997, Proposition 2.3.1]) moreover that the adjoint of π(φ) is
given by π(φ∗), where

φ∗(g) = φ(g−1).

Since φ∞ is given by a matrix coe�cient, we know immediately that φ∗∞ = φ∞. The same is true for φp
at the �nite places p, since complex conjugation doesn’t do anything to a characteristic function, and

φp(g
−1) = φp((det g) · g−1) = φp(g),

where det g is considered as an element of Z(Qp), since

det((det g) · g−1) =
det2 g

det g
= det g.

Therefore, we conclude that π(φ) is self-adjoint and that

π(φ)L2(G(Q)\G(AQ)) ⊂ L2
cusp(G(Q)\G(AQ)),

and thus
π(φ)L2

cusp(G(Q)\G(AQ))⊥ = 0.

Hence, π(φ) acts only on the cuspidal subspace. Knowing this is convenient because of the fact that
L2

cusp(G(Q)\G(AQ)) decomposes discretely into irreducible representations of G(AQ) with �nite
multiplicities. We proved this fact in the archimedean setting (Theorem 2.1.11), which is most of the
content of the general proof (see [Bum1997, §3.3] for more details). In particular,

π = L2
cusp(G(Q)\G(AQ)) =

⊕
πi

where the πi’s are allowed to repeat with �nite multiplicity, and by the tensor product theorem (see Flath
or Bump) we have

πi =
⊗
v∈MQ

πi,v,

where πi,v is an automorphic representation of G(Qv). One checks directly that via this isomorphism

π(φ)|πi = πi,∞(φ∞)⊗ πi,fin(φfin).

By Schur’s lemma for matrix coe�cients (see [Bum2013, Theorem 2.4]), we conclude that π(φ) kills all of
the irreducible representations πi whose in�nity-type is not the discrete series of lowest-weight k, and
otherwise acts trivially on the in�nite part of πi. It follows (since the action of π(φ) on πi is then exactly
the same as the Hecke action of Tn, up to the usual scaling factor) that

TrTn|Sk(Γ(1),C) = n
k
2
−1Trπ(φ),
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as claimed.

3.3.2 | The identity term

For our purposes, Lemma 3.3.1 is the spectral side of the trace formula. In this section and the ones that
follow, we compute the geometric side, which will ultimately give a formula for TrTn in terms of class
numbers of imaginary quadratic �elds.

As usual, the easiest one is the identity term. That term is∫
G(Q)\G(AQ)

φ(g−1Ig) = φ(1)vol(G(Q)\G(AQ))

= φ(1)
π

3

(thanks to the standard computation of the Tamagawa number of PGL2). At in�nity, we have

φ∞(1) = dk =
k − 1

4π

(the formal degree of the discrete series representations of GL2(R) is a straightforward computation
from the explicit description [Bum1997, Theorem 2.6.5]). As for the �nite places, recall that for a rational
prime p <∞,

φp(1) =

1, if 1 ∈ Z(Qp)T (n)p

0, otherwise
.

Since det(xm) = x2 det(m), we know that φp(1) = 0 whenever vp(n) is odd. So if n is not a perfect
square, φp(1) = 0. On the other hand, if n is a perfect square, we have

1 =
1√
n
·
√
n,

where the
√
n ∈ Q×p = Z(Qp) and the n is also considered as an element of Z(Qp) ⊂ T (n)p. Hence,

we can deduce

Proposition 3.3.2. For φ de�ned as in Lemma 3.3.1, the identity term of the trace formula is

∫
G(Q)\G(AQ)

φ(g−1Ig) =

k−1
12 , if n is a perfect square

0 otherwise
.

3.3.3 | The elliptic term

Now we consider the elliptic conjugacy classes of G(Q) = PGL2(Q). These are the conjugacy classes
whose elements have zero eigenvalues in Q. The elliptic term is particularly nice because the elliptic
conjugacy classes have no intersection with the upper-triangular parabolic subgroup P (Q). As we know
from Arthur, there are never any problems with convergence on the geometric side for conjugacy classes
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that do not meet P (Q). Lifting to GL2(Q) (by de�nition of φ, each elliptic element of PGL2(Q) such
that φ(g−1γg) 6= 0 for any g has exactly two lifts to GL2(Q) of determinant n), the elliptic term is∫

G(Q)\G(AQ)

∑
γ∈G(Q)
elliptic

φ(g−1γg) dg =
1

2

∫
G(Q)\G(AQ)

∑
γ∈G(Q)elliptic

det γ=n

φ(g−1γg)

=
1

2

∑
[γ] elliptic conj. class

det γ=n

∫
G(Q)\G(AQ)

∑
δ∈Gγ(Q)\G(Q)

φ(g−1δ−1γδg) dg

=
1

2

∑
[γ] elliptic conj. class

det γ=n

∫
G(Q)\G(AQ)

∑
δ∈Gγ(Q)\G(Q)

φ(g−1δ−1γδg) dg

=
1

2

∑
[γ] elliptic conj. class

det γ=n

∫
Gγ(Q)\G(AQ)

φ(g−1δ−1γδg) dg.

The computation of the orbital integral on the inside depends on whether γ remains elliptic in G(R), i.e.
on whether the complex roots of the characteristic polynomial of γ are not real. Since det γ = n, the
characteristic polynomial is of the form

pγ(X) = X2 − tX + n,

where t = Trγ.

Lemma 3.3.3. If γ is diagonalizable overR (i.e. the roots of pγ are real), then∫
Gγ(Q)\G(AQ)

φ(g−1γg) dg = 0.

Proof. As one can check by linear algebra, the centralizer Gγ(Q) is equal to Q[γ]× = Q(
√
t2 − 4n)×

(this is true when γ is elliptic or hyperbolic in G(Q)). The same thing holds if you replace Q with AQ.
In particular, Gγ(Q) and Gγ(AQ) are abelian, hence unimodular, so there are no issues with writing∫

Gγ(Q)\G(AQ)
φ(g−1γg) dg =

∫
Gγ(AQ)\G(AQ)

∫
Gγ(Q)\Gγ(AQ)

φ(g−1δ−1γδg) dδdg

= vol(Gγ(Q)\Gγ(AQ))

∫
Gγ(AQ)\G(AQ)

φ(g−1γg) dg,

since elements of Gγ(AQ) commute with γ by de�nition. Moreover,

∫
Gγ(AQ)\G(AQ)

φ(g−1γg) dg =

(∫
Gγ(R)\G(R)

φ∞(g−1γg) dg

)(∫
Gγ(Afin)\G(Afin)

φ∞(g−1γg) dg

)

and the archimedean integral vanishes already, thanks to Equation (3.4) (since γ is assumed to be
diagonalizable over R and the archimedean orbital integral is only sensitive to the conjugacy class of
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γ).

Now we suppose that γ ∈ G(Q) remains elliptic over Q, i.e. that pγ ’s roots are two distinct complex
numbers. By the proof of Lemma 3.3.3, we still have

∫
Gγ(AQ)\G(AQ)

φ(g−1γg) dg =

(∫
Gγ(R)\G(R)

φ∞(g−1γg) dg

)(∫
Gγ(Afin)\G(Afin)

φfin(g−1γg) dg

)
,

except the archimedean orbital integral has no reason to vanish. Instead, γ is conjugate to one of the
standard elliptic elements of PGL2(R), i.e. elements of K◦ = SO2(R), so since the orbital integral is
insensitive to the conjugacy class, and vol(K◦) = 1, so we are reduced to computing∫

G(R)
φ∞(g−1γg) dg,

where we can assume that γ ∈
√
n · SO2(R), i.e.

γ =
√
n

(
cos θ sin θ

− sin θ cos θ

)

where θ depends on γ. Since this has such an explicit form, we can use the Cartan decomposition
SL2(R) = K◦M(R)K◦ plus the explicit description of the discrete series of which φ∞ is the matrix
coe�cient to explicitly compute∫

G(R)
φ∞(g−1γg) dg = −e

i(k−1)θ − e−i(k−1)θ

eiθ − e−iθ
.

The complex eigenvalues of γ are γ1 =
√
neiθ and γ2 =

√
ne−iθ , so we obtain

Lemma 3.3.4. If γ ∈ G(Q) is elliptic, then(∫
Gγ(R)\G(R)

φ∞(g−1γg) dg

)
=

−n1− k
2
γk−1

1 −γk−1
2

γ1−γ2
, if γ remains elliptic in G(R)

0 otherwise
.

Since γ remains elliptic overR if and only if its characteristic polynomial X2 − tX + n has two distinct
complex roots, it follows that the elliptic term is

−1

2
n1− k

2

∑
γ

t2<4n

γ1 − γk−1
2

γ1 − γ2

(∫
Gγ(Afin)\G(Afin)

φfin(g−1γg) dg

)
.

Note that γ1 and γ2 only depend on t and nsince they are the complex roots of the characteristic polynomial
of γ.

The nonarchimedean orbital integrals are where the class numbers of imaginary quadratic �elds
come in.
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Lemma 3.3.5. The nonarchimedean orbital integral corresponding to a given γ which is elliptic in G(Q)

and remains so in G(R) with characteristic polynomial X2 − tX + n is∫
Gγ(Afin)\G(Afin)

φfin(g−1γg) dg =
∑

O⊃Z+Zγ

h(O)
2

|O×|

where the sum is over orders O of the imaginary quadratic �eldQ[γ] = Q(
√
t2 − 4n).

Proof. Consider the maximal compact

K =
∏
p<∞

G(Zp).

By de�nition,
φp(g

−1γg)

is G(Zp)-invariant on both sides as a function of g (since the determinant of the input doesn’t change),
so we can split the orbital integral into double cosets on which φfin is constant and then use the fact that
all the measures used are Haar measures to compute∫

Gγ(Afin)\G(Afin)
φfin(g−1γg) dg =

∑
x∈Gγ(Q)\G(Afin)/K

∫
Gγ(Q)xK⊂Gγ(Afin)\G(Afin)

φfin(g−1γg) dg

=
∑

x∈Gγ(Q)\G(Afin)/K

vol(Gγ(Q)xK)φfin(x−1γx) dx

=
∑

x∈Gγ(Q)\G(Afin)/K

vol(Gγ(Q)xKx−1)φfin(x−1γx) dx

where Gγ(Q)xKx−1 and Gγ(Q)xK are considered as subsets of Gγ(Afin)\G(Afin). Conjugating the
whole thing by x, we see that vol(Gγ(Q)xKx−1) is the same as vol(x−1Gγ(Q)xK) using the Haar
measure on xGγ(Afin)x−1\G(Afin). Since x−1Gγ(Q)x is discrete in G(Afin), and K is a compact open
subgroup, this measure is equal to

vol(K)

|K ∩ x−1Gγ(Q)x|
=

2

|K ∩ x−1Gγ(Q)x|
.

The set K ∩ x−1Gγ(Q)x has a natural interpretation as the set of elements x−1gx for g ∈ Gγ(Q) such
that x−1gx restricts to a linear automorphism of Z2

p ⊂ Q2
p for each p <∞. In other words, after undoing

the conjugation, it is in bijection with the set of g ∈ Gγ(Q) = Q[γ]× = Q(
√
t2 − 4n) that act as a linear

automorphism on the lattice Λx ⊂ Q(
√
t2 − 4n) corresponding to4

x ∈ Gγ(Q)\G(Afin)/K = Gγ(Q)\G(Afin/K).

4Recall that the double coset space Gγ(Q)\G(Afin/K is in bijection with the lattices in Q[γ] = Q(
√
t2 − 4n) = Q2 up

to multiplication by Gγ(Q) = Q(
√
t2 − 4n)×
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In other words, it is exactly the set of units in the order

OΛx = {α ∈ Q(
√
t2 − 4n) : αΛx ⊂ Λx}.

Putting this back into our previous computations, we have found that the nonarchimedean orbital integral
is ∫

Gγ(Afin)\G(Afin)
φfin(g−1γg) dg =

∑
x∈Gγ(Q)\G(Afin)/K

2

|OΛx |
φfin(x−1γx).

Since we are already assuming that det γ = n, the de�nition of φp(x−1
p γpxp) is that it is 1 if and only

if x−1
p γpxp has coe�cients in Zp, i.e. if and only if γp sends the lattice represented by xp inside itself.

Putting this local fact together, we get

φfin(x−1γx) =

1, if γ ∈ OΛx

0, otherwise
,

hence the nonarchimedean orbital integral is∑
Λ⊂Q[γ]
γ∈OΛ

up to Q[γ]×

2

|O×Λ |
=

∑
O⊃Z+Z·γ

2

|O×|
h(O),

as desired.

Let the maximal order in Q[γ] = Q(
√
t2 − 4n) beOQ[γ] = Z+Z · τ , so that the non-maximal orders

are all given by Z + Z · fτ and have discriminant

disc(Z + Z · fτ) = f2∆Q[γ].

The discriminant of the non-maximal order Z[γ] = Z+Z · γ is t2− 4n. So the orders being summed
over in the formula for the nonarchimedean elliptic orbital integral in Lemma 3.3.5 are precisely the
imaginary quadratic orders of discriminants

t2 − 4n

m2

for all positive integers m such that

m2| t
2 − 4n

∆Q[γ]
.

By the usual correspondence between equivalence classes of quadratic forms of given discriminant and
fractional ideal classes for the quadratic order of that discriminant, and the fact that unit groups of orders
are in bijection with stabilizers of quadratic forms, the quantity∑

O⊃Z+Z·γ

2

|O×|
h(O)
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is the same thing as the Kronecker–Hurwitz class number of discriminant t2 − 4n, that is the number of
binary quadratic forms of discriminant t2 − 4n, weighted by the sizes of the stabilizers in PSL2(Z). It
doesn’t really matter, but the viewpoint of quadratic forms is the one we will take in the next chapter
when we apply this to quadratic forms.

In any event, since an elliptic conjugacy class in PGL2(Q) is determined by its characteristic
polynomial, we have proved

Corollary 3.3.6. The elliptic orbital integral is

−n
1− k

2

2

∑
t2<4n

ρk−1 − ρk−1

ρ− ρ
H(t2 − 4n),

where H(t2 − 4n) is the Kronecker–Hurwitz class number, and ρ denotes a complex root of the polynomial
X2 − tX + n.

Remark 3.3.7. The sum in Corollary 3.3.6 is �nite and is guaranteed to converge. For the same reason
(the �niteness of the set of t ∈ Z such that t2 < 4n), the elliptic orbital integral we started out only
had a �nite sum in it to begin with (there are �nitely many elliptic conjugacy classes for which the
corresponding term doesn’t vanish). Of course, one must still technically check the absolute convergence
of the orbital integral, which we didn’t bother to do (it is straightforward to check thanks to the fact that
the elliptic conjugacy classes do not intersect the subgroup P (Q)).

3.3.4 | The hyperbolic orbital integral

Knightly–Li [KL2006] make the claim that for the actual test function φ chosen in Lemma 3.3.1, truncation
is not necessary and only done for pedagogical reasons. I do not think that the correct claim is quite as
strong as this. Truncation might seem unnecessary because the operator π(φ) kills the Eisenstein series
anyway, but this does not change the fact that conjugacy classes intersecting the parabolic subgroup
P (Q) cause serious convergence problems on the geometric side.

Consider a nontrivial hyperbolic element γ ∈ M(Q). Its centralizer is again M(Q) (that is how
diagonal matrices work), so the corresponding orbital integral is∫

M(Q)\G(AQ)
f(g−1γg) dg.

If this converged absolutely, we would be able to use Fubini to get∫
M(Q)\G(AQ)

f(g−1γg) dg =

∫
M(AQ)\G(AQ)

∫
M(Q)\M(AQ)

f(g−1m−1γmg) dmdg.

Since M(AQ) centralizes M(Q), the inner integral is the integral of a constant function, and thus equals

vol(M(Q)\M(A)) = vol(Q\A×),

which is in�nite. So this is ABSOLUTELY NOT absolutely integrable, and we cannot actually apply the
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tricks that we would like to apply. To remedy this, we recall that in the classical situation (Section 3.2)
there was a natural truncation operator that cut o� the cuspidal part of a function once it got near the
cusps. Motivated by this (see in particular De�nition 2.1.20), we repeat essentially the same process and
then compute without asking too many questions.

De�nition 3.3.8 (Logarithmic height function). For g ∈ G(Qv), de�ne its height via the Iwasawa
decomposition by just looking at the M(Qv)-coordinate, and then de�ning

H

((
a

b

))
= log

∣∣∣a
b

∣∣∣
v
.

Then de�ne the global height on G(AQ) as the sum of local heights at all v ∈MQ.

Note that when v =∞, we get the logarithm of the absolute value of the imaginary part of g(i).
De�ne the truncation of the kernel in the following way:

Λ̃TKφ(g, g) =
∑

γ∈G(F )

φ(g−1γg)−
∑

ξ∈P (Q)\G(Q)

∑
γ∈P (Q)

φ(g−1ξ−1γξg)χ[T,∞)(H(ξg)).

This method of truncation makes the integral over g ∈ G(Q)\G(AQ) absolutely convergent without
changing its actual value, as long as T is su�ciently large (this will become clear once we actually
compute it). This particular technique of truncation is due to Arthur and the resulting integral kernel
Λ̃TKφ is called Arthur’s modi�ed kernel.

Rstricting to some hyperbolic conjugacy class γ ∈ [γ0] in G(Q) where γ0 ∈M(Q) (such a represen-
tative is guaranteed to exist by de�nition of hyperbolic — there must be two distict rational eigenvalues),
it is useful to note that

[γ0] ∩M(Q) = {γ0, wγ0w
−1}

where w is the matrix that switches the two canonical basis vectors. Splitting up the γ (in both terms)
based on their conjugacy class, we see that the truncation term in the de�nition of Λ̃T2 Kφ(g, g) equals

∑
[γ0]

− ∑
ξ∈P (Q)\G(Q)

∑
γ∈[γ0]∩P (Q)

φ(g−1ξ−1γξg)χ[T,∞)(H(ξg))


=
∑
[γ0]

− ∑
ξ∈P (Q)\G(Q)

∑
n∈N(Q)

(φ(g−1ξ−1γ0nξg) + φ(g−1ξ−1wγ0w
−1nξg))χ[T,∞)(H(ξg))


=
∑
[γ0]

− ∑
ξ∈P (Q)\G(Q)

∑
n∈N(Q)

(φ(g−1ξ−1n−1γ0nξg) + φ(g−1ξ−1n−1wγ0w
−1nξg))χ[T,∞)(H(ξg))


=
∑
[γ0]

− ∑
ξ∈M(Q)\G(Q)

(φ(g−1ξ−1γ0ξg) + φ(g−1ξ−1wγ0w
−1ξg))χ[T,∞)(H(ξg))
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=
∑
[γ0]

− ∑
ξ∈M(Q)\G(Q)

φ(g−1ξ−1γ0ξg)(χ[T,∞)(H(ξg)) + χ[T,∞)(H(wξg)))



thanks again to the Levi decomposition P = MN .
Since the centralizer of γ0 is M(Q), we can split up Kφ(g, g) in the usual way to �nally obtain

Λ̃TKφ(g, g) =
∑
[γ0]

∑
ξ∈M(Q)\G(Q)

φ(g−1ξ−1γ0ξg)(1− χ[T,∞)(H(ξg))− χ[T,∞)(H(wξg))).

The truncated hyperbolic term on the geometric side is the integral of this sum over g ∈ G(Q)\G(AQ),
which we may commute with the sum over hyperbolic classes [γ0] and combine with the sum over
M(Q)\G(Q) to get (by Fubini, crucially using the fact that the modi�ed kernel is absolutely integrable)

∑
[γ0]

∫
M(Q)\G(AQ)

φ(g−1γ0g)(1− χ[T,∞)(H(g))− χ[T,∞)(H(wg))) dg

=
∑
[γ0]

∫
M(A)\G(AQ)

φ(g−1γ0g)

∫
M(Q)\M(AQ)

(1− χ[T,∞)(H(mg))− χ[T,∞)(H(wmg))) dmdg

(using again the fact that M(AQ) centralizes γ0).
Now we are lucky that the truncated terms prevent the inner integral (over a set of in�nite measure)

from diverging. In fact, we can simplify it further: using the Iwasawa decomposition g = mgngkg , we
see that

H(wg) = H(wng)−H(g),

hence (as a result of the fact that Q×\A×Q = R×>0 × Ẑ× so the �nite places have no e�ect on heights)∫
M(Q)\M(AQ)

(1− χ[T,∞)(H(mg))− χ[T,∞)(H(wmg))) dm

= vol(Q×\A1
Q)

∫ ∞
−∞

(
1− χ[T,∞)

(
H

((
er

1

)
g

))
− χ[T,∞)

(
H

(
w

(
er

1

)
g

)))
dr

= vol(Q×\A1
Q)

∫ ∞
−∞

1− χ[T,∞)(r +H(g))− χ[T,∞)(H(wng)−H(g)− r)) dr

= vol(Q×\A1
Q)

∫ ∞
−∞

1− χ[T,∞)(r)− χ[T,∞)(H(wng)− r)) dr

= vol(Q×\A1
Q)(2T −H(wg)−H(g)),

since the function being integrated is the characteristic function of the interval [H(wng)− T, T ] and
H(wng) ≤ 0. So we have essentially proved
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Lemma 3.3.9. The hyperbolic orbital integral for the test function introduced in Lemma 3.3.1 is

∫
G(Q)\G(AQ)

∑
γ hyp.

φ(g−1γg) = −
∑

α∈Q×−{1}

∫
M(AQ)\G(AQ)

φ

(
g−1

(
α

1

)
g

)
(H(wg) +H(g)) dg.

Proof. Since the hyperbolic conjugacy classes in PGL2(Q) are precisely those represented by some

γ0 =

(
α

1

)

for α 6= 1, our computations above tell us that the hyperbolic orbital integral is

∑
α∈Q×−{1}

vol(Q×\A1
Q)

∫
M(AQ)\G(AQ)

φ

(
g−1

(
α

1

)
g

)
(2T −H(wg)−H(g)) dg.

But vol(Q×\A1
Q) = 1 (as computed in [Tat1950]), and the 2T term integrates to 0 thanks to Equation (3.4).

So if we take T →∞, in the limit we get the orbital integral we are interested in.

Now we specialize Lemma 3.3.9 more explicitly.

Proposition 3.3.10. The hyperbolic orbital integral for the speci�c test function φ from Lemma 3.3.1 is
actually

−n1− k
2

∑
d|n

d<
√
n

dk−1.

Proof. For α ∈ Q× − {1},

φ

(
g−1

(
α

1

)
g

)

is nonzero for some g if and only if

(
α

1

)
has a representative in G(Q) with integer coe�cients and

determinant n. So we can rewrite the orbital integral as

−
∑
d|n

d<
√
n

∫
M(AQ)\G(AQ)

φ

(
g−1

(
n/d

d

)
g

)
(H(wg) +H(g)) dg.

The restriction that d <
√
n (and thus the divisor sum is not quite σk−1(n)) comes from the restriction

that α 6= 1. We already computed the term where α = 1, and (as expected) saw that it vanishes whenever
n is not a perfect square.

Again, the strategy is to split this into archimedean and nonarchimedean orbital integrals. In particular,
if γ ∈M(Q) with eigenvalues γ1, γ2, then∫

M(AQ)\G(AQ)
φ(g−1γg)(H(wg) +H(g)) dg
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=

∫
M(AQ)\G(AQ)

φ
(
g−1γg

)
(H(wg∞) +H(g∞) +H(wgfin) +H(gfin)) dg

=

(∫
M(R)\G(R)

φ∞(g−1γg)(H(wg) +H(g)) dg

)(∫
M(Afin)\G(Afin)

φfin(g−1γg)) dg

)

+

(∫
M(R)\G(R)

φ∞(g−1γg) dg

)(∫
M(Afin)\G(Afin)

φfin(g−1γg))(H(wg) +H(g)) dg

)
.

Luckily, the second term here vanishes thanks to Equation (3.4), and we can focus our attention instead
on the archimedean weighted orbital integral and the nonarchimedean non-weighted orbital integrals.

One computes (using the usual explicit description of the discrete series and the fact that γ is diagonal
with entries γ1, γ2 ∈ Z with γ1γ2 = n) without di�culty that the archimedean weighted orbital integral
is ∫

M(R)\G(R)
φ∞(g−1γg)(H(wg) +H(g)) dg = n1− k

2
γk−1

2

γ1 − γ2
.

As for the non-archimedean non-weighted orbital integral, we have (thanks to the Iwasawa decomposition
for G(Qp) and the fact that Kp = GL2(Zp) is supposed to have measure 1 and φp is invariant on both
sides by Kp) ∫

M(Qp)\G(Qp)
φp(g

−1γg) dg =

∫
N(Qp)

φp(n
−1γn) dn

=

∫
Qp

fp

((
γ1 t(γ1 − γ2)

γ2

))
dt

= vol

(
1

γ1 − γ2
Zp

)
=

1

|γ1 − γ2|p
,

where the last step is because γ1 and γ2 are supposed to be integers such that γ1γ2 = n, so fp is 1 if and
only if t(γ1 − γ2) ∈ Zp.

So we conclude that the full orbital integral is

−n1− k
2

∑
d|n

d<
√
n

dk−1

γ1 − γ2

∏
p<∞

1

|γ1 − γ2|p
= −n1− k

2

∑
d|n

d<
√
n

dk−1

by the product formula.

3.3.5 | The unipotent orbital integral

The �nal type of conjugacy class we have yet to account for is the (non-identity) unipotent ones. These
are matrices conjugate over Q to something in N(Q) not equal to the identity.
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De�nition 3.3.11. Let F : AQ → C be given by

F (t) =

∫
K
φ

(
k−1

(
1 t

1

)
k

)
dk.

The corresponding zeta function is

ZF (s) =

∫
A×Q

F

((
1 t

1

))
|t|s d×t,

which by the basic theory has a pole at s = 1. Let

f.p.s=1ZF

be the constant term of the Laurent series development of ZF .

Even though the unipotent class manifestly has nontrivial intersection with P (Q), there is no need
for truncation to do the computation in this case. Everything in sight is actually already absolutely
convergent, and truncation would do nothing to the kernel anyway.

Proposition 3.3.12. The unipotent orbital integral is precisely∫
G(Q)\G(AQ)

∑
γ uni.

Λ̃TunipotentKφ(g, g) dg = f.p.s=1ZF .

Proof. For rational numbers t1, t2 6= 0, one checks directly that(
1 t1

1

)
,

(
1 t2

1

)

are always conjugate to each other by an element of P (Q). So there is in fact just one conjugacy class
involved here, and in fact conjugating an element of N(Q) by some g ∈ G(Q) lands in N(Q) if and
only if g ∈ P (Q). From this we may conclude that the unipotent orbital integral is∑

ξ∈P (Q)\G(Q)

∑
n∈N(Q)−{1}

φ(g−1ξ−1nξg).

When integrated over G(Q)\G(AQ), this becomes∫
P (Q)\G(AQ)

∑
n∈N(Q)−{1}

φ(g−1ng) dg,

and applying the Iwasawa decomposition plus the fact that the integrand is not sensitive to translating g
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by anything in N(AQ), we see that the orbital integral equals

∫
Q×\A×Q

∫
K

∑
t∈Q×

φ

(
k−1

(
a−1

1

)(
1 t

1

)(
a

1

))
|a|−1 dkd×a

=

∫
Q×\A×Q

∑
t∈Q×

F (at) |a| d×a

=

∫
Q×\A×Q

∑
t∈Q×

F̂

(
t

a

)+ F̂ (0)− F (0)|a|

 d×a
=

∫
Q×\A×Q

∑
t∈Q×

F̂

(
t

a

)− F (0)|a|

 d×a
= f.p.s=1ZF ,

as desired. Here we have used Poisson summation forF and the fact that F̂ (0) = 0 (by Equation (3.3)).

It remains to compute the constant term of this zeta integral. For v ∈MQ, let

Fv(t) :=

∫
Kv

φv

(
k−1

(
1 t

1

)
k

)
dk,

so that F (t) =
∏
v Fv(t) and

ZF =
∏
v

ZFv

as usual. So we just need to understand each of the local zeta integrals well enough. First of all,

ZF∞(1) =

∫
R×

φ∞

((
1 t

1

))
|t| d×t = ZF∞(1) =

∫
R
φ∞

((
1 t

1

))
dt = 0

thanks to the construction of φ∞ (see Equation (3.3)). It is also possible to painfully compute

Z ′F∞(1) = −1

2

using the explicit description of the discrete series representation and the matrix coe�cient φ∞.
Now we consider the nonarchimedean zeta integrals. For p - n, we have

Fp(t) =

∫
Kp

φp

(
k−1

(
1 t

1

)
k

)
dk

= χZp ,

by de�nition of fp. Therefore,

ZFp(s) =

∫
Zp

|t|s d×t
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which is the same as the nonarchimedean local factor in [Tat1950], namely

ZFp(s) =
1

1− p−s

On the other hand, if p|n, then Fp and Zp are identically zero if vp(n) is odd. Otherwise, φp just checks
whether

√
nt ∈ Zp, hence

ZFp(s) =

∫
n−1/2Zp

|t|s d×t = p−vp(n)/2

∫
Zp

|t|s d×t = p−vp(n)/2 1

1− p−s

so the �nite part of ZF is
1√
n
ζQ(s),

which is meromorphic with a simple pole of residue n−1/2 at s = 0. Since ZF∞ has a simple root at
s = 1, it follows that

f.p.s=1ZF =
1√
n
· Z ′F∞(1) = − 1

2
√
n
.

So we have proved

Proposition 3.3.13. The unipotent orbital integral vanishes if n is not a perfect square, and otherwise is
equal to

− 1

2
√
n

= −1

2
n1− k

2 (
√
n)k−1.

3.3.6 | The �nal statement

We conclude by putting together all the work of the previous sections into the �nal formula for the trace
of the Hecke operator Tn.

Theorem 3.3.14 (Eichler–Selberg trace formula). Let n ≥ 1 and k ≥ 4. Then

TrTn|Sk(Γ(1),C) = −1

2

∑
d|n

min
(
d,
n

d

)k−1
(unipotent and hyperbolic)

− 1

2

∑
t2<4n

ρk−1 − ρk−1

ρ− ρ
H(t2 − 4n) (elliptic and identity)

where ρ denotes the imaginary quadratic irrational with trace t and norm n.

Proof. Apply Lemma 3.3.1, Proposition 3.3.2, Corollary 3.3.6, Proposition 3.3.10, and Proposition 3.3.13,
and divide by n1− k

2 . Note that the convention

H(0) = − 1

12

allows us to naturally combine the elliptic and identity terms by including the possibility where t2 = 4n

(which is excluded from the elliptic case at �rst since the polynomial X2 − tX + n would then have two
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rational roots), since that possibility happens exactly when n is a perfect square. Of course this way of
stating the trace formula is made less attractive by the fact that ρ is rational, so the quantity ρk−1−ρk−1

ρ−ρ
must be interpreted as a limit as the imaginary part goes to zero.
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Chapter 4

Applications to arithmetic statistics

“I cannot do’t without [computers].”

Clown, Shakespeare’s A Winter’s Tale

4.1 | The archimedean case: Weyl’s law, prime geodesic theorems,
and real quadratic �elds

This section concerns the application of the trace formula as stated in Theorem 3.2.11 to more concrete
problems.

One application is to further pinning down the asymptotic growth of the Laplace eigenvalues of
Maass cusp forms, say for Γ = SL2(Z). This proof is taken from [Mar2012, Proposition 10], except I
have observed that the same proof works with the appropriate modi�cations in the �nite-volume case (as
opposed to the compact case).

Theorem 4.1.1 (Weyl’s law for �nite-volume hyperbolic surfaces). Let {λi = si(si− 1)} be the Laplace–
Beltrami eigenvalues of Maass cusp forms of weight 0 for Γ = SL2(Z), arranged in increasing order.
Then

#{i : si ≤ T}+
1

4π

∫ T

−T
−ϕ
′

ϕ

(
1

2
+ it

)
dt ∼ µ(Γ\H)

4π
T 2

as T →∞.

Proof. Fix β > 0, and take the test function h(t) = e−βt
2 . The spectral side of the trace formula is the

heat kernel ∑
n

e−βr
2
n +

1

4π

∫ ∞
−∞
−ϕ
ϕ

(
1

2
+ ir

)
e−βr

2
dr.

If we can understand the asymptotic behavior of this quantity as β → 0, then we can expect to understand
the si better (which is what we will do via the standard Tauberian argument).

The Fourier transform of h (using the nonstandard normalization convention we have been using
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thus far) is

g(t) =
1

2
√
πβ

e
− t2

2β .

Plugging this into the trace formula (Theorem 3.2.11), we get

∑
n

e−βr
2
n =

µ(Γ\H)

2π

∫ ∞
0

re−βr
2

tanh(πr) dr +
1

2
√
πβ

∑
I 6=γ∈{Γ}

logN(γ0)e−(logN(γ))2/(2β)

N(γ)1/2 −N(γ)−1/2
.

plus a bounded contribution from the elliptic terms, plus − log 2
2
√
πβ

, plus the parabolic contribution, which
is

− 1

2π

∫ ∞
−∞

e−βt
2 Γ′

Γ
(1 + it) dt = O(1)− 1

π

∫ ∞
0

e−βt
2

log t dt

= O(1) +
−γEuler − log 4β

4
√
βπ

.

As β → 0, the negative exponential in the hyperbolic term dominates it: the norms of hyperbolic
conjugacy classes are all at least 2 so the denominators are bounded below, and the exponential term
clearly dominates the logN(γ0) since N(γ) ≥ N(γ0) as well as the β−1/2 (because it is negative
exponential in 1/β). So the identity term is the only one that makes a contribution. For that term, we use
the estimate tanh(πr) = 1 +O(e−2πr). The upper bound on the error integrates to

�
∫ ∞

0
re−βr

2−2πr dr � 1.

The rest is ∫ ∞
0

re−βr
2
dr =

[
−1

2β
e−βr

2

]∞
r=0

=
1

2β
+O(1)

as β → 0. This shows the estimate on the heat kernel

∑
n

e−βr
2
n +

1

4π

∫ ∞
∞

−ϕ
ϕ

(
1

2
+ ir

)
e−βr

2
dr =

µ(Γ\H)

4π
β−1 +

−γEuler

2
√
βπ

+
− log 4β

2
√
βπ

+O(1)

as β → 0. The right hand side is dominated by the �rst term. This implies the desired asymptotic formula
for the λi by Karamata’s Tauberian theorem [Kar1931].

This was an application of an estimate of the geometric side to gain �ne control over the spectral
side. Indeed, the previous bounds we had from the basic spectral theory (either Bessel’s inequality in the
compact case or otherwise Lemma 3.2.12) were nowhere near as strong as this.

Once one can control the spectral side, it is also possible to use it to deduce things about the geometric
side. Intrinsic to the compact Riemannian manifold Γ\H are the lengths of the closed geodesics on it. Of
course, given a geodesic γ, we probably only want to know the length of γ, and not the geodesics γ(2t),
γ(3t), . . ., which trace over the image of γ multiple times. In other words, we are interested in

De�nition 4.1.2 (Prime geodesics). Let X be a Riemannian manifold. A prime geodesic on X is a closed
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geodesic that traces out its image exactly once.

Remark 4.1.3. On the other hand, if γ(t) is a prime geodesic on X , then X is also equipped with the
time-reversal of γ, namely t 7→ γ(−t). For our purposes, these count as di�erent prime geodesics even
though they trace out the same image.

Just as we are interested in the asymptotics of the prime numbers, we are interested in the asymptotics
of lengths of prime geodesics on Γ\H.

Moreover, we have a bijection

{hyperbolic conjugacy classes of Γ} → {closed geodesics on Γ\H}

taking a conjugacy class represented by a hyperbolic element γ ∈ Γ to the closed geodesic given by the
projection to Γ\H of the arc of the geodesic on H connecting the two �xed points (on the real axis) of
γ constituting a fundamental domain of the action of 〈γ〉 on that geodesic. Note that the length of the
closed geodesic corresponding to a hyperbolic γ ∈ Γ is given by (for any z in the geodesic connecting
the two �xed points)

dH(z, γz) = logN(γ),

and the length of the underlying prime geodesic is logN(γ0), where γ0 is a generator of the centralizer of
γ in Γ. This provides an opportunity to apply the trace formula to study these quantities. The following
prime geodesic theorem for �nite-volume hyperbolic surfaces appears (with this proof) in Sarnak’s thesis
[Sar1980], though Sarnak told me that the result with this error term was known to Selberg.

Theorem 4.1.4 (Selberg, 1956). Suppose Γ = SL2(Z)1. Then

#{prime geodesics τ on Γ\H : len(τ) ≤ log T} ∼ Li(T )

as T →∞.

This proof is reproduced from [Sar1980], and it is slightly di�erent (in its choice of test function) from
the other proofs in the more readily-available literature.

Proof. This time, the test function of choice is a little more complicated. Let T.ε > 0, and de�ne the Fejér
kernel (or its Fourier transform depending on the convention) to be kT (x) = 1− |x|/T for 0 ≤ |x| ≤ T
and 0 elsewhere. Also, take an even (Schwartz) function ψ ∈ C∞c (R) supported in [−1, 1] with

∫
R ψ = 1,

and de�ne the dilations in the usual way

ψε(x) = ε−1ψ(x/ε).

This way, the ψε (i.e. the corresponding convolution operators) are supposed to be an approximation to
the identity. Since ψ is Schwartz, so is ψ̂ and its derivative. For 1 ≤ p ≤ ∞, the Lp norms of those are all
Oψ(1) (in particular, they are �nite and depend only on ψ).

1The result is true for arbitrary discrete subgroups of SL2(R) such that µ(Γ\H) <∞, but we can only prove it in this case
because we cut corners and only fully developed the theory of the continuous spectrum in the case Γ = SL2(Z). Of course the
proof here works perfectly �ne also if Γ is such that Γ\H is compact.
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Also, since these functions are all even, there is no distinction between the Fourier transform and the
inverse Fourier transform. So we de�ne

g(x) = gT,ε(x) = (kT ∗ ψε)(x),

which is supposed to be a series of smoothed-out approximations to the Fejér kernel, and thus

h(x) = ĝT,ε = T

(
sin(Tx/2)

Tx/2

)2

· ψ̂(εx).

One checks that h(x) satis�ed the required decay condition Equation (3.2) (this is why we have to use
a tent function as opposed to a characteristic function). First, we estimate the identity term. Since
tanh(πr) ≤ 1 and (

sin(Tr/2)

Tr/2

)2

≤ 1,

we have ∫ 1

0
rh(r) tanh(πr) dr �ψ

∫ 1

0
T d(r2)

�ψ T.

And since h(r)� 1
Tr2 ψ̂(εr), we may also estimate via integration by parts∫ ∞

1
rh(r) tanh(πr) dr �

∫ ∞
1

h(r) d(r2)

�
∫ ∞

1

1

Tr2
ψ̂(εr) d(r2)

=
1

T

[
ψ̂(εr)

]∞
r=1
− 1

T

∫ ∞
1

r2 d

dr

[
ψ̂(εr)

r2

]
dr

�ψ
1

T
+

1

T

∫ ∞
1

εψ̂′(εr) dr +
1

T

∫ ∞
1

ψ̂(εr)
dr

r

=
1

T
+

1

T

∫ ∞
ε

ψ̂′(r) dr +
1

T

∫ ∞
ε

ψ̂(r)
dr

r

�ψ
1

T
+

1

T
log

(
1

ε

)
where in the last step we are using the fact that ψ̂ is Schwartz. Adding up the two contributions

∫ 1
0 +

∫∞
1 ,

we have the estimate on the identity term∫ ∞
0

rh(r) tanh(πr) dr � T +
1

T
log(1/ε).
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By the same integration by parts argument, combined with the classical fact that∫ x

−x

Γ′

Γ
(1 + it) dt� x2

and Lemma 3.2.12 (or Theorem 4.1.1 if we feel like using the trace formula twice) which says that∫ x

−x

ϕ′

ϕ

(
1

2
+ ir

)
dr � x2,

both of the extra terms from the continuous spectrum are absorbed in the O(T−1 + T−1 log ε−1) error.
The test function is engineered to yield essentially a truncated (and weighted) version of a sum

involving the lengths of geodesics. In particular, the hyperbolic term is

∑
I 6=γ∈{Γ}

logN(γ0)

N(γ)1/2 −N(γ)−1/2
gT,ε(logN(γ)).

All the terms with logN(γ) ≥ T + ε vanish straightaway (because gT,ε = kT ∗ ψε vanishes for those
values by de�nition of the convolution), so this is a sum over the geodesics we are actually interested
in, namely those with logN(γ) < T + ε (the di�erence between T and T + ε won’t really matter).
Recall that convolution by ψε approximates the identity, in the send that ε→ 0, ‖gT,ε − kT ‖L∞(R) ≤ ε
independently of T . So the geometric side of the trace formula reads

∑
τ

τ0

eτ/2 − e−τ/2
kT (τ) +O

 ∑
τ≤T+ε

τ0

eτ/2 − e−τ/2
ε+ T +

1

T
log(1/ε)

 ,

where τ ranges over the lengths, with multiplicity, of closed geodesics on Γ\H, and τ0 is the length of
the underlying prime geodesic. The spectral side is (after moving the term that is absorbed into the error
on the geometric side anyway)

∑
n

T

(
sin(Trn/2)

Trn/2

)2

ψ̂(εrn).

Since the sequence of λn ≥ 0 is discrete and tends to in�nity, all but �nitely many of the rn are real.
Moreover, the contribution of the terms where rn is real to the spectral side is

∑
n≥0
λn≥ 1

4

T

(
sin(Trn/2)

Trn/2

)2

ψ̂(εrn) =

∫ ∞
0

T

(
sin(Tr/2)

Tr/2

)2

ψ̂(εr) d(#{n : rn < r})

�ψ,Γ T +
1

T
log

(
1

ε

)
,

where this estimate is obtained using the fact that #{n : rn < r} �Γ r
2 (Theorem 4.1.1) and the same

technique we used to estimate the identity term. So the terms where λn ≥ 1/4 are absorbed into the

79



O(T + T−1 log(ε−1) error. Writing rn = itn for the �nitely many n with λn < 1/4, the analysis of the
spectral side is now reduced to2

−4
∑
n≥0
λn<

1
4

sin2(Titn/2)

Tt2n
ψ̂(εitn) = −4

∑
n≥0
λn<

1
4

sin2(Titn/2)

Tt2n

∫
R
ψ(r)e−εtnr dr

= −4
∑
n≥0
λn<

1
4

sin2(Titn/2)

Tt2n

[
‖ψ‖L1 +

∫ 1

−1
ψ(r)(e−εtnr − 1) dr

]

= −4
∑
n≥0
λn<

1
4

sin2(Titn/2)

Tt2n
[1 +O(ε)]

=
∑
n≥0
λn<

1
4

e−Ttn + eTtn − 2

Tt2n
[1 +O(ε)]

=
∑
n≥0
λn<

1
4

[
eTtn

Tt2n
+O

(
1

T

)]
[1 +O(ε)]

=
∑
n≥0
λn<

1
4

eTtn

Tt2n
+O(εeT/2 + T−1).

So the trace formula reads∑
n≥0
λn<

1
4

eTtn

Tt2n
=

∑
τ≤T+ε

τ0

eτ/2 − e−τ/2
(kT (τ) +O(ε)) +O

(
T +

1

T
log

(
1

ε

)
+ εeT/2

)
.

Using the trivial bound3

#{τ : τ ≤ x} �Γ e
x

(which also implies that there is a well-de�ned positive smallest length of a closed geodesic), we may
estimate ∑

τ≤T+ε

τ0

eτ/2 − e−τ/2
�Γ (T + ε)eT+ε � e1.1T ,

2Using the assumption that ‖ψ‖L1 = 1 and suppψ ⊂ [−1, 1], plus the fact that tn ≤ 1/2 for each n and ex − 1� x for x
bounded above.

3See [Hej1976, Proposition 2.5]. The point is that every hyperbolic conjugacy class has a representative γ whose underlying
geodesic on H meets the canonical fundamental domain F [Γ\H], and we know that dH(z, γz) = logN(γ) for z ∈ γ.
The conjugacy classes of log-norm at most x therefore all have the property that they have a representative γ such that
dH(z0, γF) ≤ x+ diamF where z0 is some point in F �xed beforehand. In other words, γF ∩Bx+diamF (z0) 6= ∅, and thus
γF ⊂ Bx+2diamF (z0). The number of γ ∈ Γ that satisfy this last inequality (which we have shown is an upper bound for
the number we are interested in) is (by covering a subset of Bx+2diamF (z0) with disjoint translates of F and looking at areas)
at most µ(Bx+2diamF (z0))/µ(F), so the trivial bound follows from the fact that the area of a hyperbolic disc of radius r is
asymptotic to πer as r →∞.
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where the dependence of the implied constant on Γ comes from both the implied constant from the trivial
bound and from the length of the shortest geodesic on Γ\H (also in the last bound we have used that
ε→ 0). Setting ε = e−1.1T , the trace formula now reads

∑
n≥0
λn<

1
4

eTtn

Tt2n
=
∑
τ≤T

τ0

eτ/2 − e−τ/2
(

1− τ

T

)
+O (T )

as T →∞. Note that (again using the trivial bound)∑
τ≤T

τ0

eτ/2 − e−τ/2
− τ0

eτ/2
≤
∑
τ≤T

τ

eτ/2 − e−τ/2
− τ

eτ/2

=
∑
τ≤T

τ

e3τ/2 − eτ/2

�Γ

∫ ∞
0

xe−3x/2 d(#{τ < x})

�Γ −
∫ ∞

0
ex

d

dx

[
xe−3x/2

]
dx

�
∫ ∞

0
(1 + x)e−x/2 dx

� 1

so that di�erence is absorbed in the error and we have (after multiplying by T )

∑
n≥0
λn<

1
4

eTtn

t2n
=
∑
τ≤T

τ0

eτ/2
(T − τ) +O

(
T 2
)
.

For small h > 0 (going to 0 as T →∞), we can take the di�erence quotient of both sides as a function of
T . On the left hand side, that is

∑
n≥0
λn<

1
4

etn(T+h) − etnT

ht2n
=
∑
n≥0
λn<

1
4

etnT (tnh+O(h2))

ht2n

=
∑
n≥0
λn<

1
4

etnT

tn
+O(heT/2)

(where we have used the fact that t0 = 1/2 is the largest of the tn’s). And the right hand side becomes

∑
τ≤T

τ0

eτ/2
+

∑
T<τ≤T+h

τ0

eτ/2

(
T + h− τ

h

)
+O((T + h)2/h)
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which means that (since the terms in the sum
∑

T<τ≤T+h are all positive)

∑
τ≤T

τ0

eτ/2
≤
∑
n≥0
λn<

1
4

etnT

tn
+O

(
heT/2 + T + h+

T 2

h

)
.

Taking the di�erence quotient from the left, we get (by the same arguments) the same thing on the left
hand side and on the right hand side except for the

∑
T<τ≤T+h term is negated, so in fact

∑
τ≤T

τ0

eτ/2
≥
∑
n≥0
λn<

1
4

etnT

tn
+O

(
heT/2 + T + h+

T 2

h

)
.

Setting h = Te−T/4, we obtain

∑
τ≤T

τ0

eτ/2
=
∑
n≥0
λn<

1
4

etnT

tn
+O

(
TeT/4

)
.

The contribution of the non-prime geodesics here is bounded by

∑
τ0≤T

τ0

∞∑
k=2

e−kτ0/2 �Γ

∑
τ0≤T

τ0e
−τ0

=

∫ T

0
xe−xd(#{τ0 < x})

�Γ T +

∫ T

0
ex

d

dx

[
xe−x

]
dx

�Γ T
2

(using the trivial bound again) which is absorbed into the error term, and hence we can rewrite the
expression from the trace formula with the geometric side purely in terms of lengths of prime geodesics,
namely ∑

τ0≤T

τ0

eτ0/2
=
∑
n≥0
λn<

1
4

etnT

tn
+O

(
TeT/4

)
. (4.1)

This lets us conclude via the usual technique of integration by parts. Let F (T ) be the quantity equal to
both sides of Equation (4.1). Then the thing we are interested in is (using both the left and right hand
sides of Equation (4.1) and the fact that F vanishes for small enough inputs)

#{τ0 < T} =

∫ T

0
x−1ex/2 dF (x)
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= T−1eT/2F (T )−
∫ T

α
F (x)

d

dx

[
x−1ex/2

]
dx

= T−1eT/2F (T )−
∫ T

α

∑
n≥0
λn<

1
4

etnx

tn
+O

(
xex/4

)
(
−x−2ex/2 +

1

2
x−1ex/2

)
dx.

where α > 0 is smaller than the length of the shortest prime geodesic. The part of the integral that gets
multiplied by O(xex/4) is

�
∫ T

α
xex/4

(
−x−2ex/2 +

1

2
x−1ex/2

)
dx�

∫ T

α
(x−1 + 1)e3x/4 dx

�α e
3T/4

and the rest is

#{τ0 < T} = T−1eT/2F (T )−
∫ T

α

∑
n≥0
λn<

1
4

etnx

tn
d(x−1ex/2) +O(e

3
4
T )

= T−1eT/2

∑
τ0≤T

τ0

eτ0/2
−
∑
n≥0
λn<

1
4

etnT

tn

+

∫ T

α
x−1ex/2

∑
n≥0
λn<

1
4

etnx dx+O(e
3
4
T )

=
∑
n≥0
λn<

1
4

∫ T

α

e(tn+ 1
2)x

x
dx+O(e

3
4
T ).

Plugging in log T instead of T and changing variables (u = e(tn+1/2)x) in the integral, we get the desired

#{τ0 < log T} =
∑
λn<

1
4

Li
(
T tn+ 1

2

)
+O(T 3/4)

(which gives us what we want because t0 = 1/2 and all the other tn’s are smaller).

Remark 4.1.5. The error term in Sarnak’s thesis is actually O(T 3/4(log T )2), which originates from the
fact that his error term after the Tauberian di�erentiation argument is O(T 2eT/4) as compared to our
O(TeT/4). The most likely explanation for this is that there is a mistake in my own replication of his
argument. Either way, the asymptotics are the same. In any event, the re�nement of the �nal error term
is mostly about the exponent on T , and is the subject of a lot of important and more recent work (see e.g.
[LS1995] where the key point is to use the Weil bounds on Kloosterman sums to gain information about
the cancellation in the error term) outside the scope of this paper.

Remark 4.1.6. By the uniformization theorem and Gauss–Bonnet, even when Γ is not a congruence
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subgroup and is instead a cocompact group, the surfaces Γ\H account for all compact Riemann surfaces
of genus g ≥ 2. So even this most basic form of a prime geodesic theorem is about something concrete
and interesting. Note, too, that for positive curvature there are usually too many geodesics for this to
make sense: take S2 with the usual metric, for instance.

4.1.1 | Class numbers of real quadratic �elds

The Maass cusp forms are supposed to have something to do with arithmetic, at least those of Laplace
eigenvalue 1/4 (which are supposed to be attached to even 2-dimensional Galois representations [Lan2004,
BSV2006]). However, Sarnak [Sar1982] found another interesting application to arithmetic, via the prime
geodesic theorem for �nite-volume quotients of H. He applied it to the uncompacti�ed modular curve
Y (Γ), where Γ = Γ(p). The lengths of geodesics on this modular curve are the same as regulators of
quadratic �elds with discriminant divisible by p. Since the argument is essentially the same conceptually
but slightly less complicated, we will restrict our attention to Y (1).

Theorem 4.1.7 (Sarnak, 1980). ∑
eRd≤x

h(d) ∼ Li(x2)

as x → ∞, where the sum is over discriminants d of orders of quadratic �elds, Rd denotes the narrow
regulator and h(d) denotes the narrow class number.

Proof. For any ` > 0, there is a natural bijection{
SL2(Z)-equivalence classes of primitive binary

quadratic forms f such that 2Rdisc(f) = `

}
→ {prime geodesics on Y (1) of length `}

formed in the following way. Given a primitive binary quadratic form f = aX2 +bXY +cY 2 ∈ Z[X,Y ]

of positive discriminant, the two roots of f(X, 1) have a canonical ordering as(
−b+

√
disc(f)

a
,
−b−

√
disc(f)

a

)
.

So you can take the geodesic γ on H going from the �rst root to the second root, then obtain a prime
geodesic on Y (1) by looking at a fundamental domain of the action of StabSL2(Z)(γ) on γ. One computes
directly that the length of the resulting prime geodesic is 2Rdisc(f) and that this is bijective. Note that
we are still following the convention that the time-reversal of a prime geodesic is not necessarily the
same one: taking the time-reversal on the right hand side of the bijection corresponds to negating all the
coe�cients on the left hand side (since then the ordered pair of roots will be reversed). Now that the
bijection with prime geodesics is established, we may compute

∑
Rd≤log x

h(d) = #

{
SL2(Z)-equivalence classes of primitive binary

quadratic forms f such that 2Rdisc(f) ≤ log x2

}
= #{Prime geodesics on Y (1) of length ≤ log x2}
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∼x→∞ Li(x2)

as a consequence of Theorem 4.1.4 (which we have remarked is also valid for �nite-volume quotients).

This result was a big step towards the long-open question of decoupling the regulator from the class
number in the Gauss–Siegel asymptotic formula Theorem 1.2.2 for

∑
d<x h(d) log εd [Sie1944] and its

consequences and re�nements (e.g. for Γ = Γ(p)) are elaborated on further in [Sar1982].

4.2 | `-torsion in class groups of imaginary quadratic �elds

For any fundamental discriminant D < 0, let h(D) be the class number of the imaginary quadratic �eld
of discriminant D. The Cohen-Lenstra heuristics [CL1984] predict that h(D) is not evenly distributed
amongst congruence classes modulo `, i.e. that the `-power part of ClK is trivial with probability more
than 1/`. In fact, they predict (repeating Conjecture 1.2.4 to refresh our memory)

Conjecture 4.2.1 (Cohen–Lenstra, 1983). Fix an odd prime `, and let Fim be the set of all imaginary
quadratic �elds. Then

lim
T→∞

#{K ∈ Fim : |∆K | ≤ T, |ClK | 6≡ 0 (mod `)}
#{K ∈ Fim : |∆K | ≤ T}

=
∏
i≥1

(1− `−i).

The issue of the 2-power part of the class group is typically dealt with separately, thanks to genus
theory for the 2-torsion (and recent work of A.D. Smith [Smi2017] for the entire 2∞-torsion). This is
why there is no harm in assuming ` > 2. As far as I know, it is unknown for ` > 2 whether the limit
in Conjecture 4.2.1 even exists. One famous result towards this in the case ` = 3 is the main result of
[DH1971].

Theorem 4.2.2 (Davenport–Heilbronn, 1971).

lim inf
T→∞

#{K ∈ Fim : |∆K | ≤ T |ClK | 6≡ 0 (mod 3)}
#{K ∈ Fim : |∆K | ≤ T}

≥ 1

2
.

See also [NH1988, Theorem 2], a similar positive-density result that further asks the discriminant
to satisfy some very speci�c congruence conditions. Some other important work on the Davenport–
Heilbronn theorem, though probably irrelevant to this situation, is Barghava–Shankar–Tsimerman’s
paper [BST2013] on the second-order terms in the actual Davenport–Heilbronn theorem, which is an
asymptotic formula for averages of sizes of 3-power parts of class groups. Note that the lower bound on
density resulting from Theorem 4.2.2 is still less than the expected∏

i≥1

(1− 3−i) ≈ 56.01%.

Setting our sights lower: can we show, analogously to Theorem 4.2.2, that for primes ` ≥ 5, a positive
proportion of imaginary quadratic �elds have class number not divisible by `? As far as I know, this too
is unkown.
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This section is devoted the technique of using the trace formula (in the form of Theorem 3.3.14)
to try and prove the in�nitude of sets of imaginary quadratic �elds K with ClK [`] = 1, possibly with
certain rami�cation conditions. This is much weaker than Conjecture 4.2.1, but still essentially represents
the cutting edge in what is currently known (especially with rami�cation conditions). Without the
rami�cation conditions, the in�nitude result is already known [Har1974] using a method related to the
trace formula applied in the quaternionic setting.

Theorem 4.2.3 (Hartung, 1974). Let ` > 2 be a rational prime. Then there are in�nitely many imaginary
quadratic �eldsK such that #ClK 6≡ 0 (mod `).

Though we do not do better than Theorem 4.2.3, the method presented here (and particularly the
idea of using congruences between modular eigenforms of di�erent weight in this context) is completely
new, as far as we are aware.

Wiles [Wil2015], also using the trace formula for modular forms on quaternion algebras (directly and
also in the guise of the Jacquet–Langlands correspondence [JL1970, GJ1979]), has also made substantial
progress on the generalization to arbitrary rami�cation conditions:

Theorem 4.2.4 (Wiles, 2015). Let ` > 2 be prime, and let P−, P0, , P+ be disjoint �nite sets of odd primes,
with the property that P− contains no prime ≡ 1 (mod `), P+ contains no prime ≡ −1 (mod `), and P0

contains no prime ≡ 1 (mod `) and ≡ −1 (mod 4). Then there are in�nitely many imaginary quadratic
�eldsK such that |ClK | 6≡ 0 (mod `) and L is rami�ed at each place in P0, inert at each place in P−, and
split at each place in P+.

In this section, we present a new technique that (for now, in its most naïve form) manages to recover
the special case of [Har1974] where ` ∈ {5, 7, 11}. Our proof is conditional on Bunyakovsky’s standard
conjecture on prime values of polynomials, though it seems promising to �x this gap using the standard
facts about squarefree values of polynomials.

The method of [Wil2015] is more precisely to combine the trace formula applied to Hecke operators
acting on weight-2 modular forms on Shimura curves associated to inde�nite quaternion algebras with
additional congruence information about those modular forms (and hence about the trace) coming from
the existence of Galois representations associated to those modular forms. Ours can be viewed analogously,
though the automorphic information we use is strikingly di�erent: we use classical holomorphic modular
forms instead of quaternionic modular forms, and we apply the additional information of congruences
between modular eigenforms of di�erent weight induced by Eisenstein series (those which were used by
[DS1974] to prove the existence of Galois representations associated to modular forms of weight 1).

Remark 4.2.5. The reason why Wiles’ technique gives better results is that ours uses relations of the
form

∑
xmxhx ≡ 0 (mod `), which makes it tricky to deduce that at least one of the hx is nonvanishing

modulo `. Wiles is able to get relations of the form
∑

xmxhx 6≡ 0, which is why he can immediately
deduce the existence of some x such that the class number hx is not divisible by x. The cases that
Theorem 4.2.4 misses are precisely where the relation Wiles has is actually

∑
xmxhx ≡ 0. So even if

our technique using modular forms of di�erent weight does not eventually prove to be useful, the fact
that we have dealt with the technical exercise of deducing the in�nitude result from the more di�cult
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information already means that Theorem 4.2.4 can be generalized to some of the exceptional cases, albeit
only one at a time (a computation must be done for each desired rami�cation type) and still conditional
on Bunyakovsky’s conjecture.

This �nal section is organized as follows. In Section 4.2.1, we get the basic prerequisites involving
Hurwitz class numbers out of the way. In Section 4.2.2, we carry out the promised proof of Theorem 4.2.3
in the case ` ∈ {5, 7, 11}, and in Section 4.2.3 we very brie�y propose an algorithm resulting from our
proof for computing the class numbers of imaginary quadratic �elds modulo `.

4.2.1 | Hurwitz class numbers and the Selberg trace formula

In line with the Cohen–Lenstra 1/|Aut| philosophy, a natural way to count quadratic forms is by weighting
them by the reciprocal of the stabilizer under the action of PSL2(Z). We saw in Theorem 3.3.14 that the
resulting weighted class numbers came up naturally in the explicit development of the Eichler–Selberg
trace formula.

Remark 4.2.6. The reader who is educated in the ways of the force will recognize that we are looking at
the PSL2(Z)-action instead of the twisted GL2(Z)-action (see [Woo2011]). So we unfortunately expect
the class numbers that show up to be narrow class numbers rather than bona �de class numbers. In our
situation, this makes no di�erence. The biggest reason is because we are looking at imaginary quadratic
�elds, which have no real embeddings: so the narrow class group is the same as the class group. Even if
we were looking at real quadratic �elds, we only care about whether the class number is divisible by `,
and ` is an odd prime (the narrow class number and the class number can only di�er by a factor of 2), so
it wouldn’t make a di�erence then either. We use the old convention of using SL2(Z) instead of GL2(Z)

in order to agree with the vast majority of the literature.

De�nition 4.2.7. Let D < 0 be an integer with −D ≡ 0, 3 (mod 4). The Hurwitz–Kronecker class
number of the quadratic forms of discriminant D, denoted H(D), is de�ned to be

H(D) =
∑

f∈Vdisc=D(Z)

1

|StabPSL2(Z)(f)|
,

where Vdisc=D(Z) denotes the set of binary quadratic forms over Z with discriminant D.

Note that these stabilizers are mostly trivial, because of the fact that PSL2(Z)-stabilizer of a quadratic
form f(X,Y ) of negative discriminant D is equal to the PSL2(Z)-stabilizer in the upper half-plane of
one of the roots of f(X, 1). That stabilizer for most points in PSL2(Z)\H = X(1) is trivial. The only
two exceptions are the equivalence classes of i (stabilizer of size 2) and e2πi/3 (stabilizer of size 3). So
H(D) simply counts quadratic forms f of discriminant D, with multiplicity 1/2 if f is a Z-multiple of
X2 + Y 2, and multiplicity 1/3 if f is a Z-multiple of X2 + XY + Y 2. The Hurwitz–Kronecker class
number may not be an integer, but from this we see that it is guaranteed to be in Z[1

6 ]. This means that it
makes sense to talk about the quantities H(N) modulo any prime ` 6= 2, 3. This is one of the reasons
why we assume ` ≥ 5.
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De�nition 4.2.8. An integerD < 0 is a fundamental discriminant if it is the discriminant of an imaginary
quadratic �eld, i.e. if−D = 4d where d > 0 is squarefree and d ≡ 2, 1 (mod 4) or−D is squarefree and
congruent to 3 (mod 4). For an arbitrary N < 0 which is the discriminant of a binary quadratic form
over Z (i.e. −N ≡ 0, 3 (mod 4)), the fundamental part of N is the largest (in absolute value) negative
fundamental discriminant that divides it. In other words, if the squarefree part of −N is congruent to
3 (mod 4), then the fundamental part of N is the squarefree part of N . Otherwise (in which case the
squarefree part of −N is congruent to 1 or 2 (mod 4)), the fundamental part of N is four times the
squarefree part. We adopt the nonstandard notation f.p.(N) for the fundamental part of N .

When D is a fundamental discriminant, another way to interpret the stabilizer of f(X,Y ) ∈ Vdisc=D

in PSL2(Z) is via the fact that it is isomorphic to {±1}\O×
Q(
√
D)

. Since D < 0, this group is trivial
except for when D = −4,−3. Since it is always �nite, it is moreover isomorphic to the group of roots of
unity in Q(

√
D). As a result, when D < 0 is a fundamental discriminant,

H(D) = 2
h(D)

|µQ(
√
D)|

,

where µQ(
√
D) denotes, as usual, the group of roots of unity in Q(

√
D).

Even when N is not a fundamental discriminant, the Hurwitz–Kronecker class number has real
meaning in terms of class numbers of real quadratic �elds:

Lemma 4.2.9. Suppose N < 0 with −N ≡ 0, 3 (mod 4), and write

N = f.p.(N) · f2
N .

Then

H(N) = 2
h(f.p.(N))

|µ
Q(
√

f.p.(N))
|
∑
d|fN

µ(d)

(
f.p.(N)

d

)
σ1(fN/d),

where
(
a
d

)
denotes the Kronecker symbol.

Proof. One begins with the identity

H(N) =
∑
d|fN

2
h(N/d2)

|µON/d2 |
, (4.2)

where ON/d2 is the quadratic order of discriminant N/d2 = f.p(N) · (fN/d)2 and h(N/d2) is the class
number of that order. The d term here comes from taking the primitive binary quadratic forms of
discriminant f.p.(N) and multiplying by fN/d. The number |µOD | is equal to 2 unless D = −4,−3 (the
only new content here is that it equals 2 whenever OD is a non-maximal order in Q(

√
−1) or Q(

√
−3)).

As a straightforward consequence of the analytic class number formula, we further have for any
discriminant D < 0, with D = f.p.(D) · f2

D ,

h(N)

|µON |
=

h(f.p.(D))

|µO
Q(
√

f.p.(D))
|
fD
∏
p|fD

1−

(
f.p.(D)
p

)
p

 ,
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so applying this to each term in Equation (4.2), using the fact that f.p.(N/d2) = f.p.(N), we have

H(N) =
∑
d|fN

2
h(N/d2)

|µON/d2 |

=
∑
d|fN

2
h(f.p.(N/d2))

|µO
Q(
√

f.p.(N/d2))
|
fN/d2

∏
p|fN/d2

1−

(
f.p.(N/d2)

p

)
p


= 2

h(f.p.(N))

|µO
Q(
√

f.p.(N/d2))
|
∑
d|fN

fN
d

∏
p| fN

d

1−

(
f.p.(N)

p

)
p



= 2
h(f.p.(N))

|µO
Q(
√

f.p.(N/d2))
|
∑
d1|fN

fN
d1

∑
d2|

fN
d1

µ(d2)

(
f.p.(N)
d2

)
d2

= 2
h(f.p.(N))

|µO
Q(
√

f.p.(N/d2))
|
∑

d1d2|fN

fN
d1d2

µ(d2)

(
f.p.(N)

d2

)

= 2
h(f.p.(N))

|µO
Q(
√

f.p.(N/d2))
|
∑
d2|fN

µ(d2)

(
f.p.(N)

d2

) ∑
d1|

fN
d2

fN
d1d2

as desired.

Corollary 4.2.10. If ` ≥ 5 is a rational prime, andH(N) 6≡ 0 (mod `), then h(f.p.(N)) = |ClQ(N)| 6≡ 0

mod `.

Corollary 4.2.11. If ` ∈ {5, 7, 11}, and d < 0 a fundamental discriminant, then H(d) ≡ 0 (mod `) if
and only if H(4d) ≡ 0 (mod `).

Our strategy for recovering Theorem 4.2.3 will be to use the Eichler–Selberg trace formula to prove
the existence of some N (such that we haven’t yet proved that h(f.p.(N)) 6≡ 0 (mod `)) such that
H(N) 6≡ 0 (mod `), and conclude from this some new imaginary quadratic �eld with class number not
divisible by `. Reproducing the statement from when we proved it in Chapter 3, we have

Theorem 4.2.12 (Eichler–Selberg trace formula). Let k > 2 be an even integer, and Sk theC-vector space
of cusp forms of weight k and level 1, equipped with the Hecke operators Tm for allm ≥ 1. Then

TrTm|Sk = −1

2

∑
|t|≤2

√
m

Pk(t,m)H(t2 − 4m)− 1

2

∑
d1d2=m

min(d1, d2)k−1,

where Pk(t,m) is de�ned to be

Pk(t,m) =
ρk−1 − ρk−1

ρ− ρ
,

where ρ is the quadratic algebraic number with normm and trace t. Note that Pk(t,m) is a polynomial in t
andm, and is equal to the coe�cient of xk−2 in the formal power series (1− tx+mx2)−1 ∈ Z[m, t]JxK.
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In the next section, we will exploit Theorem 4.2.12 together with congruences between modular
forms (and thus, in the right circumstances, traces of Hecke operators) of di�erent weight in order to get
nontrivial relations of the form∑

0≤t≤2
√
m

A(t,m)H(t2 − 4m) ≡ 0 (mod `)

where A(t,m) ∈ Z[1
2 ][t,m]. From the previous discussion, this makes sense when ` ≥ 5 since H(t2 −

4m) ∈ Z[1
6 ].

4.2.2 | Congruences and proof of in�nitude

Our result is based on the congruences mod ` between cusp eigenforms of weight k and weight k+ `− 1

induced by multiplication by the Eisenstein series E`−1. This Eisenstein series is very useful in the theory
of p-adic variation of modular forms (where p = `), because its q-expansion is congruent to 1:

Lemma 4.2.13. If (`−1)|k, thenEk ≡ 0 (mod p), i.e. the q-expansion ofEk = 1+
∑∞

n=1 anq
n ∈ Q`JqK

as the property that v`(an) ≥ 1 for all n ≥ 1.

Proof. This is a consequence of the standard explicit form for the coe�cients of Eisenstein series, combined
with the Clausen–von Staudt theorem [Sta1840] on Bernoulli numbers mod ` (see [Ser1973, 1.1(d)]).

Other than the fact that we want to reduce elements of Z[1
6 ] modulo `, another reason we want ` ≥ 5

is that we need E`−1 to be a bona �de modular form.

Corollary 4.2.14. If f ∈ Sk, then f · E`−1 ≡ f (mod `).

This is a nice congruence between modular forms of di�erent weight, but note that it is not true that
if f is eigenform, then f · E`−1 ∈ Sk+`−1 is an eigenform. That being said, thanks to a general lemma
[DS1974, Lemme 6.11], it is still congruent mod ` to an eigenform in weight k + `− 1.

Lemma 4.2.15 (Deligne–Serre, 1968). LetM be a �nite-rank free module over a DVR O; denote by m the
maximal ideal of O, k its residue �eld,K its fraction �eld. Let T be a set of endomorphisms ofM which
commute with each other. Let f ∈M/mM be a nonzero simultaneous eigenvector of the operators T ∈ T ,
and let aT be the corresponding eigenvalues. There then exists a DVR O′ ⊃ O with maximal ideal m′ such
that m′ ∩ O = m, and with �eld of fractionsK ′ �nite overK ; and a nonzero element

f ′ ∈M ′ = M ⊗O O′

which is a simultaneous eigenvector of the T ∈ T with eigenvalues a′T ≡ aT (mod )m′.

Corollary 4.2.16. Let f be a modular cusp eigenform of weight k. Then f · E`−1 is congruent to a cusp
eigenform in weight k + `− 1.

Proof. Here, M is the Z(`)-module of cusp forms of weight k+ `− 1 over Z(`), and T is the usual Hecke
algebra or at least a set of generators for it. We do this instead of Z` because we want the resulting cusp
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form to have rational coe�cients rather than `-adic ones. The mod `-reduction of f in M/`M is a mod
` modular form of weight k + (p − 1)Z (see [Ser1973, §1.2]), and thus lives in M/`M . Since f is an
eigenform, Lemma 4.2.15 guarantees that it lifts to an eigenform of weight k + `− 1, whose coe�cients
are in some �nite extension of Q, as desired.

Corollary 4.2.17. If k and ` are such that

dimSk = dimSk+`−1,

then for allm ≥ 1,
TrTm|Sk ≡ TrTm|Sk+`−1

(mod `).

Proof. Both spaces of cusp forms have bases of the same length consisting of eigenforms with coe�cients
in �nite extensions of Q, say

Sk =

n⊕
i=1

C · fi, Sk+`−1 =

n⊕
i=1

C · gi.

From Corollary 4.2.16, the fi’s are each congruent to some gi modulo a prime lying over `. But the
multiplicity of a mod ` eigenform can only increase when increasing the weight, since multiplication
by E`−1 induces an inclusion Mk(F`) ⊂ Mk+`−1(F`). Hence, there is a bijection σ : {1, . . . , n} →
{1, . . . , n} such that fi ≡ gσ(i) (mod `). This is just di�erent language for a congruence of systems of
Hecke eigenvalues

λ
(f)
T ≡ λ(g)

T (mod `)

(or really modulo a prime lying over `) for all Hecke operators T , which implies that

TrTm|Sk =
n∑
i=1

λ
(fi)
Tm
≡

n∑
i=1

λ
(gi)
Tm

= TrTm|Sk+`−1
(mod `).

This time the congruence really is modulo ` since the traces of these Hecke operators are guaranteed to
be rational integers.

Combining Corollary 4.2.17 with Theorem 4.2.12, we have

Corollary 4.2.18. Let k ≥ 4 be an even integer, and ` ≥ 5 a prime such that dimSk = dimSk+`−1. Then
there is a function G : F` × F` → F` such that for allm ≥ 1,∑

0≤t≤2
√
m

G(t,m)H(t2 − 4m) = 0 ∈ F`. (4.3)

Remark 4.2.19. The fact that ` ≥ 5 is already used to justify inverting 2 in the reduction of the trace
formula Theorem 4.2.12 mod `, and in applying Corollary 4.2.17, which depends on the existence of the
modular form E`−1.

The condition that dimSk = dimSk+`−1 is what prevents Corollary 4.2.18 from being useful when
` ≥ 13, because of the roughly linear growth of the dimension with respect to the weight.
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The function G(·, ·) is given by

G(t,m) =


Pk(t,m)−Pk+`−1(t,m)

2 , if t = 0

Pk(t,m)− Pk+`−1(t,m), if t 6= 0
.

For �xed `, it is straightforward (on a computer) to write down G explicitly as a lookup table, or by
writing down polynomials whose values coincide with those of Pk(t,m)−Pk+`−1(t,m) (mod `). These
tables and polynomials are written down in Section 4.2.4 for k = 12.

Remark 4.2.20. One might observe at �rst that Equation (4.3) gives information about the class numbers
mod ` for each admissible value of k. However, this is not the case: one can check that Equation (4.3)
is always a scalar multiple of the same equation if you vary k. This simpli�es things, since it means
that we can simply choose k = 12, which happens to work for all ` that have any admissible k at
all: for dimS12 = dimS16 = dimS18 = dimS22 = 1. This is interesting because it means that the
congruences we are looking at aren’t just congruences between traces of Hecke operators, but actually
congruences between q-expansions of cusp forms, and the trace formula has provided a link between
those q-expansions and class numbers of imaginary quadratic �elds. From now on, it is assumed that
k = 12.

Remark 4.2.21. The original question that Professor Kisin asked me was whether the congruence
between the traces would be evident directly from the trace formula. I found that when `|m, it is obvious
(in fact the G(t,m) are all zero). This is easy to read o� of the formulas in Section 4.2.4 for ` ∈ {5, 7, 11},
and in fact it is true in general (either by the general version of those formulas or by using the other
description of the Pk in Theorem 4.2.12). I recently learned from Google that Koike [Koi1975] proved this
in 1975.

However, when m 6≡ 0 (mod `), the coe�cients are in general nonvanishing, which means that the
class numbers conspire to make Corollary 4.2.18 true. It seems di�cult to prove nontrivial identities like
this in the other direction, since the coe�cients are not very easy to work with.

Our strategy for proving Theorem 4.2.3 is simply to start with an N < 0 such that H(N) 6≡ 0

(mod `), with the property that N = t2 − 4m and G(t,m) 6= 0. Then the (t,m) term in Equation (4.3)
is nonzero in F`, so we deduce that there is an N ′ 6= N of the form (t′)2 − 4m for some other t. One
must also ensure that N ′ actually has fundamental part that we haven’t yet deduced nonvanishing for
(otherwise this approach could just be giving us many redundant facts), and that the method can actually
be used inductively. That induction rests on

Lemma 4.2.22. Let (t1,m1), (t2,m2) ∈ Z× Z with t21 − 4m1 = t22 − 4m2 < 0, andmi 6≡ 0 (mod `).

1. If ` = 5, then with the above hypotheses,

G(t2,m2) = 0 ⇐⇒ G(t2,m2) = 0.

2. If ` ∈ {7, 11}, then with the above hypotheses plusm1 ≡ m2 (mod `),

G(t2,m2) = 0 ⇐⇒ G(t2,m2) = 0.
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3. For any ` ≥ 5, and 0 6= f ∈ F`, we have

G(ft, f2m) = 0 ⇐⇒ G(t,m) = 0.

Proof. As far as I understand it, what happens in case (1) is a coincidence. It can be checked by looking
directly at the values ofG, listed in Table 4.1 in Section 4.2.4: one sees that ifm 6≡ 0 (mod 5),G(t,m) = 0

implies that 4m− t2 ∈ {1, 4} ⊂ F5, while G(t,m) 6= 0 implies that 4m− t2 ∈ {0, 2, 3} ⊂ F5.
Case (2) is really true for all ` ≥ 5, and it is a consequence of the fact that only even powers of t

show up in the polynomials Pk(t,m) ∈ Z[t,m]. For these special values of `, we wrote down these
polynomials explicitly in Section 4.2.4, but also it is true in general because (from the alternate description
of Pk in the statement of Theorem 4.2.12)

Pk(t,m) =
ρk−1 − ρk−1

ρ− ρ

=
k−2∑
i=0

ρk−2−iρi

=

Tr

k−2
2
−1∑

i=0

ρk−2−iρi

+ (ρρ)
k−2

2

=

Tr

k−2
2
−1∑

i=0

miρk−2−2i

+m
k−2

2

=

 k−2
2
−1∑

i=0

miTr(ρk−2−2i)

+m
k−2

2 .

So all the monomial terms with a nontrivial power of t come from the terms Tr(ρk−2−2i). Using the fact
that ρ is a root of X2 − tX +m, one checks by induction that the fact that k − 2− 2i is even implies
that as a polynomial in t,m, ρ with ρ-degree 1, each monomial term in ρk−2−2i has even combined
(ρ, t)-degree. Since Tr(ρ) = t, it follows that as a polynomial in m and t, every monomial in ρk−2−2i has
an even power of t.

If m1 ≡ m2 (mod `) and t21 − 4m1 ≡ t22 − 4m2 (mod `), then t1 = ±t2. But we just showed that
G(t,m) = G(±t,m) for all t,m ∈ F`. Note that (2) is much weaker than (1), as we needed m1 ≡ m2

(mod `).
Now (3) is a consequence of the fact that Pk(t,m) is homogeneous in the variables t2,m.

We will also need

Lemma 4.2.23. Let d ≤ −7 be a fundamental discriminant, and p an odd prime such that there exist
x, y ∈ Z such that

4p = x2 − dy2.

Then this representation of 4p as x2 − dy2 is unique up to changing the signs of x and y.
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Proof. This is a variant of the usual standard things in algebraic number theory. If d ≡ 0 (mod 4),
then x must be even, so we can divide x and y by 2 to see that it su�ces to show that representations
p = x2 − dy2 are unique, where d < 0 is squarefree with −d ≡ 1, 2 (mod 4) and is either −2 or ≤ −5.
To do that, note that

OQ(
√
d) = Z[

√
d],

so this is equivalent to asking, up to negation and conjugation, how many α ∈ OQ(
√
d) have norm equal

to p. Any such α generates a prime ideal in OQ(
√
d), by the multiplicativity of the norm, so by unique

factorization of ideals in Dedekind domains, if α, β both have norm p, then either (α) = (β) or (α) = (β).
Since conjugating α has the e�ect of changing the sign of y, we can assume that (α) = (β). By the
assumption on d, namely that it is ≤ −5 or equal to −2, we have O×

Q(
√
D)

= {±1}, which shows that
indeed α is unique up to change of sign and conjugation.

In the case where d 6≡ 0 (mod 4), we have −d ≡ 3 (mod 4) squarefree. We have

OQ(
√
d) = Z

[
1 +
√
d

2

]
.

If 4p = x2 − dy2, then x and y must have the same parity, so right away this is equivalent to �nding,
up to conjugation and negation, elements of OQ(

√
d) of norm p. The bound d ≤ −7 ensures that

O×
Q(
√
d)

= {±1}, so the same argument as before goes through.

Finally, our proof of Theorem 4.2.3 for ` ∈ {5, 7, 11} is conditional on the standard conjecture
[Bun1857],

Conjecture 4.2.24 (Bunyakovsky, 1857). Suppose f ∈ Z[X] has positive leading coe�cient, is irreducible,
and has the property that there is no �xed prime p dividing f(n) for all n ∈ N. Then f(n) is prime for
in�nitely many n ∈ N.

Example 4.2.25. The actual case of Conjecture 4.2.24 we will use is f(X) = d + X2, where d is a
positive integer. This clearly satis�es the three conditions.

For technical reasons, we will need

De�nition 4.2.26. An integer d < 0 is an almost fundamental discriminant if it is a fundamental
discriminant or 4 times a fundamental discriminant.

Theorem 4.2.27. Suppose Conjecture 4.2.24 is true. Let ` ∈ {5, 7, 11}. Then there are in�nitely many
K ∈ Fim such that |ClK | 6≡ 0 (mod `).

Proof. We proceed by induction. Suppose we have constructed, for 1 ≤ i ≤ N , tuples of integers
(di,mi, ti) with mi > 0 and di < 0 almost fundamental with f.p.(di) pairwise distinct, satisfying the
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properties 

H(di) 6≡ 0 (mod `)

G(ti,mi) 6= 0 ∈ F`

di = t2i − 4mi

di 6= −4

di 6≡ 0 (mod 3)

di 6≡ 0 (mod `)

di :=≡ −3,−8,−11,−12 (mod 16)(
mi
`

)
= −1

. (4.4)

Let PN be the set of odd primes dividing at least one di for i < N but not dN . We will show that
there exists a tuple (dN+1,mN+1, tN+1) satisfying Equation (4.4) such that dN+1 is not divisible by any
primes in PN and f.p.(dN+1) 6= f.p.(dN ). This statement is enough to deduce the inductive step (i.e.
produce such a list of length N + 1; here the only problem is that dN+1 needs to have fundamental part
di�erent from all the previous di, not just dN ): if dN+1 is divisible by some odd prime p not dividing
dN , then we are done because then p doesn’t divide di for i < N either (else it would be in PN ), so
f.p.(dN+1) 6= f.p.(di) for all i ≤ N ; otherwise, the set of odd primes dividing dN+1 is a proper (since
f.p.(dN+1) 6= f.p.(dN )) subset of the set of odd primes dividing dN , so f.p.(dN+1) properly divides
f.p.(dN ), since the odd parts of the fundamental parts are squarefree. Repeating this argument su�ciently
many times, the only problem is if dN+k constructed at each step always has fundamental part properly
dividing dN+k−1. But in this case, we eventually reach the scenario where f.p.(dN+k) = −p,−4p where
p is an odd prime (Equation (4.4) means that it must be divisible by at least one odd prime since it is not
−4). Now f.p.(dN+k+1) cannot be a proper divisor of this, so we conclude that it is distinct from di for
all 1 ≤ i ≤ N + k. The list

{(di,mi, ti)}Ni=1 ∪ {(dN+k+1,mN+k+1, tN+k+1)}

is now a list of size N + 1 where all the elements satisfy Equation (4.4) and with the f.p.(di)’s pairwise
distinct. By induction, this means there are arbitrarily large lists of pairwise distinct negative fundamental
discriminants with class number 6≡ 0 (mod `), using Corollary 4.2.10 to deduce h(f.p.(di)) 6≡ 0 (mod `).

To complete the proof, it su�ces to do the base case (construct at least one (d,m, t) satisfying
Equation (4.4)), and prove the above claim (which we showed su�ces to prove the inductive step), namely
that there exists a tuple (dN+1,mN+1, tN+1) satisfying Equation (4.4) such that dN+1 is not divisible by
any primes in PN and f.p.(dN+1) 6= f.p.(dN ).

We will do the base case at the end (it is an explicit construction). The inductive step is where the
trace formula comes in. By Corollary 4.2.18,∑

0≤t≤2
√
m

G(t,m)H(t2 − 4m) = 0 ∈ F`, (4.5)

for any integer m > 0. For this to give us useful information to bootstrap o� of, we need dN to be one of
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the t2 − 4m showing up here. First we show that conditional on Conjecture 4.2.24, that there exists a
t ∈ N such that

1. −dN + t2 = 4q, where q is prime.

2. 4q is not a sum of two squares (i.e. q ≡ 3 (mod 4))

3. q ≡ mN (mod `).

4. q is not a quadratic residue or zero modulo any p ∈PN , mod, `, or mod 3.

Since−dN ≡ 3, 8, 11, 12 (mod 16), there is a congruence condition on tmod 4 (depending on dN ) which
is su�cient for −dN + t2 ≡ 12 (mod 16). Similarly, we already have dN = t2N − 4mN , so −dN mod `

di�ers from 4mN mod ` by a quadratic residue or zero in F`, which means that −dN + t2 ≡ 4mN

(mod `) is also a congruence condition on t mod `. Furthermore, there exists a congruence class t ∈ Fp

such that −dN + t2 is not a quadratic residue or zero modulo p ∈PN , since if there wasn’t, then since
−dN is invertible mod p (this is the reason for the less-than-ideal de�nition of PN ), every element of Fp
would be a quadratic residue (start at one quadratic residue and keep adding −dN to it). The same works
at the primes 3 and `, though at ` we are okay because

(
mN
`

)
= −1 so this is already encoded in (3). So

proving (1)-(4) amounts to showing that subject to the congruence condition

t ≡ a mod 12`
∏
p∈PN

p

that forces −dN + t2 ≡ 12 (mod 16) and −dN + t2 ≡ 4mN (mod `) and −dN + t2 to not be a
quadratic residue or zero mod any p ∈PN , t can be chosen so that −dN+t2

4 is prime. This is the content
of Conjecture 4.2.24, applied to the polynomial

g(X) =
1

4

−dN +

12`
∏
p∈PN

p

X + a

2 ∈ Z[X],

which has integer coe�cients because −dN + a2 ≡ 12 (mod 16) and is thus divisible by 4. The values
of g(x) for x ∈ N do not have a common prime divisor, because −dN+t2

4 ≡ 3 (mod 4), so that divisor
can’t be 2; since t has a condition mod p ∈PN such that −dN + t2 is not a quadratic residue or zero
mod p, and same with `, the only primes that could divide all the outputs are outside of {2, 3`} ∪PN .
But t doesn’t satisfy any conditions modulo those primes, so −dN + t2 can take on p+1

2 > 1 distinct
values modulo p, hence it is not divisible by p for some t.

Armed with t ∈ N satisfying (1)-(4), whose existence we have conditional on Conjecture 4.2.24,
we may complete the inductive step. First, since t2 − 4q = t2N − 4mN = dN , q ≡ mN (mod `), and
G(tN ,mN ) 6= 0 ∈ F` by Equation (4.4), we also know that G(t, q) 6= 0 ∈ F` by Lemma 4.2.22. Setting
m = q in Equation (4.5), we have ∑

0≤x≤2
√
q

G(x, q)H(x2 − 4q) = 0 ∈ F`.
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Since
G(t, q)H(t2 − 4q) = G(t, q)H(dN ) 6= 0 ∈ F`,

this implies that there is some 0 ≤ x ≤ 2
√
q with x 6= t such that G(x, q)H(x2 − 4q) 6= 0 ∈ F`. Let

D = x2 − 4q, and d = f.p.(D) so that

D = df2 = x2 − 4q.

The fact that 4q ≡ 12 (mod 16) implies that −df2 = −D ≡ 3, 8, 11, 12 (mod 16). Therefore, using
the explicit knowledge of perfect squares mod 16, we know −d ≡ 3, 8, 11, 12 (if f2 ≡ 1, 9), or −d ≡ 3

(mod 4), in which case −4d ≡ 12 mod 16. Let dN+1 equal either d or 4d, so that −dN+1 ≡ 3, 8, 11, 12

(mod 16). We will construct mN+1, tN+1 so that Equation (4.4) is satis�ed for i = N + 1. First, we
prove the parts that only rely on dN+1. By de�nition, dN+1 is an almost fundamental discriminant,
and by Corollary 4.2.10 and Corollary 4.2.11, we have H(dN+1) 6= 0 (mod `). Also, the fact that
dN+1|D = x2 − 4q and 4q is not a quadratic residue or zero modulo any p ∈ PN or ` or 3 implies
that dN+1 is not divisible by 3, `, or any p ∈ PN . Also, dN+1 6= −4, since otherwise we would
have 4q = 4g2 + x2 for some g, which would imply that q 6≡ 3 (mod 4). This plus dN+1 6≡ 0

(mod 3) implies that the fundamental discriminant d ≤ −7, which lets us deduce by Lemma 4.2.23 that
f.p.(dN+1) 6= f.p.(dN ) because

−dN + t2 = 4q = −df2 + x2,

since x 6= t (the relaxation of “fundamental” to “almost fundamental” is not a problem since the factor of
4 can be absorbed in the square multiplied by d or dN ).

The only thing left to prove about dN+1 is that there are mN+1, tN+1 such that dN+1 = t2N+1 −
4mN+1, with G(tN+1,mN+1) 6= 0 ∈ F` and

(mN+1

`

)
= −1. All we know starting out is that

D = dN+1g
2 = x2 − 4q.

where q ≡ mN (mod `) and thus
( q
`

)
=
(
mN
`

)
= −1. De�ne m′N+1, t

′
N+1 ∈ Z such that in F`,

m′N+1 mod ` =
q mod `

g2
, t′N+1 mod ` =

x mod `

g
.

Note that g is invertible in F` because D = dN+1g
2 6≡ 0 (mod `). Then

dN+1 ≡ (t′N+1)2 − 4m′N+1 (mod `).

We can change m′N+1 by a multiple of ` to make this an quality, as long as we further specify the
appropriate congruence mod 2 for t′N+1 to make this a congruence mod 4`. Making that change, we have
constructed mN+1, tN+1 so that

dN+1 = t2N+1 − 4mN+1.
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Division by g2 in F` doesn’t change the Legendre symbol, so(mN+1

`

)
=
(q
`

)
=
(mN

`

)
= −1.

Finally, Lemma 4.2.22(3) guarantees that G(tN+1,mN+1) 6= 0 ∈ F`. This proves the inductive step.
For the base case, we just need to �nd an almost fundamental discriminant d < 0 with d = t2 − 4m

satisfying Equation (4.4). For ` = 5, take e.g. d = −107, t = 1, m = 27. For ` = 7, take e.g. d = −235,
t = 1, m = 59. For ` = 11, take e.g. d = −76, t = 1, m = 19. I did this by eyeballing the tables in
Section 4.2.4 and a few lines of PARI/GP for computing the Hurwitz–Kronecker class numbers.

4.2.3 | Computing class numbers mod `

The relations between class numbers given by Corollary 4.2.18 suggests that we might be able to use it to
compute tables of Hurwitz class numbersH(N) modulo `. The method of Hartung [Har1974] for proving
Theorem 4.2.3 also leads naturally to such an algorithm: see [Coh1993, Ch. 5]. There are two main issues:
�rst, the coe�cient of 4 means that by solving systems of linear equations of the form Equation (4.3), we
can only get expressions for linear combinations aH(4N) + bH(4N − 1). This is solved in [Coh1993, Ch.
5] by introducing another set of linear equations. We could do this too (but note that once we do this, we
are using the same input to [Har1974] that proves Theorem 4.2.3 for all `). The other problem, which
would only apply to this approach, is that in our case we sometimes have G(0,m) = G(1,m) = 0, in
which case our equations do not yield much extra information (assuming we have already computed
H(N) for N < 4m− 4). For example, this always happens when m = 0.

For this reason, I am not sure whether my version of the trace formula approach can be used to
improve on the existing algorithms, or even match their performance. It may be the case that using
Equation (4.3) instead of [Coh1993, Corollary 5.3.9] whenever G(0,m) 6= G(1,m) speeds up the existing
algorithms in practice, since one does not need to compute a divisor sum and can look up the coe�cients
in a hard-coded version of the tables in Section 4.2.4.

4.2.4 | Explicit tables and formulae

This appendix contains explicit descriptions of the functions G(t,m) in Equation (4.3). This is not
logically necessary for any of the proofs in this paper, but is maybe useful for implementing the proposed
algorithms or checking things in general. Using the description of Pk(t,m) as the coe�cient of xk−2 in

(1− tx+mx2)−1 ∈ Z[t,m]JxK,

one uses a computer algebra system (this was 3 lines of SAGE) to obtain

P12(t,m) = t10 − 9t8m+ 28t6m2 − 35t4m3 + 15t2m4 −m5

P16(t,m) = t14 − 13t12m+ 66t10m2 − 165t8m3 + 210t6m4 − 126t4m5 + 28t2m6 −m7

P18(t,m) = t16 − 15t14m+ 91t12m2 − 286t10m3 + 495t8m4 − 462t6m5 + 210t4m6 − 36t2m7 +m8

P22(t,m) = t20 − 19t18m+ 153t16m2 − 680t14m3 + 1820t12m4 − 3003t10m5 + 3003t8m6
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− 1716t6m7 + 495t4m8 − 55t2m9 +m10

Reducing modulo the appropriate primes, and considering these as functions rather than formal polyno-
mials (i.e. applying Fermat’s little theorem), we get

P16(t,m) ≡ t2 + 6t4m+ 4t2m2 + 4m3 (mod 5)

P18(t,m) ≡ t4 + 5t2m+ t4m3 + 5t2m4 +m2 (mod 7)

P22(t,m) ≡ t10 + 3t8m+ 10t6m2 + 2t4m3 + 5t2m4 +m10 (mod 11).

It then follows that

P12(t,m)− P16(t,m) ≡ 4t2m2 −m+m3 (mod 5)

P12(t,m)− P18(t,m) ≡ 6t4m3 + 3t2m4 + 6m2 + 6m5 (mod 7)

P12(t,m)− P22(t,m) ≡ 10t8m+ 7t6m2 + 9t4m3 − t2m4 + 10m5 − 2t4m3 −m10 (mod 11)

which provides explicit descriptions of the functions G : F`×F` → F` from Corollary 4.2.18. The values
of the functions are summarized in the following lookup tables.

t mod 5
0 1 2 3 4

0 0 0 0 0 0
1 0 4 1 1 4
2 3 2 0 0 2

m
m

o
d

5

3 2 0 3 3 0
4 0 4 1 1 4

Table 4.1: The values of the function G : F` × F` → F` for ` = 5

t mod 7
0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 6 0 1 0 0 1 0
2 3 4 0 0 0 0 4

m
m

o
d

7

3 0 6 1 0 0 1 6
4 5 0 0 2 2 0 0
5 0 0 5 2 2 5 0
6 0 4 0 3 3 0 4

Table 4.2: The values of the function G : F` × F` → F` for ` = 7
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t mod 11
0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0
1 10 10 1 0 0 1 1 0 0 1 10
2 0 0 0 0 6 5 5 6 0 0 0

m
m

o
d

11

3 10 1 0 1 0 10 10 0 1 0 1
4 10 1 10 0 1 0 0 1 0 10 1
5 10 0 1 1 10 0 0 10 1 1 0
6 0 0 6 5 0 0 0 0 5 6 0
7 0 6 0 0 5 0 0 5 0 0 6
8 0 5 0 6 0 0 0 0 6 0 5
9 10 0 0 10 1 1 1 1 10 0 0

10 0 0 5 0 0 6 6 0 0 5 0

Table 4.3: The values of the function G : F` × F` → F` for ` = 11
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