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1 Introduction

Over the course of the 20th century (see e.g. [Tat1967,BJ1979]), the classical theory of modular forms (see
e.g. [Miy2006]) was recast in adelic terms to give the modern theory of “automorphic forms on adelic groups.”
For a number field F and a reductive algebraic group G/F , automorphic forms on G(AF ) are functions on
G(AF ) which are left-invariant under G(F ) ⊂ G(AF ) and satisfy some extra regularity and decay conditions.
For example, the classical modular forms and Maass forms may be interpreted as automorphic forms on
GL2(AQ). The adelic perspective on automorphic forms has been extremely fruitful in modern algebraic
number theory, for example because it clarifies the role of representation theory at the p-adic places in the
local Euler factors of L-functions and has therefore allowed very general local and global (Arthur–)Langlands
conjectures (see e.g. [CL2019, §6.4]) to be stated and studied.

Along with the modular forms of integral weight, the classical theory also deals with modular forms of
half-integral weight, the chief example of which being the theta functions that were originally studied by
Jacobi for the purposes of constructing elliptic functions and later used by Riemann to prove the analytic
continuation and functional equation for his zeta function (the key ingredient of Riemann’s proof was the
modularity/automorphy property of Jacobi’s theta function). Theta functions provide an important explicit
example of a function that turns out to be automorphic as a result of non-trivial input. This leads to a
reasonable question:

Question 1.1. Can the classical theta functions be viewed as SL2(Q)-invariant functions on some group
containing SL2(Q) that is somehow related to SL2(AQ)?

Answering Question 1.1 is most of the way towards the most basic form of the theta correspondence (see
e.g. [Gan2022]), which is a key tool in the Langlands program and one of the most useful methods of explicit
construction of automorphic forms for the purposes of realizing the Langlands functoriality conjecture. Some
specific examples of the importance of the theta correspondence within and outside the Langlands program
proper include:

• Modularity of theta functions of lattices explains, for example, why even unimodular lattices must have
dimension divisible by 8 (see [Elk2019b,CL2019] for more).

• One special case of the theta correspondence is the modular forms that Hecke attached to Dirichlet
characters for a real quadratic field (see [Pra1993, 8.3.2]). Among other things, this provides a proof
of existence of the modular form of weight 1 that proves the modularity of the Galois representations
with dihedral projective image.

• A construction related to the Jacquet–Langlands correspondence can be obtained as a special case of
the theta correspondence (see [Pra1993, 8.3.4]).

In a landmark paper [Wei1964], André Weil drew inspiration from physics in order to provide a satisfactory
answer to Question 1.1. The purpose of this talk was to explain how Weil might have come up with his
answer by first closely examining the full detail of the most classical and concrete example (as we like to do
at the PROMYS program). Weil’s theory provides a unified perspective on theta functions that allows one
to prove the automorphy of all the theta functions mentioned above in one go.
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2 Classical theta functions

Jacobi considered the following holomorphic function of two complex variables z ∈ C and τ ∈ H := {x+iy ∈
C : y > 0}:

ϑ(z; τ) :=
∑
n∈Z

eπin
2τe2πinz.

The reason for constructing it is that it has nice transformation properties under the natural addition
action of the lattice Λτ = Z + τZ on the z-variable. Of course, it is NOT periodic with respect to this
lattice (otherwise it would define a holomorphic function on the compact Riemann surface C/Λτ , and would
therefore be constant), but it is nice enough that Jacobi was able to use them to construct meromorphic
functions that are (this was a massive achievement in complex analysis and algebraic geometry; the classic
reference on this and its generalizations is [Mum2007,Mum1984]).

Less obvious is the transformation property that ϑ(z;−) satisfies under the usual action of SL2(Z) on H,
which is a perfectly natural question to ask (it is analogous to looking at the Eisenstein series as coefficients
of the differential equation satisfied by the Weierstrass ℘-function and asking if they have a modularity
property, which they famously do). One such property is as follows:

Theorem 2.1. Let z ∈ C and τ ∈ H. We have (after choosing the right branch of (−)1/2 on H)

ϑ

(
z

τ
;
−1

τ

)
= (−iτ)1/2e

π
τ iz2

ϑ(z; τ).

Corollary 2.2. ϑ(0;−1/τ) = (−iτ)1/2ϑ(0, τ).

Corollary 2.2 is very important: it is saying that ϑ(0;−) provides an explicit construction of a weight-1/2
modular form. After taking a Mellin transform (as in [Elk2019a, zeta1.pdf]), it is equivalent to the analytic
continuation and functional equation of the Riemann zeta function. This is a very special case of the grand
promises that were made in §1 about applications to the Langlands program. Typically, it is written that
Poisson summation (whether in the archimedean or in the adelic context as in Tate’s thesis) is the key tool
in the proof of Corollary 2.2 and Theorem 2.1. But for the maximum insight to be drawn for the purposes
of motivating Weil’s construction of theta functions, we write down the proof by plugging in the relevant
information to the typical proof of Poisson summation.

Proof of Theorem 2.1. Let Φ ∈ S(R), and let χ : R → S1 be the character given by x 7→ e2πix. Consider
the function

ϑ(x ∗ |Φ) :=
∑
n∈Z

Φ(n)χ(nx∗)

of a real variable x∗, which coincides1 with ϑ(t;x∗) when Φ(x) = Φτ (x) = e−πiτx2

(which is Schwartz at
least when τ ∈ iR). This is NOT periodic in x∗. However, if we add an extra variable x ∈ R, we can obtain
a function

Ω(x, x∗|Φ) :=
∑
n∈Z

Φ(x+ n)χ((x+ n)x∗).

On one hand, rearranging yields

Ω(x, x∗|Φ) := χ(xx∗)
∑
n∈Z

Φ(x+ n)χ(nx∗). (1)

On the other hand, treating Ω(x, x∗|Φ) like a function on R/Z and using the fact that Φ is Schwartz, we
may expand it in a Fourier series and computing (using Fubini/Tonelli):

Ω(x, x∗|Φ) =
∑
m∈Z

(∫ 1

0

Ω(y, x∗|Φ)χ(−my) dy

)
χ(mx) (2)

1up to negating z

PROMYS 2023-2



=
∑
m∈Z

(∑
n∈Z

∫ 1

0

Φ(y + n)χ((y + n)x∗)χ(−my) dy

)
χ(mx) (3)

=
∑
m∈Z

(∫
R

Φ(y)χ(y(x∗ −m)) dy

)
χ(mx) (4)

=
∑
m∈Z

Φ̂(m− x∗)χ(mx). (5)

Combining (5) with (1) and defining the slightly modified function

Θ(x, x∗|Φ) :=
∑
n∈Z

Φ(x+ n)χ(nx∗),

we obtain
χ(xx∗)Θ(x, x∗|Φ) = Θ(−x∗, x|Φ̂),

which is equivalent to saying
χ(−xx∗)Θ(x∗,−x|Φ) = Θ(x, x∗|Φ̂). (6)

Expanding the definitions of everything and using the standard computation of the Fourier transform of the
Gaussian, one obtains exactly the claimed result.

Remark In (6), the point is as follows:

• On the left hand side, Θ is being transformed by applying the Weyl element

(
0 1
−1 0

)
and multiplying

by the exponential of the quadratic form −xx∗. This should be the action of some group on some
function space.

• On the right hand side, the only thing going on is the Fourier transform.

So it stands to reason that if we are looking for the group that answers Question 1.1, then we should find a
group whose elements consist of an element of SL2 together with a quadratic form, and which has a natural
representation on an L2 space for which the action of the Weyl element is by the Fourier transform. This is
what is done in the next section.

3 The metaplectic group and the Weil representation

In this section, we construct the metaplectic group and its representation that satisfies the desiderata set
forth in the previous section and which will therefore allow us to answer Question 1.1 in the next section. The
construction itself first came from physics. I do not know whether Weil came up with it himself independently
or learned about it from the physicists and then realized that it had the right properties.

Let V be a free module of finite rank over a local field K of characteristic not equal to 2, or over AF

where F is a number field or a function field of characteristic not equal to 2. Let A denote the base ring (so
A is AF or K as the case may be). Fix a nontrivial continuous character χ : K → S1 or χ : AF /F → S1 so
that Hom(V,A) is identified with the Pontryagin dual V ∗. For v ∈ V and v ∈ V ∗, we denote by ⟨v, v∗⟩ the
value in A of v∗ applied to v (so that χ(⟨v, v∗⟩) is the value of v∗ applied to v when considered as being in
the Pontryagin dual rather than the vector space dual).

There are three very reasonable operations on functions Φ ∈ L2(V ):

• For v ∈ V , there is the translation operation (v · Φ)(x) = Φ(x+ v).

• For v∗ ∈ V ∗, there is the multiplication-by-phase operation (v∗ · Φ)(x) = χ(⟨x, v∗⟩)Φ(x).
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• For t ∈ K, there is the scaling operation (t · Φ)(x) = χ(t)Φ(x).

For z = (v, v∗, t) ∈ V × V ∗ ×K, we therefore set the operator U(z) ∈ U(L2(V )) to be defined by

(U(z)Φ)(x) := χ(t)χ(⟨x, v∗)Φ(x+ v).

We have

(U(v1, v
∗
1 , t1)U(v2, v

∗
2 , t)Φ)(x) = χ(t1)χ(⟨x, v∗1⟩)(U(v2, v

∗
2 , t)Φ)(x+ v1)

= χ(t1 + t2)χ(⟨x, v∗1 + v∗2⟩)χ(v1, v∗2)Φ(x+ v1 + v2)

= U(v1 + v2, v
∗
1 + v∗2 , t1 + t2 + ⟨v1, v∗2⟩).

So we define

Definition 3.1. The Heisenberg group Heis(V ) is defined to be the set V ×V ∗×K with the group operation

(v1, v
∗
1 , t1) · (v2, v∗2 , t2) = (v1 + v2, v

∗
1 + v∗2 , t1 + t2 + ⟨v1, v∗2⟩).

It is equipped with a representation U = Uχ,V : Heis(V ) → U(L2(V )) as defined above.

The following theorem from physics / operator algebras underpins the entire theory:

Theorem 3.2 (Stone–Von Neumann). For any choice of χ and V , the representation Uχ,V is (up to isomor-
phism) the unique infinite-dimensional irreducible unitary Hilbert space representation of Heis(V ) with the
property that the central character is Uχ,V |K = χ.

Proof. See [Mac1949].

Note that Weil got around the lack of access to Theorem 3.2 by simply constructing the isomorphism in
the cases where he needed it, through some clever functional analysis [Wei1964, §I].

In any event, the application of Theorem 3.2 to our situation is in combination with Schur’s lemma and
the action of any other group on Heis(V ). This other group is the one that generalizes the role of SL2. Let
us figure out what it can be:

Lemma 3.3. Let s be an automorphism of Heis(V ) with the property that s|K = 1. Then s is of the
form s = (σ, f), where σ ∈ Sp(V ⊕ V ∗) (the module V ⊕ V ∗ being given the obvious nondegenerate
alternating form ⟨(v1, v∗1), (v2, v∗2)⟩ := ⟨v1, v∗2⟩ − ⟨v2, v∗1⟩), where f is a function on V ⊕ V ∗, and where
(σ, f) · (v, v∗, t) = (σ(v, v∗), f(v, v∗) + t). A pair (σ, f) defines a valid such automorphism if and only if

f(w1 + w2)− f(w1)− f(w2) = F (σw1, σw2)− F (w1, w2) (7)

for all w1, w2 ∈ V ⊕ V ∗, where F (w1, w2) := ⟨v1, v∗2⟩ (where wi = (vi, v
∗
i )).

Proof. Left as a (straightforward) exercise to the reader.

Given the right hand side of (7) is a bilinear form on V ⊕ V ∗, f must be a polynomial function of degree
≤ 2. It makes sense to restrict to the case where f is a quadratic form, in which case (7) tells us that f is
uniquely determined by σ (as the right hand side of (7) tells us what the symmetric bilinear form associated
to f is, and A does not have characteristic 2 so this is the same information as f). In particular, we have

fσ(w) =
f(2w)− 2f(w)

2
=

F (σw, σw)− F (w,w)

2
. (8)

In particular, it is natural to consider the action of Sp(V ⊕ V ∗) on Heis(V ) where σ acts via (σ, fσ).

Proposition 3.4. There is a unique projective representation ωχ,V : Sp(V ⊕ V ∗) → PGL(L2(V )) with the
property that for all σ ∈ Sp(V ⊕ V ∗) and all z ∈ Heis(V ),

ωχ,V (σ) ◦ U(σ · z) = U(z) ◦ ωχ,V (σ).
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Proof. Let σ ∈ Sp(V ⊗V ∗). By Theorem 3.2, the representations z 7→ U(z) and z 7→ U(σ ·z) are isomorphic,
so there exists an invertible operator ω̃χ,V on L2(V ) such that the diagram

L2(V ) L2(V )

L2(V ) L2(V )

ω̃χ,V (σ)

U(σ·z) U(z)

ω̃χ,V (σ)

commutes. By Schur’s lemma, the operator ω̃χ,V is unique up to scalars, which ensures that the map
σ 7→ ωχ,V (σ) := π(ω̃χ,V (σ)) is a homomorphism, as desired. Here π : GL(L2(V )) → PGL(L2(V )).

Example 1. Let γ : V ∗ → V be an isomorphism, and consider the “Weyl element”

σ =

(
0 −γ∗,−1

γ 0

)
∈ Sp(V ⊕ V ∗).

The corresponding fσ is given by fσ(u, u
∗) = −⟨u, u∗⟩, according to (8) For all z = (v, v∗, 0) ∈ Heis(V ), the

operator ω̃χ,V (σ) must make the diagram

L2(V ) L2(V )

L2(V ) L2(V )

ω̃χ,V (σ)

U(σ·z) U(z)

ω̃χ,V (σ)

commute. In other words, for all Φ ∈ L2(V ), we need (for almost all x ∈ V )

(U(v, 0, 0)ω̃χ,V (σ)Φ)(x) = (ω̃χ,V (σ)U(0,−γ∗,−1v, 0))(x)

(Weil’s convention is that matrices act on the right and I am too lazy to change this). In English, ω̃χ,V (σ)
should switch translation by v with multiplication by the phase χ(⟨−,−γ∗,−1v⟩). This is exactly what the
Fourier transform does ! In particular,∫

V

Φ(y + v)χ(⟨y,−γ∗,−1x⟩) dy =

∫
V

Φ(y)χ(⟨y − v,−γ∗,−1x⟩) dy = χ(⟨x, γ∗,−1v⟩)
∫
V

Φ(y)χ(⟨y,−γ∗,−1x).

So we must have ω̃χ,V (Φ) = Φ̂ up to scalars, for the appropriate Fourier transform convention (where V and
V ∗ are identified via γ). The reader is encouraged to figure out what that convention ought to be from the
above equation.

There is no natural choice of ω̃χ,V that works for all σ, i.e. no lifting

Sp(V ⊕ V ∗) GL(L2(V ))

PGL(L2(V ))

ωχ,V
π

For this reason, we define

Definition 3.5. The metaplectic group Mp(V ) is defined to be the fibered product

{(σ, ω̃) ∈ Sp(V ⊕ V ∗)×GL(L2(V )) : π(ω̃) = ωχ,V (σ)}.

It is equipped with the bona fide (not projective) representation ω̃χ,V , which is just projection to the second
coordinate and is called the Weil representation.

For a subgroup Ω ⊂ Sp(V ⊕ V ∗), the data of a lifting of ωχ,V to a genuine representation of Ω is the
same as a section of the projection Mp(V ) → Sp(V ⊕ V ∗) over Ω.
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4 Theta functions as automorphic forms on the metaplectic group

Given that the Weil representation acts on L2(V ) by the Fourier transform, we expect/hope (6) (which is
for V = R and σ equal to the Weyl element from Example 1) to generalize to the existence of a subgroup
Ω ⊂ Sp(V ⊕ V ∗) containing a Weyl element and a lifting ωχ,V of the Weil representation to Ω such that

χ(fσ(x, x
∗))Θ(σ(x, x∗)|Φ) = Θ(x, x∗|ωχ,V (s)Φ)

for all s ∈ Ω, where

Θ(x, x∗|Φ) :=
∫
Γ

Φ(x+ ξ)χ(ξ, x∗) dξ

and Γ ⊂ V is a lattice in the usual sense that is useful for Fourier analysis2.
In general, this Ω is the “B(G,Γ)” of [Wei1964, §1]. In order to make things very slightly simpler, we

will assume that A = AF for a global field F of characteristic not equal to 2, in which case Ω can be chosen
to be the obvious discrete subgroup Sp2r(F ) ⊂ Sp(V ⊕ V ∗), where r is the rank of V over A.

Theorem 4.1. Let A = AF and V = VF ⊗AF for some finite dimensional F -vector space BF . There is a
lifting over Sp2r(F ) ⊂ Sp(V ⊕ V ∗) of the Weil representation to a genuine representation rχ,V : Sp2r(F ) →
GL(L2(V )) satisfying

χ(fσ(x, x
∗))Θ(σ(x, x∗)|Φ) = Θ(x, x∗|rχ,V (s)Φ)

for all s ∈ Sp2r(F ).

Proof. The required transformation law for Θ under the action of the lifting of the Weil representation gives
us all we need to define it. The reason for this is that the function taking Φ to Θ is in fact a bijection.
Rigorously, note that Θ(x, x∗|Φ) satisfies the quasiperiodicity condition

Θ(x+ ξ, x∗ + ξ∗|Φ) = Θ(x, x∗|Φ)χ(⟨ξ,−x∗⟩) (9)

for all ξ ∈ Γ and ξ∗ ∈ Γ∗ := {ξ∗ ∈ V ∗ : ⟨ξ, ξ∗⟩ = 1 for all ξ ∈ Γ}. This makes it Γ∗-periodic in x∗ ∈ V ∗. The
function |Θ(x, x∗|Φ)| on V × V ∗ is (Γ× Γ∗)-periodic, since χ is valued in S1. So we may define an L2-norm
on all measurable functions on V × V ∗ that satisfy (9) by

∥Θ∥L2 :=

∫
(V×V ∗)/(Γ×Γ∗)

|Θ|2 dxdx∗.

Define the Hilbert space H(V,Γ) to consist of measurable functions Θ : V ⊕ V ∗ → C satisfying (9) and
∥Θ∥L2 < ∞ and which are locally integrable on V ⊕V ∗. We first claim that the function Z : L2(V ) → H(V,Γ)
given by Φ 7→ Θ(−,−|Φ) is an isomorphism. This fact is actually at the heart of the proof. Indeed, this is
where we copy the same key step as in the proof of the special case which is Theorem 2.1, namely Fourier
expansion of Θ as a periodic function in one of the variables (the only difference is that because we are
expanding Θ and not “Ω” in the notation of that proof, the variable in which it is periodic is x∗ and not
x, though we could have set this proof up differently to match with the conventions of the previous one).
By Fourier inversion between V ∗/Γ∗ and its Pontryagin dual Γ (which is just Fourier series expansion when
V = R and Γ = Z),

Θ(x, x∗|Φ) =
∫
Γ

(∫
V ∗/Γ∗

Θ(x, y∗|Φ)χ(⟨−ξ, y∗⟩) dy∗
)
χ(⟨ξ, x∗⟩) dξ

=

∫
Γ

(∫
V ∗/Γ∗

Θ(x+ ξ, y∗|Φ) dy∗
)
χ(⟨ξ, x∗⟩) dξ

2If A = R or C, Γ is just a Z-lattice. If A is a nonarchimedean local field, Γ is an OK -lattice. If A = AF and V = VF ⊗AF

for a finite-dimensional F -vector space VF , then Γ = VF ⊂ V .

PROMYS 2023-6



which implies that Z is an isomorphism with inverse given by

Φ(x) =

∫
V ∗/Γ∗

Θ(x, x∗) dx∗.

One checks explicitly (using the fact that Sp2r(F ) by definition restricts to isomorphisms on Γ× Γ∗ and
that χ(fσ|Γ×Γ∗) = 1 for all σ ∈ Sp2r(F ) since χ is trivial on F ) that there is a genuine representation of
Sp2r(F ) valued in H(V,Γ) given by

(rF (σ)Θ)(x, x∗) = χ(fσ(x, x
∗))Θ(σ(x, x∗)).

Using that Z : Φ 7→ Θ(−,−|Φ) is an isomorphism from L2(V ) to H(V,Γ), this provides a representation
rχ,V : Sp2r(F ) → GL(L2(V )) with the property that

Θ(x, x∗|rχ,V (σ)Φ) = χ(fσ(x, x
∗))Θ(σ(x, x∗)).

It remains to check that this is a lift of ωχ,V , i.e. that

rχ,V (σ)
−1U(v, v∗, t)rχ,V (σ) = U(σ(v, v∗), t)χ(fσ(x, x

∗))U(σ(x, x∗), t),

which is readily verified from the definitions of Z and Z−1.

Recall from §1 that Θ(0, 0|Φ) as Φ varies is the function that we expect to be some kind of automorphic
form in Φ (which is what parametrized the variable τ before). This is exactly what happens:

Corollary 4.2. For all Φ ∈ S(V ), the function Θ(Φ) : Mp(V ) → C given by

Θ(Φ)(σ̃) = Θ(0, 0|ω̃χ,V (σ̃)Φ) =
∑
ξ∈F

(ω̃χ,V (σ̃)Φ)(ξ)

is invariant under Sp2r(F ) ⊂ Mp(V ) (embedded via the section of Theorem 4.1).

Proof. Let σ ∈ Sp2r(F ) and s̃ ∈ Mp(V ). Then we compute directly using Theorem 4.1:

Θ(Φ)(σs̃) = Θ(0, 0|ω̃χ,V (σs̃)

= Θ(0, 0|ω̃χ,V (σ)ω̃χ,V (s̃))

= Θ(0, 0|rχ,V (σ)ω̃χ,V (σ))

= Θ(0, 0|ω̃χ,V (σ))

= Θ(Φ)(s̃),

as desired.

In particular, Θ(Φ) deserves to be called an automorphic form on Mp(V ). One should note that Mp(V )
is NOT an algebraic group, so the theory of automorphic forms needs to be redeveloped from scratch for the
metaplectic group (see for example [Gel1976]). To further convince ourselves that this deserves to be called
a theta function, let us compute the usual evaluation on elements corresponding to points on the upper half
plane:

Example 2. As in example 1, there are other explicit examples of elements of Sp(V ⊕ V ∗) for which the
projective Weil representation may be computed. From this it is not hard to fiddle with the constant factors
to get a bona fide lift of ωχ,V to a genuine representation (but only on those special elements). For example,
if f is a quadratic form on V corresponding to the symmetric morphism ρ : V → V ∗, then we have the set
of elements of Sp(V ⊕ V ∗) of the form

σ =

(
1 ρ
0 1

)
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on which we can (for example by ad hoc considerations similar to those of Example 1) define a lift of the
projective Weil representation, namely

rχ,V

((
1 ρ
0 1

))
Φ(x) := Φ(x)χ(f(x)).

Similarly, for elements of the form

σ =

(
α 0
0 α∗,−1

)
with α ∈ Aut(V ), we can define a lift given by

rχ,V

((
α 0
0 α∗,−1

))
Φ(x) := |α|1/2Φ(αx).

Putting these two lifts together, we obtain a lift over the Siegel parabolic(
∗ ∗
0 ∗

)
,

which is great because these are the matrices we need to describe the values of an automorphic form on the
upper half-plane model. Recall that this is because(

y1/2 xy−1/2

0 y−1/2

)
i = x+ iy

for all x ∈ R, y > 0.
Now let us follow [Gel1976] in recovering the classical theta function ϑ(0; τ) as a special case of Θ(Φ).

Once we have done this, the work of Theorem 4.1 replaces the work of Theorem 2.1 and allows us to
immediately conclude the half-integral weight modularity property of ϑ. Let x+ iy ∈ H, and let us denote

by

(
y1/2 xy−1/2

0 y−1/2

)
the element of SL2(AQ) that is equal to this matrix at the real place and equal to 1

everywhere else.
Let V = AQ so that Sp(V ⊕ V ∗) = SL2(AQ). Let Φ =

∏
v Φv, where Φ∞(x) = e−2πx2 ∈ S(R) and

Φp(x) = 1Zp
for all rational primes p < ∞. Let χ =

∏
v χv, where χ∞(x) = e2πix. For x+ iy ∈ H, we may

compute (using the explicit sections of the metaplectic covering over the Siegel parabolic described above)

Θ(Φ)

((
y1/2 xy−1/2

0 y−1/2

))
=
∑
ξ∈Q

((
rχ,V

(
1 x
0 1

)
rχ,V

(
y1/2 0
0 y−1/2

))
Φ

)
(ξ)

=
∑
ξ∈Q

e2πiξ
2x

(
rχ,V

(
y1/2 0
0 y−1/2

)
Φ

)
(ξ)

= y1/4
∑
ξ∈Q

e2πiξ
2xΦ(y1/2ξ)

The term Φ(y1/2ξ) is zero unless ξp ∈ Zp for all p < ∞, i.e. unless ξ ∈ Z, by the explicit form of Φp and
because the adele y is 1 everywhere except ∞. Using the explicit form of Φ∞, we are left with

y1/4
∑
ξ∈Z

e2πiξ
2xe−2πyξ2 = y1/4

∑
ξ∈Z

e2πiξ
2(x+iy) = y1/4ϑ(0;x+ iy),

confirming that this automorphic form corresponds in the usual way to what is essentially the classical theta
function.
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